WO2015199201A1 - Method for forming mesh-shaped functional pattern, mesh-shaped functional pattern, and functional substrate - Google Patents

Method for forming mesh-shaped functional pattern, mesh-shaped functional pattern, and functional substrate Download PDF

Info

Publication number
WO2015199201A1
WO2015199201A1 PCT/JP2015/068414 JP2015068414W WO2015199201A1 WO 2015199201 A1 WO2015199201 A1 WO 2015199201A1 JP 2015068414 W JP2015068414 W JP 2015068414W WO 2015199201 A1 WO2015199201 A1 WO 2015199201A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
parallel line
line pattern
functional
mesh
Prior art date
Application number
PCT/JP2015/068414
Other languages
French (fr)
Japanese (ja)
Inventor
正好 山内
直人 新妻
大屋 秀信
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016529665A priority Critical patent/JP6515928B2/en
Publication of WO2015199201A1 publication Critical patent/WO2015199201A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • B05D1/38Successively applying liquids or other fluent materials, e.g. without intermediate treatment with intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a method for forming a mesh-like functional pattern, a mesh-like functional pattern formed by the method, and a functional substrate provided with the mesh-like functional pattern.
  • the width of the fine line cannot be made equal to or less than the diameter of the ejected droplet, and a fine line pattern having a line width of several ⁇ m cannot be formed.
  • a method in which a functional material, which is a solid content in a droplet, is deposited on the periphery of the droplet using convection inside the droplet to form a pattern having a finer width than the droplet.
  • Patent Document 1 a method in which a functional material, which is a solid content in a droplet, is deposited on the periphery of the droplet using convection inside the droplet to form a pattern having a finer width than the droplet.
  • Patent Document 2 describes that a transparent conductive film is formed by forming a ring having a fine width of conductive fine particles and connecting a plurality of these rings using this method.
  • the present applicant forms a parallel line pattern by separating the conductive material in the liquid applied in a line shape into edges by the movement of the liquid, and further, a transparent made of the parallel line pattern. Forming a conductive film was invented and reported so far (Patent Document 3).
  • Patent Document 3 describes that when forming a parallel line pattern intersecting in a grid pattern, one-pass printing is used to double the amount of ink applied at the intersection, in this case, the intersection Becomes a ring shape that is thicker than the parallel line portion, and the ring-shaped portion may be periodically visually recognized, and there is room for further improvement in terms of low visibility (that is, a property that is difficult to visually recognize).
  • the interval between the line segments constituting the second parallel line pattern differs between the inside and outside of the first parallel line pattern forming region, thereby causing the line segments to swell and narrow, resulting in low visibility.
  • a new problem was found that would reduce it.
  • the length of the conductive path is increased in the direction along the first parallel line pattern due to the swelling and narrowing generated in the second parallel line pattern.
  • a new problem has also been found that it differs in the direction along the parallel line pattern and causes variations in resistance.
  • an object of the present invention is to provide a method for forming a mesh-like functional pattern, a mesh-like functional pattern, and a functional base material that can improve low visibility and suppress variation in resistance.
  • the functional material is selectively deposited on the edge in the process of applying the first line-shaped liquid containing the functional material on the substrate and drying the first line-shaped liquid.
  • Forming a first parallel line pattern composed of two line segments including: Next, in the process of applying a second line-shaped liquid containing a functional material on the substrate so as to intersect the formation region of the first parallel line pattern, and drying the second line-shaped liquid.
  • the difference between the surface energy in the formation region of the first parallel line pattern and the surface energy outside the formation region of the first parallel line pattern is 5 mN / m. 2.
  • Schematic explanatory diagram conceptually illustrating an example of a method of forming a parallel line pattern Explanatory drawing explaining an example (reference example) of the formation method of a mesh-like functional pattern Explanatory drawing explaining the other example (reference example) of the formation method of a mesh-like functional pattern Explanatory drawing explaining the further another example of the formation method of a mesh-shaped functional pattern
  • the principal part enlarged view which shows the example of formation of the crossing part X
  • interval B Partial enlarged plan view showing an example of a parallel line pattern formed on a substrate Explanatory drawing explaining the (viii)-(viii) line cross section in FIG.
  • Optical micrograph of functional mesh pattern (Example)
  • a phenomenon in which the functional material contained in the liquid is selectively deposited on the edge of the liquid is used. can do.
  • This phenomenon may be referred to as a coffee ring phenomenon or a coffee stain phenomenon. Since the present invention is not limited to a ring-shaped pattern, in the following description, this phenomenon may be referred to as a coffee stain phenomenon.
  • FIG. 1 is a schematic explanatory view for conceptually explaining an example of a method for forming a parallel line pattern using such a basic principle.
  • 1 is a substrate
  • 2 is a line-shaped liquid containing a functional material
  • 3 is formed by selectively depositing a functional material on the edge of the line-shaped liquid 2.
  • It is a coating film (hereinafter also referred to as a parallel line pattern).
  • Reference numeral 7 denotes an applying means for applying a liquid onto the substrate 1, and here it is constituted by a droplet discharge device.
  • the droplet discharge device 7 can be constituted by, for example, an ink jet head provided in the ink jet recording apparatus.
  • a liquid containing a functional material is discharged from the droplet discharge device 7 while relatively scanning the droplet discharge device 7 and the substrate 1, and a plurality of liquid droplets sequentially discharged are discharged.
  • the liquid droplets coalesce on the substrate to form a line-like liquid 2 containing a functional material.
  • the coffee stain phenomenon can be caused by setting conditions for drying the line-shaped liquid 2.
  • the drying of the line-shaped liquid 2 arranged on the substrate 1 is faster at the edge compared to the central portion, and the solid content reaches a saturated concentration as the drying proceeds, and the solid content locally reaches the edge of the line-shaped liquid 2.
  • Precipitation occurs.
  • the edge of the line-shaped liquid 2 is fixed by the deposited solid content, and shrinkage in the width direction of the line-shaped liquid 2 due to subsequent drying is suppressed.
  • the liquid of the line-shaped liquid 2 forms a convection from the central portion toward the edge so as to compensate for the liquid lost by evaporation at the edge.
  • a parallel line pattern 3 made of fine lines containing a functional material is formed on the substrate 1.
  • the parallel line pattern 3 formed from one line-shaped liquid 2 is composed of a set of two thin lines 31 and 32.
  • a mesh-like functional pattern formed by intersecting a plurality of parallel line patterns can be formed.
  • Such a mesh-like functional pattern is advantageous in realizing distribution of the functional material on the base material while maintaining low visibility.
  • the line segment constituting the parallel line pattern formed as described above can realize a line width of several ⁇ m
  • the mesh-like functional pattern is formed by the functional material itself due to its fine line width. Even if it is not transparent, it is not recognized by the human eye and looks as if it is transparent.
  • the shape of the thin line pattern of the functional material can be set by the device that uses the functional material.
  • a touch sensor used for a touch panel uses a transparent surface electrode to detect a position by a finger or the like.
  • a conductive material is used as a functional material in a mesh-like functional pattern, it can be preferably applied to a transparent surface electrode for a touch panel or the like. From the viewpoint of configuring a surface electrode or the like, it is very effective to increase the number of conductive paths to be meshed with a plurality of parallel line patterns having different formation directions.
  • FIG. 2 is an explanatory diagram for explaining an example (reference example) of a method for forming a mesh-like functional pattern.
  • a line-like liquid 2 is applied in a mesh form on a substrate 1. That is, the line-shaped liquid 2 is applied so as to intersect at the intersection X.
  • the line segments 31 and 32 are cut off at the intersection X where the parallel lines having different directions intersect.
  • FIG. 3 is an explanatory diagram for explaining another example (reference example) of a method for forming a mesh-like functional pattern.
  • the amount of ink at the intersection formed by the line-shaped liquid 2 is set larger than that in the other parts.
  • intersection X becomes a ring shape having a diameter larger than the interval between the line segments 31 and 32 as shown in FIG.
  • Such a ring-shaped part is advantageous in terms of preventing disconnection of the line segments 31 and 32 and facilitating, for example, ensuring conductivity, but such a ring-shaped part is periodically visible. It has been found that there is a limit in terms of further improving the low visibility.
  • FIG. 4 is an explanatory diagram for explaining still another example of a method for forming a mesh-like functional pattern.
  • the line-shaped liquid 2 is applied in a first direction (left and right direction in the figure).
  • a functional material is selectively deposited on the edge to form a first parallel line pattern 3 as shown in FIG.
  • the second direction is different from the first direction (in this example, the direction is perpendicular to the first direction and is the vertical direction in the figure). 2 of the line-shaped liquid 4 is applied. That is, the second line-shaped liquid 4 is applied so as to intersect the formation region of the first parallel line pattern 3.
  • a functional material is selectively deposited on the edge to form a second parallel line pattern 5 as shown in FIG.
  • Reference numerals 51 and 52 denote line segments constituting the second parallel line pattern 5.
  • a mesh-like functional pattern is formed by the first parallel line pattern 3 and the second parallel line pattern 5 having different formation directions.
  • the line segments 31, 32 and the line segments 51, 52 can be prevented from being interrupted at the intersection X where the parallel lines having different directions intersect.
  • FIG. 5 is an enlarged view of a main part showing an example of forming the intersection X.
  • 5A and 5B are reference examples
  • FIG. 5C is a diagram for explaining the present invention.
  • the length of the conductive path extends along the first parallel line pattern 3 (first direction) and the second parallel line. It was found that there was room for further improvement from the viewpoint of preventing variation in resistance due to differences in the direction along the pattern 5 (second direction).
  • the interval between the two line segments 51 and 52 constituting the second parallel line pattern 5 is as follows.
  • the average interval A within the formation region of the first parallel line pattern 3 and the average interval B outside the formation region of the first parallel line pattern 3 are adjusted so as to satisfy the following formula (1).
  • the functional material is a conductive material
  • the length of the conductive path is reduced.
  • the first direction and the second direction can be made the same with high accuracy, and the effect that the variation in resistance can be suitably suppressed is obtained.
  • the formation region of the first parallel line pattern 3 can be said to be a region from one line segment 31 to the other line segment 32 constituting the first parallel line pattern. It can also be said to be an application region of the first line-shaped liquid 2 applied to form the line pattern 3.
  • the interval B can be an average value of the intervals measured at a plurality of locations.
  • a plurality of (n) measurement points set to measure the average interval A may be arranged at equal intervals along the second direction in the formation region of the first parallel line pattern 3. preferable.
  • a plurality (m places) of measurement points set to measure the average interval B are arranged at equal intervals along the second direction outside the region where the first parallel line pattern 3 is formed. Is preferred.
  • the average interval A and the average interval B are preferably measured as follows.
  • FIG. 6 is a diagram for explaining an example of a method for measuring the average interval A and the average interval B.
  • the average interval A is along the line segments 31 and 32 constituting the first parallel line pattern with respect to the interval between the line segments 51 and 52 constituting the second parallel line pattern 5. It can be obtained as the average of the distances measured at a total of 7 points A 1 to A 7 of 2 points A 1 and A 2 and 5 points A 3 to A 7 inside the line segments 31 and 32. At this time, these seven measurement points A 1 to A 7 are positioned at equal intervals along the formation direction (second direction) of the second parallel line pattern.
  • the average interval B is a total of seven measurement points A 1 to A related to the average interval A described above with respect to the interval between the line segments 51 and 52 constituting the second parallel line pattern 5. It can be obtained as an average of intervals measured at a total of five measurement points B 1 to B 5 adjacent to A 7 .
  • these five measurement points B 1 to B 5 are a total of seven measurement points A related to the average interval A described above along the second parallel line pattern forming direction (second direction). it can be positioned in the same regular intervals as the 1 ⁇ a 7.
  • a total of seven measurement points A 1 to A 7 related to the measurement of the average interval A and a total of five measurement points B 1 to B 5 related to the measurement of the average interval B are equidistant from each other along the second direction. Can be positioned.
  • the measurement points B 1 to B 5 of the average interval B are set adjacent to the lower side in the figure with respect to the measurement points A 1 to A 7 of the average interval A. It can also be set adjacent to the upper side in the figure. At this time, measurement points B 1 to B 5 of the average interval B are set on either the upper side (one side) or the lower side (the other side) so that the difference between the average interval A and the average interval B becomes larger. It is preferable to do.
  • two measurement points for the average interval A include two points A 1 and A 2 along the line segments 31 and 32 constituting the first parallel line pattern. , 32 may be included along one of them. Further, the portions along the line segments 31 and 32 may not be included.
  • the measurement points for the average interval A include five points A 3 to A 7 inside the line segments 31 and 32 constituting the first parallel line pattern. There is no need to be five places, and two or more places are preferable.
  • the measurement points for the average interval B include five points B 1 to B 5 outside the line segments 31 and 32 constituting the first parallel line pattern. There is no need to be five places, and two or more places are preferable.
  • the interval between the line segments 51 and 52 constituting the second parallel line pattern 5 measured at each measurement point in order to obtain the average interval A and the average interval B can be defined as follows.
  • FIG. 7 is a partially enlarged plan view showing an example of a parallel line pattern formed on a substrate.
  • FIG. 8 is an explanatory diagram for explaining a cross section taken along line (viii)-(viii) in FIG. 7, and is a cross section obtained by cutting a set of two thin lines included in the pattern in a direction orthogonal to the line segment direction Surface).
  • the interval I between the line segments 51 and 52 constituting the second parallel line pattern 5 can be defined as the distance between the maximum protrusions of the line segments 51 and 52 as shown in FIG. Therefore, the average interval A and the average interval B can be obtained by measuring the interval I at each of the measurement points described above.
  • the adjustment to satisfy the above-described formula (1) is to adjust one or more factors that can affect the ratio B / A of the average interval A and the average interval B.
  • factors are not particularly limited and can be appropriately selected.
  • the surface energy in the formation region of the first parallel line pattern 3 and the surface energy outside the formation region of the first parallel line pattern 3 are The difference is set to 5 mN / m or less.
  • the surface energy in the formation region of the first parallel line pattern 3 can be the surface energy measured in the central region between the line segments 31 and 32 constituting the first parallel line pattern.
  • the surface energy in the formation region of the first parallel line pattern 3 is prepared by separately preparing a base material similar to the base material 1 and the first linear liquid 2 on the base material. The surface energy measured in the central region of the dried film can be obtained after 20 ⁇ L of the same liquid is dropped and dried under the same conditions as when the first linear liquid 2 is dried.
  • the surface energy outside the region where the first parallel line pattern 3 is formed is the surface energy of the substrate 1 in the region where the first linear liquid 2 for forming the first parallel line pattern 3 is not applied. It can be.
  • the surface energy can be calculated from the Young-Fowkes equation.
  • the means for adjusting the surface energy difference between the inside and outside of the formation region of the first parallel line pattern 3 is not particularly limited, for example, a method of performing a surface treatment on the region including the outside of the formation region of the first parallel line pattern 3; A method of changing the liquid composition of the first line-like liquid 2 is preferable.
  • the surface treatment for changing the surface energy with respect to the substrate 1 is performed before forming the first parallel line pattern 3.
  • the method of giving can be mentioned.
  • the surface treatment may be performed only on a region outside the formation region of the first parallel line pattern 3, or may be performed on a region including the outside of the formation region and the inside of the formation region. It is also preferable to perform a surface treatment on the entire surface of the substrate 1.
  • the liquid composition of the first line-shaped liquid 2 it can be performed by selecting a blending component (functional material, additive, solvent, etc.), adjusting a blending amount of each component, or the like.
  • a blending component functional material, additive, solvent, etc.
  • adjusting a blending amount of each component or the like.
  • the surface energy of the solid surface coated with the functional material contained in the first linear liquid 2 and dried, and the first parallel lines is set to 5 mN / m or less.
  • the “solid surface” is the surface of a solid film obtained by applying and drying the functional material contained in the first linear liquid 2 on an arbitrary substrate, and the surface energy of the substrate itself and It refers to the surface of the solid film coated with the substrate so that the contact angle does not affect the surface energy and the contact angle on the surface of the solid film.
  • coating of a functional material can be performed by apply
  • a liquid having the same composition as that of the first line-like liquid 2 may be used as the coating liquid for forming the solid surface.
  • the region between the line segments 31 and 32 is in the first line-shaped liquid 2 that has not been transported to the position of the line segments 31 and 32 due to the coffee stain phenomenon. Some components may remain slightly. Such residual components may cause the spacing between the line segments 51 and 52 constituting the second parallel line pattern 5 to be non-uniform.
  • the surface energy of the solid surface obtained by applying and drying the functional material contained in the first line-shaped liquid 2 is an index for realizing more reliable adjustment to satisfy the above-described formula (1). obtain. That is, even if a large amount of residual components are present in the region between the line segments 31 and 32, it is unlikely to affect the interval between the line segments 51 and 52 beyond the effect of the solid surface. Therefore, the reliability can be further improved by adjusting based on the difference between the surface energy of the solid surface and the surface energy outside the formation region of the first parallel line pattern 3.
  • the means for adjusting the difference between the surface energy of the solid surface and the surface energy difference outside the formation region of the first parallel line pattern 3 is not particularly limited, and the means described for the first aspect can be preferably used.
  • the contact angle of the second linear liquid 4 in the formation region of the first parallel line pattern 3 and the first parallel line pattern 3 is set to 10 ° or less.
  • the contact angle in the formation region of the first parallel line pattern 3 can be a contact angle measured in the central region between the line segments 31 and 32 constituting the first parallel line pattern.
  • the contact angle in the formation region of the first parallel line pattern 3 is prepared by separately preparing a base material similar to the base material 1, and the first linear liquid 2 and the base material 1 on the base material. A contact angle measured in the central region of the dried film may be obtained after 20 ⁇ L of the same liquid is dropped and dried under the same conditions as those for drying the first linear liquid 2.
  • the contact angle outside the formation region of the first parallel line pattern 3 is such that the first line-shaped liquid 2 for forming the first parallel line pattern 3 is not applied on the base material 1 in the region. It can be a contact angle.
  • the contact angle can be measured using a contact angle measuring device DM-501 manufactured by Kyowa Interface Chemical Co., Ltd.
  • the contact angle is set to a value 5 seconds after the liquid having the same composition as the second linear liquid 4 is dropped.
  • the change in wettability with respect to the second linear liquid 4 can be reduced inside and outside the formation region of the first parallel line pattern 3.
  • the interval between the line segments 51 and 52 can be set to satisfy the above-described expression (1).
  • the contact angle in the formation region of the first parallel line pattern is smaller than the contact angle outside the formation region, if the contact angle difference exceeds 10 °, the contact angle in the formation region of the first parallel line pattern 3 In FIG. 5, the interval between the line segments 51 and 52 of the second parallel line pattern 5 becomes smaller than outside the formation region, resulting in a narrow shape.
  • the means for adjusting the difference in contact angle is not particularly limited, and the means described as means for adjusting the surface energy difference in the first embodiment can be preferably used. Furthermore, as a means for adjusting the difference in contact angle, the liquid composition of the second linear liquid 4 can be changed. When changing the liquid composition of the 2nd line-shaped liquid 4, it can carry out by selection of a compounding component (functional material, an additive, a solvent, etc.), adjustment of the compounding quantity of each component, etc. It is also preferable to make the liquid of the second line-shaped liquid 4 different from the liquid of the first line-shaped liquid 2.
  • the contact of the second linear liquid 4 on the solid surface coated with the functional material contained in the first linear liquid 2 and dried is set to 10 ° or less.
  • the description in the second aspect is incorporated.
  • the change in wettability with respect to the second linear liquid 4 can be reduced inside and outside the formation region of the first parallel line pattern 3.
  • the interval between the line segments 51 and 52 can be set to satisfy the above-described expression (1).
  • the reliability can be further improved by adjusting the contact angle on the solid surface as an index.
  • the means for adjusting the difference between the contact angle on the solid surface and the contact angle outside the formation region of the first parallel line pattern 3 is not particularly limited, and the means described for the third aspect can be preferably used.
  • the contact angle of the solvent having the highest boiling point among the solvents in the second linear liquid 4 outside the formation region of the first parallel line pattern 3. Is 6 ° or less.
  • the contact angle outside the formation region of the first parallel line pattern 3 is on the base material 1 in the region where the first linear liquid 2 for forming the first parallel line pattern 3 is not applied.
  • the contact angle can be as follows.
  • the contact angle can be measured using a contact angle measuring device DM-501 manufactured by Kyowa Interface Chemical Co., Ltd.
  • the contact angle is set to a value 5 seconds after the solvent having the highest boiling point among the solvents in the second linear liquid 4 is dropped.
  • the contact angle By setting the contact angle to 6 ° or less, the change in wettability with respect to the second linear liquid 4 can be reduced inside and outside the formation region of the first parallel line pattern 3, and the second parallel lines In the pattern 5, the interval between the line segments 51 and 52 can satisfy the above-described expression (1).
  • the means for adjusting the contact angle is not particularly limited, and the means described as means for adjusting the surface energy difference in the first aspect can be preferably used.
  • the liquid application amount per length of the second linear liquid 4 in the formation region of the first parallel line pattern 3 and the first The liquid application amount per length of the second linear liquid 4 outside the formation area of the parallel line pattern 3 is made different.
  • the length per second length of the second linear liquid 4 in the formation region is relatively small with respect to the outside of the formation region.
  • the length of the second linear liquid 4 in the formation region is relatively increased with respect to the outside of the formation region.
  • the difference in the liquid application amount inside and outside the formation region of the first parallel line pattern 3 can be adjusted as appropriate so as to satisfy the expression (1).
  • the inkjet method is used to form the second line-shaped liquid 4
  • the number of droplets ejected per unit length of the second line-shaped liquid 4 and the droplet volume per droplet are set to the first
  • the difference in the amount of applied liquid can be set by making the difference between the inside and outside of the region where the parallel line pattern 3 is formed.
  • the first parallel line pattern 3 is formed after the first parallel line pattern 3 is formed and before the second linear liquid 4 is applied.
  • the region including the inside of the formation region is cleaned.
  • the region between the line segments 31 and 32 is the first line shape that has not been transported to the position of the line segments 31 and 32 due to the coffee stain phenomenon.
  • Some components in the liquid 2 may remain slightly. Such residual components may cause the spacing between the line segments 51 and 52 constituting the second parallel line pattern 5 to be non-uniform.
  • cleaning is removal of such residual components.
  • how much residual components are removed is affected by the cleaning conditions, for example, the setting of the type and intensity of cleaning.
  • the cleaning is performed by removing residual components so that at least the distance between the line segments 51 and 52 constituting the second parallel line pattern 5 can satisfy the above-described formula (1). possible. In this sense, the cleaning can be positioned as an example of adjustment for satisfying the above-described formula (1).
  • the cleaning may be performed only on the first parallel line pattern forming region, or may be performed on the region including the first parallel line pattern forming region and the outside of the forming region. It is also preferable to wash the entire surface of the substrate 1.
  • cleaning is performed only in the formation region of the first parallel line pattern, for example, irradiation with electromagnetic waves or the like is performed in a state where the outside of the formation region is masked, or the cleaning solvent is selectively selected using an inkjet method. It becomes possible by giving it in the formation region.
  • the cleaning method is not particularly limited, and for example, a cleaning method usually used in industrial products can be used.
  • a cleaning method usually used in industrial products can be used.
  • the cleaning method by heating includes a continuous heating method using an infrared heater, an oven, a hot plate, etc., and an instantaneous heating method using a xenon flash lamp.
  • the heating conditions (temperature, time) and the like are appropriately set within a range in which the interval between the line segments 51 and 52 constituting the parallel line pattern 5 satisfies the above-described formula (1).
  • the substrate 1 is a film or the like, it is preferable to set within a range where the substrate 1 is not deformed. From this point of view, a method using a xenon flash lamp that heats instantaneously and particularly causes little damage to a substrate such as a film is preferable.
  • a method of irradiating an electron beam, a gamma ray, an ultraviolet ray or the like can be used.
  • the electromagnetic wave irradiation conditions are appropriately set in a range in which the interval between the line segments 51 and 52 constituting the parallel line pattern 5 satisfies the above-described formula (1).
  • the solvent used for cleaning with the solvent is not limited as long as it can satisfy the above-described formula (1), but a solvent that has little influence on the parallel line pattern formed by depositing the functional material may be selected. preferable.
  • a solvent suitable for cleaning can be appropriately selected according to the type of functional material. For example, in the case of water-dispersed silver nanoparticles, an alcohol-based solvent is suitable.
  • the conditions for cleaning with plasma can be appropriately set so that the interval between the line segments 51 and 52 constituting the parallel line pattern 5 satisfies the above-described formula (1).
  • the second parallel line pattern 5 will be mainly described, but the first parallel line pattern 3 can be similarly described.
  • the interval I between the line segments 51 and 52 constituting the parallel line pattern 5 can be defined as the distance between the maximum protrusions of the line segments 51 and 52 as described above, and preferably 10 ⁇ m or more and 300 ⁇ m or less. It is preferable that the range is adjusted.
  • the set of two thin lines (line segments) 51 and 52 of the parallel line pattern 5 do not necessarily have an island shape completely independent of each other. As shown in the figure, the two line segments 51 and 52 are connected by the thin film portion 50 formed between the line segments 51 and 52 at a height lower than the height of the line segments 51 and 52. It is also preferable that it is formed as a continuous body.
  • the line widths W1 and W2 of the line segments 51 and 52 of the parallel line pattern 5 are each preferably 10 ⁇ m or less. If it is 10 micrometers or less, since it will be a level which cannot be visually recognized normally, it is more preferable from a viewpoint of improving transparency. Considering the stability of the line segments 51 and 52, the line widths W1 and W2 of the line segments 51 and 52 are preferably in the range of 2 ⁇ m or more and 10 ⁇ m or less, respectively.
  • the widths W1 and W2 of the line segments 51 and 52 are defined as Z being the height of the thinnest portion where the thickness of the functional material is the thinnest between the line segments 51 and 52, and line segments from the Z.
  • the protruding heights 51 and 52 are defined as Y1 and Y2, they are defined as the widths of the line segments 51 and 52 at half the height of Y1 and Y2.
  • the height of the thinnest portion in the thin film portion 50 can be set to Z.
  • the line widths W1 and W2 of the line segments 51 and 52 are the line segments 51 and 52 from the surface of the base material 1, respectively. Are defined as the widths of the line segments 51 and 52 at half the heights h1 and h2.
  • the line widths W1 and W2 of the line segments 51 and 52 constituting the parallel line pattern 5 can be very thin, the line segments from the surface of the substrate 1 are ensured from the viewpoint of securing a cross-sectional area and reducing resistance.
  • the heights h1 and h2 of 51 and 52 are preferably higher. Specifically, the heights h1 and h2 of the line segments 51 and 52 are preferably in the range of 50 nm to 5 ⁇ m.
  • the h1 / W1 ratio and the h2 / W2 ratio are preferably in the range of 0.01 or more and 1 or less, respectively.
  • the height Z of the thin part is preferably in the range of 10 nm or less.
  • the thin film portion 50 is provided in the range of 0 ⁇ Z ⁇ 10 nm in order to achieve a balance between transparency and stability.
  • the h1 / Z ratio and the h2 / Z ratio are each preferably 5 or more, more preferably 10 or more, and 20 or more. Is particularly preferred.
  • the same shape similar cross-sectional area
  • the heights h1 and h2 of the line segment 51 and the line segment 52 are substantially equal.
  • the line widths W1 and W2 of the line segment 51 and the line segment 52 are preferably set to substantially the same value.
  • the line segments 51 and 52 do not necessarily have to be parallel, and it is sufficient that the line segments 51 and 52 are not coupled over at least a certain length L in the line segment direction. Preferably, the line segments 51 and 52 are substantially parallel over at least a certain length L in the line segment direction.
  • the length L of the line segments 51 and 52 in the line segment direction is preferably 5 times or more of the interval I between the line segments 51 and 52, and more preferably 10 times or more.
  • the length L and the interval I can be set corresponding to the formation length and formation width of the line-shaped liquid 4 for forming the parallel line pattern lines 5.
  • the line segments 51 and 52 are connected and formed as a continuous body at the formation start point and end point of the line-shaped liquid 4 (start point and end point over a certain length L in the line segment direction).
  • the line segments 51 and 52 have substantially the same line widths W1 and W2, and the line widths W1 and W2 are sufficiently narrower than the distance between the two lines (interval I).
  • the line segment 51 and the line segment 52 constituting the parallel line pattern 5 generated from one line-shaped liquid are formed simultaneously.
  • each of the line segments 51 and 52 satisfies all the following conditions (a) to (d).
  • the base material on which the mesh-like functional pattern is formed is not particularly limited.
  • glass plastic (polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate, polyethylene, polypropylene, acrylic , Polyester, polyamide, etc.), metals (copper, nickel, aluminum, iron, etc., or alloys), ceramics, and the like. These may be used alone or in a bonded state. .
  • plastic is preferable, and polyethylene terephthalate, polyolefin such as polyethylene and polypropylene, and the like are preferable.
  • PET, PEN and the like that are easily bonded are preferably used.
  • the easy adhesion process is a process for improving the adhesion by modifying the surface of the substrate, and it is also preferable to apply this as a surface treatment for changing the surface energy and the contact angle described above.
  • the functional material contained in the line liquid is not particularly limited as long as it is a material for imparting a specific function to the base material. Giving a specific function means, for example, that a conductive material is used as a functional material when imparting conductivity to a base material, and when an insulating property is imparted, the insulating material is functional. Use as a material.
  • Preferred examples of the functional material include conductive materials such as conductive fine particles and conductive polymers, insulating materials, semiconductor materials, optical filter materials, dielectric materials, and the like.
  • conductive materials such as conductive fine particles and conductive polymers or conductive material precursors can be preferably exemplified.
  • An electroconductive material precursor refers to what can be changed into an electroconductive material by performing an appropriate process.
  • the conductive fine particles are not particularly limited, but Au, Pt, Ag, Cu, Ni, Cr, Rh, Pd, Zn, Co, Mo, Ru, W, Os, Ir, Fe, Mn, Ge, Sn, Ga.
  • fine particles such as In can be exemplified, and among them, use of fine metal particles such as Au, Ag, and Cu is more preferable because a circuit pattern having low electrical resistance and strong corrosion can be formed.
  • metal fine particles containing Ag are most preferable.
  • the average particle diameter of these metal fine particles is preferably in the range of 1 to 100 nm, more preferably in the range of 3 to 50 nm.
  • carbon fine particles are used as the conductive fine particles.
  • the carbon fine particles include graphite fine particles, carbon nanotubes, fullerenes and the like.
  • the conductive polymer is not particularly limited, but a ⁇ -conjugated conductive polymer can be preferably exemplified.
  • the ⁇ -conjugated conductive polymer is not particularly limited, and polythiophenes, polypyrroles, polyindoles, polycarbazoles, polyanilines, polyacetylenes, polyfurans, polyparaphenylenes, polyparaphenylene vinylenes, poly Chain conductive polymers such as paraphenylene sulfides, polyazulenes, polyisothianaphthenes, and polythiazyl can be used.
  • polythiophenes and polyanilines are preferable in that high conductivity can be obtained. Most preferred is polyethylene dioxythiophene.
  • the conductive polymer more preferably comprises the above-described ⁇ -conjugated conductive polymer and polyanion.
  • a conductive polymer can be easily produced by chemical oxidative polymerization of a precursor monomer that forms a ⁇ -conjugated conductive polymer in the presence of an appropriate oxidizing agent, an oxidation catalyst, and a polyanion.
  • the polyanion is a substituted or unsubstituted polyalkylene, a substituted or unsubstituted polyalkenylene, a substituted or unsubstituted polyimide, a substituted or unsubstituted polyamide, a substituted or unsubstituted polyester, and a copolymer thereof. It consists of a structural unit having a group and a structural unit having no anionic group.
  • This polyanion is a solubilized polymer that solubilizes a ⁇ -conjugated conductive polymer in a solvent.
  • the anion group of the polyanion functions as a dopant for the ⁇ -conjugated conductive polymer, and improves the conductivity and heat resistance of the ⁇ -conjugated conductive polymer.
  • the anion group of the polyanion may be a functional group capable of undergoing chemical oxidation doping to the ⁇ -conjugated conductive polymer.
  • a monosubstituted sulfate group A monosubstituted phosphate group, a phosphate group, a carboxy group, a sulfo group and the like are preferable.
  • a sulfo group, a monosubstituted sulfate group, and a carboxy group are more preferable.
  • polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfone. Acid, polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, polyacrylic acid and the like. . These homopolymers may be sufficient and 2 or more types of copolymers may be sufficient.
  • it may be a polyanion having F (fluorine atom) in the compound.
  • F fluorine atom
  • Specific examples include “Nafion” containing a perfluorosulfonic acid group (manufactured by Dupont), “Flemion” (manufactured by Asahi Glass Co., Ltd.) made of perfluoro vinyl ether containing a carboxylic acid group.
  • a compound having a sulfonic acid is more preferable because the liquid ejection stability is particularly good when the ink jet printing method is used and high conductivity is obtained.
  • polystyrene sulfonic acid polyisoprene sulfonic acid
  • polyacrylic acid ethyl sulfonic acid and polybutyl acrylate sulfonic acid are preferable.
  • These polyanions have the effect of being excellent in conductivity.
  • the polymerization degree of the polyanion is preferably in the range of 10 to 100,000 monomer units, and more preferably in the range of 50 to 10,000 from the viewpoint of solvent solubility and conductivity.
  • a commercially available material can be preferably used as the conductive polymer.
  • a conductive polymer (abbreviated as PEDOT / PSS) made of poly (3,4-ethylenedioxythiophene) and polystyrene sulfonic acid is used in H.264. C. It is commercially available from Starck as the “CLEVIOS” series, from Aldrich as “PEDOT-PASS 483095, 560598” and from Nagase Chemtex as the “Denatron” series. Polyaniline is also commercially available from Nissan Chemical Company as the “ORMECON” series.
  • a conductive material precursor can also be preferably used as a functional material particularly in the use of a transparent conductive film, and examples thereof include organic metal complexes, inorganic metal salts, and electroless plating catalysts.
  • liquid containing the functional material water, an organic solvent, or the like can be used alone or in combination.
  • the organic solvent is not particularly limited.
  • examples include alcohols such as butanediol and propylene glycol, ethers such as diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, and dipropylene glycol monoethyl ether.
  • the drying of the liquid proceeds in the order of the boiling points of the solvents, so the solvent with the highest boiling point remains at the end. For this reason, the wettability with respect to the base material of the solvent having the highest boiling point is related to the expression of the coffee stain phenomenon.
  • liquid containing the functional material may contain various additives such as a surfactant as long as the effects of the present invention are not impaired.
  • the surfactant is not particularly limited, but a silicon surfactant or the like can be used. Silicone surfactants are those in which the side chain or terminal of dimethylpolysiloxy acid is polyether-modified, such as “KF-351A” and “KF-642” manufactured by Shin-Etsu Chemical Co., Ltd. and “BYK347” manufactured by Big Chemie. “BYK348” and the like are commercially available.
  • the addition amount of the surfactant is preferably 1% by weight or less with respect to the total amount of the liquid containing the functional material.
  • the method for applying the line liquid on the substrate is not particularly limited as long as the liquid can be applied in a state having fluidity sufficient to cause the coffee stain phenomenon.
  • Particularly preferred methods include, for example, a dispenser method and an ink jet method.
  • the mesh-like functional pattern of the present invention may be a mesh-like functional pattern obtained as described above and further subjected to post-processing. Functionality can be further enhanced by post-processing.
  • the post-processing is not particularly limited, and examples thereof include plating.
  • the reflectance is preferably reduced by plating.
  • the functional substrate of the present invention has the mesh-like functional pattern described above.
  • the functional material is preferably a substrate with a transparent conductive film formed by imparting conductivity to a coating film composed of a mesh-like functional pattern.
  • the imparting of conductivity to the coating film is performed, for example, by using a conductive material as a functional material, or a post-treatment is performed on a coating film formed using a conductive material precursor as a functional material. It can carry out by providing electroconductivity by giving.
  • the functional base material has a pattern shape in which the reflected light of the fine line portion constituting the coating film is widely distributed, the glare is reduced, and it is difficult to visually recognize even in a bright environment, that is, low visibility can be improved.
  • the use of the functional base material is not particularly limited, and can be used for various devices included in various electronic devices.
  • the functional base material is excellent in low visibility of the fine lines constituting the coating film, a remarkable effect is exhibited in applications in which a user views an image through the base material.
  • the preferred application of the substrate with a transparent conductive film is, for example, a liquid crystal, plasma, organic electroluminescence, field emission, etc., as a transparent electrode for various types of displays, or a touch panel or the like, from the viewpoint of significantly achieving the effects of the present invention. It can be suitably used as a transparent electrode used in a mobile phone, electronic paper, various solar cells, various electroluminescence light control elements, and the like.
  • the substrate with a transparent conductive film is suitably used as a transparent electrode of the device.
  • a transparent electrode of the device For example, a touch panel sensor etc. can be illustrated preferably.
  • an electronic device provided with these devices For example, a smart phone, a tablet terminal, etc. can be illustrated preferably.
  • Example 1 Preparation of ink Ink 1 having the following composition was prepared. -Silver nanoparticle aqueous dispersion 1 (silver nanoparticles: 40 wt%): 1.75 wt% ⁇ Silicon-based surfactant ("BYK-348" manufactured by Big Chemie): 0.01% by weight ⁇ Pure water: balance
  • the base material 1 which consists of a PET base material which made the surface energy E of the base material 52 mN / m by easy-adhesion processing (surface treatment) was used as a base material.
  • the substrate is rotated by 90 °, and a plurality of second linear liquids using ink 1 are applied in the same direction as described above in a direction orthogonal to the first parallel line pattern, dried, and dried. Two parallel line patterns were formed.
  • the overall size of the mesh-like functional pattern is 50 mm ⁇ 50 mm.
  • Example 2 Preparation of ink Ink 2 having the following composition was prepared. -Silver nanoparticle aqueous dispersion 2 (silver nanoparticles: 40 wt%): 1.75 wt% ⁇ Silicon-based surfactant (BYK-348 manufactured by Big Chemie): 0.01% ⁇ Pure water: balance
  • the silver nanoparticle aqueous dispersion 2 is different from the silver nanoparticle aqueous dispersion 1 used in Example 1 in the dispersant.
  • Example 3 Ink preparation Ink 1 was used as the ink.
  • the base material 2 made of a PET base material having a surface energy of 48 mN / m by easy adhesion processing (surface treatment) was used.
  • Example 3 Measurement of surface energy and contact angle
  • the substrate 1 of Example 1 was replaced with the substrate 2 and measured in the same manner as in Example 1.
  • the surface energy C in the formation region of the first parallel line pattern was 56 mN / m.
  • the contact angle F of the second linear liquid in the first parallel line pattern formation region is 17 °, and the contact angle of the second linear liquid outside the first parallel line pattern formation region. G was 28 °.
  • the substrate on which the first parallel line pattern was formed was placed on a hot plate at 120 ° C. and washed by heating for 1 hour.
  • the substrate After cleaning by heating, the substrate is rotated by 90 °, and a plurality of second line-shaped liquids with ink 1 are applied in a direction orthogonal to the first parallel line pattern by the same method as described above, and dried. Thus, a second parallel line pattern was formed.
  • the overall size of the mesh-like functional pattern is 50 mm ⁇ 50 mm.
  • Example 4 In Example 3, a mesh pattern was formed in the same manner as in Example 3 except that the cleaning by heating was changed to the cleaning by the following electromagnetic wave.
  • Example 5 (Example 5) In Example 3, a mesh pattern was formed in the same manner as in Example 3 except that the cleaning by heating was changed to cleaning with the following solvent.
  • Example 6 Ink preparation Ink 1 was used as the ink.
  • Example 3 Measurement of surface energy and contact angle
  • the substrate 1 of Example 1 was replaced with the substrate 2 and measured in the same manner as in Example 1.
  • the surface energy C in the formation region of the first parallel line pattern was 56 mN / m.
  • the contact angle F of the second linear liquid in the first parallel line pattern formation region is 17 °, and the contact angle of the second linear liquid outside the first parallel line pattern formation region. G was 28 °.
  • Pattern formation Using an XY robot (“SHOTMASTER300” manufactured by Musashi Engineering) equipped with an inkjet head “512LHX” manufactured by Konica Minolta (standard droplet volume 42 pL) and an inkjet control system (“IJCS-1” manufactured by Konica Minolta) Ink 1 is sequentially discharged onto the substrate 2 as droplets so that the pitch between the nozzle rows is 282 ⁇ m and the pitch between the scanning directions is 45 ⁇ m, and the droplets continuously applied in the scanning direction are combined on the substrate. As a result, a plurality of line-shaped liquids were formed. In addition, in the process of heating the stage on which the substrate is placed while printing at 70 ° C. and drying these line-shaped liquids, the solid content is deposited on the periphery, so that one set of two lines from one line-shaped liquid. The parallel line fine line pattern was formed.
  • the substrate is rotated by 90 °, a plurality of second line-shaped liquids with ink 1 are applied in a direction orthogonal to the first parallel line pattern, and dried to form the second parallel line pattern. Formed.
  • the liquid application amount per length of the second line-shaped liquid in the first parallel line pattern formation region is set to the liquid application amount outside the first parallel line pattern formation region.
  • the coating was adjusted to 70%.
  • the overall size of the mesh-like functional pattern is 50 mm ⁇ 50 mm.
  • Example 7 Ink preparation Ink 1 was used as the ink.
  • the base material 3 made of a PET base material having a surface energy E of 56 mN / m by easy adhesion processing (surface treatment) was used.
  • aqueous dispersion 1 of silver nanoparticles (silver nanoparticles: 40% by weight) is applied to the substrate 3 with a wire bar # 7 and dried to obtain a functional material (silver).
  • a solid surface of (nanoparticles) was prepared. The surface energy of this solid surface was measured and found to be 61 mN / m. This value was defined as the surface energy D of the solid surface obtained by applying and drying a liquid having the same composition as the first linear liquid.
  • Example 1 was replaced with the base material 3, and as a result of measuring similarly to Example 1, the surface energy C in the formation area of the first parallel line pattern was 56 mN / m.
  • the contact angle F of the second linear liquid in the parallel line pattern formation region is 15 °
  • the contact angle G of the second linear liquid outside the formation region of the first parallel line pattern is 19 °. Met.
  • Example 8 Preparation of ink Ink 4 having the following composition was prepared. -Silver nanoparticle aqueous dispersion 1 (silver nanoparticles: 40 wt%): 1.75 wt% ⁇ Diethylene glycol monobutyl ether: 20% by weight ⁇ Pure water: balance
  • Example 3 Measurement of surface energy and contact angle
  • the substrate 1 of Example 1 was replaced with the substrate 2 and measured in the same manner as in Example 1.
  • the surface energy C in the formation region of the first parallel line pattern was 56 mN / m.
  • the contact angle F of the second linear liquid in the first parallel line pattern formation region is 17 °, and the contact angle of the second linear liquid outside the first parallel line pattern formation region. G was 28 °.
  • the aqueous dispersion 3 of silver nanoparticles is different from the aqueous dispersions 1 and 2 of silver nanoparticles.
  • a mesh-like functional pattern was formed in the same manner as in Example 1 except that the ink 1 was replaced with the ink 3 and the substrate 1 was replaced with the substrate 2 in Example 1.
  • the first parallel line pattern forming region is formed with respect to the interval between two line segments constituting the second parallel line pattern.
  • the average interval A was calculated as the average value of the intervals measured at the seven measurement points A 1 to A 7 described in FIG.
  • the average interval B outside the first parallel line pattern forming region is set to a total of five measurement points B 1 to B described in FIG. It was calculated as the mean value of the measured intervals in B 5. Further, from the values of the average interval A and the average interval B, the value of B / A in the above formula (1) was obtained.
  • the resistance ratio is 10% or less, and when the resistance ratio exceeds 10%, it can be evaluated that it is not practically preferable.
  • FIGS. 9 and 10 optical micrographs are shown in FIGS. 9 and 10 for the mesh-like functional pattern of Example 3 and the mesh-like functional pattern of Comparative Example 2, respectively.
  • the direction from the upper left to the lower right is the first direction (the direction of the first parallel line pattern), and the direction from the lower left to the upper right is the second direction (the direction of the second parallel line pattern). It is. From the comparison of these photographs, it can be seen that the present invention is excellent in low visibility. Further, it can be seen that there is no difference in the length of the conductive path between the first direction and the second direction, and thus it is possible to prevent unevenness of the resistance value.
  • Example 3 “After cleaning the first parallel line pattern and before applying the second line-shaped liquid, the region including the first parallel line pattern forming region is cleaned” adjustment
  • the average interval A and the average interval B were made to satisfy the formula (1) “0.9 ⁇ B / A ⁇ 1.1”.
  • cleaning by heating was used
  • Example 4 cleaning by electromagnetic waves
  • Example 5 cleaning by solvent was used.
  • Example 6 “the amount of liquid applied per length of the second line-shaped liquid in the first parallel line pattern formation region and the second line shape outside the first parallel line pattern formation region” By adjusting “different the amount of liquid applied per length of the liquid”, the average interval A and the average interval B were made to satisfy the formula (1) “0.9 ⁇ B / A ⁇ 1.1”.
  • Example 7 the difference (
  • the average interval A and the average interval B are expressed by the equation (1)“ 0.9 ⁇ B /A ⁇ 1.1 ”.
  • Example 8 by adjusting “the contact angle of the solvent having the highest boiling point out of the solvent in the second linear liquid outside the first parallel line pattern formation region is 6 ° or less”, the average interval A The average interval B satisfies the formula (1) “0.9 ⁇ B / A ⁇ 1.1”.
  • Substrate 2 First line-shaped liquid 3: First parallel line pattern 31, 32: Line segment 4: Second line-shaped liquid 5: Second parallel line pattern 51, 52: Line segment 6: Pattern 7: Droplet ejection device X: Intersection

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

The purpose of the present invention is to provide a method for forming a mesh-shaped functional pattern in which low visibility can be improved and variations in resistance can be suppressed, a mesh-shaped functional pattern, and a functional substrate. This purpose is achieved by forming a mesh-shaped functional pattern in which parallel line patterns 3, 5 intersect, by applying liquid lines including a functional material to a substrate and causing the functional material to selectively accumulate at edge parts in a drying process, and forming a parallel line pattern 3 configured from two line segments 31, 32, then applying liquid lines including the functional material so that the liquid lines intersect with the parallel line pattern 3 and causing the functional material to selectively accumulate at edge parts in a drying process, and forming a parallel line pattern 5 configured from two line segments 51, 52, an interval between the two line segments 51, 52 constituting the parallel line pattern being adjusted during formation of the mesh-shaped functional pattern so that the expression 0.9 ≤ B/A ≤ 1.1 is satisfied, where A is the average interval in a formation region of the parallel line pattern 3, and B is the average interval outside the formation region.

Description

メッシュ状の機能性パターンの形成方法、メッシュ状の機能性パターン及び機能性基材Method for forming mesh functional pattern, mesh functional pattern and functional substrate
 本発明は、メッシュ状の機能性パターンの形成方法、該方法によって形成されたメッシュ状の機能性パターン、及び該メッシュ状の機能性パターンを備えた機能性基材に関する。 The present invention relates to a method for forming a mesh-like functional pattern, a mesh-like functional pattern formed by the method, and a functional substrate provided with the mesh-like functional pattern.
 機能性材料を含む細線パターンを形成する方法として、従来はフォトリソグラフィーを利用する方法が広く用いられてきた。しかしながら、フォトリソグラフィー技術は材料のロスが多く、工程が複雑になるため、これらを改善できる方法が検討されている。 Conventionally, a method using photolithography has been widely used as a method for forming a fine line pattern including a functional material. However, since photolithography technology has many material losses and the process becomes complicated, a method for improving these has been studied.
 例えば、インクジェット法などにより機能性材料を含む液滴を基材に連続的に付与して、細線パターンを形成する方式がある。しかしながら、通常のインクジェット法では、細線の幅を、吐出された液滴の直径以下にすることができず、数μmの線幅の細線パターンを形成することはできなかった。 For example, there is a method of forming a fine line pattern by continuously applying droplets containing a functional material to a substrate by an ink jet method or the like. However, in the ordinary ink jet method, the width of the fine line cannot be made equal to or less than the diameter of the ejected droplet, and a fine line pattern having a line width of several μm cannot be formed.
 インクジェット法による細線形成のアプローチとして、あらかじめ基材に撥剤を全面に塗布した後、レーザーなどで撥剤の一部を親水化して親撥パターンを形成して、そこにインクジェットで液滴を付与して細線を形成する方法がある。しかしながら、この方法は撥剤を塗布したり、レーザーで親撥パターンを形成したりと工程が複雑になってしまうという課題があった。 As an approach for forming fine lines by the inkjet method, after applying a repellent to the entire surface in advance, a part of the repellent is hydrophilized with a laser to form a hydrophilic / repellent pattern, and droplets are applied by ink jet there. Then, there is a method of forming a fine line. However, this method has a problem that the process becomes complicated by applying a repellent or forming a repellent pattern with a laser.
 これに対して、液滴内部の対流を利用して液滴中の固形分である機能性材料を液滴の周辺部に堆積させて、液滴より微細な幅のパターンを形成する方法が知られている(特許文献1)。この方法によれば、特別な工程を必要とせずに、液滴の直径以下の数μmの幅の細線を形成することが可能になる。 On the other hand, a method is known in which a functional material, which is a solid content in a droplet, is deposited on the periphery of the droplet using convection inside the droplet to form a pattern having a finer width than the droplet. (Patent Document 1). According to this method, it is possible to form a thin line having a width of several μm that is equal to or smaller than the diameter of the droplet without requiring a special process.
 また、この方法を用いて、導電性微粒子の微細な幅のリングを形成しこれを複数連結して透明導電膜を形成することが特許文献2に記載されている。 Further, Patent Document 2 describes that a transparent conductive film is formed by forming a ring having a fine width of conductive fine particles and connecting a plurality of these rings using this method.
 しかしながら、これらの方法では、導電パスをつくるためにリングの交点が多くなり、透明性が劣化するという課題があった。 However, these methods have a problem in that the number of intersections of rings increases in order to create a conductive path, and transparency is deteriorated.
 これに対して、本出願人は、ライン状に付与した液体中の導電性材料を該液体の動きにより縁部に分離して平行線パターンを形成すること、更には該平行線パターンからなる透明導電膜を形成することを発明し、これまでに報告してきた(特許文献3)。 On the other hand, the present applicant forms a parallel line pattern by separating the conductive material in the liquid applied in a line shape into edges by the movement of the liquid, and further, a transparent made of the parallel line pattern. Forming a conductive film was invented and reported so far (Patent Document 3).
特開2005-95787号公報JP 2005-95787 A WO2011/051952WO2011 / 051952 特開2014-38992号公報Japanese Patent Application Laid-Open No. 2014-38992
 特許文献3には、格子状に交差させた平行線パターンを形成する際に、ワンパス印字を用い、交点の部分のインク付与量を2倍にすることが記載されているが、この場合、交点が平行線部分より太いリング状となり、かかるリング状の部分が周期的に視認されてしまうときがあり、低視認性(即ち視認しにくい性質)について更なる改善の余地があった。 Patent Document 3 describes that when forming a parallel line pattern intersecting in a grid pattern, one-pass printing is used to double the amount of ink applied at the intersection, in this case, the intersection Becomes a ring shape that is thicker than the parallel line portion, and the ring-shaped portion may be periodically visually recognized, and there is room for further improvement in terms of low visibility (that is, a property that is difficult to visually recognize).
 そこで、本出願人は更に検討し、第1のライン状液体を一方向に塗布し、乾燥して、第1の平行線パターンを形成した後、これと交差するように、異なる方向に第2のライン状液体を塗布し、乾燥して、第2の平行線パターンを形成することによって、異なる方向の平行線パターンが交差したメッシュ状の機能性パターンを形成することを試みた。 Therefore, the applicant further studied, and after applying the first linear liquid in one direction and drying to form the first parallel line pattern, the second in a different direction so as to intersect with this. An attempt was made to form a mesh-like functional pattern in which parallel line patterns in different directions intersect each other by applying a line-shaped liquid and drying to form a second parallel line pattern.
 しかしながら、第2の平行線パターンを構成する線分間の間隔が、第1の平行線パターンの形成領域の内外で異なることにより線分間の膨らみや狭まりを生じてしまい、その結果、低視認性を低下させてしまうという新たな課題が見出された。 However, the interval between the line segments constituting the second parallel line pattern differs between the inside and outside of the first parallel line pattern forming region, thereby causing the line segments to swell and narrow, resulting in low visibility. A new problem was found that would reduce it.
 また、特に機能性材料が導電性材料である場合においては、第2の平行線パターンに生じる上記膨らみや狭まりにより、導電パスの長さが、第1の平行線パターンに沿う方向と、第2の平行線パターンに沿う方向とで異なってしまい、抵抗のばらつきの原因になってしまうという新たな課題も見出された。 In particular, when the functional material is a conductive material, the length of the conductive path is increased in the direction along the first parallel line pattern due to the swelling and narrowing generated in the second parallel line pattern. A new problem has also been found that it differs in the direction along the parallel line pattern and causes variations in resistance.
 そこで、本発明の課題は、低視認性を改善でき、抵抗のばらつきを抑制できるメッシュ状の機能性パターンの形成方法、メッシュ状の機能性パターン及び機能性基材を提供することにある。 Therefore, an object of the present invention is to provide a method for forming a mesh-like functional pattern, a mesh-like functional pattern, and a functional base material that can improve low visibility and suppress variation in resistance.
 また本発明の他の課題は、以下の記載によって明らかとなる。 Further, other problems of the present invention will become apparent from the following description.
 上記課題は、以下の各発明によって解決される。 The above problems are solved by the following inventions.
1.
 基材上に機能性材料を含む第1のライン状液体を付与し、該第1のライン状液体を乾燥させる過程で該機能性材料を縁部に選択的に堆積させて、該機能性材料を含む2本の線分により構成された第1の平行線パターンを形成し、
 次いで、前記基材上に前記第1の平行線パターンの形成領域と交差させるように機能性材料を含む第2のライン状液体を付与し、該第2のライン状液体を乾燥させる過程で該機能性材料を縁部に選択的に堆積させて、該機能性材料を含む2本の線分により構成された第2の平行線パターンを形成することによって、
 前記第1の平行線パターンと前記第2の平行線パターンとが交わるメッシュ状の機能性パターンを形成する際に、
 前記第2の平行線パターンを構成する前記2本の線分間の間隔について、前記第1の平行線パターンの形成領域内における平均間隔Aと、前記第1の平行線パターンの形成領域外における平均間隔Bとが下記式(1)を満たすように調整するメッシュ状の機能性パターンの形成方法。
 0.9≦B/A≦1.1   ・・・式(1)
1.
The functional material is selectively deposited on the edge in the process of applying the first line-shaped liquid containing the functional material on the substrate and drying the first line-shaped liquid. Forming a first parallel line pattern composed of two line segments including:
Next, in the process of applying a second line-shaped liquid containing a functional material on the substrate so as to intersect the formation region of the first parallel line pattern, and drying the second line-shaped liquid. By selectively depositing a functional material on the edge to form a second parallel line pattern composed of two line segments containing the functional material,
When forming a mesh-like functional pattern in which the first parallel line pattern and the second parallel line pattern intersect,
About the interval between the two line segments constituting the second parallel line pattern, an average interval A within the formation region of the first parallel line pattern and an average outside the formation region of the first parallel line pattern A method of forming a mesh-like functional pattern that is adjusted so that the interval B satisfies the following formula (1).
0.9 ≦ B / A ≦ 1.1 Formula (1)
2.
 前記式(1)を満たすための調整として、前記第1の平行線パターンの形成領域内の表面エネルギーと、前記第1の平行線パターンの形成領域外の表面エネルギーとの差を、5mN/m以下にする前記1記載のメッシュ状の機能性パターンの形成方法。
2.
As an adjustment to satisfy the formula (1), the difference between the surface energy in the formation region of the first parallel line pattern and the surface energy outside the formation region of the first parallel line pattern is 5 mN / m. 2. The method for forming a mesh-like functional pattern according to 1 described below.
3.
 前記式(1)を満たすための調整として、前記第1のライン状液体に含まれる機能性材料を塗布して乾燥させたベタ面の表面エネルギーと、前記第1の平行線パターンの形成領域外の表面エネルギーとの差を、5mN/m以下にする前記1記載のメッシュ状の機能性パターンの形成方法。
3.
As an adjustment to satisfy the formula (1), the surface energy of the solid surface coated with the functional material contained in the first linear liquid and dried, and outside the formation region of the first parallel line pattern 2. The method for forming a mesh-like functional pattern according to 1 above, wherein the difference from the surface energy of the mesh is 5 mN / m or less.
4.
 前記式(1)を満たすための調整として、前記第1の平行線パターンの形成領域内における前記第2のライン状液体の接触角と、前記第1の平行線パターンの形成領域外における前記第2のライン状液体の接触角との差を、10°以下にする前記1記載のメッシュ状の機能性パターンの形成方法。
4).
As an adjustment to satisfy the equation (1), the contact angle of the second linear liquid in the first parallel line pattern formation region and the first parallel line pattern formation region outside the first parallel line pattern formation region. 2. The method for forming a mesh-like functional pattern according to 1 above, wherein the difference between the contact angle of the line-shaped liquid of 2 and 10 ° or less.
5.
 前記式(1)を満たすための調整として、前記第1のライン状液体に含まれる機能性材料を塗布して乾燥させたベタ面における前記第2のライン状液体の接触角と、前記第1の平行線パターンの形成領域外における前記第2のライン状液体の接触角との差を、10°以下にする前記1記載のメッシュ状の機能性パターンの形成方法。
5.
As an adjustment to satisfy the formula (1), the contact angle of the second linear liquid on the solid surface coated with the functional material contained in the first linear liquid and dried, and the first 2. The method for forming a mesh-like functional pattern according to 1 above, wherein a difference from a contact angle of the second linear liquid outside the parallel line pattern forming region is 10 ° or less.
6.
 前記式(1)を満たすための調整として、前記第1の平行線パターンの形成領域内における前記第2のライン状液体の長さあたりの液体付与量と、前記第1の平行線パターンの形成領域外における前記第2のライン状液体の長さあたりの液体付与量とを異ならせる前記1記載のメッシュ状の機能性パターンの形成方法。
6).
As an adjustment to satisfy the formula (1), the amount of liquid applied per length of the second linear liquid in the formation region of the first parallel line pattern and the formation of the first parallel line pattern 2. The method for forming a mesh-like functional pattern according to 1 above, wherein a liquid application amount per length of the second linear liquid outside the region is different.
7.
 前記式(1)を満たすための調整として、前記第1の平行線パターンを形成した後に、前記第2のライン状液体を付与する前に、前記第1の平行線パターンの形成領域内を含む領域を洗浄する前記1に記載のメッシュ状の機能性パターンの形成方法。
7).
As an adjustment to satisfy the formula (1), after forming the first parallel line pattern and before applying the second line-shaped liquid, the inside of the first parallel line pattern forming region is included. 2. The method for forming a mesh-like functional pattern according to 1 above, wherein the region is washed.
8.
 前記洗浄として、加熱による洗浄、電磁波による洗浄、溶剤による洗浄、ガスによる洗浄及びプラズマによる洗浄から選ばれた1種又は2種以上を組み合わせた洗浄を行う前記7記載のメッシュ状の機能性パターンの形成方法。
8).
8. The mesh-shaped functional pattern according to 7 above, wherein the cleaning includes cleaning by heating, cleaning with electromagnetic waves, cleaning with a solvent, cleaning with gas, and cleaning with a combination of two or more selected from cleaning with plasma. Forming method.
9.
 前記機能性材料は、導電性材料である前記1~8の何れかに記載のメッシュ状の機能性パターンの形成方法。
9.
9. The method for forming a mesh-like functional pattern according to any one of 1 to 8, wherein the functional material is a conductive material.
10.
 前記1~9の何れかに記載のメッシュ状の機能性パターンの形成方法により形成されたメッシュ状の機能性パターン。
10.
10. A mesh-like functional pattern formed by the method for forming a mesh-like functional pattern according to any one of 1 to 9 above.
11.
 前記10記載のメッシュ状の機能性パターンを備えた機能性基材。
11.
11. A functional substrate provided with the mesh-like functional pattern described in 10 above.
平行線パターンを形成する方法の一例を概念的に説明する概略説明図Schematic explanatory diagram conceptually illustrating an example of a method of forming a parallel line pattern メッシュ状の機能性パターンの形成方法の一例(参考例)を説明する説明図Explanatory drawing explaining an example (reference example) of the formation method of a mesh-like functional pattern メッシュ状の機能性パターンの形成方法の他の例(参考例)を説明する説明図Explanatory drawing explaining the other example (reference example) of the formation method of a mesh-like functional pattern メッシュ状の機能性パターンの形成方法の更なる他の例を説明する説明図Explanatory drawing explaining the further another example of the formation method of a mesh-shaped functional pattern 交差部Xの形成例を示す要部拡大図The principal part enlarged view which shows the example of formation of the crossing part X 平均間隔A及び平均間隔Bの測定方法の一例を説明する図The figure explaining an example of the measuring method of the average space | interval A and the average space | interval B 基材上に形成された平行線パターンの一例を示す部分拡大平面図Partial enlarged plan view showing an example of a parallel line pattern formed on a substrate 図7における(viii)-(viii)線断面を説明する説明図Explanatory drawing explaining the (viii)-(viii) line cross section in FIG. メッシュ状の機能性パターンの光学顕微鏡写真(実施例)Optical micrograph of functional mesh pattern (Example) メッシュ状の機能性パターンの光学顕微鏡写真(参考例)Optical micrograph of a functional mesh pattern (reference example)
 以下に、図面を参照して本発明を実施するための形態について説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 本発明では、基本的な原理として、基材上に付与された機能性材料を含む液体を乾燥させる際に、液体に含まれる機能性材料を液体の縁部に選択的に堆積させる現象を利用することができる。この現象は、コーヒーリング現象あるいはコーヒーステイン現象とも称される場合がある。本発明は、リング形状のパターンを形成するものに限定されないので、以下の説明では、この現象について、コーヒーステイン現象という場合がある。 In the present invention, as a basic principle, when a liquid containing a functional material applied on a substrate is dried, a phenomenon in which the functional material contained in the liquid is selectively deposited on the edge of the liquid is used. can do. This phenomenon may be referred to as a coffee ring phenomenon or a coffee stain phenomenon. Since the present invention is not limited to a ring-shaped pattern, in the following description, this phenomenon may be referred to as a coffee stain phenomenon.
 図1は、かかる基本原理を利用して平行線パターンを形成する方法の一例を概念的に説明する概略説明図である。 FIG. 1 is a schematic explanatory view for conceptually explaining an example of a method for forming a parallel line pattern using such a basic principle.
 図1において、1は、基材であり、2は、機能性材料を含むライン状液体であり、3は、ライン状液体2の縁に機能性材料を選択的に堆積させることにより形成される塗膜(以下、平行線パターンという場合もある。)である。また、7は基材1上に液体を付与するための付与手段であり、ここでは、液滴吐出装置により構成されている。液滴吐出装置7は、例えば、インクジェット記録装置が備えるインクジェットヘッドにより構成することができる。 In FIG. 1, 1 is a substrate, 2 is a line-shaped liquid containing a functional material, and 3 is formed by selectively depositing a functional material on the edge of the line-shaped liquid 2. It is a coating film (hereinafter also referred to as a parallel line pattern). Reference numeral 7 denotes an applying means for applying a liquid onto the substrate 1, and here it is constituted by a droplet discharge device. The droplet discharge device 7 can be constituted by, for example, an ink jet head provided in the ink jet recording apparatus.
 図1(a)に示すように、液滴吐出装置7と基材1とを相対的に走査させながら、液滴吐出装置7から機能性材料を含む液体を吐出し、順次吐出された複数の液滴が基材上で合一することで機能性材料を含むライン状液体2を形成する。 As shown in FIG. 1A, a liquid containing a functional material is discharged from the droplet discharge device 7 while relatively scanning the droplet discharge device 7 and the substrate 1, and a plurality of liquid droplets sequentially discharged are discharged. The liquid droplets coalesce on the substrate to form a line-like liquid 2 containing a functional material.
 そして、図1(b)に示すように、ライン状液体2を蒸発させ、乾燥させる際に、コーヒーステイン現象を利用して、ライン状液体2の縁に機能性材料を選択的に堆積させる。 Then, as shown in FIG. 1B, when the line-shaped liquid 2 is evaporated and dried, a functional material is selectively deposited on the edge of the line-shaped liquid 2 using a coffee stain phenomenon.
 コーヒーステイン現象は、ライン状液体2を乾燥させる際の条件設定により生起させることができる。 The coffee stain phenomenon can be caused by setting conditions for drying the line-shaped liquid 2.
 即ち、基材1上に配置されたライン状液体2の乾燥は中央部と比べ縁において速く、乾燥の進行と共に固形分濃度が飽和濃度に達し、ライン状液体2の縁に固形分の局所的な析出が起こる。この析出した固形分によりライン状液体2の縁が固定化された状態となり、それ以降の乾燥に伴うライン状液体2の幅方向の収縮が抑制される。この効果により、ライン状液体2の液体は、縁で蒸発により失った分の液体を補う様に中央部から縁に向かう対流を形成する。この対流は、乾燥に伴うライン状液体2の接触線の固定化とライン状液体2中央部と縁の蒸発量の差に起因するため、固形分濃度、ライン状液体2と基材1の接触角、ライン状液体2の量、基材1の加熱温度、ライン状液体2の配置密度、または温度、湿度、気圧の環境因子に応じて変化し、これらを調整することにより制御することができる。 That is, the drying of the line-shaped liquid 2 arranged on the substrate 1 is faster at the edge compared to the central portion, and the solid content reaches a saturated concentration as the drying proceeds, and the solid content locally reaches the edge of the line-shaped liquid 2. Precipitation occurs. The edge of the line-shaped liquid 2 is fixed by the deposited solid content, and shrinkage in the width direction of the line-shaped liquid 2 due to subsequent drying is suppressed. By this effect, the liquid of the line-shaped liquid 2 forms a convection from the central portion toward the edge so as to compensate for the liquid lost by evaporation at the edge. Since this convection is caused by immobilization of the contact line of the line-shaped liquid 2 accompanying drying and a difference in evaporation amount between the central part and the edge of the line-shaped liquid 2, the solid content concentration, the contact between the line-shaped liquid 2 and the substrate 1 It varies depending on the angle, the amount of the line-shaped liquid 2, the heating temperature of the substrate 1, the arrangement density of the line-shaped liquid 2, or the environmental factors of temperature, humidity, and atmospheric pressure, and can be controlled by adjusting these. .
 その結果、図1(c)に示すように、基材1上に、機能性材料を含む細線からなる平行線パターン3が形成される。1本のライン状液体2から形成された平行線パターン3は、1組2本の細線31、32により構成されている。 As a result, as shown in FIG. 1 (c), a parallel line pattern 3 made of fine lines containing a functional material is formed on the substrate 1. The parallel line pattern 3 formed from one line-shaped liquid 2 is composed of a set of two thin lines 31 and 32.
 以上のような平行線パターンの形成方法を応用して、複数の平行線パターンを交差させてなるメッシュ状の機能性パターンを形成することができる。 By applying the parallel line pattern forming method as described above, a mesh-like functional pattern formed by intersecting a plurality of parallel line patterns can be formed.
 このようなメッシュ状の機能性パターンとすることは、低視認性を保持した状態で、基材上に機能性材料を分布させることを実現する上で有利である。 Such a mesh-like functional pattern is advantageous in realizing distribution of the functional material on the base material while maintaining low visibility.
 特に、上記のようにして形成される平行線パターンを構成する線分は、数μmの線幅を実現できるため、その微細な線幅により、メッシュ状の機能性パターンは、機能性材料自体が透明でなくても、人間の目には認識されず、あたかも透明のように見える。 In particular, since the line segment constituting the parallel line pattern formed as described above can realize a line width of several μm, the mesh-like functional pattern is formed by the functional material itself due to its fine line width. Even if it is not transparent, it is not recognized by the human eye and looks as if it is transparent.
 機能性材料の細線パターンの形状については、その機能性材料を使うデバイスによって設定することができる。デバイスの一例として、タッチパネルに使用されるタッチセンサーは、指などによる位置を検出するために、透明な面電極が用いられる。 The shape of the thin line pattern of the functional material can be set by the device that uses the functional material. As an example of a device, a touch sensor used for a touch panel uses a transparent surface electrode to detect a position by a finger or the like.
 メッシュ状の機能性パターンにおいて、機能性材料として導電性材料を用いれば、タッチパネル等のための透明な面電極等に好ましく適用できる。面電極等を構成する観点では、互いに形成方向の異なる複数の平行線パターンによりメッシュ状にすることが、導電パスを増やす点で非常に有効になる。 If a conductive material is used as a functional material in a mesh-like functional pattern, it can be preferably applied to a transparent surface electrode for a touch panel or the like. From the viewpoint of configuring a surface electrode or the like, it is very effective to increase the number of conductive paths to be meshed with a plurality of parallel line patterns having different formation directions.
 このようなメッシュ状の機能性パターンの形成方法として、次に示す方法が挙げられる。 As a method for forming such a mesh-like functional pattern, the following method may be mentioned.
 図2は、メッシュ状の機能性パターンの形成方法の一例(参考例)を説明する説明図である。 FIG. 2 is an explanatory diagram for explaining an example (reference example) of a method for forming a mesh-like functional pattern.
 まず、図2(a)に示すように、基材1上に、ライン状液体2をメッシュ状に塗布する。即ち、交差部Xにおいて交差するように、ライン状液体2を塗布する。 First, as shown in FIG. 2 (a), a line-like liquid 2 is applied in a mesh form on a substrate 1. That is, the line-shaped liquid 2 is applied so as to intersect at the intersection X.
 次いで、ライン状液体2を乾燥させることで、図2(b)に示すように、平行線パターン3によるメッシュ状パターンを形成することができる。 Next, by drying the line-shaped liquid 2, a mesh pattern by the parallel line pattern 3 can be formed as shown in FIG.
 このとき、ライン状液体2に含まれる機能性材料が縁に堆積する結果、方向の異なる平行線が交わる交差部Xにおいて、線分31、32が断絶されることになる。 At this time, as a result of the functional material contained in the line-shaped liquid 2 being deposited on the edge, the line segments 31 and 32 are cut off at the intersection X where the parallel lines having different directions intersect.
 交差部Xにおける線分31、32の断絶を防止する方法として、次に示す方法が挙げられる。 As a method for preventing breakage of the line segments 31 and 32 at the intersection X, the following method may be mentioned.
 図3は、メッシュ状の機能性パターンの形成方法の他の例(参考例)を説明する説明図である。 FIG. 3 is an explanatory diagram for explaining another example (reference example) of a method for forming a mesh-like functional pattern.
 この例では、図2に示した方法において、図3(a)に示すように、ライン状液体2により形成される交点の部分のインク量を、他の部分よりも大きく設定する。 In this example, in the method shown in FIG. 2, as shown in FIG. 3A, the amount of ink at the intersection formed by the line-shaped liquid 2 is set larger than that in the other parts.
 この方法によれば、図3(b)に示すように、平行線パターン3によるメッシュ状パターンにおいて、交差部Xにおける線分31、32の断絶を防止することができる。 3] According to this method, as shown in FIG. 3B, in the mesh pattern by the parallel line pattern 3, the line segments 31 and 32 at the intersection X can be prevented from being interrupted.
 このとき、交差部Xへのインク量を増やしているため、図3(b)に示すように、交差部Xが、線分31、32の間隔よりも大きい直径を有するリング状になる。 At this time, since the ink amount to the intersection X is increased, the intersection X becomes a ring shape having a diameter larger than the interval between the line segments 31 and 32 as shown in FIG.
 このようなリング状の部分の生成は、線分31、32の断絶を防止して、例えば導電性を確保し易くする等の観点では有利であるが、かかるリング状の部分が周期的に視認されてしまうときがあり、低視認性を更に改善する観点では限界があることがわかった。 The generation of such a ring-shaped part is advantageous in terms of preventing disconnection of the line segments 31 and 32 and facilitating, for example, ensuring conductivity, but such a ring-shaped part is periodically visible. It has been found that there is a limit in terms of further improving the low visibility.
 また、交差部Xにおいて、線分31、32の断絶を防止する方法としては、次に示す方法も挙げられる。 Further, as a method for preventing the line segments 31 and 32 from being cut off at the intersection X, the following methods may be mentioned.
 図4は、メッシュ状の機能性パターンの形成方法の更なる他の例を説明する説明図である。 FIG. 4 is an explanatory diagram for explaining still another example of a method for forming a mesh-like functional pattern.
 まず、図4(a)に示すように、第1の方向(図中、左右方向)にライン状液体2を塗布する。 First, as shown in FIG. 4A, the line-shaped liquid 2 is applied in a first direction (left and right direction in the figure).
 このライン状液体2を乾燥させる過程において、機能性材料を縁に選択的に堆積させて、図4(b)に示すように、第1の平行線パターン3を形成する。 In the process of drying the line-shaped liquid 2, a functional material is selectively deposited on the edge to form a first parallel line pattern 3 as shown in FIG.
 次いで、図4(c)に示すように、第1の方向とは異なる第2の方向(この例では、第1の方向と直交する方向であり、図中、上下方向である。)に第2のライン状液体4を塗布する。即ち、第1の平行線パターン3の形成領域に対して交差するように、第2のライン状液体4を塗布する。 Next, as shown in FIG. 4C, the second direction is different from the first direction (in this example, the direction is perpendicular to the first direction and is the vertical direction in the figure). 2 of the line-shaped liquid 4 is applied. That is, the second line-shaped liquid 4 is applied so as to intersect the formation region of the first parallel line pattern 3.
 このライン状液体4を乾燥させる過程において、機能性材料を縁に選択的に堆積させて、図4(d)に示すように、第2の平行線パターン5を形成する。51、52は、第2の平行線パターン5を構成する線分である。 In the process of drying the line-shaped liquid 4, a functional material is selectively deposited on the edge to form a second parallel line pattern 5 as shown in FIG. Reference numerals 51 and 52 denote line segments constituting the second parallel line pattern 5.
 以上のようにして、互いに形成方向の異なる第1の平行線パターン3と第2の平行線パターン5とによるメッシュ状の機能性パターンが形成される。 As described above, a mesh-like functional pattern is formed by the first parallel line pattern 3 and the second parallel line pattern 5 having different formation directions.
 この方法によれば、方向の異なる平行線が交わる交差部Xにおいて、線分31、32、及び、線分51、52の断絶をそれぞれ防止できる。 According to this method, the line segments 31, 32 and the line segments 51, 52 can be prevented from being interrupted at the intersection X where the parallel lines having different directions intersect.
 図5は、交差部Xの形成例を示す要部拡大図である。図5において、図5(a)及び図5(b)は参考例を、図5(c)は本発明を説明する図である。 FIG. 5 is an enlarged view of a main part showing an example of forming the intersection X. 5A and 5B are reference examples, and FIG. 5C is a diagram for explaining the present invention.
 即ち、図4を用いて説明した例では、図5(a)及び図5(b)に示すように、交差部Xにおいて、第2の平行線パターンを構成する線分51、52間に、膨らみ(図5(a))や狭まり(図5(b))が生じる。 That is, in the example described using FIG. 4, as shown in FIGS. 5A and 5B, at the intersection X, between the line segments 51 and 52 constituting the second parallel line pattern, Swelling (FIG. 5A) and narrowing (FIG. 5B) occur.
 かかる線分51、52間の膨らみや狭まりが、低視認性の向上に限界をもたらす原因になることがわかった。 It has been found that the swelling or narrowing between the line segments 51 and 52 causes a limit to the improvement of the low visibility.
 また、特に機能性材料が導電性材料である場合は、かかる膨らみや狭まりにより、導電パスの長さが第1の平行線パターン3に沿う方向(第1の方向)と、第2の平行線パターン5に沿う方向(第2の方向)とで異なってしまい、抵抗のばらつきを防止する観点でも、更なる改善の余地があることがわかった。 In particular, when the functional material is a conductive material, due to such swelling or narrowing, the length of the conductive path extends along the first parallel line pattern 3 (first direction) and the second parallel line. It was found that there was room for further improvement from the viewpoint of preventing variation in resistance due to differences in the direction along the pattern 5 (second direction).
 これらを改善するために、図4を用いて説明した例において、図5(c)に示すように、第2の平行線パターン5を構成する2本の線分51、52間の間隔について、第1の平行線パターン3の形成領域内における平均間隔Aと、第1の平行線パターン3の形成領域外における平均間隔Bとが下記式(1)を満たすように調整する。 In order to improve these, in the example described with reference to FIG. 4, as shown in FIG. 5C, the interval between the two line segments 51 and 52 constituting the second parallel line pattern 5 is as follows. The average interval A within the formation region of the first parallel line pattern 3 and the average interval B outside the formation region of the first parallel line pattern 3 are adjusted so as to satisfy the following formula (1).
 0.9≦B/A≦1.1   ・・・式(1) 0.9 ≦ B / A ≦ 1.1 Formula (1)
 これにより、得られるメッシュ状の機能性パターンにおいて、線分の断線を防止できると共に、低視認性を向上することができ、特に機能性材料が導電性材料の場合は、導電パスの長さを、前記第1の方向と前記第2の方向で高精度に同じにでき、抵抗のばらつきを好適に抑制できる効果が得られる。 As a result, in the obtained mesh-like functional pattern, disconnection of the line segment can be prevented and low visibility can be improved. In particular, when the functional material is a conductive material, the length of the conductive path is reduced. The first direction and the second direction can be made the same with high accuracy, and the effect that the variation in resistance can be suitably suppressed is obtained.
 第1の平行線パターン3の形成領域とは、第1の平行線パターンを構成する一方の線分31から他方の線分32までの領域ということができ、別の観点では、第1の平行線パターン3を形成するために付与された第1のライン状液体2の付与領域ということもできる。 The formation region of the first parallel line pattern 3 can be said to be a region from one line segment 31 to the other line segment 32 constituting the first parallel line pattern. It can also be said to be an application region of the first line-shaped liquid 2 applied to form the line pattern 3.
 第2の平行線パターン5を構成する線分51、52間の間隔について、第1の平行線パターン3の形成領域内における平均間隔Aと、第1の平行線パターン3の形成領域外における平均間隔Bは、それぞれ複数個所において測定された間隔の平均値とすることができる。 Regarding the interval between the line segments 51 and 52 constituting the second parallel line pattern 5, the average interval A within the formation region of the first parallel line pattern 3 and the average outside the formation region of the first parallel line pattern 3. The interval B can be an average value of the intervals measured at a plurality of locations.
 平均間隔Aを測定するために設定される複数個所(n箇所)の測定箇所は、第1の平行線パターン3の形成領域内において、第2の方向に沿って等間隔で配置されることが好ましい。また、平均間隔Bを測定するために設定される複数(m箇所)の測定箇所は、第1の平行線パターン3の形成領域外において、第2の方向に沿って等間隔で配置されることが好ましい。 A plurality of (n) measurement points set to measure the average interval A may be arranged at equal intervals along the second direction in the formation region of the first parallel line pattern 3. preferable. In addition, a plurality (m places) of measurement points set to measure the average interval B are arranged at equal intervals along the second direction outside the region where the first parallel line pattern 3 is formed. Is preferred.
 平均間隔A及び平均間隔Bは、具体的には、以下のようにして測定することが好ましい。 Specifically, the average interval A and the average interval B are preferably measured as follows.
 図6は、平均間隔A及び平均間隔Bの測定方法の一例を説明する図である。 FIG. 6 is a diagram for explaining an example of a method for measuring the average interval A and the average interval B.
 まず、平均間隔Aは、図6に示すように、第2の平行線パターン5を構成する線分51、52間の間隔について、第1の平行線パターンを構成する線分31、32に沿う2箇所A、Aと、線分31、32よりも内側の5箇所A~Aの計7箇所A~Aにおいて測定された間隔の平均として求めることができる。このとき、これら計7箇所の測定箇所A~Aは、第2の平行線パターンの形成方向(第2の方向)に沿って等間隔で位置づけられる。 First, as shown in FIG. 6, the average interval A is along the line segments 31 and 32 constituting the first parallel line pattern with respect to the interval between the line segments 51 and 52 constituting the second parallel line pattern 5. It can be obtained as the average of the distances measured at a total of 7 points A 1 to A 7 of 2 points A 1 and A 2 and 5 points A 3 to A 7 inside the line segments 31 and 32. At this time, these seven measurement points A 1 to A 7 are positioned at equal intervals along the formation direction (second direction) of the second parallel line pattern.
 一方、平均間隔Bは、図6に示すように、第2の平行線パターン5を構成する線分51、52間の間隔について、上述した平均間隔Aに係る計7箇所の測定箇所A~Aに隣接する計5箇所の測定箇所B~Bにおいて測定された間隔の平均として求めることができる。このとき、これら計5箇所の測定箇所B~Bは、第2の平行線パターンの形成方向(第2の方向)に沿って、上述した平均間隔Aに係る計7箇所の測定箇所A~Aと同じ等間隔で位置づけることができる。平均間隔Aの測定に係る計7箇所の測定箇所A~Aと、平均間隔Bの測定に係る計5箇所の測定箇所B~Bは、第2の方向に沿って互いに等間隔で位置づけることができる。 On the other hand, as shown in FIG. 6, the average interval B is a total of seven measurement points A 1 to A related to the average interval A described above with respect to the interval between the line segments 51 and 52 constituting the second parallel line pattern 5. It can be obtained as an average of intervals measured at a total of five measurement points B 1 to B 5 adjacent to A 7 . At this time, these five measurement points B 1 to B 5 are a total of seven measurement points A related to the average interval A described above along the second parallel line pattern forming direction (second direction). it can be positioned in the same regular intervals as the 1 ~ a 7. A total of seven measurement points A 1 to A 7 related to the measurement of the average interval A and a total of five measurement points B 1 to B 5 related to the measurement of the average interval B are equidistant from each other along the second direction. Can be positioned.
 図示の例では、平均間隔Bの測定箇所B~Bを、平均間隔Aの測定箇所A~Aに対して、図中、下側に隣接して設定した例を示したが、図中、上側に隣接して設定することもできる。このとき、平均間隔Aと平均間隔Bの差がより大きくなるように、上側(一方の側)、下側(他方の側)の何れかに平均間隔Bの測定箇所B~Bを設定することが好ましい。 In the illustrated example, the measurement points B 1 to B 5 of the average interval B are set adjacent to the lower side in the figure with respect to the measurement points A 1 to A 7 of the average interval A. It can also be set adjacent to the upper side in the figure. At this time, measurement points B 1 to B 5 of the average interval B are set on either the upper side (one side) or the lower side (the other side) so that the difference between the average interval A and the average interval B becomes larger. It is preferable to do.
 図6の例において、平均間隔Aのための測定箇所として、第1の平行線パターンを構成する線分31、32に沿う2箇所A、Aを含む場合について説明したが、線分31、32の何れか一方に沿う1箇所を含むようにしてもよい。また、線分31、32に沿う箇所を含まないようにしてもよい。 In the example of FIG. 6, a case has been described in which two measurement points for the average interval A include two points A 1 and A 2 along the line segments 31 and 32 constituting the first parallel line pattern. , 32 may be included along one of them. Further, the portions along the line segments 31 and 32 may not be included.
 図6の例において、平均間隔Aのための測定箇所として、第1の平行線パターンを構成する線分31、32よりも内側の5箇所A~Aを含む場合について説明したが、必ずしも5箇所である必要はなく、2以上の複数箇所であることが好ましい。 In the example of FIG. 6, the case where the measurement points for the average interval A include five points A 3 to A 7 inside the line segments 31 and 32 constituting the first parallel line pattern has been described. There is no need to be five places, and two or more places are preferable.
 図6の例において、平均間隔Bのための測定箇所として、第1の平行線パターンを構成する線分31、32よりも外側の5箇所B~Bを含む場合について説明したが、必ずしも5箇所である必要はなく、2以上の複数箇所であることが好ましい。 In the example of FIG. 6, the case where the measurement points for the average interval B include five points B 1 to B 5 outside the line segments 31 and 32 constituting the first parallel line pattern has been described. There is no need to be five places, and two or more places are preferable.
 平均間隔A及び平均間隔Bを求めるために各測定箇所において測定される第2の平行線パターン5を構成する線分51、52間の間隔は、以下のように定義することができる。 The interval between the line segments 51 and 52 constituting the second parallel line pattern 5 measured at each measurement point in order to obtain the average interval A and the average interval B can be defined as follows.
 図7は、基材上に形成された平行線パターンの一例を示す部分拡大平面図である。図8は、図7における(viii)-(viii)線断面を説明する説明図であり、パターンに含まれる1組2本の細線を線分方向に対して直交する方向で切断した断面(縦断面)を説明している。 FIG. 7 is a partially enlarged plan view showing an example of a parallel line pattern formed on a substrate. FIG. 8 is an explanatory diagram for explaining a cross section taken along line (viii)-(viii) in FIG. 7, and is a cross section obtained by cutting a set of two thin lines included in the pattern in a direction orthogonal to the line segment direction Surface).
 第2の平行線パターン5を構成する線分51、52間の間隔Iは、図8に示されるように、線分51、52の各最大突出部間の距離と定義することができる。従って、上述した各測定箇所において間隔Iを測定することによって、平均間隔A及び平均間隔Bをそれぞれ求めることができる。 The interval I between the line segments 51 and 52 constituting the second parallel line pattern 5 can be defined as the distance between the maximum protrusions of the line segments 51 and 52 as shown in FIG. Therefore, the average interval A and the average interval B can be obtained by measuring the interval I at each of the measurement points described above.
 上述した式(1)を満たすための調整は、平均間隔Aと平均間隔Bの比率B/Aに影響を及ぼしうる因子の1つ又は複数を調整するものであるということもできる。このような因子は、格別限定されるものではなく、適宜選択することができる。 It can also be said that the adjustment to satisfy the above-described formula (1) is to adjust one or more factors that can affect the ratio B / A of the average interval A and the average interval B. Such factors are not particularly limited and can be appropriately selected.
 上述した式(1)を満たすための調整の好ましい態様として、以下のものを例示できる。 The following can be illustrated as a preferable aspect of the adjustment for satisfying the above-described formula (1).
 第1態様では、上述した式(1)を満たすための調整として、第1の平行線パターン3の形成領域内の表面エネルギーと、第1の平行線パターン3の形成領域外の表面エネルギーとの差を、5mN/m以下にする。 In the first aspect, as an adjustment to satisfy the above-described formula (1), the surface energy in the formation region of the first parallel line pattern 3 and the surface energy outside the formation region of the first parallel line pattern 3 are The difference is set to 5 mN / m or less.
 ここで、第1の平行線パターン3の形成領域内の表面エネルギーは、第1の平行線パターンを構成する線分31、32間の中心領域において測定される表面エネルギーとすることができる。あるいは、代わりの方法として、第1の平行線パターン3の形成領域内の表面エネルギーは、基材1と同様の基材を別途用意し、該基材上に、第1のライン状液体2と同様の液体を20μL滴下し、第1のライン状液体2の乾燥時と同様の条件で乾燥させた後、乾燥された膜の中心領域において測定される表面エネルギーとすることもできる。 Here, the surface energy in the formation region of the first parallel line pattern 3 can be the surface energy measured in the central region between the line segments 31 and 32 constituting the first parallel line pattern. Alternatively, as an alternative method, the surface energy in the formation region of the first parallel line pattern 3 is prepared by separately preparing a base material similar to the base material 1 and the first linear liquid 2 on the base material. The surface energy measured in the central region of the dried film can be obtained after 20 μL of the same liquid is dropped and dried under the same conditions as when the first linear liquid 2 is dried.
 一方、第1の平行線パターン3の形成領域外の表面エネルギーは、第1の平行線パターン3を形成するための第1のライン状液体2が付与されなかった領域における基材1の表面エネルギーとすることができる。 On the other hand, the surface energy outside the region where the first parallel line pattern 3 is formed is the surface energy of the substrate 1 in the region where the first linear liquid 2 for forming the first parallel line pattern 3 is not applied. It can be.
 表面エネルギーは、Young-Fowkes式より算出することができる。 The surface energy can be calculated from the Young-Fowkes equation.
 かかる表面エネルギーの差を、5mN/m以下に設定することで、第1の平行線パターン3の形成領域の内外で、第2のライン状液体4に対する濡れ性の変化を少なくすることができ、上述した式(1)を好適に満たすことができる。 By setting the difference in surface energy to 5 mN / m or less, it is possible to reduce the change in wettability with respect to the second linear liquid 4 inside and outside the formation region of the first parallel line pattern 3. Formula (1) mentioned above can be satisfy | filled suitably.
 第1の平行線パターン3の形成領域内の表面エネルギーが、形成領域外よりも大きい場合、表面エネルギーの差が5mN/mを超えると、第2のライン状液体4の濡れ拡がりにより、第2の平行線パターン5において、線分51、52間の膨らみの原因になる。 When the surface energy in the formation region of the first parallel line pattern 3 is larger than that outside the formation region, if the difference in surface energy exceeds 5 mN / m, the second linear liquid 4 is wet and spread. In the parallel line pattern 5, the bulge between the line segments 51 and 52 is caused.
 一方、第1の平行線パターン3の形成領域内の表面エネルギーが、形成領域外よりも小さい場合、表面エネルギーの差が5mN/mを超えると、第2の平行線パターン5において、線分51、52間の狭まりの原因になる。 On the other hand, when the surface energy in the formation region of the first parallel line pattern 3 is smaller than that outside the formation region, if the difference in surface energy exceeds 5 mN / m, the line segment 51 in the second parallel line pattern 5 is obtained. , 52 becomes a cause of narrowing.
 第1の平行線パターン3の形成領域の内外の表面エネルギー差を調整する手段は、格別限定されないが、例えば、第1の平行線パターン3の形成領域外を含む領域に表面処理をする方法、第1のライン状液体2の液体組成を変更する方法などが好ましい。 The means for adjusting the surface energy difference between the inside and outside of the formation region of the first parallel line pattern 3 is not particularly limited, for example, a method of performing a surface treatment on the region including the outside of the formation region of the first parallel line pattern 3; A method of changing the liquid composition of the first line-like liquid 2 is preferable.
 第1の平行線パターン3の形成領域外を含む領域に表面処理をする方法としては、第1の平行線パターン3を形成する前に、基材1に対して表面エネルギーを変更する表面処理を施しておく方法を挙げることができる。表面処理は、第1の平行線パターン3の形成領域外となる領域のみに行ってもよいし、形成領域外と形成領域内を含む領域に行ってもよい。基材1の全面に対して表面処理を行うことも好ましいことである。 As a method of performing the surface treatment on the region including the outside of the region where the first parallel line pattern 3 is formed, the surface treatment for changing the surface energy with respect to the substrate 1 is performed before forming the first parallel line pattern 3. The method of giving can be mentioned. The surface treatment may be performed only on a region outside the formation region of the first parallel line pattern 3, or may be performed on a region including the outside of the formation region and the inside of the formation region. It is also preferable to perform a surface treatment on the entire surface of the substrate 1.
 第1のライン状液体2の液体組成を変更する場合は、配合成分(機能性材料、添加剤及び溶剤など)の選択や、各成分の配合量の調整などにより行うことができる。 When changing the liquid composition of the first line-shaped liquid 2, it can be performed by selecting a blending component (functional material, additive, solvent, etc.), adjusting a blending amount of each component, or the like.
 第2態様では、上述した式(1)を満たすための調整として、第1のライン状液体2に含まれる機能性材料を塗布して乾燥させたベタ面の表面エネルギーと、第1の平行線パターン3の形成領域外の表面エネルギーとの差を、5mN/m以下にする。 In the second aspect, as the adjustment for satisfying the above-described formula (1), the surface energy of the solid surface coated with the functional material contained in the first linear liquid 2 and dried, and the first parallel lines The difference from the surface energy outside the formation region of the pattern 3 is set to 5 mN / m or less.
 「ベタ面」とは、任意の基材上に、第1のライン状液体2に含まれる機能性材料を塗布して乾燥させたベタ膜の表面であって、該基材自体の表面エネルギー及び接触角が該ベタ膜の表面における表面エネルギー及び接触角に影響しないように該基材を被覆したベタ膜の表面を指す。機能性材料の塗布は、例えば、該機能性材料を含む塗布液を塗布することにより行うことができる。ベタ面を形成する際の塗布液として、第1のライン状液体2と同一組成の液体を用いてもよい。 The “solid surface” is the surface of a solid film obtained by applying and drying the functional material contained in the first linear liquid 2 on an arbitrary substrate, and the surface energy of the substrate itself and It refers to the surface of the solid film coated with the substrate so that the contact angle does not affect the surface energy and the contact angle on the surface of the solid film. Application | coating of a functional material can be performed by apply | coating the coating liquid containing this functional material, for example. A liquid having the same composition as that of the first line-like liquid 2 may be used as the coating liquid for forming the solid surface.
 第1の平行線パターン3の形成領域内のうち、線分31、32間の領域には、コーヒーステイン現象により線分31、32の位置まで運ばれなかった第1のライン状液体2中の何らかの成分が僅かに残留することがある。このような残留成分が、第2の平行線パターン5を構成する線分51、52間の間隔を不均一にする原因になる場合がある。 In the region where the first parallel line pattern 3 is formed, the region between the line segments 31 and 32 is in the first line-shaped liquid 2 that has not been transported to the position of the line segments 31 and 32 due to the coffee stain phenomenon. Some components may remain slightly. Such residual components may cause the spacing between the line segments 51 and 52 constituting the second parallel line pattern 5 to be non-uniform.
 このとき、第1のライン状液体2に含まれる機能性材料を塗布して乾燥させたベタ面の表面エネルギーは、上述した式(1)を満たすためのより確実な調整を実現する指標になり得る。即ち、線分31、32間の領域に残留成分が多量に存在したとしても、ベタ面による影響を超えて線分51、52間の間隔に影響することは起こり難い。よって、ベタ面の表面エネルギーと、第1の平行線パターン3の形成領域外の表面エネルギーとの差に基づいて調整することで、確実性を更に向上することができる。 At this time, the surface energy of the solid surface obtained by applying and drying the functional material contained in the first line-shaped liquid 2 is an index for realizing more reliable adjustment to satisfy the above-described formula (1). obtain. That is, even if a large amount of residual components are present in the region between the line segments 31 and 32, it is unlikely to affect the interval between the line segments 51 and 52 beyond the effect of the solid surface. Therefore, the reliability can be further improved by adjusting based on the difference between the surface energy of the solid surface and the surface energy outside the formation region of the first parallel line pattern 3.
 ベタ面の表面エネルギーが、第1の平行線パターン3の形成領域外よりも大きい場合、表面エネルギーの差が5mN/mを超えると、第2のライン状液体4の濡れ拡がりにより、第2の平行線パターン5において、線分51、52間の膨らみの原因になる。 When the surface energy of the solid surface is larger than outside the region where the first parallel line pattern 3 is formed, if the difference in surface energy exceeds 5 mN / m, the second line-like liquid 4 will spread due to wetting and spreading. In the parallel line pattern 5, this causes a bulge between the line segments 51 and 52.
 一方、ベタ面の表面エネルギーが、第1の平行線パターン3の形成領域外よりも小さい場合、表面エネルギーの差が5mN/mを超えると、第2の平行線パターン5において、線分51、52間の狭まりの原因になる。 On the other hand, when the surface energy of the solid surface is smaller than outside the region where the first parallel line pattern 3 is formed, if the difference in surface energy exceeds 5 mN / m, the line segment 51 in the second parallel line pattern 5 This causes a narrowing between 52.
 ベタ面の表面エネルギーと、第1の平行線パターン3の形成領域外の表面エネルギー差を調整する手段としては、格別限定されず、第1態様に関して説明した手段を好ましく用いることができる。 The means for adjusting the difference between the surface energy of the solid surface and the surface energy difference outside the formation region of the first parallel line pattern 3 is not particularly limited, and the means described for the first aspect can be preferably used.
 第3態様では、上述した式(1)を満たすための調整として、第1の平行線パターン3の形成領域内における第2のライン状液体4の接触角と、第1の平行線パターン3の形成領域外における第2のライン状液体4の接触角との差を、10°以下にする。 In the third aspect, as an adjustment to satisfy the above-described formula (1), the contact angle of the second linear liquid 4 in the formation region of the first parallel line pattern 3 and the first parallel line pattern 3 The difference from the contact angle of the second linear liquid 4 outside the formation region is set to 10 ° or less.
 ここで、第1の平行線パターン3の形成領域内における接触角は、第1の平行線パターンを構成する線分31、32間の中心領域において測定される接触角とすることができる。あるいは、代わりの方法として、第1の平行線パターン3の形成領域内における接触角は、基材1と同様の基材を別途用意し、該基材上に、第1のライン状液体2と同様の液体を20μL滴下し、第1のライン状液体2の乾燥時と同様の条件で乾燥させた後、乾燥された膜の中心領域において測定される接触角とすることもできる。 Here, the contact angle in the formation region of the first parallel line pattern 3 can be a contact angle measured in the central region between the line segments 31 and 32 constituting the first parallel line pattern. Alternatively, as an alternative method, the contact angle in the formation region of the first parallel line pattern 3 is prepared by separately preparing a base material similar to the base material 1, and the first linear liquid 2 and the base material 1 on the base material. A contact angle measured in the central region of the dried film may be obtained after 20 μL of the same liquid is dropped and dried under the same conditions as those for drying the first linear liquid 2.
 一方、第1の平行線パターン3の形成領域外における接触角は、第1の平行線パターン3を形成するための第1のライン状液体2が付与されなかった領域における基材1上での接触角とすることができる。 On the other hand, the contact angle outside the formation region of the first parallel line pattern 3 is such that the first line-shaped liquid 2 for forming the first parallel line pattern 3 is not applied on the base material 1 in the region. It can be a contact angle.
 接触角の測定は、協和界面化学社製接触角測定装置DM-501を用いて行うことができる。第3態様では、接触角は、第2のライン状液体4と同じ組成の液体を滴下後5秒後の値とする。 The contact angle can be measured using a contact angle measuring device DM-501 manufactured by Kyowa Interface Chemical Co., Ltd. In the third aspect, the contact angle is set to a value 5 seconds after the liquid having the same composition as the second linear liquid 4 is dropped.
 かかる接触角の差を10°以下にすることで、第1の平行線パターン3の形成領域の内外で、第2のライン状液体4に対する濡れ性の変化を少なくすることができ、第2の平行線パターン5において、線分51、52間の間隔を、上述した式(1)を満たすものにできる。 By making the difference in the contact angle 10 ° or less, the change in wettability with respect to the second linear liquid 4 can be reduced inside and outside the formation region of the first parallel line pattern 3. In the parallel line pattern 5, the interval between the line segments 51 and 52 can be set to satisfy the above-described expression (1).
 第1の平行線パターンの形成領域内における接触角が、形成領域外の接触角よりも大きい場合、接触角の差が10°を超えると、第2のライン状液体4の濡れ拡がりにより、第1の平行線パターン3の形成領域内において、第2の平行線パターン5の線分51、52間の間隔が、形成領域外よりも大きくなり、膨らんだ形状になってしまう。 When the contact angle in the formation region of the first parallel line pattern is larger than the contact angle outside the formation region, if the difference in contact angle exceeds 10 °, the second linear liquid 4 is wet and spread. In the formation region of one parallel line pattern 3, the interval between the line segments 51 and 52 of the second parallel line pattern 5 becomes larger than outside the formation region, resulting in a bulging shape.
 一方、第1の平行線パターンの形成領域内における接触角が、形成領域外の接触角よりも小さい場合、接触角の差が10°を超えると、第1の平行線パターン3の形成領域内において、第2の平行線パターン5の線分51、52間の間隔が、形成領域外よりも小さくなり、狭まった形状になってしまう。 On the other hand, when the contact angle in the formation region of the first parallel line pattern is smaller than the contact angle outside the formation region, if the contact angle difference exceeds 10 °, the contact angle in the formation region of the first parallel line pattern 3 In FIG. 5, the interval between the line segments 51 and 52 of the second parallel line pattern 5 becomes smaller than outside the formation region, resulting in a narrow shape.
 接触角の差を調整する手段は、格別限定されず、第1態様において表面エネルギー差を調整する手段として説明した手段を好ましく用いることができる。更に、接触角の差を調整する手段として、第2のライン状液体4の液体組成を変更することもできる。第2のライン状液体4の液体組成を変更する場合は、配合成分(機能性材料、添加剤及び溶剤など)の選択や、各成分の配合量の調整などにより行うことができる。第2のライン状液体4の液体を、第1のライン状液体2の液体と異ならせることも好ましいことである。 The means for adjusting the difference in contact angle is not particularly limited, and the means described as means for adjusting the surface energy difference in the first embodiment can be preferably used. Furthermore, as a means for adjusting the difference in contact angle, the liquid composition of the second linear liquid 4 can be changed. When changing the liquid composition of the 2nd line-shaped liquid 4, it can carry out by selection of a compounding component (functional material, an additive, a solvent, etc.), adjustment of the compounding quantity of each component, etc. It is also preferable to make the liquid of the second line-shaped liquid 4 different from the liquid of the first line-shaped liquid 2.
 第4態様では、上述した式(1)を満たすための調整として、第1のライン状液体2に含まれる機能性材料を塗布して乾燥させたベタ面における第2のライン状液体4の接触角と、第1の平行線パターン3の形成領域外における第2のライン状液体4の接触角との差を、10°以下にする。ここで、「ベタ面」については、第2態様での説明が援用される。 In the fourth aspect, as an adjustment for satisfying the above-described formula (1), the contact of the second linear liquid 4 on the solid surface coated with the functional material contained in the first linear liquid 2 and dried. The difference between the corner and the contact angle of the second linear liquid 4 outside the region where the first parallel line pattern 3 is formed is set to 10 ° or less. Here, regarding the “solid surface”, the description in the second aspect is incorporated.
 かかる接触角の差を10°以下にすることで、第1の平行線パターン3の形成領域の内外で、第2のライン状液体4に対する濡れ性の変化を少なくすることができ、第2の平行線パターン5において、線分51、52間の間隔を、上述した式(1)を満たすものにできる。 By making the difference in the contact angle 10 ° or less, the change in wettability with respect to the second linear liquid 4 can be reduced inside and outside the formation region of the first parallel line pattern 3. In the parallel line pattern 5, the interval between the line segments 51 and 52 can be set to satisfy the above-described expression (1).
 第2態様において表面エネルギーについて上述したのと同じように、ベタ面における接触角を指標として調整することで、確実性を更に向上することができる。 In the second aspect, as described above for the surface energy, the reliability can be further improved by adjusting the contact angle on the solid surface as an index.
 ベタ面における接触角が、第1の平行線パターン3の形成領域外の接触角よりも大きい場合、接触角の差が10°を超えると、第2のライン状液体4の濡れ拡がりにより、第1の平行線パターン3の形成領域内において、第2の平行線パターン5の線分51、52間の間隔が、形成領域外よりも大きくなり、膨らんだ形状になってしまう。 When the contact angle on the solid surface is larger than the contact angle outside the region where the first parallel line pattern 3 is formed, if the difference in contact angle exceeds 10 °, the second linear liquid 4 is wet and spread. In the formation region of one parallel line pattern 3, the interval between the line segments 51 and 52 of the second parallel line pattern 5 becomes larger than outside the formation region, resulting in a bulging shape.
 一方、ベタ面における接触角が、第1の平行線パターン3の形成領域外の接触角よりも小さい場合、接触角の差が10°を超えると、第1の平行線パターン3の形成領域内において、第2の平行線パターン5の線分51、52間の間隔が、形成領域外よりも小さくなり、狭まった形状になってしまう。 On the other hand, when the contact angle on the solid surface is smaller than the contact angle outside the region where the first parallel line pattern 3 is formed, if the difference in contact angle exceeds 10 °, the region inside the region where the first parallel line pattern 3 is formed In FIG. 5, the interval between the line segments 51 and 52 of the second parallel line pattern 5 becomes smaller than outside the formation region, resulting in a narrow shape.
 ベタ面における接触角と、第1の平行線パターン3の形成領域外における接触角の差を調整する手段としては、格別限定されず、第3態様に関して説明した手段を好ましく用いることができる。 The means for adjusting the difference between the contact angle on the solid surface and the contact angle outside the formation region of the first parallel line pattern 3 is not particularly limited, and the means described for the third aspect can be preferably used.
 第5態様では、上述した式(1)を満たすための調整として、第1の平行線パターン3の形成領域外における第2のライン状液体4中の溶剤のうち最も沸点が高い溶剤の接触角を6°以下にする。 In the fifth aspect, as an adjustment to satisfy the above-described formula (1), the contact angle of the solvent having the highest boiling point among the solvents in the second linear liquid 4 outside the formation region of the first parallel line pattern 3. Is 6 ° or less.
 ここで、第1の平行線パターン3の形成領域外における接触角は、第1の平行線パターン3を形成するための第1のライン状液体2が付与されなかった領域における基材1上での接触角とすることができる。 Here, the contact angle outside the formation region of the first parallel line pattern 3 is on the base material 1 in the region where the first linear liquid 2 for forming the first parallel line pattern 3 is not applied. The contact angle can be as follows.
 接触角の測定は、協和界面化学社製接触角測定装置DM-501を用いて行うことができる。第5態様では、接触角は、第2のライン状液体4中の溶剤のうち最も沸点が高い溶剤を滴下後5秒後の値とする。 The contact angle can be measured using a contact angle measuring device DM-501 manufactured by Kyowa Interface Chemical Co., Ltd. In the fifth aspect, the contact angle is set to a value 5 seconds after the solvent having the highest boiling point among the solvents in the second linear liquid 4 is dropped.
 かかる接触角を6°以下にすることで、第1の平行線パターン3の形成領域の内外で、第2のライン状液体4に対する濡れ性の変化を少なくすることができ、第2の平行線パターン5において、線分51、52間の間隔を、上述した式(1)を満たすものにできる。 By setting the contact angle to 6 ° or less, the change in wettability with respect to the second linear liquid 4 can be reduced inside and outside the formation region of the first parallel line pattern 3, and the second parallel lines In the pattern 5, the interval between the line segments 51 and 52 can satisfy the above-described expression (1).
 接触角を調整する手段は、格別限定されず、第1態様において表面エネルギー差を調整する手段として説明した手段を好ましく用いることができる。 The means for adjusting the contact angle is not particularly limited, and the means described as means for adjusting the surface energy difference in the first aspect can be preferably used.
 第6態様では、上述した式(1)を満たすための調整として、第1の平行線パターン3の形成領域内における第2のライン状液体4の長さあたりの液体付与量と、第1の平行線パターン3の形成領域外における第2のライン状液体4の長さあたりの液体付与量とを異ならせる。 In the sixth aspect, as the adjustment for satisfying the above-described formula (1), the liquid application amount per length of the second linear liquid 4 in the formation region of the first parallel line pattern 3 and the first The liquid application amount per length of the second linear liquid 4 outside the formation area of the parallel line pattern 3 is made different.
 例えば、第1の平行線パターン3の形成領域外よりも形成領域内において第2のライン状液体4の濡れ性がよい場合は、形成領域内における第2のライン状液体4の長さあたりの液体付与量を、形成領域外に対して相対的に少なくする。 For example, when the wettability of the second linear liquid 4 is better in the formation region than outside the formation region of the first parallel line pattern 3, the length per second length of the second linear liquid 4 in the formation region The liquid application amount is relatively small with respect to the outside of the formation region.
 また、例えば、第1の平行線パターン3の形成領域内よりも形成領域外において第2のライン状液体4の濡れ性がよい場合は、形成領域内における第2のライン状液体4の長さあたりの液体付与量を、形成領域外に対して相対的に多くする。 Further, for example, when the wettability of the second linear liquid 4 is better outside the formation region than within the formation region of the first parallel line pattern 3, the length of the second linear liquid 4 in the formation region. The per-liquid application amount is relatively increased with respect to the outside of the formation region.
 このようにして、第1の平行線パターン3の形成領域内において、第2の平行線パターン5の線分51、52間の間隔が、形成領域外よりも膨らんだり狭まったりすることが防止される。 In this way, the interval between the line segments 51 and 52 of the second parallel line pattern 5 in the formation region of the first parallel line pattern 3 is prevented from expanding or narrowing from the outside of the formation region. The
 第1の平行線パターン3の形成領域の内外における液体付与量の差は、式(1)を満たすように適宜調整することができる。例えば、第2のライン状液体4の形成にインクジェット法を用いる場合は、第2のライン状液体4の単位長さあたりに吐出する液滴数や、1滴あたりの液滴容量を、第1の平行線パターン3の形成領域の内外で異ならせることで、液体付与量の差を設定できる。 The difference in the liquid application amount inside and outside the formation region of the first parallel line pattern 3 can be adjusted as appropriate so as to satisfy the expression (1). For example, when the inkjet method is used to form the second line-shaped liquid 4, the number of droplets ejected per unit length of the second line-shaped liquid 4 and the droplet volume per droplet are set to the first The difference in the amount of applied liquid can be set by making the difference between the inside and outside of the region where the parallel line pattern 3 is formed.
 第7態様では、上述した式(1)を満たすための調整として、第1の平行線パターン3を形成した後に、第2のライン状液体4を付与する前に、第1の平行線パターン3の形成領域内を含む領域を洗浄する。 In the seventh aspect, as an adjustment for satisfying the above-described formula (1), the first parallel line pattern 3 is formed after the first parallel line pattern 3 is formed and before the second linear liquid 4 is applied. The region including the inside of the formation region is cleaned.
 上述したが、第1の平行線パターン3の形成領域内のうち、線分31、32間の領域には、コーヒーステイン現象により線分31、32の位置まで運ばれなかった第1のライン状液体2中の何らかの成分が僅かに残留することがある。このような残留成分が、第2の平行線パターン5を構成する線分51、52間の間隔を不均一にする原因になる場合がある。 As described above, in the region where the first parallel line pattern 3 is formed, the region between the line segments 31 and 32 is the first line shape that has not been transported to the position of the line segments 31 and 32 due to the coffee stain phenomenon. Some components in the liquid 2 may remain slightly. Such residual components may cause the spacing between the line segments 51 and 52 constituting the second parallel line pattern 5 to be non-uniform.
 洗浄とは、このような残留成分を除去することであるということもできる。このとき、洗浄条件、例えば洗浄の種類や強度の設定などによって、残留成分がどの程度除去されるかが影響を受ける。この関係を利用して、第1の平行線パターン3の形成領域の内外における第2のライン状液体4の濡れ性の違いを解消できる。ある側面において、洗浄は、少なくとも、第2の平行線パターン5を構成する線分51、52間の間隔が、上述した式(1)を満たすことを達成できるように残留成分を除去することであり得る。このような意味において、洗浄は、上述した式(1)を満たすための調整の一例として位置づけることができる。 It can also be said that cleaning is removal of such residual components. At this time, how much residual components are removed is affected by the cleaning conditions, for example, the setting of the type and intensity of cleaning. By utilizing this relationship, the difference in wettability of the second linear liquid 4 inside and outside the formation region of the first parallel line pattern 3 can be eliminated. In one aspect, the cleaning is performed by removing residual components so that at least the distance between the line segments 51 and 52 constituting the second parallel line pattern 5 can satisfy the above-described formula (1). possible. In this sense, the cleaning can be positioned as an example of adjustment for satisfying the above-described formula (1).
 洗浄は、第1の平行線パターンの形成領域内のみに対して行ってもよいし、第1の平行線パターンの形成領域内と形成領域外を含む領域に対して行ってもよい。基材1の全面に対して洗浄を行うことも好ましいことである。 The cleaning may be performed only on the first parallel line pattern forming region, or may be performed on the region including the first parallel line pattern forming region and the outside of the forming region. It is also preferable to wash the entire surface of the substrate 1.
 第1の平行線パターンの形成領域内のみに対して洗浄を行う場合は、例えば、形成領域外をマスキングした状態で電磁波などの照射を行ったり、インクジェット法を利用して洗浄溶剤を選択的に形成領域内に付与したりすることで可能になる。 In the case where cleaning is performed only in the formation region of the first parallel line pattern, for example, irradiation with electromagnetic waves or the like is performed in a state where the outside of the formation region is masked, or the cleaning solvent is selectively selected using an inkjet method. It becomes possible by giving it in the formation region.
 洗浄の方法は格別限定されず、例えば通常に工業製品で使用されている洗浄方法を使用することができる。例えば、加熱による洗浄、電磁波による洗浄、溶剤による洗浄、ガスによる洗浄及びプラズマによる洗浄から選ばれた1種又は2種以上を組み合わせた洗浄を行うことが好ましい。 The cleaning method is not particularly limited, and for example, a cleaning method usually used in industrial products can be used. For example, it is preferable to perform cleaning by combining one or more selected from cleaning by heating, cleaning by electromagnetic waves, cleaning by a solvent, cleaning by gas, and cleaning by plasma.
 加熱による洗浄方法としては、赤外ヒーター、オーブン、ホットプレートなどによる持続的な加熱方法や、キセノンフラッシュランプなどによる瞬間的な加熱方法がある。加熱条件(温度、時間)などは、平行線パターン5を構成する線分51、52間の間隔が、上述した式(1)を満たすような範囲に適宜設定される。基材1がフィルムなどの場合は、基材1が変形しない条件の範囲で設定することが好ましい。この観点では、瞬時に加熱し、特にフィルムのような基材へのダメージが少ないキセノンフラッシュランプによる方法が好ましい。 The cleaning method by heating includes a continuous heating method using an infrared heater, an oven, a hot plate, etc., and an instantaneous heating method using a xenon flash lamp. The heating conditions (temperature, time) and the like are appropriately set within a range in which the interval between the line segments 51 and 52 constituting the parallel line pattern 5 satisfies the above-described formula (1). In the case where the substrate 1 is a film or the like, it is preferable to set within a range where the substrate 1 is not deformed. From this point of view, a method using a xenon flash lamp that heats instantaneously and particularly causes little damage to a substrate such as a film is preferable.
 電磁波によるものとしては、電子線、ガンマ線、紫外線などを照射する方法が使用できる。電磁波の照射条件は、平行線パターン5を構成する線分51、52間の間隔が、上述した式(1)を満たすような範囲に適宜設定される。 As a method using electromagnetic waves, a method of irradiating an electron beam, a gamma ray, an ultraviolet ray or the like can be used. The electromagnetic wave irradiation conditions are appropriately set in a range in which the interval between the line segments 51 and 52 constituting the parallel line pattern 5 satisfies the above-described formula (1).
 溶剤による洗浄に使用する溶剤は、上述した式(1)を満たすことができる溶剤であれば限定されないが、機能性材料が堆積して形成した平行線パターンに影響の少ないものを選択することが好ましい。機能性材料の種類に合わせて洗浄に適した溶剤を適宜選択することができる。例えば、水分散系の銀ナノ粒子の場合であれば、アルコール系の溶剤などが好適である。 The solvent used for cleaning with the solvent is not limited as long as it can satisfy the above-described formula (1), but a solvent that has little influence on the parallel line pattern formed by depositing the functional material may be selected. preferable. A solvent suitable for cleaning can be appropriately selected according to the type of functional material. For example, in the case of water-dispersed silver nanoparticles, an alcohol-based solvent is suitable.
 プラズマによる洗浄の条件は、平行線パターン5を構成する線分51、52間の間隔が、上述した式(1)を満たすような範囲に適宜設定することができる。 The conditions for cleaning with plasma can be appropriately set so that the interval between the line segments 51 and 52 constituting the parallel line pattern 5 satisfies the above-described formula (1).
 以下に、再び図7及び図8を参照して、メッシュ状の機能性パターンを構成する平行線パターンの寸法の好ましい例について説明する。ここでは、主に第2の平行線パターン5について説明するが、第1の平行線パターン3についても同様に説明することができる。 Hereinafter, with reference to FIG. 7 and FIG. 8 again, a preferable example of the dimension of the parallel line pattern constituting the mesh-like functional pattern will be described. Here, the second parallel line pattern 5 will be mainly described, but the first parallel line pattern 3 can be similarly described.
 平行線パターン5を構成する線分51、52間の間隔Iは、上述したように線分51、52の各最大突出部間の距離と定義することができ、好ましくは、10μm以上300μm以下の範囲に調整されていることが好ましい。 The interval I between the line segments 51 and 52 constituting the parallel line pattern 5 can be defined as the distance between the maximum protrusions of the line segments 51 and 52 as described above, and preferably 10 μm or more and 300 μm or less. It is preferable that the range is adjusted.
 平行線パターン5の1組2本の細線(線分)51、52は、必ずしも互いに完全に独立した島状である必要はない。図示したように、2本の線分51、52は、該線分51、52間に亘って、該線分51、52の高さよりも低い高さで形成された薄膜部50によって接続された連続体として形成されることも好ましいことである。 The set of two thin lines (line segments) 51 and 52 of the parallel line pattern 5 do not necessarily have an island shape completely independent of each other. As shown in the figure, the two line segments 51 and 52 are connected by the thin film portion 50 formed between the line segments 51 and 52 at a height lower than the height of the line segments 51 and 52. It is also preferable that it is formed as a continuous body.
 平行線パターン5の線分51、52の線幅W1、W2は、各々10μm以下であることが好ましい。10μm以下であれば、通常視認できないレベルとなるので、透明性を向上する観点からより好ましい。各線分51、52の安定性も考慮すると、各線分51、52の線幅W1、W2は、各々2μm以上10μm以下の範囲であることが好ましい。 The line widths W1 and W2 of the line segments 51 and 52 of the parallel line pattern 5 are each preferably 10 μm or less. If it is 10 micrometers or less, since it will be a level which cannot be visually recognized normally, it is more preferable from a viewpoint of improving transparency. Considering the stability of the line segments 51 and 52, the line widths W1 and W2 of the line segments 51 and 52 are preferably in the range of 2 μm or more and 10 μm or less, respectively.
 なお、線分51、52の幅W1、W2とは、該線分51、52間において機能性材料の厚みが最薄となる最薄部分の高さをZとし、更に該Zからの線分51、52の突出高さをY1、Y2としたときに、Y1、Y2の半分の高さにおける線分51、52の幅として定義される。例えば、平行線パターン5が上述した薄膜部50を有する場合は、該薄膜部50における最薄部分の高さをZとすることができる。なお、各線分51、52間における機能性材料の最薄部分の高さが0であるときは、線分51、52の線幅W1、W2は、基材1表面からの線分51、52の高さh1、h2の半分の高さにおける線分51、52の幅と定義される。 Note that the widths W1 and W2 of the line segments 51 and 52 are defined as Z being the height of the thinnest portion where the thickness of the functional material is the thinnest between the line segments 51 and 52, and line segments from the Z. When the protruding heights 51 and 52 are defined as Y1 and Y2, they are defined as the widths of the line segments 51 and 52 at half the height of Y1 and Y2. For example, when the parallel line pattern 5 has the thin film portion 50 described above, the height of the thinnest portion in the thin film portion 50 can be set to Z. When the height of the thinnest portion of the functional material between the line segments 51 and 52 is 0, the line widths W1 and W2 of the line segments 51 and 52 are the line segments 51 and 52 from the surface of the base material 1, respectively. Are defined as the widths of the line segments 51 and 52 at half the heights h1 and h2.
 平行線パターン5を構成する線分51、52の線幅W1、W2は、極めて細いものに成り得るため、断面積を確保して低抵抗化を図る観点で、基材1表面からの線分51、52の高さh1、h2は高い方が望ましい。具体的には、線分51、52の高さh1、h2は、50nm以上5μm以下の範囲であることが好ましい。 Since the line widths W1 and W2 of the line segments 51 and 52 constituting the parallel line pattern 5 can be very thin, the line segments from the surface of the substrate 1 are ensured from the viewpoint of securing a cross-sectional area and reducing resistance. The heights h1 and h2 of 51 and 52 are preferably higher. Specifically, the heights h1 and h2 of the line segments 51 and 52 are preferably in the range of 50 nm to 5 μm.
 更に、平行線パターン5の安定性を向上する観点から、h1/W1比、h2/W2比は、各々0.01以上1以下の範囲であることが好ましい。 Furthermore, from the viewpoint of improving the stability of the parallel line pattern 5, the h1 / W1 ratio and the h2 / W2 ratio are preferably in the range of 0.01 or more and 1 or less, respectively.
 また、平行線パターン5の細線化を更に向上する観点から、線分51、52間において機能性材料の厚みが最薄となる最薄部分の高さZ、具体的には薄膜部50の最薄部分の高さZが10nm以下の範囲であることが好ましい。最も好ましいのは、透明性と安定性のバランスの両立を図るために、0<Z≦10nmの範囲で、薄膜部50を備えることである。 Further, from the viewpoint of further improving the thinning of the parallel line pattern 5, the height Z of the thinnest part where the thickness of the functional material is the thinnest between the line segments 51 and 52, specifically, the thinnest part 50 is the thinnest. The height Z of the thin part is preferably in the range of 10 nm or less. Most preferably, the thin film portion 50 is provided in the range of 0 <Z ≦ 10 nm in order to achieve a balance between transparency and stability.
 更に、平行線パターン5の更なる細線化向上のために、h1/Z比、h2/Z比は、各々5以上であることが好ましく、10以上であることがより好ましく、20以上であることが特に好ましい。 Further, in order to further improve the thinning of the parallel line pattern 5, the h1 / Z ratio and the h2 / Z ratio are each preferably 5 or more, more preferably 10 or more, and 20 or more. Is particularly preferred.
 更にまた、線分51と線分52とに同様の形状(同程度の断面積)を付与することが好ましく、具体的には、線分51と線分52の高さh1とh2とを実質的に等しい値とすることが好ましい。これと同様に、線分51と線分52の線幅W1とW2とについても実質的に等しい値とすることが好ましい。 Furthermore, it is preferable to give the same shape (similar cross-sectional area) to the line segment 51 and the line segment 52. Specifically, the heights h1 and h2 of the line segment 51 and the line segment 52 are substantially equal. Are preferably equal. Similarly, the line widths W1 and W2 of the line segment 51 and the line segment 52 are preferably set to substantially the same value.
 線分51、52は、必ずしも平行である必要性はなく、少なくとも線分方向のある長さLに亘って、線分51、52が結合していなければ良い。好ましくは、少なくとも線分方向のある長さLに亘って、線分51、52が実質的に平行であることである。 The line segments 51 and 52 do not necessarily have to be parallel, and it is sufficient that the line segments 51 and 52 are not coupled over at least a certain length L in the line segment direction. Preferably, the line segments 51 and 52 are substantially parallel over at least a certain length L in the line segment direction.
 線分51、52の線分方向の長さLは、線分51、52の間隔Iの5倍以上であることが好ましく、10倍以上であることがより好ましい。長さL及び間隔Iは、平行線パターンライン5を形成するためのライン状液体4の形成長さ及び形成幅に対応して設定することができる。 The length L of the line segments 51 and 52 in the line segment direction is preferably 5 times or more of the interval I between the line segments 51 and 52, and more preferably 10 times or more. The length L and the interval I can be set corresponding to the formation length and formation width of the line-shaped liquid 4 for forming the parallel line pattern lines 5.
 ライン状液体4の形成始点と終点(線分方向のある長さLに亘った始点と終点)では、線分51、52が接続し、連続体として形成されることも好ましいことである。 It is also preferable that the line segments 51 and 52 are connected and formed as a continuous body at the formation start point and end point of the line-shaped liquid 4 (start point and end point over a certain length L in the line segment direction).
 また、線分51、52は、その線幅W1、W2がほぼ等しく、且つ、線幅W1、W2が2本線間距離(間隔I)に比して、十分に細いものであることが好ましい。 Further, it is preferable that the line segments 51 and 52 have substantially the same line widths W1 and W2, and the line widths W1 and W2 are sufficiently narrower than the distance between the two lines (interval I).
 更に、1本のライン状液体から生成される平行線パターン5を構成する線分51と線分52とは、同時に形成されたものであることが好ましい。 Furthermore, it is preferable that the line segment 51 and the line segment 52 constituting the parallel line pattern 5 generated from one line-shaped liquid are formed simultaneously.
 平行線パターン5は、各線分51、52が、下記(ア)~(エ)の条件を全て満たすことが特に好ましい。 In the parallel line pattern 5, it is particularly preferable that each of the line segments 51 and 52 satisfies all the following conditions (a) to (d).
 (ア)各線分51、52の高さをh1、h2とし、該各線分間における最薄部分の高さをZとしたときに、5≦h1/Z、且つ5≦h2/Zであること。 (A) When the height of each line segment 51, 52 is h1, h2, and the height of the thinnest part in each line segment is Z, 5 ≦ h1 / Z and 5 ≦ h2 / Z.
 (イ)各線分51、52の幅をW1、W2としたときに、W1≦10μm、且つW2≦10μmであること。 (A) When the widths of the line segments 51 and 52 are W1 and W2, W1 ≦ 10 μm and W2 ≦ 10 μm.
 (ウ)各線分51、52間の距離をIとしたときに、10μm≦I≦300μmであること。 (C) When the distance between the line segments 51 and 52 is I, 10 μm ≦ I ≦ 300 μm.
 (エ)各線分51、52の高さをh1、h2としたときに、50nm<h1<5μm、且つ50nm<h2<5μmであること。 (D) When the heights of the line segments 51 and 52 are h1 and h2, 50 nm <h1 <5 μm and 50 nm <h2 <5 μm.
 メッシュ状の機能性パターンが形成される対象となる基材は、格別限定されないが、例えば、ガラス、プラスチック(ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート、ポリエチレン、ポリプロピレン、アクリル、ポリエステル、ポリアミド等)、金属(銅、ニッケル、アルミ、鉄等や、あるいは合金)、セラミックなどを挙げることができ、これらは単独で用いてもよいし、貼り合せた状態で用いてもよい。中でも、プラスチックが好ましく、ポリエチレンテレフタレートや、ポリエチレン、ポリプロピレンのようなポリオレフィンなどが好適である。特に、易接着加工されたPETやPEN等が好ましく用いられる。易接着加工は、基材の表面を改質して接着性を向上する加工であり、これを、上述した表面エネルギーや接触角を変更するための表面処理として適用することも好ましいことである。 The base material on which the mesh-like functional pattern is formed is not particularly limited. For example, glass, plastic (polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate, polyethylene, polypropylene, acrylic , Polyester, polyamide, etc.), metals (copper, nickel, aluminum, iron, etc., or alloys), ceramics, and the like. These may be used alone or in a bonded state. . Among these, plastic is preferable, and polyethylene terephthalate, polyolefin such as polyethylene and polypropylene, and the like are preferable. In particular, PET, PEN and the like that are easily bonded are preferably used. The easy adhesion process is a process for improving the adhesion by modifying the surface of the substrate, and it is also preferable to apply this as a surface treatment for changing the surface energy and the contact angle described above.
 ライン状液体に含有される機能性材料は、基材に特定の機能を付与するための材料であれば格別限定されない。特定の機能を付与するとは、例えば、基材に導電性を付与する場合、導電性材料を機能性材料として用いることをいい、また、絶縁性を付与する場合には、絶縁性材料を機能性材料として用いることをいう。機能性材料として、例えば導電性微粒子、導電性ポリマー等の導電性材料、絶縁性材料、半導体材料、光学フィルター材料、誘電体材料等を好ましく例示できる。特に透明導電膜利用における機能性材料として、導電性微粒子、導電性ポリマーなどの導電性材料または導電性材料前駆体を好ましく例示できる。導電性材料前駆体は、適宜処理を施すことによって導電性材料に変化させることができるものを指す。 The functional material contained in the line liquid is not particularly limited as long as it is a material for imparting a specific function to the base material. Giving a specific function means, for example, that a conductive material is used as a functional material when imparting conductivity to a base material, and when an insulating property is imparted, the insulating material is functional. Use as a material. Preferred examples of the functional material include conductive materials such as conductive fine particles and conductive polymers, insulating materials, semiconductor materials, optical filter materials, dielectric materials, and the like. In particular, as a functional material in using a transparent conductive film, conductive materials such as conductive fine particles and conductive polymers or conductive material precursors can be preferably exemplified. An electroconductive material precursor refers to what can be changed into an electroconductive material by performing an appropriate process.
 導電性微粒子としては、格別限定されないが、Au、Pt、Ag、Cu、Ni、Cr、Rh、Pd、Zn、Co、Mo、Ru、W、Os、Ir、Fe、Mn、Ge、Sn、Ga、In等の微粒子を好ましく例示でき、中でも、Au、Ag、Cuのような金属微粒子を用いると、電気抵抗が低く、且つ腐食に強い回路パターンを形成することができるので、より好ましい。コスト及び安定性の観点から、Agを含む金属微粒子が最も好ましい。これらの金属微粒子の平均粒子径は、好ましくは1~100nmの範囲、より好ましくは3~50nmの範囲とされる。 The conductive fine particles are not particularly limited, but Au, Pt, Ag, Cu, Ni, Cr, Rh, Pd, Zn, Co, Mo, Ru, W, Os, Ir, Fe, Mn, Ge, Sn, Ga. In particular, fine particles such as In can be exemplified, and among them, use of fine metal particles such as Au, Ag, and Cu is more preferable because a circuit pattern having low electrical resistance and strong corrosion can be formed. From the viewpoint of cost and stability, metal fine particles containing Ag are most preferable. The average particle diameter of these metal fine particles is preferably in the range of 1 to 100 nm, more preferably in the range of 3 to 50 nm.
 また、導電性微粒子として、カーボン微粒子を用いることも好ましい。カーボン微粒子としては、グラファイト微粒子、カーボンナノチューブ、フラーレン等を好ましく例示できる。 It is also preferable to use carbon fine particles as the conductive fine particles. Preferable examples of the carbon fine particles include graphite fine particles, carbon nanotubes, fullerenes and the like.
 導電性ポリマーとしては、格別限定されないが、π共役系導電性高分子を好ましく挙げることができる。 The conductive polymer is not particularly limited, but a π-conjugated conductive polymer can be preferably exemplified.
 π共役系導電性高分子としては、特に限定されず、ポリチオフェン類、ポリピロール類、ポリインドール類、ポリカルバゾール類、ポリアニリン類、ポリアセチレン類、ポリフラン類、ポリパラフェニレン類、ポリパラフェニレンビニレン類、ポリパラフェニレンサルファイド類、ポリアズレン類、ポリイソチアナフテン類、ポリチアジル類等の鎖状導電性ポリマーを利用することができる。中でも、高い導電性が得られる点で、ポリチオフェン類やポリアニリン類が好ましい。ポリエチレンジオキシチオフェンであることが最も好ましい。 The π-conjugated conductive polymer is not particularly limited, and polythiophenes, polypyrroles, polyindoles, polycarbazoles, polyanilines, polyacetylenes, polyfurans, polyparaphenylenes, polyparaphenylene vinylenes, poly Chain conductive polymers such as paraphenylene sulfides, polyazulenes, polyisothianaphthenes, and polythiazyl can be used. Among these, polythiophenes and polyanilines are preferable in that high conductivity can be obtained. Most preferred is polyethylene dioxythiophene.
 導電性ポリマーは、より好ましくは、上述したπ共役系導電性高分子とポリアニオンとを含んで成ることである。こうした導電性ポリマーは、π共役系導電性高分子を形成する前駆体モノマーを、適切な酸化剤と酸化触媒と、ポリアニオンの存在下で化学酸化重合することによって容易に製造できる。 The conductive polymer more preferably comprises the above-described π-conjugated conductive polymer and polyanion. Such a conductive polymer can be easily produced by chemical oxidative polymerization of a precursor monomer that forms a π-conjugated conductive polymer in the presence of an appropriate oxidizing agent, an oxidation catalyst, and a polyanion.
 ポリアニオンは、置換若しくは未置換のポリアルキレン、置換若しくは未置換のポリアルケニレン、置換若しくは未置換のポリイミド、置換若しくは未置換のポリアミド、置換若しくは未置換のポリエステル及びこれらの共重合体であって、アニオン基を有する構成単位とアニオン基を有さない構成単位とからなるものである。 The polyanion is a substituted or unsubstituted polyalkylene, a substituted or unsubstituted polyalkenylene, a substituted or unsubstituted polyimide, a substituted or unsubstituted polyamide, a substituted or unsubstituted polyester, and a copolymer thereof. It consists of a structural unit having a group and a structural unit having no anionic group.
 このポリアニオンは、π共役系導電性高分子を溶媒に可溶化させる可溶化高分子である。また、ポリアニオンのアニオン基は、π共役系導電性高分子に対するドーパントとして機能して、π共役系導電性高分子の導電性と耐熱性を向上させる。 This polyanion is a solubilized polymer that solubilizes a π-conjugated conductive polymer in a solvent. The anion group of the polyanion functions as a dopant for the π-conjugated conductive polymer, and improves the conductivity and heat resistance of the π-conjugated conductive polymer.
 ポリアニオンのアニオン基としては、π共役系導電性高分子への化学酸化ドープが起こりうる官能基であればよいが、中でも、製造の容易さ及び安定性の観点からは、一置換硫酸エステル基、一置換リン酸エステル基、リン酸基、カルボキシ基、スルホ基等が好ましい。さらに、官能基のπ共役系導電性高分子へのドープ効果の観点より、スルホ基、一置換硫酸エステル基、カルボキシ基がより好ましい。 The anion group of the polyanion may be a functional group capable of undergoing chemical oxidation doping to the π-conjugated conductive polymer. Among them, from the viewpoint of ease of production and stability, a monosubstituted sulfate group, A monosubstituted phosphate group, a phosphate group, a carboxy group, a sulfo group and the like are preferable. Furthermore, from the viewpoint of the doping effect of the functional group on the π-conjugated conductive polymer, a sulfo group, a monosubstituted sulfate group, and a carboxy group are more preferable.
 ポリアニオンの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸、ポリイソプレンスルホン酸、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ-2-アクリルアミド-2-メチルプロパンカルボン酸、ポリイソプレンカルボン酸、ポリアクリル酸等が挙げられる。これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。 Specific examples of polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfone. Acid, polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, polyacrylic acid and the like. . These homopolymers may be sufficient and 2 or more types of copolymers may be sufficient.
 また、化合物内にF(フッ素原子)を有するポリアニオンであってもよい。具体的には、パーフルオロスルホン酸基を含有する「ナフィオン」(Dupont社製)、カルボン酸基を含有するパーフルオロ型ビニルエーテルからなる「フレミオン」(旭硝子社製)等を挙げることができる。 Further, it may be a polyanion having F (fluorine atom) in the compound. Specific examples include “Nafion” containing a perfluorosulfonic acid group (manufactured by Dupont), “Flemion” (manufactured by Asahi Glass Co., Ltd.) made of perfluoro vinyl ether containing a carboxylic acid group.
 これらのうち、スルホン酸を有する化合物であると、インクジェット印刷方式を用いた際に液体射出安定性が特に良好であり、かつ高い導電性が得られることから、より好ましい。 Among these, a compound having a sulfonic acid is more preferable because the liquid ejection stability is particularly good when the ink jet printing method is used and high conductivity is obtained.
 さらに、これらの中でも、ポリスチレンスルホン酸、ポリイソプレンスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸が好ましい。これらのポリアニオンは、導電性に優れるという効果を奏する。 Further, among these, polystyrene sulfonic acid, polyisoprene sulfonic acid, polyacrylic acid ethyl sulfonic acid, and polybutyl acrylate sulfonic acid are preferable. These polyanions have the effect of being excellent in conductivity.
 ポリアニオンの重合度は、モノマー単位が10~100000個の範囲であることが好ましく、溶媒溶解性及び導電性の点からは、50~10000個の範囲がより好ましい。 The polymerization degree of the polyanion is preferably in the range of 10 to 100,000 monomer units, and more preferably in the range of 50 to 10,000 from the viewpoint of solvent solubility and conductivity.
 導電性ポリマーは市販の材料も好ましく利用できる。例えば、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸からなる導電性ポリマー(PEDOT/PSSと略す)が、H.C.Starck社から「CLEVIOS」シリーズとして、Aldrich社から「PEDOT-PASS483095、560598」として、Nagase Chemtex社から「Denatron」シリーズとして市販されている。また、ポリアニリンが、日産化学社から「ORMECON」シリーズとして市販されている。 A commercially available material can be preferably used as the conductive polymer. For example, a conductive polymer (abbreviated as PEDOT / PSS) made of poly (3,4-ethylenedioxythiophene) and polystyrene sulfonic acid is used in H.264. C. It is commercially available from Starck as the “CLEVIOS” series, from Aldrich as “PEDOT-PASS 483095, 560598” and from Nagase Chemtex as the “Denatron” series. Polyaniline is also commercially available from Nissan Chemical Company as the “ORMECON” series.
 また、特に透明導電膜利用における機能性材料として、導電性材料前駆体も好ましく用いることができ、例えば、有機金属錯体、無機金属塩、無電解メッキ触媒などを好ましく例示できる。 In addition, a conductive material precursor can also be preferably used as a functional material particularly in the use of a transparent conductive film, and examples thereof include organic metal complexes, inorganic metal salts, and electroless plating catalysts.
 機能性材料を含有させる液体としては、水や、有機溶剤等の1種又は2種以上を組み合わせて用いることができる。 As the liquid containing the functional material, water, an organic solvent, or the like can be used alone or in combination.
 有機溶剤は、格別限定されないが、例えば、イソプロパノール、1-ブタノール、2-ブタノール、1,2-ヘキサンジオール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、プロピレングリコールなどのアルコール類、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテルなどのエーテル類等を例示できる。 The organic solvent is not particularly limited. For example, isopropanol, 1-butanol, 2-butanol, 1,2-hexanediol, 2-methyl-2,4-pentanediol, 1,3-butanediol, 1,4- Examples include alcohols such as butanediol and propylene glycol, ethers such as diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, and dipropylene glycol monoethyl ether.
 複数の溶剤を併用する場合は、溶剤の沸点の順に液体の乾燥が進むため、最も沸点が高い溶剤が最後に残る。このため、沸点が最も高い溶剤の基材に対する濡れ性がコーヒーステイン現象の発現に関係する。 When using a plurality of solvents together, the drying of the liquid proceeds in the order of the boiling points of the solvents, so the solvent with the highest boiling point remains at the end. For this reason, the wettability with respect to the base material of the solvent having the highest boiling point is related to the expression of the coffee stain phenomenon.
 また、機能性材料を含有させる液体としては、本発明の効果を損なわない範囲で、界面活性剤など種々の添加剤を含んでもよい。 In addition, the liquid containing the functional material may contain various additives such as a surfactant as long as the effects of the present invention are not impaired.
 界面活性剤を用いることで、基材との接触角を調整して、上述したコーヒーステイン現象を好適に生起させることも好ましいことである。界面活性剤としては、格別限定されないが、シリコン系界面活性剤等を用いることができる。シリコン系界面活性剤とはジメチルポリシロキ酸の側鎖または末端をポリエーテル変性したものであり、例えば、信越化学工業製の「KF-351A」、「KF-642」やビッグケミー製の「BYK347」、「BYK348」などが市販されている。界面活性剤の添加量は、機能性材料を含有する液体の全量に対して、1重量%以下であることが好ましい。 It is also preferable to adjust the contact angle with the base material to suitably cause the above-described coffee stain phenomenon by using a surfactant. The surfactant is not particularly limited, but a silicon surfactant or the like can be used. Silicone surfactants are those in which the side chain or terminal of dimethylpolysiloxy acid is polyether-modified, such as “KF-351A” and “KF-642” manufactured by Shin-Etsu Chemical Co., Ltd. and “BYK347” manufactured by Big Chemie. “BYK348” and the like are commercially available. The addition amount of the surfactant is preferably 1% by weight or less with respect to the total amount of the liquid containing the functional material.
 基材上にライン状液体を付与する方法は、格別限定されず、コーヒーステイン現象を生起し得るだけの流動性を有した状態でライン状液体を付与できるものであればよく、種々の方法を用いることができる。特に好ましい方法として、例えば、ディスペンサー法やインクジェット法などを挙げることができる。 The method for applying the line liquid on the substrate is not particularly limited as long as the liquid can be applied in a state having fluidity sufficient to cause the coffee stain phenomenon. Can be used. Particularly preferred methods include, for example, a dispenser method and an ink jet method.
 本発明のメッシュ状の機能性パターンは、上記により得られたメッシュ状の機能性パターンに更に後加工を施したものであってもよい。後加工により、機能性を更に高めることができる。後加工は、格別限定されないが、例えばメッキ加工などが挙げられる。メッキ加工により例えば反射率の低減を図ったものであることが好ましい。 The mesh-like functional pattern of the present invention may be a mesh-like functional pattern obtained as described above and further subjected to post-processing. Functionality can be further enhanced by post-processing. The post-processing is not particularly limited, and examples thereof include plating. For example, the reflectance is preferably reduced by plating.
 本発明の機能性基材は、以上に説明したメッシュ状の機能性パターンを備える。特に、機能性材料は、メッシュ状の機能性パターンからなる塗膜に導電性を付与してなる透明導電膜付き基材であることが好ましい。 The functional substrate of the present invention has the mesh-like functional pattern described above. In particular, the functional material is preferably a substrate with a transparent conductive film formed by imparting conductivity to a coating film composed of a mesh-like functional pattern.
 塗膜への導電性の付与は、例えば、機能性材料として導電性材料を用いることにより行うか、あるいは、機能性材料として導電性材料前駆体を用いて形成された塗膜に、後処理を施すことによって導電性を付与することによって行うことができる。 The imparting of conductivity to the coating film is performed, for example, by using a conductive material as a functional material, or a post-treatment is performed on a coating film formed using a conductive material precursor as a functional material. It can carry out by providing electroconductivity by giving.
 機能性基材は、塗膜を構成する細線部の反射光が広く分布したパターン形状となり、ぎらつきが軽減され、明るい環境下でも視認されにくい、すなわち低視認性の向上を図ることができる。 The functional base material has a pattern shape in which the reflected light of the fine line portion constituting the coating film is widely distributed, the glare is reduced, and it is difficult to visually recognize even in a bright environment, that is, low visibility can be improved.
 機能性基材の用途は、格別限定されず、種々の電子機器が備える種々のデバイスに用いることができる。 The use of the functional base material is not particularly limited, and can be used for various devices included in various electronic devices.
 機能性基材は、塗膜を構成する細線の低視認性に優れるため、利用者が、該基材を介して画像を目視するような用途において、際立った効果が奏される。 Since the functional base material is excellent in low visibility of the fine lines constituting the coating film, a remarkable effect is exhibited in applications in which a user views an image through the base material.
 特に透明導電膜付き基材の好ましい用途は、本発明の効果を顕著に奏する観点で、例えば、液晶、プラズマ、有機エレクトロルミネッセンス、フィールドエミッション等、各種方式のディスプレイ用透明電極として、あるいは、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子等に用いられる透明電極として好適に用いることができる。 In particular, the preferred application of the substrate with a transparent conductive film is, for example, a liquid crystal, plasma, organic electroluminescence, field emission, etc., as a transparent electrode for various types of displays, or a touch panel or the like, from the viewpoint of significantly achieving the effects of the present invention. It can be suitably used as a transparent electrode used in a mobile phone, electronic paper, various solar cells, various electroluminescence light control elements, and the like.
 より具体的には、透明導電膜付き基材は、デバイスの透明電極として好適に用いられる。デバイスとしては、格別限定されるものではないが、例えば、タッチパネルセンサー等を好ましく例示できる。また、これらデバイスを備えた電子機器としては、格別限定されるものではないが、例えばスマートフォン、タブレット端末等を好ましく例示できる。 More specifically, the substrate with a transparent conductive film is suitably used as a transparent electrode of the device. Although it does not specifically limit as a device, For example, a touch panel sensor etc. can be illustrated preferably. Moreover, although it does not specifically limit as an electronic device provided with these devices, For example, a smart phone, a tablet terminal, etc. can be illustrated preferably.
 以上の説明において、一つの態様について説明された構成は、他の態様に適宜適用することができる。 In the above description, the configuration described for one aspect can be appropriately applied to other aspects.
 以下に、本発明の実施例について説明するが、本発明はかかる実施例により限定されない。 Hereinafter, examples of the present invention will be described, but the present invention is not limited to the examples.
(実施例1)
1.インクの調製
 下記組成からなるインク1を調製した。
 ・銀ナノ粒子の水分散液1(銀ナノ粒子:40重量%):1.75重量%
 ・シリコン系界面活性剤(ビックケミー製「BYK-348」):0.01重量%
 ・純水:残部
Example 1
1. Preparation of ink Ink 1 having the following composition was prepared.
-Silver nanoparticle aqueous dispersion 1 (silver nanoparticles: 40 wt%): 1.75 wt%
・ Silicon-based surfactant ("BYK-348" manufactured by Big Chemie): 0.01% by weight
・ Pure water: balance
2.基材の調製
 基材として、易接着加工(表面処理)により基材の表面エネルギーEを52mN/mとしたPET基材からなる基材1を用いた。
2. Preparation of base material The base material 1 which consists of a PET base material which made the surface energy E of the base material 52 mN / m by easy-adhesion processing (surface treatment) was used as a base material.
3.表面エネルギー及び接触角の測定
 メッシュ状の機能性パターンを形成する前に、インク1で形成される第1の平行線パターンの形成領域内の表面エネルギー及び第2のライン状液体の接触角について、代用の方法により測定を行った。
3. Measurement of surface energy and contact angle Before forming the mesh-like functional pattern, the surface energy in the formation region of the first parallel line pattern formed with ink 1 and the contact angle of the second linear liquid are as follows. Measurements were performed by an alternative method.
(1)表面エネルギーの測定
 基材1に、インク1を20μL滴下し、乾燥させて、液滴の周囲にコーヒーリング現象によるリング状細線を形成した。その後、このリング状細線の内部の中心領域に対する、水、炭酸プロピレン、ジヨードメタンの接触角を測定し、Young-Fowkes式より、表面エネルギーを算出した。ここで、水、炭酸プロピレン、ジヨードメタンの接触角の測定は、協和界面化学社製接触角測定装置「DM-501」を用いて行った(以下に説明する接触角の測定にも同装置を用いた。)。算出された表面エネルギーの値は56mN/mであった。この値を、第1の平行線パターンの形成領域内の表面エネルギーCとした。
(1) Measurement of surface energy 20 μL of ink 1 was dropped onto the substrate 1 and dried to form ring-shaped fine lines due to the coffee ring phenomenon around the droplets. Thereafter, the contact angle of water, propylene carbonate, and diiodomethane with respect to the central region inside the ring-shaped thin wire was measured, and the surface energy was calculated from the Young-Fowkes equation. Here, the contact angles of water, propylene carbonate and diiodomethane were measured using a contact angle measuring device “DM-501” manufactured by Kyowa Interface Chemical Co., Ltd. (the same device was also used for measuring the contact angle described below). .) The calculated surface energy value was 56 mN / m. This value was defined as the surface energy C in the first parallel line pattern formation region.
(2)第2のライン状液体の接触角の測定
ア.第1の平行線パターンの形成領域内における第2のライン状液体の接触角の測定 インク1に対する接触角が22°となる易接着加工付ポリエチレンテレフタレート(PET)基材に、インク1を20μL滴下し、乾燥させて、液滴の周囲にコーヒーリング現象によるリング状細線を形成した。その後、このリング状細線の内部の中心領域に対する、インク1(第2のライン状液体と同組成)の接触角を測定した。測定された接触角は、17°であった。この値を、第1の平行線パターンの形成領域内における第2のライン状液体の接触角Fとした。
(2) Measurement of the contact angle of the second linear liquid a. Measurement of the contact angle of the second line-shaped liquid in the region where the first parallel line pattern is formed 20 μL of ink 1 is dropped on a polyethylene terephthalate (PET) base material with easy adhesion processing that makes the contact angle with respect to ink 1 22 °. And dried to form ring-shaped fine lines due to the coffee ring phenomenon around the droplets. Thereafter, the contact angle of ink 1 (same composition as the second line-shaped liquid) with respect to the central region inside the ring-shaped thin wire was measured. The measured contact angle was 17 °. This value was defined as the contact angle F of the second line-shaped liquid in the formation region of the first parallel line pattern.
イ.第1の平行線パターンの形成領域外における第2のライン状液体の接触角の測定
 基材表面にインク1を3μL滴下して、基材表面における第2のライン状液体の接触角を測定した。測定された接触角は、20°であった。この値を、第1の平行線パターンの形成領域外における第2のライン状液体の接触角Gとした。
I. Measurement of the contact angle of the second linear liquid outside the region where the first parallel line pattern was formed 3 μL of ink 1 was dropped on the surface of the substrate, and the contact angle of the second linear liquid on the surface of the substrate was measured. . The measured contact angle was 20 °. This value was used as the contact angle G of the second linear liquid outside the region where the first parallel line pattern was formed.
4.パターンの形成
 コニカミノルタ製インクジェットヘッド「512LHX」(標準液滴容量42pL)を取り付けたXYロボット(武蔵エンジニアリング製「SHOTMASTER300」)と、インクジェットコントロールシステム(コニカミノルタ製「IJCS-1」)を用いて、インク1をノズル列方向間ピッチ282μm、走査方向間ピッチ45μmとなるように液滴として基材1上に順次吐出し、基材上において走査方向に連続的に付与された液滴を合一させることで複数のライン状液体を形成した。なお、印字しながら基材を載せたステージを70℃で加熱し、これらライン状液体を乾燥させる過程で、周辺部に固形分を堆積させることで、1本のライン状液体から1組2本の平行線パターンが形成された。
4). Formation of pattern Using an XY robot (“SHOTMASTER300” manufactured by Musashi Engineering) equipped with an inkjet head “512LHX” (standard droplet volume 42 pL) manufactured by Konica Minolta, and an inkjet control system (“IJCS-1” manufactured by Konica Minolta) Ink 1 is sequentially discharged onto the substrate 1 as droplets so that the pitch between the nozzle rows is 282 μm and the pitch between the scanning directions is 45 μm, and the droplets continuously applied in the scanning direction on the substrate are united. As a result, a plurality of line-shaped liquids were formed. In addition, in the process of heating the stage on which the substrate is placed while printing at 70 ° C. and drying these line-shaped liquids, the solid content is deposited on the periphery, so that one set of two lines from one line-shaped liquid. The parallel line pattern was formed.
 その後、基材を90°回転して、第1の平行線パターンとは直交する方向に、インク1による複数の第2のライン状液体を上記と同様の方法で塗布し、乾燥して、第2の平行線パターンを形成した。 Thereafter, the substrate is rotated by 90 °, and a plurality of second linear liquids using ink 1 are applied in the same direction as described above in a direction orthogonal to the first parallel line pattern, dried, and dried. Two parallel line patterns were formed.
 このようにして、第1の平行線パターンと第2の平行線パターンとが直角に交差するメッシュ状の機能性パターンを形成した。メッシュ状の機能性パターン全体のサイズは、50mm×50mmである。 In this way, a mesh-like functional pattern in which the first parallel line pattern and the second parallel line pattern intersect at a right angle was formed. The overall size of the mesh-like functional pattern is 50 mm × 50 mm.
(実施例2)
1.インクの調製
 下記組成からなるインク2を調製した。
 ・銀ナノ粒子の水分散液2(銀ナノ粒子:40重量%):1.75重量%
 ・シリコン系界面活性剤(ビックケミー製「BYK-348」):0.01重量%
 ・純水:残部
(Example 2)
1. Preparation of ink Ink 2 having the following composition was prepared.
-Silver nanoparticle aqueous dispersion 2 (silver nanoparticles: 40 wt%): 1.75 wt%
・ Silicon-based surfactant (BYK-348 manufactured by Big Chemie): 0.01%
・ Pure water: balance
 なお、銀ナノ粒子の水分散液2は、実施例1で用いた銀ナノ粒子の水分散液1とは分散剤が異なる。 The silver nanoparticle aqueous dispersion 2 is different from the silver nanoparticle aqueous dispersion 1 used in Example 1 in the dispersant.
2.基材の調製
 基材として、基材1(表面エネルギーE=52mN/m)を用いた。
2. Preparation of substrate The substrate 1 (surface energy E = 52 mN / m) was used as the substrate.
3.表面エネルギー及び接触角の測定
 実施例1のインク1をインク2に代えて、実施例1と同様に測定した結果、第1の平行線パターンの形成領域内の表面エネルギーCは49mN/mであり、第1の平行線パターンの形成領域内における第2のライン状液体の接触角Fは25°であり、第1の平行線パターンの形成領域外における第2のライン状液体の接触角Gは、21°であった。
3. Measurement of surface energy and contact angle As a result of measuring in the same manner as in Example 1 by replacing the ink 1 of Example 1 with the ink 2, the surface energy C in the formation region of the first parallel line pattern is 49 mN / m. The contact angle F of the second line-shaped liquid in the first parallel line pattern formation region is 25 °, and the contact angle G of the second line-shaped liquid outside the first parallel line pattern formation region is 21 °.
4.パターンの形成
 インク1をインク2に変えた以外は実施例1と同様にして、メッシュ状の機能性パターンを形成した。
4). Formation of Pattern A mesh-like functional pattern was formed in the same manner as in Example 1 except that the ink 1 was changed to the ink 2.
(実施例3)
1.インクの調製
 インクとして、インク1を用いた。
Example 3
1. Ink preparation Ink 1 was used as the ink.
2.基材の調製
 基材として、易接着加工(表面処理)により基材の表面エネルギーを48mN/mとしたPET基材からなる基材2を用いた。
2. Preparation of base material As the base material, the base material 2 made of a PET base material having a surface energy of 48 mN / m by easy adhesion processing (surface treatment) was used.
3.表面エネルギー及び接触角の測定
 実施例1の基材1を基材2に代えて、実施例1と同様に測定した結果、第1の平行線パターンの形成領域内の表面エネルギーCは56mN/mであり、第1の平行線パターンの形成領域内における第2のライン状液体の接触角Fは17°であり、第1の平行線パターンの形成領域外における第2のライン状液体の接触角Gは、28°であった。
3. Measurement of surface energy and contact angle The substrate 1 of Example 1 was replaced with the substrate 2 and measured in the same manner as in Example 1. As a result, the surface energy C in the formation region of the first parallel line pattern was 56 mN / m. The contact angle F of the second linear liquid in the first parallel line pattern formation region is 17 °, and the contact angle of the second linear liquid outside the first parallel line pattern formation region. G was 28 °.
4.パターンの形成
 コニカミノルタ製インクジェットヘッド「512LHX」(標準液滴容量42pL)を取り付けたXYロボット(武蔵エンジニアリング製「SHOTMASTER300」)と、インクジェットコントロールシステム(コニカミノルタ製「IJCS-1」)を用いて、インク1をノズル列方向間ピッチ282μm、走査方向間ピッチ45μmとなるように液滴として基材2上に順次吐出し、基材上において走査方向に連続的に付与された液滴を合一させることで複数のライン状液体を形成した。なお、印字しながら基材を載せたステージを70℃で加熱し、これらライン状液体を乾燥させる過程で、周辺部に固形分を堆積させることで、1本のライン状液体から1組2本の平行線パターンが形成された。
4). Formation of pattern Using an XY robot (“SHOTMASTER300” manufactured by Musashi Engineering) equipped with an inkjet head “512LHX” (standard droplet volume 42 pL) manufactured by Konica Minolta, and an inkjet control system (“IJCS-1” manufactured by Konica Minolta) Ink 1 is sequentially discharged onto the substrate 2 as droplets so that the pitch between the nozzle rows is 282 μm and the pitch between the scanning directions is 45 μm, and the droplets continuously applied in the scanning direction are combined on the substrate. As a result, a plurality of line-shaped liquids were formed. In addition, in the process of heating the stage on which the substrate is placed while printing at 70 ° C. and drying these line-shaped liquids, the solid content is deposited on the periphery, so that one set of two lines from one line-shaped liquid. The parallel line pattern was formed.
 その後、第1の平行線パターンを形成した基材を120℃のホットプレートの上に置いて、1時間、加熱による洗浄を行った。 Thereafter, the substrate on which the first parallel line pattern was formed was placed on a hot plate at 120 ° C. and washed by heating for 1 hour.
 加熱による洗浄の後、基材を90°回転して、第1の平行線パターンとは直交する方向に、インク1による複数の第2のライン状液体を上記と同様の方法で塗布し、乾燥して、第2の平行線パターンを形成した。 After cleaning by heating, the substrate is rotated by 90 °, and a plurality of second line-shaped liquids with ink 1 are applied in a direction orthogonal to the first parallel line pattern by the same method as described above, and dried. Thus, a second parallel line pattern was formed.
 このようにして、第1の平行線パターンと第2の平行線パターンとが直角に交差するメッシュ状の機能性パターンを形成した。メッシュ状の機能性パターン全体のサイズは、50mm×50mmである。 In this way, a mesh-like functional pattern in which the first parallel line pattern and the second parallel line pattern intersect at a right angle was formed. The overall size of the mesh-like functional pattern is 50 mm × 50 mm.
(実施例4)
 実施例3において、加熱による洗浄を、下記電磁波による洗浄に変更した以外は実施例3と同様にして、メッシュ状のパターンを形成した。
Example 4
In Example 3, a mesh pattern was formed in the same manner as in Example 3 except that the cleaning by heating was changed to the cleaning by the following electromagnetic wave.
<電磁波による洗浄>
 電磁波による洗浄として、キセノンフラッシュランプによる洗浄を行った。
 Xenon社製キセノンフラッシュランプ装置「SINTERON 2000」を用いて、パルス幅500μ秒、印加電圧3.8kVでキセノンフラッシュを1回照射して、第1の平行線パターンの形成領域内を含む領域を洗浄した。
<Cleaning with electromagnetic waves>
Cleaning with a xenon flash lamp was performed as electromagnetic wave cleaning.
Using the Xenon flash lamp device “SINTERON 2000” manufactured by Xenon, the xenon flash is irradiated once with a pulse width of 500 μs and an applied voltage of 3.8 kV to clean the region including the formation region of the first parallel line pattern. did.
(実施例5)
 実施例3において、加熱による洗浄を、下記溶剤による洗浄に変更した以外は実施例3と同様にして、メッシュ状のパターンを形成した。
(Example 5)
In Example 3, a mesh pattern was formed in the same manner as in Example 3 except that the cleaning by heating was changed to cleaning with the following solvent.
<溶剤による洗浄>
 2プロパノールに10分間浸漬させることにより、第1の平行線パターンの形成領域内を含む領域を洗浄した。
<Washing with solvent>
The region including the formation region of the first parallel line pattern was cleaned by immersing in 2 propanol for 10 minutes.
(実施例6)
1.インクの調製
 インクとして、インク1を用いた。
(Example 6)
1. Ink preparation Ink 1 was used as the ink.
2.基材の調製
 基材として、基材2(表面エネルギーE=48mN/m)を用いた。
2. Preparation of substrate The substrate 2 (surface energy E = 48 mN / m) was used as the substrate.
3.表面エネルギー及び接触角の測定
 実施例1の基材1を基材2に代えて、実施例1と同様に測定した結果、第1の平行線パターンの形成領域内の表面エネルギーCは56mN/mであり、第1の平行線パターンの形成領域内における第2のライン状液体の接触角Fは17°であり、第1の平行線パターンの形成領域外における第2のライン状液体の接触角Gは、28°であった。
3. Measurement of surface energy and contact angle The substrate 1 of Example 1 was replaced with the substrate 2 and measured in the same manner as in Example 1. As a result, the surface energy C in the formation region of the first parallel line pattern was 56 mN / m. The contact angle F of the second linear liquid in the first parallel line pattern formation region is 17 °, and the contact angle of the second linear liquid outside the first parallel line pattern formation region. G was 28 °.
4.パターンの形成
 コニカミノルタ製インクジェットヘッド「512LHX」(標準液滴容量42pL)を取り付けたXYロボット(武蔵エンジニアリング製「SHOTMASTER300」)と、インクジェットコントロールシステム(コニカミノルタ製「IJCS-1」)を用いて、インク1をノズル列方向間ピッチ282μm、走査方向間ピッチ45μmとなるように液滴として基材2上に順次吐出し、基材上において走査方向に連続的に付与された液滴を合一させることで複数のライン状液体を形成した。なお、印字しながら基材を載せたステージを70℃で加熱し、これらライン状液体を乾燥させる過程で、周辺部に固形分を堆積させることで、1本のライン状液体から1組2本の平行線細線パターンが形成された。
4). Pattern formation Using an XY robot (“SHOTMASTER300” manufactured by Musashi Engineering) equipped with an inkjet head “512LHX” manufactured by Konica Minolta (standard droplet volume 42 pL) and an inkjet control system (“IJCS-1” manufactured by Konica Minolta) Ink 1 is sequentially discharged onto the substrate 2 as droplets so that the pitch between the nozzle rows is 282 μm and the pitch between the scanning directions is 45 μm, and the droplets continuously applied in the scanning direction are combined on the substrate. As a result, a plurality of line-shaped liquids were formed. In addition, in the process of heating the stage on which the substrate is placed while printing at 70 ° C. and drying these line-shaped liquids, the solid content is deposited on the periphery, so that one set of two lines from one line-shaped liquid. The parallel line fine line pattern was formed.
 その後、基材を90°回転して、第1の平行線パターンとは直交する方向に、インク1による複数の第2のライン状液体を塗布し、乾燥して、第2の平行線パターンを形成した。このとき、インクの塗布に際して、第1の平行線パターンの形成領域内における第2のライン状液体の長さあたりの液体付与量を、第1の平行線パターンの形成領域外における液体付与量の70%に調整して塗布した。 Thereafter, the substrate is rotated by 90 °, a plurality of second line-shaped liquids with ink 1 are applied in a direction orthogonal to the first parallel line pattern, and dried to form the second parallel line pattern. Formed. At this time, when the ink is applied, the liquid application amount per length of the second line-shaped liquid in the first parallel line pattern formation region is set to the liquid application amount outside the first parallel line pattern formation region. The coating was adjusted to 70%.
 このようにして、第1の平行線パターンと第2の平行線パターンとが直角に交差するメッシュ状の機能性パターンを形成した。メッシュ状の機能性パターン全体のサイズは、50mm×50mmである。 In this way, a mesh-like functional pattern in which the first parallel line pattern and the second parallel line pattern intersect at a right angle was formed. The overall size of the mesh-like functional pattern is 50 mm × 50 mm.
(実施例7)
1.インクの調製
 インクとして、インク1を用いた。
(Example 7)
1. Ink preparation Ink 1 was used as the ink.
2.基材の調製
 基材として、易接着加工(表面処理)により基材の表面エネルギーEを56mN/mとしたPET基材からなる基材3を用いた。
2. Preparation of base material As the base material, the base material 3 made of a PET base material having a surface energy E of 56 mN / m by easy adhesion processing (surface treatment) was used.
3.表面エネルギー及び接触角の測定
 まず、銀ナノ粒子の水分散液1(銀ナノ粒子:40重量%)を、基材3に、ワイヤーバー#7にて塗布し、乾燥させて機能性材料(銀ナノ粒子)のベタ面を作製した。このベタ面の表面エネルギーを測定したところ、61mN/mであった。この値を、第1のライン状液体と同一組成の液体を塗布して乾燥させてなるベタ面の表面エネルギーDとした。
3. Measurement of surface energy and contact angle First, an aqueous dispersion 1 of silver nanoparticles (silver nanoparticles: 40% by weight) is applied to the substrate 3 with a wire bar # 7 and dried to obtain a functional material (silver). A solid surface of (nanoparticles) was prepared. The surface energy of this solid surface was measured and found to be 61 mN / m. This value was defined as the surface energy D of the solid surface obtained by applying and drying a liquid having the same composition as the first linear liquid.
 また、実施例1の基材1を基材3に代えて、実施例1と同様に測定した結果、第1の平行線パターンの形成領域内の表面エネルギーCは56mN/mであり、第1の平行線パターンの形成領域内における第2のライン状液体の接触角Fは15°であり、第1の平行線パターンの形成領域外における第2のライン状液体の接触角Gは、19°であった。 Moreover, the base material 1 of Example 1 was replaced with the base material 3, and as a result of measuring similarly to Example 1, the surface energy C in the formation area of the first parallel line pattern was 56 mN / m. The contact angle F of the second linear liquid in the parallel line pattern formation region is 15 °, and the contact angle G of the second linear liquid outside the formation region of the first parallel line pattern is 19 °. Met.
4.パターンの形成
 実施例1において、基材1を基材3に代えたこと以外は実施例1と同様にして、メッシュ状の機能性パターンを形成した。
4). Formation of Pattern A mesh-like functional pattern was formed in the same manner as in Example 1 except that the substrate 1 was replaced with the substrate 3 in Example 1.
(実施例8)
1.インクの調製
 下記組成からなるインク4を調製した。
・銀ナノ粒子の水分散液1(銀ナノ粒子:40重量%):1.75重量%
・ジエチレングリコールモノブチルエーテル:20重量%
・純水:残部
(Example 8)
1. Preparation of ink Ink 4 having the following composition was prepared.
-Silver nanoparticle aqueous dispersion 1 (silver nanoparticles: 40 wt%): 1.75 wt%
・ Diethylene glycol monobutyl ether: 20% by weight
・ Pure water: balance
2.基材の調製
 基材として、基材1(表面エネルギーE=52mN/m)を用いた。
2. Preparation of substrate The substrate 1 (surface energy E = 52 mN / m) was used as the substrate.
3.接触角の測定
 協和界面化学社製接触角測定装置「DM-501」を用いて、第1の平行線パターンの形成領域外におけるジエチレングリコールモノブチルエーテル(沸点231℃)の接触角を測定したところ、接触角Hは5°であった。なお、ジエチレングリコールモノブチルエーテルを滴下後5秒後の値とした。
3. Measurement of contact angle Using a contact angle measuring device “DM-501” manufactured by Kyowa Interface Chemical Co., Ltd., the contact angle of diethylene glycol monobutyl ether (boiling point 231 ° C.) outside the formation region of the first parallel line pattern was measured. The angle H was 5 °. In addition, it was set as the value 5 seconds after dripping diethylene glycol monobutyl ether.
4.パターンの形成
 実施例1において、インク1をインク4に代えたこと以外は実施例1と同様にして、メッシュ状の機能性パターンを形成した。
4). Formation of Pattern A mesh-like functional pattern was formed in the same manner as in Example 1 except that the ink 1 was replaced with the ink 4 in Example 1.
(比較例1)
1.インクの調製
 インクとして、インク1を用いた。
(Comparative Example 1)
1. Ink preparation Ink 1 was used as the ink.
2.基材の調製
 基材として、基材2(表面エネルギーE=48mN/m)を用いた。
2. Preparation of substrate The substrate 2 (surface energy E = 48 mN / m) was used as the substrate.
3.表面エネルギー及び接触角の測定
 実施例1の基材1を基材2に代えて、実施例1と同様に測定した結果、第1の平行線パターンの形成領域内の表面エネルギーCは56mN/mであり、第1の平行線パターンの形成領域内における第2のライン状液体の接触角Fは17°であり、第1の平行線パターンの形成領域外における第2のライン状液体の接触角Gは、28°であった。
3. Measurement of surface energy and contact angle The substrate 1 of Example 1 was replaced with the substrate 2 and measured in the same manner as in Example 1. As a result, the surface energy C in the formation region of the first parallel line pattern was 56 mN / m. The contact angle F of the second linear liquid in the first parallel line pattern formation region is 17 °, and the contact angle of the second linear liquid outside the first parallel line pattern formation region. G was 28 °.
4.パターンの形成
 実施例1において、基材1を基材2に代えたこと以外は実施例1と同様にして、メッシュ状の機能性パターンを形成した。
4). Formation of Pattern A mesh-like functional pattern was formed in the same manner as in Example 1 except that the substrate 1 was replaced with the substrate 2 in Example 1.
(比較例2)
1.インクの調製
 下記組成からなるインク3を調製した。
 ・銀ナノ粒子の水分散液3(銀ナノ粒子:40重量%):1.75重量%
 ・シリコン系界面活性剤(ビックケミー製「BYK-348」):0.01重量%
 ・純水:残部
(Comparative Example 2)
1. Preparation of ink Ink 3 having the following composition was prepared.
-Silver nanoparticle aqueous dispersion 3 (silver nanoparticles: 40 wt%): 1.75 wt%
・ Silicon-based surfactant ("BYK-348" manufactured by Big Chemie): 0.01% by weight
・ Pure water: balance
 なお、銀ナノ粒子の水分散液3は、銀ナノ粒子の水分散液1及び2とは分散剤が異なる。 The aqueous dispersion 3 of silver nanoparticles is different from the aqueous dispersions 1 and 2 of silver nanoparticles.
2.基材の調製
 基材として、基材2(表面エネルギーE=48mN/m)を用いた。
2. Preparation of substrate The substrate 2 (surface energy E = 48 mN / m) was used as the substrate.
3.表面エネルギー及び接触角の測定
 実施例1のインク1をインク3に代え、更に基材1を基材2に代えて、実施例1と同様に測定した結果、第1の平行線パターンの形成領域内の表面エネルギーCは61mN/mであり、第1の平行線パターンの形成領域内における第2のライン状液体の接触角Fは12°であり、第1の平行線パターンの形成領域外における第2のライン状液体の接触角Gは、29°であった。
3. Measurement of surface energy and contact angle As a result of measuring in the same manner as in Example 1 with the ink 1 of Example 1 replaced with the ink 3 and the substrate 1 replaced with the substrate 2, the first parallel line pattern formation region The inner surface energy C is 61 mN / m, the contact angle F of the second linear liquid in the first parallel line pattern formation region is 12 °, and the outside of the first parallel line pattern formation region. The contact angle G of the second linear liquid was 29 °.
4.パターンの形成
 実施例1において、インク1をインク3に代え、更に基材1を基材2に代えたこと以外は実施例1と同様にして、メッシュ状の機能性パターンを形成した。
4). Formation of Pattern A mesh-like functional pattern was formed in the same manner as in Example 1 except that the ink 1 was replaced with the ink 3 and the substrate 1 was replaced with the substrate 2 in Example 1.
(比較例3)
1.インクの調製
 インクとして、インク4を用いた。
(Comparative Example 3)
1. Ink preparation Ink 4 was used as the ink.
2.基材の調製
 基材として、基材2(表面エネルギーE=48mN/m)を用いた。
2. Preparation of substrate The substrate 2 (surface energy E = 48 mN / m) was used as the substrate.
3.接触角の測定
 協和界面化学社製接触角測定装置「DM-501」を用いて、第1の平行線パターンの形成領域外におけるジエチレングリコールモノブチルエーテル(沸点231℃)の接触角を測定したところ、接触角Hは8°であった。なお、ジエチレングリコールモノブチルエーテルを滴下後5秒後の値とした。
3. Measurement of contact angle Using a contact angle measuring device “DM-501” manufactured by Kyowa Interface Chemical Co., Ltd., the contact angle of diethylene glycol monobutyl ether (boiling point 231 ° C.) outside the formation region of the first parallel line pattern was measured. The angle H was 8 °. In addition, it was set as the value 5 seconds after dripping diethylene glycol monobutyl ether.
4.パターンの形成
 実施例8において、基材1を基材2に代えたこと以外は実施例8と同様にして、メッシュ状の機能性パターンを形成した。
4). Formation of Pattern A mesh-like functional pattern was formed in the same manner as in Example 8 except that the substrate 1 was replaced with the substrate 2 in Example 8.
<平均間隔A及び平均間隔Bの測定>
 実施例1~7及び比較例1、2で得られたメッシュ状の機能性パターンにおいて、第2の平行線パターンを構成する2本の線分間の間隔について、第1の平行線パターンの形成領域内における平均間隔Aを、図6で説明した計7箇所の測定箇所A~Aにおいて測定した間隔の平均値として求めた。また、第2の平行線パターンを構成する2本の線分間の間隔について、第1の平行線パターンの形成領域外における平均間隔Bを、図6で説明した計5箇所の測定箇所B~Bにおいて測定した間隔の平均値として求めた。更に、これら平均間隔A及び平均間隔Bの値から、上述した式(1)におけるB/Aの値を求めた。
<Measurement of average interval A and average interval B>
In the mesh-like functional patterns obtained in Examples 1 to 7 and Comparative Examples 1 and 2, the first parallel line pattern forming region is formed with respect to the interval between two line segments constituting the second parallel line pattern. The average interval A was calculated as the average value of the intervals measured at the seven measurement points A 1 to A 7 described in FIG. Further, with respect to the interval between the two line segments constituting the second parallel line pattern, the average interval B outside the first parallel line pattern forming region is set to a total of five measurement points B 1 to B described in FIG. It was calculated as the mean value of the measured intervals in B 5. Further, from the values of the average interval A and the average interval B, the value of B / A in the above formula (1) was obtained.
 かかるB/Aの値を求めることにより、上述した式(1)を満たすか否かを判定することができる。即ち、上述した式(1)を満たすための調整が達成されたか否かを判定することができる、ということもできる。 It is possible to determine whether or not the above-described equation (1) is satisfied by obtaining the B / A value. That is, it can also be determined whether or not the adjustment for satisfying the above-described expression (1) has been achieved.
<評価方法>
・低視認性の評価方法
 実施例1~7及び比較例1、2で得られたメッシュ状の機能性パターンを目視し、下記の評価基準で評価した。
<Evaluation method>
-Evaluation method of low visibility The mesh-like functional patterns obtained in Examples 1 to 7 and Comparative Examples 1 and 2 were visually observed and evaluated according to the following evaluation criteria.
[評価基準]
 A:周期的なパターンのようなものが視認できず、全体に亘って均一に見える
 B:周期的なパターンのようなものが視認できる
[Evaluation criteria]
A: A thing like a periodic pattern cannot be visually recognized, but it looks uniform over the whole B: A thing like a periodic pattern can be visually recognized
・抵抗値の方向むらの評価方法
 実施例1~7及び比較例1、2で得られたメッシュ状の機能性パターンについて、以下の方法で抵抗値の方向むらを評価した。
-Evaluation method for uneven direction of resistance value For the mesh-like functional patterns obtained in Examples 1 to 7 and Comparative Examples 1 and 2, the uneven direction of resistance value was evaluated by the following method.
 第1の平行線パターンの方向(第1の方向)と平行に長さ50mm幅10mmの短冊を切り出し、長辺の両端(すなわち短辺)に銀ペーストによる測定用電極をつけ、短冊の端子間の抵抗をテスターにて測定した。同様にして、第2の平行線パターンの方向(第2の方向)と平行に長さ50mm幅10mmの短冊でも端子間抵抗をテスターで測定し、第1の方向と第2の方向での抵抗の比率を評価した。抵抗の比率は、具体的には、「第2の方向での抵抗」と「第1の方向での抵抗」の差の絶対値を「第1の方向での抵抗」で除した値を100分率で示したものである。 Cut out a strip of 50 mm in length and 10 mm in width parallel to the direction of the first parallel line pattern (first direction), attach measuring electrodes with silver paste to both ends of the long side (that is, the short side), and between the terminals of the strip The resistance of was measured with a tester. Similarly, the resistance between the terminals is measured with a tester even in a strip having a length of 50 mm and a width of 10 mm in parallel with the direction of the second parallel line pattern (second direction), and the resistance in the first direction and the second direction. The ratio of was evaluated. Specifically, the ratio of the resistance is obtained by dividing the absolute value of the difference between “resistance in the second direction” and “resistance in the first direction” by “resistance in the first direction”. It is shown as a fraction.
 ある基準として、抵抗の比率が10%以下であることが実用上好ましく、抵抗の比率が10%を超えると実用上好ましくないと評価することができる。 As a standard, it is practically preferable that the resistance ratio is 10% or less, and when the resistance ratio exceeds 10%, it can be evaluated that it is not practically preferable.
 以上の結果を表1に示す。 The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<評価>
 表1より、平均間隔A及び平均間隔Bが式(1)「0.9≦B/A≦1.1」を満たすように調整を行った実施例1~8では、低視認性に優れ、抵抗値の方向むらを防止できることがわかる。一方、かかる調整を行わなかった比較例1~3では、低視認性に劣り、抵抗値の方向むらを十分に防止できないことがわかる。
<Evaluation>
From Table 1, in Examples 1 to 8 in which the average interval A and the average interval B were adjusted so as to satisfy the formula (1) “0.9 ≦ B / A ≦ 1.1”, the low visibility was excellent. It can be seen that the uneven direction of the resistance value can be prevented. On the other hand, Comparative Examples 1 to 3 in which such adjustment was not performed are inferior in low visibility, and it is found that uneven resistance value cannot be sufficiently prevented.
 更に、実施例3のメッシュ状の機能性パターンと、比較例2のメッシュ状の機能性パターンについて、それぞれ、図9及び図10に、光学顕微鏡写真を示した。各写真において、左上から右下に向かう方向が第1の方向(第1の平行線パターンの方向)であり、左下から右上に向かう方向が第2の方向(第2の平行線パターンの方向)である。これらの写真の対比からも、本発明によれば、低視認性に優れることがわかる。更に、第1の方向と第2の方向とで導電パスの長さの差が見られず、抵抗値の方向むらを防止できることがわかる。 Furthermore, optical micrographs are shown in FIGS. 9 and 10 for the mesh-like functional pattern of Example 3 and the mesh-like functional pattern of Comparative Example 2, respectively. In each photograph, the direction from the upper left to the lower right is the first direction (the direction of the first parallel line pattern), and the direction from the lower left to the upper right is the second direction (the direction of the second parallel line pattern). It is. From the comparison of these photographs, it can be seen that the present invention is excellent in low visibility. Further, it can be seen that there is no difference in the length of the conductive path between the first direction and the second direction, and thus it is possible to prevent unevenness of the resistance value.
 以上の結果から、平均間隔A及び平均間隔Bが式(1)「0.9≦B/A≦1.1」を満たすように調整することの有効性がわかる。 From the above results, the effectiveness of adjusting so that the average interval A and the average interval B satisfy the formula (1) “0.9 ≦ B / A ≦ 1.1” is understood.
 実施例1、2においては、「第1の平行線パターンの形成領域内の表面エネルギーCと、第1の平行線パターンの形成領域外の表面エネルギーEとの差(|C-E|)を、5mN/m以下にする」調整、あるいは、「第1の平行線パターンの形成領域内における第2のライン状液体の接触角Fと、第1の平行線パターンの形成領域外における第2のライン状液体の接触角Gとの差を、10°以下にする」調整により、平均間隔A及び平均間隔Bが式(1)「0.9≦B/A≦1.1」を満たすようにした。ここでは、一例として、基材の表面処理やインク組成の設定により、表面エネルギーや接触角を調整する例を示した。 In Examples 1 and 2, the difference between the surface energy C in the first parallel line pattern formation region and the surface energy E outside the first parallel line pattern formation region (| CE |) "Adjust to 5 mN / m or less", or "Contact angle F of the second linear liquid in the first parallel line pattern formation region and the second outside the first parallel line pattern formation region" By adjusting the difference from the contact angle G of the line liquid to 10 ° or less, the average interval A and the average interval B satisfy the expression (1) “0.9 ≦ B / A ≦ 1.1”. did. Here, as an example, the example in which the surface energy and the contact angle are adjusted by the surface treatment of the substrate and the setting of the ink composition is shown.
 実施例3~5においては、「第1の平行線パターンを形成した後に、第2のライン状液体を付与する前に、第1の平行線パターンの形成領域内を含む領域を洗浄する」調整により、平均間隔A及び平均間隔Bが式(1)「0.9≦B/A≦1.1」を満たすようにした。実施例3では加熱による洗浄を、実施例4では電磁波による洗浄を、実施例5では溶剤による洗浄を、それぞれ用いた。 In Examples 3 to 5, “After cleaning the first parallel line pattern and before applying the second line-shaped liquid, the region including the first parallel line pattern forming region is cleaned” adjustment Thus, the average interval A and the average interval B were made to satisfy the formula (1) “0.9 ≦ B / A ≦ 1.1”. In Example 3, cleaning by heating was used, in Example 4, cleaning by electromagnetic waves, and in Example 5, cleaning by solvent was used.
 実施例6においては、「第1の平行線パターンの形成領域内における第2のライン状液体の長さあたりの液体付与量と、第1の平行線パターンの形成領域外における第2のライン状液体の長さあたりの液体付与量とを異ならせる」調整により、平均間隔A及び平均間隔Bが式(1)「0.9≦B/A≦1.1」を満たすようにした。 In Example 6, “the amount of liquid applied per length of the second line-shaped liquid in the first parallel line pattern formation region and the second line shape outside the first parallel line pattern formation region” By adjusting “different the amount of liquid applied per length of the liquid”, the average interval A and the average interval B were made to satisfy the formula (1) “0.9 ≦ B / A ≦ 1.1”.
 実施例7においては、「第1の平行線パターンの形成領域内の表面エネルギーCと、第1の平行線パターンの形成領域外の表面エネルギーEとの差(|C-E|)を、5mN/m以下にする」調整、「第1の平行線パターンの形成領域内における第2のライン状液体の接触角Fと、第1の平行線パターンの形成領域外における第2のライン状液体の接触角Gとの差を、10°以下にする」調整、あるいは、「第1のライン状液体と同一組成の液体を塗布して乾燥させてなるベタ面の表面エネルギーDと、第1の平行線パターンの形成領域外の表面エネルギーEとの差(|D-E|)を、5mN/m以下にする」調整により、平均間隔A及び平均間隔Bが式(1)「0.9≦B/A≦1.1」を満たすようにした。 In Example 7, the difference (| CE−) between the surface energy C in the first parallel line pattern formation region and the surface energy E outside the first parallel line pattern formation region is 5 mN. Adjustment to “/ m or less”, “the contact angle F of the second line-shaped liquid in the first parallel line pattern formation region, and the second line-shaped liquid outside the first parallel line pattern formation region” The difference from the contact angle G is adjusted to 10 ° or less, or “the surface energy D of the solid surface formed by applying and drying a liquid having the same composition as the first linear liquid, and the first parallel. By adjusting the difference (| D−E |) from the surface energy E outside the formation area of the line pattern to 5 mN / m or less ”, the average interval A and the average interval B are expressed by the equation (1)“ 0.9 ≦ B /A≦1.1 ”.
 実施例8においては、「第1の平行線パターンの形成領域外における第2のライン状液体中の溶剤のうち最も沸点が高い溶剤の接触角を6°以下にする」調整により、平均間隔A及び平均間隔Bが式(1)「0.9≦B/A≦1.1」を満たすようにした。 In Example 8, by adjusting “the contact angle of the solvent having the highest boiling point out of the solvent in the second linear liquid outside the first parallel line pattern formation region is 6 ° or less”, the average interval A The average interval B satisfies the formula (1) “0.9 ≦ B / A ≦ 1.1”.
 1:基材
 2:第1のライン状液体
 3:第1の平行線パターン
  31、32:線分
 4:第2のライン状液体
 5:第2の平行線パターン
  51、52:線分
 6:パターン
 7:液滴吐出装置
 X:交差部
1: Substrate 2: First line-shaped liquid 3: First parallel line pattern 31, 32: Line segment 4: Second line-shaped liquid 5: Second parallel line pattern 51, 52: Line segment 6: Pattern 7: Droplet ejection device X: Intersection

Claims (12)

  1.  基材上に機能性材料を含む第1のライン状液体を付与し、該第1のライン状液体を乾燥させる過程で該機能性材料を縁部に選択的に堆積させて、該機能性材料を含む2本の線分により構成された第1の平行線パターンを形成し、
     次いで、前記基材上に前記第1の平行線パターンの形成領域と交差させるように機能性材料を含む第2のライン状液体を付与し、該第2のライン状液体を乾燥させる過程で該機能性材料を縁部に選択的に堆積させて、該機能性材料を含む2本の線分により構成された第2の平行線パターンを形成することによって、
     前記第1の平行線パターンと前記第2の平行線パターンとが交わるメッシュ状の機能性パターンを形成する際に、
     前記第2の平行線パターンを構成する前記2本の線分間の間隔について、前記第1の平行線パターンの形成領域内における平均間隔Aと、前記第1の平行線パターンの形成領域外における平均間隔Bとが下記式(1)を満たすように調整するメッシュ状の機能性パターンの形成方法。
     0.9≦B/A≦1.1   ・・・式(1)
    The functional material is selectively deposited on the edge in the process of applying the first line-shaped liquid containing the functional material on the substrate and drying the first line-shaped liquid. Forming a first parallel line pattern composed of two line segments including:
    Next, in the process of applying a second line-shaped liquid containing a functional material on the substrate so as to intersect the formation region of the first parallel line pattern, and drying the second line-shaped liquid. By selectively depositing a functional material on the edge to form a second parallel line pattern composed of two line segments containing the functional material,
    When forming a mesh-like functional pattern in which the first parallel line pattern and the second parallel line pattern intersect,
    About the interval between the two line segments constituting the second parallel line pattern, an average interval A within the formation region of the first parallel line pattern and an average outside the formation region of the first parallel line pattern A method of forming a mesh-like functional pattern that is adjusted so that the interval B satisfies the following formula (1).
    0.9 ≦ B / A ≦ 1.1 Formula (1)
  2.  前記式(1)を満たすための調整として、前記第1の平行線パターンの形成領域内の表面エネルギーと、前記第1の平行線パターンの形成領域外の表面エネルギーとの差を、5mN/m以下にする請求項1記載のメッシュ状の機能性パターンの形成方法。 As an adjustment to satisfy the formula (1), the difference between the surface energy in the formation region of the first parallel line pattern and the surface energy outside the formation region of the first parallel line pattern is 5 mN / m. The method for forming a mesh-like functional pattern according to claim 1 to be described below.
  3.  前記式(1)を満たすための調整として、前記第1のライン状液体に含まれる機能性材料を塗布して乾燥させたベタ面の表面エネルギーと、前記第1の平行線パターンの形成領域外の表面エネルギーとの差を、5mN/m以下にする請求項1記載のメッシュ状の機能性パターンの形成方法。 As an adjustment to satisfy the formula (1), the surface energy of the solid surface coated with the functional material contained in the first linear liquid and dried, and outside the formation region of the first parallel line pattern The method for forming a mesh-like functional pattern according to claim 1, wherein the difference from the surface energy of the mesh is 5 mN / m or less.
  4.  前記式(1)を満たすための調整として、前記第1の平行線パターンの形成領域内における前記第2のライン状液体の接触角と、前記第1の平行線パターンの形成領域外における前記第2のライン状液体の接触角との差を、10°以下にする請求項1記載のメッシュ状の機能性パターンの形成方法。 As an adjustment to satisfy the equation (1), the contact angle of the second linear liquid in the first parallel line pattern formation region and the first parallel line pattern formation region outside the first parallel line pattern formation region. The method for forming a mesh-like functional pattern according to claim 1, wherein the difference between the contact angle of the two line-shaped liquids is 10 ° or less.
  5.  前記式(1)を満たすための調整として、前記第1のライン状液体に含まれる機能性材料を塗布して乾燥させたベタ面における前記第2のライン状液体の接触角と、前記第1の平行線パターンの形成領域外における前記第2のライン状液体の接触角との差を、10°以下にする請求項1記載のメッシュ状の機能性パターンの形成方法。 As an adjustment to satisfy the formula (1), the contact angle of the second linear liquid on the solid surface coated with the functional material contained in the first linear liquid and dried, and the first 2. The method for forming a mesh-like functional pattern according to claim 1, wherein a difference from a contact angle of the second linear liquid outside the parallel line pattern formation region is 10 ° or less.
  6.  前記式(1)を満たすための調整として、前記第1の平行線パターンの形成領域外における前記第2のライン状液体中の溶剤のうち最も沸点が高い溶剤の接触角を6°以下にする請求項1記載のメッシュ状の機能性パターンの形成方法。 As an adjustment to satisfy the formula (1), the contact angle of the solvent having the highest boiling point among the solvents in the second linear liquid outside the formation region of the first parallel line pattern is set to 6 ° or less. The method for forming a mesh-like functional pattern according to claim 1.
  7.  前記式(1)を満たすための調整として、前記第1の平行線パターンの形成領域内における前記第2のライン状液体の長さあたりの液体付与量と、前記第1の平行線パターンの形成領域外における前記第2のライン状液体の長さあたりの液体付与量とを異ならせる請求項1記載のメッシュ状の機能性パターンの形成方法。 As an adjustment to satisfy the formula (1), the amount of liquid applied per length of the second linear liquid in the formation region of the first parallel line pattern and the formation of the first parallel line pattern The method for forming a mesh-shaped functional pattern according to claim 1, wherein a liquid application amount per length of the second line-shaped liquid outside the region is made different.
  8.  前記式(1)を満たすための調整として、前記第1の平行線パターンを形成した後に、前記第2のライン状液体を付与する前に、前記第1の平行線パターンの形成領域内を含む領域を洗浄する請求項1に記載のメッシュ状の機能性パターンの形成方法。 As an adjustment to satisfy the formula (1), after forming the first parallel line pattern and before applying the second line-shaped liquid, the inside of the first parallel line pattern forming region is included. The method for forming a mesh-like functional pattern according to claim 1, wherein the region is washed.
  9.  前記洗浄として、加熱による洗浄、電磁波による洗浄、溶剤による洗浄、ガスによる洗浄及びプラズマによる洗浄から選ばれた1種又は2種以上を組み合わせた洗浄を行う請求項8記載のメッシュ状の機能性パターンの形成方法。 9. The mesh-shaped functional pattern according to claim 8, wherein the cleaning is performed by cleaning using a combination of one or more selected from cleaning by heating, cleaning by electromagnetic waves, cleaning by a solvent, cleaning by gas, and cleaning by plasma. Forming method.
  10.  前記機能性材料は、導電性材料である請求項1~9の何れかに記載のメッシュ状の機能性パターンの形成方法。 The method for forming a mesh-like functional pattern according to any one of claims 1 to 9, wherein the functional material is a conductive material.
  11.  請求項1~10の何れかに記載のメッシュ状の機能性パターンの形成方法により形成されたメッシュ状の機能性パターン。 A mesh-like functional pattern formed by the method for forming a mesh-like functional pattern according to any one of claims 1 to 10.
  12.  請求項11記載のメッシュ状の機能性パターンを備えた機能性基材。
     
    The functional base material provided with the mesh-shaped functional pattern of Claim 11.
PCT/JP2015/068414 2014-06-25 2015-06-25 Method for forming mesh-shaped functional pattern, mesh-shaped functional pattern, and functional substrate WO2015199201A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016529665A JP6515928B2 (en) 2014-06-25 2015-06-25 Method of forming mesh-like functional pattern, mesh-like functional pattern and functional substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-130804 2014-06-25
JP2014130804 2014-06-25

Publications (1)

Publication Number Publication Date
WO2015199201A1 true WO2015199201A1 (en) 2015-12-30

Family

ID=54938278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068414 WO2015199201A1 (en) 2014-06-25 2015-06-25 Method for forming mesh-shaped functional pattern, mesh-shaped functional pattern, and functional substrate

Country Status (2)

Country Link
JP (1) JP6515928B2 (en)
WO (1) WO2015199201A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016178409A1 (en) * 2015-05-01 2016-11-10 株式会社フジクラ Wiring body, wiring substrate, and touch sensor
JP2017162739A (en) * 2016-03-10 2017-09-14 コニカミノルタ株式会社 Transparent planar device and manufacturing method of transparent planar device
CN111727669A (en) * 2018-02-22 2020-09-29 柯尼卡美能达株式会社 Pattern forming method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030647A1 (en) * 2012-08-20 2014-02-27 コニカミノルタ株式会社 Parallel line pattern containing conductive material, parallel line pattern formation method, substrate with transparent conductive film, device and electronic apparatus
WO2015111731A1 (en) * 2014-01-24 2015-07-30 コニカミノルタ株式会社 Pattern formation method, substrate provided with transparent electroconductive film, device, and electronic instrument
JP2015155086A (en) * 2014-02-20 2015-08-27 コニカミノルタ株式会社 Coating film formation method, substrate with transparent conductive film, device, and electronic instrument

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4096868B2 (en) * 2003-11-25 2008-06-04 セイコーエプソン株式会社 Film forming method, device manufacturing method, and electro-optical device
US9147505B2 (en) * 2011-11-02 2015-09-29 Ut-Battelle, Llc Large area controlled assembly of transparent conductive networks
JP2013257755A (en) * 2012-06-13 2013-12-26 Mitsubishi Rayon Co Ltd Transparent two-dimensional communication sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030647A1 (en) * 2012-08-20 2014-02-27 コニカミノルタ株式会社 Parallel line pattern containing conductive material, parallel line pattern formation method, substrate with transparent conductive film, device and electronic apparatus
WO2015111731A1 (en) * 2014-01-24 2015-07-30 コニカミノルタ株式会社 Pattern formation method, substrate provided with transparent electroconductive film, device, and electronic instrument
JP2015155086A (en) * 2014-02-20 2015-08-27 コニカミノルタ株式会社 Coating film formation method, substrate with transparent conductive film, device, and electronic instrument

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016178409A1 (en) * 2015-05-01 2016-11-10 株式会社フジクラ Wiring body, wiring substrate, and touch sensor
JPWO2016178409A1 (en) * 2015-05-01 2017-05-18 株式会社フジクラ Wiring body, wiring board, and touch sensor
JP2017162739A (en) * 2016-03-10 2017-09-14 コニカミノルタ株式会社 Transparent planar device and manufacturing method of transparent planar device
CN111727669A (en) * 2018-02-22 2020-09-29 柯尼卡美能达株式会社 Pattern forming method
US20210084769A1 (en) * 2018-02-22 2021-03-18 Konica Minolta, Inc. Pattern forming method
CN111727669B (en) * 2018-02-22 2023-08-18 柯尼卡美能达株式会社 Pattern forming method
US11800648B2 (en) * 2018-02-22 2023-10-24 Konica Minolta, Inc. Pattern forming method

Also Published As

Publication number Publication date
JP6515928B2 (en) 2019-05-22
JPWO2015199201A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6007776B2 (en) Parallel line pattern forming method, manufacturing method of substrate with transparent conductive film, device and manufacturing method of electronic apparatus
WO2015199204A1 (en) Pattern formation method, substrate provided with transparent electroconductive film, device, and electronic instrument
JP6331457B2 (en) Coating film forming method, substrate with transparent conductive film, device and electronic device
WO2014030647A1 (en) Parallel line pattern containing conductive material, parallel line pattern formation method, substrate with transparent conductive film, device and electronic apparatus
WO2015199201A1 (en) Method for forming mesh-shaped functional pattern, mesh-shaped functional pattern, and functional substrate
JP6508062B2 (en) Pattern forming method, substrate with transparent conductive film, device and electronic device
JP6717316B2 (en) Method for forming functional thin line pattern and functional thin line pattern
JP6413978B2 (en) Functional fine line pattern precursor forming method, functional fine line pattern forming method, transparent conductive film forming method, device manufacturing method and electronic device manufacturing method, functional thin line pattern, substrate with transparent conductive film, Devices and electronic equipment
WO2016068161A1 (en) Pattern, patterned base material, and touch panel
JP6922735B2 (en) Touch panel sensor and manufacturing method of touch panel sensor
WO2016148036A1 (en) Conductive pattern, conductive pattern manufacturing method, touch panel, and liquid crystal display device
JP6620758B2 (en) Functional pattern, substrate with functional pattern, and method for forming functional pattern
KR102003625B1 (en) A pattern forming method, a substrate provided with a transparent conductive film, a device and an electronic device
JP7331870B2 (en) Method for forming functional thin line pattern precursor and method for forming functional thin line pattern
JP6988826B2 (en) Method for forming transparent conductive film and plating solution for electrolytic plating
JP6658800B2 (en) Functional fine wire pattern, substrate with transparent conductive film, device and electronic equipment
JP6418210B2 (en) Parallel line pattern forming method, substrate with transparent conductive film, device and electronic apparatus
JP2016168537A (en) Pattern forming method, uneven transparent conductive film, solar cell module, and light extraction element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812700

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529665

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15812700

Country of ref document: EP

Kind code of ref document: A1