WO2015199011A1 - Gas fuel injection control device - Google Patents

Gas fuel injection control device Download PDF

Info

Publication number
WO2015199011A1
WO2015199011A1 PCT/JP2015/067833 JP2015067833W WO2015199011A1 WO 2015199011 A1 WO2015199011 A1 WO 2015199011A1 JP 2015067833 W JP2015067833 W JP 2015067833W WO 2015199011 A1 WO2015199011 A1 WO 2015199011A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas fuel
fuel
pressure
gas
pressure adjusting
Prior art date
Application number
PCT/JP2015/067833
Other languages
French (fr)
Japanese (ja)
Inventor
和雅 末廣
Original Assignee
スズキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スズキ株式会社 filed Critical スズキ株式会社
Publication of WO2015199011A1 publication Critical patent/WO2015199011A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to an injection control device for gas fuel of an engine provided with an injector for injecting gas fuel.
  • An internal combustion engine that operates by supplying liquid fuel such as gasoline and gaseous fuel such as CNG (Compressed Natural Gas) or LPG (Liquefied Petroleum Gas) as a fuel to be supplied to the combustion chamber is installed in the vehicle. It is known to use as a drive source.
  • liquid fuel such as gasoline
  • gaseous fuel such as CNG (Compressed Natural Gas) or LPG (Liquefied Petroleum Gas)
  • gaseous fuel is generally used as the main fuel from the viewpoint of air pollution control and resource saving.
  • a bi-fuel engine it is possible to run with liquid fuel even when there is no gaseous fuel, and it is unlikely that the user will care about the remaining amount of gaseous fuel. There is a risk of being done.
  • the fuel is not sufficiently supplied, and the durability of the internal combustion engine, the exhaust gas treatment catalyst, etc. is adversely affected by the occurrence of overlean combustion and misfire.
  • Patent Document 1 describes the remaining amount of gas fuel, and when it is determined that the shortest gas fuel supply station cannot be reached from the current location, the driver In addition, it is described that the fuel is automatically switched when the fuel is not switched from the gaseous fuel to the liquid fuel even after a predetermined time has elapsed.
  • the composition ratio of methane, hydrocarbons, and nitrogen may vary greatly among CNG fuels depending on the production area. For this reason, there is a difference in the included combustion components, and if the included combustion components are small, even if the remaining amount of CNG is sufficient, the combustion components may be insufficient, resulting in lean combustion. . For example, at a high flow rate such as when traveling with the throttle opening fully open, there is a problem that lean combustion occurs even if the maximum flow rate of fuel is supplied.
  • an object of the present invention is to provide a gas fuel injection control device capable of injecting an appropriate amount of gas fuel in accordance with the operating state of the internal combustion engine.
  • an injection control device for a gas fuel that solves the above problems includes an engine including a gas fuel injector that injects the gas fuel, a gas fuel tank that stores the gas fuel, and a gas fuel that is supplied from the gas fuel tank
  • a gas fuel injection control device for a vehicle comprising: a pressure regulator for reducing the pressure of the exhaust gas; and an oxygen sensor for detecting richness or leanness of an air-fuel ratio based on an oxygen concentration in exhaust gas flowing in an exhaust pipe.
  • a pressure adjustment valve for reducing the pressure of the gas fuel supplied to the gas fuel injector is arranged in the pipe connecting the regulator and the gas fuel injector, and when it is determined that the air / fuel ratio deviates from the target air / fuel ratio, A pressure adjusting unit that closes the pressure adjusting valve until the air-fuel ratio becomes the same.
  • FIG. 1 is a conceptual block diagram showing a gas fuel injection control apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a view showing the gas fuel injection control device according to the first embodiment of the present invention, and is a flowchart for explaining the injector drive time diagnosis process.
  • FIG. 3 is a diagram showing the gas fuel injection control device according to the first embodiment of the present invention, and is a flowchart for explaining the pressure adjustment valve reset processing.
  • FIG. 4 is a diagram illustrating an injection control device for gas fuel according to the second embodiment of the present invention, and is a flowchart for explaining the excessive fuel control process.
  • a vehicle 1 equipped with a gas fuel injection control device includes an internal combustion engine type engine 2 and an ECU (Electronic Control Unit) 3.
  • ECU Electronic Control Unit
  • the engine 2 performs a series of four strokes including an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke while the piston 10 makes two reciprocations within the cylinder 11, and performs four ignition cycles during the compression stroke and the expansion stroke. It is composed by the engine.
  • the engine 2 is assumed to be an in-line 4-cylinder engine.
  • an in-line 6-cylinder engine a V-type 6-cylinder engine, a V-type 12-cylinder engine, or a horizontally opposed 6-cylinder engine.
  • You may be comprised by various types of engines, such as an engine.
  • the engine 2 shown in FIG. 1 shows one cylinder 11 out of four cylinders arranged in series.
  • the piston 10 accommodated in each cylinder 11 is connected to a crankshaft 13 via a connecting rod 12.
  • the connecting rod 12 converts the reciprocating motion of the piston 10 into the rotational motion of the crankshaft 13.
  • the engine 2 causes the piston 10 to reciprocate by burning a mixture of fuel and air in the combustion chamber 14 in the cylinder 11, and rotates the crankshaft 13 via the connecting rod 12, thereby A driving force for driving the is generated.
  • the intake port 30 of the engine 2 is provided with an intake manifold 31 for introducing air into the combustion chamber 14.
  • the intake manifold 31 is connected to an intake pipe 32 for sucking outside air. That is, the intake manifold 31 communicates the intake pipe 32 and the intake port 30 of each cylinder 11.
  • the intake pipe 32 is provided with a throttle valve 33 for adjusting the intake air amount of the engine 2.
  • the throttle valve 33 adjusts the intake air amount of the engine 2 by controlling the throttle opening degree according to a command signal from the ECU 3.
  • the throttle valve 33 is provided with a throttle opening sensor 34 for detecting the opening of the throttle valve 33 (hereinafter simply referred to as “throttle opening”).
  • the exhaust port 40 of the engine 2 is provided with an exhaust manifold 41 for discharging exhaust gas generated by combustion of the air-fuel mixture in the combustion chamber 14 to the outside of the vehicle.
  • the exhaust manifold 41 is connected to the exhaust pipe 42. That is, the exhaust manifold 41 communicates the exhaust pipe 42 and the exhaust port 40 of each cylinder 11.
  • the exhaust pipe 42 is provided with a three-way catalyst 43, an upstream oxygen sensor 44, and a downstream oxygen sensor 45.
  • the three-way catalyst 43 purifies exhaust gas discharged from the combustion chamber 14 of the engine 2, that is, burned gas.
  • the upstream oxygen sensor 44 is provided upstream of the three-way catalyst 43 in the exhaust direction, which is the direction in which exhaust gas is discharged.
  • the downstream oxygen sensor 45 is provided downstream of the three-way catalyst 43 in the exhaust direction.
  • the upstream oxygen sensor 44 and the downstream oxygen sensor 45 output a signal whose output changes suddenly between the rich side and the lean side with respect to the air / fuel ratio based on the stoichiometric air / fuel ratio based on the oxygen concentration in the exhaust gas. It is an oxygen sensor.
  • the engine 2 includes an intake valve 50 for controlling the introduction of air from the intake manifold 31 to the combustion chamber 14 and an exhaust valve 51 for controlling the discharge of exhaust gas from the combustion chamber 14 to the exhaust manifold 41. And a spark plug 52 for igniting the air-fuel mixture in the combustion chamber 14.
  • the spark plug 52 is a known spark plug having an electrode made of platinum or an iridium alloy. The spark plug 52 is discharged when the electrode is energized by the ECU 3 and ignites the air-fuel mixture in the combustion chamber 14.
  • the intake valve 50 is opened and closed so as to communicate or block the intake port 30 and the combustion chamber 14.
  • the intake valve 50 is opened and closed by an intake camshaft (not shown).
  • the exhaust valve 51 is opened and closed so as to communicate or block the exhaust port 40 and the combustion chamber 14.
  • the exhaust valve 51 is opened and closed by an exhaust camshaft (not shown).
  • This engine 2 is supplied by selecting one of two types of fuel, that is, liquid fuel gasoline and gas fuel CNG (or LPG) as fuel to be injected into the combustion chamber 14.
  • the engine 2 includes a gasoline supply system 60 that supplies gasoline stored in the gasoline tank 65 into the combustion chamber 14, and a gas fuel supply system 70 that supplies CNG stored in the gas fuel tank 78 at high pressure into the combustion chamber 14. And.
  • the gasoline supply system 60 includes a gasoline injector 61, a gasoline fuel rail 62, a liquid fuel supply pipe 63, a fuel pump 64, and a gasoline tank 65.
  • the fuel pump 64 sucks gasoline stored in the gasoline tank 65 at normal pressure and pumps it to the gasoline fuel rail 62 via the liquid fuel supply pipe 63.
  • a plurality of gasoline injectors 61 corresponding to each cylinder 11 of the engine 2 are connected to the fuel rail 62 for gasoline. Each gasoline injector 61 injects gasoline into the intake port 30.
  • the gasoline fuel rail 62 stores the gasoline pumped from the fuel pump 64 while maintaining the pressure.
  • the gasoline stored in the gasoline fuel rail 62 is injected when the gasoline injector 61 is opened.
  • the gasoline injector 61 is connected to the ECU 3 and under the control of the ECU 3, the injection timing of gasoline into each corresponding intake port 30 is individually adjusted.
  • the gas fuel supply system 70 includes a gas fuel injector 71, a gas fuel fuel rail 72, a gas fuel supply pipe 73, a pressure adjustment valve 74, a pressure regulator 75, a regulator shutoff valve 76, and a main valve 77. And a gas fuel tank 78.
  • a gas fuel tank 78 is connected to one end of the gas fuel supply pipe 73, and a gas fuel fuel rail 72 is connected to the other end of the gas fuel supply pipe 73.
  • a main valve 77 is provided between the gas fuel tank 78 and the gas fuel supply pipe 73.
  • the original valve 77 is a normally closed electromagnetic valve whose opening and closing is controlled by the ECU 3. When the main valve 77 is closed, the gas fuel tank 78 is hermetically sealed.
  • a regulator shut-off valve 76, a pressure regulator 75, and a pressure adjusting valve 74 are provided in this order downstream from the main valve 77 in the supply direction, which is the direction in which CNG is supplied from the gas fuel supply pipe 73. Yes.
  • the opening and closing of the regulator shutoff valve 76 is controlled by the ECU 3.
  • the main valve 77 and the regulator shut-off valve 76 are open, the CNG in the gas fuel tank 78 is supplied to the gas fuel fuel rail 72 via the gas fuel supply pipe 73.
  • the regulator shut-off valve 76 is closed, CNG is not supplied to the fuel rail 72 for gas fuel.
  • the pressure regulator 75 reduces the pressure of the CNG supplied from the gas fuel tank 78, that is, the fuel pressure.
  • the pressure regulator 75 operates so that CNG having a prescribed fuel pressure is supplied to the fuel rail 72 for gas fuel.
  • the fuel rail 72 for gas fuel stores CNG supplied from the pressure regulator 75 while maintaining the pressure.
  • a plurality of gas fuel injectors 71 corresponding to each cylinder 11 of the engine 2 are connected to the fuel rail 72 for gas fuel.
  • Each gas fuel injector 71 injects CNG into the intake manifold 31.
  • the gas fuel fuel rail 72 is provided with a pressure sensor 79 for detecting the pressure in the gas fuel fuel rail 72. The reason why CNG is injected into intake manifold 31 is to mix a large amount of CNG with intake air in intake manifold 31 having a large volume.
  • the gas fuel injector 71 is connected to the ECU 3, and the injection timing of CNG into the corresponding intake manifolds 31 is individually controlled by the control of the ECU 3.
  • the time during which the gas fuel injector 71 is open is referred to as the drive time, and the ECU 3 controls the drive time of the gas fuel injector 71 to adjust the CNG injection amount.
  • the pressure adjusting valve 74 opens and closes the gas fuel supply pipe 73 between fully open and fully closed.
  • the pressure adjusting valve 74 is electrically connected to the ECU 3.
  • the pressure adjusting valve 74 is configured to adjust the pressure of the CNG supplied to the gas fuel fuel rail 72 by controlling the valve opening degree according to a command signal from the ECU 3.
  • the opening degree of the pressure adjusting valve 74 is expressed by a ratio [%] of the opening area to the opening area when the pressure adjusting valve 74 is fully opened, and the opening degree can be adjusted in units of 1 [%].
  • the operating state of the engine 2 configured as described above is controlled by the ECU 3.
  • the ECU 3 includes, for example, a microcomputer including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an input / output interface, and the like.
  • the CPU has a temporary storage function of the RAM.
  • the signal processing is performed according to a program that is used and stored in advance in the ROM.
  • Various control constants and various maps are stored in advance in the ROM.
  • various sensors and switches such as the throttle opening sensor 34, the upstream oxygen sensor 44, the downstream oxygen sensor 45, the pressure sensor 79, and the fuel changeover switch 80 are connected to the input side of the ECU 3. .
  • the fuel changeover switch 80 performs a changeover operation of the fuel to be manually used by the driver or the like according to the operation state such as when warming up or accelerating.
  • various devices such as the throttle valve 33, the spark plug 52, the gasoline injector 61, the fuel pump 64, the gas fuel injector 71, the pressure adjusting valve 74, the regulator shut-off valve 76, the main valve 77, etc. It is connected.
  • the ECU 3 appropriately switches the fuel to be supplied into the combustion chamber 14 from gasoline to CNG or from CNG to gasoline so as to selectively switch between liquid fuel and gas fuel having different properties and supply them to the combustion chamber 14 of the engine 2. It is supposed to switch.
  • the ECU 3 switches to the operation mode of the engine 2 such as a manual switching operation by the fuel changeover switch 80, a fuel outage detection in the gasoline tank 65 or the gas fuel tank 78, or a warm-up operation or a steady operation or acceleration.
  • the fuel to be used is switched accordingly.
  • a method of selecting the fuel according to the operation mode of the engine 2 there are a method of selecting an inexpensive CNG during warm-up operation or steady operation, and a method of selecting gasoline at the time of acceleration or climbing that requires torque. .
  • the ECU 3 includes a pressure adjustment unit 301.
  • the pressure adjusting unit 301 determines that the air-fuel ratio deviates from the target air-fuel ratio
  • the pressure adjusting unit 301 controls the pressure adjusting valve 74 described above to adjust the pressure of the CNG supplied to the gas fuel injector 71, so that the target Make the air-fuel ratio.
  • the pressure adjustment unit 301 determines whether or not the air-fuel ratio deviates from the target air-fuel ratio based on the detection signal from the upstream oxygen sensor 44.
  • the pressure adjustment unit 301 monitors the time interval between the inversion of the detection signal of the upstream oxygen sensor 44 from the rich side to the lean side or the inversion from the lean side to the rich side as the rich lean inversion time.
  • the pressure adjustment unit 301 determines whether the air-fuel ratio deviates from the target air-fuel ratio based on whether the rich lean inversion time is longer than a preset abnormality diagnosis time.
  • the abnormality diagnosis time is experimentally obtained in advance and stored in the ROM of the ECU 3.
  • the abnormality diagnosis time may be stored, for example, as a map whose value is determined by the engine speed, and the abnormality diagnosis time may be set shorter as the engine speed is higher.
  • the pressure adjustment unit 301 determines whether or not the gas fuel injector 71 performs proper fuel injection based on whether or not the driving time of the gas fuel injector 71 is shorter than a preset minimum driving time.
  • the minimum drive time is a value determined from the design value of the gas fuel injector 71 and is stored in the ROM of the ECU 3.
  • the pressure adjusting unit 301 determines that the rich lean inversion time is longer than the abnormality diagnosis time and determines that the driving time of the gas fuel injector 71 is shorter than the minimum driving time, the pressure adjusting unit 301 sets the opening degree of the pressure adjusting valve 74 to the opening degree.
  • the opening adjustment value set in advance for example, 1 [%] is closed, and this is repeated until the rich lean inversion time becomes equal to or less than the abnormality diagnosis time.
  • the opening adjustment value is experimentally obtained in advance and stored in the ROM of the ECU 3.
  • the injector drive time diagnosis process by the gas fuel injection control device according to the present embodiment configured as described above will be described with reference to FIG.
  • the injector drive time diagnosis process described below is started simultaneously with the start of the operation of the ECU 3, and is repeatedly executed at a preset time interval.
  • the pressure adjustment unit 301 performs detection of the rich lean inversion time in parallel as another process, and the detected rich lean inversion time is stored in the RAM of the ECU 3 and can be referred to during the injector driving time diagnosis processing. It has become.
  • the pressure adjustment unit 301 determines whether gas fuel is being used as the fuel supplied to the engine 2 (step S11). If it is determined that the gas fuel is not in use, the pressure adjustment unit 301 ends the process.
  • the pressure adjustment unit 301 determines whether or not the rich lean inversion time is longer than the abnormality diagnosis time (step S12). If it is determined that the rich lean inversion time is not longer than the abnormality diagnosis time, the pressure adjustment unit 301 ends the process.
  • step S12 determines whether the rich lean inversion time is longer than the abnormality diagnosis time.
  • the pressure adjustment unit 301 determines whether the driving time of the gas fuel injector 71 is shorter than the minimum driving time (step S13). When it is determined that the driving time of the gas fuel injector 71 is not shorter than the minimum driving time, the pressure adjusting unit 301 ends the process.
  • step S13 When it is determined in step S13 that the driving time of the gas fuel injector 71 is shorter than the minimum driving time, the pressure adjusting unit 301 closes the opening of the pressure adjusting valve 74 by the opening adjustment value (step S14). Next, the pressure adjustment unit 301 determines whether or not the rich lean inversion time is equal to or shorter than the abnormality diagnosis time (step S15).
  • step S15 If it is determined in step S15 that the rich lean inversion time is not less than or equal to the abnormality diagnosis time, the pressure adjustment unit 301 repeats the process of step S14. When the rich lean determination time is equal to or less than the abnormality diagnosis time, the pressure adjustment unit 301 ends the process.
  • the pressure adjustment valve 74 supplies the gas fuel injector 71 to the gas fuel injector 71.
  • the pressure of the CNG is reduced. For this reason, the minimum flow rate of the gas fuel injector 71 can be lowered, and an appropriate amount of fuel can be injected.
  • the pressure adjusting unit 301 is configured to open the opening of the pressure adjusting valve 74 to the maximum opening when the intake air amount to the engine 2 is larger than a predetermined intake air amount.
  • the pressure adjusting unit 301 increases the intake air amount to the engine 2 from a predetermined intake air amount depending on whether or not the throttle opening detected by the throttle opening sensor 34 is larger than a preset throttle opening determination value. It is determined whether or not. That is, the throttle opening sensor 34 constitutes an intake air amount detection unit in the present invention.
  • the throttle opening determination value is experimentally obtained in advance and stored in the ROM of the ECU 3.
  • the throttle opening determination value is an upper limit value of the throttle opening at which the shortage of fuel does not occur.
  • the opening of the pressure adjustment valve 74 is set to a predetermined opening adjustment value, for example, 1% is opened, and this is repeated until the opening of the pressure adjusting valve 74 is fully opened.
  • the opening adjustment value may be different from the value at the time of adjusting the air-fuel ratio described above.
  • a pressure adjustment valve reset process by the gas fuel injection control device according to the present embodiment configured as described above will be described with reference to FIG.
  • the pressure adjustment valve reset process described below is started simultaneously with the start of the operation of the ECU 3, and is repeatedly executed at a preset time interval.
  • the pressure adjustment unit 301 determines whether or not the throttle opening detected by the throttle opening sensor 34 is larger than a throttle opening determination value (step S21). When it is determined that the throttle opening is not greater than the throttle opening determination value, the pressure adjustment unit 301 ends the process.
  • step S21 When it is determined in step S21 that the throttle opening is larger than the throttle opening determination value, the pressure adjustment unit 301 opens the opening of the pressure adjustment valve 74 by the opening adjustment value (step S22). Next, the pressure adjusting unit 301 determines whether or not the opening degree of the pressure adjusting valve 74 is fully opened (step S23).
  • step S23 If it is determined in step S23 that the opening of the pressure adjusting valve 74 is not fully opened, the pressure adjusting unit 301 repeats the process of step S22. When the opening degree of the pressure adjusting valve 74 is fully opened, the pressure adjusting unit 301 ends the process.
  • the pressure adjustment valve 74 for reducing the pressure of the CNG supplied to the gas fuel injector 71 is provided between the pressure regulator 75 and the gas fuel injector 71 so that the air-fuel ratio is less than the target air-fuel ratio.
  • a pressure adjustment unit 301 is provided that closes the pressure adjustment valve 74 until the target air-fuel ratio is reached when it is determined that the air-fuel ratio is off.
  • the pressure of the CNG supplied to the gas fuel injector 71 can be reduced, the minimum flow rate of the gas fuel injector 71 can be reduced, and an appropriate amount of fuel can be injected.
  • the pressure adjusting unit 301 closes the pressure adjusting valve 74 until the target air-fuel ratio is reached.
  • a throttle opening sensor 34 for detecting the intake air amount to the engine 2 is provided, and the pressure adjustment unit 301 fully opens the pressure adjustment valve 74 when the intake air amount to the engine 2 is larger than a predetermined intake air amount. Open up to.
  • the pressure adjusting valve 74 is fully opened, and the gas fuel with the maximum flow rate of the gas fuel injector 71 can be supplied. Fuel injection can be performed.
  • 1 is configured to reduce the pressure of the CNG supplied from the gas fuel tank 78 using the negative pressure of the intake manifold 31 (negative pressure applied to the intake pipe 32).
  • the pressure regulator 75 can adjust the pressure when the throttle opening degree changes abruptly, for example, when it is fully opened to fully closed. There is a possibility of excessive fuel without catching up with fluctuations in air volume.
  • the pressure adjustment unit 301 determines that the reduction rate of the throttle opening detected by the throttle opening sensor 34 (a reduction with respect to time) is equal to or greater than a preset reduction threshold, the pressure adjustment valve 74 The opening is closed to a preset adjustment opening.
  • the pressure adjustment unit 301 refers to the throttle opening detected by the throttle opening sensor 34 at a preset time interval.
  • the pressure adjusting unit 301 sets the opening of the pressure adjusting valve 74 in advance if the amount of decrease in the current throttle opening is greater than or equal to the reduction threshold from the previous throttle opening stored in the RAM of the ECU 3. Close to adjusted opening.
  • the pressure adjustment unit 301 stores the throttle opening referred this time in the RAM of the ECU 3 for reference during the next processing.
  • the reduction threshold is a lower limit value of the reduction amount of the throttle opening that causes excessive fuel, is experimentally obtained, and is stored in the ROM of the ECU 3.
  • the adjustment opening is the opening of the pressure adjusting valve 74 that can avoid excessive fuel, is experimentally determined, and is stored in the ROM of the ECU 3.
  • the fuel excess control process by the gas fuel injection control device according to the present embodiment configured as described above will be described with reference to FIG.
  • the excessive fuel control process described below is started simultaneously with the start of the operation of the ECU 3, and is repeatedly executed at a preset time interval.
  • the pressure adjusting unit 301 determines whether or not the throttle opening detected by the throttle opening sensor 34 has been fully closed from the fully open at the previous detection (step S31). When it is determined that the throttle opening is not fully opened to fully closed, the pressure adjustment unit 301 ends the process.
  • step S31 When it is determined in step S31 that the throttle opening has been fully opened, the pressure adjusting unit 301 closes the opening of the pressure adjusting valve 74 by the opening adjustment value (step S32). Next, the pressure adjusting unit 301 determines whether or not the opening degree of the pressure adjusting valve 74 has reached the adjusted opening degree (step S33).
  • step S33 If it is determined in step S33 that the opening of the pressure adjusting valve 74 is not the adjusted opening, the pressure adjusting unit 301 repeats the process of step S32. On the other hand, when the opening degree of the pressure adjusting valve 74 becomes the adjusted opening degree, the pressure adjusting unit 301 ends the process.
  • the opening of the pressure adjusting valve 74 is set to the adjusted opening. For this reason, the amount of gas fuel supplied from the gas fuel injector 71 can be reduced, and an appropriate amount of fuel can be injected.
  • the throttle opening sensor 34 that detects the amount of intake air to the engine 2 is provided, and the pressure adjusting unit 301 reduces the amount of intake air to the engine 2 per hour.
  • the pressure adjustment unit 301 closes the pressure adjustment valve 74 to the adjustment opening degree.
  • the pressure adjustment valve 74 is closed to the adjustment opening, and the amount of gas fuel supplied from the gas fuel injector 71 is reduced. It is possible to reduce the amount of fuel, and an appropriate amount of fuel can be injected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 A gas fuel injection control device with which it is possible to inject an amount of gas fuel suitable for the operating state of an internal combustion engine, the gas fuel injection control device having: a gas fuel supply tube (73) for connecting a pressure regulator (75) and a gas fuel injector (71), the gas fuel supply tube (73) being provided with a pressure adjustment valve (74) for opening and closing the gas fuel supply tube (73) between fully open and fully closed states; and a pressure adjustment unit (301) for reducing the opening degree of the pressure adjustment valve (74) in increments of a preset opening degree adjustment value until the air/fuel ratio reaches a target air/fuel ratio, when the air/fuel ratio is determined to have deviated from the target air/fuel ratio and the drive time of the gas fuel injector (71) is determined to be shorter than a minimum drive time.

Description

ガス燃料の噴射制御装置Gas fuel injection control device
 本発明は、ガス燃料を噴射するインジェクタを備えたエンジンのガス燃料の噴射制御装置に関する。 The present invention relates to an injection control device for gas fuel of an engine provided with an injector for injecting gas fuel.
 燃焼室に供給する燃料として、ガソリンなどの液体燃料とCNG(Compressed Natural Gas)やLPG(Liquefied Petroleum Gas)などの気体燃料を供給して稼働する内燃機関、所謂、バイフューエルエンジンを車両に搭載して駆動源として利用することが知られている。 An internal combustion engine that operates by supplying liquid fuel such as gasoline and gaseous fuel such as CNG (Compressed Natural Gas) or LPG (Liquefied Petroleum Gas) as a fuel to be supplied to the combustion chamber is installed in the vehicle. It is known to use as a drive source.
 このようなバイフューエルエンジンを搭載した車両では、大気汚染抑制及び省資源の観点から、一般的に気体燃料が主燃料として用いられる。ところが、バイフューエルエンジンでは、気体燃料が無くなっても液体燃料での走行が可能であり、その気体燃料の残量をユーザが気にすることも少なく、気体燃料の低残圧状態での走行が行われる恐れがある。このような低残圧状態で走行すると、燃料が十分に供給されず、オーバーリーン燃焼や失火の発生により内燃機関や排気ガス処理用の触媒等の耐久性に悪影響を与えることになる。 In vehicles equipped with such a bi-fuel engine, gaseous fuel is generally used as the main fuel from the viewpoint of air pollution control and resource saving. However, with a bi-fuel engine, it is possible to run with liquid fuel even when there is no gaseous fuel, and it is unlikely that the user will care about the remaining amount of gaseous fuel. There is a risk of being done. When traveling in such a low residual pressure state, the fuel is not sufficiently supplied, and the durability of the internal combustion engine, the exhaust gas treatment catalyst, etc. is adversely affected by the occurrence of overlean combustion and misfire.
 このような問題に対応するため、特許第4300511号公報(特許文献1)には、気体燃料の残量をモニタし、現在地から最短の気体燃料補給所まで到達不可能と判断したとき、運転者に警告するとともに、所定時間経過しても燃料が気体燃料から液体燃料に切り替えられなかった場合は、自動的に燃料を切り替えることが記載されている。 In order to deal with such a problem, Japanese Patent No. 4300511 (Patent Document 1) describes the remaining amount of gas fuel, and when it is determined that the shortest gas fuel supply station cannot be reached from the current location, the driver In addition, it is described that the fuel is automatically switched when the fuel is not switched from the gaseous fuel to the liquid fuel even after a predetermined time has elapsed.
特許第4300511号公報Japanese Patent No. 4300511
 しかしながら、気体燃料のうちCNG燃料は、産地によりメタン、炭化水素及び窒素の組成割合が大きく異なることがある。このため、含まれる燃焼成分に差異があり、含まれる燃焼成分が少ない場合は、CNGの残量が十分にある状態であっても、燃焼成分が不足してリーン燃焼になってしまう場合がある。例えば、スロットル開度を全開で走行時等の高流量時には、最大流量の燃料を供給してもリーン燃焼になってしまうという問題があった。 However, among the gaseous fuels, the composition ratio of methane, hydrocarbons, and nitrogen may vary greatly among CNG fuels depending on the production area. For this reason, there is a difference in the included combustion components, and if the included combustion components are small, even if the remaining amount of CNG is sufficient, the combustion components may be insufficient, resulting in lean combustion. . For example, at a high flow rate such as when traveling with the throttle opening fully open, there is a problem that lean combustion occurs even if the maximum flow rate of fuel is supplied.
 高流量時に適正な燃料制御を行うためには、最大流量を増やすため燃料圧力を上げることが考えられるが、最大流量を増やすために燃料圧力を上げると、精度良く燃料を噴射できる最小流量も増えてしまう。これは、インジェクタが精度良く燃料を噴射できる最大開弁時間と最小開弁時間がインジェクタの単体性能として決まっているからである。このため、高流量時に適正な燃料制御を行うために燃料圧力を上げると、アイドリング時等の要求燃料量が少ないときに、インジェクタの最小開弁時間より短い時間でインジェクタが開弁駆動され、燃料制御が不安定になってしまう。 In order to perform proper fuel control at high flow rates, it is conceivable to increase the fuel pressure in order to increase the maximum flow rate. However, if the fuel pressure is increased to increase the maximum flow rate, the minimum flow rate at which fuel can be injected accurately increases. End up. This is because the maximum valve opening time and the minimum valve opening time during which the injector can inject fuel with high accuracy are determined as the single unit performance of the injector. For this reason, if the fuel pressure is increased in order to perform proper fuel control at a high flow rate, the injector is driven to open in a time shorter than the minimum valve opening time of the injector when the required fuel amount is small such as during idling. Control becomes unstable.
 そこで、本発明は、内燃機関の運転状態に合わせた適正な量のガス燃料の噴射を行うことが可能なガス燃料の噴射制御装置を提供することを目的としている。 Therefore, an object of the present invention is to provide a gas fuel injection control device capable of injecting an appropriate amount of gas fuel in accordance with the operating state of the internal combustion engine.
 上記課題を解決するガス燃料の噴射制御装置の発明の一態様は、ガス燃料を噴射するガス燃料インジェクタを備えるエンジンと、ガス燃料を貯蔵するガス燃料タンクと、ガス燃料タンクから供給されるガス燃料の圧力を減圧するプレッシャレギュレータと、排気管に流れる排気ガス中の酸素濃度に基づいて空燃比のリッチまたはリーンを検出する酸素センサと、を備える車両のガス燃料の噴射制御装置であって、プレッシャレギュレータとガス燃料インジェクタとを接続する配管に、ガス燃料インジェクタに供給されるガス燃料の圧力を減圧させる圧力調整用バルブを配置し、空燃比が目標の空燃比から外れると判定した場合に、目標の空燃比になるまで圧力調整用バルブを閉じる圧力調整部を備えるものである。 One aspect of the invention of an injection control device for a gas fuel that solves the above problems includes an engine including a gas fuel injector that injects the gas fuel, a gas fuel tank that stores the gas fuel, and a gas fuel that is supplied from the gas fuel tank A gas fuel injection control device for a vehicle, comprising: a pressure regulator for reducing the pressure of the exhaust gas; and an oxygen sensor for detecting richness or leanness of an air-fuel ratio based on an oxygen concentration in exhaust gas flowing in an exhaust pipe. A pressure adjustment valve for reducing the pressure of the gas fuel supplied to the gas fuel injector is arranged in the pipe connecting the regulator and the gas fuel injector, and when it is determined that the air / fuel ratio deviates from the target air / fuel ratio, A pressure adjusting unit that closes the pressure adjusting valve until the air-fuel ratio becomes the same.
 このように本発明の一態様によれば、内燃機関の運転状態に合わせた適正な量のガス燃料の噴射を行うことが可能となる。 Thus, according to one aspect of the present invention, it is possible to inject an appropriate amount of gas fuel in accordance with the operating state of the internal combustion engine.
図1は、本発明の第1実施形態に係るガス燃料の噴射制御装置を示す図であり、その概念ブロック図である。FIG. 1 is a conceptual block diagram showing a gas fuel injection control apparatus according to a first embodiment of the present invention. 図2は、本発明の第1実施形態に係るガス燃料の噴射制御装置を示す図であり、そのインジェクタ駆動時間診断処理を説明するフローチャートである。FIG. 2 is a view showing the gas fuel injection control device according to the first embodiment of the present invention, and is a flowchart for explaining the injector drive time diagnosis process. 図3は、本発明の第1実施形態に係るガス燃料の噴射制御装置を示す図であり、その圧力調整用バルブリセット処理を説明するフローチャートである。FIG. 3 is a diagram showing the gas fuel injection control device according to the first embodiment of the present invention, and is a flowchart for explaining the pressure adjustment valve reset processing. 図4は、本発明の第2実施形態に係るガス燃料の噴射制御装置を示す図であり、その燃料過多制御処理を説明するフローチャートである。FIG. 4 is a diagram illustrating an injection control device for gas fuel according to the second embodiment of the present invention, and is a flowchart for explaining the excessive fuel control process.
 以下、図面を参照して、本発明の第1実施形態に係るガス燃料の噴射制御装置について詳細に説明する。 Hereinafter, a gas fuel injection control device according to a first embodiment of the present invention will be described in detail with reference to the drawings.
 (第1実施形態)
 図1に示すように、本実施形態に係るガス燃料の噴射制御装置を搭載する車両1は、内燃機関型のエンジン2と、ECU(Electronic Control Unit)3とを含んで構成されている。
(First embodiment)
As shown in FIG. 1, a vehicle 1 equipped with a gas fuel injection control device according to this embodiment includes an internal combustion engine type engine 2 and an ECU (Electronic Control Unit) 3.
 エンジン2は、ピストン10が気筒11内を2往復する間に吸気行程、圧縮行程、膨張行程及び排気行程からなる一連の4行程を行うとともに、圧縮行程及び膨張行程の間に点火を行う4サイクルのエンジンによって構成されている。 The engine 2 performs a series of four strokes including an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke while the piston 10 makes two reciprocations within the cylinder 11, and performs four ignition cycles during the compression stroke and the expansion stroke. It is composed by the engine.
 本実施形態において、エンジン2は、直列4気筒のエンジンによって構成されているものとするが、本発明においては、直列6気筒エンジン、V型6気筒エンジン、V型12気筒エンジンまたは水平対向6気筒エンジン等の種々の型式のエンジンによって構成されていてもよい。図1に示すエンジン2は、直列に配置された4つの気筒のうちの1つの気筒11が図示されている。 In this embodiment, the engine 2 is assumed to be an in-line 4-cylinder engine. However, in the present invention, an in-line 6-cylinder engine, a V-type 6-cylinder engine, a V-type 12-cylinder engine, or a horizontally opposed 6-cylinder engine. You may be comprised by various types of engines, such as an engine. The engine 2 shown in FIG. 1 shows one cylinder 11 out of four cylinders arranged in series.
 各気筒11に収納されたピストン10は、コネクティングロッド12を介してクランクシャフト13に連結されている。コネクティングロッド12は、ピストン10の往復動をクランクシャフト13の回転運動に変換するようになっている。 The piston 10 accommodated in each cylinder 11 is connected to a crankshaft 13 via a connecting rod 12. The connecting rod 12 converts the reciprocating motion of the piston 10 into the rotational motion of the crankshaft 13.
 したがって、エンジン2は、気筒11内の燃焼室14で燃料と空気との混合気を燃焼させることによりピストン10を往復動させ、コネクティングロッド12を介してクランクシャフト13を回転させることにより、車両1を駆動させる駆動力を発生するようになっている。 Therefore, the engine 2 causes the piston 10 to reciprocate by burning a mixture of fuel and air in the combustion chamber 14 in the cylinder 11, and rotates the crankshaft 13 via the connecting rod 12, thereby A driving force for driving the is generated.
 エンジン2の吸気ポート30には、空気を燃焼室14に導入するためのインテークマニホールド31が設けられている。インテークマニホールド31は、外気を吸入するための吸気管32に接続されている。すなわち、インテークマニホールド31は、吸気管32と各気筒11の吸気ポート30とを連通している。 The intake port 30 of the engine 2 is provided with an intake manifold 31 for introducing air into the combustion chamber 14. The intake manifold 31 is connected to an intake pipe 32 for sucking outside air. That is, the intake manifold 31 communicates the intake pipe 32 and the intake port 30 of each cylinder 11.
 吸気管32には、エンジン2の吸入空気量を調整するためのスロットルバルブ33が設けられている。スロットルバルブ33は、ECU3からの指令信号に応じてスロットル開度が制御されることで、エンジン2の吸入空気量を調整するようになっている。スロットルバルブ33には、スロットルバルブ33の開度(以下、単に「スロットル開度」という)を検出するスロットル開度センサ34が設けられている。 The intake pipe 32 is provided with a throttle valve 33 for adjusting the intake air amount of the engine 2. The throttle valve 33 adjusts the intake air amount of the engine 2 by controlling the throttle opening degree according to a command signal from the ECU 3. The throttle valve 33 is provided with a throttle opening sensor 34 for detecting the opening of the throttle valve 33 (hereinafter simply referred to as “throttle opening”).
 エンジン2の排気ポート40には、燃焼室14のなかで混合気の燃焼によって発生した排気ガスを車外に排出するためのエキゾーストマニホールド41が設けられている。エキゾーストマニホールド41は、排気管42に接続されている。すなわち、エキゾーストマニホールド41は、排気管42と各気筒11の排気ポート40とを連通している。 The exhaust port 40 of the engine 2 is provided with an exhaust manifold 41 for discharging exhaust gas generated by combustion of the air-fuel mixture in the combustion chamber 14 to the outside of the vehicle. The exhaust manifold 41 is connected to the exhaust pipe 42. That is, the exhaust manifold 41 communicates the exhaust pipe 42 and the exhaust port 40 of each cylinder 11.
 この排気管42には、三元触媒43と、上流側酸素センサ44と、下流側酸素センサ45とが設けられている。三元触媒43は、エンジン2の燃焼室14から排出された排気ガス、すなわち既燃ガスを浄化するようになっている。 The exhaust pipe 42 is provided with a three-way catalyst 43, an upstream oxygen sensor 44, and a downstream oxygen sensor 45. The three-way catalyst 43 purifies exhaust gas discharged from the combustion chamber 14 of the engine 2, that is, burned gas.
 上流側酸素センサ44は、三元触媒43よりも排気ガスが排出される方向である排気方向の上流側に設けられている。下流側酸素センサ45は、三元触媒43よりも排気方向下流側に設けられている。上流側酸素センサ44及び下流側酸素センサ45は、排気ガス中の酸素濃度に基づいて、空燃比に対して理論空燃比を基準にしてリッチ側とリーン側とで出力が急変する信号を出力する酸素センサである。 The upstream oxygen sensor 44 is provided upstream of the three-way catalyst 43 in the exhaust direction, which is the direction in which exhaust gas is discharged. The downstream oxygen sensor 45 is provided downstream of the three-way catalyst 43 in the exhaust direction. The upstream oxygen sensor 44 and the downstream oxygen sensor 45 output a signal whose output changes suddenly between the rich side and the lean side with respect to the air / fuel ratio based on the stoichiometric air / fuel ratio based on the oxygen concentration in the exhaust gas. It is an oxygen sensor.
 また、エンジン2には、インテークマニホールド31から燃焼室14への空気の導入を制御するための吸気バルブ50と、燃焼室14からエキゾーストマニホールド41への排気ガスの排出を制御するための排気バルブ51と、燃焼室14内の混合気に点火する点火プラグ52とが設けられている。 Further, the engine 2 includes an intake valve 50 for controlling the introduction of air from the intake manifold 31 to the combustion chamber 14 and an exhaust valve 51 for controlling the discharge of exhaust gas from the combustion chamber 14 to the exhaust manifold 41. And a spark plug 52 for igniting the air-fuel mixture in the combustion chamber 14.
 点火プラグ52は、プラチナやイリジウム合金製の電極を有する公知の点火プラグによって構成されている。点火プラグ52は、ECU3によって電極が通電されることにより放電し、燃焼室14内の混合気に点火するようになっている。 The spark plug 52 is a known spark plug having an electrode made of platinum or an iridium alloy. The spark plug 52 is discharged when the electrode is energized by the ECU 3 and ignites the air-fuel mixture in the combustion chamber 14.
 吸気バルブ50は、吸気ポート30と燃焼室14とを連通または遮断するように開閉されるようになっている。吸気バルブ50の開閉は、図示しない吸気カムシャフトによって行われるようになっている。 The intake valve 50 is opened and closed so as to communicate or block the intake port 30 and the combustion chamber 14. The intake valve 50 is opened and closed by an intake camshaft (not shown).
 排気バルブ51は、排気ポート40と燃焼室14とを連通または遮断するように開閉されるようになっている。排気バルブ51の開閉は、図示しない排気カムシャフトによって行われるようになっている。 The exhaust valve 51 is opened and closed so as to communicate or block the exhaust port 40 and the combustion chamber 14. The exhaust valve 51 is opened and closed by an exhaust camshaft (not shown).
 このエンジン2は、燃焼室14内に噴射する燃料として、液体燃料のガソリンと気体燃料のCNG(LPGでもよい)の2種の燃料から一つが選択されて供給される。エンジン2は、ガソリンタンク65に貯蔵されるガソリンを燃焼室14内に供給するガソリン供給系60と、ガス燃料タンク78に高圧で貯蔵されるCNGを燃焼室14内に供給するガス燃料供給系70とを備えている。 This engine 2 is supplied by selecting one of two types of fuel, that is, liquid fuel gasoline and gas fuel CNG (or LPG) as fuel to be injected into the combustion chamber 14. The engine 2 includes a gasoline supply system 60 that supplies gasoline stored in the gasoline tank 65 into the combustion chamber 14, and a gas fuel supply system 70 that supplies CNG stored in the gas fuel tank 78 at high pressure into the combustion chamber 14. And.
 ガソリン供給系60は、ガソリンインジェクタ61と、ガソリン用フューエルレール62と、液体燃料供給管63と、燃料ポンプ64と、ガソリンタンク65とを含んで構成される。 The gasoline supply system 60 includes a gasoline injector 61, a gasoline fuel rail 62, a liquid fuel supply pipe 63, a fuel pump 64, and a gasoline tank 65.
 燃料ポンプ64は、ガソリンタンク65内に常圧状態で貯留されているガソリンを吸引して、液体燃料供給管63を介してガソリン用フューエルレール62に圧送する。ガソリン用フューエルレール62には、エンジン2の各気筒11に対応する複数のガソリンインジェクタ61が連結されている。各ガソリンインジェクタ61は、吸気ポート30内にガソリンを噴射する。 The fuel pump 64 sucks gasoline stored in the gasoline tank 65 at normal pressure and pumps it to the gasoline fuel rail 62 via the liquid fuel supply pipe 63. A plurality of gasoline injectors 61 corresponding to each cylinder 11 of the engine 2 are connected to the fuel rail 62 for gasoline. Each gasoline injector 61 injects gasoline into the intake port 30.
 ガソリン用フューエルレール62は、燃料ポンプ64から圧送されたガソリンを、その圧力を保ちながら蓄える。ガソリン用フューエルレール62に蓄えられているガソリンは、ガソリンインジェクタ61が開弁することにより噴射される。ガソリンインジェクタ61は、ECU3に接続され、ECU3の制御により、対応する各吸気ポート30内へのガソリンの噴射タイミングなどが個別に調整される。 The gasoline fuel rail 62 stores the gasoline pumped from the fuel pump 64 while maintaining the pressure. The gasoline stored in the gasoline fuel rail 62 is injected when the gasoline injector 61 is opened. The gasoline injector 61 is connected to the ECU 3 and under the control of the ECU 3, the injection timing of gasoline into each corresponding intake port 30 is individually adjusted.
 ガス燃料供給系70は、ガス燃料インジェクタ71と、ガス燃料用フューエルレール72と、ガス燃料供給管73と、圧力調整用バルブ74と、プレッシャレギュレータ75と、レギュレータシャットオフバルブ76と、元弁77と、ガス燃料タンク78とを含んで構成される。 The gas fuel supply system 70 includes a gas fuel injector 71, a gas fuel fuel rail 72, a gas fuel supply pipe 73, a pressure adjustment valve 74, a pressure regulator 75, a regulator shutoff valve 76, and a main valve 77. And a gas fuel tank 78.
 ガス燃料供給管73の一方端にはガス燃料タンク78が接続されており、ガス燃料供給管73の他方端にはガス燃料用フューエルレール72が接続されている。ガス燃料タンク78とガス燃料供給管73との間には、元弁77が設けられている。元弁77は、ECU3によって開閉が制御される常閉型の電磁弁により構成される。この元弁77が閉弁状態である場合、ガス燃料タンク78内は密閉状態となる。 A gas fuel tank 78 is connected to one end of the gas fuel supply pipe 73, and a gas fuel fuel rail 72 is connected to the other end of the gas fuel supply pipe 73. A main valve 77 is provided between the gas fuel tank 78 and the gas fuel supply pipe 73. The original valve 77 is a normally closed electromagnetic valve whose opening and closing is controlled by the ECU 3. When the main valve 77 is closed, the gas fuel tank 78 is hermetically sealed.
 また、ガス燃料供給管73のCNGが供給される方向である供給方向の元弁77よりも下流側には、レギュレータシャットオフバルブ76、プレッシャレギュレータ75、圧力調整用バルブ74、が順に設けられている。 Further, a regulator shut-off valve 76, a pressure regulator 75, and a pressure adjusting valve 74 are provided in this order downstream from the main valve 77 in the supply direction, which is the direction in which CNG is supplied from the gas fuel supply pipe 73. Yes.
 レギュレータシャットオフバルブ76は、ECU3によって開閉が制御されるようになっている。元弁77及びレギュレータシャットオフバルブ76が開弁状態である場合には、ガス燃料タンク78内のCNGがガス燃料供給管73を介してガス燃料用フューエルレール72に供給される。レギュレータシャットオフバルブ76が閉弁状態になった場合には、ガス燃料用フューエルレール72にCNGが供給されなくなる。 The opening and closing of the regulator shutoff valve 76 is controlled by the ECU 3. When the main valve 77 and the regulator shut-off valve 76 are open, the CNG in the gas fuel tank 78 is supplied to the gas fuel fuel rail 72 via the gas fuel supply pipe 73. When the regulator shut-off valve 76 is closed, CNG is not supplied to the fuel rail 72 for gas fuel.
 プレッシャレギュレータ75は、ガス燃料タンク78から供給されるCNGの圧力、即ち燃圧を減圧させる。このプレッシャレギュレータ75は、規定の燃圧のCNGがガス燃料用フューエルレール72に供給されるように作動する。ガス燃料用フューエルレール72は、プレッシャレギュレータ75から供給されたCNGを、その圧力を保ちながら蓄える。 The pressure regulator 75 reduces the pressure of the CNG supplied from the gas fuel tank 78, that is, the fuel pressure. The pressure regulator 75 operates so that CNG having a prescribed fuel pressure is supplied to the fuel rail 72 for gas fuel. The fuel rail 72 for gas fuel stores CNG supplied from the pressure regulator 75 while maintaining the pressure.
 ガス燃料用フューエルレール72には、エンジン2の各気筒11に対応する複数のガス燃料インジェクタ71が連結されている。各ガス燃料インジェクタ71は、インテークマニホールド31内にCNGを噴射する。また、ガス燃料用フューエルレール72には、該ガス燃料用フューエルレール72内の圧力を検出するための圧力センサ79が設けられている。インテークマニホールド31内にCNGを噴射するのは、容積の大きいインテークマニホールド31内で大量のCNGを吸入空気と混合させるためである。 A plurality of gas fuel injectors 71 corresponding to each cylinder 11 of the engine 2 are connected to the fuel rail 72 for gas fuel. Each gas fuel injector 71 injects CNG into the intake manifold 31. The gas fuel fuel rail 72 is provided with a pressure sensor 79 for detecting the pressure in the gas fuel fuel rail 72. The reason why CNG is injected into intake manifold 31 is to mix a large amount of CNG with intake air in intake manifold 31 having a large volume.
 ガス燃料用フューエルレール72に蓄えられているCNGは、ガス燃料インジェクタ71が開弁することにより噴射される。ガス燃料インジェクタ71は、ECU3に接続され、ECU3の制御により、対応する各インテークマニホールド31内へのCNGの噴射タイミングなどが個別に制御される。ガス燃料インジェクタ71が開弁している時間を駆動時間といい、ECU3は、ガス燃料インジェクタ71の駆動時間を制御して、CNGの噴射量を調整するようになっている。 CNG stored in the fuel rail 72 for gas fuel is injected when the gas fuel injector 71 is opened. The gas fuel injector 71 is connected to the ECU 3, and the injection timing of CNG into the corresponding intake manifolds 31 is individually controlled by the control of the ECU 3. The time during which the gas fuel injector 71 is open is referred to as the drive time, and the ECU 3 controls the drive time of the gas fuel injector 71 to adjust the CNG injection amount.
 圧力調整用バルブ74は、ガス燃料供給管73を全開から全閉の間で開閉する。圧力調整用バルブ74は、ECU3に電気的に接続されている。圧力調整用バルブ74は、ECU3からの指令信号に応じてバルブ開度が制御されることで、ガス燃料用フューエルレール72に供給されるCNGの圧力を調整するようになっている。圧力調整用バルブ74の開度は、圧力調整用バルブ74の全開時の開口面積に対する開口面積の比率[%]で表され、1[%]単位で開度を調整できるようになっている。 The pressure adjusting valve 74 opens and closes the gas fuel supply pipe 73 between fully open and fully closed. The pressure adjusting valve 74 is electrically connected to the ECU 3. The pressure adjusting valve 74 is configured to adjust the pressure of the CNG supplied to the gas fuel fuel rail 72 by controlling the valve opening degree according to a command signal from the ECU 3. The opening degree of the pressure adjusting valve 74 is expressed by a ratio [%] of the opening area to the opening area when the pressure adjusting valve 74 is fully opened, and the opening degree can be adjusted in units of 1 [%].
 本実施形態では、上述のように構成されたエンジン2は、ECU3によってその運転状態が制御されるようになっている。ECU3は、例えばCPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、入出力インターフェース等を備えるマイクロコンピュータを含んで構成されており、CPUは、RAMの一時記憶機能を利用するとともにROMに予め記憶されたプログラムに従って信号処理を行うようになっている。ROMには、各種制御定数や各種マップ等が予め記憶されている。 In the present embodiment, the operating state of the engine 2 configured as described above is controlled by the ECU 3. The ECU 3 includes, for example, a microcomputer including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an input / output interface, and the like. The CPU has a temporary storage function of the RAM. The signal processing is performed according to a program that is used and stored in advance in the ROM. Various control constants and various maps are stored in advance in the ROM.
 また、ECU3の入力側には、前述したスロットル開度センサ34、上流側酸素センサ44、下流側酸素センサ45、圧力センサ79、燃料切替スイッチ80等の各種センサ類及びスイッチ類が接続されている。燃料切替スイッチ80は、ドライバなどが暖気時や加速時などの運転状況に応じて手動で使用する燃料の切替操作をする。 In addition, various sensors and switches such as the throttle opening sensor 34, the upstream oxygen sensor 44, the downstream oxygen sensor 45, the pressure sensor 79, and the fuel changeover switch 80 are connected to the input side of the ECU 3. . The fuel changeover switch 80 performs a changeover operation of the fuel to be manually used by the driver or the like according to the operation state such as when warming up or accelerating.
 ECU3の出力側には、前述したスロットルバルブ33、点火プラグ52、ガソリンインジェクタ61、燃料ポンプ64、ガス燃料インジェクタ71、圧力調整用バルブ74、レギュレータシャットオフバルブ76、元弁77等の各種装置が接続されている。 On the output side of the ECU 3, various devices such as the throttle valve 33, the spark plug 52, the gasoline injector 61, the fuel pump 64, the gas fuel injector 71, the pressure adjusting valve 74, the regulator shut-off valve 76, the main valve 77, etc. It is connected.
 ECU3は、性状の異なる液体燃料と気体燃料とを選択切替してエンジン2の燃焼室14に供給するように、燃焼室14内に供給する燃料をガソリンからCNGに、または、CNGからガソリンに適宜切り替えるようになっている。
 例えば、ECU3は、燃料切替スイッチ80による手動切替操作時、ガソリンタンク65内またはガス燃料タンク78内の燃料切れの検知時、あるいは、暖気運転または定常運転や加速時などのエンジン2の稼働モードに応じて、使用する燃料を切り替える。
 エンジン2の稼働モードに応じた燃料の選択方法としては、暖気運転や定常運転の際に安価なCNGを選択する方法、また、トルクが必要な加速時や登坂時にガソリンを選択する方法などがある。
The ECU 3 appropriately switches the fuel to be supplied into the combustion chamber 14 from gasoline to CNG or from CNG to gasoline so as to selectively switch between liquid fuel and gas fuel having different properties and supply them to the combustion chamber 14 of the engine 2. It is supposed to switch.
For example, the ECU 3 switches to the operation mode of the engine 2 such as a manual switching operation by the fuel changeover switch 80, a fuel outage detection in the gasoline tank 65 or the gas fuel tank 78, or a warm-up operation or a steady operation or acceleration. The fuel to be used is switched accordingly.
As a method of selecting the fuel according to the operation mode of the engine 2, there are a method of selecting an inexpensive CNG during warm-up operation or steady operation, and a method of selecting gasoline at the time of acceleration or climbing that requires torque. .
 さらにECU3は、圧力調整部301を備えている。圧力調整部301は、空燃比が目標の空燃比から外れると判定したとき、上述した圧力調整用バルブ74を制御することによってガス燃料インジェクタ71に供給されるCNGの圧力を調整して、目標の空燃比になるようにする。 Furthermore, the ECU 3 includes a pressure adjustment unit 301. When the pressure adjusting unit 301 determines that the air-fuel ratio deviates from the target air-fuel ratio, the pressure adjusting unit 301 controls the pressure adjusting valve 74 described above to adjust the pressure of the CNG supplied to the gas fuel injector 71, so that the target Make the air-fuel ratio.
 圧力調整部301は、上流側酸素センサ44の検出信号に基づいて空燃比が目標の空燃比から外れているか否かを判定する。圧力調整部301は、上流側酸素センサ44の検出信号のリッチ側からリーン側への反転またはリーン側からリッチ側への反転の時間間隔をリッチリーン反転時間として監視している。
 圧力調整部301は、リッチリーン反転時間が予め設定された異常診断時間よりも長いか否かにより空燃比が目標の空燃比から外れているか否かを判定する。異常診断時間は、予め実験的に求められ、ECU3のROMに記憶されている。異常診断時間は、例えば、エンジン回転数によって値の決まるマップとして記憶しておいてもよく、エンジン回転数が高いほど異常診断時間を短く設定するとよい。
The pressure adjustment unit 301 determines whether or not the air-fuel ratio deviates from the target air-fuel ratio based on the detection signal from the upstream oxygen sensor 44. The pressure adjustment unit 301 monitors the time interval between the inversion of the detection signal of the upstream oxygen sensor 44 from the rich side to the lean side or the inversion from the lean side to the rich side as the rich lean inversion time.
The pressure adjustment unit 301 determines whether the air-fuel ratio deviates from the target air-fuel ratio based on whether the rich lean inversion time is longer than a preset abnormality diagnosis time. The abnormality diagnosis time is experimentally obtained in advance and stored in the ROM of the ECU 3. The abnormality diagnosis time may be stored, for example, as a map whose value is determined by the engine speed, and the abnormality diagnosis time may be set shorter as the engine speed is higher.
 また、圧力調整部301は、ガス燃料インジェクタ71の駆動時間が予め設定された最小駆動時間より短いか否かによりガス燃料インジェクタ71が適正な燃料噴射を行っているか否かを判定する。最小駆動時間は、ガス燃料インジェクタ71の設計値から決まる値で、ECU3のROMに記憶されている。 Further, the pressure adjustment unit 301 determines whether or not the gas fuel injector 71 performs proper fuel injection based on whether or not the driving time of the gas fuel injector 71 is shorter than a preset minimum driving time. The minimum drive time is a value determined from the design value of the gas fuel injector 71 and is stored in the ROM of the ECU 3.
 圧力調整部301は、リッチリーン反転時間が異常診断時間よりも長いと判定し、かつ、ガス燃料インジェクタ71の駆動時間が最小駆動時間より短いと判定した場合、圧力調整用バルブ74の開度を予め設定された開度調整値、例えば1[%]だけ閉じ、これをリッチリーン反転時間が異常診断時間以下になるまで繰り返す。開度調整値は、予め実験的に求められ、ECU3のROMに記憶されている。 When the pressure adjusting unit 301 determines that the rich lean inversion time is longer than the abnormality diagnosis time and determines that the driving time of the gas fuel injector 71 is shorter than the minimum driving time, the pressure adjusting unit 301 sets the opening degree of the pressure adjusting valve 74 to the opening degree. The opening adjustment value set in advance, for example, 1 [%] is closed, and this is repeated until the rich lean inversion time becomes equal to or less than the abnormality diagnosis time. The opening adjustment value is experimentally obtained in advance and stored in the ROM of the ECU 3.
 以上のように構成された本実施形態に係るガス燃料の噴射制御装置によるインジェクタ駆動時間診断処理について、図2を参照して説明する。なお、以下に説明するインジェクタ駆動時間診断処理は、ECU3の動作開始と同時に開始され、予め設定された時間間隔で繰り返し実行される。なお、圧力調整部301は、別の処理としてリッチリーン反転時間の検出を並行して行っており、検出したリッチリーン反転時間はECU3のRAMに記憶し、インジェクタ駆動時間診断処理の際に参照可能になっている。 The injector drive time diagnosis process by the gas fuel injection control device according to the present embodiment configured as described above will be described with reference to FIG. The injector drive time diagnosis process described below is started simultaneously with the start of the operation of the ECU 3, and is repeatedly executed at a preset time interval. In addition, the pressure adjustment unit 301 performs detection of the rich lean inversion time in parallel as another process, and the detected rich lean inversion time is stored in the RAM of the ECU 3 and can be referred to during the injector driving time diagnosis processing. It has become.
 まず、圧力調整部301は、エンジン2に供給される燃料としてガス燃料を使用中か否かを判定する(ステップS11)。ガス燃料を使用中でないと判定した場合、圧力調整部301は、処理を終了する。 First, the pressure adjustment unit 301 determines whether gas fuel is being used as the fuel supplied to the engine 2 (step S11). If it is determined that the gas fuel is not in use, the pressure adjustment unit 301 ends the process.
 ガス燃料を使用中であると判定した場合、圧力調整部301は、リッチリーン反転時間が異常診断時間よりも長いか否かを判定する(ステップS12)。リッチリーン反転時間が異常診断時間よりも長くないと判定した場合、圧力調整部301は、処理を終了する。 When it is determined that the gas fuel is being used, the pressure adjustment unit 301 determines whether or not the rich lean inversion time is longer than the abnormality diagnosis time (step S12). If it is determined that the rich lean inversion time is not longer than the abnormality diagnosis time, the pressure adjustment unit 301 ends the process.
 ステップS12においてリッチリーン反転時間が異常診断時間よりも長いと判定した場合、圧力調整部301は、ガス燃料インジェクタ71の駆動時間が最小駆動時間より短いか否かを判定する(ステップS13)。ガス燃料インジェクタ71の駆動時間が最小駆動時間より短くないと判定した場合、圧力調整部301は、処理を終了する。 When it is determined in step S12 that the rich lean inversion time is longer than the abnormality diagnosis time, the pressure adjustment unit 301 determines whether the driving time of the gas fuel injector 71 is shorter than the minimum driving time (step S13). When it is determined that the driving time of the gas fuel injector 71 is not shorter than the minimum driving time, the pressure adjusting unit 301 ends the process.
 ステップS13においてガス燃料インジェクタ71の駆動時間が最小駆動時間より短いと判定した場合、圧力調整部301は、圧力調整用バルブ74の開度を開度調整値だけ閉じる(ステップS14)。次いで、圧力調整部301は、リッチリーン反転時間が異常診断時間以下になったか否かを判定する(ステップS15)。 When it is determined in step S13 that the driving time of the gas fuel injector 71 is shorter than the minimum driving time, the pressure adjusting unit 301 closes the opening of the pressure adjusting valve 74 by the opening adjustment value (step S14). Next, the pressure adjustment unit 301 determines whether or not the rich lean inversion time is equal to or shorter than the abnormality diagnosis time (step S15).
 ステップS15においてリッチリーン反転時間が異常診断時間以下になっていないと判定すると、圧力調整部301は、ステップS14の処理を繰り返す。リッチリーン判定時間が異常診断時間以下になった場合、圧力調整部301は、処理を終了する。 If it is determined in step S15 that the rich lean inversion time is not less than or equal to the abnormality diagnosis time, the pressure adjustment unit 301 repeats the process of step S14. When the rich lean determination time is equal to or less than the abnormality diagnosis time, the pressure adjustment unit 301 ends the process.
 このようにすることで、空燃比が目標の空燃比から外れていて、ガス燃料インジェクタ71の駆動時間が最小駆動時間より短くなっていた場合に、圧力調整用バルブ74でガス燃料インジェクタ71へ供給されるCNGの圧力が低くされる。このため、ガス燃料インジェクタ71の最小流量を下げることができ、適正な量の燃料噴射を行わせることができる。 In this way, when the air-fuel ratio deviates from the target air-fuel ratio and the driving time of the gas fuel injector 71 is shorter than the minimum driving time, the pressure adjustment valve 74 supplies the gas fuel injector 71 to the gas fuel injector 71. The pressure of the CNG is reduced. For this reason, the minimum flow rate of the gas fuel injector 71 can be lowered, and an appropriate amount of fuel can be injected.
 また、圧力調整部301は、エンジン2への吸入空気量が所定の吸入空気量より多い場合、圧力調整用バルブ74の開度を最大開度まで開くようになっている。圧力調整部301は、スロットル開度センサ34の検出するスロットル開度が予め設定されたスロットル開度判定値よりも大きいか否かによりエンジン2への吸入空気量が所定の吸入空気量より多くなったか否かを判定する。すなわち、スロットル開度センサ34は、本発明における吸入空気量検出部を構成する。スロットル開度判定値は、予め実験的に求められ、ECU3のROMに記憶されている。スロットル開度判定値は、燃料量の不足が発生しないスロットル開度の上限値である。 Further, the pressure adjusting unit 301 is configured to open the opening of the pressure adjusting valve 74 to the maximum opening when the intake air amount to the engine 2 is larger than a predetermined intake air amount. The pressure adjusting unit 301 increases the intake air amount to the engine 2 from a predetermined intake air amount depending on whether or not the throttle opening detected by the throttle opening sensor 34 is larger than a preset throttle opening determination value. It is determined whether or not. That is, the throttle opening sensor 34 constitutes an intake air amount detection unit in the present invention. The throttle opening determination value is experimentally obtained in advance and stored in the ROM of the ECU 3. The throttle opening determination value is an upper limit value of the throttle opening at which the shortage of fuel does not occur.
 圧力調整部301は、スロットル開度センサ34の検出するスロットル開度がスロットル開度判定値よりも大きいと判定した場合、圧力調整用バルブ74の開度を予め設定された開度調整値、例えば1[%]だけ開き、これを圧力調整用バルブ74の開度が全開になるまで繰り返す。開度調整値は、上述の空燃比の調整時の値と異ならせてもかまわない。 When the pressure adjustment unit 301 determines that the throttle opening detected by the throttle opening sensor 34 is larger than the throttle opening determination value, the opening of the pressure adjustment valve 74 is set to a predetermined opening adjustment value, for example, 1% is opened, and this is repeated until the opening of the pressure adjusting valve 74 is fully opened. The opening adjustment value may be different from the value at the time of adjusting the air-fuel ratio described above.
 以上のように構成された本実施形態に係るガス燃料の噴射制御装置による圧力調整用バルブリセット処理について、図3を参照して説明する。なお、以下に説明する圧力調整用バルブリセット処理は、ECU3の動作開始と同時に開始され、予め設定された時間間隔で繰り返し実行される。 A pressure adjustment valve reset process by the gas fuel injection control device according to the present embodiment configured as described above will be described with reference to FIG. The pressure adjustment valve reset process described below is started simultaneously with the start of the operation of the ECU 3, and is repeatedly executed at a preset time interval.
 まず、圧力調整部301は、スロットル開度センサ34の検出するスロットル開度がスロットル開度判定値よりも大きいか否かを判定する(ステップS21)。スロットル開度がスロットル開度判定値よりも大きくないと判定した場合、圧力調整部301は、処理を終了する。 First, the pressure adjustment unit 301 determines whether or not the throttle opening detected by the throttle opening sensor 34 is larger than a throttle opening determination value (step S21). When it is determined that the throttle opening is not greater than the throttle opening determination value, the pressure adjustment unit 301 ends the process.
 ステップS21においてスロットル開度がスロットル開度判定値よりも大きいと判定した場合、圧力調整部301は、圧力調整用バルブ74の開度を開度調整値だけ開く(ステップS22)。次いで、圧力調整部301は、圧力調整用バルブ74の開度が全開になったか否かを判定する(ステップS23)。 When it is determined in step S21 that the throttle opening is larger than the throttle opening determination value, the pressure adjustment unit 301 opens the opening of the pressure adjustment valve 74 by the opening adjustment value (step S22). Next, the pressure adjusting unit 301 determines whether or not the opening degree of the pressure adjusting valve 74 is fully opened (step S23).
 ステップS23において圧力調整用バルブ74の開度が全開になっていないと判定すると、圧力調整部301は、ステップS22の処理を繰り返す。圧力調整用バルブ74の開度が全開になった場合、圧力調整部301は、処理を終了する。 If it is determined in step S23 that the opening of the pressure adjusting valve 74 is not fully opened, the pressure adjusting unit 301 repeats the process of step S22. When the opening degree of the pressure adjusting valve 74 is fully opened, the pressure adjusting unit 301 ends the process.
 このようにすることで、スロットル開度がスロットル開度判定値よりも大きく、要求燃料量が多い場合、圧力調整用バルブ74が全開にされる。このため、ガス燃料インジェクタ71の最大流量のガス燃料を供給させることができ、適正な量の燃料噴射を行わせることができる。 In this way, when the throttle opening is larger than the throttle opening determination value and the required fuel amount is large, the pressure adjusting valve 74 is fully opened. For this reason, the gas fuel with the maximum flow rate of the gas fuel injector 71 can be supplied, and an appropriate amount of fuel can be injected.
 このように、上述の実施形態では、プレッシャレギュレータ75とガス燃料インジェクタ71の間にガス燃料インジェクタ71に供給するCNGの圧力を低下させる圧力調整用バルブ74を設け、空燃比が目標の空燃比から外れると判定した場合に、目標の空燃比になるまで圧力調整用バルブ74を閉じる圧力調整部301を備える。 Thus, in the above-described embodiment, the pressure adjustment valve 74 for reducing the pressure of the CNG supplied to the gas fuel injector 71 is provided between the pressure regulator 75 and the gas fuel injector 71 so that the air-fuel ratio is less than the target air-fuel ratio. A pressure adjustment unit 301 is provided that closes the pressure adjustment valve 74 until the target air-fuel ratio is reached when it is determined that the air-fuel ratio is off.
 これにより、ガス燃料インジェクタ71に供給されるCNGの圧力を低下させて、ガス燃料インジェクタ71の最小流量を減らすことができ、適正な量の燃料噴射を行わせることができる。 Thus, the pressure of the CNG supplied to the gas fuel injector 71 can be reduced, the minimum flow rate of the gas fuel injector 71 can be reduced, and an appropriate amount of fuel can be injected.
 また、圧力調整部301は、ガス燃料インジェクタ71の駆動時間が最小駆動時間より短い場合に、目標の空燃比になるまで圧力調整用バルブ74を閉じることとした。
 これにより、ガス燃料インジェクタ71の駆動時間が最小駆動時間より短くなっているときに、ガス燃料インジェクタ71に供給されるCNGの圧力を低下させて、ガス燃料インジェクタ71の最小流量を下げることができ、精度よく適正な量の燃料噴射を行わせることができる。
In addition, when the driving time of the gas fuel injector 71 is shorter than the minimum driving time, the pressure adjusting unit 301 closes the pressure adjusting valve 74 until the target air-fuel ratio is reached.
Thereby, when the drive time of the gas fuel injector 71 is shorter than the minimum drive time, the pressure of the CNG supplied to the gas fuel injector 71 can be reduced, and the minimum flow rate of the gas fuel injector 71 can be lowered. Therefore, it is possible to accurately and appropriately perform fuel injection.
 また、エンジン2への吸入空気量を検出するスロットル開度センサ34を備え、圧力調整部301は、エンジン2への吸入空気量が所定の吸入空気量より多い場合、圧力調整用バルブ74を全開まで開くこととした。 In addition, a throttle opening sensor 34 for detecting the intake air amount to the engine 2 is provided, and the pressure adjustment unit 301 fully opens the pressure adjustment valve 74 when the intake air amount to the engine 2 is larger than a predetermined intake air amount. Open up to.
 これにより、エンジン2への吸入空気量が所定の吸入空気量より多いと圧力調整用バルブ74が全開にされ、ガス燃料インジェクタ71の最大流量のガス燃料を供給させることができ、適正な量の燃料噴射を行わせることができる。 Thereby, when the intake air amount to the engine 2 is larger than the predetermined intake air amount, the pressure adjusting valve 74 is fully opened, and the gas fuel with the maximum flow rate of the gas fuel injector 71 can be supplied. Fuel injection can be performed.
 (第2実施形態)
 次に、本発明の第2実施形態に係るガス燃料の噴射制御装置について説明する。ここで、本実施形態は上述の第1実施形態と略同様に構成されているので、図面を流用して同様な構成には同一の符号を付して特徴部分を説明する。
(Second Embodiment)
Next, a gas fuel injection control apparatus according to a second embodiment of the present invention will be described. Here, since this embodiment is configured in substantially the same manner as the above-described first embodiment, the same reference numerals are given to the same configurations using the drawings, and the characteristic portions will be described.
 図1におけるプレッシャレギュレータ75は、インテークマニホールド31の負圧(吸気管32にかかる負圧)を利用してガス燃料タンク78から供給されるCNGの圧力を減圧させるようになっている。 1 is configured to reduce the pressure of the CNG supplied from the gas fuel tank 78 using the negative pressure of the intake manifold 31 (negative pressure applied to the intake pipe 32).
 吸気管32の負圧を利用してCNGの圧力を減圧させるプレッシャレギュレータ75では、スロットル開度が急激に変化した、例えば、全開から全閉になった場合に、プレッシャレギュレータ75による圧力の調整が空気量の変動に追いつかず燃料過多となる可能性がある。 In the pressure regulator 75 that reduces the pressure of the CNG using the negative pressure of the intake pipe 32, the pressure regulator 75 can adjust the pressure when the throttle opening degree changes abruptly, for example, when it is fully opened to fully closed. There is a possibility of excessive fuel without catching up with fluctuations in air volume.
 このため、圧力調整部301は、スロットル開度センサ34の検出するスロットル開度の減量速度(時間に対する減少量)が予め設定された減量閾値以上であると判定した場合、圧力調整用バルブ74の開度を予め設定された調整開度まで閉じるようになっている。 For this reason, if the pressure adjustment unit 301 determines that the reduction rate of the throttle opening detected by the throttle opening sensor 34 (a reduction with respect to time) is equal to or greater than a preset reduction threshold, the pressure adjustment valve 74 The opening is closed to a preset adjustment opening.
 具体的には、圧力調整部301は、予め設定された時間間隔でスロットル開度センサ34の検出するスロットル開度を参照する。圧力調整部301は、ECU3のRAM内に記憶されている前回のスロットル開度から今回のスロットル開度の減少量が減量閾値以上であれば、圧力調整用バルブ74の開度を予め設定された調整開度まで閉じる。また、圧力調整部301は、次回の処理時に参照するため、今回参照したスロットル開度をECU3のRAM内に記憶させる。 Specifically, the pressure adjustment unit 301 refers to the throttle opening detected by the throttle opening sensor 34 at a preset time interval. The pressure adjusting unit 301 sets the opening of the pressure adjusting valve 74 in advance if the amount of decrease in the current throttle opening is greater than or equal to the reduction threshold from the previous throttle opening stored in the RAM of the ECU 3. Close to adjusted opening. In addition, the pressure adjustment unit 301 stores the throttle opening referred this time in the RAM of the ECU 3 for reference during the next processing.
 ここで、減量閾値は、燃料過多となるスロットル開度の減少量の下限値であり、実験的に求められ、ECU3のROM内に記憶されている。また、調整開度は、燃料過多を回避できる圧力調整用バルブ74の開度であり、実験的に求められ、ECU3のROM内に記憶されている。 Here, the reduction threshold is a lower limit value of the reduction amount of the throttle opening that causes excessive fuel, is experimentally obtained, and is stored in the ROM of the ECU 3. The adjustment opening is the opening of the pressure adjusting valve 74 that can avoid excessive fuel, is experimentally determined, and is stored in the ROM of the ECU 3.
 以上のように構成された本実施形態に係るガス燃料の噴射制御装置による燃料過多制御処理について、図4を参照して説明する。なお、以下に説明する燃料過多制御処理は、ECU3の動作開始と同時に開始され、予め設定された時間間隔で繰り返し実行される。 The fuel excess control process by the gas fuel injection control device according to the present embodiment configured as described above will be described with reference to FIG. The excessive fuel control process described below is started simultaneously with the start of the operation of the ECU 3, and is repeatedly executed at a preset time interval.
 まず、圧力調整部301は、スロットル開度センサ34の検出するスロットル開度が、前回検出時の全開から全閉になったか否かを判定する(ステップS31)。スロットル開度が全開から全閉になっていないと判定した場合、圧力調整部301は、処理を終了する。 First, the pressure adjusting unit 301 determines whether or not the throttle opening detected by the throttle opening sensor 34 has been fully closed from the fully open at the previous detection (step S31). When it is determined that the throttle opening is not fully opened to fully closed, the pressure adjustment unit 301 ends the process.
 ステップS31においてスロットル開度が全開から全閉になったと判定した場合、圧力調整部301は、圧力調整用バルブ74の開度を開度調整値だけ閉じる(ステップS32)。次いで、圧力調整部301は、圧力調整用バルブ74の開度が調整開度になったか否かを判定する(ステップS33)。 When it is determined in step S31 that the throttle opening has been fully opened, the pressure adjusting unit 301 closes the opening of the pressure adjusting valve 74 by the opening adjustment value (step S32). Next, the pressure adjusting unit 301 determines whether or not the opening degree of the pressure adjusting valve 74 has reached the adjusted opening degree (step S33).
 ステップS33において圧力調整用バルブ74の開度が調整開度になっていないと判定すると、圧力調整部301は、ステップS32の処理を繰り返す。一方、圧力調整用バルブ74の開度が調整開度になった場合、圧力調整部301は、処理を終了する。 If it is determined in step S33 that the opening of the pressure adjusting valve 74 is not the adjusted opening, the pressure adjusting unit 301 repeats the process of step S32. On the other hand, when the opening degree of the pressure adjusting valve 74 becomes the adjusted opening degree, the pressure adjusting unit 301 ends the process.
 このようにすることで、スロットル開度が全開から全閉になり、燃料過多になる可能性が高い場合、圧力調整用バルブ74の開度が調整開度にされる。このため、ガス燃料インジェクタ71のガス燃料の供給量を減少させることができ、適正な量の燃料噴射を行わせることができる。 In this way, when the throttle opening is fully opened to fully closed and there is a high possibility of excessive fuel, the opening of the pressure adjusting valve 74 is set to the adjusted opening. For this reason, the amount of gas fuel supplied from the gas fuel injector 71 can be reduced, and an appropriate amount of fuel can be injected.
 このように、上述の第2実施形態では、エンジン2への吸入空気量を検出するスロットル開度センサ34を備え、圧力調整部301は、エンジン2への吸入空気量の時間当たりの減少量が予め設定された減少量より多い場合、圧力調整用バルブ74を調整開度まで閉じる圧力調整部301を備える。 Thus, in the second embodiment described above, the throttle opening sensor 34 that detects the amount of intake air to the engine 2 is provided, and the pressure adjusting unit 301 reduces the amount of intake air to the engine 2 per hour. When the amount of decrease is larger than a preset reduction amount, the pressure adjustment unit 301 closes the pressure adjustment valve 74 to the adjustment opening degree.
 これにより、エンジン2への吸入空気量の時間当たりの減少量が予め設定された減少量より多いと圧力調整用バルブ74が調整開度まで閉じられ、ガス燃料インジェクタ71のガス燃料の供給量を減少させることができ、適正な量の燃料噴射を行わせることができる。 As a result, when the amount of reduction of the intake air amount to the engine 2 per time is greater than a preset amount of reduction, the pressure adjustment valve 74 is closed to the adjustment opening, and the amount of gas fuel supplied from the gas fuel injector 71 is reduced. It is possible to reduce the amount of fuel, and an appropriate amount of fuel can be injected.
 本発明の実施形態を開示したが、当業者によっては本発明の範囲を逸脱することなく変更が加えられうることは明白である。すべてのこのような修正及び等価物が次の請求項に含まれることが意図されている。 Although embodiments of the present invention have been disclosed, it will be apparent to those skilled in the art that changes may be made without departing from the scope of the present invention. All such modifications and equivalents are intended to be included in the following claims.
1 車両
2 エンジン
3 ECU
30 吸気ポート
31 インテークマニホールド
32 吸気管
33 スロットルバルブ
34 スロットル開度センサ(吸入空気量検出部)
44 上流側酸素センサ
70 ガス燃料供給系
71 ガス燃料インジェクタ
72 ガス燃料用フューエルレール
73 ガス燃料供給管
74 圧力調整用バルブ
75 プレッシャレギュレータ
76 レギュレータシャットオフバルブ
77 元弁
78 ガス燃料タンク
79 圧力センサ
301 圧力調整部
1 Vehicle 2 Engine 3 ECU
30 Intake Port 31 Intake Manifold 32 Intake Pipe 33 Throttle Valve 34 Throttle Opening Sensor (Intake Air Volume Detection Unit)
44 Upstream oxygen sensor 70 Gas fuel supply system 71 Gas fuel injector 72 Gas fuel fuel rail 73 Gas fuel supply pipe 74 Pressure adjusting valve 75 Pressure regulator 76 Regulator shutoff valve 77 Main valve 78 Gas fuel tank 79 Pressure sensor 301 Pressure Adjustment section

Claims (4)

  1.  ガス燃料を噴射するガス燃料インジェクタを備えるエンジンと、
     前記ガス燃料を貯蔵するガス燃料タンクと、
     前記ガス燃料タンクから供給される前記ガス燃料の圧力を減圧するプレッシャレギュレータと、
     排気管に流れる排気ガス中の酸素濃度に基づいて空燃比のリッチまたはリーンを検出する酸素センサと、を備える車両のガス燃料の噴射制御装置であって、
     前記プレッシャレギュレータと前記ガス燃料インジェクタとを接続する配管に、前記ガス燃料インジェクタに供給される前記ガス燃料の圧力を減圧させる圧力調整用バルブを配置し、
     前記空燃比が目標の空燃比から外れると判定した場合に、前記目標の空燃比になるまで前記圧力調整用バルブを閉じる圧力調整部を備えるガス燃料の噴射制御装置。
    An engine comprising a gas fuel injector for injecting gas fuel;
    A gas fuel tank for storing the gas fuel;
    A pressure regulator for reducing the pressure of the gas fuel supplied from the gas fuel tank;
    An oxygen sensor for detecting rich or lean air-fuel ratio based on the concentration of oxygen in exhaust gas flowing through an exhaust pipe, and a fuel injection control device for a vehicle gas fuel comprising:
    In a pipe connecting the pressure regulator and the gas fuel injector, a pressure adjusting valve for reducing the pressure of the gas fuel supplied to the gas fuel injector is disposed,
    A gas fuel injection control device comprising: a pressure adjusting unit that closes the pressure adjusting valve until the air / fuel ratio reaches the target air / fuel ratio when it is determined that the air / fuel ratio deviates from the target air / fuel ratio.
  2.  前記圧力調整部は、前記空燃比が目標の空燃比から外れると判定した場合、前記ガス燃料インジェクタの駆動時間が最小駆動時間より短い場合に、前記目標の空燃比になるまで前記圧力調整用バルブを閉じる請求項1に記載のガス燃料の噴射制御装置。 When it is determined that the air-fuel ratio deviates from the target air-fuel ratio, the pressure adjusting unit adjusts the pressure-adjusting valve until the target air-fuel ratio is reached when the driving time of the gas fuel injector is shorter than the minimum driving time. The injection control apparatus of the gas fuel of Claim 1 which closes.
  3.  前記エンジンへの吸入空気量を検出する吸入空気量検出部を備え、
     前記圧力調整部は、前記吸入空気量が予め設定された吸入空気量より多いと判定した場合、前記圧力調整用バルブを最大開度まで開く請求項1または2に記載のガス燃料の噴射制御装置。
    An intake air amount detection unit for detecting an intake air amount to the engine;
    3. The gas fuel injection control device according to claim 1, wherein the pressure adjusting unit opens the pressure adjusting valve to a maximum opening degree when it is determined that the intake air amount is larger than a preset intake air amount. .
  4.  前記エンジンへの吸入空気量を検出する吸入空気量検出部を備え、
     前記圧力調整部は、前記吸入空気量の時間当たりの減少量が予め設定された減少量以上であると判定した場合、前記圧力調整用バルブを予め設定された開度まで閉じる請求項1または2に記載のガス燃料の噴射制御装置。
    An intake air amount detection unit for detecting an intake air amount to the engine;
    The pressure adjusting unit closes the pressure adjusting valve to a preset opening degree when it is determined that the reduction amount per hour of the intake air amount is equal to or more than a preset reduction amount. 2. An injection control device for gas fuel described in 1.
PCT/JP2015/067833 2014-06-26 2015-06-22 Gas fuel injection control device WO2015199011A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-131676 2014-06-26
JP2014131676A JP6265064B2 (en) 2014-06-26 2014-06-26 Gas fuel injection control device

Publications (1)

Publication Number Publication Date
WO2015199011A1 true WO2015199011A1 (en) 2015-12-30

Family

ID=54938093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067833 WO2015199011A1 (en) 2014-06-26 2015-06-22 Gas fuel injection control device

Country Status (2)

Country Link
JP (1) JP6265064B2 (en)
WO (1) WO2015199011A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114344777A (en) * 2021-12-01 2022-04-15 青岛诺诚化学品安全科技有限公司 Compressed gas foam fire extinguishing system and method with stable supply of gas source and water source

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110318910A (en) * 2019-06-26 2019-10-11 哈尔滨工程大学 A kind of natural gas engine combustion system and control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08284703A (en) * 1995-04-13 1996-10-29 Nissan Motor Co Ltd Engine gas fuel injector
JP2012251443A (en) * 2011-05-31 2012-12-20 Aisan Industry Co Ltd Fuel supply control device and fuel supply method for internal combustion engine
JP2013130156A (en) * 2011-12-22 2013-07-04 Keihin Corp Fuel injection system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08284703A (en) * 1995-04-13 1996-10-29 Nissan Motor Co Ltd Engine gas fuel injector
JP2012251443A (en) * 2011-05-31 2012-12-20 Aisan Industry Co Ltd Fuel supply control device and fuel supply method for internal combustion engine
JP2013130156A (en) * 2011-12-22 2013-07-04 Keihin Corp Fuel injection system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114344777A (en) * 2021-12-01 2022-04-15 青岛诺诚化学品安全科技有限公司 Compressed gas foam fire extinguishing system and method with stable supply of gas source and water source

Also Published As

Publication number Publication date
JP6265064B2 (en) 2018-01-24
JP2016008597A (en) 2016-01-18

Similar Documents

Publication Publication Date Title
US9169789B2 (en) System and method for adjusting fuel mass for minimum fuel injector pulse widths in multiple fuel system engines
JP2008309036A (en) Fuel estimation device
US20160290248A1 (en) Fuel supply system for internal combustion engine and control method therefor
WO2014167832A1 (en) Start control device for internal combustion engines
JP6265064B2 (en) Gas fuel injection control device
JP5418665B2 (en) Control device for internal combustion engine
KR101247549B1 (en) Gasoline alternative fuel injection control apparatus of engine
KR101264153B1 (en) Gasoline alternative fuel injection control apparatus of engine
JP2015137579A (en) Control device of internal combustion engine
JP5867441B2 (en) Control device for internal combustion engine
JP2016180394A (en) Evaporation fuel control device for internal combustion engine
JP2015129491A (en) Internal combustion engine fuel supply controller
WO2015104772A1 (en) Control device for internal combustion engine
JP2016180393A (en) Evaporation fuel control device for internal combustion engine
JP4232710B2 (en) Control device for hydrogenated internal combustion engine
JP2004353542A (en) Multi-fuel engine and method of operating multi-fuel engine
JP5141435B2 (en) Fuel injection control device
JP2017048712A (en) Fuel injection device
JP2012077713A (en) Multi-cylinder internal combustion engine control device
JP2009264280A (en) Control device of cylinder fuel injection engine
JP2020105945A (en) Fuel change-over device
JP2009264342A (en) Fuel injection control device and fuel injection control method
JP2023046758A (en) Fuel injection device for internal combustion engine
JP2023057489A (en) Control device for internal combustion engine
WO2012168793A1 (en) Control unit and control method for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15811433

Country of ref document: EP

Kind code of ref document: A1