WO2015198818A1 - Substrate processing apparatus, jig, and teaching method - Google Patents

Substrate processing apparatus, jig, and teaching method Download PDF

Info

Publication number
WO2015198818A1
WO2015198818A1 PCT/JP2015/066129 JP2015066129W WO2015198818A1 WO 2015198818 A1 WO2015198818 A1 WO 2015198818A1 JP 2015066129 W JP2015066129 W JP 2015066129W WO 2015198818 A1 WO2015198818 A1 WO 2015198818A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
processing apparatus
jig
substrate processing
imaging
Prior art date
Application number
PCT/JP2015/066129
Other languages
French (fr)
Japanese (ja)
Inventor
昭司 上前
平田 哲也
良平 鶴身
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2015198818A1 publication Critical patent/WO2015198818A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a substrate processing apparatus, a jig, and a teaching method.
  • a single-wafer type substrate processing apparatus that processes substrates one by one in order to perform processing with a processing liquid on the surface of a substrate such as a semiconductor wafer or a glass substrate for a liquid crystal display panel.
  • a substrate such as a semiconductor wafer or a glass substrate for a liquid crystal display panel.
  • the substrate processing apparatus described in Patent Document 1 is configured to discharge a processing liquid toward a main surface of a substrate held by the spin chuck and a spin chuck for rotating the substrate while maintaining the substrate in a substantially horizontal posture. And a nozzle moving mechanism for moving the nozzle along a predetermined trajectory passing through the center of the substrate.
  • the processing liquid may be ejected from a nozzle in a stopped state toward a predetermined position (for example, the rotation center) of the surface of the substrate after the nozzle is moved above the substrate by the nozzle moving mechanism.
  • a predetermined position for example, the rotation center
  • the processing liquid does not spread uniformly on the surface of the substrate, and processing unevenness (unevenness of processing liquid supply) may occur on the substrate.
  • the processing liquid may be discharged from the nozzle toward the substrate while moving (scanning) the nozzle within a predetermined range on a predetermined movement locus. In this case, if the nozzle moves out of the predetermined scanning range, it becomes difficult to perform a desired liquid treatment on the surface of the substrate.
  • teaching work is performed on the control device that controls the operation of the nozzle.
  • Such teaching is usually performed manually by an operator.
  • an operator causes a substrate holding mechanism to hold a predetermined jig substrate having a predetermined reference position on the upper surface.
  • the operator gives an instruction value (for example, the number of pulses) to the nozzle moving means (for example, a stepping motor) using a remote controller or the like, and moves the nozzle little by little along a trajectory set above the substrate.
  • the nozzle and each reference position are visually aligned with respect to the reference position indicated on the upper surface of the jig substrate.
  • the displacement amount (displacement amount from the origin position) when the nozzle matches the reference position and the instruction value given to the nozzle moving means are registered in the control device.
  • an object of the present invention is to provide a substrate processing apparatus, a jig, and a teaching method that can reduce the work by an operator for teaching and that can realize more accurate teaching. is there.
  • a substrate processing apparatus has a base-like base portion, a substrate holding means for horizontally holding the substrate above the base portion, a nozzle for discharging a processing fluid from the tip portion, Nozzle moving means for receiving the control signal and moving the nozzle along the horizontal direction based on the control signal, an input unit to which information on the displacement amount of the nozzle is input, and input information to the input unit Based on the operation control means for controlling the operation of the nozzle moving means by transmitting a control signal, a jig removable from the peripheral end of the base part, and an imaging result obtained by the jig And a setting means for setting an operation rule that associates the displacement amount of the nozzle with the indicated value of the control signal, and the jig is mounted by mounting the jig on the peripheral end.
  • the horizontal direction in the state is the imaging direction
  • the imaging unit images the tip and the scale surface in a state where the tip is inserted between the imaging unit and the scale surface and the tip is positioned with respect to the scale surface. It is characterized by.
  • a substrate processing apparatus is the substrate processing apparatus according to the first aspect of the present invention, wherein the tip portion contacts the scale surface, whereby the scale surface is in contact with the scale surface. The tip is positioned.
  • a substrate processing apparatus is the substrate processing apparatus according to the first aspect or the second aspect of the present invention, wherein the jig includes a part of an upper surface and a side surface of the base portion.
  • An engagement portion that can be in close contact with a specific region including a part of the base, and the mounting state means that the specific region of the base portion and the engagement portion of the jig are in close contact, and the jig is It is the state caught on the base part.
  • a substrate processing apparatus is the substrate processing apparatus according to the first aspect or the second aspect of the present invention, wherein the substrate processing apparatus is a rod-like body extending in a horizontal direction, and one end portion of the substrate processing apparatus is A coupling member coupled to the central portion of the upper surface of the base portion and having the other end coupled to the jig; and the mounting state is such that the jig and the base portion are connected via the coupling member. It is the state which was made.
  • a substrate processing apparatus is the substrate processing apparatus according to any one of the first to fourth aspects of the present invention, wherein the nozzle movement means includes a movement locus of the nozzle.
  • the scale plane is arranged substantially in parallel with the specific trajectory part, and imaging by the imaging unit is performed in the specific trajectory part with a direction substantially orthogonal to the movement trajectory as an imaging direction. .
  • a substrate processing apparatus is the substrate processing apparatus according to any one of the first to fifth aspects of the present invention, wherein the length of the scale surface in the horizontal direction is the nozzle. Is longer than the horizontal width of the tip portion, and the entire width of the tip portion is within the range of the scale surface as a background, so that both sides of the tip portion and the scale surface are separated by the imaging unit. It is characterized by being able to capture images collectively.
  • a substrate processing apparatus is the substrate processing apparatus according to any one of the first to sixth aspects of the present invention, wherein the jig is disposed in the vicinity of the imaging unit. And an illumination unit that illuminates the tip and the scale surface from the imaging unit side.
  • a substrate processing apparatus is the substrate processing apparatus according to any one of the first to seventh aspects of the present invention, wherein in the operation rule, the displacement amount of the nozzle and The indicated value of the control signal given to the nozzle moving means has a linear relationship.
  • a substrate processing apparatus is the substrate processing apparatus according to any one of the first to eighth aspects of the present invention, wherein the movement trajectory of the tip portion is the substrate holding means.
  • the movement trajectory of the tip portion is the substrate holding means.
  • Are trajectories crossing the upper part of the substrate held in the horizontal direction, and the positions where the peripheral edge of the substrate held by the substrate holding means and the movement trajectory intersect in the horizontal plane are respectively the first peripheral end position and the second peripheral position.
  • imaging is performed by the imaging unit in a state where the operation control unit controls the operation of the nozzle moving unit to move the nozzle to the first peripheral end position.
  • a substrate processing apparatus is the substrate processing apparatus according to the ninth aspect of the present invention, wherein the operation control means moves the nozzle to the second peripheral end position.
  • the imaging by the imaging unit is performed in a state where the operation of the nozzle moving unit is controlled.
  • a substrate processing apparatus is the substrate processing apparatus according to any one of the first to tenth aspects of the present invention, wherein the tip portion is a discharge portion of the nozzle. It is characterized by.
  • a substrate processing apparatus is the substrate processing apparatus according to any one of the first to tenth aspects of the present invention, further comprising an attachment attached to the discharge portion of the nozzle.
  • the tip portion is the attachment attached to the discharge portion of the nozzle.
  • a jig according to a thirteenth aspect of the present invention includes a substrate holding means that has a base portion and horizontally holds the substrate above the base portion, a nozzle that discharges a processing fluid from the tip portion, and a horizontal direction.
  • a jig used in a substrate processing apparatus comprising a nozzle moving means for moving the nozzle, wherein the jig is detachable from a peripheral end portion of the base portion, and the jig is attached to the peripheral end portion.
  • An imaging unit having an imaging direction in the horizontal direction in a mounted state and a scale surface on which a distance index is drawn, and the scale surface and the imaging unit are arranged to face each other with an interval where the tip part can be inserted.
  • the nozzle is moved from the tip of the nozzle while moving the nozzle based on an operation rule that associates the displacement amount of the nozzle with the instruction value of the control signal given to the nozzle moving means.
  • the teaching method sets the operation rule, and (a) ⁇ Displacement of the nozzle An input step for inputting information relating to the amount; (b) a nozzle moving step for controlling the operation of the nozzle moving means by transmitting the control signal based on the input information input in the input step; and (c).
  • An imaging unit having a horizontal direction as an imaging direction and a scale surface on which a distance index is drawn, and the scale surface and the imaging unit are arranged to face each other with an interval where the tip part can be inserted.
  • the tip of the nozzle after the jig is mounted on the peripheral end of the base and moved in the nozzle moving step.
  • a jig moving step that is inserted between a portion and the scale surface and positioned with respect to the scale surface of the jig, and (d) a state obtained by the jig moving step, An imaging step of imaging the tip portion and the scale surface by the imaging unit, and (e) a setting step of setting the operation rule based on an imaging result acquired in the imaging step.
  • the jig is mounted on the peripheral end portion of the base portion, and in the mounted state, the imaging unit having the horizontal direction as the imaging direction, and a distance index And a scale portion in which the scale surface and the imaging unit are arranged to face each other with a space at which the tip of the nozzle can be inserted.
  • the imaging unit images the distal end part and the scale surface in a state where the distal end part is inserted between the imaging unit and the scale surface and the distal end part is positioned with respect to the scale surface.
  • an operation rule is set in which the displacement amount of the nozzle is associated with the instruction value of the control signal given to the nozzle moving means.
  • imaging by the imaging unit is performed with each of the base portion, the jig, and the nozzle tip portion being positioned. For this reason, it is possible to acquire position information of the nozzle tip as viewed from the base, based on the imaging result.
  • the jig having the imaging unit is attached to the peripheral end portion of the base portion, position information of the nozzle tip portion in the vicinity of the peripheral end portion of the base portion can be acquired.
  • the operation rule is set based on the imaging result acquired by the jig, as compared with other aspects in which the operation rule is set based on the position information of the nozzle tip acquired by the operator's visual observation.
  • the work by the operator for teaching can be reduced, and more accurate teaching can be realized.
  • the nozzle tip is imaged by the imaging unit whose imaging direction is the horizontal direction, the position of the nozzle tip can be accurately grasped by imaging.
  • the thirteenth aspect of the present invention is a jig suitable for the substrate processing apparatus according to the first to twelfth aspects of the present invention and the teaching method according to the fourteenth aspect.
  • FIG. 1 is a diagram schematically showing the configuration of the substrate processing apparatus 1.
  • FIG. 2 is a side view of the substrate processing apparatus 1 in the mounted state.
  • FIG. 3 is a top view of the substrate processing apparatus 1 in the mounted state.
  • FIG. 4 is a bottom view of the jig 70.
  • FIG. 5 is an example of an image captured by the imaging unit 71.
  • FIG. 6 is a diagram illustrating an example of a teaching work flow.
  • FIG. 7 is a diagram illustrating an example of the operation rule.
  • FIG. 8 is a top view of the substrate processing apparatus 1 that schematically represents the trajectory 14 of the ejection unit 31.
  • FIG. 9 is a top view of the substrate processing apparatus 1 with the jig 70 mounted.
  • FIG. 10 is an example of an image captured by the imaging unit 71.
  • FIG. 11 is a top view of the substrate processing apparatus 1 with the jig 70 mounted.
  • FIG. 12 is an example of an image captured by the imaging unit 71. It is a graph explaining the reset operation
  • FIG. 14 is a diagram illustrating an example of a flow of scan liquid processing.
  • FIG. 15 is a top view of the substrate processing apparatus 1A in the mounted state.
  • FIG. 16 is a side view of the substrate processing apparatus 1B in the mounted state.
  • FIG. 1 is a diagram schematically showing a configuration of a substrate processing apparatus 1 according to an embodiment of the present invention.
  • the substrate processing apparatus 1 is a branch-and-leaf type apparatus for performing processing with a processing liquid on the surface of a substrate (for example, a semiconductor wafer).
  • the substrate processing apparatus 1 includes, in its processing chamber, a spin chuck 2 that rotates while holding the wafer W substantially horizontally, and a nozzle 3 that discharges a processing liquid onto the upper surface of the wafer W held by the spin chuck 2. Prepare.
  • the spin chuck 2 (substrate holding means) is fixed to the upper end of the rotating shaft 5 rotated by the chuck rotation driving mechanism 4.
  • the spin chuck 2 has a flat upper surface and a substantially disk-shaped spin base 6 (base-like base portion), and is provided at a plurality of positions on the peripheral end portion of the upper surface of the spin base 6 at substantially equal intervals.
  • a plurality of clamping members 7 for clamping in a horizontal posture are provided.
  • a vacuum chucking type (vacuum chuck) that can hold the wafer W in a horizontal position by vacuum chucking the lower surface of the wafer W may be employed as the spin chuck 2.
  • the nozzle 3 is connected to a supply pipe 8 to which a processing liquid is supplied from a processing liquid supply source.
  • a valve 9 for switching between discharge / stop of discharge of the processing liquid from the nozzle 3 is interposed in the middle of the supply pipe 8.
  • a processing liquid a liquid according to the content of processing on the surface of the wafer W is used.
  • a cleaning liquid containing a chemical solution such as SC1 (ammonia-hydrogen peroxide mixture) is used.
  • a cleaning liquid containing a chemical solution such as hydrofluoric acid or BHF (Buffered HF) is used.
  • SPM sulfuric / acid / hydrogen / peroxide / mixture: sulfuric acid / hydrogen peroxide
  • SC1 may be used for the polymer removal process for removing the resist residue remaining as a polymer on the surface of the wafer W after the resist is removed.
  • a polymer removal solution such as (ammonia-hydrogen peroxide mixture) is used.
  • chemical treatments such as hydrofluoric acid, SC2 (hydrochloric acid / hydrogen peroxide mixture) and SPM (sulfuric acid / hydrogen peroxide mixture) are used for cleaning treatment to remove metal contaminants. Is used.
  • the nozzle 3 is attached to the tip of an arm 10 that extends substantially horizontally above the spin chuck 2.
  • the lower surface of the base end of the arm 10 is fixed to the upper end of the support shaft 11.
  • the support shaft 11 extends substantially vertically on the side of the spin chuck 2.
  • a stepping motor 12 as an arm swing drive mechanism for swinging the arm 10 is coupled to the support shaft 11.
  • a driver circuit 22 for driving the stepping motor 12 is connected to the stepping motor 12. As described above, the stepping motor 12 and the driver circuit 22 constitute nozzle moving means for moving the nozzle 3.
  • the arm 10 By inputting a rotational driving force from the stepping motor 12 to the support shaft 11 and rotating the support shaft 11 within a predetermined angle range, the arm 10 is swung over the wafer W held by the spin chuck 2. be able to. During this swinging process, the arm 10 moves the nozzle 3 to the home position 23 on the side of the spin chuck 2 (shown by a two-dot chain line in FIG. 1) and above the wafer W held by the spin chuck 2 (FIG. 1). (Shown by a solid line). As a result, the nozzle 3 is scanned (moved) on the discharge position of the processing liquid on the surface of the wafer W. By driving the stepping motor 12, the nozzle 3 moves along a locus 14 having an arc shape having a center on the support shaft 11.
  • the substrate processing apparatus 1 includes a control unit 20 having a configuration including a CPU, a RAM, and a ROM.
  • the control unit 20 is connected to the chuck rotation drive mechanism 4, the processing liquid valve 9, and the like as control targets.
  • control unit 20 includes a motor control unit 21 for controlling the stepping motor 12.
  • the motor control unit 21 (operation control means) transmits a pulse signal (control signal) corresponding to the displacement amount of the nozzle 3 to the driver circuit 22.
  • the driver circuit 22 receives the pulse signal transmitted from the motor control unit 21 and applies an excitation signal corresponding to the pulse signal to the stepping motor 12.
  • the motor control unit 21 registers an operation rule that associates the displacement amount of the nozzle with the instruction value (number of pulses) of the control signal given to the stepping motor 12.
  • the operation rule may be expressed as a function of the displacement amount and the indicated value, or may be expressed as a table including at least one pair of correspondence relationship between the displacement amount and the indicated value.
  • Such operation rule setting work is referred to as teaching work.
  • teaching work In the present embodiment, a case where a linear function (the operation rule shown in FIG. 7) of the displacement amount and the instruction value is registered in the motor control unit 21 by the teaching operation will be described.
  • the substrate processing apparatus 1 includes an input unit 30 having a configuration including a mouse, a keyboard, a touch panel, and the like. For this reason, the operator of the apparatus can input information related to the displacement amount of the nozzle.
  • the information can be broadly classified into pulse information that designates an instruction value (number of pulses) of the control signal or position information that designates a displacement amount (nozzle position) of the nozzle 3.
  • the motor control unit 21 When the input information to the input unit 30 is pulse information, the motor control unit 21 outputs a control signal corresponding to the number of pulses to the driver circuit 22 to rotate the stepping motor 12. Thereby, the movement operation
  • the motor control unit 21 calculates the number of pulses to be given to the driver circuit 22 based on the position information and operation rules. Then, the motor control unit 21 outputs a control signal corresponding to the number of pulses to the driver circuit 22 to rotate the stepping motor 12. Thereby, the movement operation
  • the substrate processing apparatus 1 includes a jig 70 that can be attached to and detached from the spin base 6 in a state where the wafer W is not held.
  • the jig 70 is a measuring instrument used in teaching work.
  • FIG. 2 is a side view of the substrate processing apparatus 1 in a state where the jig 70 is mounted on the peripheral end portion of the spin base 6.
  • FIG. 3 is a top view of the substrate processing apparatus 1 in a state where the jig 70 is mounted on the peripheral end of the spin base 6.
  • FIG. 4 is a bottom view of the jig 70.
  • the configuration of the illumination unit 73 is omitted.
  • each component arranged on the upper surface side of the jig 70 is represented by a dotted line.
  • the jig 70 includes an image pickup unit 71 having the horizontal direction as an image pickup direction when the jig 70 is attached to the peripheral end of the spin base 6, and a scale surface 72A on which nine graduation lines 720 are drawn.
  • the jig 70 has a convex portion 75 that protrudes downward from the flat lower surface 74A of the main body portion 74. Further, a part of the side surface of the convex portion 75 includes a curved surface 75A along an arc having the same radius of curvature as that of the side surface of the spin base 6.
  • a portion of the jig 70 constituted by the lower surface 74A of the main body 74 and the curved surface 75A of the convex portion 75 is referred to as an engagement portion.
  • the upper surface of the spin base 6 and the lower surface 74A of the main body 74 are both flat, and the curvature radius of the side surface of the spin base 6 and the curvature radius of the curved surface 75A of the convex portion 75 are the same.
  • the mounting state in which the jig 70 is mounted on the peripheral end of the spin base 6 means that the specific region of the spin base 6 and the engaging portion of the jig 70 are in close contact, and the jig 70 is in the spin base. 6 means a state of being caught.
  • the jig 70 and the spin base 6 are not mechanically fixed, the mounting state in which the engaging portion of the jig 70 and the peripheral end portion of the spin base 6 are in close contact with each other is maintained.
  • the jig 70 can be slid along the peripheral edge of the spin base 6. As long as the mounting state is maintained even when the jig 70 is slid in this manner, the displacement amount of the nozzle 3 viewed from the peripheral end of the spin base 6 is detected by imaging by the imaging unit 71 described later. Can do.
  • the main body 74 holds the imaging unit 71 and the scale unit 72 so that the imaging unit 71 and the scale surface 72A are arranged to face each other with an interval in which the discharge unit 31 can be inserted.
  • the discharge unit 31 is in contact with and positioned on the scale surface 72A.
  • the state shown in FIGS. 2 and 3 is referred to as a positioning state.
  • the imaging result is given to the control unit 20.
  • the positional information on the discharge part 31 is acquired when the control part 20 performs a calculation process based on this imaging result. Since the jig 70 is attached to the peripheral end portion of the spin base 6 in the positioning state, position information of the ejection unit 31 in the vicinity of the peripheral end portion of the spin base 6 is acquired as an actual measurement value.
  • FIG. 5 is an example of an image captured by the imaging unit 71.
  • the position of the discharge unit 31 of the nozzle 3 is a distance D1 from the position of the scale line 721 (the position corresponding to the peripheral end of the wafer W) to the right side of the drawing (the origin position side of the arm 10). It will be shifted only.
  • the length of the scale surface 72A in the horizontal direction is longer than the width of the discharge unit 31 in the horizontal direction, and the entire width of the discharge unit 31 is within the range of the scale surface 72A serving as the background. For this reason, both sides of the discharge unit 31 and the scale surface 72 ⁇ / b> A can be collectively imaged by the imaging unit 71. Thus, since the entire width of the discharge unit 31 can be imaged together with the scale surface 72A as the background, the measurement accuracy is improved as compared with the case where only the right end or the left end of the discharge unit 31 is imaged.
  • the jig 70 includes the illumination unit 73 that illuminates the discharge unit 31 and the scale surface 72A. For this reason, by illuminating the area imaged at the timing when the imaging unit 71 performs imaging, the measurement accuracy is improved as compared with the case where only room light is used as illumination light.
  • FIG. 6 is a diagram illustrating an example of a teaching work flow.
  • FIG. 7 is a diagram illustrating an example of operation rules in the present embodiment.
  • FIG. 8 is a top view of the substrate processing apparatus 1 that schematically represents the locus 14 of the ejection unit 31 of the nozzle 3.
  • the trajectory 14 of the ejection unit 31 is a trajectory that crosses the upper side of the wafer W held by the spin base 6 in the horizontal direction.
  • the position P0 is the position of the ejection unit 31 when the arm 10 is disposed at the origin position.
  • the position P3 (first peripheral end position) is a position corresponding to one point on the position P0 side, out of two points corresponding to the position immediately above the peripheral end of the wafer W held on the spin base 6 on the locus 14. It is.
  • the operator of the apparatus inputs pulse information (that is, the number of pulses in the stepping motor 12) to the input unit 30 (step ST1: input process). More specifically, the operator inputs predetermined pulse information (number of pulses Xa shown in FIG. 7) so that the ejection unit 31 of the nozzle 3 is arranged in the vicinity of the position P3.
  • the number of pulses is a value corresponding to the rotation amount of the motor based on the origin position of the arm 10 (the origin position on the machine).
  • the motor control unit 21 outputs a control signal corresponding to the number of pulses to the driver circuit 22 based on the input information input in the input process. Thereby, the stepping motor 12 is rotated according to a predetermined number of pulses, and the nozzle 3 is moved. As a result, the discharge part 31 of the nozzle 3 is arranged in the vicinity of the position P3 (step ST2: nozzle moving step).
  • step ST3 jig moving step
  • the imaging unit 71 images the discharge unit 31 and the scale surface 72A (step ST4: imaging process). This imaging result is given to the control unit 20.
  • the control unit 20 acquires position information (displacement amount Fa described later) of the discharge unit 31 by performing arithmetic processing based on the imaging result (FIG. 5) acquired in the imaging process. And the control part 20 sets the operation rule (FIG. 7) which matched the displacement amount of the nozzle 3, and the instruction value (pulse number) of the control signal given to the stepping motor 12 (step ST5: setting process).
  • the position P ⁇ b> 1 is a position corresponding to one point on the position P ⁇ b> 0 side among the two points on the locus 14 that are directly above the peripheral end of the spin base 6.
  • the rotation center C of the spin base 6 coincides with the rotation center C of the wafer W held on the spin base 6.
  • the displacement amount of the discharge part 31 along the locus 14 from the position P1 to the position P3 is always constant. Therefore, the displacement amount of the discharge unit 31 along the locus 14 from the position P0 to the position P3 is always constant.
  • the distance between the position P2 which is the position of the ejection unit 31 moved in the nozzle moving step and the position P3 can be measured.
  • the position P2 is shifted by the distance D1 from the position P3 to the position P0 side.
  • the control unit 20 can calculate the displacement amount of the discharge unit 31 along the locus 14 from the position P3 to the position P2 based on the measurement result.
  • the control unit 20 determines the position P0.
  • the displacement amount (displacement amount Fa shown in FIG. 7) of the discharge unit 31 from the position P2 to the position P2 can be calculated.
  • the control unit 20 sets an operation rule (FIG. 7) using a pair of values of the number of pulses Xa input from the input unit 30 and the displacement amount Fa of the discharge unit 31 displaced thereby.
  • an operation rule (FIG. 7) using a pair of values of the number of pulses Xa input from the input unit 30 and the displacement amount Fa of the discharge unit 31 displaced thereby.
  • FIG. 9 is a schematic top view of the substrate processing apparatus 1.
  • FIG. 10 is an imaging screen when the ejection unit 31 is imaged by the imaging unit 71 in the state illustrated in FIG. 9.
  • the ejection unit 31 is located at the teaching reference position (for example, a position immediately above the first peripheral end position P ⁇ b> 3 of the wafer W). Further, the discharge unit 31 is in contact with the scale surface 72A of the jig 70 at the scale position L1.
  • FIG. 11 is a schematic top view of the substrate processing apparatus 1.
  • FIG. 12 is an imaging screen when the ejection unit 31 is imaged by the imaging unit 71 in the state illustrated in FIG. 11.
  • the discharge unit 31 is located at a position P2 that is deviated from the teaching reference position (position P3). Further, the discharge unit 31 is in contact with the scale surface 72A of the jig 70 at a scale position L2 different from the scale position L1.
  • FIG. 13 is a diagram showing a correspondence relationship between the scale position, the displacement amount of the nozzle, and the indicated value (number of pulses) of the control signal in the teaching work when resetting the operation rule.
  • the first quadrant of FIG. 13 shows a correspondence relationship between the displacement amount of the nozzle and the instruction value (number of pulses) of the control signal in operation rules r1 and r2 described later.
  • the second quadrant of FIG. 13 shows the correspondence between the scale position obtained from the imaging result of the jig 70 and the displacement amount of the nozzle. As long as imaging is performed in the above-described positioning state, the correspondence between the scale position and the displacement amount of the nozzle is constant.
  • an operation rule acquired by past teaching work is registered in advance as a reference operation rule r1.
  • the displacement amount of the nozzle is 0 when the number of pulses is 0, and the nozzle is displaced to the position P3 when the number of pulses is Xa (FIGS. 9 and 10).
  • the number of pulses Xa is input from the operator (step ST1).
  • the number of pulses Xa is the number of pulses associated with the teaching reference position P3 under the reference operation rule r1.
  • step ST2 the stepping motor 12 is driven and the nozzle 3 is moved (step ST2). If the reference operation rule r1 is valid, the discharge unit 31 should be displaced to the teaching reference position P3 in step ST2. However, a case will be described below where the discharge unit 31 is displaced to a position P2 (nozzle position shown in FIGS. 11 and 12) different from the teaching reference position P3 in step ST2.
  • a jig moving step (step ST3) and an imaging step (step ST4) are executed.
  • the jig 70 comes into contact with the ejection unit 31 in the manner shown in FIG. 11, and the captured image shown in FIG. 12 is acquired.
  • step ST5 the scale position L2 obtained in the imaging process is applied to the graph in the second quadrant of FIG. 13 to obtain the position P2 of the discharge unit 31 corresponding to the scale position L2.
  • the motor control unit 21 can generate the pulse signal by applying the operation rule r2 to the input position information. For example, when the position P3 is designated as position information for the motor control unit 21, the motor control unit 21 applies the position P3 to the operation rule r2, and sets a pulse number Xb different from the previous pulse number Xa. Calculate and give to the driver circuit 22.
  • FIG. 14 is a diagram illustrating an example of a flow of scan liquid processing.
  • the discharge unit 31 of the nozzle 3 is reciprocally scanned between the position P3 and the position P4 corresponding to the position directly above the rotation center C of the spin base 6, and the wafer W held and rotated by the spin base 6 is scanned.
  • a case where the processing liquid is discharged will be described as an example.
  • an unprocessed wafer W is transferred to the spin chuck 2 by a transfer robot (not shown) in a state where the nozzle 3 is disposed at the home position 23 retracted from above the spin chuck 2 (step ST11).
  • the processing information includes information related to the rotation speed of the wafer W, information related to the supply amount of the processing liquid, information related to the displacement amount of the ejection unit 31, information related to the processing time, and the like.
  • step ST12 as information related to the rotation speed of the wafer W, for example, the fact that it rotates at a constant liquid processing rotation speed is input. Further, for example, a predetermined supply amount is input as the information related to the supply amount of the processing liquid. Further, as information relating to the displacement amount of the ejection unit 31, for example, information on the position P3 and the position P4 is input as position information on the ejection unit 31 to be scanned.
  • the motor control unit 21 determines the number of pulses (specifically, the number of pulses corresponding to the position P3 and the position P4) to be given to the driver circuit 22 based on the position information and the operation rule obtained by the teaching work. The number of equivalent pulses) is calculated. Then, the motor control unit 21 outputs a control signal corresponding to the number of pulses to the driver circuit 22.
  • the chuck rotation driving mechanism 4 is driven, and the wafer W held on the spin chuck 2 is rotated at a constant speed at a predetermined liquid processing rotation speed (step ST13).
  • the motor control unit 21 drives the stepping motor 12 to swing the arm 10, and reciprocally scans the nozzle 3 above the rotation center C of the wafer W in a rotating state (step ST14).
  • the control part 20 opens the valve
  • the processing liquid discharged vertically downward from the discharge unit 31 is deposited on the upper surface of the wafer W, and then diffuses along the upper surface of the wafer W by the centrifugal force of rotation.
  • the liquid deposition position on the upper surface of the wafer W of the processing liquid ejected from the nozzle 3 is also changed from the peripheral end position to the center position. It fluctuates over a wide range. As a result, the processing with the processing liquid is executed over the entire upper surface of the rotating wafer W.
  • the control unit 20 closes the valve 9 and stops the supply of the processing liquid to the nozzle 3 (step ST16). Further, the controller 20 stops driving the chuck rotation driving mechanism 4 and stops the rotation of the wafer W held on the spin chuck 2 (step ST17). Thereafter, the control unit 20 stops driving the stepping motor 12 at the timing when the nozzle 3 is disposed at the home position retracted from above the spin chuck 2 (step ST18). Thereby, the wafer W that has been subjected to the liquid processing is unloaded by a transfer robot (not shown) (step ST19).
  • the imaging unit 71 and the scale surface 72A are arranged to face each other.
  • the imaging unit 71 performs imaging while the jig 70 is mounted on the spin base 6 and the discharge unit 31 is positioned with respect to the scale surface 72A of the jig 70. For this reason, based on the imaging result, the position information of the ejection unit 31 viewed from the spin base 6 can be acquired.
  • the jig 70 having the imaging unit 71 is attached to the peripheral end portion of the spin base 6, position information of the ejection unit 31 in the vicinity of the peripheral end portion of the spin base 6 can be acquired.
  • the operation rule is set based on the imaging result (position information of the discharge unit 31) acquired by the jig 70
  • the operation rule is set based on the position information of the discharge unit 31 acquired by the operator's visual observation.
  • the ejection unit 31 is imaged by the imaging unit 71 whose horizontal direction is the imaging direction, the position of the ejection unit 31 can be accurately grasped by imaging. Furthermore, since the imaging direction is the horizontal direction, the inner dimension in the vertical direction of the processing chamber can be reduced.
  • the scale surface 72A is disposed substantially parallel to the specific locus portion 14A of the movement locus 14 of the nozzle 3, and the direction substantially orthogonal to the locus 14 in the locus portion 14A is set as the imaging direction. Imaging is performed by the imaging unit 71 (FIG. 3). In the movement control of the nozzle 3, since it is important to measure the control position error in the direction along the movement locus 14, the control position error can be measured more precisely by the above arrangement.
  • FIG. 15 is a top view showing a mounting state in which the jig 70 is mounted on the spin base 6 in the substrate processing apparatus 1A according to the modification.
  • the substrate processing apparatus 1A further includes a rod-like coupling member 76 extending in the horizontal direction in addition to the components of the substrate processing apparatus 1 of the above embodiment.
  • a fixing member 77 such as a screw is used to connect one end portion of the coupling member 76 to the central portion of the upper surface of the spin base 6, and the other end portion of the coupling member 76 is the jig 70.
  • the mounted state means a state in which the engaging portion of the jig 70 and the specific region of the spin base 6 are in close contact with each other and the jig 70 and the spin base 6 are connected via the coupling member 76. To do.
  • the jig 70 is difficult to be detached from the spin base 6 and the mounting state can be stably maintained.
  • This aspect is particularly effective in a substrate processing apparatus provided with a predetermined member in the center portion of the spin base 6 in a top view.
  • the lower surface processing liquid nozzle is used instead of the lower surface processing liquid nozzle during teaching. This mode can be implemented by coupling the coupling member 76.
  • FIG. 16 is a side view showing a mounting state in which the jig 70 is mounted on the spin base 6 in the substrate processing apparatus 1B according to the modification.
  • the substrate processing apparatus 1B further includes an attachment 78 attached to the discharge unit 31 in addition to the components of the substrate processing apparatus 1 of the above embodiment.
  • the tip portion 79 of the attachment 78 contacts the scale surface 72A, whereby the attachment 78 and the nozzle 3 integrated with the attachment 78 are positioned with respect to the scale surface 72A.
  • the position of the nozzle 3 can be grasped with higher accuracy based on the imaging result obtained by imaging the tip 79 and the scale surface 72A. be able to.
  • the substrate processing apparatus has a plurality of nozzles having different diameters of the discharge portions, it is effective to attach an attachment 78 to each nozzle and perform the teaching work of each nozzle.
  • the tip end portion 79 and the scale surface 72A of the attachment 78 are imaged, the teaching work can be performed regardless of the difference in the diameter of the discharge portion.
  • the cap-shaped attachment that covers the discharge unit 31 has been described, but various other attachments may be employed.
  • the operation rule is not limited to this, and the operation rule includes the displacement amount of the nozzle 3 and the instruction value of the control signal given to the stepping motor 12 ( (Number of pulses) may be represented by a table including at least one pair of correspondences. Even in this case, if the displacement amount of the nozzle 3 and the instruction value of the control signal given to the stepping motor 12 are in a linear relationship, the operation rule can be set by at least one imaging operation by the jig 70.
  • the mode in which the nozzle 3 is reciprocally scanned between the position P3 (first circumferential end position) and the position P4 (center position) has been described as an example.
  • the present invention is not limited to this.
  • the nozzle 3 may be scanned back and forth between the position P3 (first circumferential end position) and the position P5 (second circumferential end position).
  • the position P5 is a position different from the position P3 among the two points corresponding to immediately above the peripheral edge of the wafer W held on the spin base 6 on the locus 14.
  • the nozzle 3 is moved to a predetermined position above the wafer W, and the processing liquid is supplied from the nozzle 3 fixed at the predetermined position toward the wafer W (the nozzle 3 is not scanned during the processing). Mode).
  • the mode in which the nozzle 3 is imaged in the vicinity of the position P3 and the operation rule is set based on the imaging result has been described, but the present invention is not limited to this.
  • imaging may be performed at a plurality of locations, such as imaging at the imaging unit 71 of the jig 70 at the position P3 (first circumferential end position) and the position P5 (second circumferential end position).
  • the teaching operation includes a confirmation step in which after the operation rule is set based on the imaging result at a specific location (after step ST5), the nozzle 3 is moved again to the specific location and imaging is performed by the imaging unit 71. May be included.
  • the substrate processing apparatus includes another imaging unit for grasping the position of the ejection unit 31 (for example, an imaging unit that images the ejection unit 31 at the position P4).
  • a mode in which teaching work is performed using an imaging result obtained by the other imaging unit may be used.
  • the present invention is not limited to this.
  • a distance index drawn on the scale surface 72A various distance indices such as dots and concentric circles can be adopted in addition to the scale lines.
  • the stepping motor 12 is described as an example of the nozzle moving means, but other types of motors (for example, a servo motor) may be employed.
  • the processing liquid is discharged from the nozzle 3.
  • Various modes of discharging the processing fluid from the nozzle 3 such as a mode of discharging the processing gas from the nozzle 3 and a mode of discharging a mixed fluid of the processing liquid and the processing gas from the nozzle 3 can be adopted.
  • the positioning method of the discharge part 31 is not restricted to this.
  • a positioning part other than the scale part 72 may be provided on the jig 70, and the discharging part 31 may be positioned on the jig 70 by bringing the discharging part 31 into contact with the positioning part.

Abstract

The purposes of the present invention are: to reduce the amount of teaching-related work performed by workers; and to achieve more accurate teaching. In a jig (70), an imaging unit (71) and a scale face (72A) are disposed facing each other. Furthermore, the jig (70) is attached to a spin base (6), and imaging is performed by the imaging unit (71) while a discharge unit (31) is in a state of having been positioned with respect to the scale face (72A) in the jig (70). Accordingly, positional information related to the discharge unit (31) and observed from the spin base (6) can be acquired on the basis of the imaging results.

Description

基板処理装置、治具、およびティーチング方法Substrate processing apparatus, jig, and teaching method
 本発明は、基板処理装置、治具、およびティーチング方法に関する。 The present invention relates to a substrate processing apparatus, a jig, and a teaching method.
 半導体装置や液晶表示装置の製造工程では、半導体ウエハや液晶表示パネル用ガラス基板などの基板の表面に処理液による処理を施すために、基板を1枚ずつ処理する枚葉式の基板処理装置が用いられることがある。 In a manufacturing process of a semiconductor device or a liquid crystal display device, there is a single-wafer type substrate processing apparatus that processes substrates one by one in order to perform processing with a processing liquid on the surface of a substrate such as a semiconductor wafer or a glass substrate for a liquid crystal display panel. Sometimes used.
 例えば、特許文献1に記載の基板処理装置は、基板をほぼ水平姿勢に保持しつつ回転させるためのスピンチャックと、スピンチャックに保持されている基板の主面に向けて処理液を吐出するためのノズルと、基板の中心を通る所定の軌道に沿ってノズルを移動させるノズル移動機構とを備えている。 For example, the substrate processing apparatus described in Patent Document 1 is configured to discharge a processing liquid toward a main surface of a substrate held by the spin chuck and a spin chuck for rotating the substrate while maintaining the substrate in a substantially horizontal posture. And a nozzle moving mechanism for moving the nozzle along a predetermined trajectory passing through the center of the substrate.
特開2011-77245号公報JP 2011-77245 A
 液処理では、ノズル移動機構によってノズルが基板の上方まで移動された後、停止状態にあるノズルから基板の表面の所定位置(たとえば回転中心)に向けて処理液が吐出される場合がある。この場合、ノズルが所期の位置からずれていると、基板の表面に処理液が均一に行き渡らず、その基板に処理むら(処理液の供給むら)を生じるおそれがある。 In the liquid processing, the processing liquid may be ejected from a nozzle in a stopped state toward a predetermined position (for example, the rotation center) of the surface of the substrate after the nozzle is moved above the substrate by the nozzle moving mechanism. In this case, if the nozzle is deviated from the intended position, the processing liquid does not spread uniformly on the surface of the substrate, and processing unevenness (unevenness of processing liquid supply) may occur on the substrate.
 また、液処理では、所定の移動軌跡上でノズルを予め定める範囲内で移動(スキャン)させながら、ノズルから基板に向けて処理液が吐出される場合がある。この場合、ノズルが予め定めるスキャン範囲から逸脱して移動すると、基板の表面に所望の液処理を実行することが困難となる。 In the liquid processing, the processing liquid may be discharged from the nozzle toward the substrate while moving (scanning) the nozzle within a predetermined range on a predetermined movement locus. In this case, if the nozzle moves out of the predetermined scanning range, it becomes difficult to perform a desired liquid treatment on the surface of the substrate.
 そのため、ノズルが収容される処理室内にノズルを組み付けた後は、ノズルの動作を制御する制御装置に対して、ティーチング作業が行われる。ティーチング作業では、ノズル(またはノズルを保持する部材)の機械上の原点位置(「以下、原点位置」という。)から軌跡上の所定の基準位置までの変位量と、基準位置までノズルを移動するためにノズル移動手段に与えられた指示値と、が制御装置に設定登録される。 Therefore, after assembling the nozzle in the processing chamber in which the nozzle is accommodated, teaching work is performed on the control device that controls the operation of the nozzle. In teaching work, the displacement of the nozzle (or the member holding the nozzle) from the machine origin position (hereinafter referred to as “origin position”) to a predetermined reference position on the trajectory and the nozzle is moved to the reference position. Therefore, the instruction value given to the nozzle moving means is set and registered in the control device.
 このようなティーチングは、通常、作業者の手作業によって行われる。一例として、ティーチングの際には、作業者は、上面に所定の基準位置が記された所定の治具基板を基板保持機構に保持させる。また、作業者は、リモコンなどを用いてノズル移動手段(例えば、ステッピングモータ)に指示値(例えば、パルス数)を与え、基板の上方に設定された軌跡に沿って少しずつノズルを動かす。そして、治具基板の上面に記された基準位置について、ノズルと各基準位置とを目視で合わせ込む。そして、ノズルが基準位置に合致するときの変位量(原点位置からの変位量)とノズル移動手段に与えられた指示値とが制御装置に登録される。 Such teaching is usually performed manually by an operator. As an example, at the time of teaching, an operator causes a substrate holding mechanism to hold a predetermined jig substrate having a predetermined reference position on the upper surface. Further, the operator gives an instruction value (for example, the number of pulses) to the nozzle moving means (for example, a stepping motor) using a remote controller or the like, and moves the nozzle little by little along a trajectory set above the substrate. Then, the nozzle and each reference position are visually aligned with respect to the reference position indicated on the upper surface of the jig substrate. Then, the displacement amount (displacement amount from the origin position) when the nozzle matches the reference position and the instruction value given to the nozzle moving means are registered in the control device.
 ところが、手作業によるティーチングは、非常に面倒で手間のかかる作業であり、作業者によるばらつきが避けられない。 However, manual teaching is a very troublesome and time-consuming operation, and variations among operators are inevitable.
 そこで、この発明の目的は、ティーチングのための作業者による作業を軽減することができ、かつ、より正確なティーチングを実現することができる基板処理装置、治具、およびティーチング方法を提供することである。 Accordingly, an object of the present invention is to provide a substrate processing apparatus, a jig, and a teaching method that can reduce the work by an operator for teaching and that can realize more accurate teaching. is there.
 本発明の第1の態様にかかる基板処理装置は、台状のベース部を有し、基板を前記ベース部の上方で水平保持する基板保持手段と、先端部から処理流体を吐出するノズルと、制御信号を受信して、該制御信号に基づき水平方向に沿って前記ノズルを移動させるノズル移動手段と、前記ノズルの変位量に係る情報が入力される入力部と、前記入力部への入力情報に基づいて制御信号を発信して前記ノズル移動手段の動作を制御する動作制御手段と、前記ベース部の周端部に対して着脱可能な治具と、前記治具によって取得される撮像結果を基に、前記ノズルの変位量と前記制御信号の指示値とを対応させた動作規則を設定する設定手段と、を備え、前記治具は、前記治具が前記周端部に装着された装着状態において水平方向を撮像方向とする撮像部と、距離指標が描かれたスケール面を含み、前記ノズルの前記先端部を挿入可能な間隔を隔てて、前記スケール面と前記撮像部とが対向配置されるスケール部と、を有し、前記撮像部と前記スケール面との間に前記先端部が挿入され、前記スケール面に対して前記先端部が位置決めされた状態で、前記撮像部が前記先端部および前記スケール面を撮像することを特徴とする。 A substrate processing apparatus according to a first aspect of the present invention has a base-like base portion, a substrate holding means for horizontally holding the substrate above the base portion, a nozzle for discharging a processing fluid from the tip portion, Nozzle moving means for receiving the control signal and moving the nozzle along the horizontal direction based on the control signal, an input unit to which information on the displacement amount of the nozzle is input, and input information to the input unit Based on the operation control means for controlling the operation of the nozzle moving means by transmitting a control signal, a jig removable from the peripheral end of the base part, and an imaging result obtained by the jig And a setting means for setting an operation rule that associates the displacement amount of the nozzle with the indicated value of the control signal, and the jig is mounted by mounting the jig on the peripheral end. The horizontal direction in the state is the imaging direction An image unit, and a scale unit including a scale surface on which a distance index is drawn, and the scale surface and the imaging unit are arranged to face each other with an interval at which the tip of the nozzle can be inserted. The imaging unit images the tip and the scale surface in a state where the tip is inserted between the imaging unit and the scale surface and the tip is positioned with respect to the scale surface. It is characterized by.
 本発明の第2の態様にかかる基板処理装置は、本発明の第1の態様にかかる基板処理装置であって、前記先端部が前記スケール面に接触することによって、前記スケール面に対して前記先端部が位置決めされることを特徴とする。 A substrate processing apparatus according to a second aspect of the present invention is the substrate processing apparatus according to the first aspect of the present invention, wherein the tip portion contacts the scale surface, whereby the scale surface is in contact with the scale surface. The tip is positioned.
 本発明の第3の態様にかかる基板処理装置は、本発明の第1の態様または第2の態様にかかる基板処理装置であって、前記治具は、前記ベース部の上面の一部および側面の一部を含む特定領域と密着可能な係合部を有し、前記装着状態とは、前記ベース部の前記特定領域と前記治具の前記係合部とが密着し、前記治具が前記ベース部に引っ掛かった状態であることを特徴とする。 A substrate processing apparatus according to a third aspect of the present invention is the substrate processing apparatus according to the first aspect or the second aspect of the present invention, wherein the jig includes a part of an upper surface and a side surface of the base portion. An engagement portion that can be in close contact with a specific region including a part of the base, and the mounting state means that the specific region of the base portion and the engagement portion of the jig are in close contact, and the jig is It is the state caught on the base part.
 本発明の第4の態様にかかる基板処理装置は、本発明の第1の態様または第2の態様にかかる基板処理装置であって、水平方向に伸びる棒状体であって、一方端部が前記ベース部の上面の中央部と結合され他方端部が前記治具と結合される結合部材、をさらに備え、前記装着状態とは、前記結合部材を介して前記治具と前記ベース部とが連結された状態であることを特徴とする。 A substrate processing apparatus according to a fourth aspect of the present invention is the substrate processing apparatus according to the first aspect or the second aspect of the present invention, wherein the substrate processing apparatus is a rod-like body extending in a horizontal direction, and one end portion of the substrate processing apparatus is A coupling member coupled to the central portion of the upper surface of the base portion and having the other end coupled to the jig; and the mounting state is such that the jig and the base portion are connected via the coupling member. It is the state which was made.
 本発明の第5の態様にかかる基板処理装置は、本発明の第1の態様ないし第4の態様のいずれかにかかる基板処理装置であって、前記ノズル移動手段による前記ノズルの移動軌跡のうちの特定の軌跡部位に略平行に前記スケール面が配置されるとともに、前記特定の軌跡部位において、前記移動軌跡と略直交する方向を撮像方向として前記撮像部による撮像がなされることを特徴とする。 A substrate processing apparatus according to a fifth aspect of the present invention is the substrate processing apparatus according to any one of the first to fourth aspects of the present invention, wherein the nozzle movement means includes a movement locus of the nozzle. The scale plane is arranged substantially in parallel with the specific trajectory part, and imaging by the imaging unit is performed in the specific trajectory part with a direction substantially orthogonal to the movement trajectory as an imaging direction. .
 本発明の第6の態様にかかる基板処理装置は、本発明の第1の態様ないし第5の態様のいずれかにかかる基板処理装置であって、水平方向における前記スケール面の長さは前記ノズルの前記先端部の水平方向の幅よりも長く、背景となる前記スケール面の広がりの範囲内に前記先端部の全幅が収まることによって、前記先端部の両側と前記スケール面とが前記撮像部によって一括して撮像可能であることを特徴とする。 A substrate processing apparatus according to a sixth aspect of the present invention is the substrate processing apparatus according to any one of the first to fifth aspects of the present invention, wherein the length of the scale surface in the horizontal direction is the nozzle. Is longer than the horizontal width of the tip portion, and the entire width of the tip portion is within the range of the scale surface as a background, so that both sides of the tip portion and the scale surface are separated by the imaging unit. It is characterized by being able to capture images collectively.
 本発明の第7の態様にかかる基板処理装置は、本発明の第1の態様ないし第6の態様のいずれかにかかる基板処理装置であって、前記治具が、前記撮像部の近傍に配置され、前記撮像部側から前記先端部と前記スケール面とを照明する照明部、をさらに有することを特徴とする。 A substrate processing apparatus according to a seventh aspect of the present invention is the substrate processing apparatus according to any one of the first to sixth aspects of the present invention, wherein the jig is disposed in the vicinity of the imaging unit. And an illumination unit that illuminates the tip and the scale surface from the imaging unit side.
 本発明の第8の態様にかかる基板処理装置は、本発明の第1の態様ないし第7の態様のいずれかにかかる基板処理装置であって、前記動作規則においては、前記ノズルの変位量と前記ノズル移動手段に与える制御信号の指示値とが線形関係にあることを特徴とする。 A substrate processing apparatus according to an eighth aspect of the present invention is the substrate processing apparatus according to any one of the first to seventh aspects of the present invention, wherein in the operation rule, the displacement amount of the nozzle and The indicated value of the control signal given to the nozzle moving means has a linear relationship.
 本発明の第9の態様にかかる基板処理装置は、本発明の第1の態様ないし第8の態様のいずれかにかかる基板処理装置であって、前記先端部の移動軌跡は、前記基板保持手段に保持される基板の上方を水平方向に横切る軌跡であり、前記基板保持手段によって保持される基板の周端と前記移動軌跡とが水平面視において交わる位置をそれぞれ第1周端位置、第2周端位置と呼ぶとき、前記動作制御手段が前記ノズルを前記第1周端位置まで移動させるよう前記ノズル移動手段の動作を制御した状態で、前記撮像部による撮像が行われることを特徴とする。 A substrate processing apparatus according to a ninth aspect of the present invention is the substrate processing apparatus according to any one of the first to eighth aspects of the present invention, wherein the movement trajectory of the tip portion is the substrate holding means. Are trajectories crossing the upper part of the substrate held in the horizontal direction, and the positions where the peripheral edge of the substrate held by the substrate holding means and the movement trajectory intersect in the horizontal plane are respectively the first peripheral end position and the second peripheral position. When referred to as an end position, imaging is performed by the imaging unit in a state where the operation control unit controls the operation of the nozzle moving unit to move the nozzle to the first peripheral end position.
 本発明の第10の態様にかかる基板処理装置は、本発明の第9の態様にかかる基板処理装置であって、さらに、前記動作制御手段が前記ノズルを前記第2周端位置まで移動させるよう前記ノズル移動手段の動作を制御した状態で、前記撮像部による撮像が行われることを特徴とする。 A substrate processing apparatus according to a tenth aspect of the present invention is the substrate processing apparatus according to the ninth aspect of the present invention, wherein the operation control means moves the nozzle to the second peripheral end position. The imaging by the imaging unit is performed in a state where the operation of the nozzle moving unit is controlled.
 本発明の第11の態様にかかる基板処理装置は、本発明の第1の態様ないし第10の態様のいずれかにかかる基板処理装置であって、前記先端部は前記ノズルの吐出部であることを特徴とする。 A substrate processing apparatus according to an eleventh aspect of the present invention is the substrate processing apparatus according to any one of the first to tenth aspects of the present invention, wherein the tip portion is a discharge portion of the nozzle. It is characterized by.
 本発明の第12の態様にかかる基板処理装置は、本発明の第1の態様ないし第10の態様のいずれかにかかる基板処理装置であって、前記ノズルの吐出部に取付けられたアタッチメントをさらに備え、前記先端部は、前記ノズルの吐出部に取り付けられた前記アタッチメントであることを特徴とする。 A substrate processing apparatus according to a twelfth aspect of the present invention is the substrate processing apparatus according to any one of the first to tenth aspects of the present invention, further comprising an attachment attached to the discharge portion of the nozzle. The tip portion is the attachment attached to the discharge portion of the nozzle.
 本発明の第13の態様にかかる治具は、ベース部を有し前記ベース部の上方で基板を水平保持する基板保持手段と、先端部から処理流体を吐出するノズルと、水平方向に沿って前記ノズルを移動させるノズル移動手段と、を備える基板処理装置において用いられる治具であって、前記ベース部の周端部に対して着脱可能であり、前記治具が前記周端部に装着された装着状態において水平方向を撮像方向とする撮像部と、距離指標が描かれたスケール面を含み、前記先端部を挿入可能な間隔を隔てて、前記スケール面と前記撮像部とが対向配置されるスケール部と、を有し、前記撮像部と前記スケール面との間に前記先端部が挿入され、前記スケール面に対して前記先端部が位置決めされた状態で、前記撮像部が前記先端部および前記スケール面を撮像することを特徴とする。 A jig according to a thirteenth aspect of the present invention includes a substrate holding means that has a base portion and horizontally holds the substrate above the base portion, a nozzle that discharges a processing fluid from the tip portion, and a horizontal direction. A jig used in a substrate processing apparatus comprising a nozzle moving means for moving the nozzle, wherein the jig is detachable from a peripheral end portion of the base portion, and the jig is attached to the peripheral end portion. An imaging unit having an imaging direction in the horizontal direction in a mounted state and a scale surface on which a distance index is drawn, and the scale surface and the imaging unit are arranged to face each other with an interval where the tip part can be inserted. A scale portion, wherein the tip portion is inserted between the imaging portion and the scale surface, and the tip portion is positioned with respect to the scale surface. And said scale Wherein the imaging surface.
 本発明の第14の態様にかかるティーチング方法は、ノズルの変位量とノズル移動手段に与える制御信号の指示値とを対応させた動作規則に基づいて前記ノズルを移動させつつ前記ノズルの先端部から処理流体を吐出することで、基板保持手段のベース部の上方で水平保持される基板に処理を行う基板処理装置において、前記動作規則を設定するティーチング方法であって、(a) 前記ノズルの変位量に係る情報を入力する入力工程と、(b) 前記入力工程で入力された入力情報に基づいて前記制御信号を発信して前記ノズル移動手段の動作を制御するノズル移動工程と、(c) 水平方向を撮像方向とする撮像部と、距離指標が描かれたスケール面を含み、前記先端部を挿入可能な間隔を隔てて、前記スケール面と前記撮像部とが対向配置されるスケール部と、を有する治具を移動して、前記治具が前記ベース部の周端部に装着され、かつ、前記ノズル移動工程で移動された後の前記ノズルの前記先端部が前記撮像部と前記スケール面との間に挿入されるとともに前記治具の前記スケール面に対して位置決めされた状態とする治具移動工程と、(d) 前記治具移動工程によって得られた状態で、前記撮像部によって前記先端部および前記スケール面を撮像する撮像工程と、(e) 前記撮像工程で取得される撮像結果を基に前記動作規則を設定する設定工程と、を備えることを特徴とする。 In the teaching method according to the fourteenth aspect of the present invention, the nozzle is moved from the tip of the nozzle while moving the nozzle based on an operation rule that associates the displacement amount of the nozzle with the instruction value of the control signal given to the nozzle moving means. In a substrate processing apparatus for processing a substrate horizontally held above a base portion of a substrate holding means by discharging a processing fluid, the teaching method sets the operation rule, and (a) 、 Displacement of the nozzle An input step for inputting information relating to the amount; (b) a nozzle moving step for controlling the operation of the nozzle moving means by transmitting the control signal based on the input information input in the input step; and (c). An imaging unit having a horizontal direction as an imaging direction and a scale surface on which a distance index is drawn, and the scale surface and the imaging unit are arranged to face each other with an interval where the tip part can be inserted. And the tip of the nozzle after the jig is mounted on the peripheral end of the base and moved in the nozzle moving step. A jig moving step that is inserted between a portion and the scale surface and positioned with respect to the scale surface of the jig, and (d) a state obtained by the jig moving step, An imaging step of imaging the tip portion and the scale surface by the imaging unit, and (e) a setting step of setting the operation rule based on an imaging result acquired in the imaging step. .
 本発明の第1の態様ないし第12の態様、および第14の態様では、治具が、ベース部の周端部に装着された装着状態において水平方向を撮像方向とする撮像部と、距離指標が描かれたスケール面を含みノズルの先端部を挿入可能な間隔を隔ててスケール面と撮像部とが対向配置されるスケール部と、を有する。撮像部とスケール面との間に先端部が挿入され、スケール面に対して先端部が位置決めされた状態で、撮像部が先端部およびスケール面を撮像する。そして、治具によって取得される撮像結果を基に、ノズルの変位量とノズル移動手段に与える制御信号の指示値とを対応させた動作規則を設定する。このように、ベース部、治具、およびノズル先端部のそれぞれが位置決めされた状態で、撮像部による撮像が行われる。このため、撮像結果を基に、ベース部から見たノズル先端部の位置情報を取得することができる。特に、撮像部を有する治具がベース部の周端部に装着されるので、ベース部の周端部付近でのノズル先端部の位置情報を取得することができる。 In the first aspect to the twelfth aspect and the fourteenth aspect of the present invention, the jig is mounted on the peripheral end portion of the base portion, and in the mounted state, the imaging unit having the horizontal direction as the imaging direction, and a distance index And a scale portion in which the scale surface and the imaging unit are arranged to face each other with a space at which the tip of the nozzle can be inserted. The imaging unit images the distal end part and the scale surface in a state where the distal end part is inserted between the imaging unit and the scale surface and the distal end part is positioned with respect to the scale surface. Then, based on the imaging result acquired by the jig, an operation rule is set in which the displacement amount of the nozzle is associated with the instruction value of the control signal given to the nozzle moving means. In this way, imaging by the imaging unit is performed with each of the base portion, the jig, and the nozzle tip portion being positioned. For this reason, it is possible to acquire position information of the nozzle tip as viewed from the base, based on the imaging result. In particular, since the jig having the imaging unit is attached to the peripheral end portion of the base portion, position information of the nozzle tip portion in the vicinity of the peripheral end portion of the base portion can be acquired.
 治具によって取得される撮像結果を基に動作規則を設定する本発明の態様では、操作者の目視によって取得されるノズル先端部の位置情報を基に動作規則を設定する他の態様に比べて、ティーチングのための作業者による作業を軽減することができ、かつ、より正確なティーチングを実現することができる。 In the aspect of the present invention in which the operation rule is set based on the imaging result acquired by the jig, as compared with other aspects in which the operation rule is set based on the position information of the nozzle tip acquired by the operator's visual observation. The work by the operator for teaching can be reduced, and more accurate teaching can be realized.
 また、ノズル先端部が水平方向を撮像方向とする撮像部によって撮像されるため、撮像によりノズル先端部の位置を正確に把握することができる。 Also, since the nozzle tip is imaged by the imaging unit whose imaging direction is the horizontal direction, the position of the nozzle tip can be accurately grasped by imaging.
 本発明の第13の態様は、本発明の第1の態様ないし第12の態様にかかる基板処理装置および第14の態様にかかるティーチング方法に好適な治具である。 The thirteenth aspect of the present invention is a jig suitable for the substrate processing apparatus according to the first to twelfth aspects of the present invention and the teaching method according to the fourteenth aspect.
図1は、基板処理装置1の構成を図解的に示す図である。FIG. 1 is a diagram schematically showing the configuration of the substrate processing apparatus 1. 図2は、装着状態における基板処理装置1の側面図である。FIG. 2 is a side view of the substrate processing apparatus 1 in the mounted state. 図3は、装着状態における基板処理装置1の上面図である。FIG. 3 is a top view of the substrate processing apparatus 1 in the mounted state. 図4は、治具70の下面図である。FIG. 4 is a bottom view of the jig 70. 図5は、撮像部71によって撮像される画像の一例である。FIG. 5 is an example of an image captured by the imaging unit 71. 図6は、ティーチング作業のフローの一例を示す図である。FIG. 6 is a diagram illustrating an example of a teaching work flow. 図7は、動作規則の一例を示す図である。FIG. 7 is a diagram illustrating an example of the operation rule. 図8は、吐出部31の軌跡14を模式的に表現する基板処理装置1の上面図である。FIG. 8 is a top view of the substrate processing apparatus 1 that schematically represents the trajectory 14 of the ejection unit 31. 図9は、治具70の装着状態における基板処理装置1の上面図である。FIG. 9 is a top view of the substrate processing apparatus 1 with the jig 70 mounted. 図10は、撮像部71によって撮像される画像の一例である。FIG. 10 is an example of an image captured by the imaging unit 71. 図11は、治具70の装着状態における基板処理装置1の上面図である。FIG. 11 is a top view of the substrate processing apparatus 1 with the jig 70 mounted. 図12は、撮像部71によって撮像される画像の一例である。FIG. 12 is an example of an image captured by the imaging unit 71. 動作規則の再設定作業を説明するグラフである。It is a graph explaining the reset operation | work of an operation rule. 図14は、スキャン液処理のフローの一例を示す図である。FIG. 14 is a diagram illustrating an example of a flow of scan liquid processing. 図15は、装着状態における基板処理装置1Aの上面図である。FIG. 15 is a top view of the substrate processing apparatus 1A in the mounted state. 図16は、装着状態における基板処理装置1Bの側面図である。FIG. 16 is a side view of the substrate processing apparatus 1B in the mounted state.
 以下では、この発明の実施の形態を、添付図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 <1 一実施形態>
 <1.1 基板処理装置1の構成>
 図1は、本発明の一実施形態に係る基板処理装置1の構成を図解的に示す図である。この基板処理装置1は、基板(例えば、半導体ウエハ)の表面に対して処理液による処理を施すための枝葉型の装置である。
<1 One Embodiment>
<1.1 Configuration of Substrate Processing Apparatus 1>
FIG. 1 is a diagram schematically showing a configuration of a substrate processing apparatus 1 according to an embodiment of the present invention. The substrate processing apparatus 1 is a branch-and-leaf type apparatus for performing processing with a processing liquid on the surface of a substrate (for example, a semiconductor wafer).
 基板処理装置1は、その処理室内に、ウエハWをほぼ水平に保持して回転するスピンチャック2と、スピンチャック2に保持されたウエハWの上面に処理液を吐出するためのノズル3とを備える。 The substrate processing apparatus 1 includes, in its processing chamber, a spin chuck 2 that rotates while holding the wafer W substantially horizontally, and a nozzle 3 that discharges a processing liquid onto the upper surface of the wafer W held by the spin chuck 2. Prepare.
 スピンチャック2(基板保持手段)は、チャック回転駆動機構4によって回転される回転軸5の上端に固定されている。スピンチャック2は、上面が平坦で略円板形状のスピンベース6(台状のベース部)と、スピンベース6の上面のうち周端部の複数箇所にほぼ等間隔で設けられウエハWをほぼ水平姿勢で挟持するための複数の挟持部材7とを備えている。複数の挟持部材7によってウエハWが挟持された状態でチャック回転駆動機構4によって回転軸5が回転されると、ウエハWは水平姿勢を保った状態でスピンベース6とともに回転軸5の中心軸線まわりに回転される。 The spin chuck 2 (substrate holding means) is fixed to the upper end of the rotating shaft 5 rotated by the chuck rotation driving mechanism 4. The spin chuck 2 has a flat upper surface and a substantially disk-shaped spin base 6 (base-like base portion), and is provided at a plurality of positions on the peripheral end portion of the upper surface of the spin base 6 at substantially equal intervals. A plurality of clamping members 7 for clamping in a horizontal posture are provided. When the rotation shaft 5 is rotated by the chuck rotation driving mechanism 4 while the wafer W is held by the plurality of holding members 7, the wafer W is rotated around the central axis of the rotation shaft 5 together with the spin base 6 while maintaining the horizontal posture. To be rotated.
 上記構成の他にも、スピンチャック2として、例えば、ウエハWの下面を真空吸着することによりウエハWを水平姿勢で保持することができる真空吸着式のもの(バキュームチャック)が採用されてもよい。 In addition to the above configuration, for example, a vacuum chucking type (vacuum chuck) that can hold the wafer W in a horizontal position by vacuum chucking the lower surface of the wafer W may be employed as the spin chuck 2. .
 ノズル3には、処理液供給源から処理液が供給される供給管8が接続されている。供給管8の途中部には、ノズル3からの処理液の吐出/吐出停止を切り換えるためのバルブ9が介装されている。処理液としては、ウエハWの表面に対する処理の内容に応じたものが用いられる。たとえば、ウエハWの表面からパーティクルを除去するための洗浄処理であれば、SC1(ammonia-hydrogen peroxide mixture:アンモニア過酸化水素水)などの薬液を含む洗浄液が用いられる。また、ウエハWの表面から酸化膜等をエッチングするための洗浄処理であれば、フッ酸やBHF(Bufferd HF)などの薬液を含む洗浄液が用いられる。また、レジスト剥離後のウエハWの表面にポリマーとなって残留しているレジスト残渣を除去するためのポリマー除去処理であれば、SPM(sulfuric acid/hydrogen peroxide mixture:硫酸過酸化水素水)やSC1(ammonia-hydrogen peroxide mixture:アンモニア過酸化水素水)などのポリマー除去液が用いられる。また、金属汚染物を除去する洗浄処理には、フッ酸やSC2(hydrochloric acid/hydrogen peroxide mixture:塩酸過酸化水素水)やSPM(sulfuric acid/hydrogen peroxide mixture:硫酸過酸化水素水)などの薬液が用いられる。 The nozzle 3 is connected to a supply pipe 8 to which a processing liquid is supplied from a processing liquid supply source. A valve 9 for switching between discharge / stop of discharge of the processing liquid from the nozzle 3 is interposed in the middle of the supply pipe 8. As the processing liquid, a liquid according to the content of processing on the surface of the wafer W is used. For example, in the case of a cleaning process for removing particles from the surface of the wafer W, a cleaning liquid containing a chemical solution such as SC1 (ammonia-hydrogen peroxide mixture) is used. In the case of a cleaning process for etching an oxide film or the like from the surface of the wafer W, a cleaning liquid containing a chemical solution such as hydrofluoric acid or BHF (Buffered HF) is used. Further, SPM (sulfuric / acid / hydrogen / peroxide / mixture: sulfuric acid / hydrogen peroxide) or SC1 may be used for the polymer removal process for removing the resist residue remaining as a polymer on the surface of the wafer W after the resist is removed. A polymer removal solution such as (ammonia-hydrogen peroxide mixture) is used. In addition, chemical treatments such as hydrofluoric acid, SC2 (hydrochloric acid / hydrogen peroxide mixture) and SPM (sulfuric acid / hydrogen peroxide mixture) are used for cleaning treatment to remove metal contaminants. Is used.
 ノズル3は、スピンチャック2の上方でほぼ水平に延びたアーム10の先端に取り付けられている。アーム10の基端の下面は、支持軸11の上端に固定されている。支持軸11は、スピンチャック2の側方でほぼ鉛直に延びている。支持軸11には、アーム10を揺動させるアーム揺動駆動機構としてのステッピングモータ12が結合されている。ステッピングモータ12には、ステッピングモータ12を駆動するためのドライバ回路22が接続されている。このように、ステッピングモータ12およびドライバ回路22によって、ノズル3を移動するノズル移動手段が構成される。 The nozzle 3 is attached to the tip of an arm 10 that extends substantially horizontally above the spin chuck 2. The lower surface of the base end of the arm 10 is fixed to the upper end of the support shaft 11. The support shaft 11 extends substantially vertically on the side of the spin chuck 2. A stepping motor 12 as an arm swing drive mechanism for swinging the arm 10 is coupled to the support shaft 11. A driver circuit 22 for driving the stepping motor 12 is connected to the stepping motor 12. As described above, the stepping motor 12 and the driver circuit 22 constitute nozzle moving means for moving the nozzle 3.
 ステッピングモータ12から支持軸11に回転駆動力を入力して、支持軸11を所定の角度範囲内で回動させることにより、スピンチャック2に保持されたウエハWの上方でアーム10を揺動させることができる。この揺動の過程で、アーム10は、ノズル3をスピンチャック2の側方のホームポジション23(図1に二点鎖線で図示)、およびスピンチャック2に保持されたウエハWの上方(図1に実線で図示)に配されうる。これにより、ノズル3は、ウエハWの表面上における処理液の吐出位置をスキャン(移動)される。ステッピングモータ12が駆動されることにより、ノズル3は、支持軸11上に中心を有する円弧形状をなす軌跡14に沿って移動する。 By inputting a rotational driving force from the stepping motor 12 to the support shaft 11 and rotating the support shaft 11 within a predetermined angle range, the arm 10 is swung over the wafer W held by the spin chuck 2. be able to. During this swinging process, the arm 10 moves the nozzle 3 to the home position 23 on the side of the spin chuck 2 (shown by a two-dot chain line in FIG. 1) and above the wafer W held by the spin chuck 2 (FIG. 1). (Shown by a solid line). As a result, the nozzle 3 is scanned (moved) on the discharge position of the processing liquid on the surface of the wafer W. By driving the stepping motor 12, the nozzle 3 moves along a locus 14 having an arc shape having a center on the support shaft 11.
 基板処理装置1は、CPU、RAMおよびROMを含む構成の制御部20を備えている。制御部20には、チャック回転駆動機構4、処理液バルブ9などが制御対象として接続されている。 The substrate processing apparatus 1 includes a control unit 20 having a configuration including a CPU, a RAM, and a ROM. The control unit 20 is connected to the chuck rotation drive mechanism 4, the processing liquid valve 9, and the like as control targets.
 また、制御部20は、ステッピングモータ12を制御するためのモータ制御部21を備えている。モータ制御部21(動作制御手段)は、ドライバ回路22に対して、ノズル3の変位量に応じたパルス信号(制御信号)を発信する。ドライバ回路22は、モータ制御部21から発信されたパルス信号を受信して、該パルス信号に応じた励磁信号をステッピングモータ12に付与する。 Further, the control unit 20 includes a motor control unit 21 for controlling the stepping motor 12. The motor control unit 21 (operation control means) transmits a pulse signal (control signal) corresponding to the displacement amount of the nozzle 3 to the driver circuit 22. The driver circuit 22 receives the pulse signal transmitted from the motor control unit 21 and applies an excitation signal corresponding to the pulse signal to the stepping motor 12.
 モータ制御部21には、ノズルの変位量とステッピングモータ12に与える制御信号の指示値(パルス数)とを対応させた動作規則が登録される。動作規則は、上記変位量と上記指示値との関数で表現されてもよいし、上記変位量と上記指示値との少なくとも1対の対応関係を含むテーブルで表現されても良い。このような動作規則の設定作業をティーチング作業と称する。本実施形態では、該ティーチング作業によって、モータ制御部21に上記変位量と上記指示値との一次関数(図7に示す動作規則)が登録される場合について説明する。 The motor control unit 21 registers an operation rule that associates the displacement amount of the nozzle with the instruction value (number of pulses) of the control signal given to the stepping motor 12. The operation rule may be expressed as a function of the displacement amount and the indicated value, or may be expressed as a table including at least one pair of correspondence relationship between the displacement amount and the indicated value. Such operation rule setting work is referred to as teaching work. In the present embodiment, a case where a linear function (the operation rule shown in FIG. 7) of the displacement amount and the instruction value is registered in the motor control unit 21 by the teaching operation will be described.
 また、基板処理装置1は、マウス、キーボード、タッチパネル等を含む構成の入力部30を備えている。このため、装置の操作者は、ノズルの変位量に係る情報を入力することができる。上記情報は、上記制御信号の指示値(パルス数)を指定するパルス情報、または、ノズル3の変位量(ノズル位置)を指定する位置情報に大別することができる。 Also, the substrate processing apparatus 1 includes an input unit 30 having a configuration including a mouse, a keyboard, a touch panel, and the like. For this reason, the operator of the apparatus can input information related to the displacement amount of the nozzle. The information can be broadly classified into pulse information that designates an instruction value (number of pulses) of the control signal or position information that designates a displacement amount (nozzle position) of the nozzle 3.
 入力部30への入力情報がパルス情報である場合には、モータ制御部21が、ドライバ回路22に対して該パルス数に応じた制御信号を出力し、ステッピングモータ12を回転させる。これにより、入力情報に応じたノズル3の移動動作が実現される。 When the input information to the input unit 30 is pulse information, the motor control unit 21 outputs a control signal corresponding to the number of pulses to the driver circuit 22 to rotate the stepping motor 12. Thereby, the movement operation | movement of the nozzle 3 according to input information is implement | achieved.
 他方、入力部30への入力情報が位置情報である場合には、まず、モータ制御部21が、該位置情報と動作規則とに基づいてドライバ回路22に対して与えるべきパルス数を算出する。そして、モータ制御部21は、ドライバ回路22に対して該パルス数に応じた制御信号を出力し、ステッピングモータ12を回転させる。これにより、入力情報に応じたノズル3の移動動作が実現される。 On the other hand, when the input information to the input unit 30 is position information, first, the motor control unit 21 calculates the number of pulses to be given to the driver circuit 22 based on the position information and operation rules. Then, the motor control unit 21 outputs a control signal corresponding to the number of pulses to the driver circuit 22 to rotate the stepping motor 12. Thereby, the movement operation | movement of the nozzle 3 according to input information is implement | achieved.
 また、基板処理装置1は、ウエハWが保持されていない状態のスピンベース6に対して着脱可能な治具70を備えている。治具70は、ティーチング作業の際に用いる測定器である。図2は、治具70がスピンベース6の周端部に装着された状態における基板処理装置1の側面図である。図3は、治具70がスピンベース6の周端部に装着された状態における基板処理装置1の上面図である。図4は、治具70の下面図である。なお、図3においては、照明部73の構成が省略されて描かれている。また、図4においては、治具70の上面側に配される各構成が点線で表現されている。 Further, the substrate processing apparatus 1 includes a jig 70 that can be attached to and detached from the spin base 6 in a state where the wafer W is not held. The jig 70 is a measuring instrument used in teaching work. FIG. 2 is a side view of the substrate processing apparatus 1 in a state where the jig 70 is mounted on the peripheral end portion of the spin base 6. FIG. 3 is a top view of the substrate processing apparatus 1 in a state where the jig 70 is mounted on the peripheral end of the spin base 6. FIG. 4 is a bottom view of the jig 70. In FIG. 3, the configuration of the illumination unit 73 is omitted. In FIG. 4, each component arranged on the upper surface side of the jig 70 is represented by a dotted line.
 治具70は、治具70がスピンベース6の周端部に装着された装着状態において水平方向を撮像方向とする撮像部71と、9本の目盛線720が描かれたスケール面72Aを含むスケール部72と、撮像部71の近傍に配置され撮像部71側からノズル3の先端部(吐出部31)とスケール面72Aとを照明する照明部73と、これら各部を一体的に保持する本体部74と、を有する。 The jig 70 includes an image pickup unit 71 having the horizontal direction as an image pickup direction when the jig 70 is attached to the peripheral end of the spin base 6, and a scale surface 72A on which nine graduation lines 720 are drawn. A scale unit 72, an illumination unit 73 that is disposed in the vicinity of the imaging unit 71 and illuminates the tip portion (ejection unit 31) of the nozzle 3 and the scale surface 72A from the imaging unit 71 side, and a main body that integrally holds these units Part 74.
 また、治具70は、本体部74の平坦な下面74Aから下向きに突出する凸部75を有する。さらに、凸部75の側面の一部には、スピンベース6の側面の曲率半径と同一の曲率半径を有する円弧に沿った曲面75Aが含まれる。以下では、治具70のうち本体部74の下面74Aおよび凸部75の曲面75Aによって構成される部分を係合部と称する。 Also, the jig 70 has a convex portion 75 that protrudes downward from the flat lower surface 74A of the main body portion 74. Further, a part of the side surface of the convex portion 75 includes a curved surface 75A along an arc having the same radius of curvature as that of the side surface of the spin base 6. Hereinafter, a portion of the jig 70 constituted by the lower surface 74A of the main body 74 and the curved surface 75A of the convex portion 75 is referred to as an engagement portion.
 上記の通り、スピンベース6の上面および本体部74の下面74Aはともに平坦であり、スピンベース6の側面の曲率半径と凸部75の曲面75Aの曲率半径とは同一であるので、係合部はスピンベース6の上面の一部および側面の一部を含む特定領域(肩部)と密着可能である。本実施形態において、治具70がスピンベース6の周端部に装着された装着状態とは、スピンベース6の特定領域と治具70の係合部とが密着し、治具70がスピンベース6に引っ掛かった状態を意味する。 As described above, the upper surface of the spin base 6 and the lower surface 74A of the main body 74 are both flat, and the curvature radius of the side surface of the spin base 6 and the curvature radius of the curved surface 75A of the convex portion 75 are the same. Can adhere to a specific region (shoulder portion) including a part of the upper surface and a part of the side surface of the spin base 6. In the present embodiment, the mounting state in which the jig 70 is mounted on the peripheral end of the spin base 6 means that the specific region of the spin base 6 and the engaging portion of the jig 70 are in close contact, and the jig 70 is in the spin base. 6 means a state of being caught.
 本実施形態では、治具70とスピンベース6とが機械的に固定されてはいないので、治具70の係合部とスピンベース6の周端部とを密着させた装着状態を維持しつつ、スピンベース6の周端部に沿って治具70を摺動することができる。このように治具70を摺動した場合であっても装着状態が維持される限り、後記する撮像部71による撮像によってスピンベース6の周端部から見たノズル3の変位量を検知することができる。 In this embodiment, since the jig 70 and the spin base 6 are not mechanically fixed, the mounting state in which the engaging portion of the jig 70 and the peripheral end portion of the spin base 6 are in close contact with each other is maintained. The jig 70 can be slid along the peripheral edge of the spin base 6. As long as the mounting state is maintained even when the jig 70 is slid in this manner, the displacement amount of the nozzle 3 viewed from the peripheral end of the spin base 6 is detected by imaging by the imaging unit 71 described later. Can do.
 本体部74は、吐出部31を挿入可能な間隔を隔てて撮像部71とスケール面72Aとが対向配置とされるよう、撮像部71およびスケール部72を保持する。 The main body 74 holds the imaging unit 71 and the scale unit 72 so that the imaging unit 71 and the scale surface 72A are arranged to face each other with an interval in which the discharge unit 31 can be inserted.
 後述するティーチング作業では、治具70がスピンベース6に装着された状態で、かつ、アーム10が揺動されることによって撮像部71とスケール面72Aとの間に吐出部31が挿入された状態(より具体的には、スケール面72Aに対して吐出部31が接触して位置決めされた状態)とされる。以下では、図2および図3に示す該状態を位置決め状態と称する。位置決め状態において撮像部による吐出部31およびスケール面72Aの撮像が行われると、撮像結果が制御部20に与えられる。そして、制御部20が該撮像結果を基に演算処理を行うことによって、吐出部31の位置情報が取得される。位置決め状態では治具70がスピンベース6の周端部に装着されているので、スピンベース6の周端部付近での吐出部31の位置情報が実測値として取得される。 In a teaching operation to be described later, a state where the jig 70 is mounted on the spin base 6 and the ejection unit 31 is inserted between the imaging unit 71 and the scale surface 72A when the arm 10 is swung. (More specifically, the discharge unit 31 is in contact with and positioned on the scale surface 72A). Hereinafter, the state shown in FIGS. 2 and 3 is referred to as a positioning state. When the ejection unit 31 and the scale surface 72A are imaged by the imaging unit in the positioning state, the imaging result is given to the control unit 20. And the positional information on the discharge part 31 is acquired when the control part 20 performs a calculation process based on this imaging result. Since the jig 70 is attached to the peripheral end portion of the spin base 6 in the positioning state, position information of the ejection unit 31 in the vicinity of the peripheral end portion of the spin base 6 is acquired as an actual measurement value.
 図5は、撮像部71によって撮像される画像の一例である。以下では、装着状態において、9本の目盛線720のうち中央に位置する目盛線721の位置とスピンベース6に保持されるウエハWの周端部の位置とが上面視で一致する場合について説明する。例えば、図5に示す例では、ノズル3の吐出部31の位置が、目盛線721の位置(ウエハWの周端部に相当する位置)より図示右側(アーム10の原点位置側)に距離D1だけずれていることになる。 FIG. 5 is an example of an image captured by the imaging unit 71. In the following, a description will be given of a case where the position of the scale line 721 located at the center of the nine scale lines 720 and the position of the peripheral end portion of the wafer W held by the spin base 6 coincide with each other when viewed from above. To do. For example, in the example shown in FIG. 5, the position of the discharge unit 31 of the nozzle 3 is a distance D1 from the position of the scale line 721 (the position corresponding to the peripheral end of the wafer W) to the right side of the drawing (the origin position side of the arm 10). It will be shifted only.
 図5に示す例では、水平方向におけるスケール面72Aの長さは吐出部31の水平方向の幅よりも長く、背景となるスケール面72Aの広がりの範囲内に吐出部31の全幅が収まる。このため、吐出部31の両側とスケール面72Aとが撮像部71によって一括して撮像可能である。このように吐出部31の全幅をその背景としてのスケール面72Aとともに一括して撮像できるので、吐出部31の右端または左端だけを撮像する場合と比較して測定精度が高まる。 In the example shown in FIG. 5, the length of the scale surface 72A in the horizontal direction is longer than the width of the discharge unit 31 in the horizontal direction, and the entire width of the discharge unit 31 is within the range of the scale surface 72A serving as the background. For this reason, both sides of the discharge unit 31 and the scale surface 72 </ b> A can be collectively imaged by the imaging unit 71. Thus, since the entire width of the discharge unit 31 can be imaged together with the scale surface 72A as the background, the measurement accuracy is improved as compared with the case where only the right end or the left end of the discharge unit 31 is imaged.
 また、上記の通り、治具70は吐出部31とスケール面72Aとを照明する照明部73を有する。このため、撮像部71による撮像が行われるタイミングで撮像される領域を照明することにより、室内光だけを照明光とする場合に比べて測定精度が高まる。 Further, as described above, the jig 70 includes the illumination unit 73 that illuminates the discharge unit 31 and the scale surface 72A. For this reason, by illuminating the area imaged at the timing when the imaging unit 71 performs imaging, the measurement accuracy is improved as compared with the case where only room light is used as illumination light.
 <1.2 ティーチング作業>
 <1.2.1 動作規則の設定>
 図6は、ティーチング作業のフローの一例を示す図である。図7は、本実施形態における動作規則の一例を示す図である。図8は、ノズル3の吐出部31の軌跡14を模式的に表現する基板処理装置1の上面図である。
<1.2 Teaching work>
<1.2.1 Setting operation rules>
FIG. 6 is a diagram illustrating an example of a teaching work flow. FIG. 7 is a diagram illustrating an example of operation rules in the present embodiment. FIG. 8 is a top view of the substrate processing apparatus 1 that schematically represents the locus 14 of the ejection unit 31 of the nozzle 3.
 図8に示すように、吐出部31の軌跡14は、スピンベース6に保持されるウエハWの上方を水平方向に横切る軌跡である。以下では、ノズル3を軌跡14に沿って位置P0から位置P3付近まで移動させる場合のティーチング作業の一例について説明する(図8)。ここで、位置P0とは、アーム10が原点位置に配される場合の吐出部31の位置である。また、位置P3(第1周端位置)とは、軌跡14上でスピンベース6に保持されるウエハWの周端部の直上に相当する2点のうち位置P0側の1点に対応する位置である。 As shown in FIG. 8, the trajectory 14 of the ejection unit 31 is a trajectory that crosses the upper side of the wafer W held by the spin base 6 in the horizontal direction. Hereinafter, an example of teaching work in the case where the nozzle 3 is moved from the position P0 to the vicinity of the position P3 along the locus 14 will be described (FIG. 8). Here, the position P0 is the position of the ejection unit 31 when the arm 10 is disposed at the origin position. The position P3 (first peripheral end position) is a position corresponding to one point on the position P0 side, out of two points corresponding to the position immediately above the peripheral end of the wafer W held on the spin base 6 on the locus 14. It is.
 ティーチング作業においては、まず、装置の操作者が入力部30へパルス情報(すなわち、ステッピングモータ12におけるパルス数)を入力する(ステップST1:入力工程)。より具体的には、操作者は、ノズル3の吐出部31が位置P3の付近に配されるよう所定のパルス情報(図7に示すパルス数Xa)を入力する。ここで、パルス数とは、アーム10の原点位置(機械上の原点位置)を基準としたモータの回転量に相当する値である。 In teaching work, first, the operator of the apparatus inputs pulse information (that is, the number of pulses in the stepping motor 12) to the input unit 30 (step ST1: input process). More specifically, the operator inputs predetermined pulse information (number of pulses Xa shown in FIG. 7) so that the ejection unit 31 of the nozzle 3 is arranged in the vicinity of the position P3. Here, the number of pulses is a value corresponding to the rotation amount of the motor based on the origin position of the arm 10 (the origin position on the machine).
 モータ制御部21は、入力工程で入力された入力情報に基づいてドライバ回路22に対してパルス数に応じた制御信号を出力する。これにより、ステッピングモータ12が所定のパルス数に応じて回転されノズル3が移動される。その結果、ノズル3の吐出部31が位置P3の付近に配される(ステップST2:ノズル移動工程)。 The motor control unit 21 outputs a control signal corresponding to the number of pulses to the driver circuit 22 based on the input information input in the input process. Thereby, the stepping motor 12 is rotated according to a predetermined number of pulses, and the nozzle 3 is moved. As a result, the discharge part 31 of the nozzle 3 is arranged in the vicinity of the position P3 (step ST2: nozzle moving step).
 そして、操作者は、治具70をスピンベース6の周端部に装着し、該周端部に沿って摺動させる。そして、スケール面72Aとノズル3の吐出部31とが接触したタイミングで治具70の摺動を停止する。これにより、治具70が上述した位置決め状態とされる(ステップST3:治具移動工程)。 Then, the operator attaches the jig 70 to the peripheral end portion of the spin base 6 and slides it along the peripheral end portion. Then, the sliding of the jig 70 is stopped at the timing when the scale surface 72A and the discharge part 31 of the nozzle 3 come into contact with each other. Thereby, the jig 70 is brought into the above-described positioning state (step ST3: jig moving step).
 治具移動工程によって得られた位置決め状態で、撮像部71が吐出部31およびスケール面72Aを撮像する(ステップST4:撮像工程)。この撮像結果は制御部20に与えられる。 In the positioning state obtained by the jig moving process, the imaging unit 71 images the discharge unit 31 and the scale surface 72A (step ST4: imaging process). This imaging result is given to the control unit 20.
 制御部20は、撮像工程で取得される撮像結果(図5)を基に演算処理を行うことによって、吐出部31の位置情報(後述する変位量Fa)を取得する。そして、制御部20は、ノズル3の変位量とステッピングモータ12に与える制御信号の指示値(パルス数)とを対応させた動作規則(図7)を設定する(ステップST5:設定工程)。 The control unit 20 acquires position information (displacement amount Fa described later) of the discharge unit 31 by performing arithmetic processing based on the imaging result (FIG. 5) acquired in the imaging process. And the control part 20 sets the operation rule (FIG. 7) which matched the displacement amount of the nozzle 3, and the instruction value (pulse number) of the control signal given to the stepping motor 12 (step ST5: setting process).
 以下、図8を参照しつつ、設定工程の詳細について説明する。 Hereinafter, the details of the setting process will be described with reference to FIG.
 アーム10の支持軸11およびスピンベース6は装置に固定されている。このため、位置P0から位置P1までの軌跡14に沿った吐出部31の変位量は常に一定である。ここで、位置P1とは、軌跡14上でスピンベース6の周端部の直上に相当する2点のうち位置P0側の1点に対応する位置である。また、スピンベース6の回転中心Cとスピンベース6に保持されるウエハWの回転中心Cとは一致している。このため、位置P1から位置P3までの軌跡14に沿った吐出部31の変位量は常に一定である。したがって、位置P0から位置P3までの軌跡14に沿った吐出部31の変位量も常に一定となる。 The support shaft 11 and the spin base 6 of the arm 10 are fixed to the apparatus. For this reason, the displacement amount of the ejection part 31 along the locus 14 from the position P0 to the position P1 is always constant. Here, the position P <b> 1 is a position corresponding to one point on the position P <b> 0 side among the two points on the locus 14 that are directly above the peripheral end of the spin base 6. Further, the rotation center C of the spin base 6 coincides with the rotation center C of the wafer W held on the spin base 6. For this reason, the displacement amount of the discharge part 31 along the locus 14 from the position P1 to the position P3 is always constant. Therefore, the displacement amount of the discharge unit 31 along the locus 14 from the position P0 to the position P3 is always constant.
 また、撮像部71によって取得される撮像結果を基に、ノズル移動工程で移動された吐出部31の位置たる位置P2と、位置P3と、の距離を測定することができる。図5に示す例では、上述した通り、位置P2が位置P3より位置P0側に距離D1だけずれていることが測定される。制御部20は、この測定結果を基に、位置P3から位置P2までの軌跡14に沿った吐出部31の変位量を算出することができる。 Further, based on the imaging result acquired by the imaging unit 71, the distance between the position P2 which is the position of the ejection unit 31 moved in the nozzle moving step and the position P3 can be measured. In the example shown in FIG. 5, as described above, it is measured that the position P2 is shifted by the distance D1 from the position P3 to the position P0 side. The control unit 20 can calculate the displacement amount of the discharge unit 31 along the locus 14 from the position P3 to the position P2 based on the measurement result.
 したがって、一定値たる位置P0から位置P3までの吐出部31の変位量と、測定によって算出可能な位置P3から位置P2までの吐出部31の変位量と、を基に、制御部20は位置P0から位置P2までの吐出部31の変位量(図7に示す変位量Fa)を算出することができる。 Therefore, based on the displacement amount of the discharge unit 31 from the position P0 to the position P3, which is a constant value, and the displacement amount of the discharge unit 31 from the position P3 to the position P2 that can be calculated by measurement, the control unit 20 determines the position P0. The displacement amount (displacement amount Fa shown in FIG. 7) of the discharge unit 31 from the position P2 to the position P2 can be calculated.
 制御部20(設定手段)は、入力部30より入力したパルス数Xaと、これにより変位した吐出部31の変位量Faと、の値の対を用いて動作規則(図7)を設定する。例えば、本実施形態のように動作規則が上記変位量と上記指示値との一次関数(図7)で表現される場合、(パルス数,ノズルの変位量)=(0,0),(Xa,Fa)の2点を通過する一次関数が動作規則として設定される。 The control unit 20 (setting means) sets an operation rule (FIG. 7) using a pair of values of the number of pulses Xa input from the input unit 30 and the displacement amount Fa of the discharge unit 31 displaced thereby. For example, when the operation rule is expressed by a linear function (FIG. 7) of the displacement amount and the indicated value as in the present embodiment, (number of pulses, displacement amount of the nozzle) = (0, 0), (Xa , Fa), a linear function passing through two points is set as an operation rule.
 <1.2.2 動作規則の再設定>
 以下では、動作規則を再設定する場合におけるティーチング作業の一例について説明する。該ティーチング作業は、治具70による撮像結果から得られる吐出部31の位置ずれ量に基づいて行われる。
<1.2.2 Resetting operation rules>
Hereinafter, an example of teaching work in the case of resetting the operation rule will be described. The teaching work is performed based on the amount of positional deviation of the ejection unit 31 obtained from the imaging result of the jig 70.
 図9は、基板処理装置1の模式的な上面図である。図10は、図9に示す状態で吐出部31を撮像部71により撮像したときの撮像画面である。図9および図10に示す状態では、吐出部31はティーチング基準位置(例えば、ウエハWの第1周端位置P3の直上位置)に位置している。また、吐出部31は、治具70のスケール面72Aに対して目盛位置L1で接触している。 FIG. 9 is a schematic top view of the substrate processing apparatus 1. FIG. 10 is an imaging screen when the ejection unit 31 is imaged by the imaging unit 71 in the state illustrated in FIG. 9. In the state shown in FIGS. 9 and 10, the ejection unit 31 is located at the teaching reference position (for example, a position immediately above the first peripheral end position P <b> 3 of the wafer W). Further, the discharge unit 31 is in contact with the scale surface 72A of the jig 70 at the scale position L1.
 図11は、基板処理装置1の模式的な上面図である。図12は、図11に示す状態で吐出部31を撮像部71により撮像したときの撮像画面である。図11および図12に示す状態では、吐出部31がティーチング基準位置(位置P3)からずれた位置P2に位置している。また、吐出部31は、治具70のスケール面72Aに対して目盛位置L1とは異なる目盛位置L2で接触している。 FIG. 11 is a schematic top view of the substrate processing apparatus 1. FIG. 12 is an imaging screen when the ejection unit 31 is imaged by the imaging unit 71 in the state illustrated in FIG. 11. In the state shown in FIGS. 11 and 12, the discharge unit 31 is located at a position P2 that is deviated from the teaching reference position (position P3). Further, the discharge unit 31 is in contact with the scale surface 72A of the jig 70 at a scale position L2 different from the scale position L1.
 図13は、動作規則を再設定する場合のティーチング作業における、目盛位置と、ノズルの変位量と、制御信号の指示値(パルス数)と、の対応関係を示す図である。図13の第一象限は、後述する動作規則r1、r2におけるノズルの変位量と制御信号の指示値(パルス数)との対応関係を示す。図13の第二象限は、治具70の撮像結果から得られる目盛位置とノズルの変位量との対応関係を示す。上記した位置決め状態で撮像が行われる限り、目盛位置とノズルの変位量との対応関係は一定である。 FIG. 13 is a diagram showing a correspondence relationship between the scale position, the displacement amount of the nozzle, and the indicated value (number of pulses) of the control signal in the teaching work when resetting the operation rule. The first quadrant of FIG. 13 shows a correspondence relationship between the displacement amount of the nozzle and the instruction value (number of pulses) of the control signal in operation rules r1 and r2 described later. The second quadrant of FIG. 13 shows the correspondence between the scale position obtained from the imaging result of the jig 70 and the displacement amount of the nozzle. As long as imaging is performed in the above-described positioning state, the correspondence between the scale position and the displacement amount of the nozzle is constant.
 モータ制御部21には、過去のティーチング作業によって取得された動作規則が基準動作規則r1として予め登録されている。上記過去のティーチング作業の際には、パルス数が0のときノズルの変位量が0であり、パルス数がXaのときノズルが位置P3まで変位されたものとする(図9、図10)。これにより、基準動作規則r1は、(パルス数,ノズルの変位量)=(0,0),(Xa,P3)の2点を通過する一次関数として表現される(図13の第一象限を参照)。 In the motor control unit 21, an operation rule acquired by past teaching work is registered in advance as a reference operation rule r1. In the past teaching work, it is assumed that the displacement amount of the nozzle is 0 when the number of pulses is 0, and the nozzle is displaced to the position P3 when the number of pulses is Xa (FIGS. 9 and 10). Thus, the reference operation rule r1 is expressed as a linear function passing through two points (number of pulses, nozzle displacement) = (0, 0), (Xa, P3) (the first quadrant of FIG. 13 is expressed). reference).
 もちろん、この基準動作規則r1が有効な期間については動作規則の再設定を行う必要はない。しかしながら、何等かの原因によって、基準動作規則r1が有効ではなくなる事態(より具体的には、入力されたパルス数がXaにも関わらずノズルが位置P3からずれた位置に変位される事態)が生じうる。このように予め登録された動作規則の有効性が低下した場合には、再度のティーチング作業が行われ動作規則が再設定される。 Of course, it is not necessary to reset the operation rule during the period in which the reference operation rule r1 is valid. However, there is a situation in which the reference operation rule r1 is not effective due to some cause (more specifically, a situation in which the nozzle is displaced to a position shifted from the position P3 in spite of the input pulse number Xa). Can occur. In this way, when the effectiveness of the operation rule registered in advance decreases, the teaching operation is performed again and the operation rule is reset.
 この再設定では、まず、操作者からパルス数Xaが入力される(ステップST1)。パルス数Xaは、基準動作規則r1の下でティーチング基準位置P3と対応付けられたパルス数である。 In this resetting, first, the number of pulses Xa is input from the operator (step ST1). The number of pulses Xa is the number of pulses associated with the teaching reference position P3 under the reference operation rule r1.
 これにより、ステッピングモータ12が駆動され、ノズル3が移動される(ステップST2)。基準動作規則r1が有効であれば、ステップST2により吐出部31がティーチング基準位置P3まで変位されるはずである。しかし、以下では、ステップST2により吐出部31がティーチング基準位置P3とは異なる位置P2(図11および図12で示されるノズル位置)に変位される場合について説明する。 Thereby, the stepping motor 12 is driven and the nozzle 3 is moved (step ST2). If the reference operation rule r1 is valid, the discharge unit 31 should be displaced to the teaching reference position P3 in step ST2. However, a case will be described below where the discharge unit 31 is displaced to a position P2 (nozzle position shown in FIGS. 11 and 12) different from the teaching reference position P3 in step ST2.
 ノズル移動工程(ステップST2)の後は、治具移動工程(ステップST3)および撮像工程(ステップST4)が実行される。その結果、治具70は図11に示す態様で吐出部31と接触し、図12に示す撮像画像が取得される。 After the nozzle moving step (step ST2), a jig moving step (step ST3) and an imaging step (step ST4) are executed. As a result, the jig 70 comes into contact with the ejection unit 31 in the manner shown in FIG. 11, and the captured image shown in FIG. 12 is acquired.
 設定工程(ステップST5)では、撮像工程で得られた目盛位置L2を図13の第二象限のグラフに適用することにより、目盛位置L2に対応する吐出部31の位置P2を取得する。次に、位置P2とパルス数Xaとに基づいて動作規則を再設定する。例えば、(パルス数、ノズルの変位量)=(0、0)、(Xa、P2)の2点を通過する一次関数が動作規則r2として再設定され(図13の第一象限を参照)、モータ制御部21に登録される。 In the setting process (step ST5), the scale position L2 obtained in the imaging process is applied to the graph in the second quadrant of FIG. 13 to obtain the position P2 of the discharge unit 31 corresponding to the scale position L2. Next, the operation rule is reset based on the position P2 and the pulse number Xa. For example, a linear function passing through two points (number of pulses, nozzle displacement) = (0, 0), (Xa, P2) is reset as the operation rule r2 (see the first quadrant of FIG. 13), Registered in the motor control unit 21.
 このティーチング作業後は、モータ制御部21が、入力される位置情報に対して動作規則r2を適用してパルス信号を生成することが可能となる。例えば、モータ制御部21に対して位置情報として位置P3が指定された場合は、モータ制御部21は当該位置P3を動作規則r2に適用して、従前のパルス数Xaとは異なるパルス数Xbを算出しドライバ回路22に対して付与する。 After this teaching work, the motor control unit 21 can generate the pulse signal by applying the operation rule r2 to the input position information. For example, when the position P3 is designated as position information for the motor control unit 21, the motor control unit 21 applies the position P3 to the operation rule r2, and sets a pulse number Xb different from the previous pulse number Xa. Calculate and give to the driver circuit 22.
 <1.3 液処理>
 図14は、スキャン液処理のフローの一例を示す図である。以下では、ノズル3の吐出部31を、位置P3とスピンベース6の回転中心Cの直上に相当する位置P4との間で往復スキャンさせつつ、スピンベース6にて保持回転されるウエハWに対して処理液を吐出する場合を例に挙げて説明する。
<1.3 Liquid treatment>
FIG. 14 is a diagram illustrating an example of a flow of scan liquid processing. In the following, the discharge unit 31 of the nozzle 3 is reciprocally scanned between the position P3 and the position P4 corresponding to the position directly above the rotation center C of the spin base 6, and the wafer W held and rotated by the spin base 6 is scanned. A case where the processing liquid is discharged will be described as an example.
 まず、ノズル3がスピンチャック2の上方から退避したホームポジション23に配置された状態で、図示しない搬送ロボットによって、未処理のウエハWがスピンチャック2に渡される(ステップST11)。 First, an unprocessed wafer W is transferred to the spin chuck 2 by a transfer robot (not shown) in a state where the nozzle 3 is disposed at the home position 23 retracted from above the spin chuck 2 (step ST11).
 そして、装置の操作者が、種々の処理情報を入力部30に入力する(ステップST12)。該処理情報には、ウエハWの回転速度に係る情報、処理液の供給量に係る情報、吐出部31の変位量に係る情報、処理時間に係る情報、などが含まれる。 Then, the operator of the apparatus inputs various processing information to the input unit 30 (step ST12). The processing information includes information related to the rotation speed of the wafer W, information related to the supply amount of the processing liquid, information related to the displacement amount of the ejection unit 31, information related to the processing time, and the like.
 ステップST12では、ウエハWの回転速度に係る情報として、例えば、所定の液処理回転速度で等速回転することが入力される。また、処理液の供給量に係る情報として、例えば、所定の供給量が入力される。さらに、吐出部31の変位量に係る情報として、例えば、スキャンされる吐出部31の位置情報として位置P3および位置P4の情報が入力される。モータ制御部21は、該位置情報とティーチング作業によって得られた上記動作規則とに基づいてドライバ回路22に対して与えるべきパルス数(具体的には、位置P3に相当するパルス数および位置P4に相当するパルス数)を算出する。そして、モータ制御部21は、ドライバ回路22に対して該パルス数に応じた制御信号を出力する。 In step ST12, as information related to the rotation speed of the wafer W, for example, the fact that it rotates at a constant liquid processing rotation speed is input. Further, for example, a predetermined supply amount is input as the information related to the supply amount of the processing liquid. Further, as information relating to the displacement amount of the ejection unit 31, for example, information on the position P3 and the position P4 is input as position information on the ejection unit 31 to be scanned. The motor control unit 21 determines the number of pulses (specifically, the number of pulses corresponding to the position P3 and the position P4) to be given to the driver circuit 22 based on the position information and the operation rule obtained by the teaching work. The number of equivalent pulses) is calculated. Then, the motor control unit 21 outputs a control signal corresponding to the number of pulses to the driver circuit 22.
 これにより、チャック回転駆動機構4が駆動されて、スピンチャック2に保持されたウエハWが所定の液処理回転速度で等速回転される(ステップST13)。また、モータ制御部21は、ステッピングモータ12を駆動してアーム10を揺動させ、回転状態にあるウエハWの回転中心Cの上方でノズル3を往復スキャンさせる(ステップST14)。その後、制御部20は、バルブ9を開いて、ノズル3の吐出部31から処理液を吐出する(ステップST15)。吐出部31からは鉛直下方に向けて吐出された処理液は、ウエハWの上面に着液した後、回転の遠心力によってウエハWの上面に沿って拡散する。 Thereby, the chuck rotation driving mechanism 4 is driven, and the wafer W held on the spin chuck 2 is rotated at a constant speed at a predetermined liquid processing rotation speed (step ST13). Further, the motor control unit 21 drives the stepping motor 12 to swing the arm 10, and reciprocally scans the nozzle 3 above the rotation center C of the wafer W in a rotating state (step ST14). Then, the control part 20 opens the valve | bulb 9, and discharges a process liquid from the discharge part 31 of the nozzle 3 (step ST15). The processing liquid discharged vertically downward from the discharge unit 31 is deposited on the upper surface of the wafer W, and then diffuses along the upper surface of the wafer W by the centrifugal force of rotation.
 本実施形態では、吐出部31の位置が位置P3と位置P4との間で往復移動されるので、ノズル3から吐出された処理液のウエハW上面における着液位置も周端位置から中央位置に至る範囲で変動する。これによって、回転するウエハWの上面の全範囲において処理液による処理が実行される。 In the present embodiment, since the position of the ejection unit 31 is reciprocated between the position P3 and the position P4, the liquid deposition position on the upper surface of the wafer W of the processing liquid ejected from the nozzle 3 is also changed from the peripheral end position to the center position. It fluctuates over a wide range. As a result, the processing with the processing liquid is executed over the entire upper surface of the rotating wafer W.
 処理の開始から所定時間経過すると、制御部20は、バルブ9を閉じて、ノズル3への処理液の供給を停止する(ステップST16)。また、制御部20は、チャック回転駆動機構4の駆動を停止して、スピンチャック2に保持されたウエハWの回転を停止させる(ステップST17)。その後、制御部20は、ノズル3がスピンチャック2の上方から退避したホームポジションに配置されたタイミングで、ステッピングモータ12の駆動を停止させる(ステップST18)。これにより、液処理の完了したウエハWが図示しない搬送ロボットによって搬出される(ステップST19)。 When a predetermined time has elapsed from the start of the process, the control unit 20 closes the valve 9 and stops the supply of the processing liquid to the nozzle 3 (step ST16). Further, the controller 20 stops driving the chuck rotation driving mechanism 4 and stops the rotation of the wafer W held on the spin chuck 2 (step ST17). Thereafter, the control unit 20 stops driving the stepping motor 12 at the timing when the nozzle 3 is disposed at the home position retracted from above the spin chuck 2 (step ST18). Thereby, the wafer W that has been subjected to the liquid processing is unloaded by a transfer robot (not shown) (step ST19).
 <1.4 効果>
 治具70において撮像部71とスケール面72Aとが対向配置されている。また、スピンベース6に治具70が装着され、かつ、治具70のスケール面72Aに対して吐出部31が位置決めされた状態で、撮像部71による撮像が行われる。このため、撮像結果を基に、スピンベース6から見た吐出部31の位置情報を取得することができる。特に、撮像部71を有する治具70がスピンベース6の周端部に装着されるので、スピンベース6の周端部付近での吐出部31の位置情報を取得することができる。
<1.4 Effect>
In the jig 70, the imaging unit 71 and the scale surface 72A are arranged to face each other. In addition, the imaging unit 71 performs imaging while the jig 70 is mounted on the spin base 6 and the discharge unit 31 is positioned with respect to the scale surface 72A of the jig 70. For this reason, based on the imaging result, the position information of the ejection unit 31 viewed from the spin base 6 can be acquired. In particular, since the jig 70 having the imaging unit 71 is attached to the peripheral end portion of the spin base 6, position information of the ejection unit 31 in the vicinity of the peripheral end portion of the spin base 6 can be acquired.
 治具70によって取得される撮像結果(吐出部31の位置情報)を基に動作規則を設定する本態様では、操作者の目視によって取得される吐出部31の位置情報を基に動作規則を設定する他の態様に比べて、ティーチングのための作業者による作業を軽減することができ、かつ、より正確なティーチングを実現することができる。 In this aspect in which the operation rule is set based on the imaging result (position information of the discharge unit 31) acquired by the jig 70, the operation rule is set based on the position information of the discharge unit 31 acquired by the operator's visual observation. Compared to the other modes, the work by the worker for teaching can be reduced, and more accurate teaching can be realized.
 また、吐出部31が水平方向を撮像方向とする撮像部71によって撮像されるため、撮像により吐出部31の位置を正確に把握することができる。さらに、撮像方向が水平方向であるので、処理室の上下方向の内寸を小さくすることができる。 Further, since the ejection unit 31 is imaged by the imaging unit 71 whose horizontal direction is the imaging direction, the position of the ejection unit 31 can be accurately grasped by imaging. Furthermore, since the imaging direction is the horizontal direction, the inner dimension in the vertical direction of the processing chamber can be reduced.
 また、本実施形態では、ノズル3の移動軌跡14のうちの特定の軌跡部位14Aに略平行にスケール面72Aが配置されるとともに、該軌跡部位14Aにおいて軌跡14と略直交する方向を撮像方向として撮像部71による撮像がなされる(図3)。ノズル3の移動制御においては移動軌跡14に沿った方向での制御位置誤差の測定が重要であるので、上記配置によってより精密に制御位置誤差を測定できる。 In the present embodiment, the scale surface 72A is disposed substantially parallel to the specific locus portion 14A of the movement locus 14 of the nozzle 3, and the direction substantially orthogonal to the locus 14 in the locus portion 14A is set as the imaging direction. Imaging is performed by the imaging unit 71 (FIG. 3). In the movement control of the nozzle 3, since it is important to measure the control position error in the direction along the movement locus 14, the control position error can be measured more precisely by the above arrangement.
 <2 変形例>
 以上、本発明の実施の形態について説明したが、この発明はその趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。
<2 Modification>
While the embodiments of the present invention have been described above, the present invention can be modified in various ways other than those described above without departing from the spirit of the present invention.
 図15は変形例に係る基板処理装置1Aにおいて治具70がスピンベース6に装着された装着状態を示す上面図である。 FIG. 15 is a top view showing a mounting state in which the jig 70 is mounted on the spin base 6 in the substrate processing apparatus 1A according to the modification.
 基板処理装置1Aは、上記実施形態の基板処理装置1の各構成に加え、水平方向に伸びる棒状体の結合部材76をさらに備える。そして、ティーチング作業の際には、ネジ等の固定具77を用いて、結合部材76の一方端部がスピンベース6の上面の中央部と結合され、結合部材76の他方端部が治具70と結合される。この場合、装着状態とは、治具70の係合部とスピンベース6の特定領域とが密着し、かつ、結合部材76を介して治具70とスピンベース6とが連結された状態を意味する。 The substrate processing apparatus 1A further includes a rod-like coupling member 76 extending in the horizontal direction in addition to the components of the substrate processing apparatus 1 of the above embodiment. During teaching work, a fixing member 77 such as a screw is used to connect one end portion of the coupling member 76 to the central portion of the upper surface of the spin base 6, and the other end portion of the coupling member 76 is the jig 70. Combined with. In this case, the mounted state means a state in which the engaging portion of the jig 70 and the specific region of the spin base 6 are in close contact with each other and the jig 70 and the spin base 6 are connected via the coupling member 76. To do.
 該変形例にかかる態様では、治具70がスピンベース6から離脱し難く装着状態を安定的に維持することができる。該態様は、スピンベース6の上面視における中央部に所定の部材を備える基板処理装置で特に有効である。例えば、複数の挟持部材7に挟持されるウエハWの下面に処理液を供給するための下面処理液ノズルを上記中央部に備える基板処理装置では、ティーチングの際に該下面処理液ノズルに代えて結合部材76を結合することで該態様を実施することができる。 In the embodiment according to the modified example, the jig 70 is difficult to be detached from the spin base 6 and the mounting state can be stably maintained. This aspect is particularly effective in a substrate processing apparatus provided with a predetermined member in the center portion of the spin base 6 in a top view. For example, in a substrate processing apparatus having a lower surface processing liquid nozzle for supplying a processing liquid to the lower surface of the wafer W sandwiched between the plurality of clamping members 7 in the central portion, the lower surface processing liquid nozzle is used instead of the lower surface processing liquid nozzle during teaching. This mode can be implemented by coupling the coupling member 76.
 図16は変形例に係る基板処理装置1Bにおいて治具70がスピンベース6に装着された装着状態を示す側面図である。 FIG. 16 is a side view showing a mounting state in which the jig 70 is mounted on the spin base 6 in the substrate processing apparatus 1B according to the modification.
 基板処理装置1Bは、上記実施形態の基板処理装置1の各構成に加え、吐出部31に取付けられたアタッチメント78をさらに備える。そして、ティーチング作業の際には、アタッチメント78の先端部79がスケール面72Aに接触することによって、スケール面72Aに対してアタッチメント78およびアタッチメント78と一体とされるノズル3が位置決めされる。 The substrate processing apparatus 1B further includes an attachment 78 attached to the discharge unit 31 in addition to the components of the substrate processing apparatus 1 of the above embodiment. In the teaching operation, the tip portion 79 of the attachment 78 contacts the scale surface 72A, whereby the attachment 78 and the nozzle 3 integrated with the attachment 78 are positioned with respect to the scale surface 72A.
 水平面視において吐出部31の径よりもアタッチメント78の先端部79の径が小さければ、該先端部79とスケール面72Aとを撮像した撮像結果を基にノズル3の位置をより高精度に把握することができる。 If the diameter of the tip 79 of the attachment 78 is smaller than the diameter of the discharge part 31 in a horizontal view, the position of the nozzle 3 can be grasped with higher accuracy based on the imaging result obtained by imaging the tip 79 and the scale surface 72A. be able to.
 また、基板処理装置が吐出部の径が異なる複数のノズルを有する場合には、各ノズルにアタッチメント78を取り付けて各ノズルのティーチング作業を行うことが有効である。これにより、アタッチメント78の先端部79およびスケール面72Aが撮像されるので、吐出部の径の差に依らずティーチング作業を行うことができる。図16に示す例では吐出部31を覆うキャップ形状のアタッチメントについて説明したが、この他にも種々のアタッチメントを採用しうる。 Further, when the substrate processing apparatus has a plurality of nozzles having different diameters of the discharge portions, it is effective to attach an attachment 78 to each nozzle and perform the teaching work of each nozzle. Thereby, since the tip end portion 79 and the scale surface 72A of the attachment 78 are imaged, the teaching work can be performed regardless of the difference in the diameter of the discharge portion. In the example illustrated in FIG. 16, the cap-shaped attachment that covers the discharge unit 31 has been described, but various other attachments may be employed.
 また、上記実施形態では、動作規則が一次関数で表現される場合について説明したが、これに限られるものではなく、動作規則はノズル3の変位量とステッピングモータ12に与える制御信号の指示値(パルス数)との少なくとも1対の対応関係を含むテーブルで表現されても良い。この場合においても、ノズル3の変位量とステッピングモータ12に与える制御信号の指示値とが線形関係にあれば、少なくとも1回の治具70による撮像作業により動作規則を設定することができる。 In the above embodiment, the case where the operation rule is expressed by a linear function has been described. However, the operation rule is not limited to this, and the operation rule includes the displacement amount of the nozzle 3 and the instruction value of the control signal given to the stepping motor 12 ( (Number of pulses) may be represented by a table including at least one pair of correspondences. Even in this case, if the displacement amount of the nozzle 3 and the instruction value of the control signal given to the stepping motor 12 are in a linear relationship, the operation rule can be set by at least one imaging operation by the jig 70.
 また、上記実施形態ではノズル3を位置P3(第1周端位置)と位置P4(中央位置)との間で往復スキャンさせる態様を例に挙げて説明したが、これに限られるものではない。別の例として、ノズル3を位置P3(第1周端位置)と位置P5(第2周端位置)とのとの間で往復スキャンさせる態様であっても構わない。ここで、位置P5とは、軌跡14上でスピンベース6に保持されるウエハWの周端部の直上に相当する2点のうち位置P3とは異なる方の位置である。さらに、別の例として、ノズル3をウエハW上方の所定位置まで移動させ、該所定位置で固定されたノズル3からウエハWに向けて処理液を供給する態様(処理中にノズル3をスキャンしない態様)であっても構わない。 In the above-described embodiment, the mode in which the nozzle 3 is reciprocally scanned between the position P3 (first circumferential end position) and the position P4 (center position) has been described as an example. However, the present invention is not limited to this. As another example, the nozzle 3 may be scanned back and forth between the position P3 (first circumferential end position) and the position P5 (second circumferential end position). Here, the position P5 is a position different from the position P3 among the two points corresponding to immediately above the peripheral edge of the wafer W held on the spin base 6 on the locus 14. Furthermore, as another example, the nozzle 3 is moved to a predetermined position above the wafer W, and the processing liquid is supplied from the nozzle 3 fixed at the predetermined position toward the wafer W (the nozzle 3 is not scanned during the processing). Mode).
 また、上記実施形態に係るティーチング作業ではノズル3を位置P3付近で撮像しその撮像結果に基づいて動作規則を設定する態様について説明したが、これに限られるものではない。例えば、位置P3(第1周端位置)と位置P5(第2周端位置)とで治具70の撮像部71における撮像を行うなど、複数箇所で撮像を行っても良い。また、ティーチング作業には、特定箇所での撮像結果を基に動作規則を設定した後(ステップST5の後)で再び該特定箇所にノズル3を移動させて撮像部71による撮像を行う確認工程を含んでも良い。 In the teaching work according to the above embodiment, the mode in which the nozzle 3 is imaged in the vicinity of the position P3 and the operation rule is set based on the imaging result has been described, but the present invention is not limited to this. For example, imaging may be performed at a plurality of locations, such as imaging at the imaging unit 71 of the jig 70 at the position P3 (first circumferential end position) and the position P5 (second circumferential end position). The teaching operation includes a confirmation step in which after the operation rule is set based on the imaging result at a specific location (after step ST5), the nozzle 3 is moved again to the specific location and imaging is performed by the imaging unit 71. May be included.
 また、上記実施形態では、治具70の撮像部71による撮像結果のみを用いてティーチング作業を行う態様について説明したが、これに限られるものではない。基板処理装置が治具70とは別に吐出部31の位置を把握するための他の撮像部(例えば、位置P4で吐出部31の撮像をする撮像部)を備え、撮像部71による撮像結果と上記他の撮像部による撮像結果とを用いてティーチング作業を行う態様でも構わない。 Moreover, although the said embodiment demonstrated the aspect which performs teaching operation | work only using the imaging result by the imaging part 71 of the jig | tool 70, it is not restricted to this. In addition to the jig 70, the substrate processing apparatus includes another imaging unit for grasping the position of the ejection unit 31 (for example, an imaging unit that images the ejection unit 31 at the position P4). A mode in which teaching work is performed using an imaging result obtained by the other imaging unit may be used.
 また、上記実施形態では、スケール面72Aに9本の目盛線720が描かれる態様について説明したが、これに限られるものではない。スケール面72Aに描かれる距離指標として、目盛線以外にも、ドットや同心円など種々の距離指標を採用しうる。 In the above-described embodiment, the aspect in which the nine scale lines 720 are drawn on the scale surface 72A has been described. However, the present invention is not limited to this. As a distance index drawn on the scale surface 72A, various distance indices such as dots and concentric circles can be adopted in addition to the scale lines.
 また、上記実施形態では、ノズル移動手段として、ステッピングモータ12を例に挙げて説明したが、他の種類のモータ(例えば、サーボモータなど)も採用しうる。 In the above embodiment, the stepping motor 12 is described as an example of the nozzle moving means, but other types of motors (for example, a servo motor) may be employed.
 また、ノズル3から処理液を吐出する態様には限られない。ノズル3から処理ガスを吐出させる態様、ノズル3から処理液と処理ガスとの混合流体を吐出させる態様など、ノズル3から処理流体を吐出する種々の態様を採用しうる。 Further, it is not limited to the mode in which the processing liquid is discharged from the nozzle 3. Various modes of discharging the processing fluid from the nozzle 3 such as a mode of discharging the processing gas from the nozzle 3 and a mode of discharging a mixed fluid of the processing liquid and the processing gas from the nozzle 3 can be adopted.
 また、上記実施形態では、ノズル3の吐出部31をスケール面72Aに接触させることにより吐出部31を治具70上で位置決めしたが、吐出部31の位置決め方法はこれに限られない。例えば、治具70上にスケール部72に以外の位置決め部を設け、この位置決め部に吐出部31を接触させることにより吐出部31を治具70に位置決めさせてもよい。 Moreover, in the said embodiment, although the discharge part 31 was positioned on the jig | tool 70 by making the discharge part 31 of the nozzle 3 contact the scale surface 72A, the positioning method of the discharge part 31 is not restricted to this. For example, a positioning part other than the scale part 72 may be provided on the jig 70, and the discharging part 31 may be positioned on the jig 70 by bringing the discharging part 31 into contact with the positioning part.
 以上、実施形態およびその変形例に係る基板処理装置、治具、およびティーチング方法について説明したが、これらは本発明に好ましい実施形態の例であって、本発明の実施の範囲を限定するものではない。本発明は、その発明の範囲内において、各実施形態の自由な組み合わせ、あるいは各実施形態の任意の構成要素の変形、もしくは各実施形態において任意の構成要素の省略が可能である。 The substrate processing apparatus, the jig, and the teaching method according to the embodiment and the modifications thereof have been described above. However, these are examples of the preferred embodiment of the present invention and do not limit the scope of the present invention. Absent. Within the scope of the invention, the present invention can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment.
 1 基板処理装置
 2 スピンチャック
 3 ノズル
 10 アーム
 12 ステッピングモータ
 14 軌跡
 20 制御部
 21 モータ制御部
 23 ホームポジション
 P1~P5 位置
 W ウエハ
DESCRIPTION OF SYMBOLS 1 Substrate processing apparatus 2 Spin chuck 3 Nozzle 10 Arm 12 Stepping motor 14 Trajectory 20 Control part 21 Motor control part 23 Home position P1-P5 Position W Wafer

Claims (14)

  1.  基板処理装置であって、
     台状のベース部を有し、基板を前記ベース部の上方で水平保持する基板保持手段と、
     先端部から処理流体を吐出するノズルと、
     制御信号を受信して、該制御信号に基づき水平方向に沿って前記ノズルを移動させるノズル移動手段と、
     前記ノズルの変位量に係る情報が入力される入力部と、
     前記入力部への入力情報に基づいて制御信号を発信して前記ノズル移動手段の動作を制御する動作制御手段と、
     前記ベース部の周端部に対して着脱可能な治具と、
     前記治具によって取得される撮像結果を基に、前記ノズルの変位量と前記制御信号の指示値とを対応させた動作規則を設定する設定手段と、
    を備え、
     前記治具は、
     前記治具が前記周端部に装着された装着状態において水平方向を撮像方向とする撮像部と、
     距離指標が描かれたスケール面を含み、前記ノズルの前記先端部を挿入可能な間隔を隔てて、前記スケール面と前記撮像部とが対向配置されるスケール部と、
    を有し、
     前記撮像部と前記スケール面との間に前記先端部が挿入され、前記スケール面に対して前記先端部が位置決めされた状態で、前記撮像部が前記先端部および前記スケール面を撮像することを特徴とする基板処理装置。
    A substrate processing apparatus,
    A substrate holding means having a base-like base portion and horizontally holding the substrate above the base portion;
    A nozzle that discharges the processing fluid from the tip;
    Nozzle moving means for receiving a control signal and moving the nozzle along a horizontal direction based on the control signal;
    An input unit for inputting information relating to the displacement amount of the nozzle;
    Operation control means for controlling the operation of the nozzle moving means by transmitting a control signal based on input information to the input section;
    A jig that can be attached to and detached from the peripheral end of the base part;
    Based on the imaging result obtained by the jig, setting means for setting an operation rule that associates the displacement amount of the nozzle and the indicated value of the control signal;
    With
    The jig is
    An imaging unit having the horizontal direction as an imaging direction in the mounting state in which the jig is mounted on the peripheral end; and
    Including a scale surface on which a distance index is drawn, and a scale portion in which the scale surface and the imaging unit are arranged to face each other with an interval at which the tip of the nozzle can be inserted;
    Have
    The imaging unit images the tip and the scale surface in a state where the tip is inserted between the imaging unit and the scale surface and the tip is positioned with respect to the scale surface. A substrate processing apparatus.
  2.  請求項1に記載の基板処理装置であって、
     前記先端部が前記スケール面に接触することによって、前記スケール面に対して前記先端部が位置決めされることを特徴とする基板処理装置。
    The substrate processing apparatus according to claim 1,
    The substrate processing apparatus, wherein the tip portion is positioned with respect to the scale surface when the tip portion contacts the scale surface.
  3.  請求項1または請求項2に記載の基板処理装置であって、
     前記治具は、前記ベース部の上面の一部および側面の一部を含む特定領域と密着可能な係合部を有し、
     前記装着状態とは、前記ベース部の前記特定領域と前記治具の前記係合部とが密着し、前記治具が前記ベース部に引っ掛かった状態であることを特徴とする基板処理装置。
    The substrate processing apparatus according to claim 1 or 2, wherein
    The jig has an engaging part that can be in close contact with a specific region including a part of the upper surface and a part of the side surface of the base part,
    The mounting state is a state in which the specific region of the base portion and the engaging portion of the jig are in close contact with each other, and the jig is caught on the base portion.
  4.  請求項1または請求項2に記載の基板処理装置であって、
     水平方向に伸びる棒状体であって、一方端部が前記ベース部の上面の中央部と結合され他方端部が前記治具と結合される結合部材、をさらに備え、
     前記装着状態とは、前記結合部材を介して前記治具と前記ベース部とが連結された状態であることを特徴とする基板処理装置。
    The substrate processing apparatus according to claim 1 or 2, wherein
    A rod-like body extending in the horizontal direction, further comprising a coupling member having one end coupled to the central portion of the upper surface of the base portion and the other end coupled to the jig;
    The mounting state is a state in which the jig and the base portion are connected via the coupling member.
  5.  請求項1ないし請求項4のいずれかに記載の基板処理装置であって、
     前記ノズル移動手段による前記ノズルの移動軌跡のうちの特定の軌跡部位に略平行に前記スケール面が配置されるとともに、
     前記特定の軌跡部位において、前記移動軌跡と略直交する方向を撮像方向として前記撮像部による撮像がなされることを特徴とする基板処理装置。
    The substrate processing apparatus according to claim 1, wherein:
    The scale surface is arranged substantially parallel to a specific locus portion of the movement locus of the nozzle by the nozzle moving means,
    The substrate processing apparatus, wherein an image is picked up by the image pickup unit in the specific locus portion, with a direction substantially orthogonal to the movement locus as an image pickup direction.
  6.  請求項1ないし請求項5のいずれかに記載の基板処理装置であって、
     水平方向における前記スケール面の長さは前記ノズルの前記先端部の水平方向の幅よりも長く、背景となる前記スケール面の広がりの範囲内に前記先端部の全幅が収まることによって、前記先端部の両側と前記スケール面とが前記撮像部によって一括して撮像可能であることを特徴とする基板処理装置。
    A substrate processing apparatus according to any one of claims 1 to 5,
    The length of the scale surface in the horizontal direction is longer than the width in the horizontal direction of the tip portion of the nozzle, and the tip portion has the full width within the range of the scale surface serving as a background. The substrate processing apparatus, wherein both sides of the substrate and the scale surface can be collectively imaged by the imaging unit.
  7.  請求項1ないし請求項6のいずれかに記載の基板処理装置であって、
     前記治具が、
     前記撮像部の近傍に配置され、前記撮像部側から前記先端部と前記スケール面とを照明する照明部、
    をさらに有することを特徴とする基板処理装置。
    A substrate processing apparatus according to any one of claims 1 to 6,
    The jig is
    An illumination unit that is disposed in the vicinity of the imaging unit and illuminates the tip and the scale surface from the imaging unit side,
    The substrate processing apparatus further comprising:
  8.  請求項1ないし請求項7のいずれかに記載の基板処理装置であって、
     前記動作規則においては、前記ノズルの変位量と前記ノズル移動手段に与える制御信号の指示値とが線形関係にあることを特徴とする基板処理装置。
    A substrate processing apparatus according to any one of claims 1 to 7,
    In the operation rule, the substrate processing apparatus is characterized in that a displacement amount of the nozzle and an instruction value of a control signal given to the nozzle moving means are in a linear relationship.
  9.  請求項1ないし請求項8のいずれかに記載の基板処理装置であって、
     前記先端部の移動軌跡は、前記基板保持手段に保持される基板の上方を水平方向に横切る軌跡であり、
     前記基板保持手段によって保持される基板の周端と前記移動軌跡とが水平面視において交わる位置をそれぞれ第1周端位置、第2周端位置と呼ぶとき、
     前記動作制御手段が前記ノズルを前記第1周端位置まで移動させるよう前記ノズル移動手段の動作を制御した状態で、前記撮像部による撮像が行われることを特徴とする基板処理装置。
    A substrate processing apparatus according to any one of claims 1 to 8,
    The movement trajectory of the tip is a trajectory that crosses the upper side of the substrate held by the substrate holding means in the horizontal direction,
    When the positions at which the peripheral edge of the substrate held by the substrate holding means and the movement trajectory intersect in a horizontal plane are referred to as a first peripheral end position and a second peripheral end position, respectively.
    The substrate processing apparatus, wherein imaging is performed by the imaging unit in a state where the operation control unit controls the operation of the nozzle moving unit to move the nozzle to the first peripheral end position.
  10.  請求項9に記載の基板処理装置であって、
     さらに、前記動作制御手段が前記ノズルを前記第2周端位置まで移動させるよう前記ノズル移動手段の動作を制御した状態で、前記撮像部による撮像が行われることを特徴とする基板処理装置。
    The substrate processing apparatus according to claim 9, comprising:
    Further, the substrate processing apparatus is characterized in that imaging by the imaging unit is performed in a state where the operation control unit controls the operation of the nozzle moving unit to move the nozzle to the second peripheral end position.
  11.  請求項1ないし請求項10のいずれかに記載の基板処理装置であって、
     前記先端部は前記ノズルの吐出部であることを特徴とする基板処理装置。
    A substrate processing apparatus according to any one of claims 1 to 10,
    The substrate processing apparatus, wherein the tip portion is a discharge portion of the nozzle.
  12.  請求項1ないし請求項10のいずれかに記載の基板処理装置であって、
     前記ノズルの吐出部に取付けられたアタッチメントをさらに備え、
     前記先端部は、前記ノズルの吐出部に取り付けられた前記アタッチメントであることを特徴とする基板処理装置。
    A substrate processing apparatus according to any one of claims 1 to 10,
    Further comprising an attachment attached to the discharge part of the nozzle,
    The substrate processing apparatus, wherein the tip portion is the attachment attached to a discharge portion of the nozzle.
  13.  ベース部を有し前記ベース部の上方で基板を水平保持する基板保持手段と、先端部から処理流体を吐出するノズルと、水平方向に沿って前記ノズルを移動させるノズル移動手段と、を備える基板処理装置において用いられる治具であって、
     前記ベース部の周端部に対して着脱可能であり、
     前記治具が前記周端部に装着された装着状態において水平方向を撮像方向とする撮像部と、
     距離指標が描かれたスケール面を含み、前記先端部を挿入可能な間隔を隔てて、前記スケール面と前記撮像部とが対向配置されるスケール部と、
    を有し、
     前記撮像部と前記スケール面との間に前記先端部が挿入され、前記スケール面に対して前記先端部が位置決めされた状態で、前記撮像部が前記先端部および前記スケール面を撮像することを特徴とする治具。
    A substrate comprising: a substrate holding means that has a base portion and horizontally holds the substrate above the base portion; a nozzle that discharges a processing fluid from a tip portion; and a nozzle moving means that moves the nozzle along a horizontal direction. A jig used in a processing apparatus,
    It can be attached to and detached from the peripheral end of the base part,
    An imaging unit having the horizontal direction as an imaging direction in the mounting state in which the jig is mounted on the peripheral end; and
    A scale unit including a scale surface on which a distance index is drawn, and the scale surface and the imaging unit are arranged to face each other with an interval at which the tip part can be inserted;
    Have
    The imaging unit images the tip and the scale surface in a state where the tip is inserted between the imaging unit and the scale surface and the tip is positioned with respect to the scale surface. A featured jig.
  14.  ノズルの変位量とノズル移動手段に与える制御信号の指示値とを対応させた動作規則に基づいて前記ノズルを移動させつつ前記ノズルの先端部から処理流体を吐出することで、基板保持手段のベース部の上方で水平保持される基板に処理を行う基板処理装置において、前記動作規則を設定するティーチング方法であって、
     (a) 前記ノズルの変位量に係る情報を入力する入力工程と、
     (b) 前記入力工程で入力された入力情報に基づいて前記制御信号を発信して前記ノズル移動手段の動作を制御するノズル移動工程と、
     (c) 水平方向を撮像方向とする撮像部と、距離指標が描かれたスケール面を含み、前記先端部を挿入可能な間隔を隔てて、前記スケール面と前記撮像部とが対向配置されるスケール部と、を有する治具を移動して、
     前記治具が前記ベース部の周端部に装着され、かつ、前記ノズル移動工程で移動された後の前記ノズルの前記先端部が前記撮像部と前記スケール面との間に挿入されるとともに前記治具の前記スケール面に対して位置決めされた状態とする治具移動工程と、
     (d) 前記治具移動工程によって得られた状態で、前記撮像部によって前記先端部および前記スケール面を撮像する撮像工程と、
     (e) 前記撮像工程で取得される撮像結果を基に前記動作規則を設定する設定工程と、
    を備えることを特徴とするティーチング方法。
    The base of the substrate holding means is discharged by discharging the processing fluid from the tip of the nozzle while moving the nozzle based on an operation rule in which the displacement amount of the nozzle and the instruction value of the control signal given to the nozzle moving means are made to correspond. In a substrate processing apparatus for processing a substrate held horizontally above a section, a teaching method for setting the operation rule,
    (a) an input step of inputting information relating to the displacement amount of the nozzle;
    (b) a nozzle moving step for controlling the operation of the nozzle moving means by transmitting the control signal based on the input information input in the input step;
    (c) An imaging unit having an imaging direction in the horizontal direction and a scale surface on which a distance index is drawn, and the scale surface and the imaging unit are arranged to face each other with an interval where the tip part can be inserted. Moving a jig having a scale part,
    The jig is attached to the peripheral end of the base portion, and the tip of the nozzle after being moved in the nozzle moving step is inserted between the imaging portion and the scale surface, and A jig moving step for positioning the jig relative to the scale surface;
    (d) In the state obtained by the jig moving step, an imaging step of imaging the tip and the scale surface by the imaging unit;
    (e) a setting step for setting the operation rule based on the imaging result acquired in the imaging step;
    A teaching method comprising:
PCT/JP2015/066129 2014-06-25 2015-06-04 Substrate processing apparatus, jig, and teaching method WO2015198818A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-129792 2014-06-25
JP2014129792A JP6204879B2 (en) 2014-06-25 2014-06-25 Substrate processing apparatus, jig, and teaching method

Publications (1)

Publication Number Publication Date
WO2015198818A1 true WO2015198818A1 (en) 2015-12-30

Family

ID=54937914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066129 WO2015198818A1 (en) 2014-06-25 2015-06-04 Substrate processing apparatus, jig, and teaching method

Country Status (3)

Country Link
JP (1) JP6204879B2 (en)
TW (1) TWI610723B (en)
WO (1) WO2015198818A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148340A (en) * 2018-10-08 2019-01-04 江苏英锐半导体有限公司 A kind of depth control apparatus for wafer production etching
CN110137104A (en) * 2018-02-02 2019-08-16 东京毅力科创株式会社 The teaching method of liquid processing device and liquid processing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6877221B2 (en) 2017-04-05 2021-05-26 株式会社荏原製作所 Substrate cleaning equipment, substrate cleaning method and control method of substrate cleaning equipment
JP7261052B2 (en) * 2019-03-26 2023-04-19 株式会社Screenホールディングス SUBSTRATE PROCESSING APPARATUS AND TRANSPORT CONTROL METHOD THEREOF

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017451A (en) * 2001-06-28 2003-01-17 Dainippon Screen Mfg Co Ltd Jig for regulating nozzle position, and method for regulating the nozzle position
JP2006237063A (en) * 2005-02-22 2006-09-07 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
JP2011077245A (en) * 2009-09-30 2011-04-14 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and teaching method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007018523A1 (en) * 2007-04-19 2008-10-23 Preh Gmbh Pointer instrument calibrating method for motor vehicle, involves detecting jumping-round of rotor of permanent magnet stepper motor, and informing jumping-round of rotor to control electronics of stepper motor
JP2009099906A (en) * 2007-10-19 2009-05-07 Dainippon Screen Mfg Co Ltd Substrate processing apparatus, and process tool position teaching method
CN102549374B (en) * 2009-09-30 2015-05-13 Og技术公司 A method and apparatus of a portable imaging-based measurement with self calibration
TWI401134B (en) * 2010-01-26 2013-07-11 Macronix Int Co Ltd Adjustment tool and adjustment method using the same
JP5291037B2 (en) * 2010-03-30 2013-09-18 大日本スクリーン製造株式会社 Teaching method for substrate processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017451A (en) * 2001-06-28 2003-01-17 Dainippon Screen Mfg Co Ltd Jig for regulating nozzle position, and method for regulating the nozzle position
JP2006237063A (en) * 2005-02-22 2006-09-07 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
JP2011077245A (en) * 2009-09-30 2011-04-14 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and teaching method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110137104A (en) * 2018-02-02 2019-08-16 东京毅力科创株式会社 The teaching method of liquid processing device and liquid processing device
CN109148340A (en) * 2018-10-08 2019-01-04 江苏英锐半导体有限公司 A kind of depth control apparatus for wafer production etching
CN109148340B (en) * 2018-10-08 2023-10-31 江苏英锐半导体有限公司 Depth control device for wafer production etching

Also Published As

Publication number Publication date
TWI610723B (en) 2018-01-11
JP6204879B2 (en) 2017-09-27
TW201601845A (en) 2016-01-16
JP2016009768A (en) 2016-01-18

Similar Documents

Publication Publication Date Title
WO2015198818A1 (en) Substrate processing apparatus, jig, and teaching method
KR101955804B1 (en) Displacement detecting apparatus, displacement detecting method and substrate processing apparatus
TWI412444B (en) Apparatus for servicing a plasma processing system with a robot
TW202017658A (en) Liquid material application device and application method
WO2002023623A1 (en) Alignment apparatus
TWI243398B (en) Method for aligning the bondhead of a die bonder
JP5717571B2 (en) Cutting equipment
WO2019176093A1 (en) Cell picking device
JP2007055197A (en) Splitting device for brittle material
JP4381962B2 (en) Substrate processing equipment
KR20050063680A (en) Method for calibrating a bondhead
JP6144473B2 (en) Substrate working apparatus, substrate working method
JP5769475B2 (en) Quality control method for machining fluid supply nozzle
JP2005093694A (en) Substrate processing method and device thereof
JP2002176093A (en) Work treatment method and equipment and robot therefor
JP2008043910A (en) Apparatus and method of applying droplet
JP5291037B2 (en) Teaching method for substrate processing apparatus
JP3970749B2 (en) Industrial robot
JP5875331B2 (en) Cutting equipment
JP6505549B2 (en) Teaching method, jig, and substrate processing apparatus
JP2011077245A (en) Substrate processing apparatus and teaching method
JPH11283950A (en) Substrate cleaner
JP2012213814A (en) Automatic drill tip processing machine
WO2021079540A1 (en) Adhesive coating device, adhesive coating method, and rotor manufacturing method
JP5220439B2 (en) Cutting method of plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15812587

Country of ref document: EP

Kind code of ref document: A1