WO2015200179A1 - Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening - Google Patents

Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening Download PDF

Info

Publication number
WO2015200179A1
WO2015200179A1 PCT/US2015/036902 US2015036902W WO2015200179A1 WO 2015200179 A1 WO2015200179 A1 WO 2015200179A1 US 2015036902 W US2015036902 W US 2015036902W WO 2015200179 A1 WO2015200179 A1 WO 2015200179A1
Authority
WO
WIPO (PCT)
Prior art keywords
blocked
reactive
percent
optionally
chain extender
Prior art date
Application number
PCT/US2015/036902
Other languages
French (fr)
Inventor
Jason P. Rolland
Kai Chen
Justin POELMA
James Goodrich
Robert PINSCHMIDT
Joseph M. Desimone
Lloyd ROBESON
Original Assignee
Carbon3D, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54938697&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015200179(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to SG11201610191PA priority Critical patent/SG11201610191PA/en
Priority to EP15811310.0A priority patent/EP3158398A4/en
Priority to JP2016575074A priority patent/JP6720092B2/en
Priority to MX2016016630A priority patent/MX2016016630A/en
Priority to AU2015280289A priority patent/AU2015280289B2/en
Priority to CN201580033803.XA priority patent/CN106796392B/en
Priority to KR1020177001544A priority patent/KR20170018067A/en
Application filed by Carbon3D, Inc. filed Critical Carbon3D, Inc.
Priority to BR112016029766A priority patent/BR112016029766A2/en
Priority to CA2950213A priority patent/CA2950213A1/en
Priority to US14/977,876 priority patent/US9598606B2/en
Publication of WO2015200179A1 publication Critical patent/WO2015200179A1/en
Priority to US15/428,708 priority patent/US10240066B2/en
Priority to US16/269,710 priority patent/US10647880B2/en
Priority to US16/803,350 priority patent/US11299579B2/en
Priority to US17/655,275 priority patent/US11850803B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/286Optical filters, e.g. masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/0009After-treatment of articles without altering their shape; Apparatus therefor using liquids, e.g. solvents, swelling agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/006Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/69Polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8141Unsaturated isocyanates or isothiocyanates masked
    • C08G18/815Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen
    • C08G18/8158Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen
    • C08G18/8175Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen with esters of acrylic or alkylacrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D135/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D135/02Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/08Polyurethanes from polyethers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0037Production of three-dimensional images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C2033/0005Moulds or cores; Details thereof or accessories therefor with transparent parts, e.g. permitting visual inspection of the interior of the cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0855Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using microwave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • B29K2075/02Polyureas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0002Condition, form or state of moulded material or of the material to be shaped monomers or prepolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0058Liquid or visquous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0058Liquid or visquous
    • B29K2105/0073Solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0088Blends of polymers
    • B29K2105/0091IPN, i.e. interpenetrating polymer networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/043Skinned foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/251Particles, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0075Light guides, optical cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/001Profiled members, e.g. beams, sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/10Building elements, e.g. bricks, blocks, tiles, panels, posts, beams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/14Polyurethanes having carbon-to-carbon unsaturated bonds

Definitions

  • the present invention concerns materials, methods and apparatus for the fabrication of solid three-dimensional objects from liquid materials, and objects so produced.
  • construction of a three-dimensional object is performed in a step- wise or layer-by-layer manner.
  • layer formation is performed through solidification of photo curable resin under the action of visible or UV light irradiation.
  • Two techniques are known: one in which new layers are formed at the top surface of the growing object; the other in which new layers are formed at the bottom surface of the growing object.
  • liquid radiation curable resins for additive fabrication, but these comprise a cationic photoinitiator (and hence are limited in the materials which may be used) and are suggested only for layer by layer fabrication.
  • Described herein are methods, systems and apparatus (including associated control methods, systems and apparatus), for the production of a three-dimensional object by additive manufacturing.
  • the method is carried out continuously.
  • the three- dimensional object is produced from a liquid interface.
  • continuous liquid interface production continuous liquid interphase printing
  • CLIP continuous liquid interphase printing
  • the present invention provides a method of forming a three-dimensional object, comprising: (a) providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween; (b) filling the build region with a polymerizable liquid, the polymerizable liquid comprising a mixture of: (i) a light polymerizable liquid first component, and (ii) a second solidifiable (or second reactive) component different from the first component; (c) irradiating the build region with light through the optically transparent member to form a solid polymer scaffold from the first component and advancing (e.g., advancing concurrently— that is, simultaneously, or sequentially in an alternating fashion with irradiating steps) the carrier away from the build surface to form a three-dimensional intermediate having the same shape as, or a shape to be imparted to, the three-dimensional object and containing the second solidifiable component carried in the scaffold in unsolidified or uncured form; and (d) concurrently
  • the second component comprises: (i) a polymerizable liquid solubilized in or suspended in the first component; (ii) a polymerizable solid solubilized in the first component; or (Hi) a polymer solubilized in the first component.
  • the second component comprises: (i) a polymerizable solid suspended in the first component; or (ii) solid thermoplastic or thermoset polymer particles suspended in the first component.
  • the first component comprises a blocked or reactive blocked prepolymer and (optionally but in some embodiments preferably) a reactive diluent
  • the second component comprises a chain extender.
  • the first components react together to form a blocked polymer scaffold during the irradiating step, which is unblocked by heating or microwave irradiating during the second step to in turn react with the chain extender.
  • the reactive blocked component comprises a reactive blocked diisocyanate and/or chain extender, alone or in combination with a reactive blocked prepolymer, and other unblocked constituents (e.g., polyisocyanate oligomer, diisocyanate, reactive diluents, and/or chain extender).
  • reactive blocked blocked prepolymers, diisocyanates, and/or chain extenders are blocked by reaction of (i.e., are the reaction product of a reaction between) a polyisocyanate oligomer, a diisocyanate, and/or a chain extender with an amine methacrylate, alcohol methacrylate, maleimide, or n-vinylformamide monomer blocking agent.
  • the three-dimensional intermediate is collapsible or compressible (e.g., elastic).
  • the scaffold is continuous; in other embodiments, the scaffold is discontinuous (e.g., an open or closed cell foam, which foam may be regular (e.g., geometric, such as a lattice) or irregular).
  • the scaffold is discontinuous (e.g., an open or closed cell foam, which foam may be regular (e.g., geometric, such as a lattice) or irregular).
  • the three-dimensional object comprises a polymer blend (e.g., an interpenetrating polymer network, a semi-interpenetrating polymer network, a sequential interpenetrating polymer network) formed from the first component and the second component.
  • a polymer blend e.g., an interpenetrating polymer network, a semi-interpenetrating polymer network, a sequential interpenetrating polymer network
  • the polymerizable liquid comprises from 1 , 2 or 5 percent by weight to 20, 30, 40, 90 or 99 percent by weight of the first component; and from 1, 10, 60, 70 or 80 percent by weight to 95, 98 or 99 percent by weight of the second component (optionally including one or more additional components). In other embodiments, the polymerizable liquid comprises from 1, 2 or 5 percent by weight to 20, 30, 40, 90 or 99 percent by weight of the second component; and from 1, 10, 60, 70 or 80 percent by weight to 95, 98 or 99 percent by weight of the first component (optionally including one or more additional components).
  • the solidifying and/or curing step (d) is carried out concurrently with the irradiating step (c) and: (i) the solidifying and/or curing step is carried out by precipitation; (ii) the irradiating step generates heat from the polymerization of the first component in an amount sufficient to thermally solidify or polymerize the second component (e.g., to a temperature of 50 or 80 to 100 °C, for polymerizing polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)); and (in) the second component (e.g., a light or ultraviolet light curable epoxy resin) is solidified by the same light as is the first component in the irradiating step.
  • the second component e.g., a light or ultraviolet light curable epoxy resin
  • the solidifying and/or curing step (d) is carried out subsequent to the irradiating step (c) and is carried out by: (i) heating or microwave irradiating the second solidifiable component; (ii) irradiating the second solidifiable component with light at a wavelength different from that of the light in the irradiating step (c); (iii) contacting the second polymerizable component to water; or (iv) contacting the second polymerizable component to a catalyst.
  • the second component comprises precursors to a polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), a silicone resin, or natural rubber, and the solidifying and/or curing step is carried out by heating or microwave irradiating.
  • a polyurethane, polyurea, or copolymer thereof e.g., poly(urethane-urea)
  • silicone resin e.g., silicone resin, or natural rubber
  • the second component comprises a cationically cured resin
  • the solidifying and/or curing step is carried out by irradiating the second solidifiable component with light at a wavelength different from that of the light in the irradiating step (c).
  • the second component comprises a precursor to a polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), and the solidifying and/or curing step is carried out by contacting the second component to water (e.g., in liquid, gas, or aerosol form).
  • a precursor to a polyurethane, polyurea, or copolymer thereof e.g., poly(urethane-urea)
  • water e.g., in liquid, gas, or aerosol form
  • Suitable examples of such precursors include, but are not limited to, those described in B. Baumbach, Silane Terminated Polyurethanes (Bayer MaterialScience 2013).
  • the second component comprises a precursor to a polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), a silicone resin, a ring-opening metathesis polymerization resin, or a click chemistry resin (alkyne monomers in combination with compound plus an azide monomers), and the solidifying and/or curing step is carried out by contacting the second component to a polymerization catalyst (e.g., a metal catalyst such as a tin catalyst, and/or an amine catalyst, for polyurethane/polyurea resins; platinum or tin catalysts for silicone resins; ruthenium catalysts for ring-opening metathesis polymerization resins; copper catalyst for click chemistry resins; etc., which catalyst is contacted to the article as a liquid aerosol, by immersion, etc.), or an an aminoplast containing resin, such as one containing N-(alkoxymethyl)acrylamide, hydroxyl groups, and a blocked
  • the irradiating step and/or advancing step is carried out while also concurrently: (i) continuously maintaining a dead zone (or persistent liquid interface) of polymerizable liquid in contact with the build surface, and
  • the first component comprises a free radical polymerizable liquid and the inhibitor comprises oxygen; or the first component comprises an acid-catalyzed or cationically polymerizable liquid, and the inhibitor comprises a base.
  • the gradient of polymerization zone and the dead zone together have a thickness of from 1 to 1000 microns.
  • the gradient of polymerization zone is maintained for a time of at least 5, 10, 20 or 30 seconds, or at least 1 or 2 minutes.
  • the advancing is carried out at a cumulative rate of at least 0.1 , 1, 10, 100 or 1000 microns per second.
  • the build surface is substantially fixed or stationary in the lateral and/or vertical dimensions.
  • the method further comprises vertically reciprocating the carrier with respect to the build surface to enhance or speed the refilling of the build region with the polymerizable liquid.
  • a further aspect of the invention is a polymerizable liquid substantially as described herein above and below, and/or for use in carrying out a method as described herein.
  • One particular embodiment of the inventions disclosed herein is a method of forming a three- dimensional object comprised of polyurethane, polyurea, or copolymer thereof, the method comprising: (a) providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween; (b) filling the build region with a polymerizable liquid, the polymerizable liquid comprising at least one of: (i) a blocked or reactive blocked prepolymer, (ii) a blocked or reactive blocked diisocyante, or (in) a blocked or reactive blocked diisocyanate chain extender; (c) irradiating the build region with light through the optically transparent member to form a solid blocked polymer scaffold and advancing the carrier away from the build surface to form a three-dimensional intermediate having the same shape as, or a shape to be imparted to, the three-dimensional object, with the intermediate containing the chain extender; and then (d) heating or microwave irradiating
  • the solidifiable or polymerizable liquid is changed at least once during the method with a subsequent solidifiable or polymerizable liquid; optionally where the subsequent solidifiable or polymerizable liquid is cross-reactive with each previous solidifiable or polymerizable liquid during the subsequent curing, to form an object having a plurality of structural segments covalently coupled to one another, each structural segment having different structural (e.g., tensile) properties.
  • a further aspect of the inventions disclosed herein is a polymerizable liquid useful for the production of a three-dimensional object comprised of polyurethane, polyurea, or a copolymer thereof by additive manufacturing, the polymerizable liquid comprising a mixture of:
  • non-reactive light absorbing particularly a ultraviolet light-absorbing, pigment or dye which when present is included in an amount of from 0.001 or 0.01 to 10 percent by weight
  • a filler e.g. silica
  • non-reactive light absorbing pigment or dye is present when the at least one constituent is only the blocked or reactive blocked prepolymer.
  • polymerizable liquids used in the present invention include a non-reactive pigment or dye.
  • a non-reactive pigment or dye examples include, but are not limited to, (i) titanium dioxide (e.g., in an amount of from 0.05 or 0.1 to 1 or 5 prcent by weight), (ii) carbon black (e.g., included in an amount of from 0.05 or 0.1 to 1 or 5 percent by weight), and/or (Hi) an organic ultraviolet light absorber such as a hydroxybenzophenone, hydroxyphenylbenzotriazole, oxanilide, benzophenone, hydroxypenyltriazine, and/or benzotriazole ultraviolet light absorber (e.g. in an amount of 0.001 or 0.005 to 1 , 2 or 4 percent by weight).
  • a further aspect of the inventions disclosed herein is a three dimensional object comprised of: (a) a light polymerized first component; and (b) a second solidified component ⁇ e.g., a further reacted, polymerized or chain extended component) different from the first component; optionally but in some embodiments preferably subject to the proviso that: (i) the second component does not contain a cationic polymerization photoinitiator, and/or (ii) the three dimensional object is produced by the process of continuous liquid interface production.
  • the object further comprises: (c) a third solidified (or further reacted, polymerized, or chain extended) component different from the first and second component, with the object having at least a first structural segment and a second structural segment covalently coupled to one another, the first structural segment comprised of the second solidified component, the second structural segment comprised of the third solidified component; and both the first and second structural segments comprised of the same or different light polymerized first component.
  • a third solidified (or further reacted, polymerized, or chain extended) component different from the first and second component with the object having at least a first structural segment and a second structural segment covalently coupled to one another, the first structural segment comprised of the second solidified component, the second structural segment comprised of the third solidified component; and both the first and second structural segments comprised of the same or different light polymerized first component.
  • the object comprises a polymer blend formed from the first component and the second component.
  • the object may be one that has a shape that cannot be formed by injection molding or casting.
  • Figure 1 is a schematic illustration of one embodiment of a method of the present invention.
  • Figure 2 is a perspective view of one embodiment of an apparatus of the present invention.
  • Figures 3 is a first flow chart illustrating control systems and methods for carrying out the present invention.
  • Figures 4 is a second flow chart illustrating control systems and methods for carrying out the present invention.
  • Figure S is a third flow chart illustrating control systems and methods for carrying out the present invention.
  • Figure 6 is a top view of a 3 inch by 16 inch "high aspect" rectangular build plate (or “window") assembly of the present invention, where the film dimensions are 3.5 inch by 17 inch.
  • Figure 7 is an exploded view of the build plate of Figure 6, showing the tension ring and tension ring spring plate.
  • Figure 8 is a side sectional view of the build plates of Figures 6-9, showing how the tension member tensions and rigidifies the polymer film.
  • Figure 9 is a top view of a 2.88 inch diameter round build plate of the invention, where the film dimension may be 4 inches in diameter.
  • Figure 10 is an exploded view of the build plate of Figure 8.
  • Figure 11 shows various alternate embodiments of the build plates of Figures 7-10.
  • Figure 12 is a front perspective view of an apparatus according to an exemplary embodiment of the invention.
  • Figure 13 is a side view of the apparatus of Figure 12.
  • Figure 14 is a rear perspective view of the apparatus of Figure 12.
  • Figure 15 is a perspective view of a light engine assembly used with the apparatus of Figure 12.
  • Figure 16 is a front perspective view of an apparatus according to another exemplary embodiment of the invention.
  • Figures 17A is a schematic diagram illustrating tiled images.
  • Figures 17B is a second schematic diagram illustrating tiled images.
  • Figures 17C is a third schematic diagram illustrating tiled images.
  • Figure 18 is a front perspective view of an apparatus according to another exemplary embodiment of the invention.
  • Figure 19 is a side view of the apparatus of Figure 18.
  • Figure 20 is a perspective view of a light engine assembly used with the apparatus of Figure 18.
  • Figure 21 is a graphic illustration of a process of the invention indicating the position of the carrier in relation to the build surface or plate, where both advancing of the carrier and irradiation of the build region is carried out continuously. Advancing of the carrier is illustrated on the vertical axis, and time is illustrated on the horizontal axis.
  • Figure 22 is a graphic illustration of another process of the invention indicating the position of the carrier in relation to the build surface or plate, where both advancing of the carrier and irradiation of the build region is carried out stepwise, yet the dead zone and gradient of polymerization are maintained. Advancing of the carrier is again illustrated on the vertical axis, and time is illustrated on the horizontal axis.
  • Figure 23 is a graphic illustration of still another process of the invention indicating the position of the carrier in relation to the build surface or plate, where both advancing of the carrier and irradiation of the build region is carried out stepwise, the dead zone and gradient of polymerization are maintained, and a reciprocating step is introduced between irradiation steps to enhance the flow of polymerizable liquid into the build region.
  • Advancing of the carrier is again illustrated on the vertical axis, and time is illustrated on the horizontal axis.
  • Figure 24 is a detailed illustration of an reciprocation step of Figure 23, showing a period of acceleration occurring during the upstroke (i.e., a gradual start of the upstroke) and a period of deceleration occurring during the downstroke (i.e., a gradual end to the downstroke).
  • Figure 25A depicts a dual cure system employing a thermally cleavable end group.
  • I Crosslinked blocked diisocyanate prepolymer containing unreacted chain extender.
  • II Polymer blend of: i) linear ethylenically unsaturated blocking monomer copolymerized with reactive diluent and ii) linear thermoplastic polyurethane.
  • Figure 25B depicts a method of the present invention carried out with methacrylate blocked diisocyanates (ABDIs).
  • ABSIs methacrylate blocked diisocyanates
  • 1. Crosslinked blocked diisocyanate containing unreacted soft segment and chain extender.
  • II. Polymer blend of: i) linear ethylenically unsaturated blocking monomer copolymerized with reactive diluent and ii) linear thermoplastic polyurethane.
  • Figure 25C depicts a method of the present invention carried out with methacrylate blocked chain extenders (ABCEs).
  • ABCEs methacrylate blocked chain extenders
  • I Crosslinked blocked diisocyanate containing chain extender containing unreacted soft segment and chain extender.
  • the device may otherwise be oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • the terms “upwardly,” “downwardly,” “vertical,” “horizontal” and the like are used herein for the purpose of explanation only, unless specifically indicated otherwise.
  • first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. Rather, these terms are only used to distinguish one element, component, region, layer and/or section, from another element, component, region, layer and/or section. Thus, a first element, component, region, layer or section discussed herein could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.
  • the sequence of operations (or steps) is not limited to the order presented in the claims or figures unless specifically indicated otherwise.
  • Shape to be imparted to refers to the case where the shape of the intermediate object slightly changes between formation thereof and forming the subsequent three-dimensional product, typically by shrinkage (e.g., up to 1 , 2 or 4 percent by volume), expansion (e.g., up to 1 , 2 or 4 percent by volume), removal of support structures, or by intervening forming steps (e.g., intentional bending, stretching, drilling, grinding, cutting, polishing, or other intentional forming after formation of the intermediate product, but before formation of the subsequent three-dimensional product).
  • shrinkage e.g., up to 1 , 2 or 4 percent by volume
  • expansion e.g., up to 1 , 2 or 4 percent by volume
  • removal of support structures e.g., intentional bending, stretching, drilling, grinding, cutting, polishing, or other intentional forming after formation of the intermediate product, but before formation of the subsequent three-dimensional product.
  • Hydrocarbyl refers to a bifunctional hydrocarbon group, which hydrocarbon may be aliphatic, aromatic, or mixed aliphatic and aromatic, and optionally containing one or more (e.g. 1 , 2, 3, or 4) heteroatoms (typically selected from N, O, and S). Such hydrocarbyl groups may be optionally substituted and may contain from 1 , 2, or 3 carbon atoms, up to 6, 8 or 10 carbon atoms or more, and up to 40, 80, or 100 carbon atoms or more.
  • Dual cure systems as described herein may include a first curable system (sometimes referred to as “Part A” or herein) that is curable by actinic radiation, typically light, and in some embodiments ultraviolet (UV) light).
  • a first curable system (sometimes referred to as “Part A” or herein) that is curable by actinic radiation, typically light, and in some embodiments ultraviolet (UV) light).
  • Any suitable polymerizable liquid can be used as the first component.
  • the liquid (sometimes also referred to as “liquid resin” “ink,” or simply “resin” herein) can include a monomer, particularly photopolymerizable and/or free radical polymerizable monomers, and a suitable initiator such as a free radical initiator, and combinations thereof.
  • Examples include, but are not limited to, acrylics, methacrylics, acrylamides, styrenics, olefins, halogenated olefins, cyclic alkenes, maleic anhydride, alkenes, alkynes, carbon monoxide, functionalized oligomers, multifunctional cute site monomers, functionalized PEGs, etc., including combinations thereof.
  • liquid resins, monomers and initiators include but are not limited to those set forth in US Patents Nos. 8,232,043; 8,119,214; 7,935,476; 7,767,728; 7,649,029; WO 2012129968 Al ; CN 102715751 A; JP 2012210408 A.
  • the polymerizable liquid comprises a free radical polymerizable liquid (in which case an inhibitor may be oxygen as described below), in other embodiments the polymerizable liquid comprises an acid catalyzed, or cationically polymerized, polymerizable liquid. In such embodiments the polymerizable liquid comprises monomers contain groups suitable for acid catalysis, such as epoxide groups, vinyl ether groups, etc..
  • suitable monomers include olefins such as methoxyethene, 4-methoxystyrene, styrene, 2-methylprop-l-ene, 1,3- butadiene, etc.; heterocycloic monomers (including lactones, lactams, and cyclic amines) such as oxirane, thietane, tetrahydrofuran, oxazoline, 1 ,3, dioxepane, oxetan-2-one, etc., and combinations thereof.
  • olefins such as methoxyethene, 4-methoxystyrene, styrene, 2-methylprop-l-ene, 1,3- butadiene, etc.
  • heterocycloic monomers including lactones, lactams, and cyclic amines
  • a suitable (generally ionic or non-ionic) photoacid generator (PAG) is included in the acid catalyzed polymerizable liquid, examples of which include, but are not limited to onium salts, sulfonium and iodonium salts, etc., such as diphenyl iodide hexafluorophosphate, diphenyl iodide hexafluoroarsenate, diphenyl iodide hexafluoroantimonate, diphenyl p-methoxyphenyl triflate, diphenyl p-toluenyl triflate, diphenyl p-isobutylphenyl triflate, diphenyl p-tert-butylphenyl triflate, triphenylsulfonium hexafluororphosphate, triphenylsulfonium hexafluoroarsenate, triphenylsulfonium
  • suitable resins includes photocurable hydrogels like poly(ethylene glycols) (PEG) and gelatins.
  • PEG hydrogels have been used to deliver a variety of biologicals, including Growth factors; however, a great challenge facing PEG hydrogels crosslinked by chain growth polymerizations is the potential for irreversible protein damage.
  • Conditions to maximize release of the biologicals from photopolymerized PEG diacrylate hydrogels can be enhanced by inclusion of affinity binding peptide sequences in the monomer resin solutions, prior to photopolymerization allowing sustained delivery.
  • Gelatin is a biopolymer frequently used in food, cosmetic, pharmaceutical and photographic industries. It is obtained by thermal denaturation or chemical and physical degradation of collagen.
  • gelatin There are three kinds of gelatin, including those found in animals, fish and humans. Gelatin from the skin of cold water fish is considered safe to use in pharmaceutical applications. UV or visible light can be used to crosslink appropriately modified gelatin. Methods for crosslinking gelatin include cure derivatives from dyes such as Rose Bengal.
  • Photocurable silicone resins A suitable resin includes photocurable silicones.
  • UV cure silicone rubber such as SilioprenTM UV Cure Silicone Rubber can be used as can LOCTITETM Cure Silicone adhesives sealants.
  • Applications include optical instruments, medical and surgical equipment, exterior lighting and enclosures, electrical connectors / sensors, fiber optics and gaskets.
  • Biodegradable resins are particularly important for implantable devices to deliver drugs or for temporary performance applications, like biodegradable screws and stents (US patents 7,919,162; 6,932,930).
  • Biodegradable copolymers of lactic acid and glycolic acid (PLGA) can be dissolved in PEG dimethacrylate to yield a transparent resin suitable for use.
  • Polycaprolactone and PLGA oligomers can be functionalized with acrylic or methacrylic groups to allow them to be effective resins for use.
  • Photocurable polyurethanes A particularly useful resin is photocurable polyurethanes (including , polyureas, and copolymers of polyurethanes and polyureas (e.g., poly(urethane-urea)).
  • a photopolymerizable polyurethane/polyurea composition comprising (1 ) a polyurethane based on an aliphatic diisocyanate, poly(hexamethylene isophthalate glycol) and, optionally, 1 ,4-butanediol; (2) a polyfunctional acrylic ester; (3) a photoinitiator; and (4) an anti-oxidant, can be formulated so that it provides a hard, abrasion-resistant, and stain-resistant material (US Patent 4,337,130).
  • Photocurable thermoplastic polyurethane elastomers incorporate photoreactive diacetylene diols as chain extenders.
  • High performance resins are used. Such high performance resins may sometimes require the use of heating to melt and/or reduce the viscosity thereof, as noted above and discussed further below, Examples of such resins include, but are not limited to, resins for those materials sometimes referred to as liquid crystalline polymers of esters, ester-imide, and ester-amide oligomers, as described in US Patents Nos. 7,507,784; 6,939,940.
  • thermoset resins are sometimes employed as high- temperature thermoset resins, in the present invention they further comprise a suitable photoinitiator such as benzophenone, anthraquinone, amd fluoroenone initiators (including derivatives thereof), to initiate cross-linking on irradiation, as discussed further below.
  • a suitable photoinitiator such as benzophenone, anthraquinone, amd fluoroenone initiators (including derivatives thereof), to initiate cross-linking on irradiation, as discussed further below.
  • Particularly useful resins for dental applications include EnvisionTEC's Clear Guide, EnvisionTEC's E-Denstone Material.
  • Particularly useful resins for hearing aid industries include EnvisionTEC's e-Shell 300 Series of resins.
  • Particularly useful resins include EnvisionTEC's HTM140IV High Temperature Mold Material for use directly with vulcanized rubber in molding / casting applications.
  • a particularly useful material for making tough and stiff parts includes EnvisionTEC's RC31 resin.
  • Particularly useful resin for investment casting applications include EnvisionTEC's Easy Cast EC500 resin and MadeSolid FireCast resin.
  • the liquid resin or polymerizable material can have solid particles suspended or dispersed therein. Any suitable solid particle can be used, depending upon the end product being fabricated.
  • the particles can be metallic, organic/polymeric, inorganic, or composites or mixtures thereof.
  • the particles can be nonconductive, semi-conductive, or conductive (including metallic and non-metallic or polymer conductors); and the particles can be magnetic, ferromagnetic, paramagnetic, or nonmagnetic.
  • the particles can be of any suitable shape, including spherical, elliptical, cylindrical, etc.
  • the particles can be of any suitable size (for example, ranging from 1 nm to 20 um average diameter).
  • the particles can comprise an active agent or detectable compound as described below, though these may also be provided dissolved solubilized in the liquid resin as also discussed below.
  • magnetic or paramagnetic particles or nanoparticles can be employed.
  • the liquid resin can have additional ingredients solubilized therein, including pigments, dyes, active compounds or pharmaceutical compounds, detectable compounds (e.g., fluorescent, phosphorescent, radioactive), etc., again depending upon the particular purpose of the product being fabricated.
  • additional ingredients include, but are not limited to, proteins, peptides, nucleic acids (DNA, RNA) such as siRNA, sugars, small organic compounds (drugs and drug-like compounds), etc., including combinations thereof.
  • Non-reactive light absorbers include a non-reactive pigment or dye that absorbs light, particularly UV light.
  • Suitable examples of such light absorbers include, but are not limited to: (i) titanium dioxide (e.g., included in an amount of from 0.05 or 0.1 to 1 or 5 prcent by weight), (ii) carbon black (e.g., included in an amount of from 0.05 or 0.1 to 1 or 5 percent by weight), and/or (Hi) an organic ultraviolet light absorber such as a a hydroxybenzophenone, hydroxyphenylbenzotriazole, oxanilide, benzophenone, hydroxypenyltriazine, and/or benzotriazole ultraviolet light absorber (e.g., Mayzo BLS1326) (e.g., included in an amount of 0.001 or 0.005 to 1, 2 or 4 percent by weight).
  • suitable organic ultraviolet light absorbers include, but are not limited to, those described in US Patents No
  • Inhibitors of polymerization may be in the form of a liquid or a gas.
  • gas inhibitors are preferred.
  • the specific inhibitor will depend upon the monomer being polymerized and the polymerization reaction.
  • the inhibitor can conveniently be oxygen, which can be provided in the form of a gas such as air, a gas enriched in oxygen (optionally but in some embodiments preferably containing additional inert gases to reduce combustibility thereof), or in some embodiments pure oxygen gas.
  • the inhibitor can be a base such as ammonia, trace amines (e.g. methyl amine, ethyl amine, di and trialkyl amines such as dimethyl amine, diethyl amine, trimethyl amine, triethyl amine, etc.), or carbon dioxide, including mixtures or combinations thereof.
  • Polymerizable liquids carrying live cells may carry live cells as "particles" therein.
  • Such polymerizable liquids are generally aqueous, and may be oxygenated, and may be considered as "emulsions" where the live cells are the discrete phase.
  • Suitable live cells may be plant cells (e.g., monocot, dicot), animal cells (e.g., mammalian, avian, amphibian, reptile cells), microbial cells (e.g., prokaryote, eukaryote, protozoal, etc.), etc.
  • the cells may be of differentiated cells from or corresponding to any type of tissue (e.g., blood, cartilage, bone, muscle, endocrine gland, exocrine gland, epithelial, endothelial, etc.), or may be undifferentiated cells such as stem cells or progenitor cells.
  • the polymerizable liquid can be one that forms a hydrogel, including but not limited to those described in US Patents Nos. 7,651 ,683; 7,651 ,682; 7,556,490; 6,602,975; 5,836,313 ; etc. II. APPARATUS.
  • FIG. 2 A non-limiting embodiment of an apparatus of the invention is shown in Figure 2. It comprises a radiation source 11 such as a digital light processor (DLP) providing electromagnetic radiation 12 which though reflective mirror 13 illuminates a build chamber defined by wall 14 and a rigid or flexible build plate 15 forming the bottom of the build chamber, which build chamber is filled with liquid resin 16.
  • the bottom of the chamber 15 is constructed of a build plate comprising a rigid or flexible semipermeable member as discussed further below.
  • the top of the object under construction 17 is attached to a carrier 18.
  • the carrier is driven in the vertical direction by linear stage 19, although alternate structures can be used as discussed below.
  • a liquid resin reservoir, tubing, pumps liquid level sensors and/or valves can be included to replenish the pool of liquid resin in the build chamber (not shown for clarity) though in some embodiments a simple gravity feed may be employed.
  • Drives/actuators for the carrier or linear stage, along with associated wiring, can be included in accordance with known techniques (again not shown for clarity).
  • the drives/actuators, radiation source, and in some embodiments pumps and liquid level sensors can all be operatively associated with a suitable controller, again in accordance with known techniques.
  • Build plates 15 used to carry out the present invention generally comprise or consist of a (typically rigid or solid, stationary, and/or fixed, although in some embodiments flexible) semipermeable (or gas permeable) member, alone or in combination with one or more additional supporting substrates (e.g., clamps and tensioning members to tension and stabilize an othenvise flexible semipermeable material).
  • a semipermeable (or gas permeable) member typically rigid or solid, stationary, and/or fixed, although in some embodiments flexible
  • additional supporting substrates e.g., clamps and tensioning members to tension and stabilize an othenvise flexible semipermeable material.
  • the semipermeable member can be made of any suitable material that is optically transparent at the relevant wavelengths (or otherwise transparent to the radiation source, whether or not it is visually transparent as perceived by the human eye— i.e., an optically transparent window may in some embodiments be visually paque), including but not limited to porous or microporous glass, and the rigid gas permeable polymers used for the manufacture of rigid gas permeable contact lenses. See, e.g., Norman G. Gaylord, US Patent No. RE31,406; see also US Patents Nos.
  • the semipermeable member is formed of a material that does not swell when contacted to the liquid resin or material to be polymerized (i.e., is "non-swellable"). Suitable materials for the semipermeable member include amorphous fluoropolymers, such as those described in US Patent Nos.
  • fluoropolymers are particularly useful over silicones that would potentially swell when used in conjunction with organic liquid resin inks to be polymerized.
  • silicone based window materials maybe suitable.
  • the solubility or permeability of organic liquid resin inks can be dramatically decreased by a number of known parameters including increasing the crosslink density of the window material or increasing the molecular weight of the liquid resin ink.
  • the build plate may be formed from a thin film or sheet of material which is flexible when separated from the apparatus of the invention, but which is clamped and tensioned when installed in the apparatus (e.g., with a tensioning ring) so that it is tensioned and stabilized in the apparatus.
  • a tensioning ring e.g., TEFLON AF® fluoropolymers, commercially available from DuPont.
  • Additional materials include perfluoropolyether polymers such as described in US Patents Nos. 8,268,446; 8,263,129; 8,158,728; and 7,435,495.
  • the semipermeable member typically comprises a top surface portion, a bottom surface portion, and an edge surface portion.
  • the build surface is on the top surface portion; and the feed surface may be on one, two, or all three of the top surface portion, the bottom surface portion, and/or the edge surface portion.
  • the feed surface is on the bottom surface portion, but alternate configurations where the feed surface is provided on an edge, and/or on the top surface portion (close to but separate or spaced away from the build surface) can be implemented with routine skill.
  • the semipermeable member has, in some embodiments, a thickness of from 0.01 , 0.1 or 1 millimeters to 10 or 100 millimeters, or more (depending upon the size of the item being fabricated, whether or not it is laminated to or in contact with an additional supporting plate such as glass, etc., as discussed further below.
  • the permeability of the semipermeable member to the polymerization inhibitor will depend upon conditions such as the pressure of the atmosphere and/or inhibitor, the choice of inhibitor, the rate or speed of fabrication, etc.
  • the permeability of the semipermeable member to oxygen may be from 10 or 20 Barrers, up to 1000 or 2000 Barrers, or more.
  • a semipermeable member with a permeability of 10 Barrers used with a pure oxygen, or highly enriched oxygen, atmosphere under a pressure of 150 PSI may perform substantially the same as a semipermeable member with a permeability of 500 Barrers when the oxygen is supplied from the ambient atmosphere under atmospheric conditions.
  • the semipermeable member may comprise a flexible polymer film (having any suitable thickness, e.g., from 0.001 , 0.01 , 0.05, 0.1 or 1 millimeters to 1 , 5, 10, or 100 millimeters, or more), and the build plate may further comprise a tensioning member (e.g., a peripheral clamp and an operatively associated strain member or stretching member, as in a "drum head"; a plurality of peripheral clamps, etc., including combinations thereof) connected to the polymer film and to fix and tension, stabilize or rigidify the film (e.g., at least sufficiently so that the film does not stick to the object as the object is advanced and resiliently or elastically rebound therefrom).
  • a tensioning member e.g., a peripheral clamp and an operatively associated strain member or stretching member, as in a "drum head”; a plurality of peripheral clamps, etc., including combinations thereof
  • the film has a top surface and a bottom surface, with the build surface on the top surface and the feed surface preferably on the bottom surface.
  • the semipermeable member comprises: (i) a polymer film layer (having any suitable thickness, e.g., from 0.001 , 0.01 , 0.1 or 1 millimeters to 5, 10 or 100 millimeters, or more), having a top surface positioned for contacting the polymerizable liquid and a bottom surface, and (ii) a gas permeable, optically transparent supporting member (having any suitable thickness, e.g., from 0.01 , 0.1 or 1 millimeters to 10, 100, or 200 millimeters, or more), contacting the film layer bottom surface.
  • the supporting member has a top surface contacting the film layer bottom surface, and the supporting member has a bottom surface which may serve as the feed surface for the polymerization inhibitor.
  • Any suitable materials that are semipermeable that is, permeable to the polymerization inhibitor may be used.
  • the polymer film or polymer film layer may, for example, be a fluoropolymer film, such as an amorphous thermoplastic fiuoropolymer like TEFLON AF 1600TM or TEFLON AF 2400TM fluoropolymer films, or perfluoropolyether (PFPE), particularly a crosslinked PFPE film, or a crosslinked silicone polymer film.
  • PFPE perfluoropolyether
  • the supporting member comprises a silicone or crosslinked silicone polymer member such as a polydimethylsiloxane polydmiethylxiloxane member, a gas permeable polymer member, or a porous or microporous glass member.
  • Films can be laminated or clamped directly to the rigid supporting member without adhesive (e.g., using PFPE and PDMS materials), or silane coupling agents that react with the upper surface of a PDMS layer can be utilized to adhere to the first polymer film layer.
  • UV-curable, acrylate-functional silicones can also be used as a tie layer between UV-curable PFPEs and rigid PDMS supporting layers.
  • the carrier When configured for placement in the apparatus, the carrier defines a "build region" on the build surface, within the total area of the build surface. Because lateral "throw" (e.g., in the X and/or Y directions) is not required in the present invention to break adhesion between successive layers, as in the Joyce and Chen devices noted previously, the area of the build region within the build surface may be maximized (or conversely, the area of the build surface not devoted to the build region may be minimized). Hence in some embodiments, the total surface area of the build region can occupy at least fifty, sixty, seventy, eighty, or ninety percent of the total surface area of the build surface.
  • the various components are mounted on a support or frame assembly 20. While the particular design of the support or frame assembly is not critical and can assume numerous configurations, in the illustrated embodiment it is comprised of a base 21 to which the radiation source 11 is securely or rigidly attached, a vertical member 22 to which the linear stage is operatively associated, and a horizontal table 23 to which wall 14 is removably or securely attached (or on which the wall is placed), and with the build plate fixed, either permanently or removably, to form the build chamber as described above.
  • the build plate can consist of a single unitary and integral piece of a semipermeable member, or can comprise additional materials.
  • a porous or microporous glass can be laminated or fixed to a semipermeable material.
  • a semipermeable member as an upper portion can be fixed to a transparent lower member having purging channels formed therein for feeding gas carrying the polymerization inhibitor to the semipermeable member (through which it passes to the build surface to facilitate the formation of a release layer of unpolymerized liquid material, as noted above and below).
  • purge channels may extend fully or partially through the base plate:
  • the purge channels may extend partially into the base plate, but then end in the region directly underlying the build surface to avoid introduction of distortion. Specific geometries will depend upon whether the feed surface for the inhibitor into the semipermeable member is located on the same side or opposite side as the build surface, on an edge portion thereof, or a combination of several thereof.
  • any suitable radiation source can be used, depending upon the particular resin employed, including electron beam and ionizing radiation sources.
  • the radiation source is an actinic radiation source, such as one or more light sources, and in particular one or more ultraviolet light sources.
  • Any suitable light source can be used, such as incandescent lights, fluorescent lights, phosphorescent or luminescent lights, a laser, light-emitting diode, etc., including arrays thereof.
  • the light source preferably includes a pattern-forming element operatively associated with a controller, as noted above.
  • the light source or pattern forming element comprises a digital (or deformable) micromirror device (DMD) with digital light processing (DLP), a spatial modulator (SLM), or a raicroelectromechanical system (MEMS) mirror array, a liquid crystal display (LCD) panel, a mask (aka a reticle), a silhouette, or a combination thereof.
  • DMD digital (or deformable) micromirror device
  • DLP digital light processing
  • SLM spatial modulator
  • MEMS raicroelectromechanical system
  • LCD liquid crystal display
  • a mask aka a reticle
  • silhouette or a combination thereof.
  • the light source comprises a spatial light modulation array such as a liquid crystal light valve array or micromirror array or DMD (e.g., with an operatively associated digital light processor, typically in turn under the control of a suitable controller), configured to carry out exposure or irradiation of the polymerizable liquid without a mask, e.g., by maskless photolithography.
  • a spatial light modulation array such as a liquid crystal light valve array or micromirror array or DMD (e.g., with an operatively associated digital light processor, typically in turn under the control of a suitable controller), configured to carry out exposure or irradiation of the polymerizable liquid without a mask, e.g., by maskless photolithography.
  • such movement may be carried out for purposes such as reducing "burn in” or fouling in a particular zone of the build surface.
  • lateral movement (including movement in the X and/or Y direction or combination thereof) of the carrier and object (if such lateral movement is present) is preferably not more than, or less than, 80, 70, 60, 50, 40, 30, 20, or even 10 percent of the width (in the direction of that lateral movement) of the build region.
  • the carrier is mounted on an elevator to advance up and away from a stationary build plate
  • the converse arrangement may be used: That is, the carrier may be fixed and the build plate lowered to thereby advance the carrier away therefrom.
  • Numerous different mechanical configurations will be apparent to those skilled in the art to achieve the same result.
  • adhesion of the article to the carrier may sometimes be insufficient to retain the article on the carrier through to completion of the finished article or "build."
  • an aluminum carrier may have lower adhesion than a polyfvinyl chloride (or "PVC") carrier.
  • PVC polyfvinyl chloride
  • any of a variety of techniques can be used to further secure the article to a less adhesive carrier, including but not limited to the application of adhesive tape such as "Greener Masking Tape for Basic Painting #2025 High adhesion" to further secure the article to the carrier during fabrication.
  • the methods and apparatus of the invention can include process steps and apparatus features to implement process control, including feedback and feed-forward control, to, for example, enhance the speed and/or reliability of the method.
  • a controller for use in carrying out the present invention may be implemented as hardware circuitry, software, or a combination thereof.
  • the controller is a general purpose computer that runs software, operatively associated with monitors, drives, pumps, and other components through suitable interface hardware and/or software.
  • Suitable software for the control of a three-dimensional printing or fabrication method and apparatus as described herein includes, but is not limited to, the Replicator G open source 3d printing program, 3DPrintTM controller software from 3D systems, Slic3r, Skeinforge, KISSlicer, Repetier-Host, PrintRun, Cura, etc., including combinations thereof.
  • Process parameters to directly or indirectly monitor, continuously or intermittently, during the process(e.g-., during one, some or all of the filling, irradiating and advancing steps) include, but are not limited to, irradiation intensity, temperature of carrier, polymerizable liquid in the build zone, temperature of growing product, temperature of build plate, pressure, speed of advance, pressure, force (e.g., exerted on the build plate through the carrier and product being fabricated), strain (e.g., exerted on the carrier by the growing product being fabricated), thickness of release layer, etc.
  • Known parameters that may be used in feedback and/or feed-forward control systems include, but are not limited to, expected consumption of polymerizable liquid (e.g., from the known geometry or volume of the article being fabricated), degradation temperature of the polymer being formed from the polymerizable liquid, etc.
  • Process conditions to directly or indirectly control, continuously or step-wise, in response to a monitored parameter, and/or known parameters include, but are not limited to, rate of supply of polymerizable liquid, temperature, pressure, rate or speed of advance of carrier, intensity of irradiation, duration of irradiation (e.g. for each "slice"), etc.
  • the temperature of the polymerizable liquid in the build zone, or the temperature of the build plate can be monitored, directly or indirectly with an appropriate thermocouple, non-contact temperature sensor (e.g., an infrared temperature sensor), or other suitable temperature sensor, to determine whether the temperature exceeds the degradation temperature of the polymerized product. If so, a process parameter may be adjusted through a controller to reduce the temperature in the build zone and/or of the build plate. Suitable process parameters for such adjustment may include: decreasing temperature with a cooler, decreasing the rate of advance of the carrier, decreasing intensity of the irradiation, decreasing duration of radiation exposure, etc.
  • the intensity of the irradiation source e.g., an ultraviolet light source such as a mercury lamp
  • a photodetector to detect a decrease of intensity from the irradiation source (e.g., through routine degradation thereof during use). If detected, a process parameter may be adjusted through a controller to accommodate the loss of intensity. Suitable process parameters for such adjustment may include: increasing temperature with a heater, decreasing the rate of advance of the carrier, increasing power to the light source, etc.
  • control of temperature and/or pressure to enhance fabrication time may be achieved with heaters and coolers (individually, or in combination with one another and separately responsive to a controller), and/or with a pressure supply (e.g., pump, pressure vessel, valves and combinations thereof) and/or a pressure release mechanism such as a controllable valve (individually, or in combination with one another and separately responsive to a controller).
  • a pressure supply e.g., pump, pressure vessel, valves and combinations thereof
  • a pressure release mechanism such as a controllable valve
  • the controller is configured to maintain the gradient of polymerization zone described herein (see, e.g., Figure 1) throughout the fabrication of some or all of the final product.
  • the specific configuration e.g., times, rate or speed of advancing, radiation intensity, temperature, etc.
  • Configuration to maintain the gradient of polymerization zone may be carried out empirically, by entering a set of process parameters or instructions previously determined, or determined through a series of test runs or "trial and error"; configuration may be provided through pre-determined instructions; configuration may be achieved by suitable monitoring and feedback (as discussed above), combinations thereof, or in any other suitable manner.
  • a method and apparatus as described above may be controlled by a software program running in a general purpose computer with suitable interface hardware between that computer and the apparatus described above.
  • a software program running in a general purpose computer with suitable interface hardware between that computer and the apparatus described above.
  • Numerous alternatives are commercially available. Non-limiting examples of one combination of components is shown in Figures 3 to 5, where "Microcontroller" is Parallax Propeller, the Stepper Motor Driver is Sparkfun EasyDriver, the LED Driver is a Luxeon Single LED Driver, the USB to Serial is a Parallax USB to Serial converter, and the DLP System is a Texas Instruments LightCrafter system.
  • the present invention provides a method of forming a three- dimensional object, comprising the steps of: (a) providing a carrier and a build plate, the build plate comprising a semipermeable member, the semipermeable member comprising a build surface and a feed surface separate from the build surface, with the build surface and the carrier defining a build region therebetween, and with the feed surface in fluid contact with a polymerization inhibitor; then (concurrently and/or sequentially) (b) filing the build region with a polymerizable liquid, the polymerizable liquid contacting the build segment, (c) irradiating the build region through the build plate to produce a solid polymerized region in the build region, with a liquid film release layer comprised of the polymerizable liquid formed between the solid polymerized region and the build surface, the polymerization of which liquid film is inhibited by the polymerization inhibitor; and (d) advancing the carrier with the polymerized region adhered thereto away from the build surface on the stationary build plate to create
  • the method includes (e) continuing and/or repeating steps (b) through (d) to produce a subsequent polymerized region adhered to a previous polymerized region until the continued or repeated deposition of polymerized regions adhered to one another forms the three-dimensional object.
  • the method can be carried out in a continuous fashion, though it will be appreciated that the individual steps noted above may be carried out sequentially, concurrently, or a combination thereof. Indeed, the rate of steps can be varied over time depending upon factors such as the density and/or complexity of the region under fabrication.
  • the present invention in some embodiments permits elimination of this "back-up" step and allows the carrier to be advanced unidirectionally, or in a single direction, without intervening movement of the window for re-coating, or "snapping" of a pre-formed elastic release-layer.
  • reciprocation is utilized not for the purpose of obtaining release, but for the purpose of more rapidly filling or pumping polymerizable liquid into the build region.
  • the thickness of the gradient of polymerization zone is in some embodiments at least as great as the thickness of the dead zone.
  • the dead zone has a thickness of from 0.01 , 0.1 , 1 , 2, or 10 microns up to 100, 200 or 400 microns, or more, and/or the gradient of polymerization zone and the dead zone together have a thickness of from 1 or 2 microns up to 400, 600, or 1000 microns, or more.
  • the gradient of polymerization zone may be thick or thin depending on the particular process conditions at that time.
  • the gradient of polymerization zone is thin, it may also be described as an active surface on the bottom of the growing three- dimensional object, with which monomers can react and continue to form growing polymer chains therewith.
  • the gradient of polymerization zone, or active surface is maintained (while polymerizing steps continue) for a time of at least 5, 10, 15, 20 or 30 seconds, up to 5, 10, 15 or 20 minutes or more, or until completion of the three- dimensional product.
  • the method may further comprise the step of disrupting the gradient of polymerization zone for a time sufficient to form a cleavage line in the three-dimensional object (e.g., at a predetermined desired location for intentional cleavage, or at a location in the object where prevention of cleavage or reduction of cleavage is non-critical), and then reinstating the gradient of polymerization zone (e.g. by pausing, and resuming, the advancing step, increasing, then decreasing, the intensity of irradiation, and combinations thereof).
  • the advancing step is carried out sequentially in uniform increments (e.g., of from 0.1 or 1 microns, up to 10 or 100 microns, or more) for each step or increment. In some embodiments, the advancing step is carried out sequentially in variable increments (e.g., each increment ranging from 0.1 or 1 microns, up to 10 or 100 microns, or more) for each step or increment.
  • the size of the increment, along with the rate of advancing, will depend in part upon factors such as temperature, pressure, structure of the article being produced (e.g., size, density, complexity, configuration, etc.)
  • the advancing step is carried out continuously, at a uniform or variable rate.
  • the rate of advance (whether carried out sequentially or continuously) is from about 0.1 1 , or 10 microns per second, up to about to 100, 1 ,000, or 10,000 microns per second, again depending again depending on factors such as temperature, pressure, structure of the article being produced, intensity of radiation, etc
  • the filling step is carried out by forcing the polymerizable liquid into the build region under pressure.
  • the advancing step or steps may be carried out at a rate or cumulative or average rate of at least 0.1 , 1 , 10, 50, 100, 500 or 1000 microns per second, or more.
  • the pressure may be whatever is sufficient to increase the rate of the advancing step(s) at least 2, 4, 6, 8 or 10 times as compared to the maximum rate of repetition of the advancing steps in the absence of the pressure.
  • a pressure of 10, 20, 30 or 40 pounds per square inch (PSI) up to, 200, 300, 400 or 500 PSI or more may be used.
  • PSI pounds per square inch
  • both the feed surface and the polymerizable liquid can be are in fluid contact with the same compressed gas (e.g., one comprising from 20 to 95 percent by volume of oxygen, the oxygen serving as the polymerization inhibitor.
  • the size of the pressure vessel can be kept smaller relative to the size of the product being fabricated and higher pressures can (if desired) be more readily utilized.
  • the irradiating step is in some embodiments carried out with patterned irradiation.
  • the patterned irradiation may be a fixed pattern or may be a variable pattern created by a pattern generator (e.g., a DLP) as discussed above, depending upon the particular item being fabricated.
  • a pattern generator e.g., a DLP
  • each irradiating step may be any suitable time or duration depending on factors such as the intensity of the irradiation, the presence or absence of dyes in the polymerizable material, the rate of growth, etc.
  • each irradiating step can be from 0.001 , 0.01 , 0.1 , 1 or 10 microseconds, up to 1 , 10, or 100 minutes, or more, in duration.
  • the interval between each irradiating step is in some embodiments preferably as brief as possible, e.g., from 0.001 , 0.01 , 0.1 , or 1 microseconds up to 0.1 , 1 , or 10 seconds.
  • the pattern may vary hundreds, thousands or millions of times to impart shape changes on the three-dimensional object being formed.
  • the pattern generator may have high resolution with millions of pixel elements that can be varied to change the shape that is imparted.
  • the pattern generator may be a DLP with more than 1 ,000 or 2,000 or 3,000 or more rows and/or more than 1 ,000 or 2,000 or 3,000 or more columns of micromirrors, or pixels in a liquid crystal display panel, that can be used to vary the shape.
  • the three-dimensional object may be formed through the gradient of polymerization allowing the shape changes to be imparted while continuously printing.
  • this allows complex three- dimensional objects to be formed at high speed with a substantially continuous surface without cleavage lines or seams.
  • thousands or millions of shape variations may be imparted on the three-dimensional object being formed without cleavage lines or seams across a length of the object being formed of more than 1mm, 1cm, 10cm or more or across the entire length of the formed object.
  • the object may be continuously formed through the gradient of polymerization at a rate of more than 1 , 10, 100, 1000, 10000 or more microns per second.
  • the build surface is flat; in other the build surface is irregular such as convexly or concavely curved, or has walls or trenches formed therein. In either case the build surface may be smooth or textured.
  • Curved and/or irregular build plates or build surfaces can be used in fiber or rod formation, to provide different materials to a single object being fabricated (that is, different polymerizable liquids to the same build surface tlirough channels or trenches formed in the build surface, each associated with a separate liquid supply, etc.
  • Carrier Feed Channels for Polymerizable liquid While polymerizable liquid may be provided directly to the build plate from a liquid conduit and reservoir system, in some embodiments the carrier include one or more feed channels therein.
  • the carrier feed channels are in fluid communication with the polymerizable liquid supply, for example a reservoir and associated pump. Different carrier feed channels may be in fluid communication with the same supply and operate simultaneously with one another, or different carrier feed channels may be separately controllable from one another (for example, through the provision of a pump and/or valve for each), Separately controllable feed channels may be in fluid communication with a reservoir containing the same polymerizable liquid, or may be in fluid communiication with a reservoir containing different polymerizable liquids. Through the use of valve assemblies, different polymerizable liquids may in some embodiments be alternately fed through the same feed channel, if desired.
  • the carrier is vertically reciprocated with respect to the build surface to enhance or speed the refilling of the build region with the polymerizable liquid.
  • the vertically reciprocating step which comprises an upstroke and a downstroke, is carried out with the distance of travel of the upstroke being greater than the distance of travel of the downstroke, to thereby concurrently carry out the advancing step (that is, driving the carrier away from the build plate in the Z dimension) in part or in whole.
  • the speed of the upstroke gradually accelerates (that is, there is provided a gradual start and/or gradual acceleration of the upstroke, over a period of at least 20, 30, 40, or 50 percent of the total time of the upstroke, until the conclusion of the upstroke, or the change of direction which represents the beginning of the downstroke. Stated differently, the upstroke begins, or starts, gently or gradually.
  • the speed of the downstroke gradually decelerates (that is, there is provided a gradual termination and/or gradual deceleration of the downstroke, over a period of at least 20, 30, 40, or 50 percent of the total time of the downstroke. Stated differently, the downstroke concludes, or ends, gently or gradually.
  • the vertically reciprocating step is carried out over a total time of from 0.01 or 0.1 seconds up to 1 or 10 seconds (e.g., per cycle of an upstroke and a downstroke).
  • the upstroke distance of travel is from 0.02 or 0.2 millimeters (or 20 or 200 microns) to 1 or 10 millimeters (or 1000 to 10,000 microns).
  • the distance of travel of the downstroke may be the same as, or less than, the distance of travel of the upstroke, where a lesser distance of travel for the downstroke serves to achieve the advancing of the carrier away from the build surface as the three-dimensional object is gradually formed.
  • the vertically reciprocating step does not cause the formation of gas bubbles or a gas pocket in the build region, but instead the build region remains filled with the polymerizable liquid throughout the reciprocation steps, and the gradient of polymerization zone or region remains in contact with the "dead zone" and with the growing object being fabricated throughout the reciprocation steps.
  • a purpose of the reciprocation is to speed or enhance the refilling of the build region, particularly where larger build regions are to be refilled with polymerizable liquid, as compared to the speed at which the build region could be refilled without the reciprocation step.
  • the advancing step is carried out intermittently at a rate of 1 , 2,
  • the individual advances are carried out over an average distance of travel for each advance of from 10 or 50 microns to 100 or 200 microns (optionally including the total distance of travel for each vertically reciprocating step, e.g., the sum of the upstroke distance minus the downstroke distance).
  • Apparatus for carrying out the invention in which the reciprocation steps described herein are implemented substantially as described above, with the drive associated with the carrier, and/or with an additional drive operatively associated with the transparent member, and with the controller operatively associated with either or both thereof and configured to reciprocate the carrier and transparent member with respect to one another as described above.
  • the light is concentrated or "focused" at the build region to increase the speed of fabrication. This may be accomplished using an optical device such as an objective lens.
  • the speed of fabrication may be generally proportional to the light intensity.
  • the build speed in millimeters per hour may be calculated by multiplying the light intensity in milliWatts per square centimeter and a multiplier.
  • the multiplier may depend on a variety of factors, including those discussed below. A range of multiplers, from low to high, may be employed. On the low end of the range, the multiplier may be about 10, 15, 20 or 30. On the high end of the mutipler range, the multiplier may be about 50, 300, 400 or more.
  • a band pass filter may be used with a mercury bulb light source to provide 365 ⁇ 10 nm light measured at Full Width Half Maximum (FWHM).
  • a band pass filter may be used with an LED light source to provide 375 ⁇ 15 nm light measured at FWHM.
  • poymerizable liquids used in such processes are, in general, free radical polymerizable liquids with oxygen as the inhibitor, or acid-catalyzed or cationically polymerizable liquids with a base as the inhibitor.
  • Some specific polymerizable liquids will of course cure more rapidly or efficiently than others and hence be more amenable to higher speeds, though this may be offset at least in part by further increasing light intensity.
  • the "dead zone” may become thinner as inhibitor is consumed. If the dead zone is lost then the process will be disrupted.
  • the supply of inhibitor may be enhanced by any suitable means, including providing an enriched and/or pressurized atmosphere of inhibitor, a more porous semipermeable member, a stronger or more powerful inhibitor (particularly where a base is employed), etc.
  • lower viscosity polymerizable liquids are more amenable to higher speeds, particularly for fabrication of articles with a large and/or dense cross section (although this can be offset at least in part by increasing light intensity).
  • the viscosity of the polymerizable liquid can advantageously be reduced by heating the polymerizable liquid, as described above.
  • speed of fabrication can be enhanced by introducing reciprocation to "pump" the polymerizable liquid, as described above, and/or the use of feeding the polymerizable liquid through the carrier, as also described above, and/or heating and/or pressurizing the polymerizable liquid, as also described above. VII. TILING.
  • Each light engine may be configured to project an image (e.g., an array of pixels) into the build region such that a plurality of "tiled" images are projected into the build region.
  • the term "light engine” can mean an assembly including a light source, a DLP device such as a digital micromirror or LCD device and an optical device such as an objective lens.
  • the "light engine” may also include electronics such as a controller that is operatively associated with one or more of the other components.
  • FIGs 17A-17C This is shown schematically in Figures 17A-17C.
  • the light engine assemblies 130A, 130B produce adjacent or "tiled" images 140A, 140B.
  • the images are slightly misaligned; that is, there is a gap between them.
  • the images are aligned; there is no gap and no overlap between them.
  • the configuration with the overlapped images shown in Figure 17C is employed with some form of "blending" or “smoothing" of the overlapped regions as generally discussed in, for example, U.S. Patent Nos. 7,292,207, 8,102,332, 8,427,391 , 8,446,431 and U.S. Patent Application Publication Nos. 2013/0269882, 2013/0278840 and 2013/0321475, the disclosures of which are incorporated herein in their entireties.
  • the tiled images can allow for larger build areas without sacrificing light intensity, and therefore can facilitate faster build speeds for larger objects. It will be understood that more than two light engine assemblies (and corresponding tiled images) may be employed. Various embodiments of the invention employ at least 4, 8, 16, 32, 64, 128 or more tiled images.
  • the polymerizable liquid comprises a first light polymerizable component (sometimes referred to as "Part A” herein) and a second component that solidifies by another mechanism, or in a different manner from, the first component (sometimes referred to as “Part B” herein), typically by further reacting, polymerizing, or chain extending. Numerous embodiments thereof may be carried out. In the following, note that, where particular acrylates such as methacrylates are described, other acrylates may also be used.
  • Part A comprises or consists of a mix of monomers and/or prepolymers that can be polymerized by exposure to actinic radiation or light.
  • This resin can have a functionality of 2 or higher (though a resin with a functionality of 1 can also be used when the polymer does not dissolve in its monomer).
  • a purpose of Part A is to "lock" the shape of the object being formed or create a scaffold for the one or more additional components (e.g., Part B).
  • Part A is present at or above the minimum quantity needed to maintain the shape of the object being formed after the initial solidification. In some embodiments, this amount corresponds to less than ten, twenty, or thirty percent by weight of the total resin (polymerizable liquid) composition.
  • Part A can react to form a cross-linked polymer network or a solid homopolymer.
  • Suitable reactive end groups suitable for Part A constituents, monomers, or prepolymers include, but are not limited to: acrylates, methacrylates, a-olefins, N-vinyls, acrylamides, methacrylamides, styrenics, epoxides, thiols, 1 ,3-dienes, vinyl halides, acrylonitriles, vinyl esters, maleimides, and vinyl ethers.
  • Part A solidifies a scaffold in which a second reactive resin component, termed "Part B,” can solidify during a second step (which may occur concurrently with or following the solidification of Part A).
  • Part B a second reactive resin component
  • This secondary reaction preferably occurs without significantly distorting the original shape defined during the solidification of Part A.
  • Alternative approaches would lead to a distortion in the original shape in a desired manner.
  • the solidification of Part A is continuously inhibited during printing within a certain region, by oxygen or amines or other reactive species, to form a liquid interface between the solidified part and an inhibitor-permeable film or window ⁇ e.g., is carried out by continuous liquid interphase/interface printing).
  • Part B may comprise, consist of or consist essentially of a mix of monomers and/or prepolymers that possess reactive end groups that participate in a second solidification reaction after the Part A solidification reaction.
  • Part B could be added simultaneously to Part A so it is present during the exposure to actinide radiation, or Part B could be infused into the object made during the 3D printing process in a subsequent step.
  • Examples of methods used to solidify Part B include, but are not limited to, contacting the object or scaffold to heat, water or water vapor, light at a different wavelength than that at which Part A is cured, catalysts, (with or without additional heat), evaporation of a solvent from the polymerizable liquid ⁇ e.g., using heat, vacuum, or a combination thereof), microwave irradiation, etc., including combinations thereof.
  • Suitable reactive end group pairs suitable for Part B constituents, monomers or prepolymers include, but are not limited to: epoxy/amine, epoxy/hydroxyl, oxetane/amine, oxetane/alcohol, isocyanateVhydroxyl, IsocyanateVamine, isocyanate/carboxylic acid, anhydride/amine, amine/carboxylic acid, amine/ester, hydroxyl/carboxylic acid, hydroxyl/acid chloride, amine/acid chloride, vinyl/Si-H (hydrosilylation), Si-Cl /hydroxyl, Si-Cl/amine, hydroxy 1/aldehyde, amine/aldehyde, hydroxymethyl or alkoxymethyl amide/alcohol, aminoplast, alkyne/Azide (also known as one embodiment of "Click Chemistry," along with additional reactions including thiolene, Michael additions, Diels-Alder reactions, nucleophilic substitution reactions, etc.), al
  • oximes diene/dienophiles for Diels-Alder reactions
  • olefin metathesis polymerization olefin polymerization using Ziegler-Natta catalysis
  • ring-opening polymerization including ring- opening olefin metathesis polymerization, lactams, lactones, Siloxanes, epoxides, cyclic ethers, imines, cyclic acetals, etc.
  • Part B components useful for the formation of polymers described in "Concise Polymeric Materials Encyclopedia” and the “Encyclopedia of Polymer Science and Technology” are hereby incorporated by reference.
  • Elastomers A particularly useful embodiment for implementing the invention is for the formation of elastomers. Tough, high-elongation elastomers are difficult to achieve using only liquid UV-curable precursors. However, there exist many thermally cured materials (polyurethanes, silicones, natural rubber) that result in tough, high-elongation elastomers after curing. These thermally curable elastomers on their own are generally incompatible with most 3D printing techniques.
  • a low-viscosity UV curable material (Part A) are blended with thermally-curable precursors to form (preferably tough) elastomers (e.g. polyurethanes, polyureas, or copolymers thereof (e.g., poly(urethane-urea)), and silicones) (Part B).
  • the UV curable component is used to solidify an object into the desired shape using 3D printing as described herein and a scaffold for the elastomer precursors in the polymerizable liquid.
  • the object can then be heated after printing, thereby activating the second component, resulting in an object comprising the elastomer.
  • Adhesion of formed objects may be useful to define the shapes of multiple objects using the solidification of Part A, align those objects in a particular configuration, such that there is a hermetic seal between the objects, then activate the secondary solidification of Part B. In this manner, strong adhesion between parts can be achieved during production.
  • a particularly useful example may be in the formation and adhesion of sneaker components.
  • Part B may simply consist of small particles of a pre-formed polymer. After the solidification of Part A, the object may be heated above the glass transition temperature of Part B in order to fuse the entrapped polymeric particles.
  • Part B may consist of a pre-formed polymer dissolved in a solvent. After the solidification of Part A into the desired object, the object is subjected to a process (e.g. heat + vacuum) that allows for evaporation of the solvent for Part B, thereby solidifying Part B.
  • a process e.g. heat + vacuum
  • Part A can be thermally cleaved to generate a new reactive species after the solidification of Part A.
  • the newly formed reactive species can further react with Part B in a secondary solidification.
  • An exemplary system is described by Velankar, Pezos and Cooper, Journal of Applied Polymer Science, 62, 1361-1376 (1996).
  • the acrylate/ methacrylate groups in the formed object are thermally cleaved to generated diisocyanate prepolymers that further react with blended chain-extender to give high molecular weight polyurethanes/polyureas within the original cured material or scaffold.
  • Such systems are, in general, dual-hardening systems that employ blocked or reactive blocked prepolymers, as discussed in greater detail below.
  • the components may be mixed in a continuous manner prior to being introduced to the printer build plate. This may be done using multi-barrel syringes and mixing nozzles.
  • Part A may comprise or consist of a UV -curable di(meth)acrylate resin
  • Part B may comprise or consist of a diisocyanate prepolymer and a polyol mixture.
  • the polyol can be blended together in one barrel with Part A and remain unreacted.
  • a second syringe barrel would contain the diisocyanate of Part B.
  • the material can be stored without worry of "Part B" solidifying prematurely.
  • a constant time is defined between mixing of all components and solidification of Part A.
  • melt-processed acrylonitrile-butadiene-styrene resin may be formulated with a second UV -curable component that can be activated after the object is formed by FDM. New mechanical properties could be achieved in this manner.
  • melt-processed unvulcanized rubber is mixed with a vulcanizing agent such as sulfur or peroxide, and the shape set through FDM, then followed by a continuation of vulcanization.
  • the solidifying and/or curing step (d) is carried out subsequent to the irradiating step (e.g., by heating or microwave irradiating); the solidifying and/or curing step (d) is carried out under conditions in which the solid polymer scaffold degrades and forms a constituent necessary for the polymerization of the second component (e.g., a constituent such as (i) a prepolymer, (ii) a diisocyanate or polyisocyanate, and/or (in) a polyol and/or diol, where the second component comprises precursors to a polyurethane/polyurea resin).
  • a constituent such as (i) a prepolymer, (ii) a diisocyanate or polyisocyanate, and/or (in) a polyol and/or diol, where the second component comprises precursors to a polyurethane/polyurea resin.
  • Such methods may involve the use of reactive or non-reactive blocking groups on or coupled to a constituent of the first component, such that the constituent participates in the first hardening or solidifying event, and when de-protected (yielding free constituent and free blocking groups or blocking agents) generates a free constituent that can participate in the second solidifying and/or curing event.
  • de-protected yielding free constituent and free blocking groups or blocking agents
  • Some "dual cure" embodiments of the present invention are, in general, a method of forming a three-dimensional object, comprising:
  • the polymerizable liquid comprising a mixture of a blocked or reactive blocked prepolymer, optionally but in some embodiments preferably a reactive diluent, a chain extender, and a photoinitiator;
  • heating or microwave irradiating may cause the chain extender to react with the blocked or reactive blocked prepolymer or an unblocked product thereof).
  • the blocked or reactive blocked prepolymer comprises a polyisocyanate.
  • the blocked or reactive blocked prepolymer is a compound of the formula A-X-A, where X is a hydrocarbyl group and each A is an independently selected substituent of Formula X:
  • each A is an independently selected substituent of Formula XI:
  • the blocked or reactive blocked prepolymer comprises a polyisocyanate oligomer produced by the reaction of at least one diisocyanate (e.g., a diisocyanate such as hexamethylene diisocyanate (HDI), bis-(4- isocyanatocyclohexyl)methane (HMDI), isophorone diisocyanate (IPDI), etc., a triisocyanate, etc.) with at least one polyol (e.g., a polyether or polyester or polybutadiene diol).
  • a diisocyanate such as hexamethylene diisocyanate (HDI), bis-(4- isocyanatocyclohexyl)methane (HMDI), isophorone diisocyanate (IPDI), etc., a triisocyanate, etc.
  • the reactive blocked prepolymer is blocked by reaction of a polyisocyanate with an amine methacrylate monomer blocking agent (e.g., tertiary- butylaminoethyl methacrylate (TBAEMA), tertiary pentylaminoethyl methacrylate (TPAEMA), tertiary hexylaminoethyl methacrylate (THAEMA), tertiary-butylaminopropyl methacrylate (TBAPMA), and mixtures thereof (see, e.g., US Patent Application Publication No. 20130202392). Note that all of these can be used as diluents as well.
  • TSAEMA tertiary- butylaminoethyl methacrylate
  • TPAEMA tertiary pentylaminoethyl methacrylate
  • TMAEMA tertiary hexylaminoethyl methacrylate
  • blocking agents for isocyanate there are many blocking agents for isocyanate.
  • the blocking agent e.g., TBAEMA
  • cures e.g., from the actinic radiation or light
  • those skilled in the art can couple (meth)acrylate groups to known blocking agents to create additional blocking agents that can be used to carry out the present invention.
  • those skilled in the art can use maleimide, or substitute maleimide on other known blocking agents, for use in the present invention.
  • phenol type blocking agents e.g. phenol, cresol, xylenol, nitrophenol, chlorophenol, ethyl phenol, t-butylphenol, hydroxy benzoic acid, hydroxy benzoic acid esters, 2,5-
  • alcohol type blocking agents e.g. methanol, ethanol, n- propanol, isopropanol, n-butanol, isobutanol, t-butanol, n-amyl alcohol, t-amyl alcohol, lauryl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, methoxyethanol, glycolic acid, glycolic acid esters, lactic acid, lactic acid ester, methylol urea, methylol melamine, diacetone alcohol, ethylene chlorohydrine, ethylene bromhydrine, l,3-dichloro-2-prop
  • alcohol type blocking agents e.g. methanol, ethanol, n- propanol, isopropanol, n-butanol, isobut
  • acid amide type blocking agents e.g. acetoanilide, acetoanisidine amide, acrylamide, methacrylamide, acetic amide, stearic amide, benzamide, etc.
  • imide type blocking agents e.g. succinimide, phthalimi
  • N-phenyl carbamic acid phenyl ester, 2-oxazolidone, etc. imine type blocking agents (e.g. ethylene imine, etc.), oxime type blocking agents (e.g. formaldoxime, acetaldoximine, acetoxime, methyiethyi ketoxime, diacetylomonoxime, benzophenoxime, cyclohexanonoxime, etc.) and sulfurous acid salt type blocking agents (e.g. sodium bisulfite, potassium bisulfite, etc.).
  • imine type blocking agents e.g. ethylene imine, etc.
  • oxime type blocking agents e.g. formaldoxime, acetaldoximine, acetoxime, methyiethyi ketoxime, diacetylomonoxime, benzophenoxime, cyclohexanonoxime, etc.
  • sulfurous acid salt type blocking agents e.g. sodium bisulfite, potassium bisulfite
  • the reactive diluent comprises an acrylate, a methacrylate, a styrene, an acrylic acid, a vinylamide, a vinyl ether, a vinyl ester (including derivatives thereof), polymers containing any one or more of the foregoing, and combinations of two or more of the foregoing, (e.g., acrylonitrile, styrene, divinyl benzene, vinyl toluene, methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, amine methacrylates as described above, and mixtures of any two or more of these) (see, e.g., US Patent Application Publication No. 20140072806).
  • the chain extender comprises at least one diol, diamine or dithiol chain extender (e.g., ethylene glycol, 1 ,3 -propanediol, 1 ,2-propanediol, 1 ,4- butanediol, 1 ,5-pentanediol, 1,6-hexanediol, 1 ,7-heptanediol, 1 ,8-octanediol, 1 ,9-nonanediol, 1 , 10-decanediol, 1 ,1 1 -undecanediol, 1 ,12-dodecanediol, 1 ,2-cyclohexanedimethanol, 1 ,4- cyclohexanedimethanol, the corresponding diamine and dithiol analogs thereof, lysine ethyl ester, arginine ethyl este
  • the polymerizable liquid comprises:
  • Optional additional ingredients such as dyes, fillers (e.g., silica), surfactants, etc., may also be included, as discussed in greater detail above.
  • An advantage of some embodiments of the invention is that, because these polymerizable liquids do not rapidly polymerize upon mixing, they may be formulated in advance, and the filling step carried out by feeding or supplying the polymerizable liquid to the build region from a single source (e.g., a single reservoir containing the polymerizable liquid in pre-mixed form), thus obviating the need to modify the apparatus to provide separate reservoirs and mixing capability.
  • a single source e.g., a single reservoir containing the polymerizable liquid in pre-mixed form
  • Three dimensional objects made by the process are, in some embodiments, collapsible or compressible (that is, elastic (e.g., has a Young's modulus at room temperature of from about 0.001 , 0.01 or 0.1 gigapascals to about 1 , 2 or 4 gigapascals, and/or a tensile strength at maximum load at room temperature of about 0.01 , 0.1 , or 1 to about 50, 100, or 500 megapascals, and/or a percent elongation at break at room temperature of about 10, 20 50 or 100 percent to 1000, 2000, or 5000 percent, or more).
  • elastic e.g., has a Young's modulus at room temperature of from about 0.001 , 0.01 or 0.1 gigapascals to about 1 , 2 or 4 gigapascals, and/or a tensile strength at maximum load at room temperature of about 0.01 , 0.1 , or 1 to about 50, 100, or 500 megapascals, and/or a percent
  • Rate and product split depend on catalyst: Zn Octoate --> slow, mainly II Urea; Sn +2 --> faster, mix.
  • blocking agent is cleaved and diisocyanate prepolymer is re-formed and quickly reacts with chain extenders or additional soft segment to form thermoplastic or thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), as follows:
  • the dual cure resin is comprised of a UV-curable (meth)acrylate blocked polyurethane (ABPU), a reactive diluent, a photoinitiator, and a chain extender(s).
  • the reactive diluent (10-50 wt%) is an acrylate or methacrylate that helps to reduce the viscosity of ABPU and will be copolymerized with the ABPU under UV irradiation.
  • the photoinitiator (generally about 1 wt%) can be one of those commonly used UV initiators, examples of which include but are not limited to such as acetophenones (diethoxyacetophenone for example), phosphine oxides diphenyl(2,4,6- trimethylbenzoy])phosphme oxide, phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide (PPO), Irgacure 369, etc.
  • acetophenones diethoxyacetophenone for example
  • phosphine oxides diphenyl(2,4,6- trimethylbenzoy])phosphme oxide phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide (PPO), Irgacure 369, etc.
  • the ABPU resin After UV curing to form a intermediate shaped product having blocked polyurethane oligomers as a scaffold, and carrying the chain extender, the ABPU resin is subjected to a thermal cure, during which a high molecular weight polyurethane/polyurea is formed by a spontaneous reaction between the polyurethane/polyurea oligomers and the chain extender(s).
  • the polyurethane/polyurea oligomer can react with proper chain extenders through substitution of TBAEMA, N-vinylformamide (NVF) or the like by proper chain extenders, either by deblocking or displacement.
  • the thermal cure time needed can vary depending on the temperature, size, shape, and density of the product, but is typically between 1 to 6 hours depending on the specific ABPU systems, chain extenders and temperature.
  • a tertiary amine-containing methacrylate e.g., t-butylaminoethyl methacrylate, TBAEMA
  • TBAEMA t-butylaminoethyl methacrylate
  • acrylate or methacrylate containing hydroxy! groups to terminate polyurethane/polyurea oligomers with isocyanate ends is used in UV curing resins in the coating field.
  • the formed urethane bonds between the isocyanate and hydroxyl groups are generally stable even at high temperatures.
  • the urea bond formed between the tertiary amine of TBAEMA and isocyanate of the oligomer becomes labile when heated to suitable temperature (for example, about 100 °C), regenerating the isocyanate groups that will react with the chain extender(s) during thermal-cure to form high molecular weight polyurethane (PU).
  • suitable temperature for example, about 100 °C
  • PU high molecular weight polyurethane
  • the used chain extenders can be diols, diamines, triols, triamines or their combinations or others.
  • TBAEMA may be used to terminate the isocyanate end groups of the oligomeric diisocyanate, which is derived from diisocyanate tipped polyols.
  • the polyols (with hydroxyl functionality of 2) used can be polyethers [especially polytetramethylene oxide (PTMO), polypropylene glycol (PPG)], polyesters or polybutadiene.
  • PTMO polytetramethylene oxide
  • PPG polypropylene glycol
  • the molecular weight of these polyols can be 500 to 3000 Da, and 1000-2000 Da are currently preferred.
  • diisocyanate e.g., toluene diisocyanate (TDI), methylene diphenyl diisocyanate (MDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), hydrogenated MDI (HMDI), etc.
  • TDI toluene diisocyanate
  • MDI methylene diphenyl diisocyanate
  • HDI hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • HMDI hydrogenated MDI
  • Inhibitors such as hydroquinone (100 - 500 ppm) can be used to inhibit polymerization of methacrylate during the reaction.
  • a three-dimensional product of the foregoing methods comprises (i) a linear thermoplastic polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), (ii) a cross-linked thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), or (Hi) combinations thereof (optionally blended with de-blocked blocking group which is copolymerized with the reactive diluents(s), for example as an interpenetrating polymer network, a semi-interpenetrating polymer network, or as a sequential interpenetrating polymer network). ).
  • the three- dimensional product may also include unreacted photoinitiator remaining in the three- dimensional formed object. For example, in some embodiments, from 0.1 or 0.2 percent by weight to 1, 2 or 4 percent by weight of the photoinitiator may remain in the three- dimensional formed object or the photoinitiator may be present in lower amounts or only a trace amount.
  • the three-dimensional product may also include reacted photoinitiator fragments. For example, in some embodiments, the reacted photoinitiator fragments may be remnants of the first cure forming the intermediate product.
  • a three-dimensional product may comprise, consist of or consist essentially of all or any combination of a linear thermoplastic polyurethane, a cross-linked thermoset polyurethane, unreacted photoinitiator and reacted photoinitiator materials.
  • chain extenders with more than two reactive groups may be used to three dimensional objects comprised of a crosslinked thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)).
  • Another embodiment provides a method of forming a three-dimensional object comprised of polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), the method comprising:
  • a polymerizable liquid comprising a mixture of (i) a blocked or reactive blocked diisocyanate, (ii) a polyol and/or polyamine, (Hi) a chain extender, (iv) a photoinitiator, and (v) optionally but in some embodiments preferably a reactive diluent (vi) optionally but in some embodiments preferably a pigment or dye, (vii) optionally but in some embodiments preferably a filler (e.g.
  • the blocked or reactive blocked diisocyanate is a compound of the formula A'-X'-A', where X' is a hydrocarbyl group and each A' is an independently selected substituent of Formula X':
  • R is a hydrocarbyl group and Z is a blocking group, the blocking group optionally having a reactive terminal group ⁇ e.g., a polymerizable end group such as an epoxy, alkene, alkyne, or thiol end group, for example an ethylenically unsaturated end group such as a vinyl ether).
  • a reactive terminal group ⁇ e.g., a polymerizable end group such as an epoxy, alkene, alkyne, or thiol end group, for example an ethylenically unsaturated end group such as a vinyl ether.
  • each A' is an independently selected substituent of Formula
  • a blocked diisocyanate is prepared as shown in the Scheme below. Such blocked diisocyanates may be used in methods as shown in Figure 25B.
  • the blocking agent is cleaved and the chain extender reacts to form thermoplastic or thermoset polyurethane, polyurea, or a copolymer thereof (e.g., poly(ur ethane-urea)), for example as shown below:
  • the chain extender reacts with the blocked diisocyante, eliminates the blocking agent, in the process forming thermoplastic or thermoset polyurethane, polyurea, or a copolymer thereof (e.g., poly(urethane-urea)).
  • a three-dimensional product of the foregoing methods comprises (i) a linear thermoplastic polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), a(ii) cross-linked thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), or (Hi) combinations thereof (optionally blended with de-blocked blocking group which is copolymerized with the reactive diluents(s), for example as an interpenetrating polymer network, a semi-interpenetrating polymer network, or as a sequential interpenetrating polymer network).
  • the three- dimensional product may also include unreacted photo initiator remaining in the three- dimensional formed object. For example, in some embodiments, from 0.1 or 0.2 percent by weight to 1 , 2 or 4 percent by weight of the photoinitiator may remain in the three- dimensional formed object or the photoinitiator may be present in lower amounts or only a trace amount.
  • the three-dimensional product may also include reacted photoinitiator fragments. For example, in some embodiments, the reacted photoinitiator fragments may be remnants of the first cure forming the intermediate product.
  • a three-dimensional product may comprise, consist of or consist essentially of all or any combination of a linear thermoplastic polyurethane, a cross-linked thermoset polyurethane, unreacted photoinitiator and reacted photoinitiator materials.
  • chain extenders with more than two reactive groups may be used to three dimensional objects comprised of a crosslinked thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)).
  • Another embodiment provides a method of forming a three-dimensional object comprised of polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), the method comprising:
  • a polymerizable liquid comprising a mixture of (i) a polyol and/or polyamine, (ii) a blocked or reactive blocked diisocyanate chain extender, (in) optionally one or more additional chain extenders, (iv) a photoinitiator, and (v) optionally but in some embodiments preferably a reactive diluent (vi) optionally but in some embodiments preferably a pigment or dye, (vii) optionally but in some embodiments preferably a filler (e.g. silica);
  • a polymerizable liquid comprising a mixture of (i) a polyol and/or polyamine, (ii) a blocked or reactive blocked diisocyanate chain extender, (in) optionally one or more additional chain extenders, (iv) a photoinitiator, and (v) optionally but in some embodiments preferably a reactive diluent (vi) optionally but in some embodiments preferably a pigment or dye, (vii) optionally but in
  • the blocked or reactive blocked diisocyanate chain extender is a compound of the formula A"-X"-A", where X" is a hydrocarbyl group, and each A" is an independently selected substituent of Formula X":
  • R is a hydrocarbyl group and Z is a blocking group, the blocking group optionally having a reactive terminal group (e.g., a polymerizable end group such as an epoxy, alkene, alkyne, or thiol end group, for example an ethylenically unsaturated end group such as a vinyl ether).
  • a reactive terminal group e.g., a polymerizable end group such as an epoxy, alkene, alkyne, or thiol end group, for example an ethylenically unsaturated end group such as a vinyl ether.
  • each A" is an independently selected substituent of Formula XI":
  • the blocked isocyanate-capped chain extender reacts either directly with soft segment and/or chain extender amine or alcohol groups, displacing the blocking agent; or (b) the blocked isocyanate-capped chain extender is cleaved and diisocyanate-capped chain extender is re-formed and reacts with soft segments and additional chain extender if necessary to yield thermoplastic or thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), such as follows:
  • a three-dimensional product of the foregoing methods comprises (i) a linear thermoplastic polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), (ii)a. cross-linked thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), or (Hi) combinations thereof (optionally blended with de-blocked blocking group which is copolymerized with the reactive diluents(s), for example as an interpenetrating polymer network, a semi-interpenetrating polymer network, or as a sequential interpenetrating polymer network).
  • the three- dimensional product may also include unreacted photoinitiator remaining in the three- dimensional formed object. For example, in some embodiments, from 0.1 or 0.2 percent by weight to 1, 2 or 4 percent by weight of the photoinitiator may remain in the three- dimensional formed object or the photoinitiator may be present in lower amounts or only a trace amount.
  • the three-dimensional product may also include reacted photoinitiator fragments. For example, in some embodiments, the reacted photoinitiator fragments may be remnants of the first cure forming the intermediate product.
  • a three-dimensional product may comprise, consist of or consist essentially of all or any combination of a linear thermoplastic polyurethane, a cross-linked thermoset polyurethane, unreacted photoinitiator and reacted photoinitiator materials.
  • chain extenders with more than two reactive groups may be used to three dimensional objects comprised of a crosslinked thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)).
  • polyol and polyamine chain extenders such as triols and triamine chain extenders
  • poly(urethane-urea) may be used to three dimensional objects comprised of a crosslinked thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)).
  • These materials may be used in bottom-up additive manufacturing techniques such as the continuous liquid interface printing techniques described herein, or other additive manufacturing techniques as noted above and below.
  • polymerizable liquids comprising dual hardening systems such as described above are useful in forming three-dimensional articles that in turn comprise interpenetrating polymer networks. This area has been noted by Sperling at Lehigh University and . C. Frisch at the University of Detroit, and others.
  • the polymerizable liquid and method steps are selected so that the three-dimensional object comprises the following:
  • Sol-gel compositions This may be carried out with an amine (ammonia) permeable window or semipermeable member.
  • amine ammonia
  • tetraethyl orthosiliciate (TEOS), epoxy diglycidyl ether of Bisphenol A
  • 4-amino propyl triethoxysilane are be added to a free radical crosslinker and in the process the free radical crosslinker polymerizes and contain the noted reactants which are then reacted in another step or stage. Reaction requires the presence of water and acid.
  • Photoacid generators could optionally be added to the mixture described above to promote the reaction of the silica based network.
  • Hydrophobic-hydwphilic JPNs Prior 1PN research contained a number of examples for hydrophobic-hydrophilic networks for improved blood compatibility as well as tissue compatibility for biomedical parts.
  • Poly(hydroxyethyl methacrylate) is a typical example of a hydrophilic component.
  • Another option is to added poly(ethylene oxide) polyols or polyamines with a diisocyanate to produce polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), incorporated in the reactive system.
  • Precursors to phenolic resins involve either phenolic resoles (formaldehyde terminal liquid oligomers) or phenolic novolacs (phenol terminal solid oligomers crosslinkable with hexamethyltetraamine).
  • phenolic resoles can be considered.
  • the viscosity thereof may be high but dilution with alcohols (methanol or ethanol) may be employed.
  • Combination of the phenolic resole with the crosslinkable monomer can then provide a product formed from an IPN.
  • Reaction of the phenolic resole to a phenolic resin can occur above 100 0 in a short time range.
  • One variation of this chemistry would be to carbonize the resultant structure to carbon or graphite.
  • Carbon or graphite foam is typically produced from phenolic foam and used for thermal insulation at high temperatures .
  • Polyimides Polyimides based on dianhydrides and diamines are amenable to the present process. In this case the polyimide monomers incorporated into the reactive crosslinkable monomer are reacted to yield an IPN structure. Most of the dianyhdrides employed for polyimides may be crystalline at room temperature but modest amounts of a volatile solvent can allow a liquid phase. Reaction at modest temperatures (e.g., in the range of about 100 °C) is possible to permit polyimide formation after the network is polymerized.
  • Conductive polymers The incorporation of aniline and ammonium persulfate into the polymerizabie liquid is used to produce a conductive part. After the reactive system is polymerized and a post treatment with acid (such as HQ vapor), polymerization to polyaniline can then commence.
  • acid such as HQ vapor
  • Natural product based IPNs Numerous of natural product based IPNs are known based on triglyceride oils such as castor oil. These can be incorporated into the polymerizabie liquid along with a diisocyanate. Upon completion of the part the triglycerides can then be reacted with the diisocyanate to form a crosslinked polyurethane. Glycerol can of course also be used.
  • the molded crosslinked network are swollen with a monomer and free radical catalyst (peroxide) and optionally crosslinker followed by polymerization.
  • the crosslinked triacylate system should imbide large amounts of styrene, acrylate and/or methacrylate monomers allowing a sequential IPN to be produced.
  • Polyolefin polymerization Polyolefin catalysts (e.g. metallocenes) can be added to the crosslinkable reactive system. Upon exposure of the part to pressurized ethylene (or propylene) or a combination (to produce EPR rubber) and temperature in the range of 100 °C) the part can then contain a moderate to substantial amount of the polyolefin. Ethylene, propylene and alpha olefin monomers should easily diffuse into the part to react with the catalyst at this temperature and as polymerization proceeds more olefin will diffuse to the catalyst site. A large number of parts can be post-polymerized at the same time. XI. FABRICATION PRODUCTS.
  • Three-dimensional products produced by the methods and processes of the present invention may be final, finished or substantially finished products, or may be intermediate products subject to further manufacturing steps such as surface treatment, laser cutting, electric discharge machining, etc., is intended.
  • Intermediate products include products for which further additive manufacturing, in the same or a different apparatus, may be carried out).
  • a fault or cleavage line may be introduced deliberately into an ongoing "build” by disrupting, and then reinstating, the gradient of polymerization zone, to terminate one region of the finished product, or simply because a particular region of the finished product or "build" is less fragile than others.
  • Numerous different products can be made by the methods and apparatus of the present invention, including both large-scale models or prototypes, small custom products, miniature or microminiature products or devices, etc.
  • Examples include, but are not limited to, medical devices and implantable medical devices such as stents, drug delivery depots, functional structures, microneedle arrays, fibers and rods such as waveguides, micromechanical devices, microfluidic devices, etc.
  • the product can have a height of from 0.1 or 1 millimeters up to 10 or 100 millimeters, or more, and/or a maximum width of from 0.1 or 1 millimeters up to 10 or 100 millimeters, or more.
  • the product can have a height of from 10 or 100 nanometers up to 10 or 100 microns, or more, and/or a maximum width of from 10 or 100 nanometers up to 10 or 100 microns, or more.
  • the ratio of height to width of the product is at least 2: 1, 10: 1,
  • the product has at least one, or a plurality of, pores or channels formed therein, as discussed further below.
  • the processes described herein can produce products with a variety of different properties.
  • the products are rigid; in other embodiments the products are flexible or resilient.
  • the products are a solid; in other embodiments, the products are a gel such as a hydrogel.
  • the products have a shape memory (that is, return substantially to a previous shape after being deformed, so long as they are not deformed to the point of structural failure).
  • the products are unitary (that is, formed of a single polymerizable liquid); in some embodiments, the products are composites (that is, formed of two or more different polymerizable liquids). Particular properties will be determined by factors such as the choice of polymerizable liquid(s) employed.
  • the product or article made has at least one overhanging feature (or "overhang”), such as a bridging element between two supporting bodies, or a cantilevered element projecting from one substantially vertical support body.
  • overhang such as a bridging element between two supporting bodies, or a cantilevered element projecting from one substantially vertical support body.
  • the three-dimensional (3D) object may be formed with thousands or millions of shape variations imparted on the three-dimensional object while being formed.
  • the pattern generator generates different patterns of light to activate photoinitiator in the region of the gradient of polymerization to impart different shapes as the object is extracted through the gradient of polymerization.
  • the pattern generator may have high resolution with millions of pixel elements that can be varied to change the shape that is imparted.
  • the pattern generator may be a DLP with more than 1,000 or 2,000 or 3,000 or more rows and/or more than 1,000 or 2,000 or 3,000 or more columns of micromirrors, or pixels in an LCD panel, that can be used to vary the shape.
  • the object may be continuously formed through the gradient of polymerization at a rate of more than 1, 10, 100, 1000, 10000 or more microns per second.
  • this allows complex three-dimensional (3D) objects to be formed.
  • the 3D formed objects have complex non-injection moldable shapes.
  • the shapes may not be capable of being readily formed using injection molding or casting.
  • the shapes may not be capable of being formed by discrete mold elements that are mated to form a cavity in which fill material is injected and cured, such as a conventional two-part mold.
  • the 3D formed objects may include enclosed cavities or partially open cavities, repeating unit cells, or open- cell or closed-cell foam structures that are not amenable to injection molding and may including hundreds, thousands or millions of these structures or interconnected networks of these structures.
  • these shapes may be 3D formed using the methods described in the present application with a wide range of properties, including a wide range of elastomeric properties, tensile strength and elongation at break through the use of dual cure materials and/or interpenetrating polymer networks to form these structures.
  • the 3D objects may be formed without cleavage lines, parting lines, seams, sprue, gate marks or ejector pin marks that may be present with injection molding or other conventional techniques.
  • the 3D formed objects may have continuous surface texture (whether smooth, patterned or rough) that is free from molding or other printing artifacts (such as cleavage lines, parting lines, seams, sprue, gate marks or ejector pin marks) across more than 1mm, 1cm, 10cm or more or across the entire length of the formed object.
  • complex 3D objects may be formed with no discrete layers visible or readily detectable from the printing process in the finished 3D object across more than 1mm, 1cm, 10cm or more or across the entire length of the formed object.
  • the varying shapes imparted during the course of printing by the pattern generator may not be visible or detectable as different layers in the finished 3D object since the printing occurs through the gradient of polymerization zone (from which the 3D object is extracted as it is exposed by varying patterns projected from the pattern generator). While the 3D objects resulting from this process may be referred to as 3D printed objects, the 3D objects may be formed through continuous liquid interphase printing without the discrete layers or cleavage lines associated with some 3D printing processes.
  • the 3D formed object may include one or more repeating structural elements to form the 3D objects, including, for example, structures that are (or substantially correspond to) enclosed cavities, partially-enclosed cavities, repeating unit cells or networks of unit cells, foam cell, Kelvin foam cell or other open-cell or closed-cell foam structures, crisscross structures, overhang structures, cantilevers, microneedles, fibers, paddles, protrusions, pins, dimples, rings, tunnels, tubes, shells, panels, beams (including I- beams, U-beams, W-beams and cylindrical beams), struts, ties, channels (whether open, closed or partially enclosed), waveguides, triangular structures, tetrahedron or other pyramid shape, cube, octahedron, octagon prism, icosidodecahedron, rhombic triacontahedron or other polyhedral shapes or modules (including Kelvin minimal surface tetrakaideca
  • a 3D formed object may include combinations of any of these structures or interconnected networks of these structures.
  • all or a portion of the structure of the 3D formed object may correspond (or substantially correspond) to one or more Bravais lattice or unit cell structures, including cubic (including simple, body-centered or face- centered), tetragonal (including simple or body-centered), monoclinic (including simple or end-centered), orthohombic (including simple, body-centered, face-centered or end-centered), rhombohedral, hexagonal and triclinic structures.
  • the 3D formed object may include shapes or surfaces that correspond (or substantially correspond) to a catenoid, helicoid, gyroid or lidinoid, other triply periodic minimal surface (TPMS), or other geometry from the associate family (or Bonnet family) or Schwarz P ("Primitive") or Schwarz D ("Diamond"), Schwarz H (“Hexagonal”) or Schwarz CLP ("Crossed layers of parallels”) surfaces, argyle or diamond patterns, lattice or other pattern or structure.
  • TPMS triply periodic minimal surface
  • the pattern generator may be programmed to vary rapidly during printing to impart different shapes into the gradient of polymerization with high resolution.
  • any of the above structural elements may be formed with a wide range of dimensions and properties and may be repeated or combined with other structural elements to form the 3D object.
  • the 3D formed object may include a single three-dimensional structure or may include more than 1 , 10, 100, 1000, 10000, 100000, 1000000 or more of these structural elements.
  • the structural elements may be repeated structural elements of similar shapes or combinations of different structural elements and can be any of those described above or other regular or irregular shapes.
  • each of these structural elements may have a dimension across the structure of at least 10 nanometers, 100 nanometers, 10 microns, 100 microns, 1mm, 1cm, 10cm, 50cm or more or may have a dimension across the structure of less than 50cm, 10cm, 1cm, 1mm, 100 microns, 10 microns, 100 nanometers or 10 nanometers or less.
  • a height, width or other dimension across the structure may be in the range of from about 10 nanometers to about 50cm or more or any range subsumed therein.
  • any range subsumed therein means any range that is within the stated range.
  • each of the structural elements may form a volume of the 3D object in the range of from about 10 square nanometers to about 50 square cm or more or any range subsumed therein.
  • each of the structural elements may form a cavity or hollow region or gap between surfaces of the structural element having a dimension across the cavity or hollow region or gap in the range of from about 10 nanometers to about 50cm or more or any range subsumed therein or may define a volume within the expanse of the 3D formed object in the range of from about 10 square nanometers to about 50 square cm or more or any range subsumed therein.
  • the structural elements may be about the same size or the size may vary throughout the volume of the 3D formed object.
  • the sizes may increase or decrease from one side of the 3D formed object to another side (gradually or step-wise) or elements of different shapes may be intermixed in regular or irregular patterns (for example, a 3D elastomeric foam with varying sizes of open-cell and/or closed-cell cavities intermixed throughout the foam).
  • the 3D formed objects may have irregular shapes with overhangs, bridging elements or asymmetries or may otherwise have an offset center of gravity in the direction being formed.
  • the 3D formed object may be asymmetric.
  • the 3D formed object may not have rotational symmetry around any axis or may have rotational symmetry only around a single axis.
  • the 3D formed object may not have reflectional symmetry around any plane through the 3D formed object or may have reflectional symmetry only around a single plane.
  • the 3D object may have an offset center of gravity.
  • the center of gravity of the 3D formed object may not be at the positional center of the object.
  • the center of gravity may not be located along any central axis of the object.
  • the 3D formed object may be a shoe sole or insert that generally follows the contour of a foot.
  • the shoe sole or insert may tilt to the right or left and have different widths for the heel and toes.
  • the 3D formed object in this example will not have reflectional symmetry from side to side or front to back.
  • it may have reflectional symmetry from bottom to top if it is a uniformly flat shoe sole or insert.
  • the shoe sole or insert may be flat on one side and be contoured to receive the arch of a foot on the other side and, as a result, will not have reflectional symmetry from bottom to top either.
  • 3D formed objects for wearable, prosthetic or anatomical shapes or devices may have similar asymmetries and/or offset center of gravity.
  • a 3D formed object for a dental mold or dental implant may substantially conform to the shape of a tooth and may not have reflectional symmetry about any plane.
  • a 3D formed component for a wearable device may substantially conform to the shape of a body party and have corresponding asymmetries, such as athletic wear such as a right or left contoured shin guard or foam padding or insert for use between a hard shin guard or a helmet or other wearable component and the human body.
  • athletic wear such as a right or left contoured shin guard or foam padding or insert for use between a hard shin guard or a helmet or other wearable component and the human body.
  • the UV curable material in the composition may be adjusted to form a more rigid scaffold to avoid deformation.
  • objects with asymmetric shapes and/or offset center of gravity may be formed in pairs (or in other combinations) with connectors that are later removed, particularly if the 3D formed objects or protruding elements are relatively long.
  • an elastomeric 3D object may be formed along a length, and have an asymmetry, center of gravity offset and/or protruding element transverse to the length that is more than 10%, 20%, 30%, 40%, 50% or more of the length.
  • the 3D formed object may have a length of about 1cm to 50cm or more or any range subsumed therein and may have a transverse or lateral asymmetry or protruding element of about 1cm to 50cm or more or any range subsumed therein.
  • two or more of these objects may be formed together in a way that provides support for the transverse or protruding elements until the elastomeric material is cured and the objects are separated.
  • two shoe soles may be formed (e.g., when formed in the direction of their length) as a pair (for example, with rotated and inverted shoe soles formed together with small removable connectors between them) such that the soles provide support to one another while being formed.
  • other support structures may be formed and removed after curing of the elastomeric material.
  • 3D formed objects may have any of the above shapes or structures and may comprise or consist of or consist essentially of: (i) a linear thermoplastic polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), (ii) a cross-linked thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), and/or (iii) combinations thereof (optionally blended with de-blocked blocking group which is copolymerized with the reactive diluents(s), for example as an interpenetrating polymer network, a semi-interpenetrating polymer network, or as a sequential interpenetrating polymer network), and/or (iv) photoinitiator, including unreacted photoinitiator and/or reacted photoinitiator fragments.
  • a linear thermoplastic polyurethane, polyurea, or copolymer thereof e.g., poly(urethan
  • a silicone rubber 3D object may be formed.
  • silicone or poly(dimethylsiloxane) (PDMS) may be used as soft segment in the formation of these materials.
  • PDMS poly(dimethylsiloxane)
  • a mefhacrylate-functional ABPU could be formed by first reacting an oligomeric PDMS diol or diamine with two equivalents of diisocyanate to form a PDMS urethane prepolymer. This material can be further reacted with TBAEMA or other reactive blocking agents described herein to form a reactive blocked PDMS prepolymer which could be blended with chain extenders and reactive diluents as described in the examples above.
  • the material may comprise, consists of or consist essentially of a UV-curable PDMS oligomer that is blended with a two-part thermally curable PDMS oligomer system.
  • 3D formed objects may have any of the above shapes or structures and may comprise or consist of or consist essentially of:
  • thermoset silicone or PDMS network cured by platinum-catalyzed hydrosilation, tin-catalyzed condensation chemistry, or peroxide initiated chemistry.
  • photoinitiator including unreacted photoinitiator and/or reacted photoinitiator fragments.
  • Phenylbis(2 4 6-trimethylbenzoyl)phosphine oxide is dissolved in isobornyl acrylate (IBA) with a ⁇ ⁇ ( ⁇ ) mixer.
  • Methacryloxypropyl terminated polydimethylsiloxane (DMS-R31 ; Gelest Inc.) is added to the solution, followed by addition of Sylgard Part A and Part B (Corning PDMS precursors), and then further mixed with a THINKYTM mixer to produce a homogeneous solution.
  • the solution is loaded into an apparatus as described above and a three-dimensional intermediate is produced by ultraviolet curing as described above. The three-dimensional intermediate is then thermally cured at 100 °C for 12 hours to produce the final silicone rubber product.
  • an epoxy 3D object may be formed.
  • 3D formed objects may have any of the above shapes or structures and may comprise or consist of or consist essentially of:
  • thermoset epoxy network cured by the reaction of a diepoxide with a diamine.
  • co-reactants may also be included for example: co-reactants including polyfunctional amines, acids (and acid anhydrides), phenols, alcohols, and thiols;
  • (iv) photoinitiator including unreacted photoinitiator and/or reacted photoinitiator fragments.
  • 10.018 g EpoxAcast 690 resin part A and 3.040 g part B is mixed on a ⁇ TM mixer.
  • 3.484 g is then mixed with 3.013 g of RKP5-78-1, a 65/22/13 mix of Sartomer CN9782/N-vinylpyrrolidone/diethyleneglycol diacrylate to give a clear blend which is cured under a Dymax ultraviolet lamp to produce an elastic 3D object.
  • R P11-10-1 containing 3.517 g of the above epoxy and 3.508 g of RKP5-90-3 and 65/33/2/0.25 blend of Sartomer CN2920/N- vinylcaprolactam/N-vinylpyrrolidone/PPO initiator is cured similarly to form a flexible 3D object.
  • the 3D formed object may include sol-gel compositions, hydrophobic or hydrophilic compositions, phenolic resoles, cyanate esters, polyimides, conductive polymers, natural product based IPNs, sequential IPNs and polyolefin as described above.
  • 3D formed objects may have any of the shapes or structures described above and may comprise or consist of or consist essentially of a plurality of different materials in different regions of the 3D formed object with different tensile strength or other varying properties.
  • the differing materials may be selected from any of those describe above.
  • the process of fabricating the product may be paused or interrupted one or more times, to change the polymerizable liquid.
  • 3D formed objects may include multiple materials (which may, for example, be a thermoplastic or thermoset polyurethane, polyurea, or copolymer thereof or silicone rubber or epoxy or combination of the foregoing) with different tensile strengths as described further below.
  • any of the materials described herein may be sequentially changed to form a product having multiple distinct segments with different tensile properties, while still being a unitary product with the different segments covalently coupled to one another.
  • the polyurethane, polyurea, or copolymer thereof e.g., poly(urethane-urea)
  • silicone rubber or epoxy or combination of the foregoing may comprise a majority of the 3D formed object by weight and may comprise more than 50%, 60%, 70%, 80% or 90%» of the 3D formed object by weight.
  • the polyurethane, polyurea, or copolymer thereof e.g., poly(urethane-urea)
  • silicone rubber or epoxy or combination of the foregoing may comprise or consist of or consist essentially of an interpenetrating network, a semi-interpenetrating polymer network, or as a sequential interpenetrating polymer network.
  • thermoplastic or thermoset polyurethane, polyurea, or copolymer thereof e.g., poly(urethane-urea)
  • the polyurethane, polyurea, or copolymer thereof may comprise a majority of the 3D formed object by weight and may comprise more than 50%, 60%, 70%, 80% or 90% of the 3D formed object by weight.
  • the polyurethane, polyurea, or copolymer thereof may comprise or consist of or consist essentially of linear thermoplastic or thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)).
  • the linear thermoplastic or cross-linked thermoset polyurethane, polyurea, or copolymer thereof may comprise a majority of the 3D formed object by weight and may comprise more than 50%, 60%, 70%, 80% or 90% of the 3D formed object by weight.
  • the polyurethane, polyurea, or copolymer thereof may comprise or consist of or consist essentially of a polymer blend of (i) linear ethylenically unsaturated blocking monomer copolymerized with reactive diluent and (ii) linear thermoplastic or cross-linked thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)).
  • the polymer blend may comprise a majority of the 3D formed object by weight and may comprise more than 50%, 60%, 70%, 80% or 90% of the 3D formed object by weight.
  • the linear thermoplastic or cross-linked polyurethane, polyurea, or copolymer thereof may comprise or consist of or consist essentially of linear poly(meth)acrylate.
  • the polyurethane, polyurea, or copolymer thereof may comprise or consist of or consist essentially of an interpenetrating network, a semi-interpenetrating polymer network, or as a sequential interpenetrating polymer network of ethylenically unsaturated monomer and crosslinked or linear polyurethane.
  • the network of ethylenically unsaturated monomer and crosslinked polyurethane may comprise a majority of the 3D formed object by weight and may comprise more than 50%, 60%, 70%, 80% or 90% of the 3D formed object by weight.
  • the linear thermoplastic or cross-linked thermoset polyurethane, polyurea, or copolymer thereof may comprise or consist of or consist essentially of crosslinked poly(meth)acrylate.
  • the polyurethane, polyurea, or copolymer thereof may comprise or consist of or consist essentially of an interpenetrating network, a semi-interpenetrating polymer network, or as a sequential interpenetrating polymer network of ethylenically unsaturated monomer and linear thermoplastic or cross- linked thermoset polyurethane.
  • the network of ethylenically unsaturated monomer and and linear thermoplastic or crosslinked thermoset polyurethane may comprise a majority of the 3D formed object by weight and may comprise more than 50%, 60%, 70%o, 80% or 90% of the 3D formed object by weight.
  • the linear thermoplastic or cross-linked thermoset polyurethane, polyurea, or copolymer thereof may comprise or consist of or consist essentially of linear poly (meth)acrylate .
  • the 3D formed object may include sol-gel compositions, hydrophobic or hydrophilic compositions, phenolic resoles, cyanate esters, polyimides, conductive polymers, natural product based IPNs, sequential IPNs and polyolefin as described above.
  • Example photoinitiator and photoinitiator fragmen ts may include unreacted photoinitiator remaining in the 3D formed object. For example, in some embodiments, from 0.1 or 0.2 percent by weight to 1, 2 or 4 percent by weight of the photoinitiator may remain in the three-dimensional formed object or the photoinitiator may be present in lower amounts or only a trace amount.
  • the three-dimensional product may also include reacted photoinitiator fragments.
  • the reacted photoinitiator fragments may be remnants of the first cure forming the intermediate product.
  • reacted photoinitiator fragments may remain in the three-dimensional formed object or the reacted photoinitiator fragments may be present in lower amounts or only a trace amount.
  • the end products will contain residual photoinitiator molecules and photoiniator fragments.
  • a photopolymerization will undergo the transformation outlined below.
  • initiation UV light cleaves the initiator into active radical fragments. These active radical fragments will go on to react with monomer group "M.”
  • M monomer group "M.”
  • the active monomer will react with additional monomers that attach to the growing polymer chain.
  • termination can occur either by recombination or by disproportionation.
  • 3D formed objects generated by the processes outlined herein may contain the following chemical products after the object is created:
  • photoinitiators may include the following:
  • R is any number of other atoms, including H, O, C, N, S.
  • represents a free radical. Either of these components may go on to initiate polymerization and will therefore be covalently bound to the polymer network.
  • R is any number of other atoms including H, O, C, N, S.
  • represents a free radical. Either of these components may go on to initiate polymerization and will therefore be covalently bound to the polymer network.
  • R is any number of other atoms including H, O, C, N, S.
  • photoinitiators that may be used to generate such mateirals and therefore will generate fragments which are covalently attached to the formed polymer network include: triazines, ketones, peroxides, diketones, azides, azo derivatives, disulfide derivatives, disilane derivatives, thiol derivatives, diselenide derivatives, diphenylditelluride derivatives, digermane derivatives, distannane derivatives, carob- germanium compounds, carbon-silicon derivatives, sulfur-carbon derivatives, sulfur-silicon derivatives, peresters, Barton's ester derivatives, hydroxamic and thiohydroxamic acids and esters, organoborates, organometallic compounds, titanocenes, chromium complexes, alumate complexes, carbon-sulfur or sulfur-sulfur iniferter compounds, oxyamines, aldehydes, acetals, silanes,
  • Detection of the unique chemical fingerprint of photoinitiator fragments in a cured polymer object can be accomplished by a number of spectroscopic techniques. Particular techniques useful alone or in combination include: UV-Vis spectroscopy, fluorescence spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, mass spectrometry, atomic absorption spectroscopy, raman spectroscopy, and X-Ray photoelectron spectroscopy.
  • the structural properties of the 3D formed object may be selected together with the properties of the materials from which the 3D object is formed to provide a wide range of properties for the 3D object.
  • Dual cure materials and methods described above in the present application may be used to form complex shapes with desired materials properties to form a wide range of 3D objects.
  • 3D formed objects may be rigid and have, for example, a
  • Such rigid 3D formed objects may include fasteners; electronic device housings; gears, propellers, and impellers; wheels, mechanical device housings; tools and other rigid 3D objects.
  • 3D formed objects may be semi-rigid and have, for example, a Young's modulus (MPa) in the range of about 300 - 2500 or any range subsumed therein, a Tensile Strength (MP a) in the range of about 20 -70 or any range subsumed therein, and/or a percent elongation at break in the range of about 40 to 300 or 600 or any range subsumed therein.
  • rigid 3D formed objects may include structural elements; hinges including living hinges; boat and watercraft hulls and decks; wheels; bottles, jars and other containers; pipes, liquid tubes and connectors and other semi-rigid 3D objects.
  • 3D formed objects may be elastomeric and have, for example, a Young's modulus (MPa) in the range of about 0.5-40 or any range subsumed therein, a Tensile Strength (MPa) in the range of about 0.5 - 30 or any range subsumed therein, and/or a percent elongation at break in the range of about 50 - 1000 or any range subsumed therein.
  • MPa Young's modulus
  • MPa Tensile Strength
  • Non-limiting examples of such rigid 3D formed objects may include foot-wear soles, heels, innersoles and midsoles; bushings and gaskets; cushions; electronic device housings and other elastomeric 3D objects.
  • examples 18-61 are given materials for the formation of polyurethane products having a variety of different tensile properties, ranging from elastomeric, to semi-rigid, to flexible, as described above.
  • the process of fabricating the product may be paused or interrupted one or more times, to change the polymerizable liquid.
  • 3D formed objects may include multiple materials (which may, for example, be a thermoplastic or thermoset polyurethane, polyurea, or copolymer thereof) with different tensile strengths. While a fault line or plane may be formed in the intermediate by the interruption, if the subsequent polymerizable liquid is, in its second cure material, reactive with that of the first, then the two distinct segments of the intermediate will cross-react and covalently couple to one another during the second cure (e.g., by heating or microwave irradiation).
  • any of the materials described herein may be sequentially changed to form a product having multiple distinct segments with different tensile properties, while still being a unitary product with the different segments covalently coupled to one another.
  • a 3D object may be formed with a plurality of regions with different materials and properties.
  • a 3D formed object could have one or more regions formed from a first material or first group of one or more materials having a Tensile Strength (MPa) in the range of about 30 -100 or any range subsumed therein, and/or one or more regions formed from a second material or second group of one or more materials having a Tensile Strength (MPa) in the range of about 20 -70 or any range subsumed therein and/or one or more regions formed from a third material or third group of one or more materials having a Tensile Strength (MPa) in the range of about 0.5 - 30 or any range subsumed therein or any combination of the foregoing.
  • MPa Tensile Strength
  • the 3D object could have from 1-10 or more different regions (or any range subsumed therein) with varying tensile strength selected from any of the materials and tensile strengths described above.
  • a hinge can be formed, with the hinge comprising a rigid segment, coupled to a second elastic segment, coupled to a third rigid segment, by sequentially changing polymerizable liquids (e.g., from among those described in examples 19-60 above) during the formation of the three- dimensional intermediate.
  • a shock absorber or vibration dampener can be formed in like manner, with the second segment being either elastic or semi-rigid.
  • a unitary rigid funnel and flexible hose assembly can be formed in like manner.
  • Figure 6 is a top view and Figure 7 is an exploded view of a 3 inch by 16 inch "high aspect” rectangular build plate (or “window”) assembly of the present invention, where the film dimensions are 3.5 inches by 17 inches.
  • the greater size of the film itself as compared to the internal diameter of vat ring and film base provides a peripheral or circumferential flange portion in the film that is clamped between the vat ring and the film base, as shown in side- sectional view in Figure 8.
  • One or more registration holes may be provided in the polymer film in the peripheral or circumferential flange portion to aid in aligning the polymer film between the vat ring and film base, which are fastened to one another with a plurality of screws (not shown) extending from one to the other (some or all passing through holes in the peripheral edge of the polymer film) in a manner that securely clamps the polymer film therebetween.
  • a tension ring is provided that abuts the polymer film and stretches the film to tension, stabilize or rigidify the film.
  • the tension ring may be provided as a pre-set member, or may be an adjustable member. Adjustment may be achieved by providing a spring plate facing the tension ring, with one or more compressible elements such as polymer cushions or springs (e.g., flat springs, coil springs, wave springs etc.) therebetween, and with adjustable fasteners such as screw fasteners or the like passing from the spring plate through (or around) the tension ring to the film base.
  • Polymer films are preferably fluoropolymer films, such as an amorphous thermoplastic fluoropolymer, in a thickness of 0.01 or 0.05 millimeters to 0.1 or 1 millimeters, or more.
  • fluoropolymer films such as an amorphous thermoplastic fluoropolymer, in a thickness of 0.01 or 0.05 millimeters to 0.1 or 1 millimeters, or more.
  • Biogeneral Teflon AF 2400 polymer film which is 0.0035 inches (0.09 millimeters) thick
  • Random Technologies Teflon AF 2400 polymer film which is 0.004 inches (0.1 millimeters) thick.
  • Tension on the film is preferably adjusted with the tension ring to about 10 to 100 pounds, depending on operating conditions such as fabrication speed.
  • the vat ring, film base, tension ring, and tension ring spring plate may be fabricated of any suitable, preferably rigid, material, including metals (e.g., stainless steel, aluminum and aluminum alloys), carbon fiber, polymers, and composites thereof.
  • metals e.g., stainless steel, aluminum and aluminum alloys
  • carbon fiber e.g., carbon fiber, polymers, and composites thereof.
  • Registration posts and corresponding sockets may be provided in any of the vat ring, film base, tension ring and/or spring plate, as desired.
  • FIG 9 is a top view and Figure 10 is an exploded view of a 2.88 inch diameter round build plate of the invention, where the film dimension may be 4 inches in diameter. Construction is in like manner to that given in Example 1 above, with a circumferential wave spring assembly shown in place. Tension on the film preferably adjusted to a like tension as given in Example 1 above (again depending on other operating conditions such as fabrication speed).
  • Figure 10 is an exploded view of the build plate of Figure 8.
  • FIG 11 shows various alternate embodiments of the build plates of Figures 7-10.
  • Materials and tensions may be in like manner as described above.
  • Figure 12 is a front perspective view
  • Figure 13 is a side view
  • Figure 14 is a rear perspective view of an apparatus 100 according to an exemplary embodiment of the invention.
  • the apparatus 100 includes a frame 102 and an enclosure 104. Much of the enclosure 104 is removed or shown transparent in Figures 12-14.
  • the apparatus 100 includes several of the same or similar components and features as the apparatus described above in reference to Figure 2.
  • a build chamber 106 is provided on a base plate 108 that is connected to the frame 102.
  • the build chamber 106 is defined by a wall or vat ring 110 and a build plate or "window" such as one of the windows described above in reference to Figures 2 and 6-11.
  • a carrier 112 is driven in a vertical direction along a rail 114 by a motor 116.
  • the motor may be any suitable type of motor, such as a servo motor.
  • An exemplary suitable motor is the NXM45A motor available from Oriental Motor of Tokyo, Japan.
  • a liquid reservoir 118 is in fluid communication with the build chamber 106 to replenish the build chamber 106 with liquid resin.
  • tubing may run from the liquid reservoir 118 to the build chamber 106.
  • a valve 120 controls the flow of liquid resin from the liquid reservoir 118 to the build chamber 106.
  • An exemplary suitable valve is a pinch-style aluminum solenoid valve for tubing available from McMaster-Carr of Atlanta, Georgia.
  • the frame 102 includes rails 122 or other some other mounting feature on which a light engine assembly 130 ( Figure 15) is held or mounted.
  • a light source 124 is coupled to the light engine assembly 130 using a light guide entrance cable 126.
  • the light source 124 may be any suitable light source such as a Blue Wave® 200 system available from Dymax Corporation of Torrington, Connecticut.
  • the light engine or light engine assembly 130 includes condenser lens assembly 132 and a digital light processing (DLP) system including a digital micromirror device (DMD) 134 and an optical or projection lens assembly 136 (which may include an objective lens).
  • DLP digital light processing
  • a suitable DLP system is the DLP DiscoveryTM 4100 system available from Texas Instruments, Inc. of Dallas, Texas. Light from the DLP system is reflected off a mirror 138 and illuminates the build chamber 106. Specifically, an "image" 140 is projected at the build surface or window.
  • an electronic component plate or breadboard 150 is connected to the frame 102.
  • a plurality of electrical or electronic components are mounted on the breadboard 150.
  • a controller or processor 152 is operatively associated with various components such as the motor 116, the valve 120, the light source 124 and the light engine assembly 130 described above.
  • a suitable controller is the Propeller Proto Board available from Parallax, Inc. of Rocklin, California.
  • controller 152 Other electrical or electronic components operatively associated with the controller 152 include a power supply 154 and a motor driver 158 for controlling the motor 116.
  • a motor driver 158 for controlling the motor 116.
  • an LED light source controlled by pulse width modulation (PWM) driver 156 is used instead of a mercury lamp (e.g., the Dymax light source described above).
  • PWM pulse width modulation
  • a suitable power supply is a 24 Volt, 2.5A, 60W, switching power supply (e.g., part number PS1 -60W-24 (HF60W-SL-24) available from Marlin P. Jones & Assoc, Inc. of Lake Park, Florida).
  • a suitable LED driver is a 24 Volt, 1.4A LED driver (e.g., part number 788-1041-ND available from Digi-Key of Thief River Falls, Minnesota).
  • a suitable motor driver is the NXD20-A motor driver available from Oriental Motor of Tokyo, Japan.
  • the apparatus of Figures 12-15 has been used to produce an "image size" of about 75 mm by 100 mm with light intensity of about 5 mW/cm 2 .
  • the apparatus of Figures 12-15 has been used to build objects at speeds of about 100 to 500 mm/hr. The build speed is dependent on light intensity and the geometry of the object.
  • FIG 16 is a front perspective view of an apparatus 200 according to another exemplary embodiment of the invention.
  • the apparatus 200 includes the same components and features of the apparatus 100 with the following differences.
  • the apparatus 200 includes a frame 202 including rails 222 or other mounting feature at which two of the light engine assemblies 130 shown in Figure 15 may be mounted in a side-by-side relationship.
  • the light engine assemblies 130 are configured to provide a pair of "tiled" images at the build station 206. The use of multiple light engines to provide tiled images is described in more detail above.
  • the apparatus of Figure 16 has been used to provide a tiled "image size" of about 150 mm by 200 mm with light intensity of about 1 mW/cm .
  • the apparatus of Figure 16 has been used to build objects at speeds of about 50 to 100 mm/hr. The build speed is dependent on light intensity and the geometry of the object.
  • Figure 18 is a front perspective view and Figure 19 is a side view of an apparatus 300 according to another exemplary embodiment of the invention.
  • the apparatus 300 includes the same components and features of the apparatus 100 with the following differences.
  • the apparatus 300 includes a frame 302 including rails 322 or other mounting feature at which a light engine assembly 330 shown in Figure 20 may be mounted in a different orientation than the light assembly 130 of the apparatus 100.
  • the light engine assembly 330 includes a condenser lens assembly 332 and a digital light processing (DLP) system including a digital micromirror device (DMD) 334 and an optical or projection lens assembly 336 (which may include an objective lens).
  • DLP digital light processing
  • DMD digital micromirror device
  • a suitable DLP system is the DLP DiscoveryTM 4100 system available from Texas Instruments, Inc. of Dallas, Texas, Light from the DLP system illuminates the build chamber 306. Specifically, an "image" 340 is projected at the build surface or window. In contrast to the apparatus 100, a reflective mirror is not used with the apparatus 300.
  • the apparatus of Figures 18-20 has been used to provide "image sizes" of about 10.5 mm by 14 mm and about 24 mm by 32 mm with light intensity of about 200 mW/cm 2 and 40 mW/cm 2
  • the apparatus of Figures 18-20 has been used to build objects at speeds of about 10,000 and 4,000 mm/hr. The build speed is dependent on light intensity and the geometry of the object.
  • This Example illustrates the control of a method and apparatus of the invention with an example program written utilizing Lua scripting.
  • Program code corresponding to such instructions, or variations thereof that will be apparent to those skilled in the art, is written in accordance with known techniques based upon the particular microcontroller used.
  • a part consists of slices of polymer which are formed continuously.
  • the shape of each slice is defined by the frame that is being displayed by the light engine.
  • the frame represents the final output for a slice.
  • the frame is what manifests as the physical geometry of the part.
  • the data in the frame is what is projected by the printer to cure the polymer.
  • Slice All the 2D geometry that will be outputted to a frame should be combined in a Slice.
  • Slices can consist of procedural geometry, Slices of a 3D model or any combination of the two. The slice generating process allows the user to have direct control over the composition of any frame.
  • a slice is a special type of 2D geometry derived from a 3D model of a part. It represents the geometry that intersects a plane that is parallel to the window. Parts are usually constructed by taking 3D models and slicing them at very small intervals. Each slice is then interpreted in succession by the printer and used to cure the polymer at the proper height.
  • Procedural Geometry Procedurally generated geometry can also be added to a slice. This is accomplished by invoking shape generation functions, such as “addcircle”, “addrectangle”, and others. Each function allows projection of the corresponding shape onto the printing window. A produced part appears as a vertically extruded shape or combination of shapes.
  • Coordinate spaces Stage. The coordinate system that the stage uses is usually calibrated such that the origin is 1-20 microns above the window. Coordinate spaces: Slice. Coordinate system of the projected slice is such that origin is located at the center of the print window.
  • the following is the most basic method of printing a part from a sliced 3D model.
  • Printing a sliced model consists of 4 main parts: Loading the data, preparing the printer, printing, and shutdown.
  • printer setlevels(.55, .6)— if available, printer set fluid pump to maintain about 55% fill
  • the first step of the printing process is to calibrate the system and set the stage to its starting position by calling gotostart.
  • the first line of the for loop uses the infoline command to display the current slice index in the sidebar.
  • prepExposureTime is predefined in the Constants section showframe(slicelndex)--show frame to expose sleep(exposureTime)-wait while frame exposes
  • exposureTime is predefined in the Constants section showframe(-l)-- show nothing to ensure no exposure while stage is moving to next position end
  • preExposureTime 0.5 - in seconds
  • stageSpeed 300 -in mm/hour
  • maxPrintHeight sliceheight(numSlices-l)-find the highest point in the print, this is the same as the height of the last slice. Slices are 0 indexed, hence the -1.
  • infoline (2, string.formatf'Calculated Max Print Height: %dmm”, maxPrintHeight)) infoline(3, string.formatf'Calculated Est. Time: %dmin”, (maxPrintHeight/stageSpeed)*60 + (preExposureTime+exposureTime)*numSlices/60))
  • infoline (4, string.format(" Number of Slices: %d", numSlices))
  • printer setlevels(.55, .6)— if available, printer set fluid pump to maintain about 55% fill
  • prepExposureTime is predefined in the Constants section showframe(slicelndex)--show frame to expose sleep(exposureTime)-wait while frame exposes
  • exposureTime is predefined in the Constants section showframe(-l)-- show nothing to ensure no exposure while stage is moving to next position end
  • gotostart The main purpose of gotostart is to calibrate the stage. This function resets the coordinate system to have the origin at the lowest point, where the limit switch is activated. Calling this command will move the stage down until the limit switch in the printer is activated; this should occur when the stage is at the absolute minimum height.
  • gotostartQ moves stage to start at the maximum speed which varies from printer to printer. gotostartQ-moving to origin at default speed gotostart(number speed) moves stage to start at speed given in millimeters/hour. gotostart(15000)--moving stage to origin at 15000mm/hr -speed: speed, in mm/hour, at which the stage will move to the start position.
  • This version of the function allows an acceleration to be defined as well as speed.
  • the stage starts moving at initial speed and then increases by acceleration. moveto(25, 20000, le7)--moving the stage to 25mm at 20,000mm/hr while accelerating at 1 million mm/hr A 2 moveto(number targetHeight, number speed, table controlPoints. function callback)
  • This function behaves similar to the basic version of the function. It starts at its initial speed and position and moves to the highest point on the control point table, callback is called when the stage passes each control point.
  • slicecontrolpointsO moveto (number targetHeight, number speed, number acceleration, table controlPoints, function callback) This function is the same as above except the user can pass an acceleration.
  • the stage accelerates from its initial position continuously until it reaches the last control point.
  • -targetHeight height, in mm from the origin, that the stage will move to.
  • -initialSpeed initial speed, in mm/hour, that the stage will start moving at.
  • moveby allows the user to change the height of the stage by a desired amount at a given speed. Safe upper and lower limits to speed and acceleration are ensured internally. movebypnumber dHeight, number initalSpeed)
  • This version of the function allows an acceleration to be defined as well as speed. The stage starts moving at initial speed and then increases by
  • -dHeight desired change in height, in millimeters, of the stage.
  • -initialSpeed initial speed, in mm/hour, at which the stage moves.
  • relay is used to turn the light engine on or off in the printer.
  • the light engine must be on in order to print. Make sure the relay is set to off at the end of the script.
  • addcircle(number x, number y, number radius, number slicelndex) addcircle draws a circle in the specified slice slice.
  • -x is the horizontal distance, in millimeters, from the center of the circle to the origin.
  • -y is the vertical distance, in millimeters, from the center of the circle to the origin.
  • -radius is the radius of the circle measured in millimeters.
  • addrectangle(number x, number y, number width, number height number slicelndex) addrectangle draws a rectangle in the speci fied slice. addrectangle(0,0, 5,5, 0)--creating a 5mm x 5mm square with its top left corner at the origin.
  • -width width of the rectangle in millimeters.
  • addline (number xO, number yO, number xl, number yl, number slicelndex) addline draws a line segment.
  • -xO horizontal coordinate of the first point in the segment, measured in millimeters.
  • -yO vertical coordinate of the first point in the segment, measured in millimeters.
  • -xl horizontal coordinate of the second point in the segment, measured in millimeters.
  • fillmask (number color, number slicelndex, number figurelndex) fillmask is used to control how the procedural geometry is drawn, fillmask tells the figure in question to fill the entirety of its interior with color.
  • -color can be any number on the range 0 to 255. Where 0 is black and 255 is white, any value in between is a shade of grey interpolated linearly between black and white based on the color value. Any value less than 0 will produce a transparent color.
  • myCircle addCircle(0,0,5,0)--creating the circle to fill
  • linemask (number color, number slicelndex, number figurelndex) linemask used to control how the procedural geometry is drawn
  • linemask tells a figure to draw its outline in a specific color.
  • the width of the outline is defined by the function linewidth.
  • -color can be any number on the range 0 to 255. Where 0 is black and 255 is white, any value in between is a shade of grey interpolated linearly between black and white based on the color value. Any value less than 0 will produce a transparent color.
  • -slicelndex the index of the slice that should be modified.
  • -figurelndex is used to determine which figure on the slice should be filled. Each figure has its own unique index. If no figurelndex is passed, the fill applies to all figures in the slice. linewidth
  • figurelndex linewidth is used to set the width of the line that
  • linemask will use to outline the figure. linewidth(2,0)-setting the line width for every figure on the first slice to 2mm
  • -slicelndex the index of the slice that should be modified.
  • -figurelndex is used to determine which figure on the slice should have its outline changed. Each figure has its own unique index, see section 2.3 (Pg.
  • loadmask(string filepath) loadmask allows for advanced fill control. It enables
  • texture loadmask("voronoi_noise.png")--loading texture.
  • voronoi_no ' ise.png is in the same directory as the script.
  • showframe(number slicelndex) showframe is essential to the printing process.
  • This function sends the data from a slice to the printer.
  • -slicelndex the index of the slice to send to the printer.
  • calcframeQ calcframe is designed to analyze the construction of a slice calculates the last frame shown. showframe(O)
  • loadframe is used to load a single slice
  • loadframe("slice.png")--slice.png is in the same directory as the script
  • addslice(numbcr si ice Height) addslice creates a new slice at a given height at the end of the slice stack. addslice(.05)--adding a slice at .05mm addsliceQiiimber sliceHeiqht, number slicelndex) addslice(.05, 2)-adding a slice at ,05mm and at index 2. This pushes all layers 2 and higher up an index. addslice creates a new slice at a given height and slice
  • -sliceHeight height, in millimeters, of the slice.
  • formats are .cli and .svg. Returns: number of slices.
  • slicecontroIpointsO slicecontrolpoints is a helper function which creates a
  • control point for each slice of a model can be passed to the moveto or moveby function to set it to callback when the stage reaches the height of each slice. Make sure loadslices has been called prior to calling this function. loadslices("Chess King.svg")
  • sleep(number seconds) sleep allows the user to pause the execution of the program for a set number of seconds. sleep(.5)--sleeping for a half second
  • clock() clock returns the current time in seconds. It is accurate at least up to the millisecond and should therefore be used instead of Lua's built in clock functionality, clock should be used as a means to measure differences in time as the start time for the second count varies from system to system.
  • tl clockO
  • setleve!s(n umber min, number max) setleveis allows the user to define how
  • the fluid height will be automatically regulated by a pump.
  • the difference between min and max should be greater than 0.05 to ensure that the valve is not constantly opening and closing. setlevels(.7,.75)--keeping vat about 75 percent full
  • -min the minim percentage of the vat that should be full. Entered as a floating point number from 0 to 1.
  • -max the max percentage of the vat that should be full. Entered as a floating point number from 0 to 1.
  • infoIinc(int linelndex, string text) infoline allows the user to display up to 5 lines
  • This function is often used to allow the user to monitor several
  • infoline (l, string.format("Vat is %d percent full.”, getcurrentleve!Q* 100) )
  • cfg.xscale 3 -overriding global settings to set scale on the x axis to 3
  • cfg.yscale 2 --overriding global settings to set scale on the y axis to 2
  • cfg.zscale 1 -overriding global settings to set scale on the z axis to 1
  • the math standard library contains several different functions that are useful in calculating geometry.
  • the string object is most useful in printing for manipulating info strings. For details contact LabLua at Departamento de Informatica, PUC-Rio, Rua Marques de Sao Vicente, 225; 22451-900 Rio de Janeiro, RJ, Brazil
  • This example shows a Lua script program corresponding to Example 7 above for continuous three dimension printing.
  • controlPoints slicecontrolpoints()-Generate Control Points
  • exposureTime exposureTime/(60*60)-converted to hours
  • stageSpeed sliceDepth/exposureTime-required distance/required time
  • maxPrintHeight sliceheight(numSlices-l)--find the highest point in the print, this is the same as the height of the last slice. Slices are 0 indexed, hence the -1.
  • info!ine (2, string.formatf'Calulated Stage Speed: %dmm/hr ⁇ n", stageSpeed)) infoline(3, string.format("Calculated Max Print Height: %dmm”, maxPrintHeight)) infoline(4, string.formatf'Calculated Est. Time: %dmin",
  • printer setlevels(.55, .6)— if available, printer set fluid pump to maintain about 50% fill
  • This example shows a Lua script program for two fitted parts that use procedural geometry.
  • preExposureTime 1 - in seconds
  • stageSpeed 300 -in mm/hour
  • maxPrintHeight sliceheight(numSlices-l)--find the highest point in the print, this is the same as the height of the last slice. Slices are 0 indexed, hence the -1.
  • infoline (2, string.format("Calculated Max Print Height: %dmm”, maxPrintHeight)) infoline(3, string.format("Calculated Est. Time: %dmin”,
  • infoline (4, string.formatf" Number of Slices: %d", numSlices)
  • printer setlevels(.55, .6)— if available, printer set fluid pump to maintain about 55% fill
  • prepExposureTime is predefined in the Constants section showframe(slicelndex)--show frame to expose sleep(1.5)--wait while frame exposes, exposureTime is predefined in the
  • Constants section showframe(-l) - show nothing to ensure no exposure while stage is moving to next position end
  • preExposureTime 0.5 - in seconds
  • stageSpeed 300 -in mm/hour
  • innerCircle addcircle(0,0, innerCircleRad, slicelndex) linewidth(thickness, slicelndex, innerCircle)
  • cutLine addline(x,y, -x,-y, slicelndex)
  • nubLine addline(x,y, -x,-y, slicelndex)
  • maxPrintHeight sliceheight(numSlices-l)--find the highest point in the print, this is the same as the height of the last slice. Slices are 0 indexed, hence the -1.
  • infoline (2, string.format("Calculated Max Print Height: %dmm”, maxPrintHeight)) infoline(3, string.format("Calculated Est. Time: %dmin”, (maxPrintHeight/stageSpeed)*60 + (preExposureTime+exposureTime)*numSlices/60))
  • infoline (4, string.format("Number of Slices: %d", numSlices))
  • printer setlevels(.55, .6)— if available, printer set fluid pump to maintain about 55% fill
  • prepExposureTime is predefined in the Constants section showframe(slicelndex)-show frame to expose sleep(1.5)--wait while frame exposes
  • exposureTime is predefined in the Constants section showframe(-l)-- show nothing to ensure no exposure while stage is moving to next position end
  • FIG. 21 A process of the present invention is illustrated in Figure 21, where the vertical axis illustrates the movement of the carrier away from the build surface.
  • the vertical movement or advancing step (which can be achieved by driving either the carrier or the build surface, preferably the carrier), is continuous and unidirectional, and the irradiating step is carried out continuously.
  • Polymerization of the article being fabricated occurs from a gradient of polymerization, and hence creation of "layer by layer” fault lines within the article is minimized.
  • the advancing step is carried out in a step-by-step manner, with pauses introduced between active advancing of the carrier and build surface away from one another.
  • the irradiating step is carried out intermittently, in this case during the pauses in the advancing step.
  • Sufficient inhibitor can be supplied by any of a variety of techniques, including but not limited to: utilizing a transparent member that is sufficiently permeable to the inhibitor, enriching the inhibitor (e.g., feeding the inhibitor from an inhibitor-enriched and/or pressurized atmosphere), etc.
  • enriching the inhibitor e.g., feeding the inhibitor from an inhibitor-enriched and/or pressurized atmosphere
  • the more rapid the fabrication of the three-dimensional object that is, the more rapid the cumulative rate of advancing
  • the more inhibitor will be required to maintain the dead zone and the adjacent gradient of polymerization.
  • FIG. 23 A still further embodiment of the present invention is illustrated in Figure 23.
  • the advancing step is carried out in a step-by-step manner, with pauses introduced between active advancing of the carrier and build surface away from one another.
  • the irradiating step is carried out intermittently, again during the pauses in the advancing step.
  • the ability to maintain the dead zone and gradient of polymerization during the pauses in advancing and irradiating is taken advantage of by introducing a vertical reciprocation during the pauses in irradiation.
  • Reciprocation in the vertical or Z axis can be carried out at any suitable speed in both directions (and the speed need not be the same in both directions), although it is preferred that the speed when reciprocating away is insufficient to cause the formation of gas bubbles in the build region. While a single cycle of reciprocation is shown during each pause in irradiation in Figure 23, it will be appreciated that multiple cycles (which may be the same as or different from one another) may be introduced during each pause.
  • Example 10 As in Example 10 above, as long as the inhibitor of polymerization is supplied to the dead zone in an amount sufficient to maintain the dead zone and the adjacent gradient of polymerization during the reciprocation, the gradient of polymerization is maintained, the formation of layers within the article of manufacture is minimized or avoided, and the polymerization/fabrication remains continuous, even though the irradiating and advancing steps are not.
  • the resin was 3D formed using an apparatus as described herein.
  • a "honeycomb" object was formed at a speed of 160 mm/hr using a light intensity setting of 1.2 mV (when measured using a volt meter equipped with a optical sensor). Total printing time was approximately 10 minutes.
  • the part was removed from the print stage, rinsed with hexanes, and placed into an oven set at 1 10°C for 12 hours.
  • the part After heating, the part maintained its original shape generated during the initial printing, and it had transformed into a tough, durable, elastomer having an elongation at break around 200%
  • the resin was 3D formed using an apparatus as described herein.
  • the cylindrical object was formed at a speed of 50 mm/hr using a light intensity setting of 1 .2 mV (when measured using a volt meter equipped with an optical sensor). Total printing time was approximately 15 minutes.
  • the part was removed from the print stage, rinsed with hexanes, and placed into an oven set at 1 10°C for 12 hours.
  • the part After heating, the part maintained its original shape generated during the initial printing, and it had transformed into a tough, durable, elastomer having an elongation at break around 400%
  • the PTMO can be replaced by polypropylene glycol (PPG, such as 1000 Da PPG (PPGlk)) or other polyesters or polybuadiene diols.
  • PPG polypropylene glycol
  • IPDI or HDI can be replaced by other diisocyanates.
  • the molar stoichiometry of the polyol : diisocyanate : TBAEMA is preferably 1 : 2 : 2.
  • ABPU resins can be formed (optionally but preferably by continuous liquid interphase/interface printing) at up to 100 mm/hr using the formulations in Table 1 to generate elastomers with low hysteresis after thermally cured at 100 °C for 2 to 6 hours, depending on the diisocyanates used in ABPU and the chain extender(s).
  • PPO 1-4 Dog-bone-shaped specimens were formed by continuous liquid interface printing with different ABPUs (varying the diisocyanate and polyol used for the synthesis) and reactive diluents.
  • Table 2 shows the mechanical properties of some of the thermally cured dog-bone samples at room temperature.
  • DEGMA means di(ethylene glycol) methyl ether methacrylate
  • IBMA means isoboronyl methacrylate
  • P ACM means 4,4'-Diaminodicyclohexyl methane
  • BDO means 1,4- butanediol
  • PPO means Phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide
  • MDEA means 4,4'-methylene-bis-(2,6-diethylaniline)
  • 2-EHMA means 2-ethylhexyl methacrylate
  • tensile specimens (sometimes referred to as "dog-bone samples” in reference to their shape), were loaded onto an Instron 5964 testing apparatus with Instron BLUEHILL3 measurement software (Instron, 825 University Ave, Norwood, MA, 02062-2643, USA). The samples are oriented vertically and parallel to the direction of testing. Cast and flood cured samples were fully cured using a DNMAX 5000 EC-Series enclosed UV flood lamp (225 mW/cm 2 ) for from thirty to ninety seconds of exposure. Table 3 below summarizes the types of tensile specimens tested, general material property (rigid or non-rigid), and the associated strain rate.
  • Dogbone type IV is used to test elastomeric samples.
  • the samples were tested at a rate such that the sample ruptures at a time between 30 seconds to 5 minutes to ensure that sample strain rate is slow enough to capture plastic deformation in the samples.
  • Persuant to ASTM D-638 measure the Young's modulus (modulus of elasticity) (slope of the stress-strain plot between 5-10% elongation), tensile strength at break, tensile strength at yield, percent elongation at break, percent elongation at yield.
  • a strain rate is chosen such that the part with the lowest strain-at-break (%) will foil within 5 minutes. This often means that a slower strain rate will be necessary for rigid samples.
  • Cured elastomer specimens were prepared in the same manner as in Example 19 but using the formulation in Table 5.
  • the cured specimens were tested following ASTM standard on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 5,
  • Cured elastomer specimens were prepared in the same manner as in Example 19 but using the formulation in Table 6. The cured specimens were tested following ASTM standard on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 6.

Abstract

A method of forming a three-dimensional object comprised of polyurethane, polyurea, or copolymer thereof is carried out by: (a) providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween; (b) filling the build region with a polymerizable liquid; (c) irradiating the build region with light through the optically transparent member to form a solid blocked polymer scaffold and advancing the carrier away from the build surface to form a three-dimensional intermediate having the same shape as, or a shape to be imparted to, the three-dimensional object, with the intermediate containing the chain extender; and then (d) heating or microwave irradiating the three-dimensional intermediate sufficiently to form from the three-dimensional intermediate the three-dimensional object comprised of polyurethane, polyurea, or copolymer thereof.

Description

METHODS OF PRODUCING POLY U RE T H ANE THREE-DIMENSIONAL OBJECTS FROM MATERIALS HAVING MULTIPLE MECHANISMS OF
HARDENING
Related Applications
This application claims the benefit of United States Provisional Patent Applications Serial Nos. 62/133,642 filed March 16, 2015, 62/129,187 filed March 6, 2015, 62/1 1 1 ,961 filed February 4, 2015, 62/101,671 filed January 9, 2015, 62/036,161 filed August 12, 2014, and 62/015,780 filed June 23, 2014, the disclosures of which are incorporated by reference herein in their entirety.
Field of the Invention
The present invention concerns materials, methods and apparatus for the fabrication of solid three-dimensional objects from liquid materials, and objects so produced.
Background of the Invention
In conventional additive or three-dimensional fabrication techniques, construction of a three-dimensional object is performed in a step- wise or layer-by-layer manner. In particular, layer formation is performed through solidification of photo curable resin under the action of visible or UV light irradiation. Two techniques are known: one in which new layers are formed at the top surface of the growing object; the other in which new layers are formed at the bottom surface of the growing object.
If new layers are formed at the top surface of the growing object, then after each irradiation step the object under construction is lowered into the resin "pool," a new layer of resin is coated on top, and a new irradiation step takes place. An early example of such a technique is given in Hull, US Patent No. 5,236,637, at Figure 3. A disadvantage of such "top down" techniques is the need to submerge the growing object in a (potentially deep) pool of liquid resin and reconstitute a precise overlayer of liquid resin.
If new layers are formed at the bottom of the growing object, then after each irradiation step the object under construction must be separated from the bottom plate in the fabrication well. An early example of such a technique is given in Hull, US Patent No. 5,236,637, at Figure 4. While such "bottom up" techniques hold the potential to eliminate the need for a deep well in which the object is submerged by instead lifting the object out of a relatively shallow well or pool, a problem with such "bottom up" fabrication techniques, as commercially implemented, is that extreme care must be taken, and additional mechanical elements employed, when separating the solidified layer from the bottom plate due to physical and chemical interactions therebetween. For example, in US Patent No. 7,438,846, an elastic separation layer is used to achieve "non-destructive" separation of solidified material at the bottom construction plane. Other approaches, such as the B9Creator™ 3- dimensional printer marketed by B9Creations of Deadwood, South Dakota, USA, employ a sliding build plate. See, e.g., M. Joyce, US Patent App. 2013/0292862 and Y. Chen et al., US Patent App. 2013/0295212 (both Nov. 7, 2013); see also Y. Pan et al., J. Manufacturing Set and Eng. 134, 05101 1 -1 (Oct. 2012). Such approaches introduce a mechanical step that may complicate the apparatus, slow the method, and/or potentially distort the end product.
Continuous processes for producing a three-dimensional object are suggested at some length with respect to "top down" techniques in US Patent No. 7,892,474, but this reference does not explain how they may be implemented in "bottom up" systems in a manner nondestructive to the article being produced, which limits the materials which can be used in the process, and in turn limits the structural properties of the objects so produced.
Southwell, Xu et al, US Patent Application Publication No. 2012/0251841 , describe liquid radiation curable resins for additive fabrication, but these comprise a cationic photoinitiator (and hence are limited in the materials which may be used) and are suggested only for layer by layer fabrication.
Velankar, Pazos, and Cooper, Journal of Applied Polymer Science 162, 1361 (1996), describe UV-curable urethane acrylates formed by a deblocking chemistry, but they are not suggested for additive manufacturing, and no suggestion is made on how those materials may be adapted to additive manufacturing.
Accordingly, there is a need for new materials and methods for producing three- dimensional objects by additive manufacturing that have satisfactory structural properties.
Summary of the Invention
Described herein are methods, systems and apparatus (including associated control methods, systems and apparatus), for the production of a three-dimensional object by additive manufacturing. In preferred (but not necessarily limiting) embodiments, the method is carried out continuously. In preferred (but not necessarily limiting) embodiments, the three- dimensional object is produced from a liquid interface. Hence they are sometimes referred to, for convenience and not for purposes of limitation, as "continuous liquid interface production," "continuous liquid interphase printing," or the like (i.e., "CLIP"). A schematic representation of an embodiment thereof is given in Figure 1 herein.
The present invention provides a method of forming a three-dimensional object, comprising: (a) providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween; (b) filling the build region with a polymerizable liquid, the polymerizable liquid comprising a mixture of: (i) a light polymerizable liquid first component, and (ii) a second solidifiable (or second reactive) component different from the first component; (c) irradiating the build region with light through the optically transparent member to form a solid polymer scaffold from the first component and advancing (e.g., advancing concurrently— that is, simultaneously, or sequentially in an alternating fashion with irradiating steps) the carrier away from the build surface to form a three-dimensional intermediate having the same shape as, or a shape to be imparted to, the three-dimensional object and containing the second solidifiable component carried in the scaffold in unsolidified or uncured form; and (d) concurrently with or subsequent to the irradiating step, solidifying and/or curing (e.g., further reacting, polymerizing, or chain extending) the second solidifiable or reactive component in the three- dimensional intermediate to form the three-dimensional object.
In some embodiments, the second component comprises: (i) a polymerizable liquid solubilized in or suspended in the first component; (ii) a polymerizable solid solubilized in the first component; or (Hi) a polymer solubilized in the first component. In other embodiments, the second component comprises: (i) a polymerizable solid suspended in the first component; or (ii) solid thermoplastic or thermoset polymer particles suspended in the first component.
In some embodiments, the first component comprises a blocked or reactive blocked prepolymer and (optionally but in some embodiments preferably) a reactive diluent, and the second component comprises a chain extender. The first components react together to form a blocked polymer scaffold during the irradiating step, which is unblocked by heating or microwave irradiating during the second step to in turn react with the chain extender. In some embodiments, the reactive blocked component comprises a reactive blocked diisocyanate and/or chain extender, alone or in combination with a reactive blocked prepolymer, and other unblocked constituents (e.g., polyisocyanate oligomer, diisocyanate, reactive diluents, and/or chain extender).
In some embodiments, reactive blocked blocked prepolymers, diisocyanates, and/or chain extenders are blocked by reaction of (i.e., are the reaction product of a reaction between) a polyisocyanate oligomer, a diisocyanate, and/or a chain extender with an amine methacrylate, alcohol methacrylate, maleimide, or n-vinylformamide monomer blocking agent.
In some embodiments, the three-dimensional intermediate is collapsible or compressible (e.g., elastic).
In some embodiments, the scaffold is continuous; in other embodiments, the scaffold is discontinuous (e.g., an open or closed cell foam, which foam may be regular (e.g., geometric, such as a lattice) or irregular).
In some embodiments, the three-dimensional object comprises a polymer blend (e.g., an interpenetrating polymer network, a semi-interpenetrating polymer network, a sequential interpenetrating polymer network) formed from the first component and the second component.
In some embodiments, the polymerizable liquid comprises from 1 , 2 or 5 percent by weight to 20, 30, 40, 90 or 99 percent by weight of the first component; and from 1, 10, 60, 70 or 80 percent by weight to 95, 98 or 99 percent by weight of the second component (optionally including one or more additional components). In other embodiments, the polymerizable liquid comprises from 1, 2 or 5 percent by weight to 20, 30, 40, 90 or 99 percent by weight of the second component; and from 1, 10, 60, 70 or 80 percent by weight to 95, 98 or 99 percent by weight of the first component (optionally including one or more additional components).
In some embodiments, the solidifying and/or curing step (d) is carried out concurrently with the irradiating step (c) and: (i) the solidifying and/or curing step is carried out by precipitation; (ii) the irradiating step generates heat from the polymerization of the first component in an amount sufficient to thermally solidify or polymerize the second component (e.g., to a temperature of 50 or 80 to 100 °C, for polymerizing polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)); and (in) the second component (e.g., a light or ultraviolet light curable epoxy resin) is solidified by the same light as is the first component in the irradiating step. In some embodiments, the solidifying and/or curing step (d) is carried out subsequent to the irradiating step (c) and is carried out by: (i) heating or microwave irradiating the second solidifiable component; (ii) irradiating the second solidifiable component with light at a wavelength different from that of the light in the irradiating step (c); (iii) contacting the second polymerizable component to water; or (iv) contacting the second polymerizable component to a catalyst.
In some embodiments, the second component comprises precursors to a polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), a silicone resin, or natural rubber, and the solidifying and/or curing step is carried out by heating or microwave irradiating.
In some embodiments, the second component comprises a cationically cured resin
(e.g., an epoxy resin or a vinyl ether) and the solidifying and/or curing step is carried out by irradiating the second solidifiable component with light at a wavelength different from that of the light in the irradiating step (c).
In some embodiments, the second component comprises a precursor to a polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), and the solidifying and/or curing step is carried out by contacting the second component to water (e.g., in liquid, gas, or aerosol form). Suitable examples of such precursors include, but are not limited to, those described in B. Baumbach, Silane Terminated Polyurethanes (Bayer MaterialScience 2013).
In some embodiments, the second component comprises a precursor to a polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), a silicone resin, a ring-opening metathesis polymerization resin, or a click chemistry resin (alkyne monomers in combination with compound plus an azide monomers), and the solidifying and/or curing step is carried out by contacting the second component to a polymerization catalyst (e.g., a metal catalyst such as a tin catalyst, and/or an amine catalyst, for polyurethane/polyurea resins; platinum or tin catalysts for silicone resins; ruthenium catalysts for ring-opening metathesis polymerization resins; copper catalyst for click chemistry resins; etc., which catalyst is contacted to the article as a liquid aerosol, by immersion, etc.), or an an aminoplast containing resin, such as one containing N-(alkoxymethyl)acrylamide, hydroxyl groups, and a blocked acid catalyst
In some embodiments, the irradiating step and/or advancing step is carried out while also concurrently: (i) continuously maintaining a dead zone (or persistent liquid interface) of polymerizable liquid in contact with the build surface, and
(ii) continuously maintaining a gradient of polymerization zone between the dead zone and the solid polymer and in contact with each thereof, the gradient of polymerization zone comprising the first component in partially cured form.
In some embodiments, the first component comprises a free radical polymerizable liquid and the inhibitor comprises oxygen; or the first component comprises an acid-catalyzed or cationically polymerizable liquid, and the inhibitor comprises a base.
In some embodiments, the gradient of polymerization zone and the dead zone together have a thickness of from 1 to 1000 microns.
In some embodiments, the gradient of polymerization zone is maintained for a time of at least 5, 10, 20 or 30 seconds, or at least 1 or 2 minutes.
In some embodiments, the advancing is carried out at a cumulative rate of at least 0.1 , 1, 10, 100 or 1000 microns per second.
In some embodiments, the build surface is substantially fixed or stationary in the lateral and/or vertical dimensions.
In some embodiments the method further comprises vertically reciprocating the carrier with respect to the build surface to enhance or speed the refilling of the build region with the polymerizable liquid.
A further aspect of the invention is a polymerizable liquid substantially as described herein above and below, and/or for use in carrying out a method as described herein.
One particular embodiment of the inventions disclosed herein is a method of forming a three- dimensional object comprised of polyurethane, polyurea, or copolymer thereof, the method comprising: (a) providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween; (b) filling the build region with a polymerizable liquid, the polymerizable liquid comprising at least one of: (i) a blocked or reactive blocked prepolymer, (ii) a blocked or reactive blocked diisocyante, or (in) a blocked or reactive blocked diisocyanate chain extender; (c) irradiating the build region with light through the optically transparent member to form a solid blocked polymer scaffold and advancing the carrier away from the build surface to form a three-dimensional intermediate having the same shape as, or a shape to be imparted to, the three-dimensional object, with the intermediate containing the chain extender; and then (d) heating or microwave irradiating the three-dimensional intermediate sufficiently to form from the three- dimensional intermediate the three-dimensional object comprised of polyurethane, polyurea, or copolymer thereof.
In some embodiments, the solidifiable or polymerizable liquid is changed at least once during the method with a subsequent solidifiable or polymerizable liquid; optionally where the subsequent solidifiable or polymerizable liquid is cross-reactive with each previous solidifiable or polymerizable liquid during the subsequent curing, to form an object having a plurality of structural segments covalently coupled to one another, each structural segment having different structural (e.g., tensile) properties.
A further aspect of the inventions disclosed herein is a polymerizable liquid useful for the production of a three-dimensional object comprised of polyurethane, polyurea, or a copolymer thereof by additive manufacturing, the polymerizable liquid comprising a mixture of:
(a) at least one constitutent selected from the group consisting of (i) a blocked or reactive blocked prepolymer, (u) a blocked or reactive blocked diisocyanate, and (in) a blocked or reactive blocked diisocyanate chain extender,
(b) optionally at least one additional chain extender,
(c) a photoinitiator,
(d) optionally a polyol and/or a polyamine,
(e) optionally a reactive diluent,
(f) optionally a non-reactive (i.e., non-reaction initiating) light absorbing, particularly a ultraviolet light-absorbing, pigment or dye which when present is included in an amount of from 0.001 or 0.01 to 10 percent by weight, and
(g) optionally a filler (e.g. silica);
optionally, but in some embodiments preferably, subject to the proviso that the non-reactive light absorbing pigment or dye is present when the at least one constituent is only the blocked or reactive blocked prepolymer.
In some embodiments, polymerizable liquids used in the present invention include a non-reactive pigment or dye. Examples include, but are not limited to, (i) titanium dioxide (e.g., in an amount of from 0.05 or 0.1 to 1 or 5 prcent by weight), (ii) carbon black (e.g., included in an amount of from 0.05 or 0.1 to 1 or 5 percent by weight), and/or (Hi) an organic ultraviolet light absorber such as a hydroxybenzophenone, hydroxyphenylbenzotriazole, oxanilide, benzophenone, hydroxypenyltriazine, and/or benzotriazole ultraviolet light absorber (e.g. in an amount of 0.001 or 0.005 to 1 , 2 or 4 percent by weight). A further aspect of the inventions disclosed herein is a three dimensional object comprised of: (a) a light polymerized first component; and (b) a second solidified component {e.g., a further reacted, polymerized or chain extended component) different from the first component; optionally but in some embodiments preferably subject to the proviso that: (i) the second component does not contain a cationic polymerization photoinitiator, and/or (ii) the three dimensional object is produced by the process of continuous liquid interface production.
In some embodiments, the object further comprises: (c) a third solidified (or further reacted, polymerized, or chain extended) component different from the first and second component, with the object having at least a first structural segment and a second structural segment covalently coupled to one another, the first structural segment comprised of the second solidified component, the second structural segment comprised of the third solidified component; and both the first and second structural segments comprised of the same or different light polymerized first component.
In some embodiments, the object comprises a polymer blend formed from the first component and the second component.
The object may be one that has a shape that cannot be formed by injection molding or casting.
Non-limiting examples and specific embodiments of the present invention are explained in greater detail in the drawings herein and the specification set forth below. The disclosures of all United States Patent references cited herein are to be incorporated herein by reference in their entirety.
Brief Description of the Drawings
Figure 1 is a schematic illustration of one embodiment of a method of the present invention.
Figure 2 is a perspective view of one embodiment of an apparatus of the present invention.
Figures 3 is a first flow chart illustrating control systems and methods for carrying out the present invention.
Figures 4 is a second flow chart illustrating control systems and methods for carrying out the present invention.
Figure S is a third flow chart illustrating control systems and methods for carrying out the present invention. Figure 6 is a top view of a 3 inch by 16 inch "high aspect" rectangular build plate (or "window") assembly of the present invention, where the film dimensions are 3.5 inch by 17 inch.
Figure 7 is an exploded view of the build plate of Figure 6, showing the tension ring and tension ring spring plate.
Figure 8 is a side sectional view of the build plates of Figures 6-9, showing how the tension member tensions and rigidifies the polymer film.
Figure 9 is a top view of a 2.88 inch diameter round build plate of the invention, where the film dimension may be 4 inches in diameter.
Figure 10 is an exploded view of the build plate of Figure 8.
Figure 11 shows various alternate embodiments of the build plates of Figures 7-10. Figure 12 is a front perspective view of an apparatus according to an exemplary embodiment of the invention.
Figure 13 is a side view of the apparatus of Figure 12.
Figure 14 is a rear perspective view of the apparatus of Figure 12.
Figure 15 is a perspective view of a light engine assembly used with the apparatus of Figure 12.
Figure 16 is a front perspective view of an apparatus according to another exemplary embodiment of the invention.
Figures 17A is a schematic diagram illustrating tiled images.
Figures 17B is a second schematic diagram illustrating tiled images.
Figures 17C is a third schematic diagram illustrating tiled images.
Figure 18 is a front perspective view of an apparatus according to another exemplary embodiment of the invention.
Figure 19 is a side view of the apparatus of Figure 18.
Figure 20 is a perspective view of a light engine assembly used with the apparatus of Figure 18.
Figure 21 is a graphic illustration of a process of the invention indicating the position of the carrier in relation to the build surface or plate, where both advancing of the carrier and irradiation of the build region is carried out continuously. Advancing of the carrier is illustrated on the vertical axis, and time is illustrated on the horizontal axis.
Figure 22 is a graphic illustration of another process of the invention indicating the position of the carrier in relation to the build surface or plate, where both advancing of the carrier and irradiation of the build region is carried out stepwise, yet the dead zone and gradient of polymerization are maintained. Advancing of the carrier is again illustrated on the vertical axis, and time is illustrated on the horizontal axis.
Figure 23 is a graphic illustration of still another process of the invention indicating the position of the carrier in relation to the build surface or plate, where both advancing of the carrier and irradiation of the build region is carried out stepwise, the dead zone and gradient of polymerization are maintained, and a reciprocating step is introduced between irradiation steps to enhance the flow of polymerizable liquid into the build region. Advancing of the carrier is again illustrated on the vertical axis, and time is illustrated on the horizontal axis.
Figure 24 is a detailed illustration of an reciprocation step of Figure 23, showing a period of acceleration occurring during the upstroke (i.e., a gradual start of the upstroke) and a period of deceleration occurring during the downstroke (i.e., a gradual end to the downstroke).
Figure 25A depicts a dual cure system employing a thermally cleavable end group. I. Crosslinked blocked diisocyanate prepolymer containing unreacted chain extender. II. Polymer blend of: i) linear ethylenically unsaturated blocking monomer copolymerized with reactive diluent and ii) linear thermoplastic polyurethane.
Figure 25B depicts a method of the present invention carried out with methacrylate blocked diisocyanates (ABDIs). 1. Crosslinked blocked diisocyanate containing unreacted soft segment and chain extender. II. Polymer blend of: i) linear ethylenically unsaturated blocking monomer copolymerized with reactive diluent and ii) linear thermoplastic polyurethane.
Figure 25C depicts a method of the present invention carried out with methacrylate blocked chain extenders (ABCEs). I. Crosslinked blocked diisocyanate containing chain extender containing unreacted soft segment and chain extender. II. Polymer blend of: i) linear ethylenically unsaturated blocking monomer copolymerized with reactive diluent and ii) linear thermoplastic polyurethane.
Detailed Description of Illustrative Embodiments
The present invention is now described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the scope of the invention to those skilled in the art.
Like numbers refer to like elements throughout. In the figures, the thickness of certain lines, layers, components, elements or features may be exaggerated for clarity. Where used, broken lines illustrate optional features or operations unless specified otherwise.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a," "an" and "the" are intended to include plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "comprises" or "comprising," when used in this specification, specify the presence of stated features, integers, steps, operations, elements components and/or groups or combinations thereof, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groups or combinations thereof.
As used herein, the term "and/or" includes any and all possible combinations or one or more of the associated listed items, as well as the lack of combinations when interpreted in the alternative ("or").
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the specification and claims and should not be interpreted in an idealized or overly formal sense unless expressly so defined herein. Well- known functions or constructions may not be described in detail for brevity and/or clarity.
It will be understood that when an element is referred to as being "on," "attached" to, "connected" to, "coupled" with, "contacting," etc., another element, it can be directly on, attached to, connected to, coupled with and/or contacting the other element or intervening elements can also be present. In contrast, when an element is referred to as being, for example, "directly on," "directly attached" to, "directly connected" to, "directly coupled" with or "directly contacting" another element, there are no intervening elements present. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed "adjacent" another feature can have portions that overlap or underlie the adjacent feature. Spatially relative terms, such as "under," "below," "lower," "over," "upper" and the like, may be used herein for ease of description to describe an element's or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is inverted, elements described as "under" or "beneath" other elements or features would then be oriented "over" the other elements or features. Thus the exemplary term "under" can encompass both an orientation of over and under. The device may otherwise be oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms "upwardly," "downwardly," "vertical," "horizontal" and the like are used herein for the purpose of explanation only, unless specifically indicated otherwise.
It will be understood that, although the terms first, second, etc., may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. Rather, these terms are only used to distinguish one element, component, region, layer and/or section, from another element, component, region, layer and/or section. Thus, a first element, component, region, layer or section discussed herein could be termed a second element, component, region, layer or section without departing from the teachings of the present invention. The sequence of operations (or steps) is not limited to the order presented in the claims or figures unless specifically indicated otherwise.
"Shape to be imparted to" refers to the case where the shape of the intermediate object slightly changes between formation thereof and forming the subsequent three-dimensional product, typically by shrinkage (e.g., up to 1 , 2 or 4 percent by volume), expansion (e.g., up to 1 , 2 or 4 percent by volume), removal of support structures, or by intervening forming steps (e.g., intentional bending, stretching, drilling, grinding, cutting, polishing, or other intentional forming after formation of the intermediate product, but before formation of the subsequent three-dimensional product).
"Hydrocarbyl" as used herein refers to a bifunctional hydrocarbon group, which hydrocarbon may be aliphatic, aromatic, or mixed aliphatic and aromatic, and optionally containing one or more (e.g. 1 , 2, 3, or 4) heteroatoms (typically selected from N, O, and S). Such hydrocarbyl groups may be optionally substituted and may contain from 1 , 2, or 3 carbon atoms, up to 6, 8 or 10 carbon atoms or more, and up to 40, 80, or 100 carbon atoms or more.
I. POLYMERIZABLE LIQUIDS: PART A.
Dual cure systems as described herein may include a first curable system (sometimes referred to as "Part A" or herein) that is curable by actinic radiation, typically light, and in some embodiments ultraviolet (UV) light). Any suitable polymerizable liquid can be used as the first component. The liquid (sometimes also referred to as "liquid resin" "ink," or simply "resin" herein) can include a monomer, particularly photopolymerizable and/or free radical polymerizable monomers, and a suitable initiator such as a free radical initiator, and combinations thereof. Examples include, but are not limited to, acrylics, methacrylics, acrylamides, styrenics, olefins, halogenated olefins, cyclic alkenes, maleic anhydride, alkenes, alkynes, carbon monoxide, functionalized oligomers, multifunctional cute site monomers, functionalized PEGs, etc., including combinations thereof. Examples of liquid resins, monomers and initiators include but are not limited to those set forth in US Patents Nos. 8,232,043; 8,119,214; 7,935,476; 7,767,728; 7,649,029; WO 2012129968 Al ; CN 102715751 A; JP 2012210408 A.
Acid catalyzed polymerizable liquids. While in some embodiments as noted above the polymerizable liquid comprises a free radical polymerizable liquid (in which case an inhibitor may be oxygen as described below), in other embodiments the polymerizable liquid comprises an acid catalyzed, or cationically polymerized, polymerizable liquid. In such embodiments the polymerizable liquid comprises monomers contain groups suitable for acid catalysis, such as epoxide groups, vinyl ether groups, etc.. Thus suitable monomers include olefins such as methoxyethene, 4-methoxystyrene, styrene, 2-methylprop-l-ene, 1,3- butadiene, etc.; heterocycloic monomers (including lactones, lactams, and cyclic amines) such as oxirane, thietane, tetrahydrofuran, oxazoline, 1 ,3, dioxepane, oxetan-2-one, etc., and combinations thereof. A suitable (generally ionic or non-ionic) photoacid generator (PAG) is included in the acid catalyzed polymerizable liquid, examples of which include, but are not limited to onium salts, sulfonium and iodonium salts, etc., such as diphenyl iodide hexafluorophosphate, diphenyl iodide hexafluoroarsenate, diphenyl iodide hexafluoroantimonate, diphenyl p-methoxyphenyl triflate, diphenyl p-toluenyl triflate, diphenyl p-isobutylphenyl triflate, diphenyl p-tert-butylphenyl triflate, triphenylsulfonium hexafluororphosphate, triphenylsulfonium hexafluoroarsenate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium triflate, dibutylnaphthylsulfonium triflate, etc., including mixtures thereof. See, e.g., US Patents Nos. 7,824,839; 7,550,246; 7,534,844; 6,692,891; 5,374,500; and 5,017,461 ; see also Photoacid Generator Selection Guide for the electronics industry and energy curable coatings (BASF 2010).
Hydrogels, In some embodiments suitable resins includes photocurable hydrogels like poly(ethylene glycols) (PEG) and gelatins. PEG hydrogels have been used to deliver a variety of biologicals, including Growth factors; however, a great challenge facing PEG hydrogels crosslinked by chain growth polymerizations is the potential for irreversible protein damage. Conditions to maximize release of the biologicals from photopolymerized PEG diacrylate hydrogels can be enhanced by inclusion of affinity binding peptide sequences in the monomer resin solutions, prior to photopolymerization allowing sustained delivery. Gelatin is a biopolymer frequently used in food, cosmetic, pharmaceutical and photographic industries. It is obtained by thermal denaturation or chemical and physical degradation of collagen. There are three kinds of gelatin, including those found in animals, fish and humans. Gelatin from the skin of cold water fish is considered safe to use in pharmaceutical applications. UV or visible light can be used to crosslink appropriately modified gelatin. Methods for crosslinking gelatin include cure derivatives from dyes such as Rose Bengal.
Photocurable silicone resins. A suitable resin includes photocurable silicones. UV cure silicone rubber, such as Siliopren™ UV Cure Silicone Rubber can be used as can LOCTITE™ Cure Silicone adhesives sealants. Applications include optical instruments, medical and surgical equipment, exterior lighting and enclosures, electrical connectors / sensors, fiber optics and gaskets.
Biodegradable resins. Biodegradable resins are particularly important for implantable devices to deliver drugs or for temporary performance applications, like biodegradable screws and stents (US patents 7,919,162; 6,932,930). Biodegradable copolymers of lactic acid and glycolic acid (PLGA) can be dissolved in PEG dimethacrylate to yield a transparent resin suitable for use. Polycaprolactone and PLGA oligomers can be functionalized with acrylic or methacrylic groups to allow them to be effective resins for use.
Photocurable polyurethanes. A particularly useful resin is photocurable polyurethanes (including , polyureas, and copolymers of polyurethanes and polyureas (e.g., poly(urethane-urea)). A photopolymerizable polyurethane/polyurea composition comprising (1 ) a polyurethane based on an aliphatic diisocyanate, poly(hexamethylene isophthalate glycol) and, optionally, 1 ,4-butanediol; (2) a polyfunctional acrylic ester; (3) a photoinitiator; and (4) an anti-oxidant, can be formulated so that it provides a hard, abrasion-resistant, and stain-resistant material (US Patent 4,337,130). Photocurable thermoplastic polyurethane elastomers incorporate photoreactive diacetylene diols as chain extenders.
High performance resins. In some embodiments, high performance resins are used. Such high performance resins may sometimes require the use of heating to melt and/or reduce the viscosity thereof, as noted above and discussed further below, Examples of such resins include, but are not limited to, resins for those materials sometimes referred to as liquid crystalline polymers of esters, ester-imide, and ester-amide oligomers, as described in US Patents Nos. 7,507,784; 6,939,940. Since such resins are sometimes employed as high- temperature thermoset resins, in the present invention they further comprise a suitable photoinitiator such as benzophenone, anthraquinone, amd fluoroenone initiators (including derivatives thereof), to initiate cross-linking on irradiation, as discussed further below.
Additional example resins. Particularly useful resins for dental applications include EnvisionTEC's Clear Guide, EnvisionTEC's E-Denstone Material. Particularly useful resins for hearing aid industries include EnvisionTEC's e-Shell 300 Series of resins. Particularly useful resins include EnvisionTEC's HTM140IV High Temperature Mold Material for use directly with vulcanized rubber in molding / casting applications. A particularly useful material for making tough and stiff parts includes EnvisionTEC's RC31 resin. Particularly useful resin for investment casting applications include EnvisionTEC's Easy Cast EC500 resin and MadeSolid FireCast resin.
Additional resin ingredients. The liquid resin or polymerizable material can have solid particles suspended or dispersed therein. Any suitable solid particle can be used, depending upon the end product being fabricated. The particles can be metallic, organic/polymeric, inorganic, or composites or mixtures thereof. The particles can be nonconductive, semi-conductive, or conductive (including metallic and non-metallic or polymer conductors); and the particles can be magnetic, ferromagnetic, paramagnetic, or nonmagnetic. The particles can be of any suitable shape, including spherical, elliptical, cylindrical, etc. The particles can be of any suitable size (for example, ranging from 1 nm to 20 um average diameter).
The particles can comprise an active agent or detectable compound as described below, though these may also be provided dissolved solubilized in the liquid resin as also discussed below. For example, magnetic or paramagnetic particles or nanoparticles can be employed. The liquid resin can have additional ingredients solubilized therein, including pigments, dyes, active compounds or pharmaceutical compounds, detectable compounds (e.g., fluorescent, phosphorescent, radioactive), etc., again depending upon the particular purpose of the product being fabricated. Examples of such additional ingredients include, but are not limited to, proteins, peptides, nucleic acids (DNA, RNA) such as siRNA, sugars, small organic compounds (drugs and drug-like compounds), etc., including combinations thereof.
Non-reactive light absorbers. In some embodiments, polymerizable liquids for carrying out the present invention include a non-reactive pigment or dye that absorbs light, particularly UV light. Suitable examples of such light absorbers include, but are not limited to: (i) titanium dioxide (e.g., included in an amount of from 0.05 or 0.1 to 1 or 5 prcent by weight), (ii) carbon black (e.g., included in an amount of from 0.05 or 0.1 to 1 or 5 percent by weight), and/or (Hi) an organic ultraviolet light absorber such as a a hydroxybenzophenone, hydroxyphenylbenzotriazole, oxanilide, benzophenone, hydroxypenyltriazine, and/or benzotriazole ultraviolet light absorber (e.g., Mayzo BLS1326) (e.g., included in an amount of 0.001 or 0.005 to 1, 2 or 4 percent by weight). Examples of suitable organic ultraviolet light absorbers include, but are not limited to, those described in US Patents Nos. 3,213,058; 6,916,867; 7,157,586; and 7,695, 643, the disclosures of which are incorporated herein by reference.
Inhibitors of polymerization. Inhibitors or polymerization inhibitors for use in the present invention may be in the form of a liquid or a gas. In some embodiments, gas inhibitors are preferred. The specific inhibitor will depend upon the monomer being polymerized and the polymerization reaction. For free radical polymerization monomers, the inhibitor can conveniently be oxygen, which can be provided in the form of a gas such as air, a gas enriched in oxygen (optionally but in some embodiments preferably containing additional inert gases to reduce combustibility thereof), or in some embodiments pure oxygen gas. In alternate embodiments, such as where the monomer is polymerized by photoacid generator initiator, the inhibitor can be a base such as ammonia, trace amines (e.g. methyl amine, ethyl amine, di and trialkyl amines such as dimethyl amine, diethyl amine, trimethyl amine, triethyl amine, etc.), or carbon dioxide, including mixtures or combinations thereof.
Polymerizable liquids carrying live cells. In some embodiments, the polymerizable liquid may carry live cells as "particles" therein. Such polymerizable liquids are generally aqueous, and may be oxygenated, and may be considered as "emulsions" where the live cells are the discrete phase. Suitable live cells may be plant cells (e.g., monocot, dicot), animal cells (e.g., mammalian, avian, amphibian, reptile cells), microbial cells (e.g., prokaryote, eukaryote, protozoal, etc.), etc. The cells may be of differentiated cells from or corresponding to any type of tissue (e.g., blood, cartilage, bone, muscle, endocrine gland, exocrine gland, epithelial, endothelial, etc.), or may be undifferentiated cells such as stem cells or progenitor cells. In such embodiments the polymerizable liquid can be one that forms a hydrogel, including but not limited to those described in US Patents Nos. 7,651 ,683; 7,651 ,682; 7,556,490; 6,602,975; 5,836,313 ; etc. II. APPARATUS.
A non-limiting embodiment of an apparatus of the invention is shown in Figure 2. It comprises a radiation source 11 such as a digital light processor (DLP) providing electromagnetic radiation 12 which though reflective mirror 13 illuminates a build chamber defined by wall 14 and a rigid or flexible build plate 15 forming the bottom of the build chamber, which build chamber is filled with liquid resin 16. The bottom of the chamber 15 is constructed of a build plate comprising a rigid or flexible semipermeable member as discussed further below. The top of the object under construction 17 is attached to a carrier 18. The carrier is driven in the vertical direction by linear stage 19, although alternate structures can be used as discussed below.
A liquid resin reservoir, tubing, pumps liquid level sensors and/or valves can be included to replenish the pool of liquid resin in the build chamber (not shown for clarity) though in some embodiments a simple gravity feed may be employed. Drives/actuators for the carrier or linear stage, along with associated wiring, can be included in accordance with known techniques (again not shown for clarity). The drives/actuators, radiation source, and in some embodiments pumps and liquid level sensors can all be operatively associated with a suitable controller, again in accordance with known techniques.
Build plates 15 used to carry out the present invention generally comprise or consist of a (typically rigid or solid, stationary, and/or fixed, although in some embodiments flexible) semipermeable (or gas permeable) member, alone or in combination with one or more additional supporting substrates (e.g., clamps and tensioning members to tension and stabilize an othenvise flexible semipermeable material). The semipermeable member can be made of any suitable material that is optically transparent at the relevant wavelengths (or otherwise transparent to the radiation source, whether or not it is visually transparent as perceived by the human eye— i.e., an optically transparent window may in some embodiments be visually paque), including but not limited to porous or microporous glass, and the rigid gas permeable polymers used for the manufacture of rigid gas permeable contact lenses. See, e.g., Norman G. Gaylord, US Patent No. RE31,406; see also US Patents Nos. 7,862,176; 7,344,731; 7,097,302; 5,349,394; 5,310,571; 5,162,469; 5,141 ,665; 5,070,170; 4,923,906; and 4,845,089. In some embodiments such materials are characterized as glassy and/or amorphous polymers and/or substantially crosslinked that they are essentially non-swellable. Preferably the semipermeable member is formed of a material that does not swell when contacted to the liquid resin or material to be polymerized (i.e., is "non-swellable"). Suitable materials for the semipermeable member include amorphous fluoropolymers, such as those described in US Patent Nos. 5,308,685 and 5,051,1 15. For example, such fluoropolymers are particularly useful over silicones that would potentially swell when used in conjunction with organic liquid resin inks to be polymerized. For some liquid resin inks, such as more aqueous-based monomeric systems and / or some polymeric resin ink systems that have low swelling tendencies, silicone based window materials maybe suitable. The solubility or permeability of organic liquid resin inks can be dramatically decreased by a number of known parameters including increasing the crosslink density of the window material or increasing the molecular weight of the liquid resin ink. In some embodiments the build plate may be formed from a thin film or sheet of material which is flexible when separated from the apparatus of the invention, but which is clamped and tensioned when installed in the apparatus (e.g., with a tensioning ring) so that it is tensioned and stabilized in the apparatus. Particular materials include TEFLON AF® fluoropolymers, commercially available from DuPont. Additional materials include perfluoropolyether polymers such as described in US Patents Nos. 8,268,446; 8,263,129; 8,158,728; and 7,435,495.
It will be appreciated that essentially all solid materials, and most of those described above, have some inherent "flex" even though they may be considered "rigid," depending on factors such as the shape and thickness thereof and environmental factors such as the pressure and temperature to which they are subjected. In addition, the terms "stationary" or "fixed" with respect to the build plate is intended to mean that no mechanical interruption of the process occurs, or no mechanism or structure for mechanical interruption of the process (as in a layer-by-layer method or apparatus) is provided, even if a mechanism for incremental adjustment of the build plate (for example, adjustment that does not lead to or cause collapse of the gradient of polymerization zone) is provided). The semipermeable member typically comprises a top surface portion, a bottom surface portion, and an edge surface portion. The build surface is on the top surface portion; and the feed surface may be on one, two, or all three of the top surface portion, the bottom surface portion, and/or the edge surface portion. In the embodiment illustrated in Figure 2 the feed surface is on the bottom surface portion, but alternate configurations where the feed surface is provided on an edge, and/or on the top surface portion (close to but separate or spaced away from the build surface) can be implemented with routine skill.
The semipermeable member has, in some embodiments, a thickness of from 0.01 , 0.1 or 1 millimeters to 10 or 100 millimeters, or more (depending upon the size of the item being fabricated, whether or not it is laminated to or in contact with an additional supporting plate such as glass, etc., as discussed further below.
The permeability of the semipermeable member to the polymerization inhibitor will depend upon conditions such as the pressure of the atmosphere and/or inhibitor, the choice of inhibitor, the rate or speed of fabrication, etc. In general, when the inhibitor is oxygen, the permeability of the semipermeable member to oxygen may be from 10 or 20 Barrers, up to 1000 or 2000 Barrers, or more. For example, a semipermeable member with a permeability of 10 Barrers used with a pure oxygen, or highly enriched oxygen, atmosphere under a pressure of 150 PSI may perform substantially the same as a semipermeable member with a permeability of 500 Barrers when the oxygen is supplied from the ambient atmosphere under atmospheric conditions.
Thus, the semipermeable member may comprise a flexible polymer film (having any suitable thickness, e.g., from 0.001 , 0.01 , 0.05, 0.1 or 1 millimeters to 1 , 5, 10, or 100 millimeters, or more), and the build plate may further comprise a tensioning member (e.g., a peripheral clamp and an operatively associated strain member or stretching member, as in a "drum head"; a plurality of peripheral clamps, etc., including combinations thereof) connected to the polymer film and to fix and tension, stabilize or rigidify the film (e.g., at least sufficiently so that the film does not stick to the object as the object is advanced and resiliently or elastically rebound therefrom). The film has a top surface and a bottom surface, with the build surface on the top surface and the feed surface preferably on the bottom surface. In other embodiments, the semipermeable member comprises: (i) a polymer film layer (having any suitable thickness, e.g., from 0.001 , 0.01 , 0.1 or 1 millimeters to 5, 10 or 100 millimeters, or more), having a top surface positioned for contacting the polymerizable liquid and a bottom surface, and (ii) a gas permeable, optically transparent supporting member (having any suitable thickness, e.g., from 0.01 , 0.1 or 1 millimeters to 10, 100, or 200 millimeters, or more), contacting the film layer bottom surface. The supporting member has a top surface contacting the film layer bottom surface, and the supporting member has a bottom surface which may serve as the feed surface for the polymerization inhibitor. Any suitable materials that are semipermeable (that is, permeable to the polymerization inhibitor) may be used. For example, the polymer film or polymer film layer may, for example, be a fluoropolymer film, such as an amorphous thermoplastic fiuoropolymer like TEFLON AF 1600™ or TEFLON AF 2400™ fluoropolymer films, or perfluoropolyether (PFPE), particularly a crosslinked PFPE film, or a crosslinked silicone polymer film. The supporting member comprises a silicone or crosslinked silicone polymer member such as a polydimethylsiloxane polydmiethylxiloxane member, a gas permeable polymer member, or a porous or microporous glass member. Films can be laminated or clamped directly to the rigid supporting member without adhesive (e.g., using PFPE and PDMS materials), or silane coupling agents that react with the upper surface of a PDMS layer can be utilized to adhere to the first polymer film layer. UV-curable, acrylate-functional silicones can also be used as a tie layer between UV-curable PFPEs and rigid PDMS supporting layers.
When configured for placement in the apparatus, the carrier defines a "build region" on the build surface, within the total area of the build surface. Because lateral "throw" (e.g., in the X and/or Y directions) is not required in the present invention to break adhesion between successive layers, as in the Joyce and Chen devices noted previously, the area of the build region within the build surface may be maximized (or conversely, the area of the build surface not devoted to the build region may be minimized). Hence in some embodiments, the total surface area of the build region can occupy at least fifty, sixty, seventy, eighty, or ninety percent of the total surface area of the build surface.
As shown in Figure 2, the various components are mounted on a support or frame assembly 20. While the particular design of the support or frame assembly is not critical and can assume numerous configurations, in the illustrated embodiment it is comprised of a base 21 to which the radiation source 11 is securely or rigidly attached, a vertical member 22 to which the linear stage is operatively associated, and a horizontal table 23 to which wall 14 is removably or securely attached (or on which the wall is placed), and with the build plate fixed, either permanently or removably, to form the build chamber as described above.
As noted above, the build plate can consist of a single unitary and integral piece of a semipermeable member, or can comprise additional materials. For example, a porous or microporous glass can be laminated or fixed to a semipermeable material. Or, a semipermeable member as an upper portion can be fixed to a transparent lower member having purging channels formed therein for feeding gas carrying the polymerization inhibitor to the semipermeable member (through which it passes to the build surface to facilitate the formation of a release layer of unpolymerized liquid material, as noted above and below). Such purge channels may extend fully or partially through the base plate: For example, the purge channels may extend partially into the base plate, but then end in the region directly underlying the build surface to avoid introduction of distortion. Specific geometries will depend upon whether the feed surface for the inhibitor into the semipermeable member is located on the same side or opposite side as the build surface, on an edge portion thereof, or a combination of several thereof.
Any suitable radiation source (or combination of sources) can be used, depending upon the particular resin employed, including electron beam and ionizing radiation sources. In a preferred embodiment the radiation source is an actinic radiation source, such as one or more light sources, and in particular one or more ultraviolet light sources. Any suitable light source can be used, such as incandescent lights, fluorescent lights, phosphorescent or luminescent lights, a laser, light-emitting diode, etc., including arrays thereof. The light source preferably includes a pattern-forming element operatively associated with a controller, as noted above. In some embodiments, the light source or pattern forming element comprises a digital (or deformable) micromirror device (DMD) with digital light processing (DLP), a spatial modulator (SLM), or a raicroelectromechanical system (MEMS) mirror array, a liquid crystal display (LCD) panel, a mask (aka a reticle), a silhouette, or a combination thereof. See, US Patent No. 7,902,526. Preferably the light source comprises a spatial light modulation array such as a liquid crystal light valve array or micromirror array or DMD (e.g., with an operatively associated digital light processor, typically in turn under the control of a suitable controller), configured to carry out exposure or irradiation of the polymerizable liquid without a mask, e.g., by maskless photolithography. See, e.g., US Patents Nos. 6,312, 134; 6,248,509; 6,238,852; and 5,691 ,541.
In some embodiments, as discussed further below, there may be movement in the X and/or Y directions concurrently with movement in the Z direction, with the movement in the X and/or Y direction hence occurring during polymerization of the polymerizable liquid (this is in contrast to the movement described in Y. Chen et ah, or M. Joyce, supra, which is movement between prior and subsequent polymerization steps for the purpose of replenishing polymerizable liquid). In the present invention such movement may be carried out for purposes such as reducing "burn in" or fouling in a particular zone of the build surface.
Because an advantage of some embodiments of the present invention is that the size of the build surface on the semipermeable member (i.e., the build plate or window) may be reduced due to the absence of a requirement for extensive lateral "throw" as in the Joyce or Chen devices noted above, in the methods, systems and apparatus of the present invention lateral movement (including movement in the X and/or Y direction or combination thereof) of the carrier and object (if such lateral movement is present) is preferably not more than, or less than, 80, 70, 60, 50, 40, 30, 20, or even 10 percent of the width (in the direction of that lateral movement) of the build region.
While in some embodiments the carrier is mounted on an elevator to advance up and away from a stationary build plate, on other embodiments the converse arrangement may be used: That is, the carrier may be fixed and the build plate lowered to thereby advance the carrier away therefrom. Numerous different mechanical configurations will be apparent to those skilled in the art to achieve the same result.
Depending on the choice of material from which the carrier is fabricated, and the choice of polymer or resin from which the article is made, adhesion of the article to the carrier may sometimes be insufficient to retain the article on the carrier through to completion of the finished article or "build." For example, an aluminum carrier may have lower adhesion than a polyfvinyl chloride) (or "PVC") carrier. Hence one solution is to employ a carrier comprising a PVC on the surface to which the article being fabricated is polymerized. If this promotes too great an adhesion to conveniently separate the finished part from the carrier, then any of a variety of techniques can be used to further secure the article to a less adhesive carrier, including but not limited to the application of adhesive tape such as "Greener Masking Tape for Basic Painting #2025 High adhesion" to further secure the article to the carrier during fabrication.
III. CONTROLLER AND PROCESS CONTROL.
The methods and apparatus of the invention can include process steps and apparatus features to implement process control, including feedback and feed-forward control, to, for example, enhance the speed and/or reliability of the method.
A controller for use in carrying out the present invention may be implemented as hardware circuitry, software, or a combination thereof. In one embodiment, the controller is a general purpose computer that runs software, operatively associated with monitors, drives, pumps, and other components through suitable interface hardware and/or software. Suitable software for the control of a three-dimensional printing or fabrication method and apparatus as described herein includes, but is not limited to, the Replicator G open source 3d printing program, 3DPrint™ controller software from 3D systems, Slic3r, Skeinforge, KISSlicer, Repetier-Host, PrintRun, Cura, etc., including combinations thereof.
Process parameters to directly or indirectly monitor, continuously or intermittently, during the process(e.g-., during one, some or all of the filling, irradiating and advancing steps) include, but are not limited to, irradiation intensity, temperature of carrier, polymerizable liquid in the build zone, temperature of growing product, temperature of build plate, pressure, speed of advance, pressure, force (e.g., exerted on the build plate through the carrier and product being fabricated), strain (e.g., exerted on the carrier by the growing product being fabricated), thickness of release layer, etc.
Known parameters that may be used in feedback and/or feed-forward control systems include, but are not limited to, expected consumption of polymerizable liquid (e.g., from the known geometry or volume of the article being fabricated), degradation temperature of the polymer being formed from the polymerizable liquid, etc.
Process conditions to directly or indirectly control, continuously or step-wise, in response to a monitored parameter, and/or known parameters (e.g., during any or all of the process steps noted above), include, but are not limited to, rate of supply of polymerizable liquid, temperature, pressure, rate or speed of advance of carrier, intensity of irradiation, duration of irradiation (e.g. for each "slice"), etc.
For example, the temperature of the polymerizable liquid in the build zone, or the temperature of the build plate, can be monitored, directly or indirectly with an appropriate thermocouple, non-contact temperature sensor (e.g., an infrared temperature sensor), or other suitable temperature sensor, to determine whether the temperature exceeds the degradation temperature of the polymerized product. If so, a process parameter may be adjusted through a controller to reduce the temperature in the build zone and/or of the build plate. Suitable process parameters for such adjustment may include: decreasing temperature with a cooler, decreasing the rate of advance of the carrier, decreasing intensity of the irradiation, decreasing duration of radiation exposure, etc.
In addition, the intensity of the irradiation source (e.g., an ultraviolet light source such as a mercury lamp) may be monitored with a photodetector to detect a decrease of intensity from the irradiation source (e.g., through routine degradation thereof during use). If detected, a process parameter may be adjusted through a controller to accommodate the loss of intensity. Suitable process parameters for such adjustment may include: increasing temperature with a heater, decreasing the rate of advance of the carrier, increasing power to the light source, etc.
As another example, control of temperature and/or pressure to enhance fabrication time may be achieved with heaters and coolers (individually, or in combination with one another and separately responsive to a controller), and/or with a pressure supply (e.g., pump, pressure vessel, valves and combinations thereof) and/or a pressure release mechanism such as a controllable valve (individually, or in combination with one another and separately responsive to a controller).
In some embodiments the controller is configured to maintain the gradient of polymerization zone described herein (see, e.g., Figure 1) throughout the fabrication of some or all of the final product. The specific configuration (e.g., times, rate or speed of advancing, radiation intensity, temperature, etc.) will depend upon factors such as the nature of the specific polymerizable liquid and the product being created. Configuration to maintain the gradient of polymerization zone may be carried out empirically, by entering a set of process parameters or instructions previously determined, or determined through a series of test runs or "trial and error"; configuration may be provided through pre-determined instructions; configuration may be achieved by suitable monitoring and feedback (as discussed above), combinations thereof, or in any other suitable manner.
In some embodiments, a method and apparatus as described above may be controlled by a software program running in a general purpose computer with suitable interface hardware between that computer and the apparatus described above. Numerous alternatives are commercially available. Non-limiting examples of one combination of components is shown in Figures 3 to 5, where "Microcontroller" is Parallax Propeller, the Stepper Motor Driver is Sparkfun EasyDriver, the LED Driver is a Luxeon Single LED Driver, the USB to Serial is a Parallax USB to Serial converter, and the DLP System is a Texas Instruments LightCrafter system.
IV. GENERAL METHODS.
As noted above, the present invention provides a method of forming a three- dimensional object, comprising the steps of: (a) providing a carrier and a build plate, the build plate comprising a semipermeable member, the semipermeable member comprising a build surface and a feed surface separate from the build surface, with the build surface and the carrier defining a build region therebetween, and with the feed surface in fluid contact with a polymerization inhibitor; then (concurrently and/or sequentially) (b) filing the build region with a polymerizable liquid, the polymerizable liquid contacting the build segment, (c) irradiating the build region through the build plate to produce a solid polymerized region in the build region, with a liquid film release layer comprised of the polymerizable liquid formed between the solid polymerized region and the build surface, the polymerization of which liquid film is inhibited by the polymerization inhibitor; and (d) advancing the carrier with the polymerized region adhered thereto away from the build surface on the stationary build plate to create a subsequent build region between the polymerized region and the top zone. In general the method includes (e) continuing and/or repeating steps (b) through (d) to produce a subsequent polymerized region adhered to a previous polymerized region until the continued or repeated deposition of polymerized regions adhered to one another forms the three-dimensional object.
Since no mechanical release of a release layer is required, or no mechanical movement of a build surface to replenish oxygen is required, the method can be carried out in a continuous fashion, though it will be appreciated that the individual steps noted above may be carried out sequentially, concurrently, or a combination thereof. Indeed, the rate of steps can be varied over time depending upon factors such as the density and/or complexity of the region under fabrication.
Also, since mechanical release from a window or from a release layer generally requires that the carrier be advanced a greater distance from the build plate than desired for the next irradiation step, which enables the window to be recoated, and then return of the carrier back closer to the build plate (e.g., a "two steps forward one step back" operation), the present invention in some embodiments permits elimination of this "back-up" step and allows the carrier to be advanced unidirectionally, or in a single direction, without intervening movement of the window for re-coating, or "snapping" of a pre-formed elastic release-layer. However, in other embodiments of the invention, reciprocation is utilized not for the purpose of obtaining release, but for the purpose of more rapidly filling or pumping polymerizable liquid into the build region.
While the dead zone and the gradient of polymerization zone do not have a strict boundary therebetween (in those locations where the two meet), the thickness of the gradient of polymerization zone is in some embodiments at least as great as the thickness of the dead zone. Thus, in some embodiments, the dead zone has a thickness of from 0.01 , 0.1 , 1 , 2, or 10 microns up to 100, 200 or 400 microns, or more, and/or the gradient of polymerization zone and the dead zone together have a thickness of from 1 or 2 microns up to 400, 600, or 1000 microns, or more. Thus the gradient of polymerization zone may be thick or thin depending on the particular process conditions at that time. Where the gradient of polymerization zone is thin, it may also be described as an active surface on the bottom of the growing three- dimensional object, with which monomers can react and continue to form growing polymer chains therewith. In some embodiments, the gradient of polymerization zone, or active surface, is maintained (while polymerizing steps continue) for a time of at least 5, 10, 15, 20 or 30 seconds, up to 5, 10, 15 or 20 minutes or more, or until completion of the three- dimensional product.
The method may further comprise the step of disrupting the gradient of polymerization zone for a time sufficient to form a cleavage line in the three-dimensional object (e.g., at a predetermined desired location for intentional cleavage, or at a location in the object where prevention of cleavage or reduction of cleavage is non-critical), and then reinstating the gradient of polymerization zone (e.g. by pausing, and resuming, the advancing step, increasing, then decreasing, the intensity of irradiation, and combinations thereof).
In some embodiments, the advancing step is carried out sequentially in uniform increments (e.g., of from 0.1 or 1 microns, up to 10 or 100 microns, or more) for each step or increment. In some embodiments, the advancing step is carried out sequentially in variable increments (e.g., each increment ranging from 0.1 or 1 microns, up to 10 or 100 microns, or more) for each step or increment. The size of the increment, along with the rate of advancing, will depend in part upon factors such as temperature, pressure, structure of the article being produced (e.g., size, density, complexity, configuration, etc.)
In other embodiments of the invention, the advancing step is carried out continuously, at a uniform or variable rate.
In some embodiments, the rate of advance (whether carried out sequentially or continuously) is from about 0.1 1 , or 10 microns per second, up to about to 100, 1 ,000, or 10,000 microns per second, again depending again depending on factors such as temperature, pressure, structure of the article being produced, intensity of radiation, etc
As described further below, in some embodiments the filling step is carried out by forcing the polymerizable liquid into the build region under pressure. In such a case, the advancing step or steps may be carried out at a rate or cumulative or average rate of at least 0.1 , 1 , 10, 50, 100, 500 or 1000 microns per second, or more. In general, the pressure may be whatever is sufficient to increase the rate of the advancing step(s) at least 2, 4, 6, 8 or 10 times as compared to the maximum rate of repetition of the advancing steps in the absence of the pressure. Where the pressure is provided by enclosing an apparatus such as described above in a pressure vessel and carrying the process out in a pressurized atmosphere (e.g., of air, air enriched with oxygen, a blend of gasses, pure oxygen, etc.) a pressure of 10, 20, 30 or 40 pounds per square inch (PSI) up to, 200, 300, 400 or 500 PSI or more, may be used. For fabrication of large irregular objects higher pressures may be less preferred as compared to slower fabrication times due to the cost of a large high pressure vessel. In such an embodiment, both the feed surface and the polymerizable liquid can be are in fluid contact with the same compressed gas (e.g., one comprising from 20 to 95 percent by volume of oxygen, the oxygen serving as the polymerization inhibitor.
On the other hand, when smaller items are fabricated, or a rod or fiber is fabricated that can be removed or exited from the pressure vessel as it is produced through a port or orifice therein, then the size of the pressure vessel can be kept smaller relative to the size of the product being fabricated and higher pressures can (if desired) be more readily utilized.
As noted above, the irradiating step is in some embodiments carried out with patterned irradiation. The patterned irradiation may be a fixed pattern or may be a variable pattern created by a pattern generator (e.g., a DLP) as discussed above, depending upon the particular item being fabricated.
When the patterned irradiation is a variable pattern rather than a pattern that is held constant over time, then each irradiating step may be any suitable time or duration depending on factors such as the intensity of the irradiation, the presence or absence of dyes in the polymerizable material, the rate of growth, etc. Thus in some embodiments each irradiating step can be from 0.001 , 0.01 , 0.1 , 1 or 10 microseconds, up to 1 , 10, or 100 minutes, or more, in duration. The interval between each irradiating step is in some embodiments preferably as brief as possible, e.g., from 0.001 , 0.01 , 0.1 , or 1 microseconds up to 0.1 , 1 , or 10 seconds. In example embodiments, the pattern may vary hundreds, thousands or millions of times to impart shape changes on the three-dimensional object being formed. In addition, in example embodiments, the pattern generator may have high resolution with millions of pixel elements that can be varied to change the shape that is imparted. For example, the pattern generator may be a DLP with more than 1 ,000 or 2,000 or 3,000 or more rows and/or more than 1 ,000 or 2,000 or 3,000 or more columns of micromirrors, or pixels in a liquid crystal display panel, that can be used to vary the shape. In example embodiments, the three-dimensional object may be formed through the gradient of polymerization allowing the shape changes to be imparted while continuously printing. In example embodiments, this allows complex three- dimensional objects to be formed at high speed with a substantially continuous surface without cleavage lines or seams. In some examples, thousands or millions of shape variations may be imparted on the three-dimensional object being formed without cleavage lines or seams across a length of the object being formed of more than 1mm, 1cm, 10cm or more or across the entire length of the formed object. In example embodiments, the object may be continuously formed through the gradient of polymerization at a rate of more than 1 , 10, 100, 1000, 10000 or more microns per second.
In some embodiments the build surface is flat; in other the build surface is irregular such as convexly or concavely curved, or has walls or trenches formed therein. In either case the build surface may be smooth or textured.
Curved and/or irregular build plates or build surfaces can be used in fiber or rod formation, to provide different materials to a single object being fabricated (that is, different polymerizable liquids to the same build surface tlirough channels or trenches formed in the build surface, each associated with a separate liquid supply, etc.
Carrier Feed Channels for Polymerizable liquid. While polymerizable liquid may be provided directly to the build plate from a liquid conduit and reservoir system, in some embodiments the carrier include one or more feed channels therein. The carrier feed channels are in fluid communication with the polymerizable liquid supply, for example a reservoir and associated pump. Different carrier feed channels may be in fluid communication with the same supply and operate simultaneously with one another, or different carrier feed channels may be separately controllable from one another (for example, through the provision of a pump and/or valve for each), Separately controllable feed channels may be in fluid communication with a reservoir containing the same polymerizable liquid, or may be in fluid communiication with a reservoir containing different polymerizable liquids. Through the use of valve assemblies, different polymerizable liquids may in some embodiments be alternately fed through the same feed channel, if desired.
V. RECIPROCAL FEED OF POLYMERIZABLE LIQUID. In an embodiment of the present invention, the carrier is vertically reciprocated with respect to the build surface to enhance or speed the refilling of the build region with the polymerizable liquid.
In some embodiments, the vertically reciprocating step, which comprises an upstroke and a downstroke, is carried out with the distance of travel of the upstroke being greater than the distance of travel of the downstroke, to thereby concurrently carry out the advancing step (that is, driving the carrier away from the build plate in the Z dimension) in part or in whole.
In some embodiments, the speed of the upstroke gradually accelerates (that is, there is provided a gradual start and/or gradual acceleration of the upstroke, over a period of at least 20, 30, 40, or 50 percent of the total time of the upstroke, until the conclusion of the upstroke, or the change of direction which represents the beginning of the downstroke. Stated differently, the upstroke begins, or starts, gently or gradually.
In some embodiments, the speed of the downstroke gradually decelerates (that is, there is provided a gradual termination and/or gradual deceleration of the downstroke, over a period of at least 20, 30, 40, or 50 percent of the total time of the downstroke. Stated differently, the downstroke concludes, or ends, gently or gradually.
While in some embodiments there is an abrupt end, or abrupt deceleration, of the upstroke, and an abrupt beginning or deceleration of the downstroke (e.g., a rapid change in vector or direction of travel from upstroke to downstroke), it will be appreciated that gradual transitions may be introduced here as well (e.g., through introduction of a "plateau" or pause in travel between the upstroke and downstroke). It will also be appreciated that, while the reciprocating step may be a single upstroke and downstroke, the reciprocations may occur in linked groups thereof, of the same or different amplitude and frequency.
In some embodiments, the vertically reciprocating step is carried out over a total time of from 0.01 or 0.1 seconds up to 1 or 10 seconds (e.g., per cycle of an upstroke and a downstroke).
In some embodiments, the upstroke distance of travel is from 0.02 or 0.2 millimeters (or 20 or 200 microns) to 1 or 10 millimeters (or 1000 to 10,000 microns). The distance of travel of the downstroke may be the same as, or less than, the distance of travel of the upstroke, where a lesser distance of travel for the downstroke serves to achieve the advancing of the carrier away from the build surface as the three-dimensional object is gradually formed. Preferably the vertically reciprocating step, and particularly the upstroke thereof, does not cause the formation of gas bubbles or a gas pocket in the build region, but instead the build region remains filled with the polymerizable liquid throughout the reciprocation steps, and the gradient of polymerization zone or region remains in contact with the "dead zone" and with the growing object being fabricated throughout the reciprocation steps. As will be appreciated, a purpose of the reciprocation is to speed or enhance the refilling of the build region, particularly where larger build regions are to be refilled with polymerizable liquid, as compared to the speed at which the build region could be refilled without the reciprocation step.
In some embodiments, the advancing step is carried out intermittently at a rate of 1 , 2,
5 or 10 individual advances per minute up to 300, 600, or 1000 individual advances per minute, each followed by a pause during which an irradiating step is carried out. It will be appreciated that one or more reciprocation steps (e.g., upstroke plus downstroke) may be carried out within each advancing step. Stated differently, the reciprocating steps may be nested within the advancing steps.
In some embodiments, the individual advances are carried out over an average distance of travel for each advance of from 10 or 50 microns to 100 or 200 microns (optionally including the total distance of travel for each vertically reciprocating step, e.g., the sum of the upstroke distance minus the downstroke distance).
Apparatus for carrying out the invention in which the reciprocation steps described herein are implemented substantially as described above, with the drive associated with the carrier, and/or with an additional drive operatively associated with the transparent member, and with the controller operatively associated with either or both thereof and configured to reciprocate the carrier and transparent member with respect to one another as described above.
VI. INCREASED SPEED OF FABRICATION BY INCREASED LIGHT INTENSITY.
In general, it has been observed that speed of fabrication can increase with increased light intensity. In some embodiments, the light is concentrated or "focused" at the build region to increase the speed of fabrication. This may be accomplished using an optical device such as an objective lens.
The speed of fabrication may be generally proportional to the light intensity. For example, the build speed in millimeters per hour may be calculated by multiplying the light intensity in milliWatts per square centimeter and a multiplier. The multiplier may depend on a variety of factors, including those discussed below. A range of multiplers, from low to high, may be employed. On the low end of the range, the multiplier may be about 10, 15, 20 or 30. On the high end of the mutipler range, the multiplier may be about 50, 300, 400 or more.
The relationships described above are, in general, contemplated for light intensities of from 1 , 5 or 10 milliWatts per square centimeter, up to 20 or 50 milliWatts per square centimeter.
Certain optical characteristics of the light may be selected to facilitate increased speed of fabrication. By way of example, a band pass filter may be used with a mercury bulb light source to provide 365 ± 10 nm light measured at Full Width Half Maximum (FWHM). By way of further example, a band pass filter may be used with an LED light source to provide 375 ± 15 nm light measured at FWHM.
As noted above, poymerizable liquids used in such processes are, in general, free radical polymerizable liquids with oxygen as the inhibitor, or acid-catalyzed or cationically polymerizable liquids with a base as the inhibitor. Some specific polymerizable liquids will of course cure more rapidly or efficiently than others and hence be more amenable to higher speeds, though this may be offset at least in part by further increasing light intensity.
At higher light intensities and speeds, the "dead zone" may become thinner as inhibitor is consumed. If the dead zone is lost then the process will be disrupted. In such case, the supply of inhibitor may be enhanced by any suitable means, including providing an enriched and/or pressurized atmosphere of inhibitor, a more porous semipermeable member, a stronger or more powerful inhibitor (particularly where a base is employed), etc.
In general, lower viscosity polymerizable liquids are more amenable to higher speeds, particularly for fabrication of articles with a large and/or dense cross section (although this can be offset at least in part by increasing light intensity). Polymerizable liquids with viscosities in the range of 50 or 100 centipoise, up to 600, 800 or 1000 centipoise or more (as measured at room temperature and atmospheric pressure with a suitable device such as a HYDRAMOTION REACTAVISC™ Viscometer (available from Hydramotion Ltd, 1 York Road Business Park, Malton, York Y017 6YA England). In some embodiments, where necessary, the viscosity of the polymerizable liquid can advantageously be reduced by heating the polymerizable liquid, as described above.
In some embodiments, such as fabrication of articles with a large and/or dense cross- section, speed of fabrication can be enhanced by introducing reciprocation to "pump" the polymerizable liquid, as described above, and/or the use of feeding the polymerizable liquid through the carrier, as also described above, and/or heating and/or pressurizing the polymerizable liquid, as also described above. VII. TILING.
It may be desirable to use more than one light engine to preserve resolution and light intensity for larger build sizes. Each light engine may be configured to project an image (e.g., an array of pixels) into the build region such that a plurality of "tiled" images are projected into the build region. As used herein, the term "light engine" can mean an assembly including a light source, a DLP device such as a digital micromirror or LCD device and an optical device such as an objective lens. The "light engine" may also include electronics such as a controller that is operatively associated with one or more of the other components.
This is shown schematically in Figures 17A-17C. The light engine assemblies 130A, 130B produce adjacent or "tiled" images 140A, 140B. In Figure 17A, the images are slightly misaligned; that is, there is a gap between them. In Figure 17B, the images are aligned; there is no gap and no overlap between them. In Figure 17C, there is a slight overlap of the images 140A and 140B.
In some embodiments, the configuration with the overlapped images shown in Figure 17C is employed with some form of "blending" or "smoothing" of the overlapped regions as generally discussed in, for example, U.S. Patent Nos. 7,292,207, 8,102,332, 8,427,391 , 8,446,431 and U.S. Patent Application Publication Nos. 2013/0269882, 2013/0278840 and 2013/0321475, the disclosures of which are incorporated herein in their entireties.
The tiled images can allow for larger build areas without sacrificing light intensity, and therefore can facilitate faster build speeds for larger objects. It will be understood that more than two light engine assemblies (and corresponding tiled images) may be employed. Various embodiments of the invention employ at least 4, 8, 16, 32, 64, 128 or more tiled images.
VIII. DUAL HARDENING POLYMERIZABLE LIQUIDS: PART B.
As noted above, in some embodiments of the invention, the polymerizable liquid comprises a first light polymerizable component (sometimes referred to as "Part A" herein) and a second component that solidifies by another mechanism, or in a different manner from, the first component (sometimes referred to as "Part B" herein), typically by further reacting, polymerizing, or chain extending. Numerous embodiments thereof may be carried out. In the following, note that, where particular acrylates such as methacrylates are described, other acrylates may also be used.
Part A chemistry. As noted above, in some embodiments of the present invention, a resin will have a first component, termed "Part A." Part A comprises or consists of a mix of monomers and/or prepolymers that can be polymerized by exposure to actinic radiation or light. This resin can have a functionality of 2 or higher (though a resin with a functionality of 1 can also be used when the polymer does not dissolve in its monomer). A purpose of Part A is to "lock" the shape of the object being formed or create a scaffold for the one or more additional components (e.g., Part B). Importantly, Part A is present at or above the minimum quantity needed to maintain the shape of the object being formed after the initial solidification. In some embodiments, this amount corresponds to less than ten, twenty, or thirty percent by weight of the total resin (polymerizable liquid) composition.
In some embodiments, Part A can react to form a cross-linked polymer network or a solid homopolymer.
Examples of suitable reactive end groups suitable for Part A constituents, monomers, or prepolymers include, but are not limited to: acrylates, methacrylates, a-olefins, N-vinyls, acrylamides, methacrylamides, styrenics, epoxides, thiols, 1 ,3-dienes, vinyl halides, acrylonitriles, vinyl esters, maleimides, and vinyl ethers.
An aspect of the solidification of Part A is that it provides a scaffold in which a second reactive resin component, termed "Part B," can solidify during a second step (which may occur concurrently with or following the solidification of Part A). This secondary reaction preferably occurs without significantly distorting the original shape defined during the solidification of Part A. Alternative approaches would lead to a distortion in the original shape in a desired manner.
In particular embodiments, when used in the methods and apparatus described herein, the solidification of Part A is continuously inhibited during printing within a certain region, by oxygen or amines or other reactive species, to form a liquid interface between the solidified part and an inhibitor-permeable film or window {e.g., is carried out by continuous liquid interphase/interface printing).
Part B chemistry. Part B may comprise, consist of or consist essentially of a mix of monomers and/or prepolymers that possess reactive end groups that participate in a second solidification reaction after the Part A solidification reaction. In some embodiments, Part B could be added simultaneously to Part A so it is present during the exposure to actinide radiation, or Part B could be infused into the object made during the 3D printing process in a subsequent step. Examples of methods used to solidify Part B include, but are not limited to, contacting the object or scaffold to heat, water or water vapor, light at a different wavelength than that at which Part A is cured, catalysts, (with or without additional heat), evaporation of a solvent from the polymerizable liquid {e.g., using heat, vacuum, or a combination thereof), microwave irradiation, etc., including combinations thereof.
Examples of suitable reactive end group pairs suitable for Part B constituents, monomers or prepolymers include, but are not limited to: epoxy/amine, epoxy/hydroxyl, oxetane/amine, oxetane/alcohol, isocyanateVhydroxyl, IsocyanateVamine, isocyanate/carboxylic acid, anhydride/amine, amine/carboxylic acid, amine/ester, hydroxyl/carboxylic acid, hydroxyl/acid chloride, amine/acid chloride, vinyl/Si-H (hydrosilylation), Si-Cl /hydroxyl, Si-Cl/amine, hydroxy 1/aldehyde, amine/aldehyde, hydroxymethyl or alkoxymethyl amide/alcohol, aminoplast, alkyne/Azide (also known as one embodiment of "Click Chemistry," along with additional reactions including thiolene, Michael additions, Diels-Alder reactions, nucleophilic substitution reactions, etc.), alkene/Sulfur (polybutadiene vulcanization), alkene/thiol, alkyne/thiol, hydroxyl/halide, isocyanateVwater (polyurethane foams), Si-OH/hydroxyl, Si-OH/water, Si-OH/Si-H (tin catalyzed silicone), Si-OH/Si-OH (tin catalyzed silicone), Perfluorovinyl (coupling to form perfluorocyclobutane), etc., where *Isocyanates include protected isocyanates (e.g. oximes)), diene/dienophiles for Diels-Alder reactions, olefin metathesis polymerization, olefin polymerization using Ziegler-Natta catalysis, ring-opening polymerization (including ring- opening olefin metathesis polymerization, lactams, lactones, Siloxanes, epoxides, cyclic ethers, imines, cyclic acetals, etc.), etc.
Other reactive chemistries suitable for Part B will be recognizable by those skilled in the art. Part B components useful for the formation of polymers described in "Concise Polymeric Materials Encyclopedia" and the "Encyclopedia of Polymer Science and Technology" are hereby incorporated by reference.
Elastomers. A particularly useful embodiment for implementing the invention is for the formation of elastomers. Tough, high-elongation elastomers are difficult to achieve using only liquid UV-curable precursors. However, there exist many thermally cured materials (polyurethanes, silicones, natural rubber) that result in tough, high-elongation elastomers after curing. These thermally curable elastomers on their own are generally incompatible with most 3D printing techniques.
In embodiments of the current invention, small amounts (e.g., less than 20 percent by weight) of a low-viscosity UV curable material (Part A) are blended with thermally-curable precursors to form (preferably tough) elastomers (e.g. polyurethanes, polyureas, or copolymers thereof (e.g., poly(urethane-urea)), and silicones) (Part B). The UV curable component is used to solidify an object into the desired shape using 3D printing as described herein and a scaffold for the elastomer precursors in the polymerizable liquid. The object can then be heated after printing, thereby activating the second component, resulting in an object comprising the elastomer.
Adhesion of formed objects. In some embodiments, it may be useful to define the shapes of multiple objects using the solidification of Part A, align those objects in a particular configuration, such that there is a hermetic seal between the objects, then activate the secondary solidification of Part B. In this manner, strong adhesion between parts can be achieved during production. A particularly useful example may be in the formation and adhesion of sneaker components.
Fusion of particles us Part B. In some embodiments, "Part B" may simply consist of small particles of a pre-formed polymer. After the solidification of Part A, the object may be heated above the glass transition temperature of Part B in order to fuse the entrapped polymeric particles.
Evaporation of solvent as Part B. In some embodiments, "Part B" may consist of a pre-formed polymer dissolved in a solvent. After the solidification of Part A into the desired object, the object is subjected to a process (e.g. heat + vacuum) that allows for evaporation of the solvent for Part B, thereby solidifying Part B.
Thermally cleavable end groups, in some embodiments, the reactive chemistries in
Part A can be thermally cleaved to generate a new reactive species after the solidification of Part A. The newly formed reactive species can further react with Part B in a secondary solidification. An exemplary system is described by Velankar, Pezos and Cooper, Journal of Applied Polymer Science, 62, 1361-1376 (1996). Here, after UV-curing, the acrylate/ methacrylate groups in the formed object are thermally cleaved to generated diisocyanate prepolymers that further react with blended chain-extender to give high molecular weight polyurethanes/polyureas within the original cured material or scaffold. Such systems are, in general, dual-hardening systems that employ blocked or reactive blocked prepolymers, as discussed in greater detail below. It may be noted that later work indicates that the thermal cleavage above is actually a displacement reaction of the chain extender (usually a diamine) with the hindered urea, giving the final polyurethanes/polyureas without generating isocyanate intermediates.
Methods of mixing components. In some embodiments, the components may be mixed in a continuous manner prior to being introduced to the printer build plate. This may be done using multi-barrel syringes and mixing nozzles. For example, Part A may comprise or consist of a UV -curable di(meth)acrylate resin, Part B may comprise or consist of a diisocyanate prepolymer and a polyol mixture. The polyol can be blended together in one barrel with Part A and remain unreacted. A second syringe barrel would contain the diisocyanate of Part B. In this manner, the material can be stored without worry of "Part B" solidifying prematurely. Additionally, when the resin is introduced to the printer in this fashion, a constant time is defined between mixing of all components and solidification of Part A.
Other additive manufacturing techniques. It will be clear to those skilled in the art that the materials described in the current invention will be useful in other additive manufacturing techniques including fused deposition modeling (FDM), solid laser sintering (SLS), and Ink-jet methods. For example, a melt-processed acrylonitrile-butadiene-styrene resin may be formulated with a second UV -curable component that can be activated after the object is formed by FDM. New mechanical properties could be achieved in this manner. In another alternative, melt-processed unvulcanized rubber is mixed with a vulcanizing agent such as sulfur or peroxide, and the shape set through FDM, then followed by a continuation of vulcanization. IX. DUAL HARDENING POLYMERIZABLE LIQUIDS EMPLOYING BLOCKED CONSTITUENTS AND THERMALLY CLEAVABLE BLOCKING GROUPS.
In some embodiments, where the solidifying and/or curing step (d) is carried out subsequent to the irradiating step (e.g., by heating or microwave irradiating); the solidifying and/or curing step (d) is carried out under conditions in which the solid polymer scaffold degrades and forms a constituent necessary for the polymerization of the second component (e.g., a constituent such as (i) a prepolymer, (ii) a diisocyanate or polyisocyanate, and/or (in) a polyol and/or diol, where the second component comprises precursors to a polyurethane/polyurea resin). Such methods may involve the use of reactive or non-reactive blocking groups on or coupled to a constituent of the first component, such that the constituent participates in the first hardening or solidifying event, and when de-protected (yielding free constituent and free blocking groups or blocking agents) generates a free constituent that can participate in the second solidifying and/or curing event. Non-limiting examples of such methods are described further below.
A. Dual hardening polymerizablc liquids employing blocked prcpolvmers and thermally cleavable blocking groups.
Some "dual cure" embodiments of the present invention are, in general, a method of forming a three-dimensional object, comprising:
(a) providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween;
(b) filling the build region with a polymerizable liquid, the polymerizable liquid comprising a mixture of a blocked or reactive blocked prepolymer, optionally but in some embodiments preferably a reactive diluent, a chain extender, and a photoinitiator;
(c) irradiating the build region with light through the optically transparent member to form a (rigid, compressible, collapsible, flexible or elastic) solid blocked polymer scaffold from the blocked prepolymer and optionally the reactive diluent while concurrently advancing the carrier away from the build surface to form a three-dimensional intermediate having the same shape as, or a shape to be imparted to, the three-dimensional object, with the intermediate containing the chain extender; and then
(d) heating or microwave irradiating the three-dimensional intermediate sufficiently to form the three-dimensional product from the three-dimensional intermediate (without wishing to be bound to any particular mechanism, the heating or microwave irradiating may cause the chain extender to react with the blocked or reactive blocked prepolymer or an unblocked product thereof).
In some embodiments, the blocked or reactive blocked prepolymer comprises a polyisocyanate.
In some embodiments, the blocked or reactive blocked prepolymer is a compound of the formula A-X-A, where X is a hydrocarbyl group and each A is an independently selected substituent of Formula X:
Figure imgf000039_0001
(X) where R is a hydrocarbyl group and Z is a blocking group, the blocking group optionally having a reactive terminal group (e.g., a polymerizable end group such as an epoxy, alkene, alkyne, or thiol end group, for example an ethylenically unsaturated end group such as a vinyl ether). ). In a particular example, each A is an independently selected substituent of Formula XI:
Figure imgf000039_0002
where R is as given above.
In some embodiments, the blocked or reactive blocked prepolymer comprises a polyisocyanate oligomer produced by the reaction of at least one diisocyanate (e.g., a diisocyanate such as hexamethylene diisocyanate (HDI), bis-(4- isocyanatocyclohexyl)methane (HMDI), isophorone diisocyanate (IPDI), etc., a triisocyanate, etc.) with at least one polyol (e.g., a polyether or polyester or polybutadiene diol).
In some embodiments, the reactive blocked prepolymer is blocked by reaction of a polyisocyanate with an amine methacrylate monomer blocking agent (e.g., tertiary- butylaminoethyl methacrylate (TBAEMA), tertiary pentylaminoethyl methacrylate (TPAEMA), tertiary hexylaminoethyl methacrylate (THAEMA), tertiary-butylaminopropyl methacrylate (TBAPMA), and mixtures thereof (see, e.g., US Patent Application Publication No. 20130202392). Note that all of these can be used as diluents as well.
There are many blocking agents for isocyanate. In preferred embodiments of the current invention, the blocking agent (e.g., TBAEMA), cures (e.g., from the actinic radiation or light) into the system. Those skilled in the art can couple (meth)acrylate groups to known blocking agents to create additional blocking agents that can be used to carry out the present invention. Still further, those skilled in the art can use maleimide, or substitute maleimide on other known blocking agents, for use in the present invention.
Examples of known blocking agents which can be substituted on or covalently coupled to methacrylate or maleimide for use in the present invention include, but are not limited to, phenol type blocking agents (e.g. phenol, cresol, xylenol, nitrophenol, chlorophenol, ethyl phenol, t-butylphenol, hydroxy benzoic acid, hydroxy benzoic acid esters, 2,5-di-t-butyl-4-hydroxy toluene, etc.), lactam type blocking agents (e.g. ε- caprolactam, δ-valerolactam, γ-butyrolactam, β-propiolactam, etc.), active methylene type blocking agents (e.g. diethyl malonate, dimethyl malonate, ethyl acetoacetate, methyl acetoacetate, acetyl acetone, etc.), alcohol type blocking agents (e.g. methanol, ethanol, n- propanol, isopropanol, n-butanol, isobutanol, t-butanol, n-amyl alcohol, t-amyl alcohol, lauryl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, methoxyethanol, glycolic acid, glycolic acid esters, lactic acid, lactic acid ester, methylol urea, methylol melamine, diacetone alcohol, ethylene chlorohydrine, ethylene bromhydrine, l,3-dichloro-2-propanol, ω-hydroperfluoro alcohol, acetocyanhydrine, etc.), mercaptan type blocking agents (e.g. butyl mercaptan, hexyl mercaptan, t-butyl mercaptan, t-dodecyl mercaptan, 2-mercapto-benzothiazole, thiophenol, methyl thiophenol, ethyl thiophenyl, etc.), acid amide type blocking agents (e.g. acetoanilide, acetoanisidine amide, acrylamide, methacrylamide, acetic amide, stearic amide, benzamide, etc.), imide type blocking agents (e.g. succinimide, phthalimide, maleimide, etc.), amine type blocking agents (e.g. diphenylamine, phenylnaphthylamine, xylidine, N-phenyl xylidine, carbazole, aniline, naphthylamine, butylamine, dibutylamine, butyl phenylamine, etc.), imidazole type blocking agents (e.g. imidazole, 2-ethylimidazole, etc.), urea type blocking agents (e.g. urea, thiourea, ethylene urea, ethylene thiourea, 1,3-diphenyl urea, etc.), carbamate type blocking agents (e.g. N-phenyl carbamic acid phenyl ester, 2-oxazolidone, etc.), imine type blocking agents (e.g. ethylene imine, etc.), oxime type blocking agents (e.g. formaldoxime, acetaldoximine, acetoxime, methyiethyi ketoxime, diacetylomonoxime, benzophenoxime, cyclohexanonoxime, etc.) and sulfurous acid salt type blocking agents (e.g. sodium bisulfite, potassium bisulfite, etc.). Of these, use is preferably made of the phenol type, the lactam type, the active methylene type and the oxime type blocking agents (see, e.g., US Patent No. 3,947,426). In some embodiments, the reactive diluent comprises an acrylate, a methacrylate, a styrene, an acrylic acid, a vinylamide, a vinyl ether, a vinyl ester (including derivatives thereof), polymers containing any one or more of the foregoing, and combinations of two or more of the foregoing, (e.g., acrylonitrile, styrene, divinyl benzene, vinyl toluene, methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, amine methacrylates as described above, and mixtures of any two or more of these) (see, e.g., US Patent Application Publication No. 20140072806).
In some embodiments, the chain extender comprises at least one diol, diamine or dithiol chain extender (e.g., ethylene glycol, 1 ,3 -propanediol, 1 ,2-propanediol, 1 ,4- butanediol, 1 ,5-pentanediol, 1,6-hexanediol, 1 ,7-heptanediol, 1 ,8-octanediol, 1 ,9-nonanediol, 1 , 10-decanediol, 1 ,1 1 -undecanediol, 1 ,12-dodecanediol, 1 ,2-cyclohexanedimethanol, 1 ,4- cyclohexanedimethanol, the corresponding diamine and dithiol analogs thereof, lysine ethyl ester, arginine ethyl ester, p-alanine-based diamine, and random or block copolymers made from at least one diisocyanate and at least one diol, diamine or dithiol chain extender; see, e.g., US Patent Application Publication No. 20140010858). Note also that, when dicarboxylic acid is used as the chain extender, polyesters (or carbamate-carboxylic acid anhydrides) are made.
In some embodiments, the polymerizable liquid comprises:
from 5 or 20 or 40 percent by weight to 60 or 80 or 90 percent by weight of the blocked or reactive blocked prepolymer;
from 10 or 20 percent by weight to 30 or 40 or 50 percent by weight of the reactive diluent;
from 5 or 10 percent by weight to 20 or 30 percent by weight of the chain extender; and
from 0.1 or 0.2 percent by weight to 1 , 2 or 4 percent by weight of the photoinitiator.
Optional additional ingredients, such as dyes, fillers (e.g., silica), surfactants, etc., may also be included, as discussed in greater detail above.
An advantage of some embodiments of the invention is that, because these polymerizable liquids do not rapidly polymerize upon mixing, they may be formulated in advance, and the filling step carried out by feeding or supplying the polymerizable liquid to the build region from a single source (e.g., a single reservoir containing the polymerizable liquid in pre-mixed form), thus obviating the need to modify the apparatus to provide separate reservoirs and mixing capability. Three dimensional objects made by the process are, in some embodiments, collapsible or compressible (that is, elastic (e.g., has a Young's modulus at room temperature of from about 0.001 , 0.01 or 0.1 gigapascals to about 1 , 2 or 4 gigapascals, and/or a tensile strength at maximum load at room temperature of about 0.01 , 0.1 , or 1 to about 50, 100, or 500 megapascals, and/or a percent elongation at break at room temperature of about 10, 20 50 or 100 percent to 1000, 2000, or 5000 percent, or more).
An additional example of the preparation of a blocked reactive prepolymer is shown in the Scheme below:
Figure imgf000042_0001
a Rate and product split depend on catalyst: Zn Octoate --> slow, mainly II Urea; Sn+2 --> faster, mix.
One can use similar chemistry to that described above to form a reactive blocked diioscyanate, a reactive blocked chain extender, or a reactive blocked prepolymer.
A non-limiting example of a dual cure system employing a thermally cleavable end group is shown in the Figure 25A and the Scheme below:
Polyol
Figure imgf000043_0001
Without wishing to be bound to any underlying mechanism, in some embodiments, during thermal cure, blocking agent is cleaved and diisocyanate prepolymer is re-formed and quickly reacts with chain extenders or additional soft segment to form thermoplastic or thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), as follows:
Figure imgf000043_0002
Segmented Thermoplastic Polyurethane
Alternative mechanisms such as those described in section B below may also be implemented or involved.
In the scheme above, the dual cure resin is comprised of a UV-curable (meth)acrylate blocked polyurethane (ABPU), a reactive diluent, a photoinitiator, and a chain extender(s). The reactive diluent (10-50 wt%) is an acrylate or methacrylate that helps to reduce the viscosity of ABPU and will be copolymerized with the ABPU under UV irradiation. The photoinitiator (generally about 1 wt%) can be one of those commonly used UV initiators, examples of which include but are not limited to such as acetophenones (diethoxyacetophenone for example), phosphine oxides diphenyl(2,4,6- trimethylbenzoy])phosphme oxide, phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide (PPO), Irgacure 369, etc.
After UV curing to form a intermediate shaped product having blocked polyurethane oligomers as a scaffold, and carrying the chain extender, the ABPU resin is subjected to a thermal cure, during which a high molecular weight polyurethane/polyurea is formed by a spontaneous reaction between the polyurethane/polyurea oligomers and the chain extender(s). The polyurethane/polyurea oligomer can react with proper chain extenders through substitution of TBAEMA, N-vinylformamide (NVF) or the like by proper chain extenders, either by deblocking or displacement. The thermal cure time needed can vary depending on the temperature, size, shape, and density of the product, but is typically between 1 to 6 hours depending on the specific ABPU systems, chain extenders and temperature.
One advantageous aspect of the foregoing is using a tertiary amine-containing methacrylate (e.g., t-butylaminoethyl methacrylate, TBAEMA) to terminate synthesized polyurethane/polyurea oligomers with isocyanate at both ends. Using acrylate or methacrylate containing hydroxy! groups to terminate polyurethane/polyurea oligomers with isocyanate ends is used in UV curing resins in the coating field. The formed urethane bonds between the isocyanate and hydroxyl groups are generally stable even at high temperatures. In embodiments of the present invention, the urea bond formed between the tertiary amine of TBAEMA and isocyanate of the oligomer becomes labile when heated to suitable temperature (for example, about 100 °C), regenerating the isocyanate groups that will react with the chain extender(s) during thermal-cure to form high molecular weight polyurethane (PU). While it is possible to synthesize other (meth)acrylate containing isocyanate blocking functionality as generally used (such as N-vinylformamide, ε-caprolactam, 1 ,2,3-triazole, methyl ethyl ketoxime, diethyl malonate, etc.), the illustrative embodiment uses TBAEMA that is commercially available. The used chain extenders can be diols, diamines, triols, triamines or their combinations or others. Ethylene glycol, 1,4-butanediol, methylene dicyclohexylamine (H12MDA; or PACM as the commercial name from Air Products), hydroquinone bis(2-Hydroxyethyl) Ether (HQEE), 4,4'-Methylenebis(3-Chloro-2,6- Diethylaniline) (MCDEA), 4,4'-methylene-bis-(2,6 diethylaniline)(MDEA), 4,4'- Methylenebis(2-chloroaniline) (MOCA) are the preferred chain extenders.
To produce an ABPU, TBAEMA may be used to terminate the isocyanate end groups of the oligomeric diisocyanate, which is derived from diisocyanate tipped polyols. The polyols (with hydroxyl functionality of 2) used can be polyethers [especially polytetramethylene oxide (PTMO), polypropylene glycol (PPG)], polyesters or polybutadiene. The molecular weight of these polyols can be 500 to 3000 Da, and 1000-2000 Da are currently preferred. In the presence of a catalyst (e.g., stannous octoate with 0.1-0.3 wt% to the weight of polyol; other tin catalysts or amine catalysts), diisocyanate (e.g., toluene diisocyanate (TDI), methylene diphenyl diisocyanate (MDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), hydrogenated MDI (HMDI), etc.) is added to the polyol with certain molar ratio (2:1 molar ratio preferred) to block the end groups of the polyol (50 - 100 °C), resulting in an oligomer diisocyanate. TBAEMA is then added to the reaction (Note: moles(TBAEMA)*2+moles(polyol)*2 = moles(isocyanate)*2) to generate ABPU (under 50 - 60 °C). Inhibitors such as hydroquinone (100 - 500 ppm) can be used to inhibit polymerization of methacrylate during the reaction.
In general, a three-dimensional product of the foregoing methods comprises (i) a linear thermoplastic polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), (ii) a cross-linked thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), or (Hi) combinations thereof (optionally blended with de-blocked blocking group which is copolymerized with the reactive diluents(s), for example as an interpenetrating polymer network, a semi-interpenetrating polymer network, or as a sequential interpenetrating polymer network). ). In some example embodiments, the three- dimensional product may also include unreacted photoinitiator remaining in the three- dimensional formed object. For example, in some embodiments, from 0.1 or 0.2 percent by weight to 1, 2 or 4 percent by weight of the photoinitiator may remain in the three- dimensional formed object or the photoinitiator may be present in lower amounts or only a trace amount. In some example embodiments, the three-dimensional product may also include reacted photoinitiator fragments. For example, in some embodiments, the reacted photoinitiator fragments may be remnants of the first cure forming the intermediate product. For example, from 0.1 or 0.2 percent by weight to 1, 2 or 4 percent by weight of reacted photoinitiator fragments may remain in the three-dimensional formed object or the reacted photoinitiator fragments may be present in lower amounts or only a trace amount. In example embodiments, a three-dimensional product may comprise, consist of or consist essentially of all or any combination of a linear thermoplastic polyurethane, a cross-linked thermoset polyurethane, unreacted photoinitiator and reacted photoinitiator materials.
While this embodiment has been described above primarily with respect to reactive blocking groups, it will be appreciated that unreactive blocking groups may be employed as well.
In addition, while less preferred, it will be appreciated that processes as described above may also be carried out without a blocking agent, while still providing dual cure methods and products of the present invention.
In addition, while this embodiment has been described primarily with diol and diamine chain extenders, it will be appreciated that chain extenders with more than two reactive groups (polyol and polyamine chain extenders such as triols and triamine chain extenders) may be used to three dimensional objects comprised of a crosslinked thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)).
These materials may be used in bottom-up additive manufacturing techniques such as the continuous liquid interface printing techniques described herein, or other additive manufacturing techniques as noted above and below.
B. Dual hardening polymerizable liquids employing blocked diisocyanates and thermally cleavable blocking groups.
Another embodiment provides a method of forming a three-dimensional object comprised of polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), the method comprising:
(a) providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween;
(b) filling the build region with a polymerizable liquid, the polymerizable liquid comprising a mixture of (i) a blocked or reactive blocked diisocyanate, (ii) a polyol and/or polyamine, (Hi) a chain extender, (iv) a photoinitiator, and (v) optionally but in some embodiments preferably a reactive diluent (vi) optionally but in some embodiments preferably a pigment or dye, (vii) optionally but in some embodiments preferably a filler (e.g. silica), (c) irradiating the build region with light through the optically transparent member to form a solid blocked diisocyanate scaffold from the blocked diisocyanate, and optionally the reactive diluent and advancing the carrier away from the build surface to form a three- dimensional intermediate having the same shape as, or a shape to be imparted to, the three- dimensional object, with the intermediate containing the chain extender and polyol and/or polyamine; and then
(d) heating or microwave irradiating the three-dimensional intermediate sufficiently {e.g., sufficiently to de-block the blocked diisocyanate and form an unblocked diisocyanate that in turn polymerizes with the chain extender and polyol and/or polyamine) to form the three-dimensional product comprised of polyurethane, polyurea, or copolymer thereof {e.g., poly(urethane-urea)), from the three-dimensional intermediate.
In some embodiments, the blocked or reactive blocked diisocyanate is a compound of the formula A'-X'-A', where X' is a hydrocarbyl group and each A' is an independently selected substituent of Formula X':
Figure imgf000047_0001
where R is a hydrocarbyl group and Z is a blocking group, the blocking group optionally having a reactive terminal group {e.g., a polymerizable end group such as an epoxy, alkene, alkyne, or thiol end group, for example an ethylenically unsaturated end group such as a vinyl ether). In a particular example, each A' is an independently selected substituent of Formula
XI':
Figure imgf000047_0002
where R is as given above.
Other constituents and steps of these methods are carried out in like manner as described in section 9a above. In a non-limiting example, a blocked diisocyanate is prepared as shown in the Scheme below. Such blocked diisocyanates may be used in methods as shown in Figure 25B.
OCW^NCO Diisocyanate
Figure imgf000048_0001
Methacrylate Blocked Diisocyanate (ABDI)
Without wishing to be bound by any particular underlying mechanism, in some embodiments, during thermal cure, the blocking agent is cleaved and the chain extender reacts to form thermoplastic or thermoset polyurethane, polyurea, or a copolymer thereof (e.g., poly(ur ethane-urea)), for example as shown below:
Figure imgf000048_0002
Soft Segment: Polyamine/Polyol
Segmented Thermoplastic Polyurethane
In an alternative mechanism, the chain extender reacts with the blocked diisocyante, eliminates the blocking agent, in the process forming thermoplastic or thermoset polyurethane, polyurea, or a copolymer thereof (e.g., poly(urethane-urea)).
In general, a three-dimensional product of the foregoing methods comprises (i) a linear thermoplastic polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), a(ii) cross-linked thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), or (Hi) combinations thereof (optionally blended with de-blocked blocking group which is copolymerized with the reactive diluents(s), for example as an interpenetrating polymer network, a semi-interpenetrating polymer network, or as a sequential interpenetrating polymer network). In some example embodiments, the three- dimensional product may also include unreacted photo initiator remaining in the three- dimensional formed object. For example, in some embodiments, from 0.1 or 0.2 percent by weight to 1 , 2 or 4 percent by weight of the photoinitiator may remain in the three- dimensional formed object or the photoinitiator may be present in lower amounts or only a trace amount. In some example embodiments, the three-dimensional product may also include reacted photoinitiator fragments. For example, in some embodiments, the reacted photoinitiator fragments may be remnants of the first cure forming the intermediate product. For example, from 0.1 or 0.2 percent by weight to 1 , 2 or 4 percent by weight of reacted photoinitiator fragments may remain in the three-dimensional formed object or the reacted photoinitiator fragments may be present in lower amounts or only a trace amount. In example embodiments, a three-dimensional product may comprise, consist of or consist essentially of all or any combination of a linear thermoplastic polyurethane, a cross-linked thermoset polyurethane, unreacted photoinitiator and reacted photoinitiator materials.
While this embodiment has been described above primarily with respect to reactive blocking groups, it will be appreciated that unreactive blocking groups may be employed as well.
In addition, while less preferred, it will be appreciated that processes as described above may also be carried out without a blocking agent, while still providing dual cure methods and products of the present invention.
In addition, while this embodiment has been described primarily with diol and diamine chain extenders, it will be appreciated that chain extenders with more than two reactive groups (polyol and polyamine chain extenders such as triols and triamine chain extenders) may be used to three dimensional objects comprised of a crosslinked thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)).
These materials may be used in bottom-up additive manufacturing techniques such as the continuous liquid interface printing techniques described herein, or other additive manufacturing techniques as noted above and below. C. Dual hardening polvmerizable liquids employing blocked chain extenders and thermally cleavable blocking groups. Another embodiment provides a method of forming a three-dimensional object comprised of polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), the method comprising:
(a) providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween;
(b) filling the build region with a polymerizable liquid, the polymerizable liquid comprising a mixture of (i) a polyol and/or polyamine, (ii) a blocked or reactive blocked diisocyanate chain extender, (in) optionally one or more additional chain extenders, (iv) a photoinitiator, and (v) optionally but in some embodiments preferably a reactive diluent (vi) optionally but in some embodiments preferably a pigment or dye, (vii) optionally but in some embodiments preferably a filler (e.g. silica);
(c) irradiating the build region with light through the optically transparent member to form a solid blocked chain diisocyanate chain extender scaffold from the blocked or reactive blocked diisocyanate chain extender and optionally the reactive diluent and advancing the carrier away from the build surface to form a three-dimensional intermediate having the same shape as, or a shape to be imparted to, the three-dimensional object, with the intermediate containing the polyol and/or polyamine and optionally one or more additional chain extenders; and then
(d) heating or microwave irradiating the three-dimensional intermediate sufficiently to form the three-dimensional product comprised of polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), from the three-dimensional intermediate (e.g., heating or microwave irradiating sufficiently to de-block the blocked diisocyanate chain extender to form an unblocked diisocyanate chain extender that in turn polymerizes with the polyol and/or polyamine and optionally one or more additional chain extenders).
In some embodiments, the blocked or reactive blocked diisocyanate chain extender is a compound of the formula A"-X"-A", where X" is a hydrocarbyl group, and each A" is an independently selected substituent of Formula X":
Figure imgf000050_0001
where R is a hydrocarbyl group and Z is a blocking group, the blocking group optionally having a reactive terminal group (e.g., a polymerizable end group such as an epoxy, alkene, alkyne, or thiol end group, for example an ethylenically unsaturated end group such as a vinyl ether). In a particular example, each A" is an independently selected substituent of Formula XI":
Figure imgf000051_0001
where R is as given above.
Other constituents and steps employed in carrying out these methods may be the same as described in section 9A above.
An example of the preparation of a blocked diol chain extender is shown in the Scheme below. — R'— OH Chain Extender nate
TBAEMA
Figure imgf000051_0002
"Functional Blocking Unit'
Figure imgf000051_0003
Methacrylate Blocked Chain Extender (ABCE)
An example of the preparation of a blocked diamine chain extender is shown in the Scheme below: H2N— R' NH2 Chain Extender nate
ΤΒΛΗΜΑ
Figure imgf000052_0001
t "Functional Blocking Unit"
Figure imgf000052_0002
Methacrylate Blocked Chain Extender (ABCE)
An example of method of the present invention carried out with the materials above is given in the Figure 25C.
Without wishing to be bound to any underlying mechanism of the invention, in some embodiments, during thermal cure, (a) the blocked isocyanate-capped chain extender reacts either directly with soft segment and/or chain extender amine or alcohol groups, displacing the blocking agent; or (b) the blocked isocyanate-capped chain extender is cleaved and diisocyanate-capped chain extender is re-formed and reacts with soft segments and additional chain extender if necessary to yield thermoplastic or thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), such as follows:
Figure imgf000052_0003
and/or + and/or +
Figure imgf000052_0004
OC NH NH— R'— H NH NCO Soft Segment: Polyam ne o yo
Segmented Thermoplastic Polyurethane An alternative mechanism analogous to that described in section B above may also be implemented or employed.
In general, a three-dimensional product of the foregoing methods comprises (i) a linear thermoplastic polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), (ii)a. cross-linked thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), or (Hi) combinations thereof (optionally blended with de-blocked blocking group which is copolymerized with the reactive diluents(s), for example as an interpenetrating polymer network, a semi-interpenetrating polymer network, or as a sequential interpenetrating polymer network). In some example embodiments, the three- dimensional product may also include unreacted photoinitiator remaining in the three- dimensional formed object. For example, in some embodiments, from 0.1 or 0.2 percent by weight to 1, 2 or 4 percent by weight of the photoinitiator may remain in the three- dimensional formed object or the photoinitiator may be present in lower amounts or only a trace amount. In some example embodiments, the three-dimensional product may also include reacted photoinitiator fragments. For example, in some embodiments, the reacted photoinitiator fragments may be remnants of the first cure forming the intermediate product. For example, from 0.1 or 0.2 percent by weight to 1, 2 or 4 percent by weight of reacted photoinitiator fragments may remain in the three-dimensional formed object or the reacted photoinitiator fragments may be present in lower amounts or only a trace amount. In example embodiments, a three-dimensional product may comprise, consist of or consist essentially of all or any combination of a linear thermoplastic polyurethane, a cross-linked thermoset polyurethane, unreacted photoinitiator and reacted photoinitiator materials.
While this embodiment has been described above primarily with respect to reactive blocking groups (that is, blocking groups containing polymerizable moieties), it will be appreciated that unreactive blocking groups may be employed as well.
In addition, while less preferred, it will be appreciated that processes as described above may also be carried out without a blocking agent, while still providing dual cure methods and products of the present invention.
In addition, while this embodiment has been described primarily with diol and diamine chain extenders, it will be appreciated that chain extenders with more than two reactive groups (polyol and polyamine chain extenders such as triols and triamine chain extenders) may be used to three dimensional objects comprised of a crosslinked thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)). These materials may be used in bottom-up additive manufacturing techniques such as the continuous liquid interface printing techniques described herein, or other additive manufacturing techniques as noted above and below.
Those skilled in the art will appreciate that systems as described in Ying and Cheng, Hydro lyzable Polyureas Bearing Hindered Urea Bonds, J ACS 136, 16974 (2014), may be used in carrying out the methods described herein.
X. ARTICLES COMPRISED OF INTERPENETRATING POLYMER NETWORKS (I PNs) FORMED FROM DUAL HARDENING POLY MERI ZABLE LIQUIDS.
In some embodiments, polymerizable liquids comprising dual hardening systems such as described above are useful in forming three-dimensional articles that in turn comprise interpenetrating polymer networks. This area has been noted by Sperling at Lehigh University and . C. Frisch at the University of Detroit, and others.
In non-limiting examples, the polymerizable liquid and method steps are selected so that the three-dimensional object comprises the following:
Sol-gel compositions. This may be carried out with an amine (ammonia) permeable window or semipermeable member. In the system discussed here, tetraethyl orthosiliciate (TEOS), epoxy (diglycidyl ether of Bisphenol A), and 4-amino propyl triethoxysilane are be added to a free radical crosslinker and in the process the free radical crosslinker polymerizes and contain the noted reactants which are then reacted in another step or stage. Reaction requires the presence of water and acid. Photoacid generators (PAGs) could optionally be added to the mixture described above to promote the reaction of the silica based network. Note that if only TEOS is included one will end up with a silica (glass) network. One could then increase the temperature to remove the organic phase and be left with a silica structure that would be difficult to prepare by more conventional methods. Many variations (different polymeric structures) can be prepared by this process in addition to epoxies including urethanes, functionalized polyols, silicone rubber etc.)
Hydrophobic-hydwphilic JPNs. Prior 1PN research contained a number of examples for hydrophobic-hydrophilic networks for improved blood compatibility as well as tissue compatibility for biomedical parts. Poly(hydroxyethyl methacrylate) is a typical example of a hydrophilic component. Another option is to added poly(ethylene oxide) polyols or polyamines with a diisocyanate to produce polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), incorporated in the reactive system. Phenolic resins (resoles). Precursors to phenolic resins involve either phenolic resoles (formaldehyde terminal liquid oligomers) or phenolic novolacs (phenol terminal solid oligomers crosslinkable with hexamethyltetraamine). For the present process phenolic resoles can be considered. The viscosity thereof may be high but dilution with alcohols (methanol or ethanol) may be employed. Combination of the phenolic resole with the crosslinkable monomer can then provide a product formed from an IPN. Reaction of the phenolic resole to a phenolic resin can occur above 100 0 in a short time range. One variation of this chemistry would be to carbonize the resultant structure to carbon or graphite. Carbon or graphite foam is typically produced from phenolic foam and used for thermal insulation at high temperatures .
Polyimides. Polyimides based on dianhydrides and diamines are amenable to the present process. In this case the polyimide monomers incorporated into the reactive crosslinkable monomer are reacted to yield an IPN structure. Most of the dianyhdrides employed for polyimides may be crystalline at room temperature but modest amounts of a volatile solvent can allow a liquid phase. Reaction at modest temperatures (e.g., in the range of about 100 °C) is possible to permit polyimide formation after the network is polymerized.
Conductive polymers. The incorporation of aniline and ammonium persulfate into the polymerizabie liquid is used to produce a conductive part. After the reactive system is polymerized and a post treatment with acid (such as HQ vapor), polymerization to polyaniline can then commence.
Natural product based IPNs. Numerous of natural product based IPNs are known based on triglyceride oils such as castor oil. These can be incorporated into the polymerizabie liquid along with a diisocyanate. Upon completion of the part the triglycerides can then be reacted with the diisocyanate to form a crosslinked polyurethane. Glycerol can of course also be used.
Sequential IPNs. In this case, the molded crosslinked network are swollen with a monomer and free radical catalyst (peroxide) and optionally crosslinker followed by polymerization. The crosslinked triacylate system should imbide large amounts of styrene, acrylate and/or methacrylate monomers allowing a sequential IPN to be produced.
Polyolefin polymerization. Polyolefin catalysts (e.g. metallocenes) can be added to the crosslinkable reactive system. Upon exposure of the part to pressurized ethylene (or propylene) or a combination (to produce EPR rubber) and temperature in the range of 100 °C) the part can then contain a moderate to substantial amount of the polyolefin. Ethylene, propylene and alpha olefin monomers should easily diffuse into the part to react with the catalyst at this temperature and as polymerization proceeds more olefin will diffuse to the catalyst site. A large number of parts can be post-polymerized at the same time. XI. FABRICATION PRODUCTS.
A. Example three-dimensional (3D) objects.
Three-dimensional products produced by the methods and processes of the present invention may be final, finished or substantially finished products, or may be intermediate products subject to further manufacturing steps such as surface treatment, laser cutting, electric discharge machining, etc., is intended. Intermediate products include products for which further additive manufacturing, in the same or a different apparatus, may be carried out). For example, a fault or cleavage line may be introduced deliberately into an ongoing "build" by disrupting, and then reinstating, the gradient of polymerization zone, to terminate one region of the finished product, or simply because a particular region of the finished product or "build" is less fragile than others.
Numerous different products can be made by the methods and apparatus of the present invention, including both large-scale models or prototypes, small custom products, miniature or microminiature products or devices, etc. Examples include, but are not limited to, medical devices and implantable medical devices such as stents, drug delivery depots, functional structures, microneedle arrays, fibers and rods such as waveguides, micromechanical devices, microfluidic devices, etc.
Thus in some embodiments the product can have a height of from 0.1 or 1 millimeters up to 10 or 100 millimeters, or more, and/or a maximum width of from 0.1 or 1 millimeters up to 10 or 100 millimeters, or more. In other embodiments, the product can have a height of from 10 or 100 nanometers up to 10 or 100 microns, or more, and/or a maximum width of from 10 or 100 nanometers up to 10 or 100 microns, or more. These are examples only: Maximum size and width depends on the architecture of the particular device and the resolution of the light source and can be adjusted depending upon the particular goal of the embodiment or article being fabricated.
In some embodiments, the ratio of height to width of the product is at least 2: 1, 10: 1,
50: 1 , or 100: 1 , or more, or a width to height ratio of 1 : 1 , 10: 1 , 50: 1 , or 100: 1 , or more.
In some embodiments, the product has at least one, or a plurality of, pores or channels formed therein, as discussed further below. The processes described herein can produce products with a variety of different properties. Hence in some embodiments the products are rigid; in other embodiments the products are flexible or resilient. In some embodiments, the products are a solid; in other embodiments, the products are a gel such as a hydrogel. In some embodiments, the products have a shape memory (that is, return substantially to a previous shape after being deformed, so long as they are not deformed to the point of structural failure). In some embodiments, the products are unitary (that is, formed of a single polymerizable liquid); in some embodiments, the products are composites (that is, formed of two or more different polymerizable liquids). Particular properties will be determined by factors such as the choice of polymerizable liquid(s) employed.
In some embodiments, the product or article made has at least one overhanging feature (or "overhang"), such as a bridging element between two supporting bodies, or a cantilevered element projecting from one substantially vertical support body. Because of the unidirectional, continuous nature of some embodiments of the present processes, the problem of fault or cleavage lines that form between layers when each layer is polymerized to substantial completion and a substantial time interval occurs before the next pattern is exposed, is substantially reduced. Hence, in some embodiments the methods are particularly advantageous in reducing, or eliminating, the number of support structures for such overhangs that are fabricated concurrently with the article.
B. Example structures and geometries of 3D objects.
In example embodiments, the three-dimensional (3D) object may be formed with thousands or millions of shape variations imparted on the three-dimensional object while being formed. In example embodiments, the pattern generator generates different patterns of light to activate photoinitiator in the region of the gradient of polymerization to impart different shapes as the object is extracted through the gradient of polymerization. In example embodiments, the pattern generator may have high resolution with millions of pixel elements that can be varied to change the shape that is imparted. For example, the pattern generator may be a DLP with more than 1,000 or 2,000 or 3,000 or more rows and/or more than 1,000 or 2,000 or 3,000 or more columns of micromirrors, or pixels in an LCD panel, that can be used to vary the shape. As a result, very fine variations or gradations may be imparted on the object along its length. In example embodiments, this allows complex three-dimensional objects to be formed at high speed with a substantially continuous surface without cleavage lines or seams. In some examples, more than a hundred, thousand, ten thousand, hundred thousand or million shape variations may be imparted on the three-dimensional object being formed without cleavage lines or seams across a length of the object being formed of more than 1mm, 1cm, 10cm or more or across the entire length of the formed object. In example embodiments, the object may be continuously formed through the gradient of polymerization at a rate of more than 1, 10, 100, 1000, 10000 or more microns per second.
In example embodiments, this allows complex three-dimensional (3D) objects to be formed. In some example embodiments, the 3D formed objects have complex non-injection moldable shapes. The shapes may not be capable of being readily formed using injection molding or casting. For example, the shapes may not be capable of being formed by discrete mold elements that are mated to form a cavity in which fill material is injected and cured, such as a conventional two-part mold. For example, in some embodiments, the 3D formed objects may include enclosed cavities or partially open cavities, repeating unit cells, or open- cell or closed-cell foam structures that are not amenable to injection molding and may including hundreds, thousands or millions of these structures or interconnected networks of these structures. However, in example embodiments, these shapes may be 3D formed using the methods described in the present application with a wide range of properties, including a wide range of elastomeric properties, tensile strength and elongation at break through the use of dual cure materials and/or interpenetrating polymer networks to form these structures. In example embodiments, the 3D objects may be formed without cleavage lines, parting lines, seams, sprue, gate marks or ejector pin marks that may be present with injection molding or other conventional techniques. In some embodiments, the 3D formed objects may have continuous surface texture (whether smooth, patterned or rough) that is free from molding or other printing artifacts (such as cleavage lines, parting lines, seams, sprue, gate marks or ejector pin marks) across more than 1mm, 1cm, 10cm or more or across the entire length of the formed object. In example embodiments, complex 3D objects may be formed with no discrete layers visible or readily detectable from the printing process in the finished 3D object across more than 1mm, 1cm, 10cm or more or across the entire length of the formed object. For example, the varying shapes imparted during the course of printing by the pattern generator may not be visible or detectable as different layers in the finished 3D object since the printing occurs through the gradient of polymerization zone (from which the 3D object is extracted as it is exposed by varying patterns projected from the pattern generator). While the 3D objects resulting from this process may be referred to as 3D printed objects, the 3D objects may be formed through continuous liquid interphase printing without the discrete layers or cleavage lines associated with some 3D printing processes.
In some embodiments, the 3D formed object may include one or more repeating structural elements to form the 3D objects, including, for example, structures that are (or substantially correspond to) enclosed cavities, partially-enclosed cavities, repeating unit cells or networks of unit cells, foam cell, Kelvin foam cell or other open-cell or closed-cell foam structures, crisscross structures, overhang structures, cantilevers, microneedles, fibers, paddles, protrusions, pins, dimples, rings, tunnels, tubes, shells, panels, beams (including I- beams, U-beams, W-beams and cylindrical beams), struts, ties, channels (whether open, closed or partially enclosed), waveguides, triangular structures, tetrahedron or other pyramid shape, cube, octahedron, octagon prism, icosidodecahedron, rhombic triacontahedron or other polyhedral shapes or modules (including Kelvin minimal surface tetrakaidecahedra, prisms or other polyhedral shapes), pentagon, hexagonal, octagon and other polygon structures or prisms, polygon mesh or other three-dimensional structure. In some embodiments, a 3D formed object may include combinations of any of these structures or interconnected networks of these structures. In an example embodiments, all or a portion of the structure of the 3D formed object may correspond (or substantially correspond) to one or more Bravais lattice or unit cell structures, including cubic (including simple, body-centered or face- centered), tetragonal (including simple or body-centered), monoclinic (including simple or end-centered), orthohombic (including simple, body-centered, face-centered or end-centered), rhombohedral, hexagonal and triclinic structures. In example embodiments, the 3D formed object may include shapes or surfaces that correspond (or substantially correspond) to a catenoid, helicoid, gyroid or lidinoid, other triply periodic minimal surface (TPMS), or other geometry from the associate family (or Bonnet family) or Schwarz P ("Primitive") or Schwarz D ("Diamond"), Schwarz H ("Hexagonal") or Schwarz CLP ("Crossed layers of parallels") surfaces, argyle or diamond patterns, lattice or other pattern or structure.
In example embodiments, the pattern generator may be programmed to vary rapidly during printing to impart different shapes into the gradient of polymerization with high resolution. As a result, any of the above structural elements may be formed with a wide range of dimensions and properties and may be repeated or combined with other structural elements to form the 3D object. In example embodiments, the 3D formed object may include a single three-dimensional structure or may include more than 1 , 10, 100, 1000, 10000, 100000, 1000000 or more of these structural elements. The structural elements may be repeated structural elements of similar shapes or combinations of different structural elements and can be any of those described above or other regular or irregular shapes. In example embodiments, each of these structural elements may have a dimension across the structure of at least 10 nanometers, 100 nanometers, 10 microns, 100 microns, 1mm, 1cm, 10cm, 50cm or more or may have a dimension across the structure of less than 50cm, 10cm, 1cm, 1mm, 100 microns, 10 microns, 100 nanometers or 10 nanometers or less. In example embodiments, a height, width or other dimension across the structure may be in the range of from about 10 nanometers to about 50cm or more or any range subsumed therein. As used herein, "any range subsumed therein" means any range that is within the stated range. For example, the following are all subsumed within the range of about 10 nanometers to about 50 square cm and are included herein: 10 nanometers to 1 micron; 1 micron to 1 millimeter; 1 millimeter to 1 centimeter; and 1 centimeter to 50 cm or any other range or set of ranges within the stated range. In example embodiments, each of the structural elements may form a volume of the 3D object in the range of from about 10 square nanometers to about 50 square cm or more or any range subsumed therein. In example embodiments, each of the structural elements may form a cavity or hollow region or gap between surfaces of the structural element having a dimension across the cavity or hollow region or gap in the range of from about 10 nanometers to about 50cm or more or any range subsumed therein or may define a volume within the expanse of the 3D formed object in the range of from about 10 square nanometers to about 50 square cm or more or any range subsumed therein.
The structural elements may be about the same size or the size may vary throughout the volume of the 3D formed object. The sizes may increase or decrease from one side of the 3D formed object to another side (gradually or step-wise) or elements of different shapes may be intermixed in regular or irregular patterns (for example, a 3D elastomeric foam with varying sizes of open-cell and/or closed-cell cavities intermixed throughout the foam).
In some embodiments, the 3D formed objects may have irregular shapes with overhangs, bridging elements or asymmetries or may otherwise have an offset center of gravity in the direction being formed. For example, the 3D formed object may be asymmetric. In example embodiments, the 3D formed object may not have rotational symmetry around any axis or may have rotational symmetry only around a single axis. In example embodiments, the 3D formed object may not have reflectional symmetry around any plane through the 3D formed object or may have reflectional symmetry only around a single plane. In example embodiments, the 3D object may have an offset center of gravity. For example, the center of gravity of the 3D formed object may not be at the positional center of the object. In some examples, the center of gravity may not be located along any central axis of the object. For example, the 3D formed object may be a shoe sole or insert that generally follows the contour of a foot. The shoe sole or insert may tilt to the right or left and have different widths for the heel and toes. As a result, the 3D formed object in this example will not have reflectional symmetry from side to side or front to back. However, it may have reflectional symmetry from bottom to top if it is a uniformly flat shoe sole or insert. In other examples, the shoe sole or insert may be flat on one side and be contoured to receive the arch of a foot on the other side and, as a result, will not have reflectional symmetry from bottom to top either. Other 3D formed objects for wearable, prosthetic or anatomical shapes or devices may have similar asymmetries and/or offset center of gravity. For example, a 3D formed object for a dental mold or dental implant may substantially conform to the shape of a tooth and may not have reflectional symmetry about any plane. In another example, a 3D formed component for a wearable device may substantially conform to the shape of a body party and have corresponding asymmetries, such as athletic wear such as a right or left contoured shin guard or foam padding or insert for use between a hard shin guard or a helmet or other wearable component and the human body. These are examples only and any number of 3D formed objects may be asymmetric and/or have an offset center of gravity. In example embodiments, where there are significant asymmetries or protruding elements (such as arms, bridging elements, cantilevers, brush fibers or the like) and the desired structural elements will be elastomeric, there is a potential for deformation during 3D printing or subsequent curing. For example, if a large amount of non-UV curable elastomeric resin material is included, gravity may cause deformation before final curing. While the scaffold formed from UV-curable material during 3D printing (from the initial cure in a dual cure process) helps lock-in the shape, some elastomeric compositions with highly asymmetric or protruding shapes may be susceptible to deformation. In some example embodiments, the UV curable material in the composition may be adjusted to form a more rigid scaffold to avoid deformation. In other example embodiments, objects with asymmetric shapes and/or offset center of gravity may be formed in pairs (or in other combinations) with connectors that are later removed, particularly if the 3D formed objects or protruding elements are relatively long. In an example, an elastomeric 3D object may be formed along a length, and have an asymmetry, center of gravity offset and/or protruding element transverse to the length that is more than 10%, 20%, 30%, 40%, 50% or more of the length. For example, the 3D formed object may have a length of about 1cm to 50cm or more or any range subsumed therein and may have a transverse or lateral asymmetry or protruding element of about 1cm to 50cm or more or any range subsumed therein. In an example embodiment, two or more of these objects may be formed together in a way that provides support for the transverse or protruding elements until the elastomeric material is cured and the objects are separated. For example, two shoe soles may be formed (e.g., when formed in the direction of their length) as a pair (for example, with rotated and inverted shoe soles formed together with small removable connectors between them) such that the soles provide support to one another while being formed. In other example embodiments, other support structures may be formed and removed after curing of the elastomeric material.
C. Example materials and compositions of 3D objects.
In example embodiments, 3D formed objects may have any of the above shapes or structures and may comprise or consist of or consist essentially of: (i) a linear thermoplastic polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), (ii) a cross-linked thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)), and/or (iii) combinations thereof (optionally blended with de-blocked blocking group which is copolymerized with the reactive diluents(s), for example as an interpenetrating polymer network, a semi-interpenetrating polymer network, or as a sequential interpenetrating polymer network), and/or (iv) photoinitiator, including unreacted photoinitiator and/or reacted photoinitiator fragments.
In some example embodiments, a silicone rubber 3D object may be formed.
1. Silicone polyurethanes, polyureas, or poly(urethane-ureas). In any of the preceding polyurethane examples, silicone or poly(dimethylsiloxane) (PDMS) may be used as soft segment in the formation of these materials. For example, a mefhacrylate-functional ABPU could be formed by first reacting an oligomeric PDMS diol or diamine with two equivalents of diisocyanate to form a PDMS urethane prepolymer. This material can be further reacted with TBAEMA or other reactive blocking agents described herein to form a reactive blocked PDMS prepolymer which could be blended with chain extenders and reactive diluents as described in the examples above.
2. Silicone interpenetrating polymer networks. In some embodiments, the material may comprise, consists of or consist essentially of a UV-curable PDMS oligomer that is blended with a two-part thermally curable PDMS oligomer system. In example embodiments, 3D formed objects may have any of the above shapes or structures and may comprise or consist of or consist essentially of:
(i) A thermoset silicone or PDMS network cured by platinum-catalyzed hydrosilation, tin-catalyzed condensation chemistry, or peroxide initiated chemistry.
(ii) A UV-curable reactive diluent that is miscible with silicone thermoset oligomers prior to curing. Example: an acrylate-functional PDMS oligomer.
(iii) combinations thereof (optionally blended with reactive diluents(s), for example as an interpenetrating polymer network, a semi-interpenetrating polymer network, or as a sequential interpenetrating polymer network), and/or
(iv) photoinitiator, including unreacted photoinitiator and/or reacted photoinitiator fragments.
In an example embodiment, Phenylbis(2 4 6-trimethylbenzoyl)phosphine oxide (PPO) is dissolved in isobornyl acrylate (IBA) with a ΤΗΓΝ Υ(ΤΜ) mixer. Methacryloxypropyl terminated polydimethylsiloxane (DMS-R31 ; Gelest Inc.) is added to the solution, followed by addition of Sylgard Part A and Part B (Corning PDMS precursors), and then further mixed with a THINKY™ mixer to produce a homogeneous solution. The solution is loaded into an apparatus as described above and a three-dimensional intermediate is produced by ultraviolet curing as described above. The three-dimensional intermediate is then thermally cured at 100 °C for 12 hours to produce the final silicone rubber product.
3. Epoxy interpenetrating networks. In some example embodiments, an epoxy 3D object may be formed. In example embodiments, 3D formed objects may have any of the above shapes or structures and may comprise or consist of or consist essentially of:
(i) A thermoset epoxy network cured by the reaction of a diepoxide with a diamine. Optionally, co-reactants may also be included for example: co-reactants including polyfunctional amines, acids (and acid anhydrides), phenols, alcohols, and thiols;
(ii) A UV-curable reactive diluent that is miscible with the epoxy thermoset precursors prior to curing;
(iii) (combinations thereof (optionally blended with the reactive diluents(s), for example as an interpenetrating polymer network, a semi-interpenetrating polymer network, or as a sequential interpenetrating polymer network), and/or
(iv) photoinitiator, including unreacted photoinitiator and/or reacted photoinitiator fragments. In an example embodiment: 10.018 g EpoxAcast 690 resin part A and 3.040 g part B is mixed on a ΤΗΓΝΚΥ™ mixer. 3.484 g is then mixed with 3.013 g of RKP5-78-1, a 65/22/13 mix of Sartomer CN9782/N-vinylpyrrolidone/diethyleneglycol diacrylate to give a clear blend which is cured under a Dymax ultraviolet lamp to produce an elastic 3D object.
In a second example embodiment, R P11-10-1 containing 3.517 g of the above epoxy and 3.508 g of RKP5-90-3 and 65/33/2/0.25 blend of Sartomer CN2920/N- vinylcaprolactam/N-vinylpyrrolidone/PPO initiator is cured similarly to form a flexible 3D object.
In some example embodiments, the 3D formed object may include sol-gel compositions, hydrophobic or hydrophilic compositions, phenolic resoles, cyanate esters, polyimides, conductive polymers, natural product based IPNs, sequential IPNs and polyolefin as described above.
In example embodiments, 3D formed objects may have any of the shapes or structures described above and may comprise or consist of or consist essentially of a plurality of different materials in different regions of the 3D formed object with different tensile strength or other varying properties. In example embodiments, the differing materials may be selected from any of those describe above. In some example embodiments, the process of fabricating the product may be paused or interrupted one or more times, to change the polymerizable liquid. In example embodiments, 3D formed objects may include multiple materials (which may, for example, be a thermoplastic or thermoset polyurethane, polyurea, or copolymer thereof or silicone rubber or epoxy or combination of the foregoing) with different tensile strengths as described further below. While a fault line or plane may be formed in the intermediate by the interruption, if the subsequent polymerizable liquid is, in its second cure material, reactive with that of the first, then the two distinct segments of the intermediate will cross-react and covalently couple to one another during the second cure (e.g., by heating or microwave irradiation). Thus, for example, any of the materials described herein may be sequentially changed to form a product having multiple distinct segments with different tensile properties, while still being a unitary product with the different segments covalently coupled to one another.
In example embodiments, the polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)) or silicone rubber or epoxy or combination of the foregoing may comprise a majority of the 3D formed object by weight and may comprise more than 50%, 60%, 70%, 80% or 90%» of the 3D formed object by weight. In example embodiments, the polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)) or silicone rubber or epoxy or combination of the foregoing may comprise or consist of or consist essentially of an interpenetrating network, a semi-interpenetrating polymer network, or as a sequential interpenetrating polymer network.
(i) Examples of thermoplastic or thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)). In example embodiments, the polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)) may comprise a majority of the 3D formed object by weight and may comprise more than 50%, 60%, 70%, 80% or 90% of the 3D formed object by weight.
In example embodiments, the polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)) may comprise or consist of or consist essentially of linear thermoplastic or thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)). In example embodiments, the linear thermoplastic or cross-linked thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)) may comprise a majority of the 3D formed object by weight and may comprise more than 50%, 60%, 70%, 80% or 90% of the 3D formed object by weight.
In example embodiments, the polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)) may comprise or consist of or consist essentially of a polymer blend of (i) linear ethylenically unsaturated blocking monomer copolymerized with reactive diluent and (ii) linear thermoplastic or cross-linked thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)). In example embodiments, the polymer blend may comprise a majority of the 3D formed object by weight and may comprise more than 50%, 60%, 70%, 80% or 90% of the 3D formed object by weight. In example embodiments, the linear thermoplastic or cross-linked polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)) may comprise or consist of or consist essentially of linear poly(meth)acrylate.
In example embodiments, the polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)) may comprise or consist of or consist essentially of an interpenetrating network, a semi-interpenetrating polymer network, or as a sequential interpenetrating polymer network of ethylenically unsaturated monomer and crosslinked or linear polyurethane. In example embodiments, the network of ethylenically unsaturated monomer and crosslinked polyurethane may comprise a majority of the 3D formed object by weight and may comprise more than 50%, 60%, 70%, 80% or 90% of the 3D formed object by weight. In example embodiments, the linear thermoplastic or cross-linked thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)) may comprise or consist of or consist essentially of crosslinked poly(meth)acrylate.
In example embodiments, the polyurethane, polyurea, or copolymer thereof (e.g., poly(urethane-urea)) may comprise or consist of or consist essentially of an interpenetrating network, a semi-interpenetrating polymer network, or as a sequential interpenetrating polymer network of ethylenically unsaturated monomer and linear thermoplastic or cross- linked thermoset polyurethane. In example embodiments, the network of ethylenically unsaturated monomer and and linear thermoplastic or crosslinked thermoset polyurethane may comprise a majority of the 3D formed object by weight and may comprise more than 50%, 60%, 70%o, 80% or 90% of the 3D formed object by weight. In example embodiments, the linear thermoplastic or cross-linked thermoset polyurethane, polyurea, or copolymer thereof (e.g., poly(ure thane-urea)) may comprise or consist of or consist essentially of linear poly (meth)acrylate .
In some example embodiments, the 3D formed object may include sol-gel compositions, hydrophobic or hydrophilic compositions, phenolic resoles, cyanate esters, polyimides, conductive polymers, natural product based IPNs, sequential IPNs and polyolefin as described above.
(ii) Example photoinitiator and photoinitiator fragmen ts. In example embodiments, the 3D formed object may include unreacted photoinitiator remaining in the 3D formed object. For example, in some embodiments, from 0.1 or 0.2 percent by weight to 1, 2 or 4 percent by weight of the photoinitiator may remain in the three-dimensional formed object or the photoinitiator may be present in lower amounts or only a trace amount. In some example embodiments, the three-dimensional product may also include reacted photoinitiator fragments. For example, in some embodiments, the reacted photoinitiator fragments may be remnants of the first cure forming the intermediate product. For example, from 0.1 or 0.2 percent by weight to 1, 2 or 4 percent by weight of reacted photoinitiator fragments may remain in the three-dimensional formed object or the reacted photoinitiator fragments may be present in lower amounts or only a trace amount.
In example embodiments, because the systems, in part, consist of monomers and oligomers capable of being polymerized by exposure to UV light, the end products will contain residual photoinitiator molecules and photoiniator fragments. In some embodiments, a photopolymerization will undergo the transformation outlined below. In the first step, initiation, UV light cleaves the initiator into active radical fragments. These active radical fragments will go on to react with monomer group "M." During the propagation step, the active monomer will react with additional monomers that attach to the growing polymer chain. Finally, termination can occur either by recombination or by disproportionation.
Initiation
Initiator + hv R'
K + M Rivr
Propagation
RIVT + M„ RMn+ 1
Termination
combination
RMn + MmR RMnMmR
disproportionation
RMn + 'MmR RMn + MmR
In example embodiments, 3D formed objects generated by the processes outlined herein may contain the following chemical products after the object is created:
(1) Latent unreacted photoinitiator - photoinitiator is rarely 100% consumed during photopolymerization, therefore the product will typically contain unreacted photoinitiators embedded throughout the solid object:
(2) Photoinitiator by-products covalently attached to the polymer network.
In example embodiments, photoinitiators may include the following:
(a) Benzoyl-Chromophore Based: These systems take the form
Figure imgf000067_0001
where "R" is any number of other atoms, including H, O, C, N, S. These initiators cleave to form:
Figure imgf000068_0001
Where · represents a free radical. Either of these components may go on to initiate polymerization and will therefore be covalently bound to the polymer network.
Figure imgf000068_0002
An example of such an initiator is shown below
Figure imgf000068_0003
(b) Morpholino and Amino Ketones. These systems take the form:
Figure imgf000068_0004
where "R" is any number of other atoms including H, O, C, N, S. These initiators cleave to form
Figure imgf000068_0005
Where · represents a free radical. Either of these components may go on to initiate polymerization and will therefore be covalently bound to the polymer network.
Figure imgf000069_0001
Figure imgf000069_0002
An example of such an initiator is shown below
Figure imgf000069_0003
(c) Benzoyl Phosphate Oxide. These systems take the form
Figure imgf000069_0004
where "R" is any number of other atoms including H, O, C, N, S. These initiators cleave to form
Figure imgf000069_0005
Where * represents a free radical. Either of these components may go on to initiate polymerization and will therefore be covalently bound to the polymer network.
Figure imgf000070_0001
An example of such an initiator is shown below
Figure imgf000070_0002
(d) Amines. Many photo initiators may be used in combination with amines. Here the photoinitiators in the excited state serve to abstract a hydrogen atom from the amine, thus generating an active radical. This radical can go on to initiator polymerization and will therefore become incorporated into the formed polymer network. This process is outlined below:
Figure imgf000070_0003
Either of these active species can go on to form an active polymer chain resulting in the structures below.
Figure imgf000070_0004
(e) Other systems. Other types of photoinitiators that may be used to generate such mateirals and therefore will generate fragments which are covalently attached to the formed polymer network include: triazines, ketones, peroxides, diketones, azides, azo derivatives, disulfide derivatives, disilane derivatives, thiol derivatives, diselenide derivatives, diphenylditelluride derivatives, digermane derivatives, distannane derivatives, carob- germanium compounds, carbon-silicon derivatives, sulfur-carbon derivatives, sulfur-silicon derivatives, peresters, Barton's ester derivatives, hydroxamic and thiohydroxamic acids and esters, organoborates, organometallic compounds, titanocenes, chromium complexes, alumate complexes, carbon-sulfur or sulfur-sulfur iniferter compounds, oxyamines, aldehydes, acetals, silanes, phosphorous-containing compounds, borane complexes, thioxanthone derivatives, coumarins, anthraquinones, fluorenones, ferrocenium salts.
(f) Detection. Detection of the unique chemical fingerprint of photoinitiator fragments in a cured polymer object can be accomplished by a number of spectroscopic techniques. Particular techniques useful alone or in combination include: UV-Vis spectroscopy, fluorescence spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, mass spectrometry, atomic absorption spectroscopy, raman spectroscopy, and X-Ray photoelectron spectroscopy.
D. Example properties of 3D objects.
The structural properties of the 3D formed object may be selected together with the properties of the materials from which the 3D object is formed to provide a wide range of properties for the 3D object. Dual cure materials and methods described above in the present application may be used to form complex shapes with desired materials properties to form a wide range of 3D objects.
In some embodiments, 3D formed objects may be rigid and have, for example, a
Young's modulus (MPa) in the range of about 800 to 3500 or any range subsumed therein, a Tensile Strength (MPa) in the range of about 30 to 100 or any range subsumed therein, and/or a percent elongation at break in the range of about 1 to 100 or any range subsumed therein. Non-limiting examples of such rigid 3D formed objects may include fasteners; electronic device housings; gears, propellers, and impellers; wheels, mechanical device housings; tools and other rigid 3D objects.
In some embodiments, 3D formed objects may be semi-rigid and have, for example, a Young's modulus (MPa) in the range of about 300 - 2500 or any range subsumed therein, a Tensile Strength (MP a) in the range of about 20 -70 or any range subsumed therein, and/or a percent elongation at break in the range of about 40 to 300 or 600 or any range subsumed therein. Non-limiting examples of such rigid 3D formed objects may include structural elements; hinges including living hinges; boat and watercraft hulls and decks; wheels; bottles, jars and other containers; pipes, liquid tubes and connectors and other semi-rigid 3D objects.
In some embodiments, 3D formed objects may be elastomeric and have, for example, a Young's modulus (MPa) in the range of about 0.5-40 or any range subsumed therein, a Tensile Strength (MPa) in the range of about 0.5 - 30 or any range subsumed therein, and/or a percent elongation at break in the range of about 50 - 1000 or any range subsumed therein. Non-limiting examples of such rigid 3D formed objects may include foot-wear soles, heels, innersoles and midsoles; bushings and gaskets; cushions; electronic device housings and other elastomeric 3D objects.
In examples 18-61 are given materials for the formation of polyurethane products having a variety of different tensile properties, ranging from elastomeric, to semi-rigid, to flexible, as described above.
In some example embodiments, the process of fabricating the product may be paused or interrupted one or more times, to change the polymerizable liquid. In example embodiments, 3D formed objects may include multiple materials (which may, for example, be a thermoplastic or thermoset polyurethane, polyurea, or copolymer thereof) with different tensile strengths. While a fault line or plane may be formed in the intermediate by the interruption, if the subsequent polymerizable liquid is, in its second cure material, reactive with that of the first, then the two distinct segments of the intermediate will cross-react and covalently couple to one another during the second cure (e.g., by heating or microwave irradiation). Thus, for example, any of the materials described herein may be sequentially changed to form a product having multiple distinct segments with different tensile properties, while still being a unitary product with the different segments covalently coupled to one another. In some embodiments, a 3D object may be formed with a plurality of regions with different materials and properties. For example, a 3D formed object could have one or more regions formed from a first material or first group of one or more materials having a Tensile Strength (MPa) in the range of about 30 -100 or any range subsumed therein, and/or one or more regions formed from a second material or second group of one or more materials having a Tensile Strength (MPa) in the range of about 20 -70 or any range subsumed therein and/or one or more regions formed from a third material or third group of one or more materials having a Tensile Strength (MPa) in the range of about 0.5 - 30 or any range subsumed therein or any combination of the foregoing. For example, the 3D object could have from 1-10 or more different regions (or any range subsumed therein) with varying tensile strength selected from any of the materials and tensile strengths described above. For example, a hinge can be formed, with the hinge comprising a rigid segment, coupled to a second elastic segment, coupled to a third rigid segment, by sequentially changing polymerizable liquids (e.g., from among those described in examples 19-60 above) during the formation of the three- dimensional intermediate. A shock absorber or vibration dampener can be formed in like manner, with the second segment being either elastic or semi-rigid. A unitary rigid funnel and flexible hose assembly can be formed in like manner.
E. Additional examples of 3D objects.
The above methods, structures, materials, compositions and properties may be used to 3D print a virtually unlimited number of products. Examples include, but are not limited to, medical devices and implantable medical devices such as stents, drug delivery depots, catheters, bladder, breast implants, testicle implants, pectoral implants, eye implants, contact lenses, dental aligners, microfluidics, seals, shrouds, and other applications requiring high biocompatibility, functional structures, microneedle arrays, fibers, rods, waveguides, micromechanical devices, microfluidic devices; fasteners; electronic device housings; gears, propellers, and impellers; wheels, mechanical device housings; tools; structural elements; hinges including living hinges; boat and watercraft hulls and decks; wheels; bottles, jars and other containers; pipes, liquid tubes and connectors; foot-ware soles, heels, innersoles and midsoles; bushings, o-rings and gaskets; shock absorbers, funnel/hose assembly, cushions; electronic device housings; shin guards, athletic cups, knee pads, elbow pads, foam liners, padding or inserts, helmets, helmet straps, head gear, shoe cleats, gloves, other wearable or athletic equipment, brushes, combs, rings, jewelry, buttons, snaps, fasteners, watch bands or watch housings, mobile phone or tablet casings or housings, computer keyboards or keyboard buttons or components, remote control buttons or components, auto dashboard components, buttons, dials, auto body parts, paneling, other automotive, aircraft or boat parts, cookware, bakeware, kitchen utensils, steamers and any number of other 3D objects. The universe of useful 3D products that may be formed is greatly expanded by the ability to impart a wide range of shapes and properties, including elastomeric properties, through the use of multiple methods of hardening such as dual cure where a shape can be locked-in using continuous liquid interphase printing and subsequent thermal or other curing can be used to provide elastomeric or other desired properties. Any of the above described structures, materials and properties can be combined to form 3D objects including the 3D formed products described above. These are examples only and any number of other 3D objects can be formed using the methods and materials described herein.
XII. ALTERNATE METHODS AND APPARATUS.
While the present invention is preferably carried out by continuous liquid interphase/interface polymerization, as described in detail above and in further detail below, in some embodiments alternate methods and apparatus for bottom-up three-dimension fabrication may be used, including layer-by-layer fabrication. Examples of such methods and apparatus include, but are not limited to, those described in U.S. Patent No. 5,236,637 to Hull, U.S. Patents No. 7,438,846 to John and U.S. Patent No. 8,1 10, 135 to El-Siblani, and in U.S. Patent Application Publication Nos. 2013/0292862 to Joyce and 2013/0295212 to Chen et al. The disclosures of these patents and applications are incorporated by reference herein in their entirety.
Elements and features that may be used in carrying out the present invention are explained in PCT Applications Nos. PCT US2014/015486 (also published as US 2015/0102532); PCT/US2014/015506 (also published as US 2015/0097315), PCT/US2014/015497 (also published as US 2015/0097316), and in J. Tumbleston, D. Shirvanyants, N. Ermoshkin et al, Continuous liquid interface production of 3D Objects, Science 347, 1349-1352 (published online 16 March 201 5).
Embodiments of the present invention are explained in greater detail in the following non-limiting examples.
EXAMPLE 1
High Aspect Ratio Adjustable Tension Build Plate Assembly
Figure 6 is a top view and Figure 7 is an exploded view of a 3 inch by 16 inch "high aspect" rectangular build plate (or "window") assembly of the present invention, where the film dimensions are 3.5 inches by 17 inches. The greater size of the film itself as compared to the internal diameter of vat ring and film base provides a peripheral or circumferential flange portion in the film that is clamped between the vat ring and the film base, as shown in side- sectional view in Figure 8. One or more registration holes (not shown) may be provided in the polymer film in the peripheral or circumferential flange portion to aid in aligning the polymer film between the vat ring and film base, which are fastened to one another with a plurality of screws (not shown) extending from one to the other (some or all passing through holes in the peripheral edge of the polymer film) in a manner that securely clamps the polymer film therebetween.
As shown in Figures 7-8 a tension ring is provided that abuts the polymer film and stretches the film to tension, stabilize or rigidify the film. The tension ring may be provided as a pre-set member, or may be an adjustable member. Adjustment may be achieved by providing a spring plate facing the tension ring, with one or more compressible elements such as polymer cushions or springs (e.g., flat springs, coil springs, wave springs etc.) therebetween, and with adjustable fasteners such as screw fasteners or the like passing from the spring plate through (or around) the tension ring to the film base.
Polymer films are preferably fluoropolymer films, such as an amorphous thermoplastic fluoropolymer, in a thickness of 0.01 or 0.05 millimeters to 0.1 or 1 millimeters, or more. In some embodiments we use Biogeneral Teflon AF 2400 polymer film, which is 0.0035 inches (0.09 millimeters) thick, and Random Technologies Teflon AF 2400 polymer film, which is 0.004 inches (0.1 millimeters) thick.
Tension on the film is preferably adjusted with the tension ring to about 10 to 100 pounds, depending on operating conditions such as fabrication speed.
The vat ring, film base, tension ring, and tension ring spring plate may be fabricated of any suitable, preferably rigid, material, including metals (e.g., stainless steel, aluminum and aluminum alloys), carbon fiber, polymers, and composites thereof.
Registration posts and corresponding sockets may be provided in any of the vat ring, film base, tension ring and/or spring plate, as desired.
EXAMPLE 2
Round Adjustable Tension Round Build Plate Assembly Figure 9 is a top view and Figure 10 is an exploded view of a 2.88 inch diameter round build plate of the invention, where the film dimension may be 4 inches in diameter. Construction is in like manner to that given in Example 1 above, with a circumferential wave spring assembly shown in place. Tension on the film preferably adjusted to a like tension as given in Example 1 above (again depending on other operating conditions such as fabrication speed). Figure 10 is an exploded view of the build plate of Figure 8.
EXAMPLE 3
Aditiona Embodiments of Adjustable Build Plates
Figure 11 shows various alternate embodiments of the build plates of Figures 7-10.
Materials and tensions may be in like manner as described above.
EXAMPLE 4
Example Embodiment of an Apparatus
Figure 12 is a front perspective view, Figure 13 is a side view and Figure 14 is a rear perspective view of an apparatus 100 according to an exemplary embodiment of the invention. The apparatus 100 includes a frame 102 and an enclosure 104. Much of the enclosure 104 is removed or shown transparent in Figures 12-14.
The apparatus 100 includes several of the same or similar components and features as the apparatus described above in reference to Figure 2. Referring to Figure 12, a build chamber 106 is provided on a base plate 108 that is connected to the frame 102. The build chamber 106 is defined by a wall or vat ring 110 and a build plate or "window" such as one of the windows described above in reference to Figures 2 and 6-11.
Turning to Figure 13, a carrier 112 is driven in a vertical direction along a rail 114 by a motor 116. The motor may be any suitable type of motor, such as a servo motor. An exemplary suitable motor is the NXM45A motor available from Oriental Motor of Tokyo, Japan.
A liquid reservoir 118 is in fluid communication with the build chamber 106 to replenish the build chamber 106 with liquid resin. For example, tubing may run from the liquid reservoir 118 to the build chamber 106. A valve 120 controls the flow of liquid resin from the liquid reservoir 118 to the build chamber 106. An exemplary suitable valve is a pinch-style aluminum solenoid valve for tubing available from McMaster-Carr of Atlanta, Georgia.
The frame 102 includes rails 122 or other some other mounting feature on which a light engine assembly 130 (Figure 15) is held or mounted. A light source 124 is coupled to the light engine assembly 130 using a light guide entrance cable 126. The light source 124 may be any suitable light source such as a Blue Wave® 200 system available from Dymax Corporation of Torrington, Connecticut. Turning to Figure 15, the light engine or light engine assembly 130 includes condenser lens assembly 132 and a digital light processing (DLP) system including a digital micromirror device (DMD) 134 and an optical or projection lens assembly 136 (which may include an objective lens). A suitable DLP system is the DLP Discovery™ 4100 system available from Texas Instruments, Inc. of Dallas, Texas. Light from the DLP system is reflected off a mirror 138 and illuminates the build chamber 106. Specifically, an "image" 140 is projected at the build surface or window.
Referring to Figure 14, an electronic component plate or breadboard 150 is connected to the frame 102. A plurality of electrical or electronic components are mounted on the breadboard 150. A controller or processor 152 is operatively associated with various components such as the motor 116, the valve 120, the light source 124 and the light engine assembly 130 described above. A suitable controller is the Propeller Proto Board available from Parallax, Inc. of Rocklin, California.
Other electrical or electronic components operatively associated with the controller 152 include a power supply 154 and a motor driver 158 for controlling the motor 116. In some embodiments, an LED light source controlled by pulse width modulation (PWM) driver 156 is used instead of a mercury lamp (e.g., the Dymax light source described above).
A suitable power supply is a 24 Volt, 2.5A, 60W, switching power supply (e.g., part number PS1 -60W-24 (HF60W-SL-24) available from Marlin P. Jones & Assoc, Inc. of Lake Park, Florida). If an LED light source is used, a suitable LED driver is a 24 Volt, 1.4A LED driver (e.g., part number 788-1041-ND available from Digi-Key of Thief River Falls, Minnesota). A suitable motor driver is the NXD20-A motor driver available from Oriental Motor of Tokyo, Japan.
The apparatus of Figures 12-15 has been used to produce an "image size" of about 75 mm by 100 mm with light intensity of about 5 mW/cm2. The apparatus of Figures 12-15 has been used to build objects at speeds of about 100 to 500 mm/hr. The build speed is dependent on light intensity and the geometry of the object.
EXAMPLE 5
Another Example Embodiment of an Apparatus
Figure 16 is a front perspective view of an apparatus 200 according to another exemplary embodiment of the invention. The apparatus 200 includes the same components and features of the apparatus 100 with the following differences. The apparatus 200 includes a frame 202 including rails 222 or other mounting feature at which two of the light engine assemblies 130 shown in Figure 15 may be mounted in a side-by-side relationship. The light engine assemblies 130 are configured to provide a pair of "tiled" images at the build station 206. The use of multiple light engines to provide tiled images is described in more detail above.
The apparatus of Figure 16 has been used to provide a tiled "image size" of about 150 mm by 200 mm with light intensity of about 1 mW/cm . The apparatus of Figure 16 has been used to build objects at speeds of about 50 to 100 mm/hr. The build speed is dependent on light intensity and the geometry of the object.
EXAMPLE 6
Another Example Embodiment of an Apparatus
Figure 18 is a front perspective view and Figure 19 is a side view of an apparatus 300 according to another exemplary embodiment of the invention. The apparatus 300 includes the same components and features of the apparatus 100 with the following differences.
The apparatus 300 includes a frame 302 including rails 322 or other mounting feature at which a light engine assembly 330 shown in Figure 20 may be mounted in a different orientation than the light assembly 130 of the apparatus 100. Referring to Figures 19 and 20, the light engine assembly 330 includes a condenser lens assembly 332 and a digital light processing (DLP) system including a digital micromirror device (DMD) 334 and an optical or projection lens assembly 336 (which may include an objective lens). A suitable DLP system is the DLP Discovery™ 4100 system available from Texas Instruments, Inc. of Dallas, Texas, Light from the DLP system illuminates the build chamber 306. Specifically, an "image" 340 is projected at the build surface or window. In contrast to the apparatus 100, a reflective mirror is not used with the apparatus 300.
The apparatus of Figures 18-20 has been used to provide "image sizes" of about 10.5 mm by 14 mm and about 24 mm by 32 mm with light intensity of about 200 mW/cm2 and 40 mW/cm2 The apparatus of Figures 18-20 has been used to build objects at speeds of about 10,000 and 4,000 mm/hr. The build speed is dependent on light intensity and the geometry of the object.
EXAMPLE 7 Control Program with Lua Scripting
Current printer technology requires low level control in order to ensure quality part fabrication. Physical parameters such as light intensity, exposure time and the motion of the carrier should all be optimized to ensure the quality of a part. Utilizing a scripting interface to a controller such as the Parallax PROPELLER™ microcontroller using the programming language "Lua" provides the user with control over all aspects of the printer on a low level.. See generally R. Ierusalimschy, Programming in Lua (2013) (lSBN-10: 859037985X; ISBN- 13: 978-8590379850).
This Example illustrates the control of a method and apparatus of the invention with an example program written utilizing Lua scripting. Program code corresponding to such instructions, or variations thereof that will be apparent to those skilled in the art, is written in accordance with known techniques based upon the particular microcontroller used.
Concepts. A part consists of slices of polymer which are formed continuously. The shape of each slice is defined by the frame that is being displayed by the light engine.
Frame. The frame represents the final output for a slice. The frame is what manifests as the physical geometry of the part. The data in the frame is what is projected by the printer to cure the polymer.
Slice. All the 2D geometry that will be outputted to a frame should be combined in a Slice. Slices can consist of procedural geometry, Slices of a 3D model or any combination of the two. The slice generating process allows the user to have direct control over the composition of any frame.
Slice of a 3D Model A slice is a special type of 2D geometry derived from a 3D model of a part. It represents the geometry that intersects a plane that is parallel to the window. Parts are usually constructed by taking 3D models and slicing them at very small intervals. Each slice is then interpreted in succession by the printer and used to cure the polymer at the proper height.
Procedural Geometry. Procedurally generated geometry can also be added to a slice. This is accomplished by invoking shape generation functions, such as "addcircle", "addrectangle", and others. Each function allows projection of the corresponding shape onto the printing window. A produced part appears as a vertically extruded shape or combination of shapes.
Coordinate spaces: Stage. The coordinate system that the stage uses is usually calibrated such that the origin is 1-20 microns above the window. Coordinate spaces: Slice. Coordinate system of the projected slice is such that origin is located at the center of the print window.
Quick Start.
The following is the most basic method of printing a part from a sliced 3D model.
Printing a sliced model consists of 4 main parts: Loading the data, preparing the printer, printing, and shutdown.
Loading Data. In this section of the code the sliced model data is loaded into memory. The file path to the model is defined in the Constants section of the code. See the full code below for details.
--Loading Model
modelFilePath = "Chess King.svg"
numSlices = loadslices(modelFilePath)
Preparing the printer it is important to do two things before printing. You must first turn on the light engine with the relay function, and if applicable, the desired fluid height should be set.
-Prepare Printer
relay(true)--turn light on
showframe(-l) -ensure nothing is exposed durring setup
setlevels(.55, .6)— if available, printer set fluid pump to maintain about 55% fill
Printing. The first step of the printing process is to calibrate the system and set the stage to its starting position by calling gotostart. Next we begin a for loop in which we print each slice. The first line of the for loop uses the infoline command to display the current slice index in the sidebar. Next we determine the height at which the next slice should be cured. That value is stored to nextHeight. Following this we move the stage to the height at which the next slice needs to be cured. To ensure a clean print it can sometimes be necessary to wait for oxygen to diffuse into the resin. Therefore we call sleep for a half second (the exact time for preExposureTime is defined in the constants section as well). After this it's time to actually cure the resin so we call showframe and pass it the index of the slice we want to print, which is stored in slicelndex by the for loop. We sleep again after this for exposureTime seconds in order to let the resin cure. Before moving on to the next frame, we call sho frame(-l) in order to prevent the light engine from curing any resin while the stage is moving to the next height.
-Execute Print
gotostart()--move stage to starting position
for slicelndex =0,numSlices-l do infoline(5, string.format("Current Slice: d", slicelndex)) nextHeight = sliceheight(slicelndex)--calculate the height that the stage should be at to expose this frame moveto(nextHeight, stageSpeed)-move to nextHeight sleep(preExposureTime)-wait a given amount of time for oxygen to diffuse into resin , prepExposureTime is predefined in the Constants section showframe(slicelndex)--show frame to expose sleep(exposureTime)-wait while frame exposes, exposureTime is predefined in the Constants section showframe(-l)-- show nothing to ensure no exposure while stage is moving to next position end
Shutdown. The final step in the printing process is to shut down the printer. Call relay(false) to turn the light engine off. If you are using fluid control, call setlevels(0,0) to ensure the valve is shut off. Finally it is a good idea to move the stage up a bit after printing to allow for easy removal of the part.
--Shutdown
relay(false)
setlevels(0,0)
-Lift stage to remove part
moveby(25, 16000) Fully completed code implementing instructions based on the above is set forth below.
-Constants
exposureTime = 1.5- in seconds
preExposureTime = 0.5 - in seconds
stageSpeed = 300 -in mm/hour
-Loading Model
modelFilePath = "Chess King.svg"
numSlices = loadslices(modelFilePath)
-calculating parameters
maxPrintHeight = sliceheight(numSlices-l)-find the highest point in the print, this is the same as the height of the last slice. Slices are 0 indexed, hence the -1.
infoline(l, "Current Print Info:")
infoline(2, string.formatf'Calculated Max Print Height: %dmm", maxPrintHeight)) infoline(3, string.formatf'Calculated Est. Time: %dmin", (maxPrintHeight/stageSpeed)*60 + (preExposureTime+exposureTime)*numSlices/60))
infoline(4, string.format(" Number of Slices: %d", numSlices))
-Prepare Printer
relay(true)--turn light on
showframe(-l) -ensure nothing is exposed durring setup
setlevels(.55, .6)— if available, printer set fluid pump to maintain about 55% fill
-Execute Print
gotostart()--move stage to starting position
for slicelndex =0,numSlices-l do infoline(5, string.format("Current Slice: %d", slicelndex)) nextHeight = sliceheight(slicelndex)-calculate the height that the stage
should be at to expose this frame movetof nextHeight, stageSpeed)~move to nextHeight sleep(preExposureTime)--wait a given amount of time for oxygen to diffuse into resin , prepExposureTime is predefined in the Constants section showframe(slicelndex)--show frame to expose sleep(exposureTime)-wait while frame exposes, exposureTime is predefined in the Constants section showframe(-l)-- show nothing to ensure no exposure while stage is moving to next position end
-Shutdown
relay(false)
setlevels(0,0)
-Lift stage to remove part
moveby(25, 16000)
Gotostart. The main purpose of gotostart is to calibrate the stage. This function resets the coordinate system to have the origin at the lowest point, where the limit switch is activated. Calling this command will move the stage down until the limit switch in the printer is activated; this should occur when the stage is at the absolute minimum height. gotostartQ moves stage to start at the maximum speed which varies from printer to printer. gotostartQ-moving to origin at default speed gotostart(number speed) moves stage to start at speed given in millimeters/hour. gotostart(15000)--moving stage to origin at 15000mm/hr -speed: speed, in mm/hour, at which the stage will move to the start position. MOVETO
moveto allows the user to direct the stage to a desired height at a given speed. Safe upper and lower limits to speed and acceleration are ensured internally.
moveto(number targetHeight, number speed) moveto(25, 15000)~moving to 25mm at 15,000mm/hr
moveto(number targetHeight, number speed, number acceleration)
This version of the function allows an acceleration to be defined as well as speed. The stage starts moving at initial speed and then increases by acceleration. moveto(25, 20000, le7)--moving the stage to 25mm at 20,000mm/hr while accelerating at 1 million mm/hrA2 moveto(number targetHeight, number speed, table controlPoints. function callback) This function behaves similar to the basic version of the function. It starts at its initial speed and position and moves to the highest point on the control point table, callback is called when the stage passes each control point. function myCallbackFunction{index)-defining the ca llback function print("hello")
end moveto(25, 20000, slicecontrolpoints(), myCallbackFunction)-- moving the stage to 25mm at 20 000mm/hr while calling
myCallbackFunction at the control points generated by
slicecontrolpointsO moveto(number targetHeight, number speed, number acceleration, table controlPoints, function callback) This function is the same as above except the user can pass an acceleration. The stage accelerates from its initial position continuously until it reaches the last control point. function myCallbackFunction(index)--defintng the callback function
print("hello")
end
moveto(25, 20000, 0.5e7, slicecontrolpointsO, myCallbackFunction)- moving the stage to 25mm at 20,000mm/hr while accelerating at 0.5 million mm/hrA2 and also calling myCallbackFunction at the control points generated by siicecontrolpointsQ
-targetHeight: height, in mm from the origin, that the stage will move to.
-initialSpeed: initial speed, in mm/hour, that the stage will start moving at.
-acceleration: rate, in mm hour2, that the speed of the stage will increase
from initial speed.
-controlPoints: a table of target heights in millimeters. After the stage
reaches a target height, it calls the function callback.
-callback: pointer to a function that will be called when the stage reaches a control point. The callback function should take one argument which is the index of the control point the stage has reached. moveby
moveby allows the user to change the height of the stage by a desired amount at a given speed. Safe upper and lower limits to speed and acceleration are ensured internally. movebypnumber dHeight, number initalSpeed)
1 moveby(-2, 15000)-moving down 2mm at 15,000mm/hr moveby (number d Height, number initialSpeed, number acceleration)
This version of the function allows an acceleration to be defined as well as speed. The stage starts moving at initial speed and then increases by
acceleration until it reaches its destination.
1 moveby(25, 15000, le7)--moving up 25mm at 15,000mm/hr while accelerating le7mm/hrA2 moveby(number dHeight, number initialSpeed, table controiPoints, function callback) This function usage allows the user to pass the function a table of absolute height coordinates. After the stage reaches one of these target heights, it calls the function 'callback.' Callback should take one argument which is the
index of the control point it has reached. function myCallbackFunction(index)~defining the callback function
print("hello")
end
moveby(25, 20000, slicecontrolpoints(), myCallbackFunction)--moving the stage up 25mm at 20,000mm/hr while calling myCalibackFunction at the control points generated by slicecontrolpointsO moveby(number dHeight, number initialSpeed, number acceleration, table
controiPoints, function callback) This function is the same as above except the user can pass an acceleration. The stage accelerates from its initial position continuously until it reaches the last control point. function myCallbackFunction(index)-defining the callback function print("hello")
end moveby(25, 20000, le7,slicecontrolpoints(), myCallbackFunction)--moving the stage up 25mm at 20,000mm/hr while calling myCalibackFunction at the control points generated by slicecontrolpointsQ and accelerating at le7mm/hrA2
-dHeight: desired change in height, in millimeters, of the stage.
-initialSpeed: initial speed, in mm/hour, at which the stage moves.
-acceleration: rate, in mm/hour2, that the speed of the stage will increase from initial speed.
-controiPoints: a table of target heights in millimeters. After the stage
reaches a target height, it calls the function callback. -callback: pointer to a function that will be called when the stage reaches a control point. The callback function should take one argument which is the index of the control point the stage has reached. LIGHT ENGINE CONTROL light
relay is used to turn the light engine on or off in the printer. The light engine must be on in order to print. Make sure the relay is set to off at the end of the script.
rclavfboolcan HqhtOn)
relay(true) -turning light on
-lighfOn: false turns the light engine off, true turns the light engine on.
ADDING PROCEDURAL GEOMETRY
Functions in this section exist to project shapes without using a sliced part file. Every function in this section has an optional number value called figurelndex. Each figure in a slice has its own index. The figures reside one on top of another. Figures are drawn so that the figure with the highest index is On top' and will therefore not be occluded by anything below it. By default indexes are assigned in the order that they are created so the last figure created will be rendered on top. One can, however, change the index by passing the desired index into figurelndex.
Every function in this section requires a slicelndex argument. This value is the index of the slice that the figure will be added to.
Note that generating this procedural geometry does not guarantee that it will be visible or printable. One must use one of the functions such as fillmask or linemask outlined below. addcircle
addcircle(number x, number y, number radius, number slicelndex) addcircle draws a circle in the specified slice slice. addCircle(0,0, 5, 0)-creating a circle at the origin of the first slice with a radius of 5mm
-x: is the horizontal distance, in millimeters, from the center of the circle to the origin.
-y: is the vertical distance, in millimeters, from the center of the circle to the origin. -radius: is the radius of the circle measured in millimeters.
-slicelndex: index of the slice to which the figure will be added.
Returns: figure index of the figure. addrectangle
addrectangle(number x, number y, number width, number height number slicelndex) addrectangle draws a rectangle in the speci fied slice. addrectangle(0,0, 5,5, 0)--creating a 5mm x 5mm square with its top left corner at the origin.
-x: horizontal coordinate, in millimeters, of the top left corner of the rectangle.
-y: vertical coordinate, in millimeters, of the top left corner of the rectangle.
-width: width of the rectangle in millimeters.
-height: height of the rectangle in millimeters.
-slicelndex: index of the slice to which the figure will be added.
Returns: figure index of the figure. addline
addline(number xO, number yO, number xl, number yl, number slicelndex) addline draws a line segment.
addLine(0,0, 20,20, 0)--creating a line from the origin to 20mm along the x and y axis on the first slice.
-xO: horizontal coordinate of the first point in the segment, measured in millimeters. -yO: vertical coordinate of the first point in the segment, measured in millimeters. -xl : horizontal coordinate of the second point in the segment, measured in millimeters.
-y2: vertical coordinate of the second point in the segment, measured in millimeters.
-slicelndex: index of the slice to which the figure will be added. Returns: figure index of the figure,
addtext
text(numbcr x, number y, number scale, string text, number slicelndex) addtext draws text on the specified slice starting at position 'x, y' with letters of size 'scale'. addtext(0,0, 20, "Hello world", 0)--writing Hello World at the origin of the first slice
-x: horizontal coordinate, measured in millimeters, of the top left corner of the bounding box around the text.
-y: vertical coordinate, measured in millimeters, of the top left corner of the bounding box around the text.
-scale: letter size in millimeters, interpretation may vary depending on the underlying operating system (Windows, OSX, Linux, etc).
-text: the actual text that will be drawn on the slice.
-slicelndex: index of the slice to which the
figure will be added. Returns: figure index
of the figure. FILL AND LINE CONTROL
fillmask
fillmask(number color, number slicelndex, number figurelndex) fillmask is used to control how the procedural geometry is drawn, fillmask tells the figure in question to fill the entirety of its interior with color.
-color: can be any number on the range 0 to 255. Where 0 is black and 255 is white, any value in between is a shade of grey interpolated linearly between black and white based on the color value. Any value less than 0 will produce a transparent color. myCircle = addCircle(0,0,5,0)--creating the circle to fill
fillmask(255, 0, myCircle)--Creating a white filled circle -slicelndex:l e index of the slice that should be modified.
-figure Index-X s. is used to determine which figure on the slice should be filled. Each figure has its own unique index. If no figurelndex is passed, the fill applies to all figures in the slice. linemask
linemask(number color, number slicelndex, number figurelndex) linemask used to control how the procedural geometry is drawn, linemask tells a figure to draw its outline in a specific color. The width of the outline is defined by the function linewidth. myCircle = addCircle(0,0,20,0)--creating the circle to fill
linemask(255, 0, myCircle)-setting the outline of the circle to be white fillmask{150,0, myCircle)--setting the fill of the circle to be grey
-color: can be any number on the range 0 to 255. Where 0 is black and 255 is white, any value in between is a shade of grey interpolated linearly between black and white based on the color value. Any value less than 0 will produce a transparent color.
-slicelndex: the index of the slice that should be modified.
-figurelndex: is used to determine which figure on the slice should be filled. Each figure has its own unique index. If no figurelndex is passed, the fill applies to all figures in the slice. linewidth
linewidth(number width, number slicelndex, number
figurelndex) linewidth is used to set the width of the line that
linemask will use to outline the figure. linewidth(2,0)-setting the line width for every figure on the first slice to 2mm
-slicelndex: the index of the slice that should be modified. -figurelndex: is used to determine which figure on the slice should have its outline changed. Each figure has its own unique index, see section 2.3 (Pg.
10) for more details. If no figurelndex is passed, the fill applies to all figures in the slice. loadmask
loadmask(string filepath) loadmask allows for advanced fill control. It enables
the user to load a texture from a bitmap file and use it to fill the entirety of a figure with the texture. texture = loadmask("voronoi_noise.png")--loading texture. voronoi_no'ise.png is in the same directory as the script.
myCircle = addCircle(0,0,20,0)-creating the circle to fill
fillmask(texture, 0, myCircle)-filling the circle with voronoi noise
-filepath: file path to image file
Returns: a special data type which can be passed into a fillmask or
linemask function as the color argument. FRAMES
showframe
showframe(number slicelndex) showframe is essential to the printing process.
This function sends the data from a slice to the printer. Call showframes on a frame that doesn't exist to render a black frame e.g. showframe(-l). showframe(2)--showing the 3rd slice
-slicelndex: the index of the slice to send to the printer.
framegradiertt
framegradient(number slope) framegradient is
designed to compensate for differences in light
intensity. calcframe
calcframeQ calcframe is designed to analyze the construction of a slice calculates the last frame shown. showframe(O)
calcframeO
Returns: the maximum possible distance between any point in the figure and the edge.
2.5.4 loadframe
loadframefstring filepath)
loadframe is used to load a single slice
from a supported bitmap file. loadframe("slice.png")--slice.png is in the same directory as the script
-filepath: file path to slice image.
SLICES
addslice
addslice(numbcr si ice Height) addslice creates a new slice at a given height at the end of the slice stack. addslice(.05)--adding a slice at .05mm addsliceQiiimber sliceHeiqht, number slicelndex) addslice(.05, 2)-adding a slice at ,05mm and at index 2. this pushes all layers 2 and higher up an index. addslice creates a new slice at a given height and slice
-sliceHeight: height, in millimeters, of the slice.
-slicelndex: index at which the slice
should be added. Returns: slice
index. loadsliccs
loadslices(string filepath) loadslices
is used to load all the slices
from a 2D slice file. loadslicesfChess King.svg")-loading all the slices from the Chess King.svg fil
-filepath: file path to the sliced model. Acceptable
formats are .cli and .svg. Returns: number of slices.
sliceheight
sliceheight(number slicelndex) sliceheight
is used to find the height of a slice in
mm off the base. addslice(.05,0)--setting the first slice to .05mm
sliceheight(0)--checking the height of slice 0, in this example it should return .05
-slicelndex: index of the slice to check. Returns: slice height in mm.2.6.4
slicecontrolpoints
slicecontroIpointsO slicecontrolpoints is a helper function which creates a
control point for each slice of a model. These control points can be passed to the moveto or moveby function to set it to callback when the stage reaches the height of each slice. Make sure loadslices has been called prior to calling this function. loadslices("Chess King.svg")
controlPoints - slicecontrolpointsQ
Returns: Lua table of control points.
TIMING
Sleep
sleep(number seconds) sleep allows the user to pause the execution of the program for a set number of seconds. sleep(.5)--sleeping for a half second
-seconds: number of seconds to pause script execution.
Clock
clock() clock returns the current time in seconds. It is accurate at least up to the millisecond and should therefore be used instead of Lua's built in clock functionality, clock should be used as a means to measure differences in time as the start time for the second count varies from system to system. tl = clockO
loadslices("Chess King.svg")
deltaTime = clock()-tl
Returns: system time in seconds. FLUID CONTROL
This set of functions can be used with printer models that support fluid control. Before the script finishes executing, setlevels(0,0) should be called to ensure that the pump stops pumping fluid into the vat. getcurrentlevel
getcurrentlevelQ getcurrentlevel
returns the percentage of the vat
that is full. print( string.format("Vat is %d percent full.", getcurrentlevelQ* 100) )
Returns: a floating point number on the range 0 to 1 that represents the
percentage of the vat that is full. setleveis
setleve!s(n umber min, number max) setleveis allows the user to define how
much fluid should be in the vat. The fluid height will be automatically regulated by a pump. The difference between min and max should be greater than 0.05 to ensure that the valve is not constantly opening and closing. setlevels(.7,.75)--keeping vat about 75 percent full
-min: the minim percentage of the vat that should be full. Entered as a floating point number from 0 to 1.
-max: the max percentage of the vat that should be full. Entered as a floating point number from 0 to 1.
User Feedback
infoline
infoIinc(int linelndex, string text) infoline allows the user to display up to 5 lines
of text in a constant position on the sidebar of the Programmable Printer
Platform. This function is often used to allow the user to monitor several
changing variables at once. infoline(l, string.format("Vat is %d percent full.", getcurrentleve!Q* 100) )
-linelndex: the index of the line. Indexes should be in the range 1 to 5, 1
being the upper most line, -text: text to be displayed at line index.
GLOBAL CONFIGURATION TABLE.
Before a print script is executed, all global variables are loaded into a configuration table called cfg. Most of the data in this table has already been read by the Programmable Printer Platform by the time the users script executes, therefore, changing them will have no effect. However, writing to the xscale, yscale, zscale, xorig and yorig fields of the cfg, will effect all the loadslices and addlayer calls that are made afterwards. If the users script is designed to be run at a specific scale and/or position, it is good practice to override the cfg with the correct settings to ensure the scale and position can't be accidentally changed by the Programmable Printer Platform.
cfg.xscale = 3 -overriding global settings to set scale on the x axis to 3
cfg.yscale = 2 --overriding global settings to set scale on the y axis to 2
cfg.zscale = 1 -overriding global settings to set scale on the z axis to 1
cfg.xorig = -2.0 --overriding global settings to set the origin on the x axis 2mm left cfg.yorig = 0.25 -overriding global settings to set the origin on the y axis .25mm in the positive direction Fields in cfg:
-serial port: name of serial port (changing this variable wont effect code)
-xscale: x scale -yscale: y scale -zscale: z scale
-xorig: x origin -yorig: y origin
-hw xscale pixel resolution in x direction (changing this variable won't effect code)
-hw yscale: pixel resolution in y direction (changing this variable won't effect code)
USEFUL LUA STANDARD LIBRARIES.
The math standard library contains several different functions that are useful in calculating geometry. The string object is most useful in printing for manipulating info strings. For details contact LabLua at Departamento de Informatica, PUC-Rio, Rua Marques de Sao Vicente, 225; 22451-900 Rio de Janeiro, RJ, Brazil
EXAMPLE 8
Lua Script Program for Continuous Print
This example shows a Lua script program corresponding to Example 7 above for continuous three dimension printing.
--Constants
sliceDepth = .05-in millimeters
exposureTime = .225- in seconds
-Loading Model
modelFilePath = "Chess King.svg"
numSlices = loadslices(modelFilePath)
controlPoints = slicecontrolpoints()-Generate Control Points
-calculating parameters
exposureTime = exposureTime/(60*60)-converted to hours
stageSpeed = sliceDepth/exposureTime-required distance/required time
maxPrintHeight = sliceheight(numSlices-l)--find the highest point in the print, this is the same as the height of the last slice. Slices are 0 indexed, hence the -1.
infoline(l, "Current Print Info:")
info!ine(2, string.formatf'Calulated Stage Speed: %dmm/hr\n", stageSpeed)) infoline(3, string.format("Calculated Max Print Height: %dmm", maxPrintHeight)) infoline(4, string.formatf'Calculated Est. Time: %dmin",
(maxPrintHeight/stageSpeed)*60))
-Create Callback Function for use with moveto
function movetoCallback(controlPointlndex)
showframe(controlPointlndex)
end --Prepare Printer
relay(true)--turn light on
setlevels(.55, .6)— if available, printer set fluid pump to maintain about 50% fill
-Execute Print
gotostart()--move stage to starting position
moveto(maxPrintHeight, stageSpeed, controlPoints, movetoCallback)
-Shutdown
relay(fatse)
setlevels(0,0)
-Lift stage to remove part
moveby{25, 160000)
EXAMPLE 9
Lua Script Program for Cylinder and Buckle
This example shows a Lua script program for two fitted parts that use procedural geometry.
Cylinder:
-Constants
exposureTime = 1.5- in seconds
preExposureTime = 1 - in seconds
stageSpeed = 300 -in mm/hour
sliceDepth = .05
numSlices = 700
-Generating Model
radius = 11
thickness = 4
smatlCircleRad = 1.4 for slicelndex = 0,numSlices-l do
addlayer(sliceDepth*(slicelndex+l), slicelndex)-the depth of a slice*its index = height of slice largeCircle = addcircle(0,0,radius, slicelndex)
linewidth(thickness, slicelndex, largeCircle)
linemask(255, slicelndex, largeCircle) for i=0,2*math.pi, 2*math.pi/8 do addcircle(math.cos(i)*radius, math.sin(i)*radius, smallCircleRad,
slicelndex)
end fillmask(0,slicelndex) end
--calculating parameters
maxPrintHeight = sliceheight(numSlices-l)--find the highest point in the print, this is the same as the height of the last slice. Slices are 0 indexed, hence the -1.
infoline(l, "Current Print Info:")
infoline(2, string.format("Calculated Max Print Height: %dmm", maxPrintHeight)) infoline(3, string.format("Calculated Est. Time: %dmin",
(maxPrintHeight/ stageSpeed)*60 +
(preExposureTime+exposureTime)*numSlices/60))
infoline(4, string.formatf" Number of Slices: %d", numSlices))
--Prepare Printer
relay(true)--turn light on
showframe(-l) -ensure nothing is exposed durring setup
setlevels(.55, .6)— if available, printer set fluid pump to maintain about 55% fill
--Execute Print
gotostart()-move stage to starting position
for slicelndex =0,numSlices-l do infoline(5, string.format("Current Slice: %d", slicelndex)) nextHeight = sliceheight(slicelndex)-calculate the height that the stage should be at to expose this frame moveto(nextHeight, stageSpeed)-move to nextHeight sleep(preExposureTime)-wait a given amount of time for oxygen to diffuse into resin , prepExposureTime is predefined in the Constants section showframe(slicelndex)--show frame to expose sleep(1.5)--wait while frame exposes, exposureTime is predefined in the
Constants section showframe(-l) - show nothing to ensure no exposure while stage is moving to next position end
-Shutdown
relay(false)
setlevels(0,0)
--Lift stage to remove part
moveby(25, 160000)
Buckle:
--Constants
exposureTime = 1.5-- in seconds
preExposureTime = 0.5 - in seconds
stageSpeed = 300 -in mm/hour
sliceDepth = .05
numSlices = 900 -Generating Model
baseRadius = 11
thickness = 3
innerCircleRad = 7.5 for slicelndex = 0,numSlices-l do
addlayer(sliceDepth*(slicelndex+l))--the depth of a slice*its index = height of slice
if(slicelndex < 100) then -base
addcircle(0,0, baseRadius, slicelndex) fillmask(255, slicelndex)
else - inner circle
innerCircle = addcircle(0,0, innerCircleRad, slicelndex) linewidth(thickness, slicelndex, innerCircle)
linemask(255, slicelndex, innerCircle) for i = 0,4*2*math.pi/8, 2*math.pi/8 do
x = math.cos(i)*(innerCircleRad+thickness)
y = math.sin(i)*(innerCircleRad+thickness)
cutLine = addline(x,y, -x,-y, slicelndex)
linewidth(3, slicelndex, cutLine)
linemask(0, slicelndex, cutLine)
end if (slicelndex > 800) then -tips
rO = innerCircleRad +2 if(slicelndex < 850) then
innerCircleRad + (slicelndex-800)*(2/50)
end for i = 0,4*2*math.pi/8, 2*math.pi/8 do
ang = i + (2*math.pi/8)/2
x = math.cos(ang)*(rO)
y = math.sin(ang)*(rO)
nubLine = addline(x,y, -x,-y, slicelndex)
linewidth(2, slicelndex, nubLine)
linemask(255, slicelndex, nubLine)
end
fillmask(0,slicelndex, addcircle(0,0, innerCircleRad-(thickness/2), slicelndex))
end
showframe(slicelndex)
sleep(.02) end
--calculating parameters
maxPrintHeight = sliceheight(numSlices-l)--find the highest point in the print, this is the same as the height of the last slice. Slices are 0 indexed, hence the -1.
infoline(l, "Current Print Info:")
infoline(2, string.format("Calculated Max Print Height: %dmm", maxPrintHeight)) infoline(3, string.format("Calculated Est. Time: %dmin", (maxPrintHeight/stageSpeed)*60 + (preExposureTime+exposureTime)*numSlices/60))
infoline(4, string.format("Number of Slices: %d", numSlices))
--Prepare Printer
relay(true)--turn light on
showframe(-l) -ensure nothing is exposed durring setup
setlevels(.55, .6)— if available, printer set fluid pump to maintain about 55% fill
-Execute Print
gotostart()--move stage to starting position
for slicelndex =0,numSlices-l do infoline(5, string.format("Current Slice: %d", slicelndex)) nextHeight = sliceheight(slicelndex)--calculate the height that the stage
should be at to expose this frame moveto(nextHeight, stageSpeed)-move to nextHeight sleep(preExposureTime)--wait a given amount of time for oxygen to diffuse into resin, prepExposureTime is predefined in the Constants section showframe(slicelndex)-show frame to expose sleep(1.5)--wait while frame exposes, exposureTime is predefined in the Constants section showframe(-l)-- show nothing to ensure no exposure while stage is moving to next position end
-Shutdown
relay(false)
setlevels(0,0)
--Lift stage to remove part
moveby(25, 160000) EXAMPLE 10
Continuous Fabrication with Intermittent Irradiation and Advancing
A process of the present invention is illustrated in Figure 21, where the vertical axis illustrates the movement of the carrier away from the build surface. In this embodiment, the vertical movement or advancing step (which can be achieved by driving either the carrier or the build surface, preferably the carrier), is continuous and unidirectional, and the irradiating step is carried out continuously. Polymerization of the article being fabricated occurs from a gradient of polymerization, and hence creation of "layer by layer" fault lines within the article is minimized.
An alternate embodiment of the present invention is illustrated in Figure 22. In this embodiment, the advancing step is carried out in a step-by-step manner, with pauses introduced between active advancing of the carrier and build surface away from one another. In addition, the irradiating step is carried out intermittently, in this case during the pauses in the advancing step. We find that, as long as the inhibitor of polymerization is supplied to the dead zone in an amount sufficient to maintain the dead zone and the adjacent gradient of polymerization during the pauses in irradiation and/or advancing, the gradient of polymerization is maintained, and the formation of layers within the article of manufacture is minimized or avoided. Stated differently, the polymerization is continuous, even though the irradiating and advancing steps are not. Sufficient inhibitor can be supplied by any of a variety of techniques, including but not limited to: utilizing a transparent member that is sufficiently permeable to the inhibitor, enriching the inhibitor (e.g., feeding the inhibitor from an inhibitor-enriched and/or pressurized atmosphere), etc. In general, the more rapid the fabrication of the three-dimensional object (that is, the more rapid the cumulative rate of advancing), the more inhibitor will be required to maintain the dead zone and the adjacent gradient of polymerization.
EXAMPLE 11
Continuous Fabrication with Reciprocation During Advancing to Enhance Filling, of Build Region with Polymerizable Liquid
A still further embodiment of the present invention is illustrated in Figure 23. As in Example 10 above, this embodiment, the advancing step is carried out in a step-by-step manner, with pauses introduced between active advancing of the carrier and build surface away from one another. Also as in Example 10 above, the irradiating step is carried out intermittently, again during the pauses in the advancing step. In this example, however, the ability to maintain the dead zone and gradient of polymerization during the pauses in advancing and irradiating is taken advantage of by introducing a vertical reciprocation during the pauses in irradiation.
We find that vertical reciprocation (driving the carrier and build surface away from and then back towards one another), particularly during pauses in irradiation, can serve to enhance the filling of the build region with the polymerizable liquid, apparently by pulling polymerizable liquid into the build region. This is advantageous when larger areas are irradiated or larger parts are fabricated, and filling the central portion of the build region may be rate-limiting to an otherwise rapid fabrication.
Reciprocation in the vertical or Z axis can be carried out at any suitable speed in both directions (and the speed need not be the same in both directions), although it is preferred that the speed when reciprocating away is insufficient to cause the formation of gas bubbles in the build region. While a single cycle of reciprocation is shown during each pause in irradiation in Figure 23, it will be appreciated that multiple cycles (which may be the same as or different from one another) may be introduced during each pause.
As in Example 10 above, as long as the inhibitor of polymerization is supplied to the dead zone in an amount sufficient to maintain the dead zone and the adjacent gradient of polymerization during the reciprocation, the gradient of polymerization is maintained, the formation of layers within the article of manufacture is minimized or avoided, and the polymerization/fabrication remains continuous, even though the irradiating and advancing steps are not.
EXAMPLE 12
Acceleration during Reciprocation Upstroke and
Deceleration during Reciprocation Downstroke to Enhance Part Quality We observe that there is a limiting speed of upstroke, and corresponding downstroke, which if exceeded causes a deterioration of quality of the part or object being fabricated (possibly due to degradation of soft regions within the gradient of polymerization caused by lateral shear forces a resin flow). To reduce these shear forces and/or enhance the quality of the part being fabricated, we introduce variable rates within the upstroke and downstroke, with gradual acceleration occurring during the upstroke and gradual deceleration occurring during the downstroke, as schematically illustrated in Figure 24.
EXAMPLE 13
Dual Cure with PEGDA + EGDA + Polvurethane (HMD! based)
5g of the following mixture was mixed for 3 minutes in a high-shear mixer,
lg of poly(ethylene glycol) diacrylate (Mn = 700 g/mol) containing 12wt% of diphenyl(2 4 6-trimethylbenzoyl)phosphine oxide (DPO).
lg of diethyleneglycol diacrylate containing 12wt% DPO
1 g of "Part A" polyurethane resin (Methylene bis(4-Cyclohexylisocyanate) based: "ClearFlex 50" sold by Smooth-On® inc.
2g of "Part B" polyurethane resin (polyol mixture): "ClearFlex 50" sold by
Smooth-On® inc.
0.005g of amorphous carbon black powder After mixing, the resin was 3D formed using an apparatus as described herein. A "honeycomb" object was formed at a speed of 160 mm/hr using a light intensity setting of 1.2 mV (when measured using a volt meter equipped with a optical sensor). Total printing time was approximately 10 minutes.
After printing, the part was removed from the print stage, rinsed with hexanes, and placed into an oven set at 1 10°C for 12 hours.
After heating, the part maintained its original shape generated during the initial printing, and it had transformed into a tough, durable, elastomer having an elongation at break around 200%
EXAMPLE 14
Dual Cure with EGDA + Polyurethane (TDI based).
5g of the following mixture was mixed for 3 minutes in a high-shear mixer,
lg of diethyleneglycol diacrylate containing 12wt% DPO
2 g of "Part A" polyurethane resin (toluene diisocyanate) based: "VytaFlex
30" sold by Smooth-On® inc.
2g of "Part B" polyurethane resin (polyol mixture): "Vytaflex 30" sold by Smooth-On® inc.
After mixing, the resin was 3D formed using an apparatus as described herein. The cylindrical object was formed at a speed of 50 mm/hr using a light intensity setting of 1 .2 mV (when measured using a volt meter equipped with an optical sensor). Total printing time was approximately 15 minutes.
After printing, the part was removed from the print stage, rinsed with hexanes, and placed into an oven set at 1 10°C for 12 hours.
After heating, the part maintained its original shape generated during the initial printing, and it had transformed into a tough, durable, elastomer having an elongation at break around 400%
Example 15
Synthesis of a Reactive Blocked Polyurethane Prepolymer for Dual Cure
Add 200 g of melted anhydrous 2000 Da, polytetramethylene oxide (PTM02k) into a 500 mL 3 -neck flask charged with an overhead stirrer, nitrogen purge and a thermometer. Then 44.46 g IPDI is added to the flask and stirred to homogeneous solution with the PTMO for 10 min, followed by addition of 140 uL Tin(II) catalyst stannous octoate. Raise the temperature to 70 °C, and keep reaction for 3 h. After 3h, gradually lower the temperature to 40 °C, and gradually add 37.5 g TBAEMA using an additional funnel within 20 min. Then set the temperature to 50 °C and add 100 ppm hydroquinone. Keep the reaction going on for 14 h. Pour out the final liquid as the product.
Example 16
Synthesis of a Second Reactive Blocked Polyurethane Prepolymer for Dual Cure
Add 150 g dried 1000 Da, polytetramethylene oxide (PTMOlk) into a 500 mL 3-neck flask charged with an overhead stirrer, nitrogen purge and a thermometer. Then 50.5 g HDI is added to the flask and stirred to homogeneous solution with the PTMO for 10 min, followed by addition of 100 uL Tin(ll) catalyst stannous octoate. Raise the temperature to 70 °C, and keep reaction for 3 h. After 3h, gradually lower the temperature to 40 °C, and gradually add 56 g TBAEMA using an additional funnel within 20 min. Then set the temperature to 50 °C and add 100 ppm hydroquinone. Keep the reaction going on for 14 h. Pour out the final liquid as the product.
In the above examples, the PTMO can be replaced by polypropylene glycol (PPG, such as 1000 Da PPG (PPGlk)) or other polyesters or polybuadiene diols. IPDI or HDI can be replaced by other diisocyanates. The molar stoichiometry of the polyol : diisocyanate : TBAEMA is preferably 1 : 2 : 2. Preferably use 0.1 - 0.3 wt% stannous octoate to the weight of the polyol.
Example 17
Printing and Thermal Curing with a Reactive Blocked Polyurethane Prepolymers ABPU resins can be formed (optionally but preferably by continuous liquid interphase/interface printing) at up to 100 mm/hr using the formulations in Table 1 to generate elastomers with low hysteresis after thermally cured at 100 °C for 2 to 6 hours, depending on the diisocyanates used in ABPU and the chain extender(s).
Table 1
Parts by weight
ABPU 320
Reactive Diluent 40-80
Ethylene glycol 8-20
H12MDA 8-20
PPO 1-4 Dog-bone-shaped specimens were formed by continuous liquid interface printing with different ABPUs (varying the diisocyanate and polyol used for the synthesis) and reactive diluents. Table 2 shows the mechanical properties of some of the thermally cured dog-bone samples at room temperature.
Table 2
ABPU Reactive diluent Tensile stress at % elongation at
Diisocyanate Polyol maximum load break
(MPa)
IPDI PTM02k Methyl 25 650
methacrylate
IPDI PPGlk Cyclohexane 7.5 368
methacrylate
MDI PTM02k TBAEMA 13.4 745
HDI PTMOlk TBAEMA 13 490
HMDI PTMOlk TBAEMA 13.6 334
EXAMPLES 18-61
Additional Polvurethane Dual Cure Materials, Testing and Tensile Properties
The following abbreviations are used in the Examples below: "DEGMA" means di(ethylene glycol) methyl ether methacrylate; "IBMA" means isoboronyl methacrylate ;"P ACM" means 4,4'-Diaminodicyclohexyl methane; "BDO" means 1,4- butanediol; "PPO" means Phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide; "MDEA" means 4,4'-methylene-bis-(2,6-diethylaniline); "2-EHMA" means 2-ethylhexyl methacrylate; and "PEGDMA" means polyethylene glycol) dimethacrylate (MW = 700 Da).
EXAMPLE 18
Testing of Tensile Properties
In the examples above and below, tensile properties were tested in accordance with ASTM standard D638-10, Standard Test Methods for Tensile Properties of Plastics (ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959 USA).
Briefly, tensile specimens (sometimes referred to as "dog-bone samples" in reference to their shape), were loaded onto an Instron 5964 testing apparatus with Instron BLUEHILL3 measurement software (Instron, 825 University Ave, Norwood, MA, 02062-2643, USA). The samples are oriented vertically and parallel to the direction of testing. Cast and flood cured samples were fully cured using a DNMAX 5000 EC-Series enclosed UV flood lamp (225 mW/cm2) for from thirty to ninety seconds of exposure. Table 3 below summarizes the types of tensile specimens tested, general material property (rigid or non-rigid), and the associated strain rate.
Table 3
Dogbone Type MaterialType Strain Rate
(mm/min)
IV Rigid 5
V Rigid 1
IV Non-rigid 50
V Non-rigid 10
Dogbone type IV is used to test elastomeric samples.
The samples were tested at a rate such that the sample ruptures at a time between 30 seconds to 5 minutes to ensure that sample strain rate is slow enough to capture plastic deformation in the samples.
Measured dogbone samples that do not rupture in the middle rectangular section are excluded. Samples that break in the grips or prior to testing are not representative of the anticipated failure modes and are excluded from the data.
Persuant to ASTM D-638, measure the Young's modulus (modulus of elasticity) (slope of the stress-strain plot between 5-10% elongation), tensile strength at break, tensile strength at yield, percent elongation at break, percent elongation at yield.
A strain rate is chosen such that the part with the lowest strain-at-break (%) will foil within 5 minutes. This often means that a slower strain rate will be necessary for rigid samples.
Example 19
Elastomer from a Reactive Blocked Polvurethane Prepolymer
Components as shown in Table 4, except PACM, were added to a container and thoroughly mixed (either by an overhead stirrer or a centrifugation mixer such as THINKY(TM) mixer) to obtain a homogeneous resin. Then PACM was added to the resin and mixed for another 2-30 min depending on the volume and viscosity of resin. The resin was formed by CLIP as described above into D638 Type IV dog-bone-shaped specimens followed by thermal curing at 125 °C for 2h. The cured elastomer specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are also summarized in Table 4.
Table 4
Parts by
weight
ABPU(PTMO 1 k+HDI+TB AEM A) 697
DEGMA 82
IBM A 123
PACM 83
PPQ 5_
Tensile Strength (MPa) 13.1
% Elongation at Break 395
Example 20
Elastomer from a Reactive Blocked Polv urethane Prepolymer
Cured elastomer specimens were prepared in the same manner as in Example 19 but using the formulation in Table 5. The cured specimens were tested following ASTM standard on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 5,
Table 5
Parts by
weight
ABPU(PTM02k+IPDI+TBAEMA) 721
DEGMA 84
IBM A 126
PACM 54
PPQ 5__
Tensile Strength (MPa) 26.8
% Elongation at Break 515
Example 21
Elastomer from a Reactive Blocked Polvurethane Prepolymer
Cured elastomer specimens were prepared in the same manner as in Example 19 but using the formulation in Table 6. The cured specimens were tested following ASTM standard on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 6.
Table 6
Parts by
weight ABPU(PTM02k+HMDI+TBAEMA) 728
DEGMA 86
IBMA 128
PACM 53
PPQ 5_
Tensile Strength (MPa) 23.1
% Elongation at Break 456
Example 22
Elastomer from a Reactive Blocked Polvurethane Prepolvmer
Components as shown in Table 7 were added to a container and thoroughly mixed (either by an overhead stirrer or a centrifugation mixer such as THINKY(TM) mixer) to obtain a homogeneous resin. The resin was casted into a square mold (with dimensions of 100* 100x4 mm), and UV flood cured for lmin, followed by thermal curing at 125 °C for 2h. The obtained elastomer sheet was die-cut into rectangular bars with dimensions of 100*20x4 mm. The elastomer specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 7.
Table 7
Parts by
weight
ABPU(PTMO 1 k+HDI+TB AEM A) 666
2-EHMA 131
IBMA 66
MDEA 123
PPO K)
Tensile Strength (MPa) 14.4
% Elongation at Break 370
Example 23
Elastomer from a Reactive Blocked Polvurethane Prepolvmer
Cured elastomer specimens were prepared in the same manner as in Example 22 but using the formulation in Table 8. The elastomer specimens were tested following ASTM standard D638-10 an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 8.
Table 8
Parts by
weight
ABPU(PTMO 1 k+HDI+TB AEM A) 692 DEGMA 102
2-EHMA 102
PEG DM A 14
PACM 80
PFQ 10_
Tensile Strength (MPa) 6.42
% Elongation at Break 388
Example 24
Elastomer from a Reactive Blocked Polyurethane Prepolvmer
Cured elastomer specimens were prepared in the same manner as in Example 22 but using the formulation in Table 9. The elastomer specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 9.
Table 9
Parts by
weight
ABPU (PTMO 1 k+lPDl+T B AEM A) 700
DEGMA 206
PEG DMA 10
PACM 74
PPO 10
Tensile Strength (MPa) 1 1.26
% Elongation at Break 366
Example 25
Elastomer from a Reactive Blocked Polyurethane Prepolvmer
Cured elastomer specimens were prepared in the same manner as in Example 22 but using the formulation in Table 10. The elastomer specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 10.
Table 10
Parts by
weight
ABPU(PTM01k+MDI+TBAEMA) 672
2-EHMA 248
PEGDMA 10
PACM 60
PPO 10 Tensile Strength (MPa) 24.93
% Elongation at Break 320
Example 26
Elastomer from a Reactive Blocked Polvurcthane Prepolymer
Cured elastomer specimens were prepared in the same manner as in Example 22 but using the formulation in Table 11. The elastomer specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 11.
Tabic 11
Parts by
weight
ABPU(PTMO 1 k+MDI+TB AEM A) 698
DEGMA 208
PEGDMA 10
PACM 74
PPO 10
Tensile Strength (MPa) 20.14
% Elongation at Break 355
Example 27
Elastomer from a Reactive Blocked Polvurethane Prepolymer
Cured elastomer specimens were prepared in the same manner as in Example 22 but using the formulation in Table 12. The elastomer specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 12.
Table 12
Parts by
weight
ABPU(PTM02k+HMDI+TBAEMA) 2000
DEGMA 400
2-EHMA 200
PEGDMA 66
PACM 145
PPO 14
Tensile Strength (MPa) 16.7
% Elongation at Break 476
Example 28 Elastomer from a Reactive Blocked Polyurethane Prepolymer
Cured elastomer specimens were prepared in the same manner as in Example 22 but using the formulation in Tablel3. The elastomer specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 13.
Table 13
Parts by
weight
ABPU(PTM02k+HMDI+TBAEMA) 2000
DEGMA 400
2-EHMA 200
PACM 145
PPO 14_
Tensile Strength (MPa) 16.9
% Elongation at Break 499
Example 29
Elastomer from a Reactive Blocked Polyurethane Prepolymer
Cured elastomer specimens were prepared in the same manner as in Example 22 but using the formulation in Table 14 by mixing all the components together. The elastomer specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 14.
Table 14
Parts by
weight
ABPU(PTM02k+HMDI+TBAEMA) 2000
DEGMA 400
2-EHMA 200
PEGDMA 66
BDO 62
PO
Tensile Strength (MPa) 2.14
% Elongation at Break 188
Example 30
Elastomer from a Reactive Blocked Polyurethane Prepolymer Cured elastomer specimens were prepared in the same manner as in Example 22 but using the formulation in Table 15. The elastomer specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 15.
Table 15
Parts by
weight
ABPU(PTM02k+IPDI+TBAEMA) 2000
DEGMA 420
2-EHMA 180
PEGDMA 67
PACM 149
PPO 14
Tensile Strength (MPa) 8.37
% Elongation at Break 386
Example 31
Elastomer from a Reactive Blocked Polvurethane Prepolymcr
Cured elastomer specimens were prepared in the same manner as in Example 22 but using the formulation in Table 16. The elastomer specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 16.
Table 16
Parts by
weight
ABPU(PTM02k+IPDI+TBAEMA) 2400
2-EHMA 700
PACM 179
PPO i 16
Tensile Strength (MPa) 17.2
% Elongation at Break 557
Example 32
Elastomer from a Reactive Blocked Polvurethane Prenolymer
Cured elastomer specimens were prepared in the same manner as in Example 22 but using the formulation in Table 17. The elastomer specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 17. Table 17
Parts by
weight
ABPU(PTM02k+IPDI+TBAEMA) 2400
2 -EH MA 630
PEGDMA 70
PACM 179
PPO 16
Tensile Strength (MPa) 13.4
% Elongation at Break 520
Example 33
Elastomer from a Reactive Blocked Polyurethane Prepolymer Cured elastomer specimens were prepared in the same manner as in Example 22 but using the formulation in Table 18. The elastomer specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 18. Table 18
Parts by- weight
ABPU(PTM02 k+IPDI+TB AEM A) 2000
DEGMA 400
2-EHMA 200
PACM 149
PPO 14
Tensile Strength (MPa) 13.6
% Elongation at Break 529
Example 34
Elastomer from a Reactive Blocked Polyurethane Prepolymer
Cured elastomer specimens were prepared in the same manner as in Example 22 but using the formulation in Table 19. The elastomer specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 19.
Table 19
Parts by
weight
ABPU(PTM02k+IPDI+TBAEMA) 2000
DEGMA 500
2-EHMA 500 PACM 149
PPO 14
Tensile Strength (MPa) 9.32
% Elongation at Break 485
Example 35
Elastomer from a Reactive Blocked Polvurethane Prepoiymer
Cured elastomer specimens were prepared in the same manner as in Example 22 but using the formulation in Table 20. The elastomer specimens were tested following ASTM standard D638-10 on an instron apparatus for mechanical properties as described above, which properties are summarized in Table 20.
Table 17
Parts by
weight
ABPU(PTM02k+IPDI+TBAEMA) 2000
DEGMA 650
2-EHMA 750
PACM 149
PPO 14
Tensile Strength (MPa) 5.14
% Elongation at Break 440
Example 36
Elastomer from a Reactive Blocked Polvurethane Prepoiymer
Cured elastomer specimens were prepared in the same manner as in Example 22 but using the formulation in Table 21. The elastomer specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 21.
Table 21
Parts by
weight
ABPU(PTM01k+HDI+TBAEMA) 2000
DEGMA 580
PACM 246
PPO H _
Tensile Strength (MPa) 6.48
% Elongation at Break 399 Example 37
Elastomer from a Reactive Blocked Polvurethane Prepolymer
Cured elastomer specimens were prepared in the same manner as in Example 22 but using the formulation in Table 22. The elastomer specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 22.
Table 22
Parts by
weight
ABPU(PTMO 1 k+H DI+TB AEM A) 2000
DEGMA 580
PEGDMA 60
PACM 246
PPO 14
Tensile Strength (MPa) 6.49
% Elongation at Break 353
Example 38
Elastomer from a Reactive Blocked Polvurethane Prepolymer
Cured elastomer specimens were prepared in the same manner as in Example 22 but using the formulation in Table 23. The elastomer specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 23.
Table 23
Parts by
weight
ABPU (PTMO 1 k+H DI+TB A EM A) 2000
DEGMA 620
2-EHMA 180
PACM 246
PPO 14
Tensile Strength (MPa) 6.83
% Elongation at Break 415
Example 39
Elastomer from a Reactive Blocked Polvurethane Prepolymer
Cured elastomer specimens were prepared in the same manner as in Example 22 but using the formulation in Table 24. The elastomer specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 24.
Table 24
Parts by
weight
ABPU(PTM02k+HMDI+TBAEMA) 2000
DEGMA 400
2-EIIMA 200
PEGDMA 66
PACM 145
PPO 14
Tensile Strength (MPa) 15.6
% Elongation at Break 523
Example 40
Elastomer from a Reactive Blocked Polvurethane Prepolymer
Cured elastomer specimens were prepared in the same manner as in Example 22 but using the formulation in Table 25. The elastomer specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 25.
Table 25
Parts by
weight
ABPU(PTM02k+IPDI+TBAEMA) 2000
DEGMA 420
2-EIIMA 180
PEGDMA 67
PACM 149
PPO 14
Tensile Strength (MPa) 13.2
% Elongation at Break 480
Example 41
Dual-Cure Material from Reactive Blocked Polvurethane Prepolymer
Components as shown in Table 26, except PACM, were added to a container and thoroughly mixed (either by an overhead stirrer or THINKY(TM) mixer) to obtain a homogeneous resin. Then PACM was added to the resin and mixed for another 30 min. The resin was cast into dog-bone-shaped specimens by UV flood cure for 60 seconds followed by thermal curing at 125 °C for 4h. The cured specimens were tested following ASTM standard on an Instron apparatus for mechanical properties as described above, which properties are also summarized in Table 26.
Table 26
Component Weight %
ABPU ABPU-1K-MDI 61.78
Reactive Diluent IBMA 30.89
Chain Extender PACM 6.56
Initiator PPO 0.77
Tensile Strength (MPa) 31.7
Modulus (MPa) 680
Elongation (%) 273
Example 42
Dual-Cure Material from Reactive Blocked Polyurethane Prepolymer
Cured specimens were prepared in the same manner as in Example 41 but using the formulation in Table 27. The specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 27.
Table 27
Component Weight %
ABPU ABPU-1K-MDI 53.51
Reactive Diluent IBMA 40.13
Chain Extender PACM 5.69
Initiator PPO 0.67
Tensile Strength (MPa) 26.2
Modulus (MPa) 1020
Elongation (%) 176 Example 43
Dual-Cure Material from Reactive Blocked Polyurethane Prepolymer
Cured specimens were prepared in the same manner as in Example 41 but using the formulation in Table 28. The specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 28.
Table 28
Component Weight %
ABPU ABPU-1K-MDI 47.2
Reactive Diluent IB MA 47.2
Chain Extender PACM 5.01
Initiator PPO 0.59
Tensile Strength (MPa) 29.5
Modulus (MPa) 1270
Elongation (%) 3.21
Example 44
Dual-Cure Material from Reactive Blocked Polvurethane Prepolymer
Cured specimens were prepared in the same manner as in Example 41 but using the formulation in Table 29. The specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 29.
Table 29
Component Weight %
ABPU ABPU-1K-MDI 42.22
Reactive Diluent IB MA 52.77
Chain Extender PACM 4.49
Initiator PPO 0.53
Tensile Strength (MPa) 19.3
Modulus (MPa) 1490
Elongation (%) 1.42
Example 45
Dual-Cure Material from Reactive Blocked Polvurethane Prepolymer
Cured specimens were prepared in the same manner as in Example 41 but using the formulation in Table 30. The specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 30. Table 30
Component Weight %
ABPU ABPU-1K-MDI 61.13
Reactive Diluent IBMA 30.57
Chain Extender PACM 7.54
Initiator PPO 0.76
Tensile Strength (MPa) 19.3
Modulus (MPa) 1490
Elongation (%) 1.42
Example 36
Dual-Cure Material from Reactive Blocked Polvurethane Prcpolymer Cured specimens were prepared in the same manner as in Example 41 but using the formulation in Table 31. The specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 31.
Table 31
Component Weight %
ABPU ABPU-1 K-MDI 61.55
Reactive Diluent IBMA 30.78
Chain Extender PACM 6.9
Initiator PPO 0.77
Tensile Strength (MPa) 34.1
Modulus (MPa) 713
Elongation (%) 269
Example 47
Dual-Cure Material from Reactive Blocked Polvurethane Prcpolymer
Cured specimens were prepared in the same manner as in Example 41 but using the formulation in Table 32. The specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 32.
Table 32 Component Weight %
ABPU ABPU-1K-MDI 61.98
Reactive Diluent IBMA 30.99
Chain Extender PACM 6.25
Initiator PPO 0.77
Tensile Strength (MPa) 39.7
Modulus (MPa) 664
Elongation (%) 277
Example 48
Dual-Cure Material from Reactive Blocked Polvurethane Prepolymer
Cured specimens were prepared in the same manner as in Example 41 but using the formulation in Table 33. The specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 33.
Table 33
Component Weight %
ABPU ABPU-1K-MDI 63.75
Reactive Diluent IBMA 31.87
Chain Extender PACM 3.59
Initiator PPO 0.8
Tensile Strength (MPa) 21.3
Modulus (MPa) 265
Elongation (%) 207
Example 49
Dual-Cure Material from Reactive Blocked Polvurethane Prepolymer
Cured specimens were prepared in the same manner as in Example 41 but using the formulation in Table 34. The specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 34.
Table 35 ABPU ABPU-1K-MDI 63.75
Reactive Diluent IBMA 31.87
Chain Extender PACM 5.02
Initiator PPO 0.8
Tensile Strength (MPa) 22.7
Modulus (MPa) 312
Elongation (%) 21 1
Example 50
Dual-Cure Material from Reactive Blocked Poiyurethane Prepolymer
Cured specimens were prepared in the same manner as in Example 41 but using the formulation in Table 36. The specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 36.
Table 36
Component Weight %
ABPU ABPU-1K-MDI 63.75
Reactive Diluent IBMA 31.87
Chain Extender PACM 5.71
Initiator PPO 0.8
Tensile Strength (MPa) 28.4
Modulus (MPa) 407
Elongation (%) 222
Example 51
Dual-Cure Material from Reactive Blocked Poiyurethane Prepolymer
Cured specimens were prepared in the same manner as in Example 41 but using the formulation in Table 37. The specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 37.
Table 37
Component Weight %
ABPU ABPU-1K-MDI 63.03
Reactive Diluent IBMA 31.51
Chain Extender BAMN 4.67 Initiator PPO 0.79
Tensile Strength (MPa) 25.1
Modulus (MPa) 155
Elongation (%) 297
Example 52
Dual-Cure Material from Reactive Blocked Polvurethane Prepolvmer
Cured specimens were prepared in the same manner as in Example 41 but using the formulation in Table 38. The specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 38.
Table 38
Component Weight %
ABPU ABPU-1K-MDI 63.03
Reactive Diluent IB MA 31.35
Chain Extender BAMN 5.2
Initiator PPO 0.79
Tensile Strength (MPa) 21.7
Modulus (MPa) 214
Elongation (%) 291 Example 53
Dual-Cure Material from Reactive Bloeked Polvurethane Prepolvmer
Cured specimens were prepared in the same manner as in Example 41 but using the formulation in Table 39. The specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 39.
Table 39
Component Weight %
ABPU-650-
ABPU HMDI 52.62
Reactive Diluent IB MA 39.47
Chain Extender PACM 7.26
Initiator PPO 0.66
Tensile Strength (MPa) Modulus (MPa) 1460
Elongation (%) 3.65
Example 54
Dual-Cure Material from Reactive Blocked Polvurethane Prepoiymer
Cured specimens were prepared in the same manner as in Example 41 but using the formulation in Table 40. The specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 40.
Table 40
Component Weight %
ABPU-650-
ABPU HMDI 60.6
Reactive Diluent IBMA 30.29
Chain Extender PACM 8.36
Initiator PPO 0.76
Tensile Strength (MPa) 29.4
Modulus (MPa) 864
Elongation (%) 191 Example 55
Dual-Cure Material from Reactive Blocked Polvurethane Prepoiymer
Cured specimens were prepared in the same manner as in Example 41 but using the formulation in Table 41. The specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 41.
Table 41
Component Weight %
ABPU-650-
ABPU HMDI 30.53
ABPU ABPU-1K-MDI 30.53
Reactive Diluent IBMA 30.53
Chain Extender PACM 7.63
Initiator PPO 0.76
Tensile Strength (MPa) 29.1
Modulus (MPa) 492 Elongation (%) 220
Example 56
Dual-Cure Material from Reactive Blocked Polyurethane Prepoiymer
Cured specimens were prepared in the same manner as in Example 41 but using the formulation in Table 42. The specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 42.
Table 42
Component Weight %
ABPU-650-
ABPU HMDI 54.6
Reactive Diluent IB MA 27.6
Crosslinker DUDMA 9.9
Chain Extender PACM 7.1
Initiator PPO 0.8
Tensile Strength (MPa) 59.3
Modulus (MPa) 1880
Elongation (%) 91
Example 57
Dual-Cure Material from Reactive Blocked Polyurethane Prepoiymer
Cured specimens were prepared in the same manner as in Example 41 but using the formulation in Table 43. The specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 43.
Table 43
Component Weight %
ABPU-650-
ABPU HMDI 54.6
Reactive Diluent IB MA 18.8
Reactive Diluent PEMA 18.8
Chain Extender PACM 7.1
Initiator PPO 0.8
Tensile Strength (MPa) 32.5 Modulus (MPa) 1050
Elongation (%) 178
Example 58
Dual-Cure Material from Reactive Blocked Polvurethane Prepolymer
Cured specimens were prepared in the same manner as in Example 41 but using the formulation in Table 44. The specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 44.
Table 44
Component Weight %
ABPU PTMO-1K-MDI 53.6
Reactive Diluent IBMA 23.1
Reactive Diluent PEMA 7.1
Crosslinker DUDMA 9.7
Chain Extender PACM 5.7
Initiator PPO 0.8
Tensile Strength (MPa) 43.8
Modulus (MPa) 1030
Elongation (%) 135
Example 59
Dual-Cure Material from Reactive Blocked Polvurethane Prepolvmer
Cured specimens were prepared in the same manner as in Example 41 but using the formulation in Table 45. The specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 45.
Table 45
Component Weight %
PTMO-650-
ABPU HMDI 55.1
Reactive Diluent IBMA 33.1
Crosslinker BPADMA 3.7
Chain Extender PACM 7.2
Initiator PPO 0.9
Tensile Strength (MPa) 33
Modulus (MPa) 1390
Elongation (%) 57 Example 60
Dual-Cure Material from Reactive Blocked Polvurethanc Prepoiymer Cured specimens were prepared in the same manner as in Example 41 but using the formulation in Table 30. The specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 30.
Table 30
Component Weight %
PTMO-650-
ABPU HMDI 52.6
Reactive Diluent IBMA 14.9
Reactive Diluent PEMA 5.0
Crosslinker SR239 19.9
Chain Extender PACM 6.9
Initiator PPO 0.8
Tensile Strength (MPa) 44.5
Modulus (MPa) 1520
Elongation (%) 12.4 Cured specimens were prepared in the same manner as in Example 41 but using the formulation in Table 30. The specimens were tested following ASTM standard D638-10 on an Instron apparatus for mechanical properties as described above, which properties are summarized in Table 30.
Example 61
Elastomer from a Reactive Blocked Polvurethanc Prepoiymer
Cured elastomer specimens are prepared in the same manner as in Example 20 but using the formulation in Table 31 below. The cure specimens give elastomeric properties similar to those disclosed above.
Table 31
Parts by
weight
ABPU(PTM02k+IPDI+NVF)
DEGMA
Isobornyl acrylate
PACM PPO Example 62
Representative Polvurethane Products Produced from Dual-Cure Materials
Polymerizable materials as described in the examples, or detailed description, above (or variations thereof that will be apparent to those skilled in the art) provide products with a range of different elastic properties. Examples of those ranges of properties, from rigid, through semi-rigid (rigid and flexible), to elastomeric. Particular types of products that can be made from such materials include but are not limited to those given in Table 32 below. The products may contain reacted photoinitiator fragments (remnants of the first cure forming the intermediate product) when produced by some embodiments of methods as described above. It will be appreciated that the properties may be further adjusted by inclusion of additional materials such as fillers and/or dyes, as discussed above.
Figure imgf000125_0001
In the table above, the following general terms and phrases include the following non- limiting specific examples:
"Fastener" includes, but is not limited to, nuts, bolts, screws, expansion fasteners, clips, buckles, etc,
—"Electronic device housing" includes, but is not limited to, partial and complete cell phone housings, tablet computer housings, personal computer housings, electronic recorder and storage media housings, video monitor housings, keyboard housings, etc.,
—"Mechanical device housing" includes, but is not limited to, partial and complete gear housings, pump housings, motor housings, etc. --"Structural elements" as used herein includes, but is not limited to, shells, panels, rods, beams (e.g., I-beams, U-beams, W-beams, cylindrical beams, channels, etc), struts, ties, etc., for applications including architectural and building, civil engineering, automotive and other transportation (e.g., automotive body panel, hood, chassis, frame, roof, bumper, etc.), etc.
--"Tools" includes, but is not limited to, impact tools such as hammers, drive tools such as screwdrivers, grasping tools such as pliers, etc., including component parts thereof (e.g., drive heads, jaws, and impact heads). EXAMPLE 63
Poiyurethane Products Having Multiple
Structural Segments and/or MuItipleTensile Properties
In examples 18-61 are given materials for the formation of poiyurethane products having a variety of different tensile properties, ranging from elastomeric, to semi-rigid, to flexible, as described in Example 62 above.
Because the poiyurethane polymer is formed by curing the intermediate product (e.g., by heating or microwave irradiating), the process of fabricating the product may be paused or interrupted one or more times, to change the polymerizable liquid. While a fault line or plane may be formed in the intermediate by the interruption, if the subsequent polymerizable liquid is, in its second cure material, reactive with that of the first, then the two distinct structural segments of the intermediate will cross-react and covalently couple to one another during the second cure (e.g., by heating or microwave irradiation). Thus, for example, any of the materials described in examples 19-60 above may be sequentially changed to form a product having multiple distinct structural segments with different tensile properties, while still being a unitary product with the different segments covalently coupled to one another.
For example, a hinge can be formed, with the hinge comprising a rigid segment, coupled to a second elastic segment, coupled to a third rigid segment, by sequentially changing polymerizable liquids (e.g., from among those described in examples 19-60 above) during the formation of the three-dimensional intermediate.
A shock absorber or vibration dampener can be formed in like manner, with the second segment being either elastic or semi-rigid.
A unitary rigid funnel and flexible hose assembly can be formed in like manner.
Sequential changing of the polymerizable liquid can be carried out with a multi-port, feed-through carrier, system, such as described in PCT Application Publication No. WO 2015/126834, or, where the polymerizable liquid is supplied in a reservoir positioned above the build surface, providing the reservoir and build surface as interchangeable cartridges that can be changed out or swapped during a pause in fabrication.
EXAMPLE 64
Silicone Rubber Product
Phenylbis(2 4 6-trimethylbenzoyl)phosphine oxide (PPO) is dissolved in isobornyl aery late (IBA) with a THINKY(TM) mixer. Methacryloxypropyl terminated polydimethylsiloxane (DMS-R31 ; Gelest Inc.) is added to the solution, followed by addition of Sylgard Part A and Part B (Corning PDMS precursors), and then further mixed with a THIN Y™ mixer to produce a homogeneous solution. The solution is loaded into an apparatus as described above and a three-dimensional intermediate is produced by ultraviolet curing as described above. The three-dimensional intermediate is then thermally cured at at 100 °C for 12 hours to produce the final silicone rubber product. Parts by weight and tensile properties are given in Table 33 below.
Table 33
Parts by weight
DMS-R31 40
IBA 20
Sylgard 184Part A 40
Sylgard 184 Part B 4
PPO 1
Tensile Strength (MPa) 1.3
% Elongation at Break 130
EXAMPLE 65
Epoxv Dual Cure Product
10.018 g EpoxAcast 690 resin prat A and 3.040 g partt B were mixed on a THINK Y™ mixer. 3.484 g was then mixed with 3.013 g of RKP5-78-1 , a 65/22/13 mix of Sartomer CN9782 N-vinylpyrrolidone/diethyleneglycol diacrylate to give a clear blend which was cured in a "dog bone" shaped sample mold (for tensile strength testing) for 2 minutes under a Dymax ultraviolet lamp to give a very elastic but weak dog bone sample.
A second sample, RKP11-10-1 contained 3.517 g of the above epoxy and 3.508 g of RKP5-90-3 and 65/33/2/0.25 blend of Sartomer CN2920/N-vinylcaprolactam/N- v i ny lpyrro 1 i done/P PO initiator cured similarly to give a very flexible dog bone. A third 1 : 1 sample made with R P5-84-8 50/20/30/0.25 CN2920/CN9031/NVF/PPO did not cure completely and was discarded.
Later, first samples of an epoxy/acrylate dual cure resins were made, as follows: -Smooth-On EpoxAcure 690 is an EEW 190 epoxy (probably the diglycidyl ether of bisphenol A) sold with a diaminopropyleneglycol oligomer curing agent and offering a 5 hr open time/24 hr room temperature cure.
-This was blended 1 :1 with three print formulations. Two samples were good homogeneous blends that gave highly elastic, but very weak dog bone samples on standard 2 minute UV cure.
-Subsequent thermal cure of the samples at 84 °C for 5 hrs gave reasonably strong and stiff, but flexible samples, in one case with tenacious adhesion to the polystyrene petri dish on which it was cured. Tensiles were in the modest 5-8 MPa range, less than the base aery late resins.
Later, RKP1 -17-2D a 66/33/1 mix of CN2920/NVC/DPO initiator was blended with EpoxAcure 690 in a 1 : 1 ratio and 2: 1 ratio
The 1 : 1 epoxy/acrylate dual cure formulation previously prepared failed to print in a CLIP apparatus as described above, at 100 or 60 mm/hr, but a 1 :2 ratio gave a decent argyle pattern at 60 mm hr. The Smooth-On EpoxAcure 690/CN2920/NVC argyle was post-cured at room temperature to a clear, flexible, if tacky, sample. Dog bones were also prepared.
The foregoing is illustrative of the present invention, and is not to be construed as limiting thereof. The invention is defined by the following claims, with equivalents of the claims to be included therein.

Claims

We claim:
1. A method of forming a three-dimensional object comprised of polyurethane, polyurea, or copolymer thereof, said method comprising:
(a) providing a carrier and an optically transparent member having a build surface, said carrier and said build surface defining a build region therebetween;
(b) filling said build region with a polymerizable liquid, said polymerizable liquid comprising at least one of: (i) a blocked or reactive blocked prepolymer, (ii) a blocked or reactive blocked diisocyante, or (Hi) a blocked or reactive blocked diisocyanate chain extender;
(c) irradiating said build region with light through said optically transparent member to form a solid blocked polymer scaffold and advancing said carrier away from said build surface to form a three-dimensional intermediate having the same shape as, or a shape to be imparted to, said three-dimensional object, with said intermediate containing said chain extender; and then
(d) heating or microwave irradiating said three-dimensional intermediate sufficiently to form from said three-dimensional intermediate said three-dimensional object comprised of polyurethane, polyurea, or copolymer thereof.
2. The method of claim 1 , wherein said irradiating and/or said advancing steps are carried out while also concurrently:
(i) continuously maintaining a dead zone of polymerizable liquid in contact with said build surface, and
(ii) continuously maintaining a gradient of polymerization zone between said dead zone and said solid polymer and in contact with each thereof, said gradient of polymerization zone comprising said first component in partially cured form.
3. The method of claim 2, wherein said optically transparent member comprises a semipermeable member, and said continuously maintaining a dead zone is carried out by feeding an inhibitor of polymerization through said optically transparent member, thereby creating a gradient of inhibitor in said dead zone and optionally in at least a portion of said gradient of polymerization zone.
4. The method of claim 3, wherein said semipermeable member comprises a fluoropolymer.
5. The method of claim 1 to 4, said polymerizable liquid comprising a mixture of (i) a blocked or reactive blocked prepolymer, (ii) a chain extender, (Hi) a photoinitiator, (iv) optionally a polyol and/or a polyamine, and (v) optionally a reactive diluent, (vi) optionally a pigment or dye, (vii) optionally a filler.
6. The method of claim 5, wherein said blocked or reactive blocked prepolymer is a compound of the formula A-X-A, where X is a hydrocarbyl group and each A is an independently selected substituent of Formula X:
Figure imgf000130_0001
(X)
where R is a hydrocarbyl group and Z is a blocking group, said blocking group optionally having a reactive terminal group.
7. The method of claim 6, wherein each A is an independently selected substituent of Formula XI:
Figure imgf000130_0002
where R is as given above.
8. The method of claim 5 to 7, wherein said blocked or reactive blocked prepolymer comprises a blocked polyisocyanate;
and/or said reactive blocked prepolymer comprises two or more ethylenically unsaturated end groups.
9. The method of claim 5 to 8, wherein said blocked or reactive blocked prepolymer comprises a polyisocyanate oligomer produced by the reaction of at least one polyisocyanate with at least one polyol or polyamine.
10. The method of claim 5 to 9, wherein said reactive blocked prepolymer is blocked by reaction of a polyisocyanate oligomer with an amine methacrylate, alcohol methacrylate, maleimide, or n-vinylformamide monomer blocking agent.
11. The method of claim 5 to 10, wherein said reactive diluent comprises an acrylate, a methacrylate, a styrene, an acrylic acid, a vinylamide, a vinyl ether, a vinyl ester, polymers containing any one or more of the foregoing, and combinations of two or more of the foregoing.
12. The method of claim 5 to 1 1, wherein said chain extender comprises at least one diol, diamine or dithiol chain extender.
13. The method of claim 5 to 12, wherein said polymerizable liquid comprises:
from 5 to 90 percent by weight of said blocked or reactive blocked prepolymer;
optionally, from 1 to 40 percent by weight of said reactive diluent;
from 5 to 30 percent by weight of said chain extender; and
from 0.1 to 4 percent by weight of said photoinitiator,
from 0.1 to 2 percent pigment when present, and
from 1 to 50 percent filler when present.
14. The method of claim 1 to 4, said polymerizable liquid comprising a mixture of (i) a blocked or reactive blocked diisocyanate, (ii) a polyol and/or polyamine, (Hi) a chain extender, (iv) a photoinitiator, and (v) optionally a reactive diluent (vi) optionally a pigment or dye, (vii) optionally a filler.
15. The method of claim 14, wherein said blocked or reactive blocked diisocyanate is a compound of the formula A'-X'-A', where X' is a hydrocarbyl group and each A' is an independently selected substituent of Formula X':
Figure imgf000132_0001
where R is a hydrocarbyl group and Z is a blocking group, said blocking group optionally having a reactive terminal group.
16. The method of claim 15, wherein each A' is an independently selected substituent of Formula XI':
Figure imgf000132_0002
17. The method of claim 14 to 16, wherein said blocked or reactive blocked diisocyanate is blocked by reaction of a polyisocyanate with an alcohol methacrylate, amine methacrylate, maleimide, or n-vinylformamide monomer blocking agent.
18. The method of claim 14 to 17, wherein said reactive diluent comprises an acrylate, a methacrylate, a styrene, an acrylic acid, a vinylamide, a vinyl ether, a vinyl ester, polymers containing any one or more of the foregoing, and combinations of two or more of the foregoing.
19. The method of claim 14 to 18, wherein said chain extender comprises at least one diol, diamine or dithiol chain extender.
20. The method of claim 14 to 19, wherein said polymerizable liquid comprises:
from 5 to 90 percent by weight of said blocked or reactive blocked diisocyanate; from 5 to 90 percent by weight of said polyol or polyamine;
optionally, from 1 to 40 percent by weight of said reactive diluent;
from 5 to 30 percent by weight of said chain extender; and
from 0.1 to 4 percent by weight of said photoinitiator;
from 0.1 to 2 percent pigment when present, and from 1 to 50 percent filler when present.
21. The method of claim 1 to 4, wherein said polymerizable liquid comprising a mixture of (i) a polyol and/or polyamine, (ii) a blocked or reactive blocked diisocyanate chain extender, (Hi) optionally one or more additional chain extenders, (iv) a photo initiator, and (v) optionally a reactive diluent (vi) optionally a pigment or dye, and (vii) optionally a filler.
22. The method of claim 21 , wherein said blocked or reactive blocked diisocyanate chain extender is a compound of the formula A"-X"-A", where X" is a hydrocarbyl group, and each A" is an independently selected substituent of Formula X":
Figure imgf000133_0001
where R is a hydrocarbyl group and Z is a blocking group, said blocking group optionally having a reactive terminal group.
23. The method of claim 22, wherein each A" is an independently selected substituent of Formula XI":
Figure imgf000133_0002
where R is as given above.
24. The method of claim 21 to 23, wherein said blocked or reactive blocked diisocyanate chain extender comprises a diisocyanate molecule produced by the reaction of at least one polyisocyanate with at least one chain extender.
25. The method of claim 21 to 24, wherein said reactive blocked chain extender is blocked by reaction of a diisocyanate molecule with an alcohol methacrylate, amine methacrylate, maleimide, or n-vinylformamide monomer blocking agent.
26. The method of claim 21 to 25, wherein said reactive diluent comprises an acrylate, a methacrylate, a styrene, an acrylic acid, a vinylamide, a vinyl ether, a vinyl ester, polymers containing any one or more of the foregoing, and combinations of two or more of the foregoing.
27. The method of claim 21 to 26, wherein said polymerizable liquid comprises:
from 5 to 90 percent by weight of said polyol or polyamine;
from 5 to 90 percent by weight of said blocked or reactive blocked diisocyanate chain extender;
optionally, from 1 to 40 percent by weight of said reactive diluent;
from 5 to 30 percent by weight of said chain extender; and
from 0.1 to 4 percent by weight of said photoinitiator;
from 0.01 to 2 percent pigment when present, and
from 1 to 50 percent filler when present.
28. The method of any preceding claim, wherein said three-dimensional object comprises (i) a linear thermoplastic polyurethane, polyurea, or copolymer thereof, (ii) a cross-linked thermoset polyurethane, polyurea, or copolymer thereof , or (Hi) combinations thereof, optionally blended with de-blocked blocking group which is copolymerized with said reactive diluents(s).
29. The method of any preceding claim, wherein said filling step is carried out by feeding or supplying said polymerizable liquid to said build region from a single source.
30. The method of any preceding claim, wherein said three dimensional object is compressible, collapsible, or elastic.
31. A method of claim 1 to 30, wherein said three-dimensional object is rigid, is comprised of polyurethane, polyurea, or copolymer thereof, has a Young's modulus of 800 to 3500 megapascals, has a tensile strength of 30 to 100 megapascals, and has a percent elongation at break of from 1 to 100.
32. A method of claim 1 to 30, wherein said three-dimensional object is rigid and flexible, is comprised of polyurethane, polyurea, or copolymer thereof, has a Young's modulus of 300 to 2500 megapascals, has a tensile strength of from 20 to 70 megapascals, and has a percent elongation at break of from 40 to 300 or 600.
33. A method of claim 1 to 430, wherein said three-dimensional object is elastomeric, is comprised of polyurethane, polyurea, or copolymer thereof, has a Young's modulus of 0.5 to 40 megapascals, has a tensile strength of from 0.5 to 30 megapascals, and has a percent elongation at break of from 50 to 1000.
34. The method of claims 31 to 33, wherein said three-dimensional object further comprises reacted photoinitator fragments .
35. The method of claims 31 to 34, wherein said three-dimensional object further comprises a filler and/or a dye.
36. The method of any preceding claim, wherein said solidifiable or polymerizable liquid is changed at least once during said method with a subsequent solidifiable or polymerizable liquid;
optionally where said subsequent solidifiable or polymerizable liquid is cross-reactive with each previous solidifiable or polymerizable liquid during said subsequent curing, to form an object having a plurality of structural segments covalently coupled to one another, each structural segment having different structural properties.
PCT/US2015/036902 2014-06-23 2015-06-22 Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening WO2015200179A1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
CA2950213A CA2950213A1 (en) 2014-06-23 2015-06-22 Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening
KR1020177001544A KR20170018067A (en) 2014-06-23 2015-06-22 Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening
JP2016575074A JP6720092B2 (en) 2014-06-23 2015-06-22 Method for manufacturing polyurethane three-dimensional object from materials having various curing mechanisms
MX2016016630A MX2016016630A (en) 2014-06-23 2015-06-22 Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening.
BR112016029766A BR112016029766A2 (en) 2014-06-23 2015-06-22 methods of producing three-dimensional polyurethane objects from materials having multiple hardening mechanisms
CN201580033803.XA CN106796392B (en) 2014-06-23 2015-06-22 Method for producing three-dimensional objects of polyurethane from materials with multiple hardening mechanisms
EP15811310.0A EP3158398A4 (en) 2014-06-23 2015-06-22 Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening
SG11201610191PA SG11201610191PA (en) 2014-06-23 2015-06-22 Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening
AU2015280289A AU2015280289B2 (en) 2014-06-23 2015-06-22 Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening
US14/977,876 US9598606B2 (en) 2014-06-23 2015-12-22 Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening
US15/428,708 US10240066B2 (en) 2014-06-23 2017-02-09 Methods of producing polyurea three-dimensional objects from materials having multiple mechanisms of hardening
US16/269,710 US10647880B2 (en) 2014-06-23 2019-02-07 Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening
US16/803,350 US11299579B2 (en) 2014-06-23 2020-02-27 Water cure methods for producing three-dimensional objects from materials having multiple mechanisms of hardening
US17/655,275 US11850803B2 (en) 2014-06-23 2022-03-17 Methods for producing three-dimensional objects with apparatus having feed channels

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US201462015780P 2014-06-23 2014-06-23
US62/015,780 2014-06-23
US201462036161P 2014-08-12 2014-08-12
US62/036,161 2014-08-12
US201562101671P 2015-01-09 2015-01-09
US62/101,671 2015-01-09
US201562111961P 2015-02-04 2015-02-04
US62/111,961 2015-02-04
US201562129187P 2015-03-06 2015-03-06
US62/129,187 2015-03-06
US201562133642P 2015-03-16 2015-03-16
US62/133,642 2015-03-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/977,876 Continuation-In-Part US9598606B2 (en) 2014-06-23 2015-12-22 Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening

Publications (1)

Publication Number Publication Date
WO2015200179A1 true WO2015200179A1 (en) 2015-12-30

Family

ID=54938697

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/US2015/036893 WO2015200173A1 (en) 2014-06-23 2015-06-22 Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening
PCT/US2015/036924 WO2015200189A1 (en) 2014-06-23 2015-06-22 Three-dimensional objects produced from materials having multiple mechanisms of hardening
PCT/US2015/036902 WO2015200179A1 (en) 2014-06-23 2015-06-22 Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening
PCT/US2015/036946 WO2015200201A1 (en) 2014-06-23 2015-06-22 Polyurethane resins having multiple mechanisms of hardening for use in producing three-dimensional objects

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/US2015/036893 WO2015200173A1 (en) 2014-06-23 2015-06-22 Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening
PCT/US2015/036924 WO2015200189A1 (en) 2014-06-23 2015-06-22 Three-dimensional objects produced from materials having multiple mechanisms of hardening

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2015/036946 WO2015200201A1 (en) 2014-06-23 2015-06-22 Polyurethane resins having multiple mechanisms of hardening for use in producing three-dimensional objects

Country Status (11)

Country Link
US (19) US9676963B2 (en)
EP (6) EP3157722B1 (en)
JP (4) JP7045796B2 (en)
KR (3) KR20170023977A (en)
CN (5) CN114734628A (en)
AU (3) AU2015280283B2 (en)
BR (3) BR112016029755A2 (en)
CA (3) CA2950209A1 (en)
MX (3) MX2016016633A (en)
SG (3) SG11201610189UA (en)
WO (4) WO2015200173A1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016140886A1 (en) 2015-03-05 2016-09-09 Carbon3D, Inc. Fabrication of three dimensional objects with multiple operating modes
WO2016140891A1 (en) 2015-03-05 2016-09-09 Carbon3D, Inc. Continuous liquid interface production with sequential patterned exposure
WO2016149151A1 (en) 2015-03-13 2016-09-22 Carbon3D, Inc. Three-dimensional printing with concurrent delivery of different polymerizable liquids
WO2016149104A1 (en) 2015-03-13 2016-09-22 Carbon3D, Inc. Three-dimensional printing with flexible build plates
WO2016149097A1 (en) 2015-03-13 2016-09-22 Carbon3D, Inc. Three-dimensional printing with reduced pressure build plate unit
US9453142B2 (en) 2014-06-23 2016-09-27 Carbon3D, Inc. Polyurethane resins having multiple mechanisms of hardening for use in producing three-dimensional objects
CN106015307A (en) * 2016-05-13 2016-10-12 北京斯帝欧科技有限公司 Hinge and method for manufacturing same
WO2017044381A1 (en) 2015-09-09 2017-03-16 Carbon3D, Inc. Epoxy dual cure resins for additive manufacturing
WO2017112571A1 (en) * 2015-12-22 2017-06-29 Carbon, Inc. Dual cure additive manufacturing of rigid intermediates that generate semi-rigid, flexible, or elastic final products
WO2017181186A1 (en) * 2016-04-15 2017-10-19 Vortex Biosciences, Inc. Microfluidic chips and cartridges and systems utilizing microfluidic chips and cartridges
WO2018006029A1 (en) 2016-07-01 2018-01-04 Carbon, Inc. Three-dimensional printing with build plates having reduced pressure and/or channels for increased fluid flow
WO2018106977A1 (en) * 2016-12-08 2018-06-14 Pearlson Matthew Noah Additive manufacturing using foaming radiation-curable resin
WO2018165090A1 (en) * 2017-03-09 2018-09-13 Carbon, Inc. Tough, high temperature polymers produced by stereolithography
JP2018145417A (en) * 2017-03-03 2018-09-20 キヤノン株式会社 Photocurable composition for three-dimensional molding, method for manufacturing three-dimensional article using the same, and resin
US10316213B1 (en) 2017-05-01 2019-06-11 Formlabs, Inc. Dual-cure resins and related methods
DE102017130124A1 (en) 2017-12-15 2019-06-19 Technische Hochschule Wildau (Fh) Additive manufacturing process based on polyisocyanates
US10336000B2 (en) 2015-03-13 2019-07-02 Carbon, Inc. Methods, systems, and computer program products for determining orientation and fabrication parameters used in three-dimensional (3D) continuous liquid interface printing (CLIP) systems, and related printers
US10343331B2 (en) 2015-12-22 2019-07-09 Carbon, Inc. Wash liquids for use in additive manufacturing with dual cure resins
CN110023348A (en) * 2016-12-05 2019-07-16 科思创德国股份有限公司 By purposes of the method and free redical crosslinked resin of precursor manufacture object in increasing material manufacturing method
JP2019527156A (en) * 2016-08-01 2019-09-26 マクダーミッド グラフィックス ソリューションズ エルエルシー An improved method of making flexographic printing plates
US10500786B2 (en) 2016-06-22 2019-12-10 Carbon, Inc. Dual cure resins containing microwave absorbing materials and methods of using the same
JP2020523217A (en) * 2017-06-08 2020-08-06 カーボン,インコーポレイテッド Blocking group of photopolymerizable resin useful in addition production
US10792868B2 (en) 2015-09-09 2020-10-06 Carbon, Inc. Method and apparatus for three-dimensional fabrication
JP2021003897A (en) * 2016-03-08 2021-01-14 スリーディー システムズ インコーポレーテッド Non-isocyanate polyurethane inks for three-dimensional printing
WO2021101967A1 (en) * 2019-11-19 2021-05-27 Nike, Inc. Methods of manufacturing articles having foam particles
US11241826B2 (en) 2017-06-01 2022-02-08 Nike, Inc. Methods of manufacturing articles utilizing foam particles
US11401396B2 (en) 2018-12-06 2022-08-02 Nike, Inc. Methods of manufacturing articles utilizing foam particles
US11492441B2 (en) 2017-11-27 2022-11-08 Canon Kabushiki Kaisha Blocked isocyanate, photo-curable composition, resin, and method of manufacturing three-dimensional object

Families Citing this family (407)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10159296B2 (en) 2013-01-18 2018-12-25 Riddell, Inc. System and method for custom forming a protective helmet for a customer's head
US9320316B2 (en) 2013-03-14 2016-04-26 Under Armour, Inc. 3D zonal compression shoe
GB2514139A (en) 2013-05-14 2014-11-19 Aghababaie Lin & Co Ltd Apparatus for fabrication of three dimensional objects
US9925440B2 (en) 2014-05-13 2018-03-27 Bauer Hockey, Llc Sporting goods including microlattice structures
US9975295B2 (en) 2014-08-12 2018-05-22 Carbon, Inc. Acceleration of stereolithography
US10166725B2 (en) 2014-09-08 2019-01-01 Holo, Inc. Three dimensional printing adhesion reduction using photoinhibition
JP6439338B2 (en) * 2014-09-16 2018-12-19 コニカミノルタ株式会社 3D modeling method and 3D modeling apparatus
MX2017006768A (en) 2014-11-24 2018-01-18 Ppg Ind Ohio Inc Methods for reactive three-dimensional printing by extrusion.
GB201501089D0 (en) * 2015-01-22 2015-03-11 Univ Greenwich Stent
BR112017016780A2 (en) 2015-02-05 2018-04-17 Carbon Inc intermittent exposure additive manufacturing method
EP3253558B1 (en) 2015-02-05 2020-04-08 Carbon, Inc. Method of additive manufacturing by fabrication through multiple zones
WO2016149152A1 (en) * 2015-03-13 2016-09-22 The University Of North Carolina At Chapel Hill Polymeric microneedles and rapid additive manufacturing of the same
EP3304201A4 (en) * 2015-04-30 2019-06-26 Castanon, Diego Improved stereolithography system
US10010133B2 (en) 2015-05-08 2018-07-03 Under Armour, Inc. Midsole lattice with hollow tubes for footwear
US10010134B2 (en) 2015-05-08 2018-07-03 Under Armour, Inc. Footwear with lattice midsole and compression insert
DE102015212099B4 (en) 2015-06-29 2022-01-27 Adidas Ag soles for sports shoes
US10492888B2 (en) 2015-07-07 2019-12-03 Align Technology, Inc. Dental materials using thermoset polymers
WO2017040156A1 (en) * 2015-09-01 2017-03-09 The Board Trustees Of The Leland Stanford Junior University Systems and methods for additive manufacturing of hybrid multi-material constructs and constructs made therefrom
EP3344676B1 (en) 2015-09-04 2023-04-12 Carbon, Inc. Cyanate ester dual cure resins for additive manufacturing
JP2017052177A (en) * 2015-09-09 2017-03-16 富士ゼロックス株式会社 Method for manufacturing three-dimensional molded object, support material for three-dimensional molding, support material cartridge for three-dimensional molding, and composition set for three-dimensional molding
ITUB20154169A1 (en) 2015-10-02 2017-04-02 Thelyn S R L Self-lubricating substrate photo-hardening method and apparatus for the formation of three-dimensional objects.
US10647873B2 (en) 2015-10-30 2020-05-12 Carbon, Inc. Dual cure article of manufacture with portions of differing solubility
KR102562730B1 (en) 2015-10-30 2023-08-01 쇠라 테크널러지스 인코포레이티드 Additive Manufacturing Systems and Methods
WO2017079502A1 (en) * 2015-11-05 2017-05-11 Carbon, Inc. Silicone dual cure resins for additive manufacturing
US20170144373A1 (en) * 2015-11-23 2017-05-25 Battelle Memorial Institute Method and system for three-dimensional printing of conductive materials
US11141919B2 (en) 2015-12-09 2021-10-12 Holo, Inc. Multi-material stereolithographic three dimensional printing
US10647054B2 (en) 2015-12-22 2020-05-12 Carbon, Inc. Accelerants for additive manufacturing with dual cure resins
EP3394673A1 (en) 2015-12-22 2018-10-31 Carbon, Inc. Fabrication of compound products from multiple intermediates by additive manufacturing with dual cure resins
JP7189015B2 (en) 2015-12-22 2022-12-13 カーボン,インコーポレイテッド A Dual Precursor Resin System for Additive Manufacturing Using Dual Cured Resins
WO2017112751A1 (en) 2015-12-22 2017-06-29 Carbon, Inc. Blocked silicone dual cure resins for additive manufacturing
US10501572B2 (en) * 2015-12-22 2019-12-10 Carbon, Inc. Cyclic ester dual cure resins for additive manufacturing
WO2017173396A1 (en) * 2016-03-31 2017-10-05 The Regents Of The University Of California Composite foam
CN105799168B (en) * 2016-04-06 2018-10-30 南京增材制造研究院发展有限公司 A kind of continuous instantaneous exposure photocuring printer in anti-sticking drag-reduction nano structure grooves bottom
EP4215594A1 (en) 2016-04-07 2023-07-26 3D Systems, Incorporated Thiol-ene inks for 3d printing
US10239238B2 (en) * 2016-04-15 2019-03-26 Zhejiang University Method for fast building three-dimension polymer structures based on digital light patterning
US10632672B2 (en) * 2016-05-12 2020-04-28 Hewlett-Packard Development Company, L.P. Temperature control prior to fusion
CA3063346A1 (en) * 2016-05-13 2017-11-16 MSI Coatings Inc. System and method for using a voc free low radiant flux led uv curable composition
DK3464402T3 (en) * 2016-05-23 2021-01-18 Dow Global Technologies Llc Method for improving the surface finish of additive-made articles
US11465339B2 (en) * 2016-05-31 2022-10-11 Northwestern University Method for the fabrication of three-dimensional objects and apparatus for same
AU2017281110B2 (en) * 2016-06-20 2023-02-09 B9Creations, LLC System and method for reducing three-dimensional additive manufacturing production time
AU2017289257B2 (en) 2016-06-30 2019-10-10 3M Innovative Properties Company Printable compositions including highly viscous components and methods of creating 3D articles therefrom
EP3480227B1 (en) * 2016-06-30 2023-10-04 Shin-Etsu Chemical Co., Ltd. Ultraviolet curable silicone composition and cured product of same
EP3484692A4 (en) * 2016-07-14 2020-04-15 University of Southern California Sliding window screen for reducing resin refilling time in stereolithography
WO2018017867A1 (en) 2016-07-20 2018-01-25 Riddell, Inc. System and methods for designing and manufacturing a bespoke protective sports helmet
US11565472B2 (en) 2016-07-21 2023-01-31 Hewlett-Packard Development Company, L.P. Additively formed 3D object with conductive channel
ES2928648T3 (en) * 2016-07-26 2022-11-21 Ppg Ind Ohio Inc Three-dimensional printing processes through the use of 1,1-di-activated vinyl compounds
US11021558B2 (en) 2016-08-05 2021-06-01 Johnson & Johnson Vision Care, Inc. Polymer compositions containing grafted polymeric networks and processes for their preparation and use
CN109640926A (en) 2016-08-19 2019-04-16 宝洁公司 Polymer material and the product being made from it
KR20230003292A (en) 2016-08-26 2023-01-05 몰레큘러 임프린츠 인코퍼레이티드 Monolithic high refractive index photonic devices
US20180056607A1 (en) * 2016-08-30 2018-03-01 Microsoft Technology Licensing, Llc Printing three dimensional objects using perforated brims
JP7065351B2 (en) * 2016-09-02 2022-05-12 パナソニックIpマネジメント株式会社 Manufacturing method of 3D shaped object
US11518087B2 (en) * 2016-09-12 2022-12-06 University Of Washington Vat photopolymerization additive manufacturing of multi-material parts
JP6653764B2 (en) * 2016-09-27 2020-02-26 富士フイルム株式会社 Insert, photoacoustic measurement apparatus provided with the insert, and method of manufacturing insert
US10625470B2 (en) * 2016-09-28 2020-04-21 Ada Foundation 3D printing of composition-controlled copolymers
WO2018080501A1 (en) * 2016-10-27 2018-05-03 Hewlett-Packard Development Company, Lp Generating additive manufacturing instructions
WO2018080537A1 (en) 2016-10-31 2018-05-03 Hewlett-Packard Development Company, L.P. 3d printer with a uv light absorbing agent
CN110177673A (en) * 2016-11-07 2019-08-27 迪斯卡尔斯有限责任公司 System for using fluid matrix supporter printing three-dimension object
US11135790B2 (en) * 2016-11-21 2021-10-05 Carbon, Inc. Method of making three-dimensional object by delivering reactive component for subsequent cure
US20190315062A1 (en) * 2016-11-22 2019-10-17 Covestro Deutschland Ag Method and system for producing an article by layer-by-layer buildup in a stamping process
US10737984B2 (en) * 2016-11-30 2020-08-11 Hrl Laboratories, Llc Formulations and methods for 3D printing of ceramic matrix composites
CN110036040B (en) * 2016-12-05 2022-03-25 科思创德国股份有限公司 Method and system for manufacturing an article by layer-by-layer building in a stamping process
JP7109438B2 (en) 2016-12-05 2022-07-29 アーケマ・インコーポレイテッド Initiator Blends and Photocurable Compositions Useful for 3D Printing Containing Such Initiator Blends
US20200009769A1 (en) * 2016-12-14 2020-01-09 Covestro Deutschland Ag Method for producing a 3d printed, foam-filed object
CN110062690B (en) 2016-12-14 2021-07-27 卡本有限公司 Continuous liquid interface production with force monitoring and feedback
WO2018111548A1 (en) 2016-12-14 2018-06-21 Carbon, Inc. Methods and apparatus for washing objects produced by stereolithography
US11179926B2 (en) 2016-12-15 2021-11-23 General Electric Company Hybridized light sources
CN108215173A (en) * 2016-12-15 2018-06-29 上海普利生机电科技有限公司 Light-cured type 3 D-printing equipment, the method and system that can automatically continuously print
WO2018112770A1 (en) * 2016-12-21 2018-06-28 北京工业大学 3d printing method and device with combined multi-shaft mechanical system and visual monitoring
WO2018119026A1 (en) 2016-12-23 2018-06-28 3M Innovative Properties Company Printable compositions including polymeric and polymerizable components, articles, and methods of making articles therefrom
WO2018118832A1 (en) 2016-12-23 2018-06-28 Carbon, Inc. Adhesive sheet for securing 3d object to carrier platform and method of using same
WO2018129023A1 (en) * 2017-01-05 2018-07-12 Carbon, Inc. Dual cure stereolithography resins containing diels-alder adducts
US20180207863A1 (en) * 2017-01-20 2018-07-26 Southern Methodist University Methods and apparatus for additive manufacturing using extrusion and curing and spatially-modulated multiple materials
KR101966333B1 (en) * 2017-01-24 2019-04-08 주식회사 캐리마 A 3D printer having a large scale display screen exposure system being divided by a plurality of display screens
WO2018143954A1 (en) * 2017-01-31 2018-08-09 Hewlett-Packard Development Company, L.P. Build material particle fusing in a chamber containing vapor
WO2018148632A1 (en) 2017-02-13 2018-08-16 Carbon, Inc. Method of making composite objects by additive manufacturing
WO2018149977A1 (en) 2017-02-17 2018-08-23 Basf Se Reactive thermoplastic polyurethane based on blocked isocyanates
US11470908B2 (en) 2017-02-27 2022-10-18 Kornit Digital Technologies Ltd. Articles of footwear and apparel having a three-dimensionally printed feature
US11701813B2 (en) 2017-02-27 2023-07-18 Kornit Digital Technologies Ltd. Methods for three-dimensionally printing and associated multi-input print heads and systems
CN110891795A (en) * 2017-02-27 2020-03-17 沃克索8股份有限公司 3D printing device including mixing nozzle
EP3585612A4 (en) 2017-02-27 2020-12-09 Voxel8, Inc. Systems and methods of 3d printing articles of footwear with property gradients
US11857023B2 (en) 2017-02-27 2024-01-02 Kornit Digital Technologies Ltd. Digital molding and associated articles and methods
WO2018159493A1 (en) * 2017-03-03 2018-09-07 キヤノン株式会社 Photocurable composition for solid molding, method for preparing solid article therewith, and resin
US11085018B2 (en) 2017-03-10 2021-08-10 Prellis Biologics, Inc. Three-dimensional printed organs, devices, and matrices
US10933579B2 (en) * 2017-03-10 2021-03-02 Prellis Biologics, Inc. Methods and systems for printing biological material
US10935891B2 (en) 2017-03-13 2021-03-02 Holo, Inc. Multi wavelength stereolithography hardware configurations
US10384394B2 (en) 2017-03-15 2019-08-20 Carbon, Inc. Constant force compression lattice
US20210187826A1 (en) 2017-03-15 2021-06-24 Carbon, Inc. Integrated additive manufacturing systems incorporating identification structures
CN110520298A (en) 2017-03-23 2019-11-29 卡本有限公司 It can be used for manufacturing the lip supports object of object by increasing material manufacturing
US10575588B2 (en) 2017-03-27 2020-03-03 Adidas Ag Footwear midsole with warped lattice structure and method of making the same
US10932521B2 (en) 2017-03-27 2021-03-02 Adidas Ag Footwear midsole with warped lattice structure and method of making the same
EP3381959A1 (en) 2017-03-27 2018-10-03 Covestro Deutschland AG Dual cure method using thermally latent tin catalysts
US10574014B2 (en) * 2017-03-27 2020-02-25 Aptiv Technologies Limited Method for sealing electric terminal assembly
CN110520276B (en) * 2017-03-27 2022-03-25 卡本有限公司 Method of manufacturing a three-dimensional object by additive manufacturing
DE112018001072T5 (en) 2017-03-28 2019-11-21 Ford Global Technologies, Llc STABILIZED ADDITIVE PREPARATIONS
WO2018183440A1 (en) * 2017-03-28 2018-10-04 Ford Global Technologies, Llc Bio-based polyurethane resin for additive manufacturing
US10239255B2 (en) 2017-04-11 2019-03-26 Molecule Corp Fabrication of solid materials or films from a polymerizable liquid
US11312816B2 (en) * 2017-04-12 2022-04-26 Basf Se Thermoplastic polyurethane and composite article
US10369557B2 (en) * 2017-04-12 2019-08-06 International Business Machines Corporation Three-dimensional printed objects for chemical reaction control
EP3551424A4 (en) * 2017-04-17 2020-07-15 Hewlett-Packard Development Company, L.P. Additively manufacturing a 3d object including a second material
US20180304541A1 (en) * 2017-04-19 2018-10-25 Carbon, Inc. 3d lattice supports for additive manufacturing
US11376786B2 (en) 2017-04-21 2022-07-05 Carbon, Inc. Methods and apparatus for additive manufacturing
US20210282897A1 (en) 2017-04-21 2021-09-16 Carbon, Inc. Dental model and die assembly and method of making the same
GB2564956B (en) 2017-05-15 2020-04-29 Holo Inc Viscous film three-dimensional printing systems and methods
DE102017110984A1 (en) 2017-05-19 2018-11-22 Isotech Holding Corporation Llc Shoe upper with three-dimensional ornamental patterns of polyurethane and method for producing the same and shoe with the shoe upper
DE202017103049U1 (en) 2017-05-19 2017-06-27 Isotech Holding Corporation Llc Shoe upper with three-dimensional ornamental patterns made of polyurethane and shoe with such a shoe upper
EP3635105A4 (en) 2017-05-25 2021-03-31 Prellis Biologics, Inc. Three-dimensional printed organs, devices, and matrices
CN108927993B (en) * 2017-05-26 2020-12-15 三纬国际立体列印科技股份有限公司 Photocuring 3D printing method of multi-light source module
CN111132834A (en) 2017-05-29 2020-05-08 斯特拉塔西斯公司 Method and system for additive manufacturing of peelable sacrificial structures
US10532554B2 (en) * 2017-06-02 2020-01-14 3D Systems, Inc. Three dimensional printing system with automation features
WO2018229095A1 (en) * 2017-06-14 2018-12-20 Covestro Deutschland Ag Additive manufacturing process using amines for the post-hardening
US10245785B2 (en) 2017-06-16 2019-04-02 Holo, Inc. Methods for stereolithography three-dimensional printing
CN213006569U (en) 2017-06-21 2021-04-20 卡本有限公司 System for additive manufacturing and dispensing system useful for dispensing resin for additive manufacturing
DE102017210384B3 (en) 2017-06-21 2018-08-30 Sirona Dental Systems Gmbh Containers for use in stereolithography equipment and stereolithography equipment
US11135766B2 (en) * 2017-06-29 2021-10-05 Carbon, Inc. Products containing nylon 6 produced by stereolithography and methods of making the same
US20190001658A1 (en) * 2017-06-30 2019-01-03 General Electric Company Systems and method for advanced additive manufacturing
CN110869200B (en) * 2017-06-30 2022-05-10 株式会社尼康 Method of manufacturing an optical device and corresponding system
CN110799566A (en) * 2017-06-30 2020-02-14 科思创德国股份有限公司 Additive manufacturing method using thermoplastic free-radically crosslinkable building materials
JP6937394B2 (en) 2017-07-10 2021-09-22 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Segments in virtual build volumes
WO2019013814A1 (en) 2017-07-14 2019-01-17 Hewlett-Packard Development Company, L.P. 3-d printing
US11584827B2 (en) 2017-07-25 2023-02-21 3M Innovative Properties Company Photopolymerizable compositions including a urethane component and a reactive diluent, articles, and methods
EP3634719A4 (en) * 2017-07-31 2020-09-30 Hewlett-Packard Development Company, L.P. Objects having cores with metal nanoparticle binders
US11247272B2 (en) * 2017-08-07 2022-02-15 The Penn State Research Foundation Achieving functionally-graded material composition through bicontinuous mesostructural geometry in additive manufacturing
US11135765B2 (en) 2017-08-11 2021-10-05 Carbon, Inc. Serially curable resins useful in additive manufacturing
US10434704B2 (en) 2017-08-18 2019-10-08 Ppg Industries Ohio, Inc. Additive manufacturing using polyurea materials
CN107603201B (en) * 2017-09-07 2021-02-26 金华造物新材料有限公司 3D printing photosensitive resin for precision casting of ornaments and dentistry
JP7398364B2 (en) 2017-09-11 2023-12-14 スリーエム イノベイティブ プロパティズ カンパニー Composite articles made using radiation-curable compositions and additive manufacturing processes
US10688737B2 (en) 2017-09-14 2020-06-23 General Electric Company Method for forming fiber-reinforced polymer components
CN111278877A (en) * 2017-09-22 2020-06-12 卡本有限公司 Production of light transmitting objects by additive manufacturing
US10590066B2 (en) 2017-09-29 2020-03-17 3D-Biomaterials, Llc Biocompositions for 3D printing
TW201915592A (en) * 2017-09-29 2019-04-16 揚明光學股份有限公司 3d printing system and fabrication method thereof
US11220054B2 (en) 2017-10-02 2022-01-11 Global Filtration Systems Method of stabilizing a photohardening inhibitor-permeable film in the manufacture of three-dimensional objects
US10414090B2 (en) * 2017-10-02 2019-09-17 Global Filtration Systems Method of stabilizing a photohardening inhibitor-permeable film in the manufacture of three-dimensional objects
WO2019074790A1 (en) 2017-10-09 2019-04-18 Carbon, Inc. Performance optimization in additive manufacturing
AT520499B1 (en) * 2017-10-12 2021-10-15 Swarovski Optik Kg Method for producing a long-range optical device
WO2019083833A1 (en) 2017-10-23 2019-05-02 Carbon, Inc. Window variability correction in additive manufacturing
WO2019083876A1 (en) 2017-10-26 2019-05-02 Carbon, Inc. Reduction of shrinkage or warping in objects produced by additive manufacturing
CN214726511U (en) * 2017-10-27 2021-11-16 卡本有限公司 Apparatus for producing three-dimensional objects by additive manufacturing
EP3664994B1 (en) 2017-10-31 2022-04-13 Carbon, Inc. Mass customization in additive manufacturing
US11602899B2 (en) 2017-10-31 2023-03-14 Carbon, Inc. Efficient surface texturing of objects produced by additive manufacturing
AU2018357941A1 (en) 2017-11-02 2020-06-11 Magic Leap, Inc. Preparing and dispensing polymer materials and producing polymer articles therefrom
US11254052B2 (en) 2017-11-02 2022-02-22 General Electric Company Vatless additive manufacturing apparatus and method
US20190129308A1 (en) 2017-11-02 2019-05-02 Taiwan Green Point Enterprises Co., Ltd. Digital masking system, pattern imaging apparatus and digital masking method
US11590691B2 (en) 2017-11-02 2023-02-28 General Electric Company Plate-based additive manufacturing apparatus and method
WO2019099347A1 (en) 2017-11-20 2019-05-23 Carbon, Inc. Light-curable siloxane resins for additive manufacturing
CN111372959B (en) 2017-11-22 2022-09-02 3M创新有限公司 Photopolymerizable compositions, articles, and methods comprising a urethane component and a monofunctional reactive diluent
WO2019104079A1 (en) * 2017-11-22 2019-05-31 3M Innovative Properties Company Orthodontic articles comprising polymerized composition comprising at least two free-radical initiators
US11065864B2 (en) * 2017-11-27 2021-07-20 City University Of Hong Kong Hybrid polymeric structure, a method for fabricating a hybrid polymeric structure and a method for connecting two polymeric layers with the hybrid polymeric structure
WO2019108200A1 (en) 2017-11-30 2019-06-06 Hewlett-Packard Development Company, L.P. Anti-coalescing agent for three-dimensional printing
US11479628B2 (en) 2017-12-08 2022-10-25 Carbon, Inc. Shelf stable, low tin concentration, dual cure additive manufacturing resins
EP3732015B1 (en) * 2017-12-28 2023-11-08 Stratasys Ltd. Method and system for additive manufacturing of peelable sacrificial structure
WO2019140036A1 (en) * 2018-01-11 2019-07-18 E-Vision Smart Optics, Inc. Three-dimensional (3d) printing of electro-active lenses
US10821668B2 (en) 2018-01-26 2020-11-03 General Electric Company Method for producing a component layer-by- layer
US10821669B2 (en) 2018-01-26 2020-11-03 General Electric Company Method for producing a component layer-by-layer
US11034789B2 (en) * 2018-01-30 2021-06-15 Johnson & Johnson Vision Care, Inc. Ophthalmic devices containing localized grafted networks and processes for their preparation and use