WO2015199391A1 - 무선 통신 시스템에서 풀 듀플렉스 기지국의 신호 송수신 방법 및 장치 - Google Patents
무선 통신 시스템에서 풀 듀플렉스 기지국의 신호 송수신 방법 및 장치 Download PDFInfo
- Publication number
- WO2015199391A1 WO2015199391A1 PCT/KR2015/006289 KR2015006289W WO2015199391A1 WO 2015199391 A1 WO2015199391 A1 WO 2015199391A1 KR 2015006289 W KR2015006289 W KR 2015006289W WO 2015199391 A1 WO2015199391 A1 WO 2015199391A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time intervals
- downlink
- signal
- uplink
- base station
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/24—Radio transmission systems, i.e. using radiation field for communication between two or more posts
- H04B7/26—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
Definitions
- the following description relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving signals in full duplex communication.
- a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
- Examples of the multiple access system include CDMACcode division multiple access) system, FDMA (frequency division multiple access) system, TDMA (time division multiple access) ' system, OFDMA (orthogonal frequency division multiple access ) system, SC-FDMA (single carrier frequency division multiple access (MC) systems, MC—FDMA (multi carrier frequency division multiple access) systems, and the like.
- the present invention provides a signal transmission and reception method of a full duplex base station and a signal transmission and reception method of a terminal.
- An embodiment of the present invention provides a method of transmitting and receiving a signal by an IBFD lnband full duplex (QB) reporter station in a wireless communication system, the method comprising the steps of: receiving K repeated uplink signals in K time intervals; And transmitting KN downlink signals in K ⁇ N time intervals while receiving uplink signals in the K time intervals, wherein N time intervals of the K time intervals are determined by the downlink.
- D2D terminal device in a wireless communication system, including: reception modules; And a processor, wherein the processor is configured to receive each uplink signal repeated K times in K time intervals, and to receive KN downlinks in K—N time intervals while receiving an uplink signal in the K time intervals.
- the base station apparatus transmits a link signal, wherein N time intervals of the K time intervals are used for handling interference received by one or more terminals receiving the downlink signal from one or more terminals transmitting the uplink signal. to be.
- the handling of the interference may include one or more terminals receiving the downlink signal subtracting signal components received in the N time intervals when decoding the K ⁇ N downlink signals.
- y ⁇ i) h k T w k d k (n) + _ g kl u t (n) + z k (")-gu t (K), l ⁇ n ⁇ K ⁇ l,
- h [ Downlink channel matrix from the base station to the k-th terminal, w * is ⁇ xl precoding matrix for the k-th terminal, is the transmission symbol of the k-th user, g "is the k-th downlink signal received from the first uplink signal transmission terminal 1 x 1 channel to the terminal, z may be a noise signal of the k-th terminal, ⁇ may be the number of users simultaneously supported in the downlink, the number of users simultaneously supported in the ⁇ uplink.
- the channel When receiving the uplink signal repeated K times, the channel may be different for every K time intervals.
- the K antenna modes may be applied to each of the K time periods.
- the base station states that the channel state does not change in the K time intervals. Can assume
- the N time intervals may be located at the center of the K time intervals.
- the N time periods may be located at the end of the K time periods.
- the time interval may be any one of an OFDM symbol, a slot, or a subframe.
- the number of terminals receiving the downlink signal may be K.
- the base station may include a reconfigurable antenna.
- full duplex communication can be performed while minimizing the influence of terminal-to-terminal interference.
- 1 is a diagram illustrating the structure of a radio frame.
- tr 3 is a diagram illustrating a structure of a downlink subframe.
- tr 5 is a block diagram of a wireless communication system having multiple antennas.
- ⁇ c 6 to 7 are views for explaining carrier aggregation.
- Tr 12 to 13 show simulation results according to an embodiment of the present invention.
- FIG. 14 is a diagram showing the configuration of a transceiver.
- each component or feature may be considered to be optional unless otherwise stated.
- Each component or feature may be embodied in a form that is not combined with other components or features.
- some components and / or features may be combined to form an embodiment of the present invention.
- the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
- the base station has a meaning as a terminal node of the network that directly communicates with the terminal. Certain operations described as being performed by the base station in this document may be performed by an upper node of the base station in some cases.
- a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), and an access point (AP).
- the repeater may be replaced by terms such as relay node (RN) and relay station (RS).
- RN relay node
- RS relay station
- terminal may be replaced with terms such as UE Jser Equipment (MSC Equipment), MSCMobile Station (MSC), Mobile Subscriber Station (MSS), and Subscriber Station (SS).
- base station may be used as a meaning of a device that refers to a scheduling execution node, a cluster header, and the like. If the base station or relay also transmits a signal transmitted by the terminal, it can be regarded as a kind of terminal.
- a cell described below is applied to transmission and reception points such as a base station (eNB), a sector, a remote radio head (RRH), a relay, and the like. It may be used as a generic term for identifying a component carrier at a point.
- eNB base station
- RRH remote radio head
- relay a relay
- Embodiments of the present invention may be supported by standard documents disclosed in at least one of IEEE 802 systems, 3GPP systems, 3GPP LTE and LTE-Advanced (LTE-A) systems, and 3GPP2 systems, which are wireless access systems. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in this document may be described by the above standard document.
- CDMA Code Division Multiple Access FDMA
- Frequency Division Multiple Access FDMA
- Time Division Multiple Access TDMA
- Orthogonal Frequency Division Multiple Access OFDMA
- SC-FDMA Single Carrier Frequency Division Multiple Access
- CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
- TDMA can be implemented with wireless technologies such as GSMCGlobai System for Mobile communications (GPRS) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
- GPRS Global System for Mobile communications
- GPRS General Packet Radio Service
- EDGE Enhanced Data Rates for GSM Evolution
- OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
- UTRA is part of the UMTS Universal Mobile Telecommunications System.
- 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is a part of Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
- LTE-A Advanced
- WiMAX can be described by the IEEE 802.16e standard (WirelessMAN-OFDMA Reference System) and the advanced IEEE 802.16m standard (WirelessMAN-OFDMA Advanced system). For clarity, the following description focuses on 3GPP LTE and 3GPP LTE-A systems, but the technical spirit of the present invention is not limited thereto.
- a structure of a radio frame will be described with reference to FIG. 1.
- uplink / downlink data packet transmission is performed in subframe units, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
- the 3GPP LTE standard supports a type 1 radio frame structure applicable to FDE Frequency Division Duplex) and a type 2 radio frame structure applicable to TDDCTime Division Duplex).
- FIG. 1 (a) is a diagram illustrating a structure of a type 1 radio frame.
- the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
- the time it takes for one subframe to be transmitted is called a TTKtransmission time interval).
- one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
- One slot includes a plurality of OFDM symbols in the time domain and includes a plurality of resource blocks (RBs) in the frequency domain.
- RBs resource blocks
- an OFDM symbol represents one symbol period.
- An OFDM symbol may also be referred to as an SC-FDMA symbol or symbol period.
- a resource block (RB) is a resource allocation unit and may include a plurality of consecutive subcarriers in one block.
- the number of OFDM symbols included in one slot may vary depending on the configuration of a CP Cyclic Prefix).
- CPs include extended CPs and generic CHnormal CPs. For example, when an OFDM symbol is configured by a general CP, the number of OFDM symbols included in one slot may be seven. When an OFDM symbol is configured by an extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the normal CP. In the case of an extended CP, for example, the number of OFDM symbols included in one slot may be six. If the channel state is unstable, such as when the terminal moves at a high speed, an extended CP may be used to further reduce intersymbol interference.
- one slot When a normal CP is used, one slot includes 7 OFDM symbols, and thus one subframe includes 14 OFDM symbols.
- the first two or three OFDM symbols of each subframe are allocated to a physical downlink control channel (PDCCH), the remaining OFDM symbols are assigned to a physical downlink shared channel (PDSCH) Can be assigned.
- PDCCH physical downlink control channel
- PDSCH physical downlink shared channel
- FIG. Kb shows a structure of a type 2 radio frame.
- Type 2 radio frames consist of two half frames, each of which has five subframes, a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
- DwPTS downlink pilot time slot
- GP guard period
- UpPTS uplink pilot time slot
- One subframe consists of two slots.
- the DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
- UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
- the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
- one subframe consists of two slots regardless of the radio frame type.
- FIG. 2 is a diagram illustrating a resource grid in a downlink slot.
- One downlink slot includes seven OFDM symbols in the time domain, and one resource block (RB) is shown to include 12 subcarriers in the frequency domain, but the present invention is not limited thereto.
- a resource element In the case of a general cyclic prefix (CP), one slot includes 7 OFDM symbols, but in the case of an extended CP, one slot may include 6 OFDM symbols.
- Each element on the resource grid is called a resource element.
- One resource block includes 12 ⁇ 7 resource elements.
- the number of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
- the structure of the uplink slot may be the same as the structure of the downlink slot.
- the channels may include, for example, a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), a Physical HARQ Indicator Channel (Physical Hybrid Automatic Repeat Request Indicator Channel); PHICH).
- PCFICH Physical Control Format Indicator Channel
- PDCH Physical Downlink Control Channel
- PHICH Physical HARQ Indicator Channel
- the PHICH includes a HARQ ACK / NACK signal as a response of uplink transmission.
- Control information transmitted through the PDCCH is referred to as downlink control information (DCI).
- DCI includes uplink or downlink scheduling information or an uplink transmit power control command for a certain terminal group.
- the PDCCH includes a resource allocation and transmission format of a DL shared channel (DL-SCH), resource allocation information of an uplink shared channel (UL-SCH), paging information of a paging channel (PCH), system information on a DL-SCH, and a PDSCH.
- DL-SCH DL shared channel
- UL-SCH uplink shared channel
- PCH paging information of a paging channel
- system information on a DL-SCH and a PDSCH.
- Resource allocation of upper layer control messages such as random access responses transmitted to the network, a set of transmit power control commands for individual terminals in an arbitrary terminal group, transmission power control information, activation of VoIP voice over IP), and the like. It may include.
- a plurality of PDCCHs may be transmitted in the control region.
- the terminal may monitor the plurality of PDCCHs.
- the PDCCH is transmitted in an aggregation of one or more consecutive Control Channel Elements (CCEs).
- CCE is a logical allocation unit used to provide a PDCCH at a coding rate based on the state of a radio channel.
- the CCE processes multiple resource element groups.
- the number of CCEs required for the PDCCH may vary depending on the size and coding rate of the DCI.
- any one of 1, 2, 4, and 8 CCEs (for each of PDCCH formats 0, 1, 2, and 3) may be used for PDCCH transmission, and the DCI is large and / or channel state If a low coding rate is required due to poor quality, a relatively large number of CCEs may be used for one PDCCH transmission.
- the base station determines the PDCCH format in consideration of the size of the DCI transmitted to the UE, the cell bandwidth, the number of downlink antenna ports, and the PHICH resource fluctuation, and adds a cyclic redundancy check (CRC) to the control information.
- the CRC is masked with an identifier called Radio Network Temporary Identifier (RNTI) according to the owner or purpose of the PDCCH.
- RNTI Radio Network Temporary Identifier
- the ceU—RNTKC-RNTI) identifier of the UE may be masked to the CRC.
- PDCCH If it is for a paging message, a Paging Indicator Identifier (P-RNTI) may be masked in the CRC.
- P-RNTI Paging Indicator Identifier
- the PDCCH is for system information (more specifically, system information block (SIB))
- SIB system information block
- RNTKSI-RNTI may be masked to the CRC.
- random access -RNTKRA-RNTI may be masked to the CRC.
- the uplink subframe may be divided into a control region and a data region in the frequency domain.
- a physical uplink control channel (PUCCH) including uplink control information is allocated to the control region.
- a physical uplink shared channel (PUSCH) including user data is allocated.
- PUCCH physical uplink control channel
- PUSCH physical uplink shared channel
- one UE does not simultaneously transmit a PUCCH and a PUSCH.
- PUCCH for one UE is allocated to an RB pair in a subframe. Resource blocks belonging to a resource block pair occupy different subcarriers for two slots. This is called that the RB pair allocated to the PUCCH is frequency-hopped at the slot boundary.
- FIG. 5 is a configuration diagram of a wireless communication system having multiple antennas.
- the transmission rate when the number of transmitting antennas is increased to NT and the number of receiving antennas is increased to NR, the theoretical ratio is proportional to the number of antennas, unlike when the transmitter or the receiver uses multiple antennas.
- In-channel transmission capacity is increased. Therefore, the transmission rate can be improved and the frequency efficiency can be significantly improved.
- the transmission rate may theoretically increase as the rate of increase rate Ri multiplied by the maximum transmission rate Ro when using a single antenna.
- the current trends of multi-antenna researches include information theory aspects related to multi-antenna communication capacity calculation in various channel environments and multi-access environments, wireless channel measurement and model derivation of multi-antenna systems, and improved transmission reliability. Research is being actively conducted from various viewpoints, such as research on space-time signal processing technology for improving data rate.
- the communication method in a multi-antenna system will be described in more detail by using mathematical modeling. It is assumed that there are NT transmit antennas and NR receive antennas in the system.
- the transmission information when there are NT transmission antennas, the maximum information that can be transmitted is NT.
- the transmission information may be expressed as follows.
- Each transmission may have a different transmission power.
- ⁇ ⁇ for each transmit power the transmission information whose transmission power is adjusted may be expressed as 0 as follows.
- ⁇ may be expressed as follows using the diagonal matrix ⁇ of the transmission power.
- the weight matrix W is applied to the information vector S whose transmission power is adjusted so that
- NT transmit signal transmitted ⁇ Let us consider a case in which 2, ⁇ ⁇ is configured.
- the weighting matrix W appropriately transmits the transmission information to each antenna according to the transmission channel situation.
- 1 ) ' means a weight between the i th transmit antenna and the j th information.
- W is also called a precoding matrix.
- the received signals ⁇ i, ⁇ '-"' ⁇ of each antenna may be expressed as vectors as follows.
- channels may be classified according to transmit / receive antenna indexes.
- a channel passing from the transmitting antenna j to the receiving antenna i will be denoted by h ij. It is noted that in h iJ, the order of the index is the receive antenna index first, and the index of the transmit antenna is later. ⁇
- FIG. 5 (b) shows a channel from NT transmit antennas to receive antenna i.
- the channels may be bundled and displayed in the form of a vector and a matrix.
- a channel arriving from a total of NT transmit antennas to a receive antenna i may be represented as follows.
- the real channel has white noise after passing through the channel matrix H (AWGN).
- the white noise n x , n 2 , '-', n NR added to each of the NR receive antennas may be expressed as follows:
- the received signal may be expressed as follows.
- the number of rows and columns of the channel matrix ⁇ representing the channel state is determined by the number of transmit and receive antennas.
- the number of rows is equal to the number of receiving antennas NR and the number of columns is equal to the number of transmitting antennas NT. That is, the channel matrix H is NRXNT matrix.
- the rank of a matrix is defined as the minimum number of rows or columns that are independent of each other. Thus, the rank of the matrix cannot be greater than the number of rows or columns.
- the tank (ra «:( H)) of the channel matrix H is limited as follows.
- a tank can be defined as the number of nonzero eigenvalues when the matrix is eigenvalue decomposition.
- another definition of a tank can be defined as the number of nonzero singular values when singular value decomposition is performed.
- the tank in the channel matrix The physical meaning of is the maximum number of different information that can be sent on a given channel.
- 'tank' for MMO transmission refers to the number of paths that can independently transmit a signal at a specific time and talk frequency resource, and 'number of layers' It represents the number of signal streams transmitted through each path.
- the transmitting end since the transmitting end transmits a number of layers corresponding to the number of tanks used for signal transmission, unless otherwise specified, a tank has the same meaning as the number of layers.
- a cell may be understood as a combination of downlink resources and uplink resources.
- the uplink resource is not an essential element, and thus, the cell may be composed of only the downlink resource or the downlink resource and the uplink resource.
- the Sal may be made of uplink resources alone.
- the downlink resource may be referred to as a downlink component carrier (DL CC) and the uplink resource may be referred to as an uplink component carrier (UL CC).
- DL CC and UL CC may be expressed as a carrier frequency (carrier frequency), the carrier frequency means a center frequency (center frequency) in the cell.
- a cell may be classified into a primary cell (PCell) operating at a primary frequency and a secondary cell (SCell) operating at a secondary frequency.
- PCell and SCell may be collectively referred to as a serving cell.
- the PCell or the terminal performs an initial connection establishment (initial connection establishment) process. Connection reset process or handover
- the cell indicated in the process may be a PCell. That is, the PCell may be understood as a cell that is the center of control in a carrier aggregation environment to be described later.
- the UE may receive and transmit a PUCCH in its PCell.
- the SCell is configurable after the Radio Resource Control (RRC) connection is established and can be used to provide additional radio resources.
- RRC Radio Resource Control
- the network may configure one or more SCells by adding a PCel initially configured in the connection establishment process.
- Carrier aggregation is a technique introduced to use a wider band to meet the demand for high high data rates.
- Carrier aggregation may be defined as an aggregation of two or more component carriers (CCs) having different carrier frequencies.
- FIG. 6 (a) shows a subframe when one CC is used in the existing LTE system
- FIG. 6 (b) shows a subframe when carrier aggregation is used.
- FIG. 6B three CCs of 20 MHz are used to support a total bandwidth of 60 MHz.
- each CC may be continuous or may be non-continuous.
- the UE may simultaneously receive and monitor downlink data through a plurality of DL CCs.
- the linkage between each DL CC and UL CC may be indicated by system information.
- the DL CC / UL CC link may be fixed in the system or configured semi-statically.
- the frequency band that can be monitored / received by a specific terminal may be limited to M ( ⁇ N) CCs.
- Various parameters for carrier aggregation may be set in a cell specific (ceU—specific), UE group-specific or UE-specific scheme.
- FIG. 7 illustrates cross carrier scheduling.
- Cross carrier Scheduling means, for example, including all downlink scheduling allocation information of another DL CC in a control region of one DL CC among a plurality of serving cells, or a control region of one DL CC among a plurality of serving cells. Means that all uplink scheduling grant information for a plurality of UL COfl linked with the DL CC is included.
- the CIF may be included or not included in the DCI format transmitted through the PDCCH, and when included, it indicates that the cross carrier scheduling is applied.
- cross carrier scheduling is not applied, downlink scheduling allocation information is valid on a DL CC through which current downlink scheduling allocation information is transmitted.
- the uplink scheduling grant indicates that downlink scheduling assignment information is transmitted.
- the CIF indicates a CC related to downlink scheduling allocation information transmitted through a PDCCH in one DL CC.
- downlink allocation information for I) L CC B and DL CC C is transmitted through a PDCCH in a control region on DL CC A, that is, information on PDSCH resources.
- the UE monitors the DL CC A to know the resource region of the PDSCH and the corresponding CC through the CIF.
- CIF is included or not included in the PDCCH may be semi-statically configured and may be UE-specifically activated by higher layer signaling.
- the PDCCH on a specific DL CC may allocate a PDSCH resource on a corresponding DL CC and allocate a PUSCH resource on a specific DL CO! L linked UL CC.
- the same coding scheme, CCE-based resource mapping, DCI format, and the like as the existing PDCCH structure may be applied.
- the PDCCH on a specific DL CC may allocate PDSCH / PUSCH resources on one DL / UL CC indicated by the CIF among a plurality of merged CCs.
- the CIF may be additionally defined in the existing PDCCH DCI format, may be defined as a fixed 3-bit field, or the CIF position may be fixed regardless of the DCI format size.
- the same coding scheme, CCE-based resource mapping, DCI format, and the like as the existing PDCCH structure may be applied.
- the base station selects a DL CC set to monitor the PDCCH. Can be assigned. Accordingly, the burden of blind decoding of the terminal can be reduced.
- the PDCCH monitoring CC set is a part of the total merged DL CCs and the UE may perform detection / decoding of the PDCCH only in the corresponding CC set. That is, in order to schedule PDSCH / PUSCH for the UE, the base station may transmit the PDCCH only on the PDCCH monitoring CC set.
- the PDCCH monitoring DL CC set may be configured as UE-specific or UE group-specific or cell-specific. For example, when three DL CCs are merged as in the example of FIG. 7, DL CC A may be set to the PDCCH monitoring DL CC. When CIF is deactivated, the PDCCH on each DL CC may only schedule PDSCH in DL CC A.
- the PDCCH on E> L CC A may schedule not only DL CC A but also PDSCH on another DL CC.
- DL CC A is set to PDCCH monitoring CC, PDSCCH is not transmitted to Dney C B and DL CC C.
- the UE may receive a plurality of PDSCHs through a plurality of downlink carriers, and in this case, the UE may receive one subframe of ACK / NACK for each data. In case of transmitting on one UL CC occurs. In case of transmitting a plurality of ACK / NACKs in one subframe using PUCCH format la / lb, high transmission power is required, PAPR of uplink transmission is increased, and inefficient use of a transmission power amplifier is performed. The transmittable distance from can be reduced. In order to transmit a plurality of ACK / NACK through one PUCCH, ACK / NACK bundling or ACK / NACK multiplexing may be applied.
- ACK / NACK information for a large number of downlink data and / or a large number of downlink data transmitted in a plurality of DL subframes in a TDD system according to the carrier aggregation is applied in one subframe.
- ACK / NACK bits to be transmitted is larger than the number that can be supported by ACK / NACK bundling or multiplexing, the above methods cannot correctly transmit ACK / NACK information.
- K-N downlink signals can be transmitted in K-N time periods.
- N time intervals of the K time intervals may be set to a blank time interval that does not receive a downlink signal.
- the blank time interval refers to a time interval used for handling interference received by one or more terminals receiving a downlink signal from one or more terminals transmitting an uplink signal. .
- the handling of interference is to remove UE-to—UE interference, and when one or more terminals receiving downlink signals are decoded in the KN downlink signals, the uplink received in the N time intervals. It can be subtracting / operating signal components.
- the uplink transmission rate may decrease when the uplink transmission is repeatedly transmitted in K time intervals.
- uplink terminals transmit more streams than the maximum number of streams the base station can receive in one time interval.
- the base station proposes a method of decoding all uplink data streams by receiving the same stream through different channels. When the base station receives the uplink signal, when receiving the uplink signal repeated K times, the channel must be different for every K time intervals so that the base station can decode more than the number of streams that can be received in one time interval.
- the channel may be different for every K time periods, ii) the base station may use a special RF element to artificially change the channel, and iii) the number of data streams that the base station can receive in one time period.
- the base station may be equipped with a large number of uplink receiving antennas so as to be large enough.
- the base station may use a device called a reconfigurable antenna to artificially change the channel, where reconfigurable means an antenna that can change the channel state electrically and / or mechanically.
- a simple implementation may be switching over multiple physical antennas.
- a large number of physical antennas and RF chains are installed and may be implemented by changing a channel state by changing a reception beam weight.
- the antenna of the base station is a reconfigurable antenna
- the ⁇ antenna modes may be applied to each of the ⁇ time intervals. In other words, the base station is repeated by changing the antenna mode every time the uplink signal is received in ⁇ time intervals,
- ⁇ signals can be received on different channels.
- the base station may assume that the channel state does not change in the ⁇ time intervals. If the channel state is changed in ⁇ time intervals, the ⁇ time intervals may be located at the center of the ⁇ time intervals. Since the channel changes during the transmission time of the repeated signal when the channel state is changed, it is possible to improve the accuracy by placing ⁇ time intervals in the center of ⁇ time intervals.
- N may be determined according to mobility of the terminal.
- N time periods may be disposed in front of K time periods. This is because it is possible to perform an operation of first receiving the uplink interference signal from the front and then immediately removing the uplink interference signal from the received K-N signals.
- the N time intervals may be distributed in K time intervals. This is to effectively remove the interference signal even when the channel is variable.
- the antenna of the base station may be reconfigurable, but since the base station is provided with a sufficient number of uplink antennas in the beginning, it may receive an uplink stream without switching the mode of the antenna. In this case, the base station may decode the repeatedly received signal without a separate antenna mode conversion.
- the base station may receive an uplink signal uk that is repeated K times intervals (TI) K times from a UL terminal (UL UE). As described above, the antenna mode is changed in K time intervals.
- the base station receives signals from the UL terminal in each of the K time intervals and simultaneously transmits DL signals (WD (1), WD (2), ..., WD (Kl)) to the DL terminal.
- the NU UL UEs may repeatedly transmit their transmission symbols for K symbols.
- the base station may receive the UL reconfigurable antenna by switching modes during K receptions. The base station transmits the DL signal K-1 times while the UL transmission and reception occur.
- the base station does not perform transmission of K times, and the DL signal receiving UE may receive only an interference signal for one time and use it to remove UE-to-UE interference.
- 9 illustrates a system model according to an embodiment of the present invention.
- the base station has M transmit / receive antennas, the UE has 1 transmit / receive antenna, and there are K preset antenna modes. That is, it is assumed that each uplink antenna has K modes, and channel status according to each mode change is independent. It is also assumed that the channel is static while K symbols are being transmitted.
- the base station of FIG. 9 is illustrated as a separate antenna IBFD type that separates the ULRx antenna and the DL Tx antenna, the base station of FIG. 10 may be a shared antenna IBFD type in which the DL and UL antennas are shared and divided into circulators.
- the antenna of FIG. 9 may be a reconfigurable antenna.
- Equation 12 the downlink signal is represented by Equation 12 below.
- the uplink signal transmitted by the UL UE can be written as Equation 13.
- Equation 14 is the lxM downlink channel matrix from the base station to the k-th UE
- w * is the xlprecoding matrix for the k-th UE
- gk '' is the k-th from the first ULUE D 1x1 channel to JE
- z is the noise signal of the k-th user
- N D is the number of users to support simultaneously in the downlink
- the number of users to support simultaneously in the uplink is the i-th antenna mode from the k-th UE to the base station
- the Mxl uplink channel matrix of denotes a transmission symbol of the k-th UE
- T denotes an MxM se if interference channel from a downlink antenna to an uplink antenna
- Q denotes a ⁇ xl received noise signal of a base station, respectively.
- the uplink signal received by the 10 device base station is expressed by Equation 14 below.
- the received signal when receiving the repetitive signal while switching the antenna mode K times, the received signal may be expressed as in Equation 15 below.
- NU can transmit up to MK names at the same time, and UL UEs of MK perform K transmissions at the same time.
- the base station transmits a downlink signal while receiving the uplink signal.
- the downlink signal transmitted during the K time interval is expressed by Equation 16 below.
- Equation 18 the handling of the aforementioned interference
- the DoF obtained in such an IBFD base station system can obtain downlink M (K ⁇ l) and uplink MK for a total K symbol period, and the uplink / downlink sum DoF is expressed by Equation 20 below.
- the mode number K of the reconfigurable antenna goes to infinity, an approximately 2M DoF can be obtained. That is, if the uplink antenna has an infinite number of modes and the number of uplink UEs is infinite, the gain of in-band full duplex operation can be obtained in an ideal environment.
- the present invention has been described only when the transmit / receive antenna of the UE is a single antenna, it can be extended and applied even when the transmit / receive antenna of the UE is multi-antenna. If the UE has multiple transmit antennas, when the rank of each UE is ⁇ You just need to satisfy The proposal of the present invention described above may be described in the following embodiments. Assume that the base station has two transmit / receive antennas, and that the transmit / receive antennas are a total of two model-switchable reconfigurable antennas.
- the DL UE has a single antenna
- a total of two DL UEs may be scheduled at the same time through MU-MIMO, and if the DL UE has two antennas, it may be assumed that only one DL UE is scheduled. Assuming that a UL UE has a single transmission antenna, a total of four UEs are scheduled and simultaneously transmit the same symbol for two symbol periods. If it is assumed that the UL UE has two transmit antennas, two UEs may transmit rank 2 symbols.
- the present invention can be applied to a conventional celller system.
- the traffic ratio of DL and UL may be different.
- the ratio of DL traffic is higher than that of UL. Therefore, in this case, it is not necessary to perform full duplex operation in all subframes.
- Table la shows the existing TDD configuration in LTE system
- Table 1 shows the proposed configuration, where F means full duplex. At this time, in the UpPTS of the special subframe, only UL may be serviced instead of the full duplex mode.
- the reconfigurable antenna may be a group level of several OFDM symbols.
- repetition may be performed in units of a RE (subcarrier) within one OFDM symbol.
- RE subcarrier
- FIG. 6 when the transmission / reception pattern is formed at the OFDM symbol level, the UL UE transmits the same symbol repeatedly K times. Or, when transmitted at the RE level, the UL UE The same symbol is transmitted repeatedly during K RE. At this time, one of the DL symbols (or RE) should be used for estimating the interference signal without transmitting and canceling the interference signal from another symbol (or RE).
- the symbol is a symbol for transmitting important control information or a pilot signal
- a symbol (or RE) for muting in the DL is performed in a symbol (or RE) in which control information or a pilot signal is not transmitted.
- one subframe of the DL should be used to stop transmission and measure interference.
- the network blanks the corresponding subframe and the DL UEs receive the signal as it is and use it for estimating interference.
- the advantage of the basic invention is that it does not require the scheduling limitation of the base station to remove or mitigate UE-to-UE interference, and does not require pilot transmission / reception operation for UE-to-UE interference channel estimation and interference cancellation. will be.
- the UE does not need an interference suppression or cancellation receiver to cancel or mitigate UE-to-UE interference.
- half subcarrier shifting is applied between UL and E> L. Even when the subcarrier positions of UL and DL are different, the proposed scheme can be applied without any limitation.
- the principle of the present invention is that the UL transmitting UE transmits the same signal repeatedly several times. At this time, the base station stops transmitting one time during the repeated transmission, and at this point, the DL UE receives the interference signal repeatedly transmitted. This is used to eliminate the interference of the symbol on which data is transmitted.
- the UL signal is repeatedly transmitted, more UEs than the UL antenna are simultaneously transmitted to reduce the UL throughput loss, and the base station receives the repeatedly transmitted signal through different channels using the reconfigurable antenna to enable decoding. 12 to 13 show the case of the case of the embodiment of the present invention and the case of not Simulation results are shown.
- the cell radius is 200m
- the path-loss exponent of the channel is 4, and the noise power is -100 dBm.
- the uplink / downlink UEs drop randomly within a circle of 200m radius
- the maximum transmission power of the base station is 30dBm
- the uplink power control uses an open-loop power control technique.
- P0 -80dBm
- a fractional path-loss compensation factor
- the conventional half duplex technique the full duplex method, but the interference control method is not applied between up and down terminals, and the full duplex technique in an ideal environment (when the interference between terminals is set to 0 in the simulation). Simulated together.
- the 1: 1 UL / DL resource ratio is considered.
- M uplink terminals are randomly scheduled.
- MK uplink terminals are scheduled at the same time and repeatedly transmit the same symbol for K time intervals. Since the proposed method uses repetition coding, the transmission power is set to 1 / K for fair comparison with other methods.
- FIG. 14 is a diagram illustrating the configuration of a transmission point apparatus and a terminal apparatus according to an embodiment of the present invention.
- the transmission point apparatus 10 includes the reception modules 11, the transmission module 12, the processor 13, the memory 14, and the plurality of antennas 15. It may include.
- the plurality of antennas 15 means a transmission point apparatus that supports MIMO transmission and reception.
- the receiving modules 11 may receive various signals, data, and information on uplink from the terminal.
- the transmission modules 12 may transmit various signals, data, and information on downlink to the terminal.
- the processor 13 may control the operation of the overall transmission point apparatus 10.
- the processor 13 of the transmission point apparatus 10 may process necessary items in the above-described embodiments.
- the processor 13 of the transmission point apparatus 10 performs a function of processing information received by the transmission point apparatus 10 and information to be transmitted to the outside, and the memory 14 is arithmetic processed.
- Information and the like may be stored for a predetermined time, and may be replaced with a component such as a buffer (not shown).
- the terminal device 20 includes a reception module 21, a transmission module 22, a processor 23, a memory 24, and a plurality of antennas 25. It may include.
- the plurality of antennas 25 mean a terminal device that supports MIMO transmission and reception.
- Receive modules 21 may receive various signals, data and information on the downlink from the base station.
- the transmission module 22 may transmit various signals, data, and information on the uplink to the base station.
- the processor 23 may control operations of the entire terminal device 20.
- the processor 23 of the terminal device 20 may process necessary items in the above-described embodiments.
- the processor 23 of the terminal device 20 performs a function of arithmetic processing of information received by the terminal device 20, information to be transmitted to the outside, and the memory 24 includes arithmetic processing information. It may be stored for a predetermined time, it may be replaced by a component such as a buffer (not shown).
- the description of the transmission point apparatus 10 may be equally applied to the relay apparatus as the downlink transmission entity or the uplink reception entity, and the description of the terminal device 20 is described. The same can be applied to a relay apparatus as a downlink receiving entity or an uplink transmitting entity.
- embodiments of the present invention described above may be implemented through various means.
- embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
- the method according to the embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and PLDs (Programmable). Logic Devices), Field Programmable Gate Arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
- ASICs Application Specific Integrated Circuits
- DSPs Digital Signal Processors
- DSPDs Digital Signal Processing Devices
- PLDs Programmable.
- Logic Devices Field Programmable Gate Arrays
- processors controllers, microcontrollers, microprocessors, and the like.
- the method according to the embodiments of the present invention may be implemented in the form of modules, procedures, or functions that perform the functions or operations described above.
- the software code may be stored in a memory unit and driven by a processor.
- the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
- Embodiments of the present invention as described above can be applied to various mobile communication systems.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 발명의 일 실시예는, 무선통신시스템에서 IBFD(Inband full duplex) 기지국이 신호를 송수신하는 방법에 있어서, K번 반복되는 상향링크 신호 각각을 K개의 시간 구간에서 수신하는 단계; 및 상기 K개의 시간 구간에서 상향링크 신호가 수신되는 동안 K-N개의 시간 구간에서 K-N개의 하향링크 신호를 전송하는 단계를 포함하며, 상기 K개의 시간 구간 중 N개의 시간 구간은, 상기 하향링크 신호를 수신하는 하나 이상의 단말이 상기 상향링크 신호를 전송하는 하나 이상의 단말로부터 받는 간섭의 핸들링에 사용되는, 신호 송수신 방법이다.
Description
【명세서】
【발명의 명칭】
무선 통신 시스템에서 풀 듀플렉스 기지국의 신호 송수신 방법 및 장치 【기술분야】
[ 1 ] 이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 상세하게는 풀 듀플렉스 통신에서 신호 송수신 방법 및 장치에 대한 것이다.
【배경기술】
[2] 무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원 (대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속 (multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMACcode division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) '시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC—FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
【발명의 상세한 설명】
【기술적 과제】
[3 ] 본 발명은 풀 듀플렉스 기지국의 신호 송수신 방법, 단말의 신호 송수신 방법들을 기술적 과제로 한다.
[4] 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【기술적 해결방법】
[5] 본 발명의 일 실시예는, 무선통신시스템에서 IBFD lnband full duplex) 기자국이 신호를 송수신하는 방법에 있어서, K번 반복되는 상향링크 신호 각각을 K개의 시간 구간에서 수신하는 단계; 및 상기 K개의 시간 구간에서 상향링크 신호가 수신되는 동안 Kᅳ N개의 시간 구간에서 K-N개의 하향링크 신호를 전송하는 단계를 포함하며, 상기 K개의 시간 구간 중 N개의 시간 구간은, 상기 하향링크
신호를 수신하는 하나 이상의 단말이 상기 상향링크 신호를 전송하는 하나 이상의 단말로부터 받는 간섭의 핸들링에 사용되는 신호 송수신 방법이다.
[6] 본 발명의 다른 일 실시예는, 무무선통신시스템에서 D2D(Device to Device) 단말 장치에 있어서, 수신 모들; 및 프로세서를 포함하고, 상기 프로세서는, K번 반복되는 상향링크 신호 각각을 K개의 시간 구간에서 수신하고, 상기 K개의 시간 구간에서 상향링크 신호가 수신되는 동안 K— N개의 시간 구간에서 K-N개의 하향링크 신호를 전송하며, 상기 K개의 시간 구간 중 N개의 시간 구간은, 상기 하향링크 신호를 수신하는 하나 이상의 단말이 상기 상향링크 신호를 전송하는 하나 이상의 단말로부터 받는 간섭의 핸들링에 사용되는, 기지국 장치이다.
[7] 상기 간섭의 핸들링은, 상기 하향링크 신호를 수신하는 하나 이상의 단말이 상기 Kᅳ N개의 하향링크 신호 디코딩 시 상기 N개의 시간 구간에서 수신된 신호 성분을 빼는 것일 수 있다.
[8] 상기 N=l이고 상기 하향링크 신호가
Nu
yk (n) = hlwkdk (n) + X sk,iui («) + zk (nX i≤"≤ ^ - i인 경우, 상기 간섭의
/=1
핸들링은
Nu Nu
y^i ) = hk Twkdk (n) + _ gk lut (n) + zk (") - g ut (K), l≤n≤K ~ l 이고, 상기 h【는 기지국으로부터 k번째 단말까지의 하향링크 채널 행렬, w* 는 k번째 단말을 위한 Λ x l precoding행렬, 는 k번째 사용자의 송신 심볼, g "는 1번째 상향링크 신호 전송 단말로부터 k번째 하향링크 신호 수신 단말까지의 1 x 1 채널, z 는 k번째 단말의 잡음 신호, ^는 하향링크에서 동시에 지원하는 사용자 수, ^상향링크에서 동시에 지원하는 사용자 수일 수 있다.
[9] 상기 K번 반복되는 상향링크 신호를 수신 시 채널은 K개의 시간 구간마다 상이할 수 있다.
[10] 상기 기지국이 미리 설정된 K개의 안테나 모드를 가진 경우, 상기 K개의 안테나 모드는 상기 K개의 시간 구간 각각에 적용될 수 있다.
[11 ] 상기 기지국은 상기 K개의 시간 구간에서 채널 상태가 변하지 않는다고
가정할 수 있다.
[ 12 ] 상기 K개의 시간 구간에서 채널 상태가 변경되는 경우, 상기 N개의 시간 구간은 상기 K개의 시간 구간의 중심부에 위치할 수 있다.
[ 13 ] 상기 N개의 시간 구간은 상기 K개의 시간 구간의 끝에 위치할 수 있다.
[ 14 ] 상기 시간 구간은 OFDM 심볼, 슬롯 또는 서브프레임 중 어느 하나일 수 있다.
[ 15] 상기 하향링크 신호를 수신하는 단말의 수는 K일 수 있다.
[ 16] 상기 기지국은 reconfigurable antenna을 포함할 수 있다.
【유리한 효과】
[ 17] 본 발명의 실시예에 의하면 단말 대 단말 간섭의 영향을 최소화하면서 풀 듀플렉스 통신을 수행할 수 있다.
[ 18] 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【도면의 간단한 설명】
[ 19] 본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
[20] 도 1은 무선 프레임의 구조를 나타내는 도면이다.
[21 ] τζ 2는 하향링크 슬롯에서의 자원 그리드 (resource grid)를
도면이다 .
[22] tr 3은 하향링크 서브프레임의 구조를 나타내는 도면이다.
[23 ] 도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다.
[24] tr 5는 다중안테나를 갖는 무선 통신 시스템의 구성도이다.
[25] ■c 6 내지 도 7은 반송파 병합을 설명하기 위한 도면이다.
[26] τ 8 내지 도 11은 본 발명의 실시예를 설명하기 위한 도면이다.
[27] tr 12 내지 도 13은 본 발명의 실시예에 의한 시뮬레이션 결과이다.
[28] 14은 송수신 장치의 구성을 도시한 도면이다.
【발명의 실시를 위한 최선의 형태】
[29] 이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한
것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및 /또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
[30] 본 명세서에서 본 발명의 실시예들을 기지국과 단말 간의 데이터 송신 및 수신의 관계를 중심으로 설명한다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드 (terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드 (upper node)에 의해 수행될 수도 있다.
[31 ] 즉, 기지국을 포함하는 다수의 네트워크 노드들 (network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국 (BS: Base Station)'은 고정국 (fixed station), Node B, eNode B(eNB), 액세스 포인트 (AP: Access Point) 등의 용어에 의해 대체될 수 있다. 중계기는 Relay Node(RN), Relay Station(RS) 등의 용어에 의해 대체될 수 있다. 또한, '단말 (Terminal)'은 UE Jser Equipment), MSCMobile Station), MSS(Mobile Subscriber Station), SS(Subscriber Station) 등의 용어로 대체될 수 있다. 또한, 이하의 설명에서 '기지국' 이라 함은 스케줄링 수행 노드, 클러스터 헤더 (cluster header) 등을 장치를 지칭하는 의미로써도 사용될 수 있다. 만약 기지국이나 릴레이도 단말이 전송하는 신호를 전송한다면, 일종의 단말로 간주할 수 있다.
[32] 이하에서 기술되는 샐의 명칭은 기지국 (base station, eNB), 섹터 (sector), 리모트라디오헤드 (remote radio head, RRH), 릴레이 (relay)등의 송수신 포인트에 적용되며, 또한 특정 송수신 포인트에서 구성 반송파 (component carrier)를 구분하기 위한 포괄적인 용어로 사용되는 것일 수 있다.
[33] 이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
[34] 몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및
장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
[35] 본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A(LTE-Advanced)시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
[36] 이하의 기술은 CDMA Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술 (radio technology)로 구현될 수 있다. TDMA는 GSMCGlobai System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화이다. WiMAX는 IEEE 802.16e 규격 (WirelessMAN-OFDMA Reference System) 및 발전된 IEEE 802.16m 규격 (WirelessMAN-OFDMA Advanced system)에 의하여 설명될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
[37] LTE/LTE-A자원 구조 /채널
[38] 도 1을 참조하여 무선 프레임의 구조에 대하여 설명한다.
[39] 셀를라 OFDM 무선 패킷 통신 시스템에서, 상 /하향링크 데이터 패킷 전송은 서브프레임 (subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDE Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임 (radio frame) 구조와 TDDCTime Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
[40] 도 1(a)는 타입 1 무선 프레임의 구조를 나타내는 도면이다. 하향링크 무선 프레임 (radio frame)은 10개의 서브프레임 (subframe)으로 구성되고, 하나의 서브프레임은 시간 영역 (time domain)에서 2개의 슬롯 (slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTKtransmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블톡 (Resource Block; RB)을 포함한다. 3GPP LTE/LTE-A 시스템에서는 하향링크에서 OFDMA 를 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 블록 (Resource Block; RB)은 자원 할당 단위이고, 하나의 블록에서 복수개의 연속적인 부반송파 (subcarrier)를 포함할 수 있다.
[41 ] 하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP Cyclic Prefix)의 구성 (configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 일반 CHnormal CP)가 있다. 예를 들어, OFDM 심볼이 일반 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 일반 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가 사용될 수 있다.
[42] 일반 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 2개 또는 3개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에
할당될 수 있다.
[43] 도 Kb)는 타입 2 무선 프레임의 구조를 나타내는 도면이다. 타입 2 무선 프레임은 2개의 해프 프레임 (half frame)으로 구성되며, 각 해프 프레임은 5개의 서브프레임과 DwPTS (Downlink Pilot Time Slot), 보호구간 (Guard Period; GP), UpPTS (Uplink Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다. 한편, 무선 프레임의 타입에 관계 없이 1개의 서브프레임은 2개의 슬롯으로 구성된다.
[44] 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다. [45] 도 2는 하향링크 슬롯에서의 자원 그리드 (resource grid)를 나타내는 도면이다. 하나의 하향링크 슬롯은 시간 영역에서 7 개의 OFDM 심볼을 포함하고, 하나의 자원블록 (RB)은 주파수 영역에서 12 개의 부반송파를 포함하는 것으로 도시되어 있지만, 본 발명이 이에 제한되는 것은 아니다. 예를 들어, 일반 CP(Cyclic Prefix)의 경우에는 하나의 슬롯이 7 OFDM 심볼올 포함하지만, 확장된 CP(extended-CP)의 경우에는 하나의 슬롯이 6 OFDM 심볼을 포함할 수 있다. 자원 그리드 상의 각각의 요소는 자원 요소 (resource element)라 한다. 하나의 자원블록은 12X7 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원블톡들의 개수 ( )는 하향링크 전송 대역폭에 따른다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
[46] 도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다. 하나의 서브프레임 내에서 첫 번째 슬롯의 앞 부분의 최대 3 개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 해당한다. 나머지 OFDM 심볼들은 물리하향링크공유채널 (Physical Downlink Shared Channel; PDSCH)이 할당되는 데이터 영역에 해당한다. 3GPP LTE/LTE-A 시스템에서 사용되는 하향링크 제어
채널들에는, 예를 들어, 물리제어포맷지시자채널 (Physical Control Format Indicator Channel; PCFICH), 물리하향링크제어채널 (Physical Downlink Control Channel; PDCCH), 물리 HARQ지시자채널 (Physical Hybrid automatic repeat request Indicator Channel; PHICH) 등이 있다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내의 제어 채널 전송에 사용되는 OFDM 심볼의 개수에 대한 정보를 포함한다. PHICH는 상향링크 전송의 응답으로서 HARQ ACK/NACK 신호를 포함한다. PDCCH를 통하여 전송되는 제어 정보를 하향링크제어정보 (Downlink Control Information; DCI)라 한다. DCI는 상향링크 또는 하향링크 스케들링 정보를 포함하거나 임의의 단말 그룹에 대한 상향링크 전송 전력 제어 명령을 포함한다. PDCCH는 하향링크공유채널 (DL-SCH)의 자원 할당 및 전송 포맷, 상향링크공유채널 (UL-SCH)의 자원 할당 정보, 페이징채널 (PCH)의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 임의접속웅답 (Random Access Response)과 같은 상위계층 제어 메시지의 자원 할당, 임의의 단말 그룹 내의 개별 단말에 대한 전송 전력 제어 명령의 세트, 전송 전력 제어 정보, VoIP Voice over IP)의 활성화 등을 포함할 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링할 수 있다. PDCCH는 하나 이상의 연속하는 제어채널요소 (Control Channel Element; CCE)의 조합 (aggregation)으로 전송된다. CCE는 무선 채널의 상태에 기초한 코딩 레이트로 PDCCH를 제공하기 위해 사용되는 논리 할당 단위이다. CCE는 복수개의 자원 요소 그룹에 대웅한다. PDCCH를 위해 필요한 CCE의 개수는 DCI의 크기와 코딩 레이트 등에 따라 달라질 수 있다. 예를 들어, PDCCH 전송에는 CCE 개수 1, 2, 4, 8(각각 PDCCH 포맷 0, 1, 2, 3에 대웅)개 중 어느 하나가 사용될 수 있으며, DCI의 크기가 큰 경우 및 /또는 채널 상태가 좋지 않아 낮은 코딩 레이트가 필요한 경우 상대적으로 많은 개수의 CCE가 하나의 PDCCH 전송을 위해 사용될 수 있다. 기지국은 단말에게 전송되는 DCI의 크기, 셀 대역폭, 하향링크 안테나 포트의 개수, PHICH 자원 양 둥을 고려하여 PDCCH 포맷을 결정하고, 제어 정보에 순환잉여검사 (Cyclic Redundancy Check; CRC)를 부가한다. CRC는 PDCCH의 소유자 또는 용도에 따라 무선 네트워크 임시 식별자 (Radio Network Temporary Identifier; RNTI)라 하는 식별자로 마스킹된다. PDCCH가 특정 단말에 대한 것이면, 단말의 ceU—RNTKC-RNTI) 식별자가 CRC에 마스킹될 수 있다. 또는, PDCCH가
페이징 메시지에 대한 것이면, 페이징 지시자 식별자 (Paging Indicator Identifier; P-RNTI)가 CRC에 마스킹될 수 있다. PDCCH가 시스템 정보 (보다 구체적으로, 시스템 정보 블록 (SIB))에 대한 것이면, 시스템 정보 식별자 및 시스템 정보 RNTKSI-RNTI)가 CRC에 마스킹될 수 있다. 단말의 임의 접속 프리앰블의 전송에 대한 웅답인 임의접속응답을 나타내기 위해, 임의접속 -RNTKRA-RNTI)가 CRC에 마스킹될 수 있다.
[47] 도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다. 상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 분할될 수 있다. 제어 영역에는 상향링크 제어 정보를 포함하는 물리상향링크제어채널 (Physical Uplink Control Channel; PUCCH)이 할당된다. 데이터 영역에는 사용자 데이터를 포함하는 물리상향링크공유채널 (Physical Uplink Shared Channel; PUSCH)이 할당된다. 단일 반송파 특성을 유지하기 위해서, 하나의 단말은 PUCCH와 PUSCH를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록 쌍 (RB pair)에 할당된다. 자원블록 쌍에 속하는 자원블록들은 2 슬롯에 대하여 상이한 부반송파를 차지한다. 이를 PUCCH에 할당되는 자원블록 쌍이 슬롯 경계에서 주파수—호핑 (frequency— hopped)된다고 한다.
[48] 다중안테나 (MIMO) 시스템의 모델링
[49 ] 도 5는 다중안테나를 갖는 무선 통신 시스템의 구성도이다.
[50] 도 5(a)에 도시된 바와 같이 송신 안테나의 수를 NT 개로, 수신 안테나의 수를 NR 개로 늘리면, 송신기나 수신기에서만 다수의 안테나를 사용하게 되는 경우와 달리 안테나 수에 비례하여 이론적인 채널 전송 용량이 증가한다. 따라서, 전송 레이트를 향상시키고 주파수 효율올 획기적으로 향상시킬 수 있다. 채널 전송 용량이 증가함에 따라, 전송 레이트는 이론적으로 단일 안테나 이용시의 최대 전송 레이트 (Ro)에 레이트 증가율 (Ri)이 곱해진 만큼 증가할 수 있다.
[51 ] 【수학식 1】
R{ = min(NT , NR )
[52] 예를 들어, 4개의 송신 안테나와 4개의 수신 안테나를 이용하는 MIMO 통신
시스템에서는 단일 안테나 시스템에 비해 이론상 4배의 전송 레이트를 획득할 수 있다. 다중안테나 시스템의 이론적 용량 증가가 90 년대 중반에 증명된 이후 이를 실질적인 데이터 전송률 향상으로 이끌어 내기 위한 다양한 기술들이 현재까지 활발히 연구되고 있다. 또한, 몇몇 기술들은 이미 3 세대 이동 통신과 차세대 무선랜 등의 다양한 무선 통신의 표준에 반영되고 있다.
[53] 현재까지의 다중안테나 관련 연구 동향을 살펴보면 다양한 채널 환경 및 다증접속 환경에서의 다중안테나 통신 용량 계산 등과 관련된 정보 이론 측면 연구, 다중안테나 시스템의 무선 채널 측정 및 모형 도출 연구, 전송 신뢰도 향상 및 전송률 향상을 위한 시공간 신호 처리 기술 연구 등 다양한 관점에서 활발히 연구가 진행되고 있다.
[54] 다중안테나 시스템에서의 통신 방법을 수학적 모델링을 이용하여 보다 구체적으로 설명한다. 상기 시스템에는 NT개의 송신 안테나와 NR개의 수신 안테나가 존재한다고 가정한다.
[55] 송신 신호를 살펴보면, NT개의 송신 안테나가 있는 경우 전송 가능한 최대 정보는 NT개이다. 전송 정보는 다음과 같이 표현될 수 있다.
[56] 【수학식 2】
[58] 【수학식 3】 g = [^1 ' ^2 ' " ' " ' ^NT = [^1 ^1 ' ^2^2 ' * ' ' ' ^NT SNT ^
[59] 또한, § 는 전송 전력의 대각행렬 尸 를 이용해 다음과 같이 표현될 수 있다.
[60] 【수학식 4】
X
전송되는 NT개의 송신신호 Λ요 2, Ντ 가 구성되는 경우를 고려해 보자. 가중치 행렬 W는 전송 정보를 전송 채널 상황 등에 따라 각 안테나에 적절히
X
분배해 주는 역할을 한다. i' 2'"' Ν. τ― 백터 X 를 이용하여 다음과 같ᄋ 표현될 수 있다.
[62 【수학식 5
[63] 여기에서, 1)'는 i번째 송신 안테나와 j번째 정보간의 가중치를 의미한다. W 는 프리코딩 행렬이라고도 불린다.
[64] 수신신호는 NR 개의 수신 안테나가 있는 경우 각 안테나의 수신신호 ^i,^'-"'^은 백터로 다음과 같이 표현될 수 있다.
[66] 다중안테나 무선 통신 시스템에서 채널을 모델링하는 경우, 채널은 송수신 안테나 인덱스에 따라 구분될 수 있다. 송신 안테나 j로부터 수신 안테나 i를 거치는 채널을 hij 로 표시하기로 한다. hiJ 에서, 인덱스의 순서가 수신 안테나 인덱스가 먼저, 송신 안테나의 인덱스가 나중임에 유의한다. ᅳ
[67] 한편 도 5(b)은 NT 개의 송신 안테나에서 수신 안테나 i로의 채널을 도시한 도면이다. 상기 채널을 묶어서 백터 및 행렬 형태로 표시할 수 있다. 도 5(b)에서ᅳ 총 NT 개의 송신 안테나로부터 수신 안테나 i로 도착하는 채널은 다음과 같이 나타낼 수 있다.
[69] 따라서, NT 개의 송신 안테나로부터 NR 개의 수신 안테나로 도착하는 모든 채널은 다음과 같이 표현될 수 있다.
[70 【수학식 8】
[71] 실제 채널에는 채널 행렬 H를 거친 후에 백색잡음 (AWGN; Additive White
Gaussian Noise)이 더해진다. NR 개의 수신 안테나 각각에 더해지는 백색잡음 nx,n2,'-',nNR은 다음과 같이 표현될 수 있다 _
[72] 【수학식 9】
[73] 상술한 수식 모델링을 통해 수신신호는 다음과 같이 표현될 수 있다.
[74] 【수학식 10]
[75] 한편, 채널 상태를 나타내는 채널 행렬 Η의 행과 열의 수는 송수신 안테나의 수에 의해 결정된다. 채널 행렬 Η에서 행의 수는 수신 안테나의 수 NR과 같고ᅳ 열의 수는 송신 안테나의 수 NT와 같다. 즉, 채널 행렬 H는 행렬이 NRXNT된다.
[76] 행렬의 랭크 (rank)는 서로 독립인 (independent) 행 또는 열의 개수 중에서 최소 개수로 정의된다. 따라서, 행렬의 랭크는 행 또는 열의 개수 보다 클 수 없다. 채널 행렬 H의 탱크 (ra«:(H))는 다음과 같이 제한된다.
[77] 【수학식 11】
rank(H)≤ min (NT , NR )
[78] 탱크의 다른 정의는 행렬을 고유치 분해 (Eigen value decomposition) 하였을 때, 0이 아닌 고유치들의 개수로 정의할 수 있다. 유사하게, 탱크의 또 다른 정의는 톡이치 분해 (singular value decomposition) 하였을 때, 0이 아닌 특이치들의 개수로 정의할 수 있다. 따라서, 채널 행렬에서 탱크. 의 물리적인 의미는 주어진 채널에서 서로 다른 정보를 보낼 수 있는 최대 수라고 할 수 있다.
[79] 본 문서의 설명에 있어서, MMO 전송에 대한 '탱크 (Rank)' 는 특정 시점 및 톡정 주파수 자원에서 독립적으로 신호를 전송할 수 있는 경로의 수를 나타내며, '레이어 (layer)의 개수' 는 각 경로를 통해 전송되는 신호 스트림의 개수를 나타낸다. 일반적으로 송신단은 신호 전송에 이용되는 탱크 수에 대응하는 개수의 레이어를 전송하기 때문에 특별한 언급이 없는 한 탱크는 레이어 개수와 동일한 의미를 가진다.
[80] 반송파 병합
[81 ] 도 6은 반송파 병합을 설명하기 위한 도면이다. 반송파 병합을 설명하기에 앞서 LTE-A에서 무선자원을 관리하기 위해 도입된 셀 (Cell)의 개념에 대해 먼저 설명한다. 셀은 하향링크 자원과 상향링크 자원의 조합으로 이해될 수 있다. 여기서 상향링크 자원은 필수 요소는 아니며 따라서 셀은 하향링크 자원 단독 또는 하향링크 자원과 상향링크 자원으로 이루어질 수 있다. 다만, 이는 현재 LTE-A 릴리즈 10에서의 정의이며 반대의 경우, 즉 샐이 상향링크 자원 단독으로 이루어지는 것도 가능하다. 하향링크 자원은 하향링크 구성 반송파 (Downlink component carrier, DL CC)로 상향링크 자원은 상향링크 구성 반송파 (Uplink component carrier, UL CC)로 지칭될 수 있다. DL CC 및 UL CC는 반송파 주파수 (carrier frequency)로 표현될 수 있으며, 반송파 주파수는 해당 샐에서의 중심주파수 (center frequency)를 의미한다.
[82] 셀은 프라이머리 주파수 (primary frequency)에서 동작하는 프라이머리 셀 (primary cell, PCell)과 세컨더리 주파수 (secondary frequency)에서 동작하는 세컨더리 (secondary cell, SCell)로 분류될 수 있다. PCell과 SCell은 서빙 셀 (serving cell)로 통칭될 수 있다. PCell은 단말이 초기 연결 설정 (initial connection establishment) 과정을 수행하거나. 연결 재설정 과정 또는 핸드오버
과정에서 지시된 셀이 PCell이 될 수 있다. 즉, PCell은 후술할 반송파 병합 환경에서 제어관련 중심이 되는 셀로 이해될 수 있다. 단말은 자신의 PCell에서 PUCCH를 할당 받고 전송할 수 있다. SCell은 RRC(Radio Resource Control) 연결 설정이 이루어진 이후 구성 가능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다. 반송파 병합 환경에서 PCell을 제외한 나머지 서빙 샐을 SCell로 볼 수 있다. RRC_CONNECTED 상태에 있지만 반송파 병합이 설정되지 않았거나 반송파 병합을 지원하지 않는 단말의 경우, PCell로만 구성된 서빙 셀이 단 하나 존재한다. 반면, RRC_CONNECTED 상태에 있고 반송파 병합이 설정된 단말의 경우, 하나 이상의 서빙 셀이 존재하고, 전체 서빙 셀에는 PCell과 전체 SCell이 포함된다. 반송파 병합올 지원하는 단말을 위해 네트워크는 초기 보안 활성화 (initial security activation) 과정이 개시된 이후, 연결 설정 과정에서 초기에 구성되는 PCel 부가하여 하나 이상의 SCell을 구성할 수 있다.
[83] 이하, 도 6을 참조하여 반송파 병합에 대해 설명한다. 반송파 병합은 높은 고속 전송률에 대한 요구에 부합하기 위해 보다 넓은 대역을 사용할 수 있도톡 도입된 기술이다. 반송파 병합은 반송파 주파수가 서로 다른 2개 이상의 구성 반송파 (component carrier, CC)들의 집합 (aggregation)으로 정의될 수 있다. 도 6을 참조하면, 도 6(a)는 기존 LTE 시스템에서 하나의 CC를 사용하는 경우의 서브프레임을 나타내고, 도 6(b)는 반송파 병합이 사용되는 경우의 서브프레임을 나타낸다. 도 6(b)에는 예시적으로 20MHz의 CC 3개가 사용되어 총 60MHz의 대역폭을 지원하는 것을 도시하고 있다. 여기서 각 CC는 연속적일 수도 있고, 또한 비 연속적일 수도 있다.
[84] 단말은 하향링크 데이터를 복수개의 DL CC를 통해 동시에 수신하고 모니터할 수 있다. 각 DL CC와 UL CC 사이의 링키지 (linkage)는 시스템 정보에 의해 지시될 수 있다. DL CC/UL CC 링크는 시스템에 고정되어 있거나 반-정적으로 구성될 수 있다. 또한, 시스템 전체 대역이 N개의 CC로 구성되더라도 특정 단말이 모니터링 /수신할 수 있는 주파수 대역은 M(<N)개의 CC로 한정될 수 있다. 반송파 병합에 대한 다양한 파라미터는 셀 특정 (ceU— specific), 단말 그룹 특정 (UE group-specific) 또는 단말 특정 (UE-specific) 방식으로 설정될 수 있다. [85] 도 7은 크로스 반송파 스케줄링을 설명하기 위한 도면이다. 크로스 반송파
스케줄링이란, 예를 들어, 복수의 서빙 샐 중 어느 하나의 DL CC의 제어영역에 다른 DL CC의 하향링크 스케줄링 할당 정보를 모두 포함하는 것, 또는 복수의 서빙 셀 중 어느 하나의 DL CC의 제어영역에 그 DL CC와 링크되어 있는 복수의 UL COfl 대한 상향링크 스케줄링 승인 정보를 모두 포함하는 것을 의미한다.
[86] 먼저 반송파 지시자 필드 (carrier indicator field, CIF)에 대해 설명한다.
[87] CIF는 앞서 설명된 바와 같이 PDCCH를 통해 전송되는 DCI 포맷에 포함되거나 또는 불포함 수 있으며, 포함된 경우 크로스 반송파 스케줄링이 적용된 것을 나타낸다. 크로스 반송파 스케줄링이 적용되지 않은 경우에는 하향링크 스케줄링 할당 정보는 현재 하향링크 스케줄링 할당 정보가 전송되는 DL CC상에서 유효하다. 또한 상향링크 스케줄링 승인은 하향링크 스케줄링 할당 정보가 전송되는
DL CC 와 링크된 하나의 UL CC에 대해 유효하다.
[88] 크로스 반송파 스케줄링이 적용된 경우, CIF는 어느 하나의 DL CC에서 PDCCH를 통해 전송되는 하향링크 스케줄링 할당 정보에 관련된 CC를 지시한다. 예를 들어, 도 7을 참조하면 DL CC A 상의 제어 영역 내 PDCCH를 통해 I)L CC B 및 DL CC C에 대한 하향링크 할당 정보, 즉 PDSCH 자원에 대한 정보가 전송된다. 단말은 DL CC A를 모니터링하여 CIF를 통해 PDSCH의 자원영역 및 해당 CC를 알 수 있다.
[89] PDCCH에 CIF가 포함되거나 또는 포함되지 않는지는 반-정적으로 설정될 수 있고, 상위 계층 시그널링에 의해서 단말-특정으로 활성화될 수 있다. CIF가 비활성화 (disabled)된 경우에, 특정 DL CC 상의 PDCCH는 해당 동일한 DL CC 상의 PDSCH 자원올 할당하고, 특정 DL CO!l 링크된 UL CC 상의 PUSCH 자원을 할당할 수 있다. 이 경우, 기존의 PDCCH 구조와 동일한 코딩 방식, CCE 기반 자원 매핑, DCI 포맷 등이 적용될 수 있다.
[90] 한편, CIF가 활성화 (enabled)되는 경우에, 특정 DL CC 상의 PDCCH는 복수개의 병합된 CC들 중에서 CIF가 지시하는 하나의 DL/UL CC 상에서의 PDSCH/PUSCH 자원을 할당할 수 있다. 이 경우, 기존의 PDCCH DCI 포맷에 CIF가 추가적으로 정의될 수 있으며, 고정된 3 비트 길이의 필드로 정의되거나, CIF 위치가 DCI 포맷 크기에 무관하게 고정될 수도 있다. 이 경우에도, 기존의 PDCCH 구조와 동일한 코딩 방식, CCE 기반 자원 매핑, DCI 포맷 등이 적용될 수 있다.
[91 ] CIF가 존재하는 경우에도, 기지국은 PDCCH를 모니터링할 DL CC 세트를
할당할 수 있다. 이에 따라, 단말의 블라인드 디코딩의 부담이 감소할 수 있다.
PDCCH 모니터링 CC 세트는 전체 병합된 DL CC의 일부분이고 단말은 PDCCH의 검출 /디코딩을 해당 CC 세트에서만 수행할 수 있다. 즉, 단말에 대해서 PDSCH/PUSCH를 스케줄링하기 위해서, 기지국은 PDCCH를 PDCCH 모니터링 CC 세트 상에서만 전송할 수 있다. PDCCH 모니터링 DL CC 세트는 단말 -특정 또는 단말 그룹 -특정 또는 셀-특정으로 설정될 수 있다. 예를 들어, 도 7의 예시에서와 같이 3 개의 DL CC가 병합되는 경우에, DL CC A 가 PDCCH 모니터링 DL CC로 설정될 수 있다. CIF가 비활성화되는 경우, 각각의 DL CC 상의 PDCCH는 DL CC A에서의 PDSCH만을 스케줄링할 수 있다. 한편, CIF가 활성화되면 E>L CC A 상의 PDCCH는 DL CC A는 물론 다른 DL CC에서의 PDSCH 도 스케줄링할 수 있다. DL CC A가 PDCCH 모니터링 CC로 설정되는 설정되는 경우에는 D니 C B 및 DL CC C 에는 PDSCCH가 전송되지 않는다.
[92] 전술한 바와 같은 반송파 병합이 적용되는 시스템에서, 단말은 복수개의 하향링크 반송파를 통해서 복수개의 PDSCH를 수신할 수 있고, 이러한 경우 단말은 각각의 데이터에 대한 ACK/NACK올 하나의 서브프레임에서 하나의 UL CC 상에서 전송하여야 하는 경우가 발생하게 된다. 하나의 서브프레임에서 복수개의 ACK/NACK을 PUCCH 포맷 la/lb을 이용하여 전송하는 경우, 높은 전송 전력이 요구되며 상향링크 전송의 PAPR이 증가하게 되고 전송 전력 증폭기의 비효율적인 사용으로 인하여 단말의 기지국으로부터의 전송 가능 거리가 감소할 수 있다. 하나의 PUCCH를 통해서 복수개의 ACK/NACK을 전송하기 위해서는 ACK/NACK 번들링 (bundling) 또는 ACK/NACK 다중화 (multiplexing)이 적용될 수 있다.
[93] 또한, 반송파 병합의 적용에 따른 많은 개수의 하향링크 데이터 및 /또는 TDD 시스템에서 복수개의 DL 서브프레임에서 전송된 많은 개수의 하향링크 데이터에 대한 ACK/NACK 정보가 하나의 서브프레임에서 PUCCH를 통해 전송되어야 하는 경우가 발생할 수 있다. 이러한 경우에서 전송되어야 할 ACK/NACK 비트가 ACK/NACK 번들링 또는 다중화로 지원가능한 개수보다 많은 경우에는, 위 방안들로는 을바르게 ACK/NACK 정보를 전송할 수 없게 된다.
[94] 이하에서는 상술한 설명을 바탕으로, 본 발명의 실시예에 의한 (Inband) full duplex ((I)BFD)에 대해 설명한다. 설명에 앞서 (I)BFD에 대해 살펴보면, IBFD란
동안 K-N개의 시간 구간에서 K-N개의 하향링크 신호를 전송할 수 있다. 여기서, K개의 시간 구간 중 N개의 시간 구간은, 하향링크 신호를 수신하지 않는 blank 시간 구간으로 설정할 수 있다. 여기서 blank시간 구간은, 하향링크 신호를 수신하는 하나 이상의 단말이 상향링크 신호를 전송하는 하나 이상의 단말로부터 받는 간섭의 핸들링에 사용되는 시간 구간을 말한다. .
[98] 여기서 간섭의 핸들링이라 함은 UE-to—UE interference을 제거하는 것으로써, 하향링크 신호를 수신하는 하나 이상의 단말이 상기 K-N개의 하향링크 신호 디코딩 시 상기 N개의 시간 구간에서 수신된 상향링크 신호 성분을 빼는 것 /동작일 수 있다. 이렇게 K개의 시간 구간에서 상항링크를 반복해서 전송할 경우 상향링크 전송률이 저하될 수 있는데 이를 방지하기 위하여 기지국이 한 시간 구간 동안 수신할 수 있는 최대 스트림 수보다 더 많은 스트림을 상향링크 단말들이 전송하고, 기지국은 서로 다른 채널을 통하여 같은 스트림을 수신함으로써 모든 상향링크 데이터 스트림을 디코딩하는 방식을 제안한다. 기지국이 상향링크 신호를 수신할 때 상기 K번 반복되는 상향링크 신호를 수신 시 채널은 K개의 시간 구간마다 상이하여야 기지국이 하나의 시간 구간에서 수신 가능한 스트림 수 이상의 데이터 스트림을 디코딩할 수 있는데, 이를 위하여 i) 채널이 K개의 시간 구간마다 상이한 것일 수도 있고, ii) 기지국이 채널을 인공적으로 변하게 하기 위하여 특수한 RF소자를 사용한 것일 수도 있고, iii) 기지국이 한 시간 구간에서 수신할 수 있는 데이터 스트림수가 층분히 크도록 기지국이 층분히 많은 상향링크 수신 안테나를 장착한 것일 수도 있다. 여기서 기지국이 채널을 인공적으로 변하게 하기 위해서 reconfigurable antenna라는 소자를 사용할 수 있는데, 여기서 reconfigurable하다는 것의 의미는 전기적 및 /또는 기계적으로 채널 상태를 변경할 수 있는 안테나를 의미한다. 간단한 구현으로는 다수개의 물리 안테나를 두고 스위칭 하는 동작이 있을 수 있다. 다른 구현으로는 물리 안테나와 RF chain이 매우 많이 설치되어 있고, 수신 빔 웨이트 (beam weight)를 변경하여 채널 상태를 변경하는 방법으로 구현될 수도 있다. 도 11에는 2개의 안테나가 reconfigurable mode를 2개씩 가질 때의 구현의 예가 도시되어 있다. 다만, 본 발명의 실시예가 reconfigurable antenna의 특정 구현 방식에 한정되는 것은 아니며, 원하는 시점에서 reconfigurable antenna의 mode를 변경할 수 있다면 reconfigurable antenna로 부를 수 있다. 기지국의 안테나가 reconfigurable antenna이고, 기지국이
미리 설정된 κ개의 안테나 모드를 가진 경우, 상기 Κ개의 안테나 모드는 상기 Κ개의 시간 구간 각각에 적용될 수 있다. 다시 말해, 기지국은 Κ개의 시간 구간에서 상향링크 신호를 수신할 때마다 안테나 모드를 변경시킴으로써, 반복되는
Κ개의 신호를 서로 다른 채널로 수신할 수 있다. 이때, 기지국은 상기 Κ개의 시간 구간에서 채널 상태가 변하지 않는다고 가정할 수 있다. 만약 Κ개의 시간 구간에서 채널 상태가 변경되는 경우, Ν개의 시간 구간은 Κ개의 시간 구간의 중심부에 위치할 수 있다. 채널 상태가 변경되는 경우 반복되는 신호의 전송 시간 동안 채널이 변화하므로 Ν개의 시간 구간을 Κ개 시간 구간의 중심부에 위치하는 것이 더 정확도를 높일 수 있다. Ν은 단말의 이동성 (mobility)에 따라 결정되는 것일 수 있다. 혹은 수신기의 간섭 제거 동작을 용이하게 하기 위하여 N개의 시간 구간을 K개의 시간 구간의 앞쪽에 배치할 수 있다. 이는 앞쪽에서 상향링크 간섭 신호를 먼저 수신하고 이후 수신되는 K-N개의 신호에서 바로 상향링크 간섭 신호를 제거하는 동작을 수행할 수 있기 때문이다. 혹은 다른 방식으로 N개의 시간 구간은 K개의 시간 구간에서 분산되어 배치될 수 있다. 이는 채널이 가변 하는 상황에서도 간섭 신호를 효과적으로 제거하기 위함이다.
[99] 한편 기지국의 안테나가 reconfigurable할 수도 있지만 애초에 기지국이 충분히 많은 상향링크 안테나를 설치하고 있어서 안테나의 mode 스위칭 없이도 상향링크 스트림을 수신할 수도 있다. 이 경우에는 별도의 안테나 모드 변환 없이 반복 수신된 신호를 기지국이 디코딩 할 수 있을 것이다.
[100]도 8에는 앞서 설명된 실시예에서 N=l인 경우의 실시예가 도시되어 있다. 도 8을 참조하면, 기지국은 UL 단말 (UL UE)로부터 K개의 시간 구간 (TI) K번 반복되는 상향링크 신호 (uk)를 수신할 수 있다. 앞서 설명된 바와 같이 K개의 시간 구간에서 안테나 모드는 달라진다. 기지국은 K개의 각 시간 구간에서 UL 단말로부터 신호를 수신하면서 동시에 DL 단말로 DL 신호 (WD(1), WD(2), ···, WD(K-l))을 전송한다. 신호 송수신 과정을 정리하면, NU명의 UL UE는 자신의 송신심볼을 K 심볼 동안 반복하여 전송할 수 있다. 기지국은 UL reconfigurable antenna를 K번의 수신 동안 mode를 switching하여 수신할 수 있다. 상기 UL 송수신이 일어나는 동안 기지국은 DL 신호를 K- 1번 송신한다. 이때 기지국은 K번 중 1번은 송신을 수행하지 않고, DL신호 수신 UE는 1번 동안 간섭 신호만 수신하여 이를 UE-to-UE interference를 제거하는데 사용할 수 있다.
[101]도 9에는 본 발명의 실시예에 의한 시스템 모델이 도시되어 있다. 도 9에서 기지국은 M개의 송수신 안테나를 가지고 있고, UE은 1개의 송수신 안테나를 가지며 미리 설정된 안테나 모드는 K개가 있다고 전제한다. 즉, 상향링크 안테나는 각각 K개의 mode를 가지고 있고, 각 mode변경에 따른 채널 status는 independent하다고 가정한다. 또한 K개의 심볼이 전송되는 동안 채널은 static하다고 가정한다. 도 9의 기지국은 ULRx antenna와 DL Tx antenna를 분리된 Separated antenna IBFD 타입으로 예시되었으나, 도 10에 도시된, DL과 UL antenna는 공유하고 이를 circulator로 구분하는 방식의 Shared antenna IBFD 타입일 수도 있다. 도 9의 안테나는 reconfigurable antenna일 수 있다.
[102]도 9와 같은 환경에서 하향링크 신호는 다음 수학식 12와 같다.
MU-MIMO interference UE-to-UE intererence
[104]그리고, UL UE가 전송한 상향링크 신호는 다음 수학식 13과 같이 쓸 수 있다.
Self interference
[106]상기 수학식에서, 는 기지국으로부터 k번째 UE까지의 lxM하향링크 채널 행렬, w*는 k번째 UE을 위한 xlprecoding행렬, 는 k번째 사용자의 송신 심볼, gk' '는 1번째 ULUE로부터 k번째 D니 JE까지의 1x1채널, z 는 k번째 사용자의 잡음 신호, ND는 하향링크에서 동시에 support하는 사용자 수, 상향링크에서 동시에 support하는 사용자 수, 는 k번째 UE로부터 기지국까지의 i번째 antenna mode의 Mxl상향링크 채널 행렬, 는 k번째 UE의 송신 심볼, T는 하향링크 안테나로부터 상향링크 안테나까지 MxMseif interference 채널, Q는 기지국의 ^xl수신 잡음 신호를 각각 나타낸다.
[10기기지국이 수신한 상향링크 신호는 다음 수학식 14와 같다.
[ 108] 【수학식 14】
[ 109]이때 안테나 모드를 K번 스위칭 하면서 반복신호를 수신할 때 수신 신호는 다음 수학식 15와 같이 표현할 수 있다.
[ 110] 【수학식 15】
MKx\
[111 ]여기서 NU는 최대 MK명까지 동시에 전송할 수 있고, MK명의 UL UE은 동시에 K번의 송신을 수행한다.
[ 112]기지국은 상기 상향링크 신호를 수신하면서 하향링크 신호를 전송하는데, K 시간 구간 동안 전송되는 하향링크 신호는 다음 수학식 16과 같다.
[113] 【수학식 16】 yk D (i) + (1),
[114]이때 1번째 수신 심볼부터 K-1번째 수신 심볼 각각에서 마지막에 수신한 수신 신호를 빼면 UE— to-UE interference가 완벽히 제거되며, 이를 수식으로 표현하면 다음 수학식 17과 같다.
[115] 【수학식 17】
yk°{K - 1)— yk D{K) = T kw kdk(K -l) + zk(K- 1).
[116]즉, 앞서 설명된 K-N개의 하향링크 신호를 수신한 단말의 동작에서, N=l인 경우 하향링크 신호는 다음 수학식 18과 같고, 이 경우 앞서 언급된 간섭의 핸들링은 다음 수학식 19로 표현될 수 있다.
[117] 【수학식 18】
Nu
yk° in) = hlwkdk (^) +∑ Sk ui (n) + zk (nl l≤n≤K-l
i=\
[118] 【수학식 19]
Nu Nu
y (n = hIwkdk (") + X Sk,iui (") + zt (")―∑ Sk,iui (K% i≤n≤K~l
1=1 l=\
[119]이와 같은 IBFD 기지국 시스템에서 얻을 수 있는 DoF는 하향링크 M(K-l), 상향링크 MK를 총 K 심볼 구간 동안 얻을 수 있으며, 상향 /하향링크 합 DoF는 다음 수학식 20과 같다.
[120] 【수학식 20】
_(K- \)Μ + ΚΜ _ (2Κ - \)Μ
dsum = ~K = ^ K ^
[121]여기서, reconfigurable 안테나의 모드 개수 K가 무한대로 갈 경우 근사적으로 2M의 DoF를 얻을 수 있다. 즉 상향링크 안테나가 무한대의 모드 개수를 가지고 있고, 상향링크 UE 수가 무한대일 경우 근사적으로 이상적 환경에서의 in-band full duplex동작의 이득을 얻을 수 있다.
[122] 본 발명이 UE의 송수신 안테나가 단일 안테나일 때만 설명하였지만 단말의 송수신 안테나가 다중안테나일 때도 확장 적용 가능하다. 만약 UE가 다중 송신안테나를 가지고 있을 경우에는 UE별 rank가 ^일 때
를 만족하면 된다.
[ 123]상술한 본 발명의 제안은 다음과 같은 실시예로 설명될 수도 있다. 기지국은 2개의 송수신 안테나를 가지고 있다고 가정하고, 이 송수신 안테나는 총 2개의 model- 스위칭할 수 있는 reconfigurable antenna라고 가정하자. 이때 DL UE가 단일 안테나를 가지고 있을 경우 총 2명의 DL UE를 MU-MIMO를 통해 동시에 스케줄링 될 수 있고, DL UE가 2개의 안테나를 가지고 있을 경우에는 1명의 DL UE만 스케줄링 된다고 가정할 수 있다. UL UE가 단일 송신안테나를 가지고 있다고 가정할 경우 총 4명의 UE가 스케줄링 되어 동시에 2심볼 구간 동안 같은 심볼을 반복 전송한다. 만약 UL UE가 2개의 송신안테나를 가지고 있다고 가정할 경우 2명의 UE가 rank 2씩 심볼을 전송하면 된다.
[124]또한, 본 발명이 기존의 셀를러 시스템에도 적용될 수 있다. 다만 시스템상에서는 DL과 UL의 트래픽 비율이 상이할 수 있다. 보통의 셀를러 시스템에서는 DL 트래픽의 비율이 UL에 비해서 높게 사용된다. 따라서 이러한 경우에는 굳이 모든 서브프레임에서 full duplex 동작을 수행할 필요가 없다. 본 발명의 원리를 기존 TDD configuration에 적용할 경우 기존 DL, UL, special subframe 구성이 아닌 DL, full duplex, special 서브프레임으로 구성할 수 있다. 표 la는 LTE시스템에서 기존 TDD configuration을 나타낸 것이고, 표 1은 제안한 configuration을 나타낸 것이다, 여기서 F는 full duplex를 의미한다. 이때 special subframe의 UpPTS에서는 예외적으로 full duplex mode가 아닌 UL만 서비스 될 수도 있다.
[125] 【표 1】
수도 있고, 수 OFDM 심볼의 그룹 레벨일 수도 있다. 또는 reconfigurable antenna가 receive post-coding (receiver의 beam weight 변경)에 의해 구현되는 경우에는 한 OFDM심볼내의 RE (subcarrier)단위로 반복이 수행될 수도 있다. 예를 들어 그림 6에서 송수신 패턴이 OFDM심볼 레벨로 이루어질 경우 UL UE는 같은 심볼을 K번 반복해서 전송하는 것이다. 또는, RE 레벨로 전송될 경우에는 UL UE는
같은 심볼을 K RE동안 반복해서 전송되는 것이다. 이때, DL 심볼 (또는 RE) 중 한번은 전송을 하지 않고 간섭 신호를 추정 및 다른 심볼 (또는 RE)에서 간섭 신호를 cancel하는 용도로 사용해야 하는데 만약 해당 심볼이 중요한 제어 정보가 전송되는 심볼이거나, 파일럿 신호가 전송되는 심볼이라면 해당 심볼올 muting해서는 안 된다. 따라서 DL에서 muting을 수행하는 심볼 (또는 RE)은 제어 정보나 파일럿신호가 전송되지 않는 심볼 (또는 RE)에서 수행되는 것을 제안한다. 예를 들어, PDCCH가 전송되는 심볼, CRS가 전송되는 심볼 (또는 RE)은 muting symbol에서 제외하는 것을 제안한다. 만약 표 lb와 같이 원래 UL이었던 서브프레임에서만 IBFD 동작이 수행되는 경우에는 해당 서브프레임에서는 PDCCH, CRS, synchronization signal의 전체 또는 일부가 전송되지 않는 것을 제안한다. 만약 상기 제안한 송수신 방법이 서브프레임 레벨에서 수행되는 경우에는 DL의 한 서브프레임은 전송을 중단하고 간섭을 측정하는 용도로 사용되어야 한다. 이때 network은 해당 서브프레임을 blanking하고 DL UE들은 신호를 그대로 수신하여 interference를 추정하는 용도로 사용한다.
[ 12기본 발명의 장점은 UE-to-UE interference를 제거 또는 완화 하기 위해서 기지국의 스케줄링 제한을 필요로 하지 않으며, UE-to-UE interference 채널 추정 및 간섭 제거를 위한 파일럿송수신 동작을 필요로 하지 않는다는 것이다. 또한 UE가 UE-to-UE interference를 제거 또는 완화 하기 위하여 간섭 억제 또는 제거 수신기를 필요로 하지 않는다. 또한 현재 LTE시스템에서 UL과 E>L 사이에는 half subcarrier shifting이 적용되고 있는데 이렇게 UL과 DL의 subcarrier위치가 상이한 경우에도 제안된 방식은 어떠한 제약 없이 적용될 수 있는 장점이 있다.
[ 128 ]본 발명의 원리는 UL송신하는 UE은 같은 신호를 여러 번 반복하여 전송한다는 것이고, 이때 기지국은 반복 전송 중에 한번을 송신을 쉬고, 이 시점에 DL UE는 반복 전송되는 간섭 신호를 수신하여 이를 데이터가 전송된 심볼의 간섭을 제거하는데 사용한다. UL 신호가 반복 전송될 때에 UL throughput loss를 줄이기 위해 UL antenna수 보다 많은 UE들이 동시에 전송하게 되고, 기지국은 reconfigurable antenna를 이용하여 반복 전송된 신호를 서로 다른 채널로 수신하여 decoding을 가능케 하는 것이다 [ 129]도 12 내지 도 13에는 본 발명의 실시예에 의할 경우와 그렇지 않은 경우의
시뮬레이션 결과가 도시되어 있다. 상향링크 안테나와 하향링크 안테나는 4개를 가정하였고, 셀 반경은 200m, 채널의 path— loss exponent는 4, noise power는 -100 dBm을 가정하였다. 상 /하향링크 단말은 200m반경의 원 내에 랜덤하게 drop하는 것을 가정하였고, 기지국 최대 송신 전력은 30dBm, 상향링크 전력제어는 open-loop 전력 제어 기법을 사용하였다. (P0 = -80dBm, a fractional path-loss compensation factor (referred to as a) = 1) 단말의 최대 송신 전력은 23dBm을 가정하였다.
[130]비교를 위하여 기존 half duplex기법과, full duplex이지만 상 /하향단말간에 간섭 제어 방식이 적용되지 않은 기법, 이상적인 환경 (시물레이션 상에서 단말간 간섭을 0으로 설정한 경우)에서의 full duplex기법을 함께 시뮬레이션 하였다. 기존 half duplex 기법에서는 1 : 1 UL/DL resource ratio를 고려하였다. 제안된 방법을 제외한 모든 다른 방법에서는 M개의 상향링크 단말이 랜덤 하게 스케줄링 된다고 가정하였고, 제안된 방식에서는 MK 상향링크 단말이 동시에 스케줄링 되어 K시간 구간 동안 같은 심볼을 반복 전송한다고 가정하였다. 제안된 방식은 repetition coding을 사용하기 때문에 다른 방법과 공정한 비교를 위해서 전송 전력을 1/K로 설정하였다.
[ 131 ]도 12, 13은 throughput performance (bps/Hz) 비교를 나타낸다. 그래프에서 L은 하향링크의 throughput을, RUL은 상향링크의 throughput을, Rsum은 상 /하향링크 throughput합을, HD는 half duplex기법, FD는 full duplex, FD wo/CD는 IBFD without coordination, ideal FD는 ideal IBFD, Proposed는 본 발명의 실시예에 의한 방식을 따를 경우를 나타낸다. IBFD에서 UL/DL coordination이 없는 방식은 심각한 단말간 간섭으로 성능이 저하되지만, 제안된 방법은 Half duplex기법에 비해 68% (K=4, 도 12의 경우), 91% (Κ=15, 도 13의 '경우)의 성능 이득을 얻는다. 특히 Κ가 커질수록 성능이득이 커져서 idel한 IBFD성능에 근접하게 되는데, 일례로 기존 LTE시스템에서 한 서브프레임에는 14개의 심불이 있고, 각 심볼에 대해 상기 제안한 방법을 적용하면, (즉 시물레이션 환경에서는 15개의 심볼 확장을 고려하였기에) 거의 이상적인 IBFD성능 이득 (대략 half duplex의 90%이득)을 얻을 수 있다는 것을 예상할 수 있다.
[132]본 발명의 실시예에 의한 장치 구성
[133]도 14은 본 발명의 실시 형태에 따른 전송포인트 장치 및 단말 장치의 구성을 도시한 도면이다.
[ 134]도 14을 참조하여 본 발명에 따른 전송포인트 장치 (10)는, 수신모들 (11), 전송모듈 (12), 프로세서 (13), 메모리 (14) 및 복수개의 안테나 (15)를 포함할 수 있다. 복수개의 안테나 (15)는 MIMO 송수신을 지원하는 전송포인트 장치를 의미한다. 수신모들 (11)은 단말로부터의 상향링크 상의 각종 신호, 데이터 및 정보를 수신할 수 있다. 전송모들 (12)은 단말로의 하향링크 상의 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서 (13)는 전송포인트 장치 (10) 전반의 동작을 제어할 수 있다.
[ 135]본 발명의 일 실시예에 따른 전송포인트 장치 (10)의 프로세서 (13)는, 앞서 설명된 각 실시예들에서 필요한사항들을 처리할 수 있
[136]전송포인트 장치 (10)의 프로세서 (13)는 그 외에도 전송포인트 장치 (10)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리 (14)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼 (미도시) 등의 구성요소로 대체될 수 있다.
[ 13기계속해서 도 14을 참조하면 본 발명에 따른 단말 장치 (20)는, 수신모들 (21), 전송모들 (22), 프로세서 (23), 메모리 (24) 및 복수개의 안테나 (25)를 포함할 수 있다. 복수개의 안테나 (25)는 MIMO 송수신을 지원하는 단말 장치를 의미한다. 수신모들 (21)은 기지국으로부터의 하향링크 상의 각종 신호, 데이터 및 정보를 수신할 수 있다. 전송모듈 (22)은 기지국으로의 상향링크 상의 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서 (23)는 단말 장치 (20) 전반의 동작을 제어할 수 있다.
[ 138]본 발명의 일 실시예에 따른 단말 장치 (20)의 프로세서 (23)는 앞서 설명된 각 실시예들에서 필요한 사항들을 처리할 수 있다.
[ 139]단말 장치 (20)의 프로세서 (23)는 그 외에도 단말 장치 (20)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리 (24)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼 (미도시) 등의 구성요소로 대체될 수 있다.
[140]위와 같은 전송포인트 장치 및 단말 장치의 구체적인 구성은, 전술한 본
발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
[ 141 ]또한, 도 14에 대한 설명에 있어서 전송포인트 장치 (10)에 대한 설명은 하향링크 전송 주체 또는 상향링크 수신 주체로서의 중계기 장치에 대해서도 동일하게 적용될 수 있고, 단말 장치 (20)에 대한 설명은 하향링크 수신 주체 또는 상향링크 전송 주체로서의 중계기 장치에 대해서도 동일하게 적용될 수 있다.
[142]상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어 (firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
[143]하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트를러, 마이크로 컨트를러, 마이크로 프로세서 등에 의해 구현될 수 있다.
[144]펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모들, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
[145]상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
[146]본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서
제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
【산업상 이용가능성】
[ 14기상술한 바와 같은 본 발명의 실시형태들은 다양한 이동통신 시스템에 적용될 수 있다.
Claims
【청구항 1】
무선통신시스템에서 IBFD(Inband full duplex) 기지국이 신호를 송수신하는 방법에 있어서,
K번 반복되는 상향링크 신호 각각을 K개의 시간 구간에서 수신하는 단계; 및 상기 K개의 시간 구간에서 상향링크 신호가 수신되는 동안 K-N개의 시간 구간에서 K-N개의 하향링크 신호를 전송하는 단계;
를 포함하며,
상기 K개의 시간 구간 중 N개의 시간 구간은,
상기 하향링크 신호를 수신하는 하나 이상의 단말이 상기 상향링크 신호를 전송하는 하나 이상의 단말로부터 받는 간섭의 핸들링에 사용되는, 신호 송수신 방법.
【청구항 2】
제 1항에 있어서,
상기 간섭의 핸들링은, 상기 하향링크 신호를 수신하는 하나 이상의 단말이 상기 K-N개의 하향링크 신호 디코딩 시 상기 N개의 시간 구간에서 수신된 신호 성분을 빼는 것인, 신호 송수신 방법.
【청구항 3】
제 1항에 있어서,
상기 N=l이고, 상기 하향링크 신호가
Nu
ykD ( ) = hlwkdk («) +∑ Sk,iUi {n) + zk (n), 1≤"≤ — 1인 경우,
/=1
상기 간섭의 핸들링은
Nu Nu
y^{ = Kwkdk (n) + gkJ l (n) + zk (") - (K), \< n<K-\
/=1 l=\
이고, 상기 h【는 기지국으로부터 k번째 단말까지의 하향링크 채널 행렬, W*는 k번째 단말을 위한 xl precoding행렬, 는 k번째 사용자의 송신 심볼, g"는 1번째 상향링크 신호 전송 단말로부터 k번째 하향링크 신호 수신 단말까지의 1x1
채널, z 는 k번째 단말의 잡음 신호, 는 하향링크에서 동시에 지원하는 사용자 수, "상향링크에서 동시에 지원하는 사용자 수인, 신호 송수신 방법.
【청구항 4】
제 1항에 있어서,
상기 K번 반복되는 상향링크 신호를 수신 시 채널은 K개의 시간 구간마다 상이한, 신호 송수신 방법.
[청구항 5】
제 1항에 있어서,
상기 기지국이 미리 설정된 K개의 안테나 모드를 가진 경우, 상기 K개의 안테나 모드는 상기 K개의 시간 구간 각각에 적용되는, 신호 송수신 방법.
【청구항 6】
제 1항에 있어서,
상기 기지국은 상기 K개의 시간 구간에서 채널 상태가 변하지 않는다고 가정하는, 신호 송수신 방법.
【청구항 7】
제 1항에 있어서,
상기 K개의 시간 구간에서 채널 상태가 변경되는 경우, 상기 N개의 시간 구간은 상기 K개의 시간 구간의 중심부에 위치하는, 신호 송수신 방법.
【청구항 8】
제 1항에 있어서,
상기 N개의 시간 구간은 상기 K개의 시간 구간의 끝에 위치하는, 신호 송수신 방법 .
【청구항 9】
제 1항에 있어서,
상기 시간 구간은 OFDM 심볼, 슬롯 또는 서브프레임 중 어느 하나인, 신호 송수신 방법.
【청구항 10】
제 1항에 있어서,
상기 하향링크 신호를 수신하는 단말의 수는 K인, 신호 송수신 방법.
【청구항 11】 '
제 1항에 있어서,
상기 기지국은 reconfigurable antenna을 포함하는, 신호 송수신 방법.
【청구항 12]
무선통신시스템에서 D2D(Device to Device) 단말 장치에 있어서,
수신 모들; 및
프로세서를 포함하고,
상기 프로세서는, K번 반복되는 상향링크 신호 각각을 K개의 시간 구간에서 수신하고, 상기 K개의 시간 구간에서 상향링크 신호가 수신되는 동안 K-N개의 시간 구간에서 K-N개의 하향링크 신호를 전송하며,
상기 K개의 시간 구간 중 N개의 시간 구간은,
상기 하향링크 신호를 수신하는 하나 이상의 단말이 상기 상향링크 신호를 전송하는 하나 이상의 단말로부터 받는 간섭의 핸들링에 사용되는, 기지국 장치.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/321,044 US10425937B2 (en) | 2014-06-22 | 2015-06-22 | Method and apparatus for transmitting and receiving signal by full-duplex base station in wireless communication system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462015509P | 2014-06-22 | 2014-06-22 | |
US62/015,509 | 2014-06-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015199391A1 true WO2015199391A1 (ko) | 2015-12-30 |
Family
ID=54938414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/006289 WO2015199391A1 (ko) | 2014-06-22 | 2015-06-22 | 무선 통신 시스템에서 풀 듀플렉스 기지국의 신호 송수신 방법 및 장치 |
Country Status (2)
Country | Link |
---|---|
US (1) | US10425937B2 (ko) |
WO (1) | WO2015199391A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108702805A (zh) * | 2016-02-15 | 2018-10-23 | 华为技术有限公司 | 设备到设备全双工通信 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015199391A1 (ko) * | 2014-06-22 | 2015-12-30 | 엘지전자 주식회사 | 무선 통신 시스템에서 풀 듀플렉스 기지국의 신호 송수신 방법 및 장치 |
US20160233904A1 (en) * | 2015-02-09 | 2016-08-11 | Huawei Technologies Co., Ltd. | System and Method for Full-Duplex Operation in a Wireless Communications System |
US20180213547A1 (en) * | 2017-01-26 | 2018-07-26 | Electronics And Telecommunications Research Instit Ute | Communication node for scheduling and interference control in wireless communication network, and operation method therefor |
CN109412773B (zh) * | 2018-10-30 | 2021-08-06 | 展讯通信(上海)有限公司 | 非对称全双工通信的数据传输与接收方法及装置、终端 |
US20230053490A1 (en) * | 2021-08-18 | 2023-02-23 | Qualcomm Incorporated | Feedback transmissions on uplink resources of bandwidth parts |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100022201A1 (en) * | 2008-07-22 | 2010-01-28 | Patrick Vandenameele | Apparatus and method for reducing self-interference in a radio system |
US20120155336A1 (en) * | 2010-12-13 | 2012-06-21 | Nec Laboratories America, Inc. | Method For A canceling Self Interference Signal Using Passive Noise Cancellation For Full-Duplex Simultaneous (in Time) and Overlapping (In Space) Wireless transmission and Reception On The Same Frequency Band |
US20130083672A1 (en) * | 2010-06-22 | 2013-04-04 | Telefonaktiebolaget Lm Ericsson (Publ) | Apparatus and Method for Controlling Self-Interference in a Cellular Communications System |
US20130188530A1 (en) * | 2012-01-20 | 2013-07-25 | Renesas Mobile Corporation | Full-Duplex Deployment In Wireless Communications |
Family Cites Families (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2586316B2 (ja) * | 1993-12-22 | 1997-02-26 | 日本電気株式会社 | セクタ構成移動通信システム |
JP3031306B2 (ja) * | 1997-07-31 | 2000-04-10 | 日本電気株式会社 | 移動無線装置 |
JP4369581B2 (ja) * | 1999-12-17 | 2009-11-25 | パナソニック株式会社 | 基地局装置および干渉抑圧送信方法 |
US8041395B2 (en) * | 2005-11-14 | 2011-10-18 | Neocific, Inc. | Multiple-antenna system for cellular communication and broadcasting |
JP4242397B2 (ja) * | 2006-05-29 | 2009-03-25 | 国立大学法人東京工業大学 | 無線通信装置及び無線通信方法 |
JP2008017341A (ja) * | 2006-07-07 | 2008-01-24 | Ntt Docomo Inc | 無線通信装置および無線通信方法 |
US7480271B2 (en) * | 2006-09-26 | 2009-01-20 | Cisco Technology, Inc. | Method for reducing multi-cell interferences in wireless communications |
JP5152472B2 (ja) * | 2007-04-28 | 2013-02-27 | 日本電気株式会社 | 無線通信システムにおけるリソース割当制御方法および装置 |
EP2161964B1 (en) * | 2008-09-04 | 2015-02-18 | Nokia Solutions and Networks Oy | Method and device for data processing in a cellular network |
US9559874B2 (en) * | 2013-08-16 | 2017-01-31 | Origin Wireless, Inc. | Multiuser time-reversal division multiple access uplink system with parallel interference cancellation |
US9407306B2 (en) * | 2014-04-25 | 2016-08-02 | Origin Wireless, Inc. | Quadrature amplitude modulation for time-reversal systems |
US8451944B2 (en) * | 2009-09-04 | 2013-05-28 | Hitachi, Ltd. | Tomlinson harashima precoding with additional receiver processing in a multi-user multiple-input multiple-output wireless transmission system |
US20120282889A1 (en) * | 2010-01-12 | 2012-11-08 | Sumitomo Electric Industries, Ltd | Base station device |
US8442541B2 (en) * | 2010-03-29 | 2013-05-14 | Ntt Docomo, Inc. | System and method for inter-cell interference avoidance in co-channel networks |
GB2485387B (en) * | 2010-11-12 | 2013-10-02 | Intellectual Ventures Holding 81 Llc | Wireless communication system, communication unit, and method for scheduling |
WO2012108616A1 (en) * | 2011-02-13 | 2012-08-16 | Lg Electronics Inc. | Method for transmitting uplink control information and user equipment, and method for receiving uplink control information and base station |
WO2012128543A2 (ko) * | 2011-03-21 | 2012-09-27 | 엘지전자 주식회사 | Ack/nack정보 수신방법 및 전송방법과, 사용자기기 및 기지국 |
WO2012172476A1 (en) * | 2011-06-12 | 2012-12-20 | Altair Semiconductor Ltd. | Mitigation of interference between communication terminals in td-lte |
US9301292B2 (en) * | 2011-09-05 | 2016-03-29 | Lg Electronics Inc. | Method of indicating a control channel in a wireless access system, base station for the same and user equipment for the same |
WO2013066220A1 (en) * | 2011-10-31 | 2013-05-10 | Telefonaktiebolaget L M Ericsson (Publ) | A method and a radio base station for antenna/network reconfiguration |
US8929937B2 (en) * | 2011-11-08 | 2015-01-06 | Spectrum Bridge, Inc. | Managing spectrum resources using channel maps and predicted noise floor |
WO2013091137A1 (en) * | 2011-12-21 | 2013-06-27 | Telefonaktiebolaget L M Ericsson (Publ) | Method, network node, computer program and computer program product for decoding a signal |
US9496929B2 (en) * | 2012-04-06 | 2016-11-15 | Lg Electronics Inc. | Coordinated beamforming method in wireless access system, and apparatus therefor |
JP6208409B2 (ja) * | 2012-04-06 | 2017-10-04 | 株式会社Nttドコモ | ユーザ装置及び通信方法 |
US9642148B2 (en) * | 2012-05-01 | 2017-05-02 | Qualcomm Incorporated | Interference cancellation based on adaptive time division duplexing (TDD) configurations |
US8913530B2 (en) * | 2012-05-07 | 2014-12-16 | Telefonaktiebolaget L M Ericsson (Publ) | Dynamic band selection for interference minimization in direct device to device communications |
US9537615B2 (en) * | 2012-06-28 | 2017-01-03 | Nokia Corporation | Flexible HARQ ACK/NACK transmission |
US20140023001A1 (en) * | 2012-07-20 | 2014-01-23 | Qualcomm Incorporated | Apparatuses and methods of detection of interfering cell communication protocol usage |
CN104662818B (zh) * | 2012-09-21 | 2018-02-09 | Lg电子株式会社 | 用于在无线通信系统中发送和接收下行信号的方法和装置 |
US9979078B2 (en) * | 2012-10-25 | 2018-05-22 | Pulse Finland Oy | Modular cell antenna apparatus and methods |
KR102052420B1 (ko) * | 2012-11-02 | 2019-12-05 | 코란씨, 엘엘씨 | 통신 시스템에서 간섭 측정을 위한 방법 및 그 장치 |
US20140133412A1 (en) * | 2012-11-09 | 2014-05-15 | Centre Of Excellence In Wireless Technology | Interference mitigation technique for Heterogeneous/Homogeneous Networks employing dynamic Downlink/Uplink configuration |
CN104919722A (zh) * | 2012-11-09 | 2015-09-16 | 爱立信-Lg株式会社 | 用于移动对象的中继系统 |
US9641309B2 (en) * | 2012-12-11 | 2017-05-02 | Lg Electronics Inc. | Method for transceiving signal in wireless communication system, and apparatus therefor |
US20140211689A1 (en) * | 2013-01-28 | 2014-07-31 | Alcatel-Lucent Usa Inc. | Slow-Fading Precoding for Multi-Cell Wireless Systems |
CN105075159B (zh) * | 2013-03-22 | 2018-04-10 | Lg电子株式会社 | 在无线通信系统中执行干扰协调的方法和设备 |
US9769834B2 (en) * | 2013-05-07 | 2017-09-19 | Spectrum Effect, Inc. | Interference detection with UE signal subtraction |
WO2014182285A1 (en) * | 2013-05-07 | 2014-11-13 | Nokia Corporation | Transmission mode with user equipment independent physical downlink shared channel scrambling for inter-cell and intra-cell pdsch-to-pdsch interference cancellation |
US9154287B1 (en) * | 2013-07-10 | 2015-10-06 | Sprint Communications Company L.P. | Alleviation of time division multiplexing interference between multiple access nodes |
EP3026830B1 (en) * | 2013-07-26 | 2019-12-04 | LG Electronics Inc. | Method for transmitting signal for mtc and apparatus for same |
CN105409138B (zh) * | 2013-07-26 | 2018-09-25 | Lg 电子株式会社 | 发送用于mtc的信号的方法及其装置 |
WO2015021628A1 (en) * | 2013-08-15 | 2015-02-19 | Telefonaktiebolaget L M Ericsson (Publ) | Methods, user equipment and radio network node for interference mitigation in a dynamic time division duplex system |
US9544115B2 (en) * | 2013-08-19 | 2017-01-10 | Qualcomm Incorporated | Apparatus and method of improving identification of reference signal transmissions |
CN105532061B (zh) * | 2013-09-25 | 2019-06-28 | 松下电器(美国)知识产权公司 | 无线通信方法、演进节点b以及用户设备 |
US9306643B2 (en) * | 2013-10-01 | 2016-04-05 | Alcatel Lucent | Decentralized slow-fading precoding for multi-cell wireless systems |
US9413516B2 (en) * | 2013-11-30 | 2016-08-09 | Amir Keyvan Khandani | Wireless full-duplex system and method with self-interference sampling |
US10342041B2 (en) * | 2014-05-12 | 2019-07-02 | Telefonaktiebolaget Lm Ericsson (Publ) | Access to a communications channel in a wireless communications network |
WO2015199391A1 (ko) * | 2014-06-22 | 2015-12-30 | 엘지전자 주식회사 | 무선 통신 시스템에서 풀 듀플렉스 기지국의 신호 송수신 방법 및 장치 |
-
2015
- 2015-06-22 WO PCT/KR2015/006289 patent/WO2015199391A1/ko active Application Filing
- 2015-06-22 US US15/321,044 patent/US10425937B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100022201A1 (en) * | 2008-07-22 | 2010-01-28 | Patrick Vandenameele | Apparatus and method for reducing self-interference in a radio system |
US20130083672A1 (en) * | 2010-06-22 | 2013-04-04 | Telefonaktiebolaget Lm Ericsson (Publ) | Apparatus and Method for Controlling Self-Interference in a Cellular Communications System |
US20120155336A1 (en) * | 2010-12-13 | 2012-06-21 | Nec Laboratories America, Inc. | Method For A canceling Self Interference Signal Using Passive Noise Cancellation For Full-Duplex Simultaneous (in Time) and Overlapping (In Space) Wireless transmission and Reception On The Same Frequency Band |
US20130188530A1 (en) * | 2012-01-20 | 2013-07-25 | Renesas Mobile Corporation | Full-Duplex Deployment In Wireless Communications |
Non-Patent Citations (1)
Title |
---|
JARKKO KNECKT ET AL.: "Utilizing Unused Resources by Allowing Simultaneous Transmissions", IEEE 11-14/0357R0, 16 March 2014 (2014-03-16), XP055248541 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108702805A (zh) * | 2016-02-15 | 2018-10-23 | 华为技术有限公司 | 设备到设备全双工通信 |
CN108702805B (zh) * | 2016-02-15 | 2020-06-16 | 华为技术有限公司 | 一种使用全双工多信道通信的无线自组织网络中的节点及通信方法 |
Also Published As
Publication number | Publication date |
---|---|
US10425937B2 (en) | 2019-09-24 |
US20170201986A1 (en) | 2017-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11626920B2 (en) | Method for terminal to perform radio link monitoring in wireless communication system for supporting sidelink and apparatus therefor | |
US10064066B2 (en) | Method for transmitting and receiving wireless signal in wireless communication system and apparatus therefor | |
US10397889B2 (en) | Method for receiving system information in wireless communication system that supports narrowband IOT and apparatus for the same | |
US9955479B2 (en) | Method and apparatus for transmitting or receiving sounding reference signal in wireless communication system | |
EP3337274B1 (en) | Method for transmitting/receiving wireless signal in wireless communication system and device therefor | |
US9462585B2 (en) | Method and device for communication between terminals in wireless communication system | |
KR102148651B1 (ko) | 무선 통신 시스템에서 하향링크 신호를 송수신하는 방법 및 이를 위한 장치 | |
CN106664280B (zh) | 在无线通信系统中收发数据的方法和装置 | |
US10412773B2 (en) | Method for transceiving signal in wireless communication system and apparatus therefor | |
US10123338B2 (en) | Method and apparatus for allocating resources in wireless access system supporting FDR transmission | |
US9730240B2 (en) | Communication method considering carrier type and apparatus for same | |
WO2016047994A1 (ko) | 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치 | |
US20160345312A1 (en) | Method and apparatus for transmitting and receiving signals in wireless communication system | |
WO2015122630A1 (ko) | 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치 | |
US9847866B2 (en) | Method and apparatus for transmitting/receiving signal in wireless access system which supports FDR transmission | |
US10356723B2 (en) | Method and device for receiving signal in wireless access system supporting FDR transmission | |
EP2811663B1 (en) | Method and device for determining reference signal antenna port for downlink control channel in wireless communication system | |
CN107078889B (zh) | 无线通信系统中具有多个天线的装置的信号发送方法和装置 | |
WO2015199391A1 (ko) | 무선 통신 시스템에서 풀 듀플렉스 기지국의 신호 송수신 방법 및 장치 | |
WO2014116019A1 (ko) | 다중 셀 협력 통신 시스템에서 신호 송수신하는 방법 및 이를 위한 장치 | |
CN107210870A (zh) | 发送控制信息的方法及其装置 | |
EP2862288B1 (en) | Method and apparatus for transmitting downlink signal in wireless communication system | |
EP3179647A1 (en) | Method and device for receiving signal in wireless access system supporting fdr transmission | |
US10148409B2 (en) | Method and device for receiving signal in wireless access system supporting FDR transmission | |
WO2012141384A1 (ko) | 다중 안테나 무선 통신 시스템에서 단말의 간섭 억제 방법 및 이를 위한 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15811913 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15321044 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15811913 Country of ref document: EP Kind code of ref document: A1 |