WO2015199629A1 - Automatisation agricole mobile à trois axes à alimentation solaire - Google Patents
Automatisation agricole mobile à trois axes à alimentation solaire Download PDFInfo
- Publication number
- WO2015199629A1 WO2015199629A1 PCT/TR2015/000168 TR2015000168W WO2015199629A1 WO 2015199629 A1 WO2015199629 A1 WO 2015199629A1 TR 2015000168 W TR2015000168 W TR 2015000168W WO 2015199629 A1 WO2015199629 A1 WO 2015199629A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar powered
- axis mobile
- agricultural automation
- mobile agricultural
- automation according
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/02—Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
- B25J9/023—Cartesian coordinate type
- B25J9/026—Gantry-type
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B76/00—Parts, details or accessories of agricultural machines or implements, not provided for in groups A01B51/00 - A01B75/00
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G27/00—Self-acting watering devices, e.g. for flower-pots
- A01G27/003—Controls for self-acting watering devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
- B25J9/104—Programme-controlled manipulators characterised by positioning means for manipulator elements with cables, chains or ribbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C21/00—Cable cranes, i.e. comprising hoisting devices running on aerial cable-ways
- B66C21/02—Cable cranes, i.e. comprising hoisting devices running on aerial cable-ways with cable-ways supported on framework swingably connected to groundengaging elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/12—Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping
Definitions
- the present invention is related to a solar powered three-axis mobile agricultural automation of which the main energy source is solar energy; when reinforced, gains continuity with the support of wind, network and generator; and which carries out drop irrigation, sprinkler irrigation, agricultural spraying, subsoil moisture control and thermal leaf moisture analysis, macro visualization, fogging, shaking, harvesting, displaying, illumination, security operations and which also carries out driving and power supply operations by means of the electric tractor which moves on the soil.
- Robotics and automation will particularly play an important role in the near future in meeting the needs of agricultural production in order to increase the quality of life for society.
- robots have played a major role in increasing agricultural productivity, in industrial production, and in reducing the cost of products.
- GPS and vision-based self-guided tractors and combines have begun to take their place in the automation market in agriculture.
- farmers have started to perform processes such as pruning, thinning and harvesting, mowing, agricultural spraying, and removal of grass using automated machines or with autonomous systems.
- a multi-sensor system measures diffuse reflectance of soil, soil conductivity, and other soil properties in situ, in three dimensions.
- the system includes a sensor shank used tbr X-Y axis measurements and a hydraulic probe implement containing a sensor probe for -Z axis measurements. It includes optical sensors and soil electrical conductivity sensors. It further encompasses a sensor that measures insertion force and a soil temperature sensor.
- the invention is an agricultural tractor and consists of an electrical control unit and control system that controls the tractor.
- the control system is programmed such that the sensor related to the tractor's operating functions receive numerous real time signals.
- the control system is also arranged to enable numerous output signals of controlled operating components.
- the control system enables predefined commands to be carried out by means of input being provided over the internet.
- the tractor has actuator which is controlled by control device and is actuated under external power, to adjust working parameter of machine.
- a sensor is connected to control device, to detect vertical position of machine, machine inclination in forward or sideward direction, and distance between machine and object.
- the control device is used to identify agricultural several topographical zones of field by means of signals of sensor.
- Expanding agricultural automation is generally developed for programming and operating conventional farming tools. Irrigation can be considered a typical example.
- Systems selected according to the crop type are sprinklers, drip irrigation and wild flooding. While in sprinkler system the run time of water pressure is controlled, in drip irrigation the water tank level and period of irrigation is controlled. The realization of applications with pipes laid in the ground has negative effects in terms of material life, protection of pipes, and blocking of machinery in the field. While irrigation systems with mobile capability which have become widespread in recent years, problems related to soil damage, moving hoses, garages and assembly have not been overcome. While solar-powered pumps and irrigation systems have become widespread, use of solar powered tractors has not
- the objective in developing the solar powered three-axis mobile agricultural automation is to provide the production of an efficient product using programmable agricultural activities, remote control and management systems and to provide savings by using low cost energy source.
- Another objective in developing the invention is to enable cultivation with deformation in the soil and to provide up to date tracking of crop growth.
- Figure 1 View of the elements that constitute the solar powered three-axis mobile agricultural automation system.
- Figure 6 Perspective view of the drip irrigation tank Definitions of the Coniponents/Parts/Pieces Forming the Invention
- the solar powered three-axis mobile agricultural automation ( I) consists of a pair of ropes (8) parallel to each other placed on the stretch ropes (5) located on the top section of four carrier poles (2) positioned on the specified area.
- the movement of the stretch ropes (5) is possible by means of the DC overhead engine (20) connected to the pulley center on the pole (2).
- the stretch ropes (5) move the X axis movement platform (3) along the x axis.
- the mutual platform (21) which is placed on the bridge ropes (6) and which is idle on the bottom and fixed on the top, can move in the (z) direction with the movement of the rope (6).
- This platform (21) also provides the transfer of data, liquid, and air by means of the idle wheel located on the mobile conveyor line (13).
- This body (21) moves by means of the drive of the mobile bridge engine (20) to which the pulleys found on two ends of the platform (3) are connected.
- the body platform (21) provides balance stability to the four ropes (5, 8) with eight contact points.
- the rotating head (4) which can rotate 360 degrees with the vertical (y) axis motion of the four bedded columns located on the body (21), positions the poles (2) to the points referenced by means of laser measurements.
- Functional apparatuses are located on the side of the head (4), while a robotic arm (22) is located on its bottom to perform point-in commands.
- an electric tractor (12) is to be used within the framework of the control panel (18), the energy is directly directed to the tractor (12). Deep wells, water transfers and other activities are disabled. For example, if agricultural spraying is to be performed, the stock energy (compressed air) is provided to the pesticide and water tank (16) and transfer pressure is achieved. At other times, energy is used in deep water extraction and storage, air compression, irrigation, battery storage, feeding of other units and in the power battery group of the electric tractor (12).
- the control panel (18) activates the related units by converting agricultural activities according to the type of agricultural field (field, garden) and the plant to be planted in accordance with basic data such as time, temperature, moisture, and energy into commands by means of sensor feedback into commands.
- the subsoil moisture sensor (9) measures moisture and temperature. According to data, the drop and rain irrigation commands are chosen from the control panel (18). In drop irrigation, the water at the rotating head (4) is poured to the conical drop irrigation tanks (19) found at the determined area by means of the pouring apparatus on the robotic arm (22). in rain irrigation, micronized moistening in the form of multiple drops or pressurized air mixture is performed. The water pump (14) is enabled at the desired angle and time by means of the smart energy method.
- pesticides and water at a particular location and of a certain type are provided to the water transfer line (13) with dosage control. Then pesticide is applied from the top and from the sides from the micronized head through the robotic arm (22) by providing pressurized air.
- the robotic arm (22) enables the collection of fruits and crops predefined in the program.
- the collection head on the arm (22) is changed in accordance with the crop type.
- the pressure shaker (25) is locked to the tree in the form of two half-moons and carries out shaking by means of the weight on the edge of the shaker piston (26) working in the opposite direction with the pressurized air coming from the compressed air tank (15). This process enables the collection of crops such as olives, which are found as small pieces on the branches.
- the automation system ( 1) is enclosed in the application area. Exit, with the exception of the classic lid, is performed by means of the three step motion controlled access gate (23) under the control of the system (I).
- the sides of the system ( 1 ) are in the form of open chassis and the front and back panels serve as gates (23).
- the front panel is the gate that closes the exit, the chassis enters the tunnel after it is full and this step is the standby lid position ( Figure 2).
- the lid which serves as a closed tank also serves as a cooling unit (24) due to the insulation and of the lid surfaces and the cooling capability of the tunnel (Figure 3).
- the chassis moves outside by moving on the rail in three moves and serves as a back lid ( Figure 4.
- the electric tractor ( 12) is fed from the three axis mobile energy transfer line and carries out tractor activities in all areas on-site and remotely.
- the panel energy used enables obtaining satisfactory power in a more economical manner.
- the water and air supplied from the transfer line (13) may be stored and carried in the tractor.
- the system (1 ) enables easy use in orchards. Moreover, it also manually carries out external activities by means of the energy storage batteries.
- the tanks (16, 19) are stationary and can change the work area with the progressive (worm) action at low speed (3m/h) by means of the electromotor movement mechanism (27) placed under the poles (2).
- the stretch ropes (5) in the system enable ease of movement. This enables more efficient operation with a single module.
- Control elements (7) found in the system consisting of gas, audio, visual, lighting actuators may also be used for security functions with the appropriate programming. Movement and heat sensitive detectors provide deterrent effect against wild animals, birds and intrusions by spraying pressurized water via the robotic arm (22) or by applications such as sounding alarms.
- the solar powered three-axis mobile agricultural automation ( I ) which can be implemented in various areas such as parks, agricultural areas and gardens, a versatile integrated use through a single energy panel is provided; by means of the solar powered tractor application, a low cost and clean energy solution is provided.
- the system (1) provides ease of control by means of on-site or remote control.
- the system (1 ) also provides easier efficient produce production by means of diversity in irrigation, time-independent application and subsoil and sub-leaf sensor (9) which does not damage the soil .
- the automatic remote controlled spraying, shaking of trees and harvesting operations of the system (1 ) can be carried out without workers and thus provides saving in manpower.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Robotics (AREA)
- Soil Sciences (AREA)
- Water Supply & Treatment (AREA)
- Catching Or Destruction (AREA)
- Agricultural Machines (AREA)
- Soil Working Implements (AREA)
- Photovoltaic Devices (AREA)
- Wind Motors (AREA)
Abstract
La présente invention porte sur une automatisation agricole mobile à trois axes à alimentation solaire dont la source d'énergie principale est l'énergie solaire; quand elle est renforcée, elle gagne une continuité avec l'appui du vent, du secteur et d'un générateur; et elle effectue des opérations d'irrigation goutte à goutte, d'irrigation par pulvérisateur, de pulvérisation agricole, de contrôle de l'humidité du sous-sol et d'analyse thermique d'humidité de feuilles, de macro-visualisation, de brumisation, d'agitation, de récolte, d'affichage, d'éclairage et de sécurité, et elle effectue également des opérations d'entraînement et d'alimentation à l'aide du tracteur électrique qui se déplace sur le sol.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15725437.6A EP3038797A1 (fr) | 2014-06-25 | 2015-04-22 | Automatisation agricole mobile à trois axes à alimentation solaire |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TR2014/07381A TR201407381A2 (tr) | 2014-06-25 | 2014-06-25 | Üç eksen hareketli solar enerji kaynaklı tarım otomasyonu. |
TR2014/07381 | 2014-06-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015199629A1 true WO2015199629A1 (fr) | 2015-12-30 |
Family
ID=53269706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/TR2015/000168 WO2015199629A1 (fr) | 2014-06-25 | 2015-04-22 | Automatisation agricole mobile à trois axes à alimentation solaire |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3038797A1 (fr) |
TR (1) | TR201407381A2 (fr) |
WO (1) | WO2015199629A1 (fr) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106081918A (zh) * | 2016-08-18 | 2016-11-09 | 无锡石油化工起重机有限公司 | 带节能发电设备的塔吊操控室 |
CN106426090A (zh) * | 2016-09-30 | 2017-02-22 | 华南理工大学 | 无杆气缸驱动的平面三自由度并联机器人控制装置及方法 |
CN106426089A (zh) * | 2016-09-30 | 2017-02-22 | 华南理工大学 | 柔性三自由度并联机构振动检测控制装置及控制方法 |
CN107347279A (zh) * | 2017-07-19 | 2017-11-17 | 深圳市晓控通信科技有限公司 | 一种具有太阳能发电功能的耕地播种机器人 |
CN107509399A (zh) * | 2017-10-17 | 2017-12-26 | 中国科学院合肥物质科学研究院 | 一种绿色智能除草机器人 |
CN108669056A (zh) * | 2018-07-26 | 2018-10-19 | 苏州宏奇锐自动化有限公司 | 一种农药自动喷洒装置 |
CN108792956A (zh) * | 2018-05-29 | 2018-11-13 | 深圳春沐源控股有限公司 | 一种空中循环采集物资的方法及系统 |
CN108982811A (zh) * | 2018-07-20 | 2018-12-11 | 合肥耀世同辉科技有限公司 | 一种基于新能源的土壤环境监测设备 |
CN109229123A (zh) * | 2018-09-04 | 2019-01-18 | 辽宁双麟农业机械有限公司 | 一种多功能轨道农业平台作业车 |
CN109702722A (zh) * | 2019-01-21 | 2019-05-03 | 深圳市拓野机器人自动化有限公司 | 一种桁架机器人的多机械手集成系统 |
WO2019139633A1 (fr) * | 2018-01-11 | 2019-07-18 | Lancium Llc | Procédé et système de fourniture d'énergie dynamique à un centre de culture flexible à l'aide de sources d'énergie non utilisées |
US10367353B1 (en) | 2018-10-30 | 2019-07-30 | Lancium Llc | Managing queue distribution between critical datacenter and flexible datacenter |
US10444818B1 (en) | 2018-09-14 | 2019-10-15 | Lancium Llc | Methods and systems for distributed power control of flexible datacenters |
US10452127B1 (en) | 2019-01-11 | 2019-10-22 | Lancium Llc | Redundant flexible datacenter workload scheduling |
WO2019204814A1 (fr) * | 2018-04-20 | 2019-10-24 | Realmfive, Inc. | Système d'élevage complet |
US10608433B1 (en) | 2019-10-28 | 2020-03-31 | Lancium Llc | Methods and systems for adjusting power consumption based on a fixed-duration power option agreement |
US10618427B1 (en) | 2019-10-08 | 2020-04-14 | Lancium Llc | Behind-the-meter branch loads for electrical vehicle charging |
US10873211B2 (en) | 2018-09-14 | 2020-12-22 | Lancium Llc | Systems and methods for dynamic power routing with behind-the-meter energy storage |
CN112715192A (zh) * | 2020-12-28 | 2021-04-30 | 燕山大学 | 一种街道灌木丛修剪装置 |
US11025060B2 (en) | 2018-09-14 | 2021-06-01 | Lancium Llc | Providing computational resource availability based on power-generation signals |
US11031813B2 (en) | 2018-10-30 | 2021-06-08 | Lancium Llc | Systems and methods for auxiliary power management of behind-the-meter power loads |
US11031787B2 (en) | 2018-09-14 | 2021-06-08 | Lancium Llc | System of critical datacenters and behind-the-meter flexible datacenters |
US11042948B1 (en) | 2020-02-27 | 2021-06-22 | Lancium Llc | Computing component arrangement based on ramping capabilities |
US20210192619A1 (en) * | 2019-12-18 | 2021-06-24 | Bitmaintech Pte. Ltd. | Method and system for cryptocurrency mining center |
US11128165B2 (en) | 2019-02-25 | 2021-09-21 | Lancium Llc | Behind-the-meter charging station with availability notification |
US11205896B2 (en) | 2018-11-21 | 2021-12-21 | Black & Decker Inc. | Solar power system |
US11397999B2 (en) | 2019-08-01 | 2022-07-26 | Lancium Llc | Modifying computing system operations based on cost and power conditions |
WO2022165070A1 (fr) * | 2021-01-29 | 2022-08-04 | Neatleaf, Inc. | Plate-forme aérienne de détection et de manipulation pour l'agriculture et procédé d'utilisation d'une telle plate-forme |
US11574372B2 (en) | 2017-02-08 | 2023-02-07 | Upstream Data Inc. | Blockchain mine at oil or gas facility |
WO2023045077A1 (fr) * | 2021-09-23 | 2023-03-30 | 李国强 | Système d'exploitation pour cultures agricoles |
EP3918905A4 (fr) * | 2019-01-31 | 2023-06-07 | Kubota Corporation | Dispositif de travail |
US11868106B2 (en) | 2019-08-01 | 2024-01-09 | Lancium Llc | Granular power ramping |
US11907029B2 (en) | 2019-05-15 | 2024-02-20 | Upstream Data Inc. | Portable blockchain mining system and methods of use |
US12099873B2 (en) | 2020-08-14 | 2024-09-24 | Lancium Llc | Power aware scheduling |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1017578A (en) * | 1910-07-25 | 1912-02-13 | William Perry Mcmillan | Irrigating apparatus. |
US1502997A (en) * | 1922-12-23 | 1924-07-29 | Marrian Harry Herber Blakemore | Aerial transporter |
US2024374A (en) * | 1935-06-14 | 1935-12-17 | Moody E Langebrake | Overhead irrigation system |
FR2518869A1 (fr) * | 1981-12-29 | 1983-07-01 | Kerteszeti Egyetem | Installation pour traiter des plantes cultivees en rangees, notamment des vignes et des arbres fruitiers |
US4612996A (en) | 1983-08-08 | 1986-09-23 | Kimberly Hills, Ltd. | Robotic agricultural system with tractor supported on tracks |
US20030145759A1 (en) * | 2003-02-18 | 2003-08-07 | Rodnunsky James Lewis | Traveling highline system |
US20050024005A1 (en) * | 2003-07-28 | 2005-02-03 | Jim Rodnunsky | System and method for facilitating fluid three-dimensional movement of an object via directional force |
US20050105970A1 (en) * | 2003-10-10 | 2005-05-19 | Faris Sadeg M. | Hillside farming module and system |
US20110106451A1 (en) | 2008-11-04 | 2011-05-05 | Colin Christy | Multiple sensor system and method for mapping soil in three dimensions |
US20110127229A1 (en) * | 2009-11-30 | 2011-06-02 | Gm Global Technology Operations, Inc. | Actuation system configured for moving a payload |
EP2622955A1 (fr) | 2012-01-31 | 2013-08-07 | Deere & Company | Machine agricole dotée d'un système de réglage automatique d'un paramètre de travail et procédé correspondant |
WO2013181069A1 (fr) | 2012-06-01 | 2013-12-05 | Rowbot Systems Llc | Procédé à plate-forme robotique pour la réalisation de plusieurs fonctions dans des systèmes agricoles |
US20130345876A1 (en) * | 2012-06-20 | 2013-12-26 | Irobot Corporation | Suspended robot systems and methods for using same |
CN103625300A (zh) * | 2013-11-14 | 2014-03-12 | 江苏大学 | 一种混合动力拖拉机 |
-
2014
- 2014-06-25 TR TR2014/07381A patent/TR201407381A2/tr unknown
-
2015
- 2015-04-22 EP EP15725437.6A patent/EP3038797A1/fr not_active Withdrawn
- 2015-04-22 WO PCT/TR2015/000168 patent/WO2015199629A1/fr active Application Filing
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1017578A (en) * | 1910-07-25 | 1912-02-13 | William Perry Mcmillan | Irrigating apparatus. |
US1502997A (en) * | 1922-12-23 | 1924-07-29 | Marrian Harry Herber Blakemore | Aerial transporter |
US2024374A (en) * | 1935-06-14 | 1935-12-17 | Moody E Langebrake | Overhead irrigation system |
FR2518869A1 (fr) * | 1981-12-29 | 1983-07-01 | Kerteszeti Egyetem | Installation pour traiter des plantes cultivees en rangees, notamment des vignes et des arbres fruitiers |
US4612996A (en) | 1983-08-08 | 1986-09-23 | Kimberly Hills, Ltd. | Robotic agricultural system with tractor supported on tracks |
US20030145759A1 (en) * | 2003-02-18 | 2003-08-07 | Rodnunsky James Lewis | Traveling highline system |
US20050024005A1 (en) * | 2003-07-28 | 2005-02-03 | Jim Rodnunsky | System and method for facilitating fluid three-dimensional movement of an object via directional force |
US20050105970A1 (en) * | 2003-10-10 | 2005-05-19 | Faris Sadeg M. | Hillside farming module and system |
US20110106451A1 (en) | 2008-11-04 | 2011-05-05 | Colin Christy | Multiple sensor system and method for mapping soil in three dimensions |
US20110127229A1 (en) * | 2009-11-30 | 2011-06-02 | Gm Global Technology Operations, Inc. | Actuation system configured for moving a payload |
EP2622955A1 (fr) | 2012-01-31 | 2013-08-07 | Deere & Company | Machine agricole dotée d'un système de réglage automatique d'un paramètre de travail et procédé correspondant |
WO2013181069A1 (fr) | 2012-06-01 | 2013-12-05 | Rowbot Systems Llc | Procédé à plate-forme robotique pour la réalisation de plusieurs fonctions dans des systèmes agricoles |
US20130345876A1 (en) * | 2012-06-20 | 2013-12-26 | Irobot Corporation | Suspended robot systems and methods for using same |
CN103625300A (zh) * | 2013-11-14 | 2014-03-12 | 江苏大学 | 一种混合动力拖拉机 |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106081918A (zh) * | 2016-08-18 | 2016-11-09 | 无锡石油化工起重机有限公司 | 带节能发电设备的塔吊操控室 |
CN106426090A (zh) * | 2016-09-30 | 2017-02-22 | 华南理工大学 | 无杆气缸驱动的平面三自由度并联机器人控制装置及方法 |
CN106426089A (zh) * | 2016-09-30 | 2017-02-22 | 华南理工大学 | 柔性三自由度并联机构振动检测控制装置及控制方法 |
US11574372B2 (en) | 2017-02-08 | 2023-02-07 | Upstream Data Inc. | Blockchain mine at oil or gas facility |
CN107347279A (zh) * | 2017-07-19 | 2017-11-17 | 深圳市晓控通信科技有限公司 | 一种具有太阳能发电功能的耕地播种机器人 |
CN107509399A (zh) * | 2017-10-17 | 2017-12-26 | 中国科学院合肥物质科学研究院 | 一种绿色智能除草机器人 |
US12089546B2 (en) | 2018-01-11 | 2024-09-17 | Lancium Llc | Method and system for dynamic power delivery to a flexible growcenter using unutilized energy sources |
WO2019139633A1 (fr) * | 2018-01-11 | 2019-07-18 | Lancium Llc | Procédé et système de fourniture d'énergie dynamique à un centre de culture flexible à l'aide de sources d'énergie non utilisées |
US11163280B2 (en) | 2018-01-11 | 2021-11-02 | Lancium Llc | Method and system for dynamic power delivery to a flexible datacenter using unutilized energy sources |
US11016456B2 (en) | 2018-01-11 | 2021-05-25 | Lancium Llc | Method and system for dynamic power delivery to a flexible datacenter using unutilized energy sources |
US11678615B2 (en) | 2018-01-11 | 2023-06-20 | Lancium Llc | Method and system for dynamic power delivery to a flexible growcenter using unutilized energy sources |
WO2019204814A1 (fr) * | 2018-04-20 | 2019-10-24 | Realmfive, Inc. | Système d'élevage complet |
CN108792956A (zh) * | 2018-05-29 | 2018-11-13 | 深圳春沐源控股有限公司 | 一种空中循环采集物资的方法及系统 |
CN108982811A (zh) * | 2018-07-20 | 2018-12-11 | 合肥耀世同辉科技有限公司 | 一种基于新能源的土壤环境监测设备 |
CN108669056A (zh) * | 2018-07-26 | 2018-10-19 | 苏州宏奇锐自动化有限公司 | 一种农药自动喷洒装置 |
CN109229123A (zh) * | 2018-09-04 | 2019-01-18 | 辽宁双麟农业机械有限公司 | 一种多功能轨道农业平台作业车 |
US10444818B1 (en) | 2018-09-14 | 2019-10-15 | Lancium Llc | Methods and systems for distributed power control of flexible datacenters |
US11669144B2 (en) | 2018-09-14 | 2023-06-06 | Lancium Llc | Methods and systems for distributed power control of flexible datacenters |
US10873211B2 (en) | 2018-09-14 | 2020-12-22 | Lancium Llc | Systems and methods for dynamic power routing with behind-the-meter energy storage |
US11275427B2 (en) | 2018-09-14 | 2022-03-15 | Lancium Llc | Methods and systems for distributed power control of flexible datacenters |
US11016553B2 (en) | 2018-09-14 | 2021-05-25 | Lancium Llc | Methods and systems for distributed power control of flexible datacenters |
US11611219B2 (en) | 2018-09-14 | 2023-03-21 | Lancium Llc | System of critical datacenters and behind-the-meter flexible datacenters |
US11949232B2 (en) | 2018-09-14 | 2024-04-02 | Lancium Llc | System of critical datacenters and behind-the-meter flexible datacenters |
US11025060B2 (en) | 2018-09-14 | 2021-06-01 | Lancium Llc | Providing computational resource availability based on power-generation signals |
US11431195B2 (en) | 2018-09-14 | 2022-08-30 | Lancium Llc | Systems and methods for dynamic power routing with behind-the-meter energy storage |
US11031787B2 (en) | 2018-09-14 | 2021-06-08 | Lancium Llc | System of critical datacenters and behind-the-meter flexible datacenters |
US11682902B2 (en) | 2018-10-30 | 2023-06-20 | Lancium Llc | Managing queue distribution between critical datacenter and flexible datacenter |
US11031813B2 (en) | 2018-10-30 | 2021-06-08 | Lancium Llc | Systems and methods for auxiliary power management of behind-the-meter power loads |
US11342746B2 (en) | 2018-10-30 | 2022-05-24 | Lancium Llc | Managing queue distribution between critical datacenter and flexible datacenter |
US11283261B2 (en) | 2018-10-30 | 2022-03-22 | Lancium Llc | Managing queue distribution between critical datacenter and flexible datacenter |
US10367353B1 (en) | 2018-10-30 | 2019-07-30 | Lancium Llc | Managing queue distribution between critical datacenter and flexible datacenter |
US11205896B2 (en) | 2018-11-21 | 2021-12-21 | Black & Decker Inc. | Solar power system |
US11650639B2 (en) | 2019-01-11 | 2023-05-16 | Lancium Llc | Redundant flexible datacenter workload scheduling |
US11256320B2 (en) | 2019-01-11 | 2022-02-22 | Lancium Llc | Redundant flexible datacenter workload scheduling |
US10452127B1 (en) | 2019-01-11 | 2019-10-22 | Lancium Llc | Redundant flexible datacenter workload scheduling |
CN109702722A (zh) * | 2019-01-21 | 2019-05-03 | 深圳市拓野机器人自动化有限公司 | 一种桁架机器人的多机械手集成系统 |
US12114624B2 (en) | 2019-01-31 | 2024-10-15 | Kubota Corporation | Utility work device |
EP3918905A4 (fr) * | 2019-01-31 | 2023-06-07 | Kubota Corporation | Dispositif de travail |
US11128165B2 (en) | 2019-02-25 | 2021-09-21 | Lancium Llc | Behind-the-meter charging station with availability notification |
US12065048B2 (en) | 2019-02-25 | 2024-08-20 | Lancium Llc | Behind-the-meter charging station with availability notification |
US11907029B2 (en) | 2019-05-15 | 2024-02-20 | Upstream Data Inc. | Portable blockchain mining system and methods of use |
US11397999B2 (en) | 2019-08-01 | 2022-07-26 | Lancium Llc | Modifying computing system operations based on cost and power conditions |
US11961151B2 (en) | 2019-08-01 | 2024-04-16 | Lancium Llc | Modifying computing system operations based on cost and power conditions |
US11868106B2 (en) | 2019-08-01 | 2024-01-09 | Lancium Llc | Granular power ramping |
US10857899B1 (en) | 2019-10-08 | 2020-12-08 | Lancium Llc | Behind-the-meter branch loads for electrical vehicle charging |
US10618427B1 (en) | 2019-10-08 | 2020-04-14 | Lancium Llc | Behind-the-meter branch loads for electrical vehicle charging |
US11581734B2 (en) | 2019-10-28 | 2023-02-14 | Lancium Llc | Methods and systems for adjusting power consumption based on a dynamic power option agreement |
US12021385B2 (en) | 2019-10-28 | 2024-06-25 | Lancium Llc | Methods and systems for adjusting power consumption based on a fixed-duration power option agreement |
US11016458B2 (en) | 2019-10-28 | 2021-05-25 | Lancium Llc | Methods and systems for adjusting power consumption based on dynamic power option agreement |
US11594888B2 (en) | 2019-10-28 | 2023-02-28 | Lancium Llc | Methods and systems for adjusting power consumption based on a fixed-duration power option agreement |
US11031783B2 (en) | 2019-10-28 | 2021-06-08 | Lancium Llc | Methods and systems for adjusting power consumption based on a fixed-duration power option agreement |
US10608433B1 (en) | 2019-10-28 | 2020-03-31 | Lancium Llc | Methods and systems for adjusting power consumption based on a fixed-duration power option agreement |
US11587164B2 (en) * | 2019-12-18 | 2023-02-21 | Straitdeer Pte. Ltd. | Method and system for cryptocurrency mining center |
US20210192619A1 (en) * | 2019-12-18 | 2021-06-24 | Bitmaintech Pte. Ltd. | Method and system for cryptocurrency mining center |
US11669920B2 (en) | 2020-02-27 | 2023-06-06 | Lancium Llc | Computing component arrangement based on ramping capabilities |
US11042948B1 (en) | 2020-02-27 | 2021-06-22 | Lancium Llc | Computing component arrangement based on ramping capabilities |
US12067633B2 (en) | 2020-02-27 | 2024-08-20 | Lancium Llc | Computing component arrangement based on ramping capabilities |
US12099873B2 (en) | 2020-08-14 | 2024-09-24 | Lancium Llc | Power aware scheduling |
CN112715192A (zh) * | 2020-12-28 | 2021-04-30 | 燕山大学 | 一种街道灌木丛修剪装置 |
CN112715192B (zh) * | 2020-12-28 | 2022-03-15 | 燕山大学 | 一种街道灌木丛修剪装置 |
WO2022165070A1 (fr) * | 2021-01-29 | 2022-08-04 | Neatleaf, Inc. | Plate-forme aérienne de détection et de manipulation pour l'agriculture et procédé d'utilisation d'une telle plate-forme |
WO2023045077A1 (fr) * | 2021-09-23 | 2023-03-30 | 李国强 | Système d'exploitation pour cultures agricoles |
Also Published As
Publication number | Publication date |
---|---|
EP3038797A1 (fr) | 2016-07-06 |
TR201407381A2 (tr) | 2016-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015199629A1 (fr) | Automatisation agricole mobile à trois axes à alimentation solaire | |
US9622398B2 (en) | Robotic gantry bridge for farming | |
Kushwaha et al. | Status and scope of robotics in agriculture | |
CN102541030A (zh) | 作物病虫害智能监测防治系统 | |
US20210185947A1 (en) | Vertically Mounted Cropping And Irrigation System | |
CN207075345U (zh) | 智能园丁机器人系统 | |
IT201900001789A1 (fr) | ||
Azeta et al. | Application of Mechatronics in Agriculture: A review | |
Das et al. | Applications of robotic and solar energy in precision agriculture and smart farming | |
JP6985770B2 (ja) | 農業用ロボット装置 | |
Nandi et al. | Design and Fabrication of a Solar-Powered Bluetooth-Controlled Multipurpose Agromachine | |
Zhang et al. | Research status of agricultural robot technology | |
JPH06125609A (ja) | 農耕作等に使用する塔形走行クレーン及びこれを使用する農作業法 | |
Saeed et al. | Garden Tech: Aautomated Farming | |
Veiros et al. | Multitask robotic rover for agricultural activities (R2A2): a robotic platform for peach orchards | |
Adabara et al. | Intelligent embedded agricultural robotic system | |
AU2021101399A4 (en) | An agricultural smart robot device | |
US12114619B2 (en) | Vertical farming/gardening systems and methods of growing and/or dehydrating therewith | |
CN114868591B (zh) | 在南疆地区采用梨园生草的绿色种植方法 | |
Norton et al. | Precision Livestock Farming: Developing Useful Tools for Livestock Farmers | |
Sujitha et al. | Solar Powered Multi-functional Agricultural Robot | |
US20230116307A1 (en) | Automated farming system for a row crop installation | |
Reddy et al. | Agribot-Multipurpose Agricultural Robot | |
CN211353654U (zh) | 一种遥控自走式植保喷雾机 | |
Botta | Agri. Q-Sustainable Rover for Precision Agriculture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REEP | Request for entry into the european phase |
Ref document number: 2015725437 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015725437 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |