WO2015198748A1 - Method for cutting brittle substrate and scribing device - Google Patents

Method for cutting brittle substrate and scribing device Download PDF

Info

Publication number
WO2015198748A1
WO2015198748A1 PCT/JP2015/064162 JP2015064162W WO2015198748A1 WO 2015198748 A1 WO2015198748 A1 WO 2015198748A1 JP 2015064162 W JP2015064162 W JP 2015064162W WO 2015198748 A1 WO2015198748 A1 WO 2015198748A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade edge
brittle substrate
line
sliding
edge
Prior art date
Application number
PCT/JP2015/064162
Other languages
French (fr)
Japanese (ja)
Inventor
曽山 浩
Original Assignee
三星ダイヤモンド工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星ダイヤモンド工業株式会社 filed Critical 三星ダイヤモンド工業株式会社
Priority to JP2016529181A priority Critical patent/JP6304375B2/en
Priority to CN201580034054.2A priority patent/CN106470814B/en
Priority to KR1020167036171A priority patent/KR101895819B1/en
Publication of WO2015198748A1 publication Critical patent/WO2015198748A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/033Apparatus for opening score lines in glass sheets

Definitions

  • the present invention relates to a brittle substrate cutting method and a scribing apparatus.
  • a scribe line is formed on the substrate, and then the substrate is divided along the scribe line.
  • the scribe line can be formed by sliding the blade edge on the substrate. By this sliding, a trench due to plastic deformation is formed on the substrate, and a vertical crack is formed immediately below the trench. Thereafter, stress is applied, which is called a break process.
  • the substrate is divided by causing the crack to advance completely in the thickness direction by the break process.
  • a scribe line is formed on a substrate using a diamond point having a blade portion.
  • the cooling gas is injected to the blade portion of the diamond point, so that oxidation of the blade portion due to frictional heat generated between the blade portion and the substrate is suppressed. Life expectancy is realized.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a brittle substrate cutting method and a scribing apparatus capable of extending the life of the cutting edge.
  • the brittle substrate cutting method of the present invention includes the following steps.
  • a blade edge having a projection and a front portion connected to the projection is pressed against the surface of one brittle substrate.
  • the pressed blade edge is slid in the direction in which the front part faces on the surface of the brittle substrate.
  • plastic deformation occurs in the brittle substrate, so that at least one trench line having a groove shape is formed on the surface of the brittle substrate.
  • a plurality of positions in the front part of the cutting edge are set at the same height as the surface of the brittle substrate.
  • a plurality of positions in the front part of the cutting edge are set to the same height as the surface of the brittle substrate. Therefore, the position where the blade edge is particularly worn is diffused. Therefore, the life of the blade edge can be extended.
  • FIG. 1 shows schematically the structure of the scribing apparatus in Embodiment 1 of this invention. It is a figure which shows roughly the mode of the displacement of the blade edge
  • brittle substrate cutting method according to Embodiment 1 of the present invention when the blade edge is slid, a plurality of positions on the side portion as the front portion of the blade edge are set to the same height as the surface of the brittle substrate.
  • FIG. 6 is a perspective view (A) to (C) showing each of first to third examples of load change in the brittle substrate cutting method according to the first embodiment of the present invention. It is sectional drawing which shows the 4th example of the load change in the cutting method of the brittle board
  • a plurality of positions on the top surface as the front part of the blade edge are set to the same height as the surface of the brittle substrate.
  • (A) which shows a mode to show, and the figure (B) of the visual field of the arrow VIIIB. It is a figure which shows schematically the structure of the scribing apparatus in Embodiment 3 of this invention. It is a figure which shows schematically the structure of the scribe head in the modification of Embodiment 3 of this invention.
  • FIG. 4 It is a top view (A) and (B) which shows each roughly the 1st and 2nd process of the cutting method of a brittle board in Embodiment 4 of the present invention. It is a top view (A) and (B) which shows each roughly the 1st and 2nd process of the cutting method of the brittle board
  • top view (A) and (B) which shows each roughly the 1st and 2nd process of the cutting method of the brittle board
  • FIG. It is the figure which shows the mode of the displacement of the blade edge
  • a plurality of positions in the front part of the blade edge are set to the same height as the surface of the brittle substrate. It is a figure which shows a mode.
  • FIG. 1 is a diagram schematically showing a configuration of a scribing apparatus 100 in the present embodiment.
  • a glass substrate 4 brittle substrate
  • the scribing apparatus 100 includes a scribing head 60, a driving unit 70, a stage 80 (substrate support unit), and a control unit 90.
  • the scribing head 60 includes a cutting tool 50, a posture adjusting unit 61, a holding unit 62, a pressurizing unit 63, and a main body unit 64.
  • the cutting instrument 50 has a cutting edge 51 and a shank 52 (FIG. 2A).
  • the posture adjustment unit 61 supports the cutting device 50 so that the posture of the cutting device 50 can be adjusted.
  • the holding unit 62 holds the posture adjusting unit 61.
  • the pressurizing unit 63 is an actuator that is fixed to the main body unit 64 and can apply a force to the holding unit 62.
  • the stage 80 supports one glass substrate 4 (one brittle substrate) having a surface SF.
  • the driving unit 70 relatively displaces the glass substrate 4 supported by the stage 80 and the blade edge 51. Therefore, the drive unit 70 may be one that displaces either the blade edge 51 or the stage 80, or may be one that displaces each of the blade edge 51 and the stage 80.
  • the drive unit 70 includes a stage drive unit 71 that displaces the stage 80 and a head drive unit 72 that displaces the main body 64 of the scribe head 60.
  • the stage drive unit 71 applies, for example, a translational displacement along each of the XYZ axes in the drawing and a rotational displacement around the Z axis in the drawing to the stage 80.
  • the head drive unit 72 gives, for example, a translational displacement along the X axis in the drawing to the main body unit 64 of the scribe head 60.
  • the control unit 90 includes a pre-sliding control unit 91, a sliding control unit 92, and a post-sliding control unit 93.
  • the control unit 90 controls the driving unit 70 and the pressurizing unit 63.
  • the pre-sliding control unit 91 controls the driving unit 70 so that the blade edge 51 is pressed onto the surface SF prior to the sliding of the blade edge 51 on the surface SF of the glass substrate 4.
  • the sliding control unit 92 controls the driving unit 70 so that the cutting edge 51 slides on the surface SF of the glass substrate 4 in the direction in which the front part of the cutting edge 51 faces. Further, the sliding control unit 92 controls the pressing unit 63 so that a plurality of positions in the front part of the cutting edge 51 sliding on the glass substrate 4 are at the same height as the surface of the glass substrate 4. To do. In other words, the sliding control unit 92 controls the pressurizing unit 63 so that the front portion of the blade edge 51 sliding on the glass substrate 4 is positioned at the same height as the surface SF of the glass substrate 4. Change. For this purpose, the sliding control unit 92 changes the load applied to the blade edge 51 by changing the force generated by the pressurizing unit 63.
  • the after-sliding control unit 93 controls the driving unit 70 so that the blade edge 51 is detached from the surface SF of the glass substrate 4 after the blade edge 51 is slid on the surface SF of the glass substrate 4. is there.
  • the blade edge 51 is provided with a top surface SD1 (first surface) and a plurality of surfaces surrounding the top surface SD1.
  • the plurality of surfaces include a side surface SD2 (second surface) and a side surface SD3 (third surface).
  • the top surface SD1, the side surfaces SD2, and SD3 (first to third surfaces) face different directions and are adjacent to each other.
  • the blade edge 51 has a vertex at which the top surface SD1, the side surfaces SD2 and SD3 merge, and the protrusion PP of the blade edge 51 is configured by this vertex. Therefore, the top surface SD1 is connected to the protrusion PP.
  • the side surfaces SD2 and SD3 form ridge lines constituting the side portion PS of the blade edge 51.
  • the side part PS is connected to the protrusion part PP and extends linearly from the protrusion part PP.
  • the side part PS is a ridgeline as mentioned above, it has the convex shape extended linearly.
  • the cutting edge 51 is preferably a diamond point. That is, the cutting edge 51 is preferably made of diamond from the viewpoint that the hardness and the surface roughness can be reduced. More preferably, the cutting edge 51 is made of single crystal diamond. More preferably, crystallographically, the top surface SD1 is a ⁇ 001 ⁇ plane, and each of the side surfaces SD2 and SD3 is a ⁇ 111 ⁇ plane. In this case, although the side surfaces SD2 and SD3 have different orientations, they are crystal surfaces that are equivalent to each other in terms of crystallography.
  • Diamond that is not a single crystal may be used.
  • polycrystalline diamond synthesized by a CVD (Chemical Vapor Deposition) method may be used.
  • sintered diamond obtained by bonding polycrystalline diamond particles, which are sintered from fine graphite or non-graphitic carbon without containing a binder such as an iron group element, with a binder such as an iron group element is used. May be.
  • the shank 52 extends along the axial direction AX.
  • the blade edge 51 is preferably attached to the shank 52 so that the normal direction of the top surface SD1 is approximately along the axial direction AX. It is preferable that the angle of the axial direction AX with respect to the surface SF of the glass substrate 4 can be adjusted by the attitude adjusting unit 61 (FIG. 1). In this case, the posture adjustment unit 61 can adjust the posture of the cutting edge 51 with respect to the surface SF.
  • the cutting edge 51 is pressed against the surface SF of the glass substrate 4 by the control of the driving unit 70 and the pressurizing unit 63 by the pre-sliding control unit 91.
  • the projecting portion PP is positioned on the substrate inner side with respect to the substrate surface SF.
  • the pressed blade edge 51 is slid on the surface SF approximately along the direction in which the side portion PS is projected onto the upper surface SF1.
  • the side part PS of the blade edge 51 is the front part during sliding, and the pressed blade edge 51 is on the surface SF of the glass substrate 4 in the direction DA (+ X axis in the figure).
  • the direction DA corresponds to a direction obtained by projecting the axial direction AX extending from the blade edge 51 onto the surface SF.
  • the blade edge 51 is dragged on the surface SF by the shank 52.
  • At least one trench line TL having a groove shape on the surface SF of the glass substrate 4 (FIG. 3 (A) or (B)). Is formed.
  • the trench line TL is generated by plastic deformation of the glass substrate 4, the glass substrate 4 may be slightly shaved at this time. However, since such scraping can generate fine fragments, it is preferable that the amount is as small as possible.
  • the crack line CL is a crack extending in the thickness direction DT from the recess of the trench line TL, and extends linearly on the surface SF.
  • the step of forming the trench line TL is performed in the direction DC (Y-axis direction in the drawing) in which the glass substrate 4 intersects the extending direction (X-axis direction in the drawing) of the trench line TL immediately below the trench line TL. )
  • DC Y-axis direction in the drawing
  • X-axis direction in the drawing the extending direction of the trench line TL immediately below the trench line TL.
  • the load applied to the blade edge 51 is made small to the extent that no cracks are generated and large to the extent that plastic deformation occurs.
  • the cracks of the glass substrate 4 in the thickness direction DT are extended along the trench line TL by a method described later, thereby generating a crack.
  • a line CL (FIG. 3B) may be formed.
  • the crackless state is broken by the formation of the crack line CL. That is, the crack line CL breaks the continuous connection of the glass substrate 4 in the direction DC intersecting the trench line TL immediately below the trench line TL.
  • the glass substrate 4 is divided along the crack line CL. At this time, a so-called break process is performed as necessary.
  • a plurality of positions (for example, positions O1 and O2 in FIG. 4) on the side portion PS as the front part of the cutting edge 51 are the surface SF of the glass substrate 4. And the same height.
  • the load applied to the sliding blade edge 51 is changed.
  • the load can be changed by adjusting the force generated by the pressurizing unit 63.
  • the positions O1 and O2 are preferably separated from each other by, for example, about 0.5 to 2.5 ⁇ m in height.
  • any position between the positions O1 and O2 has a time point having the same height as the surface SF.
  • the load on the blade edge 51 is changed when the blade edge 51 is slid on one glass substrate 4.
  • the load can be changed, for example, so that the maximum value is about 1.5 to 2 times the minimum value.
  • the positions O1 and O2 (FIG. 4) in the side part PS as the front part of the blade edge 51 are set to the same height as the surface SF of the glass substrate 4. Therefore, when the cutting edge 51 is slid on one glass substrate 4, only one position (for example, only the position O1) at the front portion of the cutting edge 51 is the same height as the surface SF of the glass substrate 4. Compared with the case where it is taken, the position where the blade edge 51 is particularly worn is diffused. Therefore, the life of the blade edge 51 can be extended.
  • the load applied to the blade edge 51 during sliding can be changed at any time during scribing for one brittle substrate. Examples thereof will be described below.
  • 5A to 5C show examples of scribing on the glass substrate 4 as a brittle substrate.
  • a thick line represents a relatively large load
  • a thin line represents a relatively small load.
  • sliding of the blade edge 51 (FIG. 2A) on the surface SF of the glass substrate 4 is performed along a straight line SLXm along the X axis and a straight line SLYm along the Y axis.
  • a load change is applied to the cutting edge 51 during sliding in each of the straight lines SLXm. The same applies to each of the straight lines SLYm.
  • sliding of the blade edge 51 (FIG. 2A) on the surface SF of the glass substrate 4 is performed by straight lines SLXw and SLXs along the X axis, and straight lines SLYw and SLYs along the Y axis. It is performed along with.
  • the load on the blade edge 51 during sliding in each straight line is constant.
  • the load on the straight line SLXs and the load on the straight line SLXw are different from each other. In other words, the load is changed between the straight lines SLXs and SLXw.
  • the load on SLYs and the load on straight line SLYw are different from each other. In other words, the load is changed between the straight lines SLYs and SLYw.
  • the load used differs between the mutually adjacent straight lines.
  • the load intensity changes alternately in sliding on these straight lines. Is granted.
  • sliding of the blade edge 51 on the surface SF of the glass substrate 4 is performed along a straight line SLXs along the X axis and a straight line SLYw along the Y axis.
  • the load on the blade edge 51 during sliding in each straight line is constant.
  • the load on the straight line SLXs and the load on the straight line SLYw are different from each other. In other words, the load is changed between the straight lines SLXs and SLYw.
  • the cell substrate 4C includes substrates (for example, glass substrates) 4T and 4B made of a brittle material.
  • the substrates 4T and 4B are stacked on each other via the joint 9.
  • the surface SF has a portion ST made of the substrate 4T and a portion SB made of the substrate 4B.
  • Sliding of the blade edge 51 on the surface SF of the cell substrate 4C is performed on the part ST (see arrow SLTw) and the part SB (see arrow SLBs).
  • the load on the cutting edge 51 during sliding on the portion ST is constant, and the load on the cutting edge 51 during sliding on the portion SB is constant.
  • the load on the sliding blade edge 51 is increased on the portion SB as compared with the portion ST. In other words, the load is changed between the portions ST and SB.
  • the load on the blade edge 51 is changed when the blade edge 51 is slid on one glass substrate 4, whereby the position on the top surface SD ⁇ b> 1 as the front portion of the blade edge 51.
  • O1 and O2 are at the same height as the surface SF of the glass substrate 4.
  • the life of the blade edge 51 can be further extended.
  • FIG. 9 is a diagram schematically showing the configuration of the scribing apparatus 100V in the present embodiment.
  • the glass substrate 4 to be divided is indicated by a two-dot chain line.
  • an XYZ orthogonal coordinate system is shown, and in the illustrated example, division along the X direction is performed.
  • the scribing device 100V includes a scribing head 60V and a control unit 90V.
  • the scribing head 60V has an attitude adjustment unit 61V that can change the attitude of the cutting edge 51 (see the arrow in the figure) when the cutting edge 51 (FIG. 2A) is slid.
  • attitude adjustment unit 61V can change the attitude of the cutting edge 51 (see the arrow in the figure) when the cutting edge 51 (FIG. 2A) is slid.
  • the change in posture for example, the angle of the axial direction AX (FIG. 2A or FIG. 7A) with respect to the surface SF is changed.
  • the control unit 90V controls the drive unit 70, the pressurizing unit 63, and the posture adjusting unit 61V, and includes a sliding control unit 92V.
  • the sliding control unit 92 ⁇ / b> V controls the driving unit 70 so that the cutting edge 51 slides in the direction in which the front part of the cutting edge 51 faces on the surface SF of the glass substrate 4.
  • the sliding control unit 92 ⁇ / b> V controls the posture adjusting unit 61 ⁇ / b> V so that a plurality of positions at the front part of the cutting edge 51 sliding on the glass substrate 4 are at the same height as the surface SF of the glass substrate 4. Control.
  • the sliding control unit 92V controls the posture adjusting unit 61V so that the position of the same height as the surface SF of the glass substrate 4 at the front portion of the blade edge 51 sliding on the glass substrate 4 is obtained.
  • the sliding control unit 92V changes the posture of the cutting edge 51.
  • FIG. 10 is a diagram schematically showing a configuration of a scribe head 60W as a modification of the scribe head 60V (FIG. 9) in the present embodiment.
  • Scribe head 60W has body part 110, cutting instrument 50, pressurizing part 63W, and main part 64W.
  • the cutting instrument 50 is attached to the body part 110.
  • the cutting tool 50 is pressed against the surface SF of the glass substrate 4 with a load F by the action from the body portion 110.
  • the body part 110 includes a body main body 111 and a cutting tool support member 112.
  • the cutting tool support member 112 supports the shank 52 so that the axial direction AX (FIG. 2) of the shank 52 of the cutting tool 50 can be adjusted.
  • the main body portion 64 ⁇ / b> W includes a base main body 151 and a limiter 152.
  • the base body 151 has a fulcrum ST that supports the body 110 so as to be rotatable.
  • the limiter 152 limits the range in which the body portion 110 can rotate downward.
  • the pressurizing part 63W is supported by the main body part 64W.
  • the pressurizing part 63W can apply a continuous force LD to the body part 110 so that the cutting tool 50 is pressed onto the surface SF of the glass substrate 4.
  • the pressurizing unit 63W includes an air cylinder for generating the force LD and a pressing pin for transmitting the force.
  • the load F applied to the blade edge 51 (FIG. 2) is changed by changing the force LD by the pressurizing part 63W, and at the same time, the body part 110 is rotated around the fulcrum ST. Accordingly, the posture of the blade edge 51 can be changed. Therefore, the posture of the blade edge 51 can be easily changed even during scribing.
  • the scribe head 60W has a simple configuration as compared with a case where a dedicated mechanism for adjusting the posture during scribing is provided. Therefore, the scribe head 60W can be easily reduced in weight, and is therefore suitable for scribe with a low load.
  • a crackless trench line TL (FIG. 3A) is formed using the method described in any of the first to third embodiments, and the trench A crack line CL (FIG. 3B) along the line TL is formed.
  • the blade edge 51 is slid to form the trench line TL, a plurality of positions in the front portion of the blade edge 51 are set to the same height as the surface SF of the glass substrate 4. .
  • a glass substrate 4 is prepared.
  • the glass substrate 4 has a flat upper surface SF1 as the surface SF (FIG. 2A).
  • the edge surrounding the upper surface SF1 includes a side ED1 and a side ED2 that face each other.
  • the edge has a rectangular shape. Therefore, the sides ED1 and ED2 are sides parallel to each other. In the example shown in FIG. 11A, the sides ED1 and ED2 are rectangular short sides.
  • the glass substrate 4 has a thickness direction DT (FIG. 2A) perpendicular to the upper surface SF1.
  • the blade edge 51 is pressed against the upper surface SF1 at the position N1. Details of the position N1 will be described later. With reference to FIG. 2A, the cutting edge 51 is pressed such that the projection PP of the cutting edge 51 is disposed between the side ED1 and the side portion PS on the upper surface SF1 of the glass substrate 4 and the cutting edge 51 is pressed.
  • the side PS is arranged between the protrusion PP and the side ED2.
  • trench lines TLa to TLe are formed on the upper surface SF1.
  • the load or posture of the blade edge 51 may be changed in each of the trench lines TLa to TLe, similarly to the straight line SLXm in FIG.
  • the load or posture of the blade edge 51 may be changed between different trench lines among the trench lines TLa to TLe.
  • the trench lines TLa, TLc, and TLe may be formed with a relatively large load
  • the trench lines TLb and TLd may be formed with a relatively small load.
  • the trench line TL is formed between the position N1 (first position) and the position N3.
  • a position N2 (second position) is located between the positions N1 and N3. Therefore, trench line TL is formed between positions N1 and N2 and between positions N2 and N3.
  • the positions N1 and N3 are away from the edge of the upper surface SF1 of the glass substrate 4. Therefore, the formed trench line TL may be located away from the edge of the glass substrate 4 as shown in FIG. 11A, or one or both of them may be located at the edge of the upper surface SF1. .
  • the formed trench line TL is separated from the edge of the glass substrate 4 in the former case, and is in contact with the edge of the glass substrate 4 in the latter case.
  • the position N1 is closer to the side ED1, and the position N2 is closer to the side ED2 among the positions N1 and N2.
  • the position N1 is close to the side ED1 of the sides ED1 and ED2
  • the position N2 is close to the side ED2 of the sides ED1 and ED2
  • both the positions N1 and N2 are the sides ED1 or It may be located near either one of ED2.
  • the blade edge 51 is displaced from the position N1 to the position N2, and is further displaced from the position N2 to the position N3. That is, with reference to FIG. 2A, the blade edge 51 is displaced in a direction DA that is a direction from the side ED1 toward the side ED2.
  • the direction DA corresponds to a direction in which the axial direction AX extending from the blade edge 51 is projected onto the upper surface SF1. In this case, the blade edge 51 is dragged on the upper surface SF ⁇ b> 1 by the shank 52.
  • glass substrate 4 in thickness direction DT extends from position N2 toward position N1 along trench line TL (see the broken line arrow in the figure).
  • the crack line CL (FIG. 3B) is formed by extending the cracks. Formation of the crack line CL is started when the assist line AL and the trench line TL intersect each other at the position N2.
  • the assist line AL is formed after the trench line TL is formed.
  • the assist line AL is a normal scribe line with a crack in the thickness direction DT, and releases internal stress distortion in the vicinity of the trench line TL.
  • the method of forming the assist line AL is not particularly limited, but may be formed using the edge of the upper surface SF1 as a base point as shown in FIG.
  • the crack line CL is less likely to be formed in the direction from the position N2 to the position N3 than in the direction from the position N2 to the position N1. That is, the ease of extension of the crack line CL has a direction dependency. Therefore, the phenomenon that the crack line CL is formed between the positions N1 and N2 but not between the positions N2 and N3 may occur.
  • the present embodiment is intended to divide the glass substrate 4 along the positions N1 and N2, and is not intended to separate the glass substrate 4 along the positions N2 and N3. Therefore, while it is necessary to form the crack line CL between the positions N1 and N2, the difficulty of forming the crack line CL between the positions N2 and N3 is not a problem.
  • the glass substrate 4 is divided along the crack line CL. Specifically, a break process is performed. Note that, when the crack line CL is completely advanced in the thickness direction DT at the time of formation, the formation of the crack line CL and the division of the glass substrate 4 may occur at the same time. In this case, the break process can be omitted.
  • the glass substrate 4 is divided.
  • the first modification relates to a case where the intersection of the assist line AL and the trench line TL is insufficient as a trigger for starting the formation of the crack line CL (FIG. 11B).
  • a crack in thickness direction DT extends along assist line AL.
  • glass substrate 4 is To be separated.
  • formation of the crack line CL is started.
  • the assist line AL is formed on the upper surface SF1 of the glass substrate 4, but the assist line AL for separating the glass substrate 4 is the lower surface of the glass substrate 4 (the surface opposite to the upper surface SF1). ) May be formed on.
  • the assist line AL and the trench line TL intersect each other at the position N2 in the planar layout, but do not directly contact each other.
  • the blade edge 51 is pressed against the upper surface SF1 of the glass substrate 4 at the position N3.
  • the blade edge 51 is displaced from the position N3 to the position N2, and is further displaced from the position N2 to the position N1. That is, referring to FIG. 7, the blade edge 51 is displaced in a direction DB that is a direction from the side ED2 toward the side ED1.
  • the direction DB corresponds to a direction opposite to the direction in which the axial direction AX extending from the blade edge 51 is projected onto the upper surface SF1. In this case, the blade edge 51 is pushed forward on the upper surface SF 1 by the shank 52.
  • the blade edge 51 is formed on the upper surface SF ⁇ b> 1 of the glass substrate 4 as compared with the position N ⁇ b> 1. It is pressed with a larger load at the position N2. Specifically, with the position N4 as a position between the positions N1 and N2, the load on the blade edge 51 is increased when the formation of the trench line TLm reaches the position N4. In other words, the load on the trench line TLm is increased between the positions N4 and N3 which are the end portions of the trench line TLm, as compared with the position N1. Thereby, formation of the crack line CL from the position N2 can be easily induced while reducing a load at a portion other than the terminal portion.
  • the crack line CL can be more reliably formed from the trench line TL.
  • the life of the cutting edge 51 can be extended by diffusing the position where the cutting edge 51 is worn.
  • assist line AL is formed before formation of trench line TL.
  • the method of forming the assist line AL is the same as that in FIG. 11B (Embodiment 4).
  • the blade edge 51 is pressed against the upper surface SF1, and the trench line TL is formed.
  • the method of forming the trench line TL itself is the same as that in FIG. 11A (Embodiment 4).
  • the assist line AL and the trench line TL intersect each other at the position N2.
  • glass substrate 4 is separated along assist line AL by a normal break process in which an external force that generates a bending moment or the like is applied to glass substrate 4.
  • formation of the crack line CL similar to that of the fourth embodiment is started (see the broken line arrow in the figure).
  • the assist line AL is formed on the upper surface SF ⁇ b> 1 of the glass substrate 4, but the assist line AL for separating the glass substrate 4 may be formed on the lower surface of the glass substrate 4.
  • the assist line AL and the trench line TL intersect each other at the position N2 in the planar layout, but do not directly contact each other.
  • crack line CL is started when assist line AL and scribe line SL intersect each other at position N2.
  • each trench line TL is formed from position N3 to position N1, as in FIG. 13 (Embodiment 4).
  • the glass substrate 4 is separated along the assist line AL by applying an external force that generates a bending moment or the like to the glass substrate 4. Thereby, formation of the crack line CL is started (see the broken line arrow in the figure).
  • the blade edge 51 is on the upper surface SF ⁇ b> 1 of the glass substrate 4 as compared with the position N ⁇ b> 1. It is pressed with a greater force at the position N2. Specifically, with the position N4 as a position between the positions N1 and N2, the load on the blade edge 51 is increased when the formation of the trench line TLm reaches the position N4. In other words, the load on the trench line TLm is increased between the positions N4 and N3, which are the end portions of the trench line TL, as compared with the position N1. Thereby, formation of the crack line CL from the position N2 can be easily induced while reducing a load at a portion other than the terminal portion.
  • each trench line TL in formation of each trench line TL in the present embodiment, blade edge 51 is slid beyond side ED2 from position N1.
  • the stress distortion generated in the substrate immediately below the trench line TL is released, and a crack line extends from the end of the trench line TL located on the side ED2 toward the position N1.
  • the load applied to the blade edge 51 when forming the trench line TL may be constant, but when the blade edge 51 is displaced from the position N1 to the position N2, the load applied to the blade edge 51 at the position N2 increases. May be. For example, the load is increased by about 50%.
  • the cutting edge 51 to which the increased load is applied is slid over the side ED2. In other words, the load on the cutting edge 51 is increased at the end of the trench line TL.
  • the crack line extends from the end of the trench line TL located on the side ED2 toward the position N1 via the position N2.
  • the stress distortion also increases, and the stress distortion is easily released when the cutting edge 51 passes the side ED2, so that the crack line can be formed more reliably. .
  • trench line TL is formed from position N1 to side ED2 via position N2.
  • a stress is applied between position N2 and side ED2 so as to release the distortion of internal stress in the vicinity of trench line TL.
  • the pressed blade edge 51 is slid between the position N2 and the side ED2 (the region between the broken line and the side ED2 in the drawing) on the upper surface SF1. This sliding is performed until the side ED2 is reached.
  • the cutting edge 51 is preferably slid so as to intersect the track of the trench line TL formed first, and more preferably to overlap the track of the trench line TL formed first.
  • the length of this second sliding is, for example, about 0.5 mm.
  • This re-sliding may be performed on each of the plurality of trench lines TL (FIG. 22A) after they are formed, or the formation and re-sliding of one trench line TL may be performed.
  • the process to be performed may be sequentially performed for each trench line TL.
  • a laser beam is irradiated between the position N2 and the side ED2 on the upper surface SF1 instead of the sliding of the cutting edge 51 described above. May be. Due to the thermal stress generated thereby, the distortion of the internal stress in the vicinity of the trench line TL is released, thereby inducing the start of formation of the crack line.
  • FIG. 23 (B) the same stress application as in FIG. 22 (B) (Embodiment 7 or a modification thereof) is performed. This induces the formation of crack lines along the trench line TL.
  • cutting edge 51 may be displaced from position N3 to position N2 and from position N2 to position N1.
  • blade edge 51v may be used instead of blade edge 51 (FIGS. 2 (A) and (B)).
  • the blade edge 51v has a conical shape having a vertex and a conical surface SC.
  • the protruding part PPv of the blade edge 51v is constituted by a vertex.
  • the side portion PSv of the blade edge is configured along a virtual line (broken line in FIG. 25B) extending from the apex to the conical surface SC. Thereby, the side part PSv has a convex shape extending linearly.
  • the side part PSv of the blade edge 51v is the front part in sliding, and the pressed blade edge 51v is slid on the surface SF of the glass substrate 4 in the direction DA in which the side part PS faces.
  • the direction DA corresponds to a direction in which the axial direction AX extending from the blade edge 51v is projected onto the surface SF.
  • the blade edge 51v is dragged on the surface SF by the shank 52.
  • the load or posture of the cutting edge 51v is changed, whereby the side portion PSv as the front portion of the cutting edge 51v is changed.
  • the positions O1 and O2 are set to the same height as the surface SF of the glass substrate 4.
  • the blade edge 51v may be slid in the direction DB opposite to the direction DA.
  • the load or posture of the cutting edge 51v is changed, so that the positions O1 and O2 at the front portion (the part opposite to the side portion PSv) of the cutting edge 51v. (FIG. 28) is the same height as the surface SF of the glass substrate 4.
  • the blade edge 51v is slid on one glass substrate 4 only one position in the front portion of the blade edge 51v is set to the same height as the surface SF of the glass substrate 4. Then, it comes into contact with the surface SF of the glass substrate 4 in a larger area, and the position where the blade edge 51v is particularly worn is diffused. Therefore, the life of the blade edge 51v can be extended.
  • the first and second sides of the edge of the glass substrate are rectangular short sides, but the first and second sides may be rectangular long sides.
  • the shape of the edge is not limited to a rectangle, and may be a square, for example. Further, the first and second sides are not limited to being linear, and may be curved. In each of the above embodiments, the surface of the glass substrate is flat, but the surface of the glass substrate may be curved.
  • the brittle substrate is not limited to the glass substrate.
  • the brittle substrate can be made of, for example, ceramics, silicon, compound semiconductors, sapphire, or quartz.
  • the control unit of the scribe device can be configured by a computer having an input unit, an output unit, a storage unit, and a CPU (Central Processing Unit).
  • the program causes the CPU to execute processing of the control unit.
  • the program can be recorded on a recording medium.
  • the recording medium is, for example, a recording disk, a solid memory, or a recording tape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

In the present invention, a cutting edge (51) having a protruding part (PP) and a front part leading to the protruding part (PP) is pressed onto a surface (SF) of a brittle substrate (4). Having been pressed thereon, the cutting edge (51) is slid on the surface (SF) of the brittle substrate (4) in the direction (DA) in which the front part of the cutting edge faces. The sliding of the cutting edge (51) produces plastic deformation in the brittle substrate (4), whereby a trench line having a grooved shape is formed on the surface (SF) of the brittle substrate (4). When the cutting edge (51) is slid, a plurality of locations (O1, O2) on the front part of the cutting edge (51) are set so as to be positioned at the same height as the surface (SF) of the brittle substrate (4).

Description

脆性基板の分断方法およびスクライブ装置Method for dividing brittle substrate and scribing apparatus
 本発明は脆性基板の分断方法およびスクライブ装置に関する。 The present invention relates to a brittle substrate cutting method and a scribing apparatus.
 フラットディスプレイパネルまたは太陽電池パネルなどの電気機器の製造において、ガラス基板などの脆性基板を分断することがしばしば必要となる。まず基板上にスクライブラインが形成され、次にこのスクライブラインに沿って基板が分断される。スクライブラインは、基板上を刃先が摺動することで形成され得る。この摺動によって、基板上に塑性変形によるトレンチが形成されると同時に、このトレンチの直下には垂直クラックが形成される。その後、ブレーク工程と称される応力付与がなされる。ブレーク工程によりクラックを厚さ方向に完全に進行させることで、基板が分断される。 In the manufacture of electrical devices such as flat display panels or solar cell panels, it is often necessary to break a brittle substrate such as a glass substrate. First, a scribe line is formed on the substrate, and then the substrate is divided along the scribe line. The scribe line can be formed by sliding the blade edge on the substrate. By this sliding, a trench due to plastic deformation is formed on the substrate, and a vertical crack is formed immediately below the trench. Thereafter, stress is applied, which is called a break process. The substrate is divided by causing the crack to advance completely in the thickness direction by the break process.
 たとえば特開2013-71871号公報によれば、刃部を有するダイヤモンドポイントを用いて基板にスクライブラインが形成される。この公報によれば、ダイヤモンドポイントの刃部に冷却ガスが噴射されることで、刃部と基板との間で発生する摩擦熱に起因した刃部の酸化が抑制され、これによりダイヤモンドポイントの長寿命化が実現される。 For example, according to Japanese Patent Application Laid-Open No. 2013-71871, a scribe line is formed on a substrate using a diamond point having a blade portion. According to this publication, the cooling gas is injected to the blade portion of the diamond point, so that oxidation of the blade portion due to frictional heat generated between the blade portion and the substrate is suppressed. Life expectancy is realized.
特開2013-71871号公報JP 2013-71871 A
 脆性基板のスクライブにおいて刃先の寿命を長くすることはこの分野において依然として重要な課題であり、さらなる技術が求められている。刃先として、スクライビングホイールのように転動するものではなく、上述したダイヤモンドポイントのように摺動するものが用いられる場合、この課題は特に深刻である。 Extending the life of the blade edge in scribing a brittle substrate is still an important issue in this field, and further technology is required. This problem is particularly serious when a cutting edge is used that does not roll like a scribing wheel but slides like the diamond point described above.
 本発明は以上のような課題を解決するためになされたものであり、その目的は、刃先の寿命を長くすることができる脆性基板の分断方法およびスクライブ装置を提供することである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a brittle substrate cutting method and a scribing apparatus capable of extending the life of the cutting edge.
 本発明の脆性基板の分断方法は、次の工程を有する。一の脆性基板の表面に、突起部と突起部につながった前部とを有する刃先が押し付けられる。押し付けられた刃先が脆性基板の表面上で前部が向く方向へ摺動させられる。刃先が摺動させられることによって脆性基板に塑性変形が生じることで、脆性基板の表面上に、溝形状を有する少なくとも1つのトレンチラインが形成される。刃先が摺動させられる際に、刃先の前部における複数の位置が脆性基板の表面と同じ高さの位置とされる。 The brittle substrate cutting method of the present invention includes the following steps. A blade edge having a projection and a front portion connected to the projection is pressed against the surface of one brittle substrate. The pressed blade edge is slid in the direction in which the front part faces on the surface of the brittle substrate. When the cutting edge is slid, plastic deformation occurs in the brittle substrate, so that at least one trench line having a groove shape is formed on the surface of the brittle substrate. When the cutting edge is slid, a plurality of positions in the front part of the cutting edge are set at the same height as the surface of the brittle substrate.
 本発明によれば、刃先が摺動させられる際に、刃先の前部における複数の位置が脆性基板の表面と同じ高さの位置とされる。これにより、刃先が特に磨耗する位置が拡散される。よって刃先の寿命を長くすることができる。 According to the present invention, when the cutting edge is slid, a plurality of positions in the front part of the cutting edge are set to the same height as the surface of the brittle substrate. Thereby, the position where the blade edge is particularly worn is diffused. Therefore, the life of the blade edge can be extended.
本発明の実施の形態1におけるスクライブ装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the scribing apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における刃先の変位の様子を概略的に示す図(A)、およびその矢印IIBの視野で刃先を示す図である。It is a figure which shows roughly the mode of the displacement of the blade edge | tip in Embodiment 1 of this invention, and a figure which shows a blade edge | tip in the visual field of the arrow IIB. クラックレス状態でのトレンチラインの構成を概略的に示す断面図(A)、およびクラックラインの構成を概略的に示す断面図(B)である。It is sectional drawing (A) which shows the structure of the trench line in a crackless state roughly, and sectional drawing (B) which shows the structure of a crack line roughly. 本発明の実施の形態1における脆性基板の分断方法において、刃先が摺動させられている際に刃先の前部としての側部における複数の位置が脆性基板の表面と同じ高さの位置とされる様子を示す図である。In the brittle substrate cutting method according to Embodiment 1 of the present invention, when the blade edge is slid, a plurality of positions on the side portion as the front portion of the blade edge are set to the same height as the surface of the brittle substrate. FIG. 本発明の実施の形態1における脆性基板の分断方法における荷重変化の第1~第3の例のそれぞれを示す斜視図(A)~(C)である。FIG. 6 is a perspective view (A) to (C) showing each of first to third examples of load change in the brittle substrate cutting method according to the first embodiment of the present invention. 本発明の実施の形態1における脆性基板の分断方法における荷重変化の第4の例を示す断面図である。It is sectional drawing which shows the 4th example of the load change in the cutting method of the brittle board | substrate in Embodiment 1 of this invention. 本発明の実施の形態2における刃先の変位の様子を概略的に示す図(A)、およびその矢印VIIBの視野で刃先を示す図である。It is a figure which shows roughly the mode of displacement of the blade edge | tip in Embodiment 2 of this invention, and a figure which shows a blade edge | tip in the visual field of the arrow VIIB. 本発明の実施の形態2における脆性基板の分断方法において、刃先が摺動させられている際に刃先の前部としての天面における複数の位置が脆性基板の表面と同じ高さの位置とされる様子を示す図(A)、およびその矢印VIIIBの視野の図(B)である。In the brittle substrate cutting method according to Embodiment 2 of the present invention, when the blade edge is being slid, a plurality of positions on the top surface as the front part of the blade edge are set to the same height as the surface of the brittle substrate. (A) which shows a mode to show, and the figure (B) of the visual field of the arrow VIIIB. 本発明の実施の形態3におけるスクライブ装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the scribing apparatus in Embodiment 3 of this invention. 本発明の実施の形態3の変形例におけるスクライブヘッドの構成を概略的に示す図である。It is a figure which shows schematically the structure of the scribe head in the modification of Embodiment 3 of this invention. 本発明の実施の形態4における脆性基板の分断方法の第1および第2の工程のそれぞれを概略的に示す上面図(A)および(B)である。It is a top view (A) and (B) which shows each roughly the 1st and 2nd process of the cutting method of a brittle board in Embodiment 4 of the present invention. 本発明の実施の形態4の第1の変形例の脆性基板の分断方法の第1および第2の工程のそれぞれを概略的に示す上面図(A)および(B)である。It is a top view (A) and (B) which shows each roughly the 1st and 2nd process of the cutting method of the brittle board | substrate of the 1st modification of Embodiment 4 of this invention. 本発明の実施の形態4の第2の変形例の脆性基板の分断方法を概略的に示す上面図である。It is a top view which shows roughly the division | segmentation method of the brittle board | substrate of the 2nd modification of Embodiment 4 of this invention. 本発明の実施の形態4の第3の変形例の脆性基板の分断方法を概略的に示す上面図である。It is a top view which shows roughly the division | segmentation method of the brittle board | substrate of the 3rd modification of Embodiment 4 of this invention. 本発明の実施の形態5における脆性基板の分断方法の第1の工程を概略的に示す上面図である。It is a top view which shows roughly the 1st process of the cutting method of a brittle board | substrate in Embodiment 5 of this invention. 本発明の実施の形態5における脆性基板の分断方法の第2の工程を概略的に示す上面図である。It is a top view which shows roughly the 2nd process of the cutting method of a brittle board | substrate in Embodiment 5 of this invention. 本発明の実施の形態5における脆性基板の分断方法の第3の工程を概略的に示す上面図である。It is a top view which shows roughly the 3rd process of the cutting method of a brittle board | substrate in Embodiment 5 of this invention. 本発明の実施の形態5の第1の変形例の脆性基板の分断方法を概略的に示す上面図である。It is a top view which shows roughly the division | segmentation method of the brittle board | substrate of the 1st modification of Embodiment 5 of this invention. 本発明の実施の形態5の第2の変形例の脆性基板の分断方法の第1および第2の工程のそれぞれを概略的に示す上面図(A)および(B)である。It is a top view (A) and (B) which shows each roughly the 1st and 2nd process of the cutting method of the brittle board | substrate of the 2nd modification of Embodiment 5 of this invention. 本発明の実施の形態5の第3の変形例の脆性基板の分断方法を概略的に示す上面図である。It is a top view which shows roughly the division | segmentation method of the brittle board | substrate of the 3rd modification of Embodiment 5 of this invention. 本発明の実施の形態6における脆性基板の分断方法を概略的に示す上面図である。It is a top view which shows roughly the cutting method of the brittle board | substrate in Embodiment 6 of this invention. 本発明の実施の形態7における脆性基板の分断方法の第1および第2の工程のそれぞれを概略的に示す上面図(A)および(B)である。It is a top view (A) and (B) which shows each roughly the 1st and 2nd process of the cutting method of a brittle board in Embodiment 7 of the present invention. 本発明の実施の形態8における脆性基板の分断方法の第1および第2の工程のそれぞれを概略的に示す上面図(A)および(B)である。It is the top view (A) and (B) which shows each of the 1st and 2nd process of the cutting method of a brittle board | substrate in Embodiment 8 of this invention roughly. 本発明の実施の形態8の変形例の脆性基板の分断方法を概略的に示す上面図である。It is a top view which shows roughly the division | segmentation method of the brittle board | substrate of the modification of Embodiment 8 of this invention. 本発明の実施の形態9における刃先の変位の様子を概略的に示す図(A)、およびその矢印XXVBの視野で刃先を示す図である。It is the figure which shows the mode of the displacement of the blade edge | tip in Embodiment 9 of this invention schematically (A), and a figure which shows a blade edge | tip in the visual field of the arrow XXVB. 本発明の実施の形態9における脆性基板の分断方法において、刃先が摺動させられている際に刃先の前部としての側部における複数の位置が脆性基板の表面と同じ高さの位置とされる様子を示す図である。In the brittle substrate cutting method according to the ninth embodiment of the present invention, when the blade edge is slid, a plurality of positions on the side portion as the front portion of the blade edge are set to the same height as the surface of the brittle substrate. FIG. 本発明の実施の形態9の変形例における刃先の変位の様子を概略的に示す図(A)、およびその矢印XXVIIBの視野で刃先を示す図である。It is the figure which shows the mode of the displacement of the blade edge | tip in the modification of Embodiment 9 of this invention (A), and a figure which shows a blade edge | tip in the visual field of the arrow XXVIIB. 本発明の実施の形態9の変形例における脆性基板の分断方法において、刃先が摺動させられている際に刃先の前部における複数の位置が脆性基板の表面と同じ高さの位置とされる様子を示す図である。In the brittle substrate cutting method according to the modification of the ninth embodiment of the present invention, when the blade edge is slid, a plurality of positions in the front part of the blade edge are set to the same height as the surface of the brittle substrate. It is a figure which shows a mode.
 以下、図面に基づいて本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (実施の形態1)
 図1は本実施の形態におけるスクライブ装置100の構成を概略的に示す図である。図中、分断されることになるガラス基板4(脆性基板)が2点鎖線で示されている。また説明の便宜のためにXYZ直交座標系が示されており、図示された例においては、X方向に沿った分断が行なわれる。スクライブ装置100はスクライブヘッド60と駆動部70とステージ80(基板支持部)と制御部90とを有する。
(Embodiment 1)
FIG. 1 is a diagram schematically showing a configuration of a scribing apparatus 100 in the present embodiment. In the figure, a glass substrate 4 (brittle substrate) to be divided is indicated by a two-dot chain line. Further, for convenience of explanation, an XYZ orthogonal coordinate system is shown, and in the illustrated example, division along the X direction is performed. The scribing apparatus 100 includes a scribing head 60, a driving unit 70, a stage 80 (substrate support unit), and a control unit 90.
 スクライブヘッド60はカッティング器具50と姿勢調整部61と保持部62と加圧部63と本体部64とを有する。カッティング器具50は刃先51およびシャンク52(図2(A))を有する。姿勢調整部61は、カッティング器具50の姿勢を調整可能に、カッティング器具50を支持している。保持部62は姿勢調整部61を保持している。加圧部63は、本体部64に固定されており保持部62に力を加えることができるアクチュエータである。 The scribing head 60 includes a cutting tool 50, a posture adjusting unit 61, a holding unit 62, a pressurizing unit 63, and a main body unit 64. The cutting instrument 50 has a cutting edge 51 and a shank 52 (FIG. 2A). The posture adjustment unit 61 supports the cutting device 50 so that the posture of the cutting device 50 can be adjusted. The holding unit 62 holds the posture adjusting unit 61. The pressurizing unit 63 is an actuator that is fixed to the main body unit 64 and can apply a force to the holding unit 62.
 ステージ80は、表面SFを有する一のガラス基板4(一の脆性基板)を支持するものである。 The stage 80 supports one glass substrate 4 (one brittle substrate) having a surface SF.
 駆動部70は、ステージ80に支持されたガラス基板4と、刃先51とを相対的に変位させるものである。よって駆動部70は、刃先51およびステージ80のいずれかを変位させるものであってもよく、あるいは刃先51およびステージ80の各々を変位させるものであってもよい。本実施の形態においては駆動部70は、ステージ80を変位させるステージ駆動部71と、スクライブヘッド60の本体部64を変位させるためのヘッド駆動部72とを有する。ステージ駆動部71は、たとえば、図中XYZ軸の各々に沿った並進変位と、図中Z軸周りの回転変位とをステージ80に与える。ヘッド駆動部72は、たとえば、図中X軸に沿った並進変位をスクライブヘッド60の本体部64に与える。 The driving unit 70 relatively displaces the glass substrate 4 supported by the stage 80 and the blade edge 51. Therefore, the drive unit 70 may be one that displaces either the blade edge 51 or the stage 80, or may be one that displaces each of the blade edge 51 and the stage 80. In the present embodiment, the drive unit 70 includes a stage drive unit 71 that displaces the stage 80 and a head drive unit 72 that displaces the main body 64 of the scribe head 60. The stage drive unit 71 applies, for example, a translational displacement along each of the XYZ axes in the drawing and a rotational displacement around the Z axis in the drawing to the stage 80. The head drive unit 72 gives, for example, a translational displacement along the X axis in the drawing to the main body unit 64 of the scribe head 60.
 制御部90は摺動前制御部91と摺動制御部92と摺動後制御部93とを有する。制御部90は駆動部70および加圧部63を制御するものである。 The control unit 90 includes a pre-sliding control unit 91, a sliding control unit 92, and a post-sliding control unit 93. The control unit 90 controls the driving unit 70 and the pressurizing unit 63.
 摺動前制御部91は、ガラス基板4の表面SF上における刃先51の摺動に先立って、表面SF上に刃先51が押し付けられるように駆動部70を制御する。 The pre-sliding control unit 91 controls the driving unit 70 so that the blade edge 51 is pressed onto the surface SF prior to the sliding of the blade edge 51 on the surface SF of the glass substrate 4.
 摺動制御部92は、ガラス基板4の表面SF上で刃先51の前部が向く方向へ刃先51が摺動するように駆動部70を制御する。また摺動制御部92は、ガラス基板4上を摺動している刃先51の前部における複数の位置がガラス基板4の表面と同じ高さの位置とされるように加圧部63を制御する。言い換えれば、摺動制御部92は、加圧部63を制御することによって、ガラス基板4上を摺動している刃先51の前部において、ガラス基板4の表面SFと同じ高さとなる位置を変化させる。この目的で摺動制御部92は、加圧部63が発生する力を変化させることにより、刃先51に加えられる荷重を変化させる。 The sliding control unit 92 controls the driving unit 70 so that the cutting edge 51 slides on the surface SF of the glass substrate 4 in the direction in which the front part of the cutting edge 51 faces. Further, the sliding control unit 92 controls the pressing unit 63 so that a plurality of positions in the front part of the cutting edge 51 sliding on the glass substrate 4 are at the same height as the surface of the glass substrate 4. To do. In other words, the sliding control unit 92 controls the pressurizing unit 63 so that the front portion of the blade edge 51 sliding on the glass substrate 4 is positioned at the same height as the surface SF of the glass substrate 4. Change. For this purpose, the sliding control unit 92 changes the load applied to the blade edge 51 by changing the force generated by the pressurizing unit 63.
 摺動後制御部93は、ガラス基板4の表面SF上における刃先51の摺動が行なわれた後に、刃先51がガラス基板4の表面SF上から離脱するように駆動部70を制御するものである。 The after-sliding control unit 93 controls the driving unit 70 so that the blade edge 51 is detached from the surface SF of the glass substrate 4 after the blade edge 51 is slid on the surface SF of the glass substrate 4. is there.
 図2(A)および(B)を参照して、刃先51には、天面SD1(第1の面)と、天面SD1を取り囲む複数の面とが設けられている。これら複数の面は側面SD2(第2の面)および側面SD3(第3の面)を含む。天面SD1、側面SD2およびSD3(第1~第3の面)は、互いに異なる方向を向いており、かつ互いに隣り合っている。刃先51は、天面SD1、側面SD2およびSD3が合流する頂点を有し、この頂点によって刃先51の突起部PPが構成されている。よって天面SD1は突起部PPにつながっている。また側面SD2およびSD3は、刃先51の側部PSを構成する稜線をなしている。側部PSは、突起部PPとつながっており、突起部PPから線状に延びている。また側部PSは、上述したように稜線であることから、線状に延びる凸形状を有する。 2A and 2B, the blade edge 51 is provided with a top surface SD1 (first surface) and a plurality of surfaces surrounding the top surface SD1. The plurality of surfaces include a side surface SD2 (second surface) and a side surface SD3 (third surface). The top surface SD1, the side surfaces SD2, and SD3 (first to third surfaces) face different directions and are adjacent to each other. The blade edge 51 has a vertex at which the top surface SD1, the side surfaces SD2 and SD3 merge, and the protrusion PP of the blade edge 51 is configured by this vertex. Therefore, the top surface SD1 is connected to the protrusion PP. Further, the side surfaces SD2 and SD3 form ridge lines constituting the side portion PS of the blade edge 51. The side part PS is connected to the protrusion part PP and extends linearly from the protrusion part PP. Moreover, since the side part PS is a ridgeline as mentioned above, it has the convex shape extended linearly.
 刃先51はダイヤモンドポイントであることが好ましい。すなわち刃先51は、硬度および表面粗さを小さくすることができる点からダイヤモンドから作られていることが好ましい。より好ましくは、刃先51は単結晶ダイヤモンドから作られている。さらに好ましくは結晶学的に言って、天面SD1は{001}面であり、側面SD2およびSD3の各々は{111}面である。この場合、側面SD2およびSD3は、異なる向きを有するものの、結晶学上、互いに等価な結晶面である。 The cutting edge 51 is preferably a diamond point. That is, the cutting edge 51 is preferably made of diamond from the viewpoint that the hardness and the surface roughness can be reduced. More preferably, the cutting edge 51 is made of single crystal diamond. More preferably, crystallographically, the top surface SD1 is a {001} plane, and each of the side surfaces SD2 and SD3 is a {111} plane. In this case, although the side surfaces SD2 and SD3 have different orientations, they are crystal surfaces that are equivalent to each other in terms of crystallography.
 なお単結晶でないダイヤモンドが用いられてもよく、たとえば、CVD(Chemical Vapor Deposition)法で合成された多結晶体ダイヤモンドが用いられてもよい。あるいは、微粒のグラファイトや非グラファイト状炭素から、鉄族元素などの結合材を含まずに焼結された多結晶体ダイヤモンド粒子を鉄族元素などの結合材によって結合させた焼結ダイヤモンドが用いられてもよい。 Diamond that is not a single crystal may be used. For example, polycrystalline diamond synthesized by a CVD (Chemical Vapor Deposition) method may be used. Alternatively, sintered diamond obtained by bonding polycrystalline diamond particles, which are sintered from fine graphite or non-graphitic carbon without containing a binder such as an iron group element, with a binder such as an iron group element is used. May be.
 シャンク52は軸方向AXに沿って延在している。刃先51は、天面SD1の法線方向が軸方向AXにおおよそ沿うようにシャンク52に取り付けられることが好ましい。ガラス基板4の表面SFに対する軸方向AXの角度は、姿勢調整部61(図1)によって調整可能であることが好ましい。この場合、姿勢調整部61によって、表面SFに対する刃先51の姿勢が調整可能である。 The shank 52 extends along the axial direction AX. The blade edge 51 is preferably attached to the shank 52 so that the normal direction of the top surface SD1 is approximately along the axial direction AX. It is preferable that the angle of the axial direction AX with respect to the surface SF of the glass substrate 4 can be adjusted by the attitude adjusting unit 61 (FIG. 1). In this case, the posture adjustment unit 61 can adjust the posture of the cutting edge 51 with respect to the surface SF.
 次にスクライブ装置100の動作について説明する。 Next, the operation of the scribe device 100 will be described.
 まず摺動前制御部91による駆動部70および加圧部63の制御によって、ガラス基板4の表面SFに刃先51が押し付けられる。刃先51が表面SFに押しつけられると、突起部PPは基板表面SFよりも基板内部側に位置することとなる。 First, the cutting edge 51 is pressed against the surface SF of the glass substrate 4 by the control of the driving unit 70 and the pressurizing unit 63 by the pre-sliding control unit 91. When the blade edge 51 is pressed against the surface SF, the projecting portion PP is positioned on the substrate inner side with respect to the substrate surface SF.
 次に摺動制御部92による駆動部70の制御によって、側部PSを上面SF1上に射影した方向におおよそ沿って、押し付けられた刃先51が表面SF上を摺動させられる。本実施の形態においては、摺動において刃先51の側部PSが前部であり、押し付けられた刃先51はガラス基板4の表面SF上で、側部PSが向く方向DA(図中、+X軸方向)へ摺動させられる。方向DAは、刃先51から延びる軸方向AXを表面SF上へ射影した方向に対応している。摺動中、刃先51はシャンク52によって表面SF上を引き摺られる。 Next, by the control of the driving unit 70 by the sliding control unit 92, the pressed blade edge 51 is slid on the surface SF approximately along the direction in which the side portion PS is projected onto the upper surface SF1. In the present embodiment, the side part PS of the blade edge 51 is the front part during sliding, and the pressed blade edge 51 is on the surface SF of the glass substrate 4 in the direction DA (+ X axis in the figure). Direction). The direction DA corresponds to a direction obtained by projecting the axial direction AX extending from the blade edge 51 onto the surface SF. During sliding, the blade edge 51 is dragged on the surface SF by the shank 52.
 刃先51が摺動させられることによってガラス基板4に塑性変形が生じることで、ガラス基板4の表面SF上に、溝形状を有する少なくとも1つのトレンチラインTL(図3(A)または(B))が形成される。トレンチラインTLはガラス基板4の塑性変形によって生じるが、この際にガラス基板4が若干削れてもよい。ただしこのような削れは微細な破片を生じ得ることから、なるべく少ないことが好ましい。 By causing plastic deformation of the glass substrate 4 by sliding the blade edge 51, at least one trench line TL having a groove shape on the surface SF of the glass substrate 4 (FIG. 3 (A) or (B)). Is formed. Although the trench line TL is generated by plastic deformation of the glass substrate 4, the glass substrate 4 may be slightly shaved at this time. However, since such scraping can generate fine fragments, it is preferable that the amount is as small as possible.
 刃先51の摺動によって、クラックを伴わずにトレンチラインTLが形成される場合(図3(A))と、トレンチラインTLが形成されるとともにクラックラインCLが実質的にほぼ同時に形成される場合とがある。クラックラインCLは、トレンチラインTLのくぼみから厚さ方向DTに伸展したクラックであり、表面SF上においては線状に延びている。 When the trench line TL is formed without a crack by sliding the blade edge 51 (FIG. 3A), and when the trench line TL is formed and the crack line CL is formed substantially at the same time. There is. The crack line CL is a crack extending in the thickness direction DT from the recess of the trench line TL, and extends linearly on the surface SF.
 前者の場合、トレンチラインTLを形成する工程は、トレンチラインTLの直下においてガラス基板4がトレンチラインTLの延在方向(図中、X軸方向)と交差する方向DC(図中、Y軸方向)において連続的につながっている状態であるクラックレス状態が得られるように行なわれる。クラックレス状態を得るためには、刃先51に加えられる荷重は、クラックが発生しない程度に小さく、かつ塑性変形が発生する程度に大きくされる。この、クラックレス状態でのトレンチラインTLの形成(図3(A))の後に、後述する方法により、トレンチラインTLに沿って厚さ方向DTにおけるガラス基板4のクラックを伸展させることによって、クラックラインCL(図3(B))を形成し得る。クラックラインCLの形成によって、クラックレス状態が破られる。つまりクラックラインCLは、トレンチラインTLの直下でトレンチラインTLと交差する方向DCにおいてガラス基板4の連続的なつながりを断つ。 In the former case, the step of forming the trench line TL is performed in the direction DC (Y-axis direction in the drawing) in which the glass substrate 4 intersects the extending direction (X-axis direction in the drawing) of the trench line TL immediately below the trench line TL. ) In such a way that a crackless state, which is continuously connected, is obtained. In order to obtain a crackless state, the load applied to the blade edge 51 is made small to the extent that no cracks are generated and large to the extent that plastic deformation occurs. After the formation of the trench line TL in the crackless state (FIG. 3A), the cracks of the glass substrate 4 in the thickness direction DT are extended along the trench line TL by a method described later, thereby generating a crack. A line CL (FIG. 3B) may be formed. The crackless state is broken by the formation of the crack line CL. That is, the crack line CL breaks the continuous connection of the glass substrate 4 in the direction DC intersecting the trench line TL immediately below the trench line TL.
 いずれの場合においても、クラックラインCLに沿ってガラス基板4が分断される。この際に、必要に応じて、いわゆるブレーク工程が行なわれる。 In any case, the glass substrate 4 is divided along the crack line CL. At this time, a so-called break process is performed as necessary.
 摺動制御部92によって、刃先51が摺動させられている際に刃先51の前部としての側部PSにおける複数の位置(たとえば、図4における位置O1およびO2)がガラス基板4の表面SFと同じ高さの位置とされる。その目的で、摺動している刃先51に加えられる荷重が変化させられる。荷重は、加圧部63が発生する力を調整することによって変化させられる。位置O1およびO2は、たとえば、高さにして0.5~2.5μm程度、互いに離れていることが好ましい。 When the cutting edge 51 is being slid by the sliding control unit 92, a plurality of positions (for example, positions O1 and O2 in FIG. 4) on the side portion PS as the front part of the cutting edge 51 are the surface SF of the glass substrate 4. And the same height. For that purpose, the load applied to the sliding blade edge 51 is changed. The load can be changed by adjusting the force generated by the pressurizing unit 63. The positions O1 and O2 are preferably separated from each other by, for example, about 0.5 to 2.5 μm in height.
 なお位置O1およびO2のみがガラス基板4の表面SFと同じ高さの位置とされる必要はなく、摺動中に表面SFが位置O1およびO2の間を連続的に変位してもよい。この場合、位置O1およびO2の間の任意の位置が、表面SFと同じ高さを有する時点を有する。 Note that only the positions O1 and O2 need not be the same height as the surface SF of the glass substrate 4, and the surface SF may be continuously displaced between the positions O1 and O2 during sliding. In this case, any position between the positions O1 and O2 has a time point having the same height as the surface SF.
 本実施の形態によれば、1つのガラス基板4上において刃先51が摺動させられている際に刃先51への荷重が変化させられる。荷重は、たとえば、その最小値に対して最大値が1.5~2倍程度となるように変化させることができる。これにより、刃先51の前部としての側部PSにおける位置O1およびO2(図4)がガラス基板4の表面SFと同じ高さの位置とされる。よって、1つのガラス基板4上において刃先51が摺動させられている際に刃先51の前部における一の位置のみ(たとえば、位置O1のみ)がガラス基板4の表面SFと同じ高さの位置とされる場合に比して、刃先51が特に磨耗する位置が拡散される。よって刃先51の寿命を長くすることができる。 According to the present embodiment, the load on the blade edge 51 is changed when the blade edge 51 is slid on one glass substrate 4. The load can be changed, for example, so that the maximum value is about 1.5 to 2 times the minimum value. Thereby, the positions O1 and O2 (FIG. 4) in the side part PS as the front part of the blade edge 51 are set to the same height as the surface SF of the glass substrate 4. Therefore, when the cutting edge 51 is slid on one glass substrate 4, only one position (for example, only the position O1) at the front portion of the cutting edge 51 is the same height as the surface SF of the glass substrate 4. Compared with the case where it is taken, the position where the blade edge 51 is particularly worn is diffused. Therefore, the life of the blade edge 51 can be extended.
 摺動中の刃先51に与える荷重は、1つの脆性基板に対するスクライブにおける任意の時期に変化させ得る。以下、その例について説明する。 The load applied to the blade edge 51 during sliding can be changed at any time during scribing for one brittle substrate. Examples thereof will be described below.
 図5(A)~(C)の各々は、脆性基板としてのガラス基板4に対するスクライブの例を示す。図中、太線は相対的に大きい荷重を、細線は相対的に小さい荷重を表している。 5A to 5C show examples of scribing on the glass substrate 4 as a brittle substrate. In the figure, a thick line represents a relatively large load, and a thin line represents a relatively small load.
 図5(A)の例においては、ガラス基板4の表面SF上における刃先51(図2(A))の摺動が、X軸に沿う直線SLXmおよびY軸に沿う直線SLYmに沿って行なわれる。直線SLXmの各々における摺動中に刃先51へ荷重変化が与えられる。直線SLYmの各々においても同様である。 In the example of FIG. 5A, sliding of the blade edge 51 (FIG. 2A) on the surface SF of the glass substrate 4 is performed along a straight line SLXm along the X axis and a straight line SLYm along the Y axis. . A load change is applied to the cutting edge 51 during sliding in each of the straight lines SLXm. The same applies to each of the straight lines SLYm.
 図5(B)の例においては、ガラス基板4の表面SF上における刃先51(図2(A))の摺動が、X軸に沿う直線SLXwおよびSLXsと、Y軸に沿う直線SLYwおよびSLYsとに沿って行なわれる。各直線における摺動中の刃先51への荷重は一定である。直線SLXsにおける荷重と、直線SLXwにおける荷重とは、互いに異なっている。言い換えれば、直線SLXsおよびSLXwの間で荷重が変化させられる。またSLYsにおける荷重と、直線SLYwにおける荷重とは、互いに異なっている。言い換えれば、直線SLYsおよびSLYwの間で荷重が変化させられる。本例においては、互いに隣り合う直線間で、用いられる荷重が異なっている。たとえば、一の方向(図中、右方向)に並んでいる直線SLYs、SLYw、SLYsおよびSLYwの順で摺動が行なわれる場合に、これら直線上での摺動において交互に荷重の強弱変化が付与される。 In the example of FIG. 5B, sliding of the blade edge 51 (FIG. 2A) on the surface SF of the glass substrate 4 is performed by straight lines SLXw and SLXs along the X axis, and straight lines SLYw and SLYs along the Y axis. It is performed along with. The load on the blade edge 51 during sliding in each straight line is constant. The load on the straight line SLXs and the load on the straight line SLXw are different from each other. In other words, the load is changed between the straight lines SLXs and SLXw. The load on SLYs and the load on straight line SLYw are different from each other. In other words, the load is changed between the straight lines SLYs and SLYw. In this example, the load used differs between the mutually adjacent straight lines. For example, when sliding is performed in the order of the straight lines SLYs, SLYw, SLYs, and SLYw arranged in one direction (right direction in the figure), the load intensity changes alternately in sliding on these straight lines. Is granted.
 図5(C)の例においては、ガラス基板4の表面SF上における刃先51の摺動が、X軸に沿う直線SLXsおよびY軸に沿う直線SLYwに沿って行なわれる。各直線における摺動中の刃先51への荷重は一定である。直線SLXsにおける荷重と、直線SLYwにおける荷重とは、互いに異なっている。言い換えれば、直線SLXsおよびSLYwの間で荷重が変化させられる。 In the example of FIG. 5C, sliding of the blade edge 51 on the surface SF of the glass substrate 4 is performed along a straight line SLXs along the X axis and a straight line SLYw along the Y axis. The load on the blade edge 51 during sliding in each straight line is constant. The load on the straight line SLXs and the load on the straight line SLYw are different from each other. In other words, the load is changed between the straight lines SLXs and SLYw.
 図6の例においては、1つのセル基板4C(脆性基板)の表面SF上で摺動が行なわれる。セル基板4Cは脆性材料から作られた基板(たとえばガラス基板)4Tおよび4Bを有する。基板4Tおよび4Bは接合部9を介して互いに積層されている。これにより、表面SFは、基板4Tからなる部分STと、基板4Bからなる部分SBとを有する。セル基板4Cの表面SF上における刃先51の摺動が部分ST上(矢印SLTw参照)および部分SB上(矢印SLBs参照)において行なわれる。部分ST上における摺動中の刃先51への荷重は一定であり、また部分SB上における摺動中の刃先51への荷重は一定である。一方、部分ST上に比して部分SB上において、摺動中の刃先51への荷重が大きくされる。言い換えれば、部分STおよびSBの間で荷重が変化させられる。 In the example of FIG. 6, sliding is performed on the surface SF of one cell substrate 4C (brittle substrate). The cell substrate 4C includes substrates (for example, glass substrates) 4T and 4B made of a brittle material. The substrates 4T and 4B are stacked on each other via the joint 9. Thereby, the surface SF has a portion ST made of the substrate 4T and a portion SB made of the substrate 4B. Sliding of the blade edge 51 on the surface SF of the cell substrate 4C is performed on the part ST (see arrow SLTw) and the part SB (see arrow SLBs). The load on the cutting edge 51 during sliding on the portion ST is constant, and the load on the cutting edge 51 during sliding on the portion SB is constant. On the other hand, the load on the sliding blade edge 51 is increased on the portion SB as compared with the portion ST. In other words, the load is changed between the portions ST and SB.
 (実施の形態2)
 図7(A)および(B)を参照して、本実施の形態においては、刃先51が方向DA(図1(A)および(B))とは逆の方向DBへ摺動させられる。なお、上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。
(Embodiment 2)
7A and 7B, in the present embodiment, blade edge 51 is slid in direction DB opposite to direction DA (FIGS. 1A and 1B). Since the configuration other than the above is substantially the same as the configuration of the first embodiment described above, the same or corresponding elements are denoted by the same reference numerals, and description thereof is not repeated.
 本実施の形態によれば、1つのガラス基板4上において刃先51が摺動させられている際に刃先51への荷重が変化させられることによって、刃先51の前部としての天面SD1における位置O1およびO2(図8(A))がガラス基板4の表面SFと同じ高さの位置とされる。これにより、1つのガラス基板4上において刃先51が摺動させられている際に刃先51の前部における一の位置のみがガラス基板4の表面SFと同じ高さの位置とされる場合に比して、刃先51が特に磨耗する位置が拡散される。よって刃先51の寿命を長くすることができる。 According to the present embodiment, the load on the blade edge 51 is changed when the blade edge 51 is slid on one glass substrate 4, whereby the position on the top surface SD <b> 1 as the front portion of the blade edge 51. O1 and O2 (FIG. 8A) are at the same height as the surface SF of the glass substrate 4. Thereby, when the cutting edge 51 is slid on one glass substrate 4, only one position in the front part of the cutting edge 51 is set to the same height as the surface SF of the glass substrate 4. Thus, the position where the blade edge 51 is particularly worn is diffused. Therefore, the life of the blade edge 51 can be extended.
 また刃先51が方向DBへ摺動する場合は、刃先51が方向DAへ摺動する場合と異なり、位置O1およびO2の各々で、ガラス基板4と刃先51とが所定の長さをもって接触することとなるので(図8(B)参照)、刃先51の寿命をより長くすることができる。 When the blade edge 51 slides in the direction DB, the glass substrate 4 and the blade edge 51 are in contact with each other at a predetermined length at each of the positions O1 and O2, unlike when the blade edge 51 slides in the direction DA. Thus (see FIG. 8B), the life of the blade edge 51 can be further extended.
 (実施の形態3)
 図9は本実施の形態におけるスクライブ装置100Vの構成を概略的に示す図である。図中、分断されることになるガラス基板4が2点鎖線で示されている。また説明の便宜のためにXYZ直交座標系が示されており、図示された例においては、X方向に沿った分断が行なわれる。スクライブ装置100Vはスクライブヘッド60Vと制御部90Vとを有する。
(Embodiment 3)
FIG. 9 is a diagram schematically showing the configuration of the scribing apparatus 100V in the present embodiment. In the figure, the glass substrate 4 to be divided is indicated by a two-dot chain line. Further, for convenience of explanation, an XYZ orthogonal coordinate system is shown, and in the illustrated example, division along the X direction is performed. The scribing device 100V includes a scribing head 60V and a control unit 90V.
 スクライブヘッド60Vは、刃先51(図2(A))が摺動させられる際に刃先51の姿勢を変化させる(図中、矢印参照)ことができる姿勢調整部61Vを有する。姿勢の変化として、たとえば、表面SFに対する軸方向AX(図2(A)または図7(A))の角度が変化させられる。 The scribing head 60V has an attitude adjustment unit 61V that can change the attitude of the cutting edge 51 (see the arrow in the figure) when the cutting edge 51 (FIG. 2A) is slid. As the change in posture, for example, the angle of the axial direction AX (FIG. 2A or FIG. 7A) with respect to the surface SF is changed.
 制御部90Vは、駆動部70、加圧部63および姿勢調整部61Vを制御するものであり、摺動制御部92Vを含む。摺動制御部92Vは、ガラス基板4の表面SF上で刃先51の前部が向く方向へ刃先51が摺動するように駆動部70を制御する。また摺動制御部92Vは、ガラス基板4上を摺動している刃先51の前部における複数の位置がガラス基板4の表面SFと同じ高さの位置とされるように姿勢調整部61Vを制御する。言い換えれば、摺動制御部92Vは、姿勢調整部61Vを制御することによって、ガラス基板4上を摺動している刃先51の前部における、ガラス基板4の表面SFと同じ高さの位置を変化させる。この目的で摺動制御部92Vは刃先51の姿勢を変化させる。たとえば、刃先51の角度を1~5°変化させることが好ましい。刃先51の姿勢が変化すると、刃先51が表面SF中へ食い込む程度が変化することにより、刃先51の前部におけるガラス基板4の表面SFと同じ高さの位置が変化する。 The control unit 90V controls the drive unit 70, the pressurizing unit 63, and the posture adjusting unit 61V, and includes a sliding control unit 92V. The sliding control unit 92 </ b> V controls the driving unit 70 so that the cutting edge 51 slides in the direction in which the front part of the cutting edge 51 faces on the surface SF of the glass substrate 4. Further, the sliding control unit 92 </ b> V controls the posture adjusting unit 61 </ b> V so that a plurality of positions at the front part of the cutting edge 51 sliding on the glass substrate 4 are at the same height as the surface SF of the glass substrate 4. Control. In other words, the sliding control unit 92V controls the posture adjusting unit 61V so that the position of the same height as the surface SF of the glass substrate 4 at the front portion of the blade edge 51 sliding on the glass substrate 4 is obtained. Change. For this purpose, the sliding control unit 92V changes the posture of the cutting edge 51. For example, it is preferable to change the angle of the blade edge 51 by 1 to 5 °. When the posture of the blade edge 51 changes, the degree of the cutting edge 51 biting into the surface SF changes, so that the position at the same height as the surface SF of the glass substrate 4 at the front portion of the blade edge 51 changes.
 図10は本実施の形態におけるスクライブヘッド60V(図9)の変形例としてのスクライブヘッド60Wの構成を概略的に示す図である。スクライブヘッド60Wは、ボディ部110と、カッティング器具50と、加圧部63Wと、本体部64Wとを有する。カッティング器具50はボディ部110に取り付けられている。カッティング器具50は、ボディ部110からの作用によって、ガラス基板4の表面SFに荷重Fで押し付けられる。ボディ部110はボディ本体111およびカッティング器具支持部材112を有する。カッティング器具支持部材112は、カッティング器具50のシャンク52の軸方向AX(図2)を調整可能に、シャンク52を支持している。本体部64Wはベース本体151およびリミッタ152を有する。ベース本体151は、ボディ部110を回動可能に支持する支点STを有する。リミッタ152は、ボディ部110が下方に向かって回動可能な範囲を制限している。加圧部63Wは本体部64Wに支持されている。加圧部63Wは、ガラス基板4の表面SF上へカッティング器具50が押し付けられるようにボディ部110に連続的な力LDを加え得るものである。加圧部63Wは、力LDを発生させるためのエアシリンダと、力を伝達するための押圧ピンとを有する。 FIG. 10 is a diagram schematically showing a configuration of a scribe head 60W as a modification of the scribe head 60V (FIG. 9) in the present embodiment. Scribe head 60W has body part 110, cutting instrument 50, pressurizing part 63W, and main part 64W. The cutting instrument 50 is attached to the body part 110. The cutting tool 50 is pressed against the surface SF of the glass substrate 4 with a load F by the action from the body portion 110. The body part 110 includes a body main body 111 and a cutting tool support member 112. The cutting tool support member 112 supports the shank 52 so that the axial direction AX (FIG. 2) of the shank 52 of the cutting tool 50 can be adjusted. The main body portion 64 </ b> W includes a base main body 151 and a limiter 152. The base body 151 has a fulcrum ST that supports the body 110 so as to be rotatable. The limiter 152 limits the range in which the body portion 110 can rotate downward. The pressurizing part 63W is supported by the main body part 64W. The pressurizing part 63W can apply a continuous force LD to the body part 110 so that the cutting tool 50 is pressed onto the surface SF of the glass substrate 4. The pressurizing unit 63W includes an air cylinder for generating the force LD and a pressing pin for transmitting the force.
 本変形例のスクライブヘッド60Wによれば、加圧部63Wによる力LDを変化させることによって、刃先51(図2)に加えられる荷重Fが変化すると同時に、支点ST周りのボディ部110の回動によって刃先51の姿勢も変化させることができる。従って、スクライブ中においても刃先51の姿勢を容易に変更することができる。またスクライブヘッド60Wは、スクライブ中の姿勢調整のための専用の機構を有する場合に比して、簡素な構成を有する。よってスクライブヘッド60Wは、容易に軽量化することができ、よって低荷重でのスクライブにも適している。 According to the scribing head 60W of this modification, the load F applied to the blade edge 51 (FIG. 2) is changed by changing the force LD by the pressurizing part 63W, and at the same time, the body part 110 is rotated around the fulcrum ST. Accordingly, the posture of the blade edge 51 can be changed. Therefore, the posture of the blade edge 51 can be easily changed even during scribing. The scribe head 60W has a simple configuration as compared with a case where a dedicated mechanism for adjusting the posture during scribing is provided. Therefore, the scribe head 60W can be easily reduced in weight, and is therefore suitable for scribe with a low load.
 なお、上記以外の構成については、上述した実施の形態1または2の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。 Since the configuration other than the above is substantially the same as the configuration of the first or second embodiment described above, the same or corresponding elements are denoted by the same reference numerals and description thereof will not be repeated.
 (実施の形態4)
 実施の形態4以降における脆性基板の分断方法においては、実施の形態1~3のいずれかで説明した方法を用いてクラックレス状態のトレンチラインTL(図3(A))が形成され、そしてトレンチラインTLに沿ったクラックラインCL(図3(B))が形成される。なお、前述したように、トレンチラインTLの形成のために刃先51が摺動される際に、刃先51の前部における複数の位置がガラス基板4の表面SFと同じ高さの位置とされる。
(Embodiment 4)
In the method for dividing a brittle substrate in the fourth and subsequent embodiments, a crackless trench line TL (FIG. 3A) is formed using the method described in any of the first to third embodiments, and the trench A crack line CL (FIG. 3B) along the line TL is formed. As described above, when the blade edge 51 is slid to form the trench line TL, a plurality of positions in the front portion of the blade edge 51 are set to the same height as the surface SF of the glass substrate 4. .
 図11(A)を参照して、まずガラス基板4が準備される。ガラス基板4は、表面SF(図2(A))として、平坦な上面SF1を有する。上面SF1を囲む縁は、互いに対向する辺ED1および辺ED2を含む。図11(A)で示す例においては、縁は長方形状である。よって辺ED1およびED2は互いに平行な辺である。また図11(A)で示す例においては辺ED1およびED2は長方形の短辺である。またガラス基板4は、上面SF1に垂直な厚さ方向DT(図2(A))を有する。 Referring to FIG. 11A, first, a glass substrate 4 is prepared. The glass substrate 4 has a flat upper surface SF1 as the surface SF (FIG. 2A). The edge surrounding the upper surface SF1 includes a side ED1 and a side ED2 that face each other. In the example shown in FIG. 11A, the edge has a rectangular shape. Therefore, the sides ED1 and ED2 are sides parallel to each other. In the example shown in FIG. 11A, the sides ED1 and ED2 are rectangular short sides. The glass substrate 4 has a thickness direction DT (FIG. 2A) perpendicular to the upper surface SF1.
 次に、上面SF1に刃先51が位置N1で押し付けられる。位置N1の詳細は後述する。刃先51の押し付けは、図2(A)を参照して、ガラス基板4の上面SF1上で刃先51の突起部PPが辺ED1および側部PSの間に配置されるように、かつ刃先51の側部PSが突起部PPと辺ED2の間に配置されるように行なわれる。 Next, the blade edge 51 is pressed against the upper surface SF1 at the position N1. Details of the position N1 will be described later. With reference to FIG. 2A, the cutting edge 51 is pressed such that the projection PP of the cutting edge 51 is disposed between the side ED1 and the side portion PS on the upper surface SF1 of the glass substrate 4 and the cutting edge 51 is pressed. The side PS is arranged between the protrusion PP and the side ED2.
 次に、上面SF1上にトレンチラインTLa~TLe(総称してトレンチラインTLとも称する)が形成される。この際、実施の形態1で説明したように、刃先51が摺動される際に刃先51へ荷重または姿勢の変化が与えられ得る。具体的には、図5(A)の直線SLXmと同様にトレンチラインTLa~TLeの各々において刃先51の荷重または姿勢が変化させられてもよい。あるいは、図5(B)の直線SLXwおよびSLXsと同様に、トレンチラインTLa~TLeのうち異なるトレンチラインの間で刃先51の荷重または姿勢が変化させられてもよい。たとえば、トレンチラインTLa、TLcおよびTLeが相対的に大きい荷重で形成され、トレンチラインTLbおよびTLdが相対的に小さい荷重で形成されてもよい。 Next, trench lines TLa to TLe (also collectively referred to as trench lines TL) are formed on the upper surface SF1. At this time, as described in the first embodiment, when the blade edge 51 is slid, a change in load or posture can be given to the blade edge 51. Specifically, the load or posture of the blade edge 51 may be changed in each of the trench lines TLa to TLe, similarly to the straight line SLXm in FIG. Alternatively, similarly to the straight lines SLXw and SLXs in FIG. 5B, the load or posture of the blade edge 51 may be changed between different trench lines among the trench lines TLa to TLe. For example, the trench lines TLa, TLc, and TLe may be formed with a relatively large load, and the trench lines TLb and TLd may be formed with a relatively small load.
 トレンチラインTLの形成は、位置N1(第1の位置)および位置N3の間で行なわれる。位置N1およびN3の間には位置N2(第2の位置)が位置する。よってトレンチラインTLは、位置N1およびN2の間と、位置N2およびN3の間とに形成される。位置N1およびN3はガラス基板4の上面SF1の縁から離れている。よって、形成されるトレンチラインTLは、図11(A)に示すようにガラス基板4の縁から離れて位置してもよく、あるいは、その一方または両方が上面SF1の縁に位置してもよい。形成されるトレンチラインTLは、前者の場合はガラス基板4の縁から離れており、後者の場合はガラス基板4の縁に接している。 The trench line TL is formed between the position N1 (first position) and the position N3. A position N2 (second position) is located between the positions N1 and N3. Therefore, trench line TL is formed between positions N1 and N2 and between positions N2 and N3. The positions N1 and N3 are away from the edge of the upper surface SF1 of the glass substrate 4. Therefore, the formed trench line TL may be located away from the edge of the glass substrate 4 as shown in FIG. 11A, or one or both of them may be located at the edge of the upper surface SF1. . The formed trench line TL is separated from the edge of the glass substrate 4 in the former case, and is in contact with the edge of the glass substrate 4 in the latter case.
 位置N1およびN2のうち位置N1の方が辺ED1により近く、また位置N1およびN2のうち位置N2の方が辺ED2により近い。なお図11(A)に示す例では、位置N1は辺ED1およびED2のうち辺ED1に近く、位置N2は辺ED1およびED2のうち辺ED2に近いが、位置N1およびN2の両方が辺ED1またはED2のいずれか一方の近くに位置してもよい。 Among the positions N1 and N2, the position N1 is closer to the side ED1, and the position N2 is closer to the side ED2 among the positions N1 and N2. In the example shown in FIG. 11A, the position N1 is close to the side ED1 of the sides ED1 and ED2, and the position N2 is close to the side ED2 of the sides ED1 and ED2, but both the positions N1 and N2 are the sides ED1 or It may be located near either one of ED2.
 トレンチラインTLが形成される際には、本実施の形態においては、位置N1から位置N2へ刃先51が変位させられ、さらに位置N2から位置N3へ変位させられる。すなわち、図2(A)を参照して、刃先51が、辺ED1から辺ED2へ向かう方向である方向DAへ変位させられる。方向DAは、刃先51から延びる軸方向AXを上面SF1上へ射影した方向に対応している。この場合、刃先51はシャンク52によって上面SF1上を引き摺られる。 When the trench line TL is formed, in the present embodiment, the blade edge 51 is displaced from the position N1 to the position N2, and is further displaced from the position N2 to the position N3. That is, with reference to FIG. 2A, the blade edge 51 is displaced in a direction DA that is a direction from the side ED1 toward the side ED2. The direction DA corresponds to a direction in which the axial direction AX extending from the blade edge 51 is projected onto the upper surface SF1. In this case, the blade edge 51 is dragged on the upper surface SF <b> 1 by the shank 52.
 図11(B)を参照して、トレンチラインTLが形成された後に、トレンチラインTLに沿って位置N2から位置N1の方へ(図中、破線矢印参照)、厚さ方向DTにおけるガラス基板4のクラックを伸展させることによってクラックラインCL(図3(B))が形成される。クラックラインCLの形成は、アシストラインALおよびトレンチラインTLが位置N2で互いに交差することによって開始される。この目的で、トレンチラインTLを形成した後にアシストラインALが形成される。アシストラインALは、厚さ方向DTにおけるクラックをともなう通常のスクライブラインであり、トレンチラインTL付近の内部応力の歪みを解放するものである。アシストラインALの形成方法は、特に限定されないが、図11(B)に示すように、上面SF1の縁を基点として形成されてもよい。 Referring to FIG. 11B, after trench line TL is formed, glass substrate 4 in thickness direction DT extends from position N2 toward position N1 along trench line TL (see the broken line arrow in the figure). The crack line CL (FIG. 3B) is formed by extending the cracks. Formation of the crack line CL is started when the assist line AL and the trench line TL intersect each other at the position N2. For this purpose, the assist line AL is formed after the trench line TL is formed. The assist line AL is a normal scribe line with a crack in the thickness direction DT, and releases internal stress distortion in the vicinity of the trench line TL. The method of forming the assist line AL is not particularly limited, but may be formed using the edge of the upper surface SF1 as a base point as shown in FIG.
 なお位置N2から位置N1への方向に比して、位置N2から位置N3への方向へは、クラックラインCLが形成されにくい。つまりクラックラインCLの伸展のしやすさには方向依存性が存在する。よってクラックラインCLが位置N1およびN2の間には形成され位置N2およびN3の間には形成されないという現象が生じ得る。本実施の形態は位置N1およびN2間に沿ったガラス基板4の分断を目的としており、位置N2およびN3間に沿ったガラス基板4の分離は目的としていない。よって位置N1およびN2間でクラックラインCLが形成されることが必要である一方で、位置N2およびN3間でのクラックラインCLの形成されにくさは問題とはならない。 Note that the crack line CL is less likely to be formed in the direction from the position N2 to the position N3 than in the direction from the position N2 to the position N1. That is, the ease of extension of the crack line CL has a direction dependency. Therefore, the phenomenon that the crack line CL is formed between the positions N1 and N2 but not between the positions N2 and N3 may occur. The present embodiment is intended to divide the glass substrate 4 along the positions N1 and N2, and is not intended to separate the glass substrate 4 along the positions N2 and N3. Therefore, while it is necessary to form the crack line CL between the positions N1 and N2, the difficulty of forming the crack line CL between the positions N2 and N3 is not a problem.
 次に、クラックラインCLに沿ってガラス基板4が分断される。具体的にはブレーク工程が行なわれる。なおクラックラインCLがその形成時に厚さ方向DTに完全に進行した場合は、クラックラインCLの形成とガラス基板4の分断とが同時に生じ得る。この場合、ブレーク工程を省略し得る。 Next, the glass substrate 4 is divided along the crack line CL. Specifically, a break process is performed. Note that, when the crack line CL is completely advanced in the thickness direction DT at the time of formation, the formation of the crack line CL and the division of the glass substrate 4 may occur at the same time. In this case, the break process can be omitted.
 以上によりガラス基板4の分断が行なわれる。 Thus, the glass substrate 4 is divided.
 次に、上記分断方法の第1~第3の変形例について、以下に説明する。 Next, first to third modifications of the above dividing method will be described below.
 図12(A)を参照して、第1の変形例は、アシストラインALとトレンチラインTLとの交差が、クラックラインCL(図11(B))の形成開始のきっかけとして不十分な場合に関するものである。図12(B)を参照して、ガラス基板4へ、曲げモーメントなどを発生させる外力を加えることで、アシストラインALに沿って厚さ方向DTにおけるクラックが伸展し、その結果、ガラス基板4が分離される。これによりクラックラインCLの形成が開始される。なお、図12(A)においてはアシストラインALがガラス基板4の上面SF1上に形成されるが、ガラス基板4を分離するためのアシストラインALはガラス基板4の下面(上面SF1と反対の面)上に形成されてもよい。この場合、アシストラインALおよびトレンチラインTLは、平面レイアウト上、位置N2で互いに交差するが、互いに直接接触はしない。 Referring to FIG. 12A, the first modification relates to a case where the intersection of the assist line AL and the trench line TL is insufficient as a trigger for starting the formation of the crack line CL (FIG. 11B). Is. Referring to FIG. 12B, by applying an external force that generates a bending moment or the like to glass substrate 4, a crack in thickness direction DT extends along assist line AL. As a result, glass substrate 4 is To be separated. Thereby, formation of the crack line CL is started. In FIG. 12A, the assist line AL is formed on the upper surface SF1 of the glass substrate 4, but the assist line AL for separating the glass substrate 4 is the lower surface of the glass substrate 4 (the surface opposite to the upper surface SF1). ) May be formed on. In this case, the assist line AL and the trench line TL intersect each other at the position N2 in the planar layout, but do not directly contact each other.
 図13を参照して、第2の変形例においては、ガラス基板4の上面SF1に刃先51が位置N3で押し付けられる。トレンチラインTLが形成される際には、本変形例においては、位置N3から位置N2へ刃先51が変位させられ、さらに位置N2から位置N1へ変位させられる。すなわち、図7を参照して、刃先51が、辺ED2から辺ED1へ向かう方向である方向DBへ変位させられる。方向DBは、刃先51から延びる軸方向AXを上面SF1上へ射影した方向と反対方向に対応している。この場合、刃先51はシャンク52によって上面SF1上を押し進められる。 Referring to FIG. 13, in the second modification, the blade edge 51 is pressed against the upper surface SF1 of the glass substrate 4 at the position N3. When the trench line TL is formed, in the present modification, the blade edge 51 is displaced from the position N3 to the position N2, and is further displaced from the position N2 to the position N1. That is, referring to FIG. 7, the blade edge 51 is displaced in a direction DB that is a direction from the side ED2 toward the side ED1. The direction DB corresponds to a direction opposite to the direction in which the axial direction AX extending from the blade edge 51 is projected onto the upper surface SF1. In this case, the blade edge 51 is pushed forward on the upper surface SF 1 by the shank 52.
 図14を参照して、第3の変形例においては、複数のトレンチラインTLに含まれる各トレンチラインTLmが形成される際に、刃先51はガラス基板4の上面SF1に位置N1に比して位置N2でより大きな荷重で押し付けられる。具体的には、位置N4を位置N1およびN2の間の位置として、トレンチラインTLmの形成が位置N4に至った時点で、刃先51の荷重が高められる。言い換えれば、トレンチラインTLmの荷重が、位置N1に比して、トレンチラインTLmの終端部である位置N4およびN3の間で高められる。これにより、終端部以外での荷重を軽減しつつ、位置N2からのクラックラインCLの形成を誘起されやすくすることができる。 Referring to FIG. 14, in the third modification, when each trench line TLm included in the plurality of trench lines TL is formed, the blade edge 51 is formed on the upper surface SF <b> 1 of the glass substrate 4 as compared with the position N <b> 1. It is pressed with a larger load at the position N2. Specifically, with the position N4 as a position between the positions N1 and N2, the load on the blade edge 51 is increased when the formation of the trench line TLm reaches the position N4. In other words, the load on the trench line TLm is increased between the positions N4 and N3 which are the end portions of the trench line TLm, as compared with the position N1. Thereby, formation of the crack line CL from the position N2 can be easily induced while reducing a load at a portion other than the terminal portion.
 本実施の形態によれば、トレンチラインTLからクラックラインCLを、より確実に形成することができる。また実施の形態1~3と同様、刃先51が磨耗する位置が拡散されることにより、刃先51の寿命を長くすることができる。 According to the present embodiment, the crack line CL can be more reliably formed from the trench line TL. Similarly to the first to third embodiments, the life of the cutting edge 51 can be extended by diffusing the position where the cutting edge 51 is worn.
 (実施の形態5)
 本実施の形態における脆性基板の分断方法について、図15~図17を用いつつ、以下に説明する。
(Embodiment 5)
A method for dividing a brittle substrate in the present embodiment will be described below with reference to FIGS.
 図15を参照して、本実施の形態においてはアシストラインALがトレンチラインTLの形成前に形成される。アシストラインALの形成方法自体は、図11(B)(実施の形態4)と同様である。 Referring to FIG. 15, in the present embodiment, assist line AL is formed before formation of trench line TL. The method of forming the assist line AL is the same as that in FIG. 11B (Embodiment 4).
 図16を参照して、次に、上面SF1に刃先51が押し付けられ、そしてトレンチラインTLが形成される。トレンチラインTLの形成方法自体は、図11(A)(実施の形態4)と同様である。アシストラインALおよびトレンチラインTLは位置N2で互いに交差する。 Referring to FIG. 16, next, the blade edge 51 is pressed against the upper surface SF1, and the trench line TL is formed. The method of forming the trench line TL itself is the same as that in FIG. 11A (Embodiment 4). The assist line AL and the trench line TL intersect each other at the position N2.
 図17を参照して、次に、ガラス基板4へ曲げモーメントなどを発生させる外力を加える通常のブレーク工程によって、アシストラインALに沿ってガラス基板4が分離される。これにより、実施の形態4と同様のクラックラインCLの形成が開始される(図中、破線矢印参照)。なお、図15においてはアシストラインALがガラス基板4の上面SF1上に形成されるが、ガラス基板4を分離するためのアシストラインALはガラス基板4の下面上に形成されてもよい。この場合、アシストラインALおよびトレンチラインTLは、平面レイアウト上、位置N2で互いに交差するが、互いに直接接触はしない。 Referring to FIG. 17, next, glass substrate 4 is separated along assist line AL by a normal break process in which an external force that generates a bending moment or the like is applied to glass substrate 4. Thereby, formation of the crack line CL similar to that of the fourth embodiment is started (see the broken line arrow in the figure). In FIG. 15, the assist line AL is formed on the upper surface SF <b> 1 of the glass substrate 4, but the assist line AL for separating the glass substrate 4 may be formed on the lower surface of the glass substrate 4. In this case, the assist line AL and the trench line TL intersect each other at the position N2 in the planar layout, but do not directly contact each other.
 なお、上記以外の構成については、上述した実施の形態4の構成とほぼ同じである。 The configuration other than the above is almost the same as the configuration of the fourth embodiment described above.
 図18を参照して、第1の変形例においては、クラックラインCLの形成が、アシストラインALおよびスクライブラインSLが位置N2で互いに交差することによって開始される。 Referring to FIG. 18, in the first modification, formation of crack line CL is started when assist line AL and scribe line SL intersect each other at position N2.
 図19(A)を参照して、第2の変形例においては、図13(実施の形態4)と同様に、各トレンチラインTLの形成が位置N3から位置N1へ行なわれる。図19(B)を参照して、ガラス基板4へ曲げモーメントなどを発生させる外力を加えることで、アシストラインALに沿ってガラス基板4が分離される。これによりクラックラインCLの形成が開始される(図中、破線矢印参照)。 Referring to FIG. 19A, in the second modified example, each trench line TL is formed from position N3 to position N1, as in FIG. 13 (Embodiment 4). Referring to FIG. 19B, the glass substrate 4 is separated along the assist line AL by applying an external force that generates a bending moment or the like to the glass substrate 4. Thereby, formation of the crack line CL is started (see the broken line arrow in the figure).
 図20を参照して、第3の変形例においては、複数のトレンチラインTLに含まれる各トレンチラインTLmが形成される際に、刃先51はガラス基板4の上面SF1に位置N1に比して位置N2でより大きな力で押し付けられる。具体的には、位置N4を位置N1およびN2の間の位置として、トレンチラインTLmの形成が位置N4に至った時点で、刃先51の荷重が高められる。言い換えれば、トレンチラインTLmの荷重が、位置N1に比して、トレンチラインTLの終端部である位置N4およびN3の間で高められる。これにより、終端部以外での荷重を軽減しつつ、位置N2からのクラックラインCLの形成を誘起されやすくすることができる。 Referring to FIG. 20, in the third modified example, when each trench line TLm included in the plurality of trench lines TL is formed, the blade edge 51 is on the upper surface SF <b> 1 of the glass substrate 4 as compared with the position N <b> 1. It is pressed with a greater force at the position N2. Specifically, with the position N4 as a position between the positions N1 and N2, the load on the blade edge 51 is increased when the formation of the trench line TLm reaches the position N4. In other words, the load on the trench line TLm is increased between the positions N4 and N3, which are the end portions of the trench line TL, as compared with the position N1. Thereby, formation of the crack line CL from the position N2 can be easily induced while reducing a load at a portion other than the terminal portion.
 (実施の形態6)
 図21を参照して、本実施の形態における各トレンチラインTLの形成においては、位置N1から刃先51が辺ED2を越えて摺動させられる。刃先51が辺ED2を通過する際、トレンチラインTL直下の基板内部に生じた応力の歪みが解放され、辺ED2上に位置するトレンチラインTLの端から位置N1へ向かってクラックラインが伸展する。
(Embodiment 6)
Referring to FIG. 21, in formation of each trench line TL in the present embodiment, blade edge 51 is slid beyond side ED2 from position N1. When the blade edge 51 passes the side ED2, the stress distortion generated in the substrate immediately below the trench line TL is released, and a crack line extends from the end of the trench line TL located on the side ED2 toward the position N1.
 トレンチラインTLを形成する際に刃先51に加えられる荷重は一定であってもよいが、位置N1から位置N2へ刃先51が変位させられた際に、位置N2で刃先51に加える荷重が増大させられてもよい。たとえば荷重が50%程度増大される。増大された荷重が加えられた刃先51が辺ED2を越えて摺動させられる。言い換えれば、トレンチラインTLの終端部で刃先51の荷重が増大される。刃先51が辺ED2に達すると、辺ED2上に位置するトレンチラインTLの端から位置N2を経由して位置N1へ向かってクラックラインが伸展する。このように荷重の増大が行われる場合、応力の歪みも増大し、刃先51が辺ED2を通過する際にこの応力の歪みが解放されやすくなるので、クラックラインをより確実に形成することができる。 The load applied to the blade edge 51 when forming the trench line TL may be constant, but when the blade edge 51 is displaced from the position N1 to the position N2, the load applied to the blade edge 51 at the position N2 increases. May be. For example, the load is increased by about 50%. The cutting edge 51 to which the increased load is applied is slid over the side ED2. In other words, the load on the cutting edge 51 is increased at the end of the trench line TL. When the blade edge 51 reaches the side ED2, the crack line extends from the end of the trench line TL located on the side ED2 toward the position N1 via the position N2. When the load is increased in this way, the stress distortion also increases, and the stress distortion is easily released when the cutting edge 51 passes the side ED2, so that the crack line can be formed more reliably. .
 なお、上記以外の構成については、上述した実施の形態4の構成とほぼ同じである。 The configuration other than the above is almost the same as the configuration of the fourth embodiment described above.
 (実施の形態7)
 図22(A)を参照して、本実施の形態における脆性基板の分断方法においては、位置N1から位置N2を経由して辺ED2へ達するトレンチラインTLが形成される。
(Embodiment 7)
Referring to FIG. 22A, in the method for dividing a brittle substrate in the present embodiment, trench line TL is formed from position N1 to side ED2 via position N2.
 図22(B)を参照して、次に位置N2と辺ED2との間に、トレンチラインTL付近の内部応力の歪みを解放させるような応力が加えられる。これによりトレンチラインTLに沿ったクラックラインの形成が誘起される。応力の印加として具体的には、上面SF1上において位置N2と辺ED2との間(図中、破線および辺ED2の間の領域)で、押し付けられた刃先51が摺動させられる。この摺動は辺ED2に達するまで行なわれる。刃先51は好ましくは最初に形成されたトレンチラインTLの軌道に交差するように、より好ましくは最初に形成されたトレンチラインTLの軌道に重なるように摺動される。この再度の摺動の長さは、たとえば0.5mm程度である。またこの再度の摺動は、複数のトレンチラインTL(図22(A))が形成された後にそれぞれに対して行なわれてもよく、あるいは、1つのトレンチラインTLの形成および再度の摺動を行なう工程がトレンチラインTLごとに順次行なわれてもよい。 Referring to FIG. 22B, next, a stress is applied between position N2 and side ED2 so as to release the distortion of internal stress in the vicinity of trench line TL. This induces the formation of crack lines along the trench line TL. Specifically, as the application of the stress, the pressed blade edge 51 is slid between the position N2 and the side ED2 (the region between the broken line and the side ED2 in the drawing) on the upper surface SF1. This sliding is performed until the side ED2 is reached. The cutting edge 51 is preferably slid so as to intersect the track of the trench line TL formed first, and more preferably to overlap the track of the trench line TL formed first. The length of this second sliding is, for example, about 0.5 mm. This re-sliding may be performed on each of the plurality of trench lines TL (FIG. 22A) after they are formed, or the formation and re-sliding of one trench line TL may be performed. The process to be performed may be sequentially performed for each trench line TL.
 変形例として、位置N2と辺ED2との間に応力を加えるために、上述した刃先51の再度の摺動に代えて、上面SF1上において位置N2と辺ED2との間にレーザ光が照射されてもよい。これにより生じた熱応力によっても、トレンチラインTL付近の内部応力の歪みが解放され、それによりクラックラインの形成開始を誘起することができる。 As a modification, in order to apply a stress between the position N2 and the side ED2, a laser beam is irradiated between the position N2 and the side ED2 on the upper surface SF1 instead of the sliding of the cutting edge 51 described above. May be. Due to the thermal stress generated thereby, the distortion of the internal stress in the vicinity of the trench line TL is released, thereby inducing the start of formation of the crack line.
 なお、上記以外の構成については、上述した実施の形態4の構成とほぼ同じである。 The configuration other than the above is almost the same as the configuration of the fourth embodiment described above.
 (実施の形態8)
 図23(A)を参照して、本実施の形態における脆性基板の分断方法においては、位置N1から位置N2へ、そしてさらに位置N3へ刃先51を変位させることによって、上面SF1の縁から離れたトレンチラインTLが形成される。トレンチラインTLの形成方法自体は図11(A)(実施の形態4)とほぼ同様である。
(Embodiment 8)
Referring to FIG. 23A, in the method for dividing a brittle substrate in the present embodiment, the blade edge 51 is moved away from the edge of upper surface SF1 by displacing blade edge 51 from position N1 to position N2, and further to position N3. A trench line TL is formed. The method of forming the trench line TL itself is almost the same as that in FIG. 11A (Embodiment 4).
 図23(B)を参照して、図22(B)(実施の形態7またはその変形例)と同様の応力印加が行なわれる。これによりトレンチラインTLに沿ったクラックラインの形成が誘起される。 Referring to FIG. 23 (B), the same stress application as in FIG. 22 (B) (Embodiment 7 or a modification thereof) is performed. This induces the formation of crack lines along the trench line TL.
 なお、上記以外の構成については、上述した実施の形態4の構成とほぼ同じである。 The configuration other than the above is almost the same as the configuration of the fourth embodiment described above.
 図24を参照して、図23(A)の工程の変形例として、トレンチラインTLの形成において、刃先51が位置N3から位置N2へそして位置N2から位置N1へ変位させられてもよい。 Referring to FIG. 24, as a modification of the process of FIG. 23A, in forming trench line TL, cutting edge 51 may be displaced from position N3 to position N2 and from position N2 to position N1.
 (実施の形態9)
 図25(A)および(B)を参照して、上記各実施の形態において、刃先51(図2(A)および(B))に代わり、刃先51vが用いられてもよい。刃先51vは、頂点と、円錐面SCとを有する円錐形状を有する。刃先51vの突起部PPvは頂点で構成されている。刃先の側部PSvは頂点から円錐面SC上に延びる仮想線(図25(B)における破線)に沿って構成されている。これにより側部PSvは、線状に延びる凸形状を有する。
(Embodiment 9)
Referring to FIGS. 25 (A) and (B), in each of the above embodiments, blade edge 51v may be used instead of blade edge 51 (FIGS. 2 (A) and (B)). The blade edge 51v has a conical shape having a vertex and a conical surface SC. The protruding part PPv of the blade edge 51v is constituted by a vertex. The side portion PSv of the blade edge is configured along a virtual line (broken line in FIG. 25B) extending from the apex to the conical surface SC. Thereby, the side part PSv has a convex shape extending linearly.
 本実施の形態においては、摺動において刃先51vの側部PSvが前部であり、押し付けられた刃先51vはガラス基板4の表面SF上で、側部PSが向く方向DAへ摺動させられる。方向DAは、刃先51vから延びる軸方向AXを表面SF上へ射影した方向に対応している。摺動中、刃先51vはシャンク52によって表面SF上を引き摺られる。 In the present embodiment, the side part PSv of the blade edge 51v is the front part in sliding, and the pressed blade edge 51v is slid on the surface SF of the glass substrate 4 in the direction DA in which the side part PS faces. The direction DA corresponds to a direction in which the axial direction AX extending from the blade edge 51v is projected onto the surface SF. During the sliding, the blade edge 51v is dragged on the surface SF by the shank 52.
 本実施の形態によれば、1つのガラス基板4上において刃先51vが摺動させられている際に刃先51vの荷重または姿勢が変化させられることによって、刃先51vの前部としての側部PSvにおける位置O1およびO2(図26)がガラス基板4の表面SFと同じ高さの位置とされる。これにより、1つのガラス基板4上において刃先51vが摺動させられている際に刃先51vの前部における一の位置のみがガラス基板4の表面SFと同じ高さの位置とされる場合に比して、刃先51vが特に磨耗する位置が拡散される。よって刃先51vの寿命を長くすることができる。 According to the present embodiment, when the cutting edge 51v is slid on one glass substrate 4, the load or posture of the cutting edge 51v is changed, whereby the side portion PSv as the front portion of the cutting edge 51v is changed. The positions O1 and O2 (FIG. 26) are set to the same height as the surface SF of the glass substrate 4. Thereby, when the blade edge 51v is slid on one glass substrate 4, only one position in the front portion of the blade edge 51v is set to the same height as the surface SF of the glass substrate 4. Thus, the position where the blade edge 51v is particularly worn is diffused. Therefore, the life of the blade edge 51v can be extended.
 図27を参照して、変形例として、刃先51vが方向DAと反対の方向DBへ摺動されてもよい。1つのガラス基板4上において刃先51vが摺動させられている際に刃先51vの荷重または姿勢が変化させられることによって、刃先51vの前部(側部PSvと反対の部分)における位置O1およびO2(図28)がガラス基板4の表面SFと同じ高さの位置とされる。これにより、1つのガラス基板4上において刃先51vが摺動させられている際に刃先51vの前部における一の位置のみがガラス基板4の表面SFと同じ高さの位置とされる場合に比して、より大きな面積でガラス基板4の表面SFと接触することとなり、刃先51vが特に磨耗する位置が拡散される。よって刃先51vの寿命を長くすることができる。 Referring to FIG. 27, as a modification, the blade edge 51v may be slid in the direction DB opposite to the direction DA. When the cutting edge 51v is slid on one glass substrate 4, the load or posture of the cutting edge 51v is changed, so that the positions O1 and O2 at the front portion (the part opposite to the side portion PSv) of the cutting edge 51v. (FIG. 28) is the same height as the surface SF of the glass substrate 4. Thereby, when the blade edge 51v is slid on one glass substrate 4, only one position in the front portion of the blade edge 51v is set to the same height as the surface SF of the glass substrate 4. Then, it comes into contact with the surface SF of the glass substrate 4 in a larger area, and the position where the blade edge 51v is particularly worn is diffused. Therefore, the life of the blade edge 51v can be extended.
 上記各実施の形態においてはガラス基板の縁の第1および第2の辺が長方形の短辺であるが、第1および第2の辺は長方形の長辺であってもよい。また縁の形状は長方形に限定されるものではなく、たとえば正方形であってもよい。また第1および第2の辺は直線状のものに限定されるものではなく曲線状であってもよい。また上記各実施の形態においてはガラス基板の面が平坦であるが、ガラス基板の面は湾曲していてもよい。 In the above-described embodiments, the first and second sides of the edge of the glass substrate are rectangular short sides, but the first and second sides may be rectangular long sides. The shape of the edge is not limited to a rectangle, and may be a square, for example. Further, the first and second sides are not limited to being linear, and may be curved. In each of the above embodiments, the surface of the glass substrate is flat, but the surface of the glass substrate may be curved.
 上述した分断方法に特に適した脆性基板としてガラス基板が用いられるが、脆性基板はガラス基板に限定されるものではない。脆性基板は、ガラス以外に、たとえば、セラミックス、シリコン、化合物半導体、サファイア、または石英から作られ得る。 Although a glass substrate is used as the brittle substrate particularly suitable for the above-described cutting method, the brittle substrate is not limited to the glass substrate. In addition to glass, the brittle substrate can be made of, for example, ceramics, silicon, compound semiconductors, sapphire, or quartz.
 スクライブ装置の制御部は、入力部と出力部と記憶部とCPU(Central Processing Unit)とを有するコンピュータによって構成され得る。この場合、プログラムがCPUに制御部の処理を実行させる。プログラムは記録媒体に記録され得る。記録媒体は、たとえば、記録ディスク、固体メモリまたは記録テープである。 The control unit of the scribe device can be configured by a computer having an input unit, an output unit, a storage unit, and a CPU (Central Processing Unit). In this case, the program causes the CPU to execute processing of the control unit. The program can be recorded on a recording medium. The recording medium is, for example, a recording disk, a solid memory, or a recording tape.
 本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 In the present invention, it is possible to freely combine the respective embodiments within the scope of the invention, and to appropriately modify and omit the respective embodiments.
4 ガラス基板(脆性基板)
4C セル基板(脆性基板)
51,51v 刃先
60,60V,60W スクライブヘッド
61,61V 姿勢調整部
62 保持部
63,63W 加圧部
64,64W 本体部
70 駆動部
71 ステージ駆動部
72 ヘッド駆動部
80 ステージ
90,90V 制御部
91 摺動前制御部
92,92V 摺動制御部
93 摺動後制御部
100,100V スクライブ装置
AL アシストライン
CL クラックライン
SL スクライブライン
TL トレンチライン
4 Glass substrate (brittle substrate)
4C cell substrate (brittle substrate)
51, 51v Cutting edge 60, 60V, 60W Scribe head 61, 61V Attitude adjustment unit 62 Holding unit 63, 63W Pressurization unit 64, 64W Main unit 70 Drive unit 71 Stage drive unit 72 Head drive unit 80 Stage 90, 90V Control unit 91 Pre-sliding control unit 92, 92V Sliding control unit 93 Post-sliding control unit 100, 100V Scribing device AL Assist line CL Crack line SL Scribe line TL Trench line

Claims (8)

  1.  一の脆性基板の表面に、突起部と前記突起部につながった前部とを有する刃先を押し付ける工程と、
     押し付けられた前記刃先を前記脆性基板の前記表面上で前記前部が向く方向へ摺動させる工程とを備え、前記刃先を摺動させる工程によって前記脆性基板に塑性変形が生じることで、前記脆性基板の前記表面上に、溝形状を有する少なくとも1つのトレンチラインが形成され、前記刃先を摺動させる工程において、前記刃先の前記前部における複数の位置が前記脆性基板の前記表面と同じ高さの位置とされる、
    脆性基板の分断方法。
    Pressing a blade edge having a protrusion and a front portion connected to the protrusion on the surface of one brittle substrate;
    A step of sliding the pressed blade edge on the surface of the brittle substrate in a direction in which the front portion faces, and the step of sliding the blade edge causes plastic deformation in the brittle substrate, whereby the brittleness On the surface of the substrate, at least one trench line having a groove shape is formed, and in the step of sliding the blade edge, a plurality of positions in the front portion of the blade edge are the same height as the surface of the brittle substrate. The position of
    Method for cutting a brittle substrate.
  2.  前記刃先を摺動させる工程において、前記刃先に加えられる荷重が変化させられる、請求項1に記載の脆性基板の分断方法。 The method for cutting a brittle substrate according to claim 1, wherein a load applied to the cutting edge is changed in the step of sliding the cutting edge.
  3.  前記刃先を摺動させる工程において、前記刃先の姿勢が変化させられる、請求項1に記載の脆性基板の分断方法。 The method for cutting a brittle substrate according to claim 1, wherein in the step of sliding the blade edge, the posture of the blade edge is changed.
  4.  前記刃先を摺動させる工程は、前記トレンチラインに沿って延び、前記トレンチラインの直下で前記トレンチラインと交差する方向において前記脆性基板の連続的なつながりを断つクラックラインが生成されるように行なわれる、請求項1から3のいずれか1項に記載の脆性基板の分断方法。 The step of sliding the blade edge is performed such that a crack line is generated that extends along the trench line and breaks the continuous connection of the brittle substrate in a direction intersecting the trench line immediately below the trench line. The method for dividing a brittle substrate according to any one of claims 1 to 3.
  5.  前記刃先を摺動させる工程は、前記トレンチラインの直下において前記脆性基板が前記トレンチラインと交差する方向において連続的につながっている状態であるクラックレス状態が得られるように行なわれ、
     前記トレンチラインに沿って前記脆性基板のクラックを伸展させることによって、前記トレンチラインの直下で前記トレンチラインと交差する方向において前記脆性基板の連続的なつながりを断つクラックラインを形成する工程をさらに備える、請求項1から3のいずれか1項に記載の脆性基板の分断方法。
    The step of sliding the blade edge is performed so as to obtain a crackless state in which the brittle substrate is continuously connected in a direction intersecting the trench line immediately below the trench line,
    The method further includes forming a crack line that breaks the continuous connection of the brittle substrate in a direction intersecting the trench line immediately below the trench line by extending a crack of the brittle substrate along the trench line. The method for dividing a brittle substrate according to any one of claims 1 to 3.
  6.  前記刃先を押し付ける工程において、前記脆性基板の前記表面は一の面を含み、前記一の面は、互いに対向する第1および第2の辺を含む縁に囲まれており、
     前記刃先の前記前部は前記刃先の側部であり、前記側部は前記突起部から延びかつ凸形状を有し、
     前記刃先を押し付ける工程は前記脆性基板の前記一の面上で前記刃先の前記突起部が前記第1の辺および前記側部の間に配置されかつ前記刃先の前記側部が前記突起部と前記第2の辺の間に配置されるように行なわれ、
     前記刃先を摺動させる工程において、前記トレンチラインは、前記第1および第2の辺のうち前記第1の辺に近い第1の位置と、前記第1および第2の辺のうち前記第2の辺に近い第2の位置との間で形成され、
     前記クラックラインを形成する工程は、前記トレンチラインに沿って前記第2の位置から前記第1の位置の方へ前記脆性基板のクラックを伸展させることによって行なわれる、
    請求項5に記載の脆性基板の分断方法。
    In the step of pressing the blade edge, the surface of the brittle substrate includes one surface, and the one surface is surrounded by an edge including first and second sides facing each other.
    The front portion of the blade edge is a side portion of the blade edge, the side portion extends from the protrusion and has a convex shape;
    The step of pressing the blade edge includes the protrusion portion of the blade edge disposed between the first side and the side portion on the one surface of the brittle substrate, and the side portion of the blade edge and the protrusion portion. Being placed between the second sides,
    In the step of sliding the blade edge, the trench line includes a first position of the first and second sides close to the first side and the second of the first and second sides. A second position close to the side of
    The step of forming the crack line is performed by extending a crack of the brittle substrate from the second position toward the first position along the trench line.
    The method for dividing a brittle substrate according to claim 5.
  7.  前記刃先を押し付ける工程において、前記脆性基板の前記表面は一の面を含み、前記一の面は、互いに対向する第1および第2の辺を含む縁に囲まれており、
     前記刃先は、前記突起部から延びかつ凸形状を有する側部を有し、
     前記刃先を押し付ける工程は前記脆性基板の前記一の面上で前記刃先の前記突起部が前記第1の辺および前記側部の間に配置されかつ前記刃先の前記側部が前記突起部と前記第2の辺の間に配置されるように行なわれ、
     前記刃先を摺動させる工程において、前記トレンチラインは、前記第1および第2の辺のうち前記第1の辺に近い第1の位置と、前記第1および第2の辺のうち前記第2の辺に近い第2の位置との間で形成され、
     前記クラックラインを形成する工程は、前記トレンチラインに沿って前記第2の位置から前記第1の位置の方へ前記脆性基板のクラックを伸展させることによって行なわれる、
    請求項5に記載の脆性基板の分断方法。
    In the step of pressing the blade edge, the surface of the brittle substrate includes one surface, and the one surface is surrounded by an edge including first and second sides facing each other.
    The cutting edge has a side portion extending from the protrusion and having a convex shape,
    The step of pressing the blade edge includes the protrusion portion of the blade edge disposed between the first side and the side portion on the one surface of the brittle substrate, and the side portion of the blade edge and the protrusion portion. Being placed between the second sides,
    In the step of sliding the blade edge, the trench line includes a first position of the first and second sides close to the first side and the second of the first and second sides. A second position close to the side of
    The step of forming the crack line is performed by extending a crack of the brittle substrate from the second position toward the first position along the trench line.
    The method for dividing a brittle substrate according to claim 5.
  8.  表面を有する一の脆性基板を支持する基板支持部と、
     突起部と、前記突起部につながった前部とを有する刃先と、
     前記脆性基板と前記刃先とを相対的に変位させる駆動部と、
     前記脆性基板の前記表面上で前記刃先の前記前部が向く方向へ前記刃先が摺動するように前記駆動部を制御する摺動制御部とを備え、前記摺動制御部によって、前記脆性基板上を摺動している前記刃先の前記前部における複数の位置が前記脆性基板の前記表面と同じ高さの位置とされる、
    スクライブ装置。
    A substrate support for supporting one brittle substrate having a surface;
    A cutting edge having a protruding portion and a front portion connected to the protruding portion;
    A drive unit that relatively displaces the brittle substrate and the cutting edge;
    A sliding control unit that controls the driving unit so that the cutting edge slides in a direction in which the front part of the cutting edge faces on the surface of the brittle board, and the brittle board is provided by the sliding control part. A plurality of positions in the front part of the cutting edge sliding on the top are the same height as the surface of the brittle substrate,
    Scribe device.
PCT/JP2015/064162 2014-06-26 2015-05-18 Method for cutting brittle substrate and scribing device WO2015198748A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016529181A JP6304375B2 (en) 2014-06-26 2015-05-18 Method for dividing brittle substrate and scribing apparatus
CN201580034054.2A CN106470814B (en) 2014-06-26 2015-05-18 The cutting-off method and lineation device of brittleness substrate
KR1020167036171A KR101895819B1 (en) 2014-06-26 2015-05-18 Method for cutting brittle substrate and scribing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014131092 2014-06-26
JP2014-131092 2014-06-26

Publications (1)

Publication Number Publication Date
WO2015198748A1 true WO2015198748A1 (en) 2015-12-30

Family

ID=54937846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064162 WO2015198748A1 (en) 2014-06-26 2015-05-18 Method for cutting brittle substrate and scribing device

Country Status (5)

Country Link
JP (1) JP6304375B2 (en)
KR (1) KR101895819B1 (en)
CN (1) CN106470814B (en)
TW (1) TWI651182B (en)
WO (1) WO2015198748A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180105208A (en) * 2016-02-26 2018-09-27 미쓰보시 다이야몬도 고교 가부시키가이샤 Separation method of brittle substrate
DE102018131179A1 (en) * 2018-12-06 2020-06-10 Schott Ag Glass element with cut edge and process for its production
CN116238058A (en) * 2023-05-12 2023-06-09 山东理工大学 Efficient low-loss processing method for brittle material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023123189A (en) * 2022-02-24 2023-09-05 株式会社デンソー Manufacturing method of semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183040A (en) * 2001-12-18 2003-07-03 Oputo System:Kk Point cutter, method of use and apparatus
JP2012250351A (en) * 2011-05-31 2012-12-20 Mitsuboshi Diamond Industrial Co Ltd Scribing method
JP2013071871A (en) * 2011-09-28 2013-04-22 Mitsuboshi Diamond Industrial Co Ltd Scribing device
JP2013071349A (en) * 2011-09-28 2013-04-22 Mitsuboshi Diamond Industrial Co Ltd Scribing device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100647454B1 (en) * 2002-07-01 2006-11-23 미쓰보시 다이야몬도 고교 가부시키가이샤 Device and method for scribing substrate of brittle material
WO2004041493A1 (en) * 2002-11-06 2004-05-21 Mitsuboshi Diamond Industrial Co.,Ltd. Scribe line forming device and scribe line forming method
DE102007033242A1 (en) * 2007-07-12 2009-01-15 Jenoptik Automatisierungstechnik Gmbh Method and device for separating a plane plate made of brittle material into several individual plates by means of laser
JP5121055B2 (en) * 2008-02-21 2013-01-16 AvanStrate株式会社 Scribing equipment
TWI494284B (en) * 2010-03-19 2015-08-01 Corning Inc Mechanical scoring and separation of strengthened glass
TWI498293B (en) * 2011-05-31 2015-09-01 Mitsuboshi Diamond Ind Co Ltd Scribe method, diamond point and scribe apparatus
TWI483911B (en) * 2011-09-28 2015-05-11 Mitsuboshi Diamond Ind Co Ltd Scribing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183040A (en) * 2001-12-18 2003-07-03 Oputo System:Kk Point cutter, method of use and apparatus
JP2012250351A (en) * 2011-05-31 2012-12-20 Mitsuboshi Diamond Industrial Co Ltd Scribing method
JP2013071871A (en) * 2011-09-28 2013-04-22 Mitsuboshi Diamond Industrial Co Ltd Scribing device
JP2013071349A (en) * 2011-09-28 2013-04-22 Mitsuboshi Diamond Industrial Co Ltd Scribing device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180105208A (en) * 2016-02-26 2018-09-27 미쓰보시 다이야몬도 고교 가부시키가이샤 Separation method of brittle substrate
CN108698254A (en) * 2016-02-26 2018-10-23 三星钻石工业股份有限公司 The method for dividing of brittleness substrate
JPWO2017145937A1 (en) * 2016-02-26 2018-11-29 三星ダイヤモンド工業株式会社 Method for dividing brittle substrate
JP2019214213A (en) * 2016-02-26 2019-12-19 三星ダイヤモンド工業株式会社 Method for parting brittle substrate
KR20200017563A (en) * 2016-02-26 2020-02-18 미쓰보시 다이야몬도 고교 가부시키가이샤 Method of dividing brittle substrate
CN108698254B (en) * 2016-02-26 2020-08-25 三星钻石工业股份有限公司 Method for dividing brittle substrate
KR102155598B1 (en) * 2016-02-26 2020-09-14 미쓰보시 다이야몬도 고교 가부시키가이샤 Method of dividing brittle substrate
KR102205786B1 (en) * 2016-02-26 2021-01-20 미쓰보시 다이야몬도 고교 가부시키가이샤 Method of dividing brittle substrate
DE102018131179A1 (en) * 2018-12-06 2020-06-10 Schott Ag Glass element with cut edge and process for its production
US11851361B2 (en) 2018-12-06 2023-12-26 Schott Ag Glass element with cut edge and method of producing same
CN116238058A (en) * 2023-05-12 2023-06-09 山东理工大学 Efficient low-loss processing method for brittle material
CN116238058B (en) * 2023-05-12 2023-07-11 山东理工大学 Efficient low-loss processing method for brittle material

Also Published As

Publication number Publication date
CN106470814B (en) 2019-02-12
TWI651182B (en) 2019-02-21
JP6304375B2 (en) 2018-04-04
TW201603981A (en) 2016-02-01
KR20170007478A (en) 2017-01-18
KR101895819B1 (en) 2018-09-07
CN106470814A (en) 2017-03-01
JPWO2015198748A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6583644B2 (en) Method for dividing brittle material substrate
JP6304375B2 (en) Method for dividing brittle substrate and scribing apparatus
JP6544538B2 (en) Crack line formation method for brittle substrate
TWI660828B (en) Manufacturing method of liquid crystal display panel
JP6555354B2 (en) Method for dividing brittle substrate
JP6288260B2 (en) Method for dividing brittle substrate
JP6413496B2 (en) Manufacturing method of liquid crystal display panel
KR20160000838A (en) Dividing method for single crystal substrate and single crystal substrate
JP6288259B2 (en) Method for dividing brittle substrate
JP2017065007A (en) Method of segmenting brittle substrate
TW201716196A (en) Method for dividing brittle substrate which can easily form a crack line along a trench line

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529181

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167036171

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15812049

Country of ref document: EP

Kind code of ref document: A1