WO2015198382A1 - Rotating electric machine synchronous rotor - Google Patents

Rotating electric machine synchronous rotor Download PDF

Info

Publication number
WO2015198382A1
WO2015198382A1 PCT/JP2014/066585 JP2014066585W WO2015198382A1 WO 2015198382 A1 WO2015198382 A1 WO 2015198382A1 JP 2014066585 W JP2014066585 W JP 2014066585W WO 2015198382 A1 WO2015198382 A1 WO 2015198382A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
core plate
core
arc
circumferential
Prior art date
Application number
PCT/JP2014/066585
Other languages
French (fr)
Japanese (ja)
Inventor
真臣 森下
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2016528775A priority Critical patent/JP6656149B2/en
Priority to PCT/JP2014/066585 priority patent/WO2015198382A1/en
Publication of WO2015198382A1 publication Critical patent/WO2015198382A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a synchronous rotor for a rotating electrical machine including a cylindrical rotor core formed by laminating a plurality of arc-shaped core plates and a permanent magnet embedded in the rotor core.
  • a rotor core formed by stacking a plurality of divided core plates in an annular shape and a magnet (permanently) inserted into a magnet hole (magnet hole) formed in the divided core plate Magnet).
  • two through holes are formed on the inner peripheral side of the divided core plate, and when the divided core plate is arranged in an annular shape, the through holes are arranged at equal intervals.
  • the rotor core is laminated so that the through-holes communicate with each other along the axial direction of the rotor core, and a fixing pin is inserted into the communicating through-hole. That is, a structure in which split core plates stacked in the axial direction are coupled to each other by a fixing pin is known (for example, see Patent Document 1).
  • the end core region from the fixed pin to the end face of the split core plate has a cantilever structure that is not restrained or supported in the split core plate.
  • the deformation in the outer diameter direction is increased due to the centrifugal force generated when the rotor rotates as compared with the region where the cantilever structure is not used.
  • the stress of the bridge portion where the wall thickness between the outer peripheral end of the split core plate and the outer diameter side of the magnet hole is relatively thin increases. There is a risk of damaging the bridge. For this reason, the problem that the reliability with respect to centrifugal strength of the rotor core is lowered has occurred.
  • the present invention has been made paying attention to the above problem, and an object of the present invention is to provide a synchronous rotor for rotating electrical machines that can improve the centrifugal strength reliability of the rotor core.
  • a synchronous rotor for a rotating electrical machine includes a cylindrical rotor core formed by stacking a plurality of arc-shaped core plates, and a permanent magnet embedded in the rotor core.
  • a coupling portion that couples the plurality of arc-shaped core plates stacked in the rotor axial direction is provided on the inner peripheral side of the rotor core.
  • the arc-shaped core plate has a magnet hole opened on the outer peripheral side of the plate, and a cutout portion formed by cutting out both end portions of the inner peripheral surface of the core plate that avoids the portion to be the coupling portion.
  • the arc-shaped core plate in the synchronous rotor for rotating electrical machines has a cantilever structure in the region from the coupling portion to the end portion of the core plate, and has a notch in that region. That is, when the rotor rotates, the centrifugal force generated at both ends of the core plate is reduced by having the notches at both ends of the inner peripheral surface of the core plate in that region. By reducing the centrifugal force, deformation due to the centrifugal force in the outer diameter direction at both ends of the core plate can be suppressed to be small, and an increase in the stress of the bridge portion can be suppressed. As a result, the centrifugal strength reliability of the rotor core can be improved during rotor rotation.
  • FIG. 1 is an exploded perspective view of a synchronous rotor for a rotating electrical machine according to Embodiment 1.
  • FIG. FIG. 3 is a schematic plan view of an arc-shaped core plate that forms the rotor core according to the first embodiment. It is an assembly block diagram which has arrange
  • FIG. 6 is a process diagram for inserting a permanent magnet into the magnet hole of the first embodiment.
  • FIG. 6 is a schematic plan view of an arc-shaped core plate that forms a rotor core according to Embodiment 2.
  • FIG. FIG. 10 is a schematic enlarged plan view of a notch portion showing a modified example of the curved shape of the notch portion according to the second embodiment.
  • FIG. 10 is a schematic enlarged plan view of a notch portion showing a modification of the linear shape of the notch portion according to the second embodiment.
  • 6 is a schematic plan view of an arc-shaped core plate that forms a rotor core according to Embodiment 3.
  • FIG. 1 is an exploded perspective view of a synchronous rotor for a rotating electrical machine according to a first embodiment.
  • the overall configuration will be described with reference to FIG. Note that some details of the second and lower layers from the top are omitted.
  • the synchronous rotor 1 for a rotating electrical machine constitutes a motor together with a stator, and is applied, for example, as a travel drive source for an electric vehicle or a hybrid vehicle.
  • the rotating electrical machine synchronous rotor 1 has a cylindrical rotor core 2, a permanent magnet 3 embedded in the rotor core 2, and a rotor shaft 4 fitted to the rotor core 2.
  • the rotor core 2 is formed in a cylindrical shape having a space inside by laminating a plurality of arc-shaped core plates 2a (see FIG. 2) in an annular shape and laminating the annularly arranged core plates 2a. Yes.
  • the arc-shaped core plate 2a is made of an electromagnetic steel plate, and as shown in FIG. 2, the arc angle ⁇ 1 is 120 °, and has a magnet hole 3a, a welded portion 5, and a notch portion 6. is doing. As shown in FIG. 2, four magnet holes 3a and four welds 5 are formed in the core plate 2a at equal intervals. Moreover, as shown in FIG. 2, the both ends 2PE and 2PE of the core plate 2a have a notch 6.
  • the magnet hole 3a is a hole for inserting the permanent magnet 3 opened on the outer peripheral side of the plate.
  • the shape of the magnet hole 3a is formed in a rectangular shape spreading in the circumferential direction.
  • the weld 5 is formed at the inner peripheral edge of the plate as shown in FIG.
  • the welded portion 5 has a concave surface 5a and a convex portion 5b.
  • the concave surface 5a is formed to be recessed in the outer diameter direction from the inner peripheral surface 2IP of the core plate 2a.
  • the shape of the concave surface 5a is a curved surface as shown by the solid line and the broken line.
  • the convex portion 5b is formed on a part of the concave surface 5a so as to protrude from the concave surface 5a to the inner peripheral surface 2IP of the core plate 2a.
  • the shape of the convex part 5b is formed in a triangular shape.
  • the notch portion 6 is a position that avoids a portion to be a weld joint portion 11 (joint portion, weld bead, see FIG. 5) described later, that is, a weld portion 5, and is within the core plate 2a. Both end portions 2PE and 2PE of the peripheral surface 2IP are cut out. As shown in FIG. 2, the notch 6 has a shape in which a region A from the offset position 2FS to the end surface 2EF of the core plate 2a is notched to a predetermined depth PD from the inner peripheral surface 2IP of the core plate in the outer diameter direction. (Shape of the notch 6) is set.
  • the predetermined depth PD in the first embodiment is constant in the outer diameter direction from the inner peripheral surface 2IP of the core plate 2a.
  • the offset position 2FS is a position offset from the welded portion 5 by the offset amount FS toward the circumferential end face of the core plate 2a.
  • the welding part 5 used as this object is the welding part 5 arrange
  • the offset amount FS offset from the welded portion 5 to the circumferential end surface side of the core plate 2a is an amount that can be formed by a welded joint portion 11 (joint portion, weld bead, see FIG. 5) described later, that is, welding.
  • the predetermined depth PD is a depth that does not reach the magnet hole 3a disposed on the end 2PE side of the core plate 2a from the inner peripheral surface 2IP of the core plate 2a, and is inserted into the magnet hole 3a.
  • the depth is set in consideration of the formation of magnetic field lines by the permanent magnet 3. That is, the notch 6 is formed while maintaining the formation of the magnetic lines of force by the permanent magnet 3.
  • the welded portion 5 is disposed on the same axis line of the radial axis CL that connects the center point O of the core plate 2a and the center position in the circumferential direction of the magnet hole 3a in the radial direction. That is, the center positions in the circumferential direction of the magnet hole 3a and the welded portion 5 are arranged on the same axis line of the radial axis line CL. Similarly, the circumferential center positions of the concave surface 5a and the convex portion 5b are also arranged on the same axis line of the radial axis line CL.
  • the center point O of the core plate 2a is the same as the center point O when the plurality of arc-shaped core plates 2a are annularly arranged (see FIG. 3). That is, since the rotor core 2 is formed by laminating the annularly arranged core plates 2a, the center point O of the core plate 2a is the same as the center point of the rotor core 2.
  • the inner peripheral surface 2IP of the core plate 2a and the inner peripheral surface 2IP of the rotor core 2 have the same center point for the same reason.
  • a cylindrical rotor core 2 is formed by laminating a plurality of such arc-shaped core plates 2a.
  • a linear continuous welded portion 10 is formed by the welded portions 5 between the plurality of core plates 2a stacked in the rotor axis Ax direction (see FIG. 5).
  • a weld bead 11 (weld joint, joint) is formed as shown in FIGS.
  • stacked several core plates 2a are couple
  • This welding joining may be performed by melting the base material, that is, the convex portion 5b of the welded portion 5 in the continuous welded portion 10, or may be performed by melting the convex portion 5b and the welding wire.
  • the amount of melting of the welding wire is such that it is within the concave surface 5a of the welded portion 5, that is, within the range from the concave surface 5a to the inner peripheral surface 2IP of the core plate 2a.
  • the notch part 6 is formed avoiding the welding part 5 used as the weld bead 11, the uniformity of the shape of the weld bead 11 can be ensured.
  • the rotor shaft 4 is formed in a cylindrical shape having a space inside. A rotation shaft (not shown) or the like is inserted into this inner space. The rotor shaft 4 is press-fitted into the rotor core 2 so that the rotor shaft 4 is fitted to the rotor core 2.
  • the operation of the rotating electrical machine synchronous rotor 1 according to the first embodiment will be described by dividing it into “a manufacturing method of the rotating electrical machine synchronous rotor”, “a characteristic operation of the rotating electrical machine synchronous rotor”, and “an operation of the notch shape”.
  • a method of manufacturing a synchronous rotor 1 for a rotating electrical machine comprising a synchronous rotor 1 having a cylindrical rotor core 2 formed by laminating a plurality of arc-shaped core plates 2a and a permanent magnet 3 embedded in the rotor core 2.
  • a core plate forming step includes a core plate forming step, a rotor core assembling step, a rotor welding joining step, and a permanent magnet insertion step.
  • each step will be described. Note that some details of the second and lower layers from the top of FIGS. 5 and 6 are partially omitted.
  • a magnet hole 3a for inserting the permanent magnet 3 opened on the outer peripheral side of the plate and an inner peripheral end of the plate are formed in the arc-shaped core plate 2a.
  • the welded portion 5 and the notched portion 6 in which both end portions 2PE and 2PE of the inner peripheral surface 2IP of the core plate 2a are notched are formed.
  • a plurality of arc-shaped core plates 2a are annularly arranged. That is, as shown in FIG. 2, about three core plates 2a having an arc angle ⁇ 1 of 120 ° are used and arranged in an annular shape.
  • the annularly disposed core plate 2a is defined as a first layer.
  • the cylindrical rotor core 2 is assembled by stacking the annular core plates 2a. That is, as shown in FIG.
  • a two-layer core plate 2b is laminated.
  • the third layer core plate 2 c is laminated on the second layer core plate 2 b so as to be shifted 30 ° counterclockwise with respect to the second layer core plate 2 b.
  • the cylindrical rotor core 2 is formed by laminating the next layer so as to be shifted counterclockwise by 30 ° with respect to the previous layer, that is, straddling the joint between the core plates 2a of the previous layer. Is assembled. For assembling this cylindrical rotor core 2, for example, about 54 core plates 2a are used, and about 18 layers are laminated.
  • the continuous welded portion 10 is disposed on the same axis line of the radial axis CL that connects the center position in the circumferential direction of the magnet hole 3a and the center point of the rotor core 2 (center point of the core plate 2a) O in the radial direction.
  • the continuous weld 10 is welded.
  • the weld bead 11 is formed.
  • the permanent magnet 3 is inserted into the communicating magnet hole 3a.
  • the rotor shaft 4 is fitted into the rotor core 2 by press-fitting the rotor shaft 4 into the rotor core 2 thus manufactured.
  • the synchronous rotor 1 for rotary electric machines can be manufactured by welding the welding part 5 between the several core plates 2a. .
  • Example 1 by manufacturing the synchronous rotor for rotary electric machines, in Example 1, since the convex part 5b can be welded intensively, the penetration of the weld bead 11 is achieved while minimizing the amount of heat input during welding.
  • the width and depth can be adjusted constant (stable) and easily, and the joining strength of the rotor core 2 can be increased.
  • the anti-centrifugal strength can be ensured by welding joint between the core plates 2a by a single piece of the synchronous rotor 1 assembly, damage due to load input to the permanent magnet 3 is prevented. As a result, the durability reliability of the permanent magnet 3 can be improved by ensuring the centrifugal strength of the rotor core 2.
  • the surface of the rotor shaft 4 may be a simple cylindrical shape as shown in FIG.
  • the split core plate is formed with a magnet hole for inserting a permanent magnet and two through holes for inserting a fixing pin.
  • the through holes are formed on the inner peripheral side of the divided core plate.
  • the through holes are arranged at equal intervals.
  • a rotor core is formed by laminating a plurality of divided core plates formed in this manner while being arranged in an annular shape, a permanent magnet is inserted into the magnet hole, and a fixing pin is inserted into the through hole.
  • a synchronous rotor in which the rotor shaft is fitted to the rotor core, that is, the divided core plates laminated in the axial direction by the fixing pins is used as a comparative example.
  • the end region from the fixed pin to the end face of the split core plate in the split core plate has a cantilever structure that is not restrained or supported.
  • the deformation in the outer diameter direction becomes larger due to the centrifugal force generated when the rotor rotates than the region where the cantilever structure is not formed.
  • the stress of the bridge portion where the wall thickness between the outer peripheral end of the split core plate and the outer diameter side of the magnet hole is relatively thin increases.
  • the bridge portion may be damaged (for example, permanent deformation). For this reason, there existed a subject that the centrifugal strength reliability of a rotor core fell.
  • the arc-shaped core plate 2a in the synchronous rotor 1 for a rotating electrical machine has a region B (hatched portion in FIG. 2) from the weld joint portion 11 (joint portion) to the end portion 2PE of the core plate 2a. ) Is a cantilever structure, and a configuration having a notch 6 in the region B where the cantilever structure is adopted. That is, the mass of the region B having a cantilever structure is reduced.
  • the notch 6 is provided at both ends 2PE and 2PE of the inner peripheral surface 2IP of the core plate 2a in the region B, thereby reducing the centrifugal force generated at both ends 2PE and 2PE of the core plate 2a. Is done.
  • the deformation due to the centrifugal force in the outer diameter direction of both end portions 2PE, 2PE of the core plate 2a can be suppressed to be small, and an increase in the stress of the bridge portion C (FIG. 2) can be suppressed. Therefore, the centrifugal strength reliability of the rotor core 2 can be improved when the rotor rotates.
  • both end portions 2PE and 2PE of the inner peripheral surface 2IP of the core plate 2a are notched, when the rotor core 2 is manufactured, the end portion 2PE of the inner peripheral surface 2IP of the core plate 2a is changed from the inner peripheral surface 2IP of the rotor core 2 to the core plate 2a. Since the amount of protrusion protruding toward the (inner peripheral side end) is reduced, it is possible to suppress an increase in inner diameter variation. For this reason, the dimensional quality of the rotor core 2 can be improved.
  • the notch 6 is predetermined in the outer diameter direction from the inner peripheral surface 2IP of the core plate 2a in the region A from the offset position 2FS to the end surface 2EF of the core plate 2a in the region B having the cantilever structure.
  • the structure set to the shape of notch depth PD cutout (shape of the cutout portion 6) was adopted. That is, the mass of the region B having a cantilever structure is reduced. For this reason, the centrifugal force generated when the rotor rotates is reduced as compared with the case where the shape of the notch 6 is not set. Therefore, at the time of rotor rotation, the deformation
  • a synchronous rotor 1 for a rotating electrical machine comprising a cylindrical rotor core 2 formed by laminating a plurality of arc-shaped core plates 2a, and a permanent magnet 3 embedded in the rotor core 2.
  • a joint welded joint 11
  • the arc-shaped core plate 2a cuts both ends 2PE and 2PE of the inner peripheral surface 2IP of the core plate 2a avoiding the magnet hole 3a opened on the outer peripheral side of the plate and the portion serving as the joint (welded joint 11). And a cutout portion 6 that is lacking. For this reason, the centrifugal strength reliability of the rotor core 2 can be improved during the rotation of the rotor.
  • the arc-shaped core plate 2a has a welded portion 5 formed at the inner peripheral edge of the plate,
  • the joint (weld joint 11) is a weld joint formed by welding and joining linear continuous welds 10 continuously formed by welds 5 between a plurality of core plates 2a stacked in the rotor axial direction.
  • the notch 6 has a region A from the offset position 2FS offset from the welded portion 5 to the circumferential end surface side of the core plate 2a to the end surface 2EF of the core plate 2a in the outer diameter direction from the inner peripheral surface 2IP of the core plate 2a.
  • the depth of PD was set to a notched shape.
  • Example 2 is a modification of the notch 6. Based on FIG. 7, the configuration of the main part of the second embodiment will be described below.
  • the notch 6 has a shape (shape of the notch 6) in which the notch depth in the outer diameter direction gradually increases from the offset position 2FS toward the end surface 2EF of the core plate 2a.
  • the shape of the notch 6 is a curved surface as shown in FIG. 7 is not limited to the curved shape as shown in FIG. 7, and may be a curved shape different from that shown in FIG. 7 or a linear shape as shown in FIG. In short, this shape should just be set to the shape which the notch depth to an outer-diameter direction becomes deep gradually as it goes to the end surface 2EF of the core plate 2a from the offset position 2FS. Since other configurations are the same as those of the first embodiment, the corresponding components are denoted by the same reference numerals and description thereof is omitted.
  • Example 2 as shown in FIG. 7, the notch depth in the outer diameter direction gradually increases as the notch 6 moves from the offset position 2FS toward the end surface 2EF of the core plate 2a.
  • the setting configuration was adopted for the shape (the shape of the notch 6). That is, in the region B having the cantilever structure, the mass reduction of the core plate 2a increases as it goes toward the end surface 2EF of the core plate 2a. Thereby, at the time of rotor rotation, centrifugal force is effectively reduced as it goes from the offset position 2FS toward the end surface 2EF of the core plate 2a as compared with the case where the shape of the notch 6 is not set.
  • the notch portion 6 was set to have a shape in which the notch depth in the outer diameter direction gradually increased from the offset position 2FS toward the end surface 2EF of the core plate 2a. For this reason, at the time of rotor rotation, the deformation
  • Example 3 is a modification of the core plate 2 a, the welded part 5, and the cutout part 6. Based on FIG. 10, the configuration of the main part of the third embodiment will be described below.
  • the arc-shaped core plate 2a is formed by an outer peripheral side arc 21a as an outer periphery thereof and an offset arc 22 as an inner periphery thereof.
  • the outer peripheral arc 21a is an arc centered on the center point O1 (reference center point) of the core plate 2a as shown in FIG.
  • the center point O1 is the same as the center point O of the first embodiment.
  • the offset arc 22 will be described as follows with reference to FIG. First, a core plate formed of a concentric outer circumferential arc 21a and inner circumferential arc 21b (a chain line in FIG. 10) centered on the center point O1 is defined as a reference core plate 21. As shown in FIG. 10, the radius of the outer circumferential arc 21a is the reference outer radius R1, and the radius of the inner arc 21b is the reference inner radius R2. Next, a center point O1 is placed on an extension line EL that extends a straight line L1 (dashed line) connecting the center point O1 and the center point 21b1 (circumferential center) of the inner circular arc 21b beyond the center point O1. The center point offset from is set as the offset center point O2.
  • a straight line L2 (dashed line) connecting the offset center point O2 and the circumferential center point 21b1 of the inner circumference side arc 21b is set as an offset radius R3 (radius) from the circumferential center point 21b1 of the inner circumference side arc 21b to the reference core.
  • An arc extending in the circumferential direction up to both end faces 21 EF of the plate 21 is defined as an offset arc 22.
  • the radius of curvature of the offset arc 22 is larger than the radius of curvature of the inner circumference side arc 21b, and the offset arc 22 has an end face of the core plate 2a from the circumferential center point 21b1 of the inner circumference side arc 21b rather than the inner circumference side arc 21b. As it goes to 2EF, it approaches the outer circumferential arc 21a.
  • the welding part 5 is demonstrated as follows using FIG. 4 and FIG. Also in the third embodiment, as described in the rotor core assembling process of the first embodiment, as shown in FIG. 4, an angle is formed on the first layer core plate 2 a with respect to the first layer core plate 2 a in the rotation direction of the rotor core 2.
  • the second core plate 2b is stacked with a shift of ⁇ 2.
  • the core plate 2a of the third embodiment is formed by the outer circumferential arc 21a and the offset arc 22 Since the center points O1 and O2 are different, the welded portion 5 between the first layer core plate 2a and the second layer core plate 2b does not match in the rotor axis Ax direction. For this reason, the welding part 5 of Example 3 makes the arrangement
  • the welded portion between the first layer core plate 2a and the second layer core plate 2b are formed at positions where the convex portions 5b coincide with each other in the rotor axis Ax direction.
  • the circumferential direction of the core plate 2 a is formed such that a continuous linear welded portion 10 is formed by the welded portions 5 between the plurality of core plates 2 a stacked in the rotor axis Ax direction.
  • the convex portions 5b on the center side and the circumferential end surface side are arranged at different positions.
  • the shape of the convex part 5b is formed in the triangle shape similarly to Example 1 (refer FIG. 2 of Example 1).
  • the concave surface 5a of the welded portion 5 is formed in accordance with the convex portions 5b on the circumferential end surface side and the circumferential central side of the core plate 2a. That is, as shown in FIG. 10, the concave surface 5a is formed so as to be deeply recessed in the outer diameter direction from the inner peripheral surface 2IP of the core plate 2a on the central side in the circumferential direction rather than the end surface side in the circumferential direction of the core plate 2a. Yes.
  • the shapes of these concave surfaces 5a are formed into curved shapes having different depths (see FIG. 2 of Example 1).
  • the notch 6 is set in a shape (shape of the notch 6) cut from the reference core plate 21 in the outer diameter direction from the inner circumferential arc 21 b to the offset arc 22.
  • the shape of the notch 6 is set to a shape in which the notch depth in the outer diameter direction is gradually increased from the offset position 2FS toward the end surface 2EF of the core plate 2a.
  • the end face yoke width W2 between the outer peripheral arc 21a and the offset arc 22 on the end face 2EF of the core plate 2a is smaller than the yoke width W1. Since other configurations are the same as those of the first embodiment, the corresponding components are denoted by the same reference numerals and description thereof is omitted.
  • the cutout portion 6 is cut out from the reference core plate 21 from the inner circumferential side arc 21 b to the offset arc 22 in the outer diameter direction (the cutout portion 6 of the cutout portion 6.
  • the configuration set to (shape) was adopted. That is, in the region B having a cantilever structure, the mass reduction of the core plate increases from the offset position 2FS toward the end surface 2EF of the core plate 2a. Thereby, at the time of rotor rotation, centrifugal force is effectively reduced as it goes from the offset position 2FS toward the end surface 2EF of the core plate 2a as compared with the case where the shape of the notch 6 is not set.
  • a core plate formed of an outer peripheral arc 21a and an inner arc 21b that are concentric with the reference center point (center O1) as the center is defined as a reference core plate 21.
  • the center point offset from the reference center point (center point O1) is defined as the offset center point O2
  • Examples 1 to 3 show an example in which four magnet holes 3a and four welds 5 are formed at equal intervals in the configuration of one core plate 2a.
  • the configuration of one core plate 2a is not limited to the configurations shown in the first to third embodiments.
  • each of the magnet holes 3a and the welded portions 5 only needs to be formed at equal intervals, and may be formed in less or more than four.
  • Examples 1 to 3 show an example in which the number of core plates 2a constituting each layer is three.
  • the number of core plates 2a constituting each layer is not limited to the configuration shown in the first to third embodiments.
  • the number of core plates 2a constituting each layer may be less or more than three.
  • the angle ⁇ 1 and the angle ⁇ 2 of the arc are changed according to the number of core plates 2a constituting each layer.
  • Example 1 to 3 an example in which the angle ⁇ 2 is set to 30 ° and shifted counterclockwise is shown.
  • the angle ⁇ 2 is not limited to the configuration shown in the first to third embodiments.
  • the next layer may be laminated so as to straddle the joint between the core plates 2a of the previous layer, and therefore the angle does not have to be 30 °.
  • Examples 1 to 3 an example is shown in which the shape of the magnet hole 3a is formed in a rectangular shape spreading in the circumferential direction, and the number thereof is one on the same axis of the radial axis CL.
  • the shape and number of the magnet holes 3a are not limited to the configurations shown in the first to third embodiments.
  • the shape may be an elliptical shape, a rhombus shape, a trapezoidal shape, or the like, and the number thereof may be two or more holes per one radial axis CL.
  • Examples 1 to 3 an example is shown in which the concave surface 5a of the welded portion 5 is formed into a curved surface, and the shape of the convex portion 5b is formed into a triangular shape.
  • the shapes of the concave surface 5a and the convex portion 5b of the welded portion 5 are not limited to the configurations shown in the first to third embodiments.
  • the concave surface 5a may be a flat surface or a shape that combines a curved surface and a flat surface.
  • the convex part 5b may be circular, elliptical, rectangular, rhombus or trapezoidal.
  • Examples 1 to 3 show an example in which the region B from the weld joint 11 (joint portion) to the end 2PE of the core plate 2a is cantilevered by welding.
  • the configuration is not limited to those shown in the first to third embodiments.
  • a caulking structure may be employed to form a coupling portion, and the region B from the coupling portion to the end 2PE of the core plate 2a may be a cantilever structure.
  • the coupling portion is not limited to welding or caulking.
  • the rotor shaft 4 is press-fitted into the rotor core 2 so that the rotor shaft 4 is fitted to the rotor core 2.
  • the configuration is not limited to those shown in the first to third embodiments.
  • general key engagement may be used in addition to press-fitting. That is, one or several key grooves may be formed on the inner peripheral surface 2IP of the rotor core 2 and the outer peripheral surface of the rotor shaft 4, and a key may be inserted into the key groove to prevent rotation.
  • the rotor core 2 is formed of a plurality of core plates 2a, it is preferable to prevent rotation by key engagement rather than press-fitting.

Abstract

Provided is a rotating electric machine synchronous rotor in which the anti-centrifugal strength reliability of a rotor core can be improved. The rotating electric machine synchronous rotor (1) is equipped with: a cylindrical rotor core (2) formed by stacking a plurality of circular arc-shaped core plates (2a); and permanent magnets (3) buried in the rotor core (2), wherein joint portions (weld joint portions (11)) for joining the circular arc-shaped core plates (2a) stacked in a rotor axis (Ax) direction to each other are provided on an inner circumferential side of the rotor core (2), and the circular arc-shaped core plates (2a) include magnet holes (3a) opened on a plate outer circumferential side, and notch portions (6) formed by notching both ends (2PE, 2PE) of an inner circumferential surface (2IP) of the core plates (2a) while avoiding portions that become the joint portions (weld joint portions (11)).

Description

回転電機用同期ロータSynchronous rotor for rotating electrical machines
 本発明は、複数の円弧状のコアプレートを積層することにより形成した円筒状のロータコアと、このロータコアに埋め込まれた永久磁石と、を備えた回転電機用同期ロータに関する。 The present invention relates to a synchronous rotor for a rotating electrical machine including a cylindrical rotor core formed by laminating a plurality of arc-shaped core plates and a permanent magnet embedded in the rotor core.
 回転電機の同期ロータとしては、複数の分割コアプレートを円環状に配置しながら積層して成形されるロータコアと、その分割コアプレートに形成されたマグネット孔(磁石穴)に挿入されたマグネット(永久磁石)と、を備えている。そして、従来、同期ロータとしては、分割コアプレートの内周側に2つの貫通穴が形成され、分割コアプレートを円環状に配置したとき、貫通穴が等間隔になるように配置されている。また、ロータコアは、該ロータコアの軸方向に沿ってその貫通穴が連通するように積層され、その連通する貫通穴に固定ピンが嵌挿されている。すなわち、固定ピンにより、軸方向に積層した分割コアプレート同士が結合されているものが知られている(例えば、特許文献1参照)。 As a synchronous rotor of a rotating electrical machine, a rotor core formed by stacking a plurality of divided core plates in an annular shape and a magnet (permanently) inserted into a magnet hole (magnet hole) formed in the divided core plate Magnet). Conventionally, as a synchronous rotor, two through holes are formed on the inner peripheral side of the divided core plate, and when the divided core plate is arranged in an annular shape, the through holes are arranged at equal intervals. The rotor core is laminated so that the through-holes communicate with each other along the axial direction of the rotor core, and a fixing pin is inserted into the communicating through-hole. That is, a structure in which split core plates stacked in the axial direction are coupled to each other by a fixing pin is known (for example, see Patent Document 1).
特開2008-092650号公報JP 2008-092650 A
 しかしながら、従来の回転電機用同期ロータにあっては、分割コアプレートにおいて固定ピンから分割コアプレートの端面までの端部領域は拘束・支持されていない片持ち構造となっている。このため、片持ち構造となる端部領域では、片持ち構造とならない領域と比較すると、ロータ回転時に発生する遠心力により、外径方向への変形が大きくなる。そして、片持ち構造となる端部領域では、この遠心力による変形により、分割コアプレートの外周端と磁石穴の外径側との間の肉厚が相対的に薄いブリッジ部の応力が増大し、そのブリッジ部にダメージを与えるおそれがある。このため、ロータコアの耐遠心強度信頼性が低下する、という問題が生じていた。 However, in the conventional synchronous rotor for rotating electrical machines, the end core region from the fixed pin to the end face of the split core plate has a cantilever structure that is not restrained or supported in the split core plate. For this reason, in the end region where the cantilever structure is formed, the deformation in the outer diameter direction is increased due to the centrifugal force generated when the rotor rotates as compared with the region where the cantilever structure is not used. And in the end region which becomes a cantilever structure, due to the deformation due to the centrifugal force, the stress of the bridge portion where the wall thickness between the outer peripheral end of the split core plate and the outer diameter side of the magnet hole is relatively thin increases. There is a risk of damaging the bridge. For this reason, the problem that the reliability with respect to centrifugal strength of the rotor core is lowered has occurred.
 本発明は、上記問題に着目してなされたもので、ロータコアの耐遠心強度信頼性を向上することができる回転電機用同期ロータを提供することを目的とする。 The present invention has been made paying attention to the above problem, and an object of the present invention is to provide a synchronous rotor for rotating electrical machines that can improve the centrifugal strength reliability of the rotor core.
 上記目的を達成するため、本発明の回転電機用同期ロータは、複数の円弧状のコアプレートを積層することにより形成した円筒状のロータコアと、前記ロータコアに埋め込まれた永久磁石と、を備えている。
この回転電機用同期ロータにおいて、前記ロータコアの内周側に、ロータ軸方向に積層した前記複数の円弧状のコアプレート同士を結合する結合部を設ける。
前記円弧状のコアプレートは、プレート外周側に開穴した磁石穴と、前記結合部となる部分を避けた前記コアプレートの内周面の両端部を切り欠いた切欠部と、を有する。
In order to achieve the above object, a synchronous rotor for a rotating electrical machine according to the present invention includes a cylindrical rotor core formed by stacking a plurality of arc-shaped core plates, and a permanent magnet embedded in the rotor core. Yes.
In this rotary electric machine synchronous rotor, a coupling portion that couples the plurality of arc-shaped core plates stacked in the rotor axial direction is provided on the inner peripheral side of the rotor core.
The arc-shaped core plate has a magnet hole opened on the outer peripheral side of the plate, and a cutout portion formed by cutting out both end portions of the inner peripheral surface of the core plate that avoids the portion to be the coupling portion.
 よって、回転電機用同期ロータにおける円弧状のコアプレートは、結合部からコアプレートの端部までの領域が片持ち構造となり、その領域に切欠部を有している。
すなわち、ロータ回転時、その領域のコアプレートの内周面の両端部に切欠部を有することにより、コアプレートの両端部に発生する遠心力が低減される。この遠心力の低減により、コアプレートの両端部の外径方向への遠心力による変形が小さく抑えられ、ブリッジ部の応力の増大を抑制することができる。
この結果、ロータ回転時、ロータコアの耐遠心強度信頼性を向上することができる。
Therefore, the arc-shaped core plate in the synchronous rotor for rotating electrical machines has a cantilever structure in the region from the coupling portion to the end portion of the core plate, and has a notch in that region.
That is, when the rotor rotates, the centrifugal force generated at both ends of the core plate is reduced by having the notches at both ends of the inner peripheral surface of the core plate in that region. By reducing the centrifugal force, deformation due to the centrifugal force in the outer diameter direction at both ends of the core plate can be suppressed to be small, and an increase in the stress of the bridge portion can be suppressed.
As a result, the centrifugal strength reliability of the rotor core can be improved during rotor rotation.
実施例1の回転電機用同期ロータの分解斜視図である。1 is an exploded perspective view of a synchronous rotor for a rotating electrical machine according to Embodiment 1. FIG. 実施例1のロータコアを形成する円弧状のコアプレートの概略平面図である。FIG. 3 is a schematic plan view of an arc-shaped core plate that forms the rotor core according to the first embodiment. 実施例1の複数の円弧上のコアプレートを環状に配置した組み立て構成図である。It is an assembly block diagram which has arrange | positioned the core plate on the some circular arc of Example 1 cyclically | annularly. 実施例1の複数の円弧上のコアプレートを積層してロータコアを組み立てる構成図である。It is a block diagram which laminates | stacks the core plate on the some circular arc of Example 1, and assembles a rotor core. 実施例1の連続溶接部を形成したロータ溶接接合工程図である。It is a rotor welding joining process figure in which the continuous welding part of Example 1 was formed. 実施例1の磁石穴に永久磁石を挿入する工程図である。FIG. 6 is a process diagram for inserting a permanent magnet into the magnet hole of the first embodiment. 実施例2のロータコアを形成する円弧状のコアプレートの概略平面図である。6 is a schematic plan view of an arc-shaped core plate that forms a rotor core according to Embodiment 2. FIG. 実施例2の切欠部の曲線形状の変形例を示す切欠部の概略拡大平面図である。FIG. 10 is a schematic enlarged plan view of a notch portion showing a modified example of the curved shape of the notch portion according to the second embodiment. 実施例2の切欠部の直線形状の変形例を示す切欠部の概略拡大平面図である。FIG. 10 is a schematic enlarged plan view of a notch portion showing a modification of the linear shape of the notch portion according to the second embodiment. 実施例3のロータコアを形成する円弧状のコアプレートの概略平面図である。6 is a schematic plan view of an arc-shaped core plate that forms a rotor core according to Embodiment 3. FIG.
 以下、本発明の回転電機用同期ロータを実現する最良の形態を、図面に示す実施例1~実施例3に基づいて説明する。 Hereinafter, the best mode for realizing a synchronous rotor for a rotating electrical machine according to the present invention will be described based on Examples 1 to 3 shown in the drawings.
 まず、構成を説明する。
  図1は、実施例1の回転電機用同期ロータの分解斜視図であって、以下、図1に基づき全体構成を説明する。なお、上から2層目以下の詳細を一部省略する。
First, the configuration will be described.
FIG. 1 is an exploded perspective view of a synchronous rotor for a rotating electrical machine according to a first embodiment. Hereinafter, the overall configuration will be described with reference to FIG. Note that some details of the second and lower layers from the top are omitted.
 実施例1の回転電機用同期ロータ1は、ステータと共にモータを構成するものであり、例えば電気自動車やハイブリッド車両の走行駆動源として適用されるものである。 The synchronous rotor 1 for a rotating electrical machine according to the first embodiment constitutes a motor together with a stator, and is applied, for example, as a travel drive source for an electric vehicle or a hybrid vehicle.
 前記回転電機用同期ロータ1は、円筒状のロータコア2と、ロータコア2に埋め込まれた永久磁石3と、ロータコア2に嵌合するロータシャフト4と、を有している。 The rotating electrical machine synchronous rotor 1 has a cylindrical rotor core 2, a permanent magnet 3 embedded in the rotor core 2, and a rotor shaft 4 fitted to the rotor core 2.
 前記ロータコア2は、複数の円弧状のコアプレート2a(図2参照)を環状に配置すると共に、環状に配置した該コアプレート2aを積層することにより、内側に空間を持つ円筒状に形成されている。 The rotor core 2 is formed in a cylindrical shape having a space inside by laminating a plurality of arc-shaped core plates 2a (see FIG. 2) in an annular shape and laminating the annularly arranged core plates 2a. Yes.
 前記円弧状のコアプレート2aは、電磁鋼板からなり、図2に示すように、円弧の角度θ1が120°となっていて、磁石穴3aと、溶接部5と、切欠部6と、を有している。このコアプレート2aには、図2に示すように、磁石穴3aと、溶接部5とのそれぞれが、等間隔に4つずつ形成されている。また、コアプレート2aの両端部2PE,2PEには、図2に示すように、切欠部6を有する。 The arc-shaped core plate 2a is made of an electromagnetic steel plate, and as shown in FIG. 2, the arc angle θ1 is 120 °, and has a magnet hole 3a, a welded portion 5, and a notch portion 6. is doing. As shown in FIG. 2, four magnet holes 3a and four welds 5 are formed in the core plate 2a at equal intervals. Moreover, as shown in FIG. 2, the both ends 2PE and 2PE of the core plate 2a have a notch 6.
 前記磁石穴3aは、図2に示すように、プレート外周側に開穴した永久磁石3を挿入するための穴となっている。この磁石穴3aの形状は、周方向に広がった矩形形状に形成されている。 As shown in FIG. 2, the magnet hole 3a is a hole for inserting the permanent magnet 3 opened on the outer peripheral side of the plate. The shape of the magnet hole 3a is formed in a rectangular shape spreading in the circumferential direction.
 前記溶接部5は、図2に示すように、プレート内周端に形成されている。この溶接部5は、図2の右下拡大図に示すように、凹面5aと、凸部5bと、を有している。前記凹面5aは、コアプレート2aの内周面2IPから外径方向に凹んで形成されている。凹面5aの形状は、実線と破線にて示したように曲面形状に形成されている。前記凸部5bは、凹面5aの一部に、凹面5aからコアプレート2aの内周面2IPまでの範囲にて突出するように形成されている。凸部5bの形状は、三角形状に形成されている。 The weld 5 is formed at the inner peripheral edge of the plate as shown in FIG. As shown in the lower right enlarged view of FIG. 2, the welded portion 5 has a concave surface 5a and a convex portion 5b. The concave surface 5a is formed to be recessed in the outer diameter direction from the inner peripheral surface 2IP of the core plate 2a. The shape of the concave surface 5a is a curved surface as shown by the solid line and the broken line. The convex portion 5b is formed on a part of the concave surface 5a so as to protrude from the concave surface 5a to the inner peripheral surface 2IP of the core plate 2a. The shape of the convex part 5b is formed in a triangular shape.
 前記切欠部6は、図2に示すように、後述する溶接接合部11(結合部、溶接ビード、図5参照)となる部分すなわち溶接部5を避けた位置であって、コアプレート2aの内周面2IPの両端部2PE,2PEを切り欠いて形成されている。
この切欠部6は、図2に示すように、オフセット位置2FSからコアプレート2aの端面2EFまでの領域Aを、コアプレートの内周面2IPから外径方向に所定の深さPD切り欠いた形状(切欠部6の形状)に設定されている。この実施例1における所定の深さPDは、領域Aにおいて、コアプレート2aの内周面2IPから外径方向に一定としている。
ここで、オフセット位置2FSとは、溶接部5からオフセット量FSだけコアプレート2aの周方向端面側にオフセットした位置である。なお、この対象となる溶接部5は、図2に示すように、コアプレート2aの端部2PE側に配置された溶接部5である。また、この溶接部5からコアプレート2aの周方向端面側にオフセットするオフセット量FSとは、後述する溶接接合部11(結合部、溶接ビード、図5参照)が形成することができる量すなわち溶接部5を確保するための量である。具体的なオフセット量FSとしては、図2に示すように、溶接部5の周方向の中心位置(後述する径方向軸線CL)からオフセット位置2FSまでである。
さらに、所定の深さPDとは、コアプレート2aの内周面2IPからコアプレート2aの端部2PE側に配置された磁石穴3aに到達しない深さであって、磁石穴3aに挿入される永久磁石3による磁力線の形成を考慮した深さに設定されている。すなわち、永久磁石3による磁力線の形成を保ったままで切欠部6を形成する。
As shown in FIG. 2, the notch portion 6 is a position that avoids a portion to be a weld joint portion 11 (joint portion, weld bead, see FIG. 5) described later, that is, a weld portion 5, and is within the core plate 2a. Both end portions 2PE and 2PE of the peripheral surface 2IP are cut out.
As shown in FIG. 2, the notch 6 has a shape in which a region A from the offset position 2FS to the end surface 2EF of the core plate 2a is notched to a predetermined depth PD from the inner peripheral surface 2IP of the core plate in the outer diameter direction. (Shape of the notch 6) is set. In the region A, the predetermined depth PD in the first embodiment is constant in the outer diameter direction from the inner peripheral surface 2IP of the core plate 2a.
Here, the offset position 2FS is a position offset from the welded portion 5 by the offset amount FS toward the circumferential end face of the core plate 2a. In addition, the welding part 5 used as this object is the welding part 5 arrange | positioned at the edge part 2PE side of the core plate 2a, as shown in FIG. Further, the offset amount FS offset from the welded portion 5 to the circumferential end surface side of the core plate 2a is an amount that can be formed by a welded joint portion 11 (joint portion, weld bead, see FIG. 5) described later, that is, welding. This is an amount for securing the part 5. As a specific offset amount FS, as shown in FIG. 2, it is from the circumferential center position (a radial axis CL described later) of the welded portion 5 to the offset position 2FS.
Furthermore, the predetermined depth PD is a depth that does not reach the magnet hole 3a disposed on the end 2PE side of the core plate 2a from the inner peripheral surface 2IP of the core plate 2a, and is inserted into the magnet hole 3a. The depth is set in consideration of the formation of magnetic field lines by the permanent magnet 3. That is, the notch 6 is formed while maintaining the formation of the magnetic lines of force by the permanent magnet 3.
 図2に示すように、コアプレート2aの中心点Oと、磁石穴3aの周方向の中心位置とを径方向に結ぶ径方向軸線CLの同一軸線上に、溶接部5を配置している。すなわち、磁石穴3aと、溶接部5とのそれぞれの周方向の中心位置を、径方向軸線CLの同一軸線上に配置している。同様に、凹面5a及び凸部5bのそれぞれの周方向の中心位置も、径方向軸線CLの同一軸線上に配置している。
ここで、コアプレート2aの中心点Oは、複数の円弧状のコアプレート2aを環状に配置したときの中心点Oと同一となる(図3参照)。すなわち、この環状に配置した該コアプレート2aを積層することによりロータコア2が形成されるので、コアプレート2aの中心点Oは、ロータコア2の中心点とも同一となる。なお、コアプレート2aの内周面2IP及びロータコア2の内周面2IPも同様の理由により同一の中心点となる。
As shown in FIG. 2, the welded portion 5 is disposed on the same axis line of the radial axis CL that connects the center point O of the core plate 2a and the center position in the circumferential direction of the magnet hole 3a in the radial direction. That is, the center positions in the circumferential direction of the magnet hole 3a and the welded portion 5 are arranged on the same axis line of the radial axis line CL. Similarly, the circumferential center positions of the concave surface 5a and the convex portion 5b are also arranged on the same axis line of the radial axis line CL.
Here, the center point O of the core plate 2a is the same as the center point O when the plurality of arc-shaped core plates 2a are annularly arranged (see FIG. 3). That is, since the rotor core 2 is formed by laminating the annularly arranged core plates 2a, the center point O of the core plate 2a is the same as the center point of the rotor core 2. The inner peripheral surface 2IP of the core plate 2a and the inner peripheral surface 2IP of the rotor core 2 have the same center point for the same reason.
 このような円弧状のコアプレート2aを複数積層して、円筒状のロータコア2が形成されている。この形成されたロータコア2の内周面2IPに、ロータ軸Ax方向に積層した複数のコアプレート2a間の溶接部5により連続する直線状の連続溶接部10が形成される(図5参照)。 A cylindrical rotor core 2 is formed by laminating a plurality of such arc-shaped core plates 2a. On the inner peripheral surface 2IP of the rotor core 2 thus formed, a linear continuous welded portion 10 is formed by the welded portions 5 between the plurality of core plates 2a stacked in the rotor axis Ax direction (see FIG. 5).
 この連続溶接部10を、溶接接合することにより、図1と図6に示すように、溶接ビード11(溶接接合部、結合部)が形成される。これにより、積層した複数のコアプレート2a同士が結合される。この溶接接合は、母材、すなわち、連続溶接部10における溶接部5の凸部5bを溶融することにより行ってもよいし、その凸部5bと溶接ワイヤを溶融することにより行ってもよい。この溶接ワイヤの溶融量は、溶接部5の凹面5a内、すなわち、凹面5aからコアプレート2aの内周面2IPまでの範囲に収まる程度の量となっている。
なお、切欠部6を溶接ビード11となる溶接部5を避けて形成しているため、溶接ビード11形状の均一性を確保することができる。
By welding this continuous weld 10 together, a weld bead 11 (weld joint, joint) is formed as shown in FIGS. Thereby, the laminated | stacked several core plates 2a are couple | bonded. This welding joining may be performed by melting the base material, that is, the convex portion 5b of the welded portion 5 in the continuous welded portion 10, or may be performed by melting the convex portion 5b and the welding wire. The amount of melting of the welding wire is such that it is within the concave surface 5a of the welded portion 5, that is, within the range from the concave surface 5a to the inner peripheral surface 2IP of the core plate 2a.
In addition, since the notch part 6 is formed avoiding the welding part 5 used as the weld bead 11, the uniformity of the shape of the weld bead 11 can be ensured.
 前記ロータシャフト4は、内側に空間を持つ円筒状に形成されている。この内側の空間には、不図示の回転軸などが挿入される。このロータシャフト4は、ロータコア2に対して圧入されることにより、ロータコア2にロータシャフト4が嵌合される。 The rotor shaft 4 is formed in a cylindrical shape having a space inside. A rotation shaft (not shown) or the like is inserted into this inner space. The rotor shaft 4 is press-fitted into the rotor core 2 so that the rotor shaft 4 is fitted to the rotor core 2.
 次に、作用を説明する。
  実施例1の回転電機用同期ロータ1における作用を、「回転電機用同期ロータの製造方法」、「回転電機用同期ロータの特徴的作用」、「切欠部形状の作用」に分けて説明する。
Next, the operation will be described.
The operation of the rotating electrical machine synchronous rotor 1 according to the first embodiment will be described by dividing it into “a manufacturing method of the rotating electrical machine synchronous rotor”, “a characteristic operation of the rotating electrical machine synchronous rotor”, and “an operation of the notch shape”.
 [回転電機用同期ロータの製造方法]
  図2~図6に基づき、本発明の回転電機用同期ロータの製造作用を説明する。複数の円弧状のコアプレート2aを積層することにより形成した円筒状のロータコア2と、ロータコア2に埋め込まれた永久磁石3と、を有する同期ロータ1を備えた回転電機用同期ロータ1の製造方法は、コアプレート成形工程と、ロータコア組み立て工程と、ロータ溶接接合工程と、永久磁石挿入工程と、を有している。以下、各工程について説明する。なお、図5と図6の上から2層目以下の詳細を一部省略する。
[Method of manufacturing synchronous rotor for rotating electrical machine]
Based on FIGS. 2 to 6, the operation of manufacturing the synchronous rotor for a rotating electrical machine according to the present invention will be described. A method of manufacturing a synchronous rotor 1 for a rotating electrical machine comprising a synchronous rotor 1 having a cylindrical rotor core 2 formed by laminating a plurality of arc-shaped core plates 2a and a permanent magnet 3 embedded in the rotor core 2. Includes a core plate forming step, a rotor core assembling step, a rotor welding joining step, and a permanent magnet insertion step. Hereinafter, each step will be described. Note that some details of the second and lower layers from the top of FIGS. 5 and 6 are partially omitted.
 (コアプレート成形工程)
  前記コアプレート成形工程では、図2に示すように、円弧状のコアプレート2aに、プレート外周側に開穴された永久磁石3を挿入するための磁石穴3aと、プレート内周端に形成された溶接部5と、コアプレート2aの内周面2IPの両端部2PE,2PEを切り欠いた切欠部6と、が成形される。
(Core plate forming process)
In the core plate forming step, as shown in FIG. 2, a magnet hole 3a for inserting the permanent magnet 3 opened on the outer peripheral side of the plate and an inner peripheral end of the plate are formed in the arc-shaped core plate 2a. The welded portion 5 and the notched portion 6 in which both end portions 2PE and 2PE of the inner peripheral surface 2IP of the core plate 2a are notched are formed.
 (ロータコア組み立て工程)
  前記ロータコア組み立て工程では、図3に示すように、複数の円弧状のコアプレート2aを、環状に配置される。すなわち、図2に示すように、円弧の角度θ1が120°のコアプレート2aを3枚ほど使用して、環状に配置される。なお、図4において、この環状に配置されたコアプレート2aを第1層とする。この環状に配置したコアプレート2aを積層して円筒状のロータコア2が組み立てられる。すなわち、図4に示すように、第1層コアプレート2aの上に、第1層コアプレート2aに対しロータコア2の回転方向(例えば、左回り)に角度θ2(=30°)ずらして、第2層コアプレート2bが積層される。続いて、図4に示すように、第2層コアプレート2bの上に、第2層コアプレート2bに対し左回りに30°ずらして、第3層コアプレート2cが積層される。このように、前の層に対し左回りに30°ずらして、つまり、前の層のコアプレート2a間の継ぎ目をまたぐように、次の層が積層されていくことにより、円筒状のロータコア2が組み立てられる。この円筒状のロータコア2を組み立てるのに、例えば、コアプレート2aを54枚ほど用いて、18層ほど積層される。
(Rotor core assembly process)
In the rotor core assembling step, as shown in FIG. 3, a plurality of arc-shaped core plates 2a are annularly arranged. That is, as shown in FIG. 2, about three core plates 2a having an arc angle θ1 of 120 ° are used and arranged in an annular shape. In FIG. 4, the annularly disposed core plate 2a is defined as a first layer. The cylindrical rotor core 2 is assembled by stacking the annular core plates 2a. That is, as shown in FIG. 4, on the first layer core plate 2a, the first layer core plate 2a is shifted from the first layer core plate 2a by an angle θ2 (= 30 °) in the rotational direction of the rotor core 2 (for example, counterclockwise). A two-layer core plate 2b is laminated. Subsequently, as shown in FIG. 4, the third layer core plate 2 c is laminated on the second layer core plate 2 b so as to be shifted 30 ° counterclockwise with respect to the second layer core plate 2 b. Thus, the cylindrical rotor core 2 is formed by laminating the next layer so as to be shifted counterclockwise by 30 ° with respect to the previous layer, that is, straddling the joint between the core plates 2a of the previous layer. Is assembled. For assembling this cylindrical rotor core 2, for example, about 54 core plates 2a are used, and about 18 layers are laminated.
 (ロータ溶接接合工程)
  前記ロータ溶接接合工程では、ロータコア2のロータ軸Ax方向に積層した複数のコアプレート2a間の磁石穴3aが、ロータ軸Ax方向に連通するように位置合わせが行われる。すなわち、連通している磁石穴3aに永久磁石3を挿入することができるように、位置合わせが行われる(図5参照)。なお、この位置合わせは、治具を用いて行われる。この位置合わせが行われたロータコア2の内周面2IPに、図5に示すように、ロータ軸Ax方向に積層した複数のコアプレート2a間の溶接部5により連続する直線状の連続溶接部10が形成される。次に、磁石穴3aの周方向の中心位置とロータコア2の中心点(コアプレート2aの中心点)Oとを径方向に結ぶ径方向軸線CLの同一軸線上に、連続溶接部10が配置された状態にて、連続溶接部10が溶接接合される。これにより、図6に示すように、溶接ビード11が形成される。
(Rotor welding joining process)
In the rotor welding joining process, alignment is performed so that the magnet holes 3a between the plurality of core plates 2a stacked in the rotor axis Ax direction of the rotor core 2 communicate with each other in the rotor axis Ax direction. That is, alignment is performed so that the permanent magnet 3 can be inserted into the communicating magnet hole 3a (see FIG. 5). This alignment is performed using a jig. As shown in FIG. 5, a linear continuous welded portion 10 that is continuous by a welded portion 5 between a plurality of core plates 2a stacked in the rotor axis Ax direction on the inner peripheral surface 2IP of the rotor core 2 that has been aligned. Is formed. Next, the continuous welded portion 10 is disposed on the same axis line of the radial axis CL that connects the center position in the circumferential direction of the magnet hole 3a and the center point of the rotor core 2 (center point of the core plate 2a) O in the radial direction. In this state, the continuous weld 10 is welded. Thereby, as shown in FIG. 6, the weld bead 11 is formed.
 (永久磁石挿入工程)
  前記永久磁石挿入工程では、位置合わせが行われ、溶接接合された後、図6に示すように、その連通している磁石穴3aに永久磁石3が挿入されていく。このように製造されたロータコア2に対して、ロータシャフト4が圧入されることにより、ロータコア2にロータシャフト4が嵌合される。
(Permanent magnet insertion process)
In the permanent magnet insertion step, after alignment and welding and joining, as shown in FIG. 6, the permanent magnet 3 is inserted into the communicating magnet hole 3a. The rotor shaft 4 is fitted into the rotor core 2 by press-fitting the rotor shaft 4 into the rotor core 2 thus manufactured.
 以上の工程を経過し、磁石穴3aに永久磁石3を挿入することに加え、複数のコアプレート2a間の溶接部5を溶接接合することにより、回転電機用同期ロータ1を製造することができる。 After passing through the above process, in addition to inserting the permanent magnet 3 into the magnet hole 3a, the synchronous rotor 1 for rotary electric machines can be manufactured by welding the welding part 5 between the several core plates 2a. .
 このように、回転電機用同期ロータを製造することにより、実施例1では、凸部5bを集中的に溶接することができるので、溶接時の入熱量を最小限としながら、溶接ビード11の溶け込み幅及び深さを一定(安定)且つ容易に調整することができ、ロータコア2の接合強度を高めることができる。加えて、コアプレート2a間は溶接接合により同期ロータ1組立体単品で耐遠心強度を確保することができるため、永久磁石3への荷重入力による破損等が防止される。この結果、ロータコア2の耐遠心強度を確保することで、永久磁石3の耐久信頼性を向上することができる。
加えて、溶接ビード11は、溶接部5の凹面5a内に収まるので、ロータコア2に合わせてロータシャフト4を加工する手間が不要となる。すなわち、ロータシャフト4面は、図1に示すように、単純な円筒形状で良い。
Thus, by manufacturing the synchronous rotor for rotary electric machines, in Example 1, since the convex part 5b can be welded intensively, the penetration of the weld bead 11 is achieved while minimizing the amount of heat input during welding. The width and depth can be adjusted constant (stable) and easily, and the joining strength of the rotor core 2 can be increased. In addition, since the anti-centrifugal strength can be ensured by welding joint between the core plates 2a by a single piece of the synchronous rotor 1 assembly, damage due to load input to the permanent magnet 3 is prevented. As a result, the durability reliability of the permanent magnet 3 can be improved by ensuring the centrifugal strength of the rotor core 2.
In addition, since the weld bead 11 is accommodated in the concave surface 5 a of the welded portion 5, the trouble of processing the rotor shaft 4 according to the rotor core 2 becomes unnecessary. That is, the surface of the rotor shaft 4 may be a simple cylindrical shape as shown in FIG.
 [回転電機用同期ロータの特徴的作用]
  例えば、分割コアプレートに、永久磁石を挿入する磁石穴と、固定ピンを挿入する2つの貫通穴が形成されている。この貫通穴は、分割コアプレートの内周側に形成され、分割コアプレートを円環状に配置したとき、貫通穴は等間隔になるように配置されている。そして、このように形成された複数の分割コアプレートを円環状に配置しながら積層して成形されるロータコアを形成し、その磁石穴に永久磁石を挿入し、その貫通穴に固定ピンを嵌挿し、そのロータコアにロータシャフトが嵌合された、すなわち、固定ピンにより、軸方向に積層した分割コアプレート同士が結合された同期ロータを比較例とする。この比較例の同期ロータによれば、分割コアプレートにおいて固定ピンから分割コアプレートの端面までの端部領域は拘束・支持されていない片持ち構造となっている。
[Characteristic action of synchronous rotor for rotating electrical machines]
For example, the split core plate is formed with a magnet hole for inserting a permanent magnet and two through holes for inserting a fixing pin. The through holes are formed on the inner peripheral side of the divided core plate. When the divided core plates are arranged in an annular shape, the through holes are arranged at equal intervals. Then, a rotor core is formed by laminating a plurality of divided core plates formed in this manner while being arranged in an annular shape, a permanent magnet is inserted into the magnet hole, and a fixing pin is inserted into the through hole. A synchronous rotor in which the rotor shaft is fitted to the rotor core, that is, the divided core plates laminated in the axial direction by the fixing pins is used as a comparative example. According to the synchronous rotor of this comparative example, the end region from the fixed pin to the end face of the split core plate in the split core plate has a cantilever structure that is not restrained or supported.
 しかし、片持ち構造となる端部領域では、片持ち構造とならない領域と比較すると、ロータ回転時に発生する遠心力により、外径方向への変形が大きくなる。そして、片持ち構造となる端部領域では、この遠心力による変形により、分割コアプレートの外周端と磁石穴の外径側との間の肉厚が相対的に薄いブリッジ部の応力が増大し、そのブリッジ部にダメージ(例えば、永久変形など)を与えるおそれがある。このため、ロータコアの耐遠心強度信頼性が低下する、という課題があった。 However, in the end region where the cantilever structure is formed, the deformation in the outer diameter direction becomes larger due to the centrifugal force generated when the rotor rotates than the region where the cantilever structure is not formed. And in the end region which becomes a cantilever structure, due to the deformation due to the centrifugal force, the stress of the bridge portion where the wall thickness between the outer peripheral end of the split core plate and the outer diameter side of the magnet hole is relatively thin increases. The bridge portion may be damaged (for example, permanent deformation). For this reason, there existed a subject that the centrifugal strength reliability of a rotor core fell.
 また、分割コアプレートを積層してロータコアを組み立てるとき、組立バラツキにより、分割コアプレート同士の端面の面内で位置ズレが発生する。このとき、位置ズレによって、ロータコアの内周面から分割コアプレートの内周側端部が突出する。このため、その突出部が内径バラツキを増大させることになる、という課題があった。 Also, when the rotor core is assembled by stacking the split core plates, positional deviation occurs in the end surfaces of the split core plates due to assembly variations. At this time, the inner peripheral side end of the split core plate protrudes from the inner peripheral surface of the rotor core due to the positional deviation. For this reason, the subject that the protrusion part will increase internal diameter variation occurred.
 このように、ロータコアの耐遠心強度信頼性が低下する、という課題があった。また、その突出部が内径バラツキを増大させることになる、という課題があった。 As described above, there was a problem that reliability of the centrifugal strength of the rotor core was lowered. In addition, there is a problem that the protrusion increases the inner diameter variation.
 これに対し、実施例1では、回転電機用同期ロータ1における円弧状のコアプレート2aは、溶接接合部11(結合部)からコアプレート2aの端部2PEまでの領域B(図2のハッチング部分)が片持ち構造となり、片持ち構造となる領域Bに切欠部6を有している構成を採用した。
すなわち、片持ち構造となる領域Bの質量が軽減される。このため、ロータ回転時、その領域Bのコアプレート2aの内周面2IPの両端部2PE,2PEに切欠部6を有することにより、コアプレート2aの両端部2PE,2PEに発生する遠心力が低減される。この遠心力の低減により、コアプレート2aの両端部2PE,2PEの外径方向への遠心力による変形が小さく抑えられ、ブリッジ部C(図2)の応力の増大を抑制することができる。
したがって、ロータ回転時、ロータコア2の耐遠心強度信頼性を向上することができる。
On the other hand, in the first embodiment, the arc-shaped core plate 2a in the synchronous rotor 1 for a rotating electrical machine has a region B (hatched portion in FIG. 2) from the weld joint portion 11 (joint portion) to the end portion 2PE of the core plate 2a. ) Is a cantilever structure, and a configuration having a notch 6 in the region B where the cantilever structure is adopted.
That is, the mass of the region B having a cantilever structure is reduced. For this reason, when the rotor rotates, the notch 6 is provided at both ends 2PE and 2PE of the inner peripheral surface 2IP of the core plate 2a in the region B, thereby reducing the centrifugal force generated at both ends 2PE and 2PE of the core plate 2a. Is done. By reducing the centrifugal force, the deformation due to the centrifugal force in the outer diameter direction of both end portions 2PE, 2PE of the core plate 2a can be suppressed to be small, and an increase in the stress of the bridge portion C (FIG. 2) can be suppressed.
Therefore, the centrifugal strength reliability of the rotor core 2 can be improved when the rotor rotates.
 加えて、コアプレート2aの内周面2IPの両端部2PE,2PEを切り欠いたことにより、ロータコア2の製造時、ロータコア2の内周面2IPからコアプレート2aの内周面2IPの端部2PE(内周側端部)へ突出する突出量が低減されるため、内径バラツキの増大を抑制することができる。このため、ロータコア2の寸法品質を向上することができる。 In addition, since both end portions 2PE and 2PE of the inner peripheral surface 2IP of the core plate 2a are notched, when the rotor core 2 is manufactured, the end portion 2PE of the inner peripheral surface 2IP of the core plate 2a is changed from the inner peripheral surface 2IP of the rotor core 2 to the core plate 2a. Since the amount of protrusion protruding toward the (inner peripheral side end) is reduced, it is possible to suppress an increase in inner diameter variation. For this reason, the dimensional quality of the rotor core 2 can be improved.
 [切欠部形状の作用]
  実施例1では、切欠部6が、片持ち構造となる領域B内において、オフセット位置2FSからコアプレート2aの端面2EFまでの領域Aでは、コアプレート2aの内周面2IPから外径方向に所定の深さPD切り欠いた形状(切欠部6の形状)に設定された構成を採用した。
すなわち、片持ち構造となる領域Bの質量が軽減される。このため、切欠部6の形状を設定しない場合よりも、ロータ回転時に発生する遠心力が低減される。
したがって、ロータ回転時、コアプレート2aの両端部2PE,2PEの外径方向への遠心力による変形を小さく抑えることができる。
[Operation of notch shape]
In the first embodiment, the notch 6 is predetermined in the outer diameter direction from the inner peripheral surface 2IP of the core plate 2a in the region A from the offset position 2FS to the end surface 2EF of the core plate 2a in the region B having the cantilever structure. The structure set to the shape of notch depth PD cutout (shape of the cutout portion 6) was adopted.
That is, the mass of the region B having a cantilever structure is reduced. For this reason, the centrifugal force generated when the rotor rotates is reduced as compared with the case where the shape of the notch 6 is not set.
Therefore, at the time of rotor rotation, the deformation | transformation by the centrifugal force to the outer-diameter direction of both ends 2PE and 2PE of the core plate 2a can be restrained small.
 次に、効果を説明する。
  実施例1の回転電機用同期ロータ1にあっては、下記に列挙する効果を得ることができる。
Next, the effect will be described.
In the rotating electrical machine synchronous rotor 1 of the first embodiment, the following effects can be obtained.
 (1) 複数の円弧状のコアプレート2aを積層することにより形成した円筒状のロータコア2と、ロータコア2に埋め込まれた永久磁石3と、を備えた回転電機用同期ロータ1において、
  ロータコア2の内周側に、ロータ軸Ax方向に積層した複数の円弧状のコアプレート2a同士を結合する結合部(溶接接合部11)を設け、
  円弧状のコアプレート2aは、プレート外周側に開穴した磁石穴3aと、結合部(溶接接合部11)となる部分を避けたコアプレート2aの内周面2IPの両端部2PE,2PEを切り欠いた切欠部6と、を有する。
  このため、ロータ回転時、ロータコア2の耐遠心強度信頼性を向上することができる。
(1) In a synchronous rotor 1 for a rotating electrical machine comprising a cylindrical rotor core 2 formed by laminating a plurality of arc-shaped core plates 2a, and a permanent magnet 3 embedded in the rotor core 2.
Provided on the inner peripheral side of the rotor core 2 is a joint (welded joint 11) that joins a plurality of arc-shaped core plates 2a stacked in the rotor axis Ax direction,
The arc-shaped core plate 2a cuts both ends 2PE and 2PE of the inner peripheral surface 2IP of the core plate 2a avoiding the magnet hole 3a opened on the outer peripheral side of the plate and the portion serving as the joint (welded joint 11). And a cutout portion 6 that is lacking.
For this reason, the centrifugal strength reliability of the rotor core 2 can be improved during the rotation of the rotor.
 (2) 円弧状のコアプレート2aは、プレート内周端に形成した溶接部5を有し、
  結合部(溶接接合部11)は、ロータ軸方向に積層した複数のコアプレート2a間の溶接部5により連続して形成される直線状の連続溶接部10を溶接接合して形成された溶接接合部11であり、
  切欠部6は、溶接部5からコアプレート2aの周方向端面側にオフセットしたオフセット位置2FSからコアプレート2aの端面2EFまでの領域Aを、コアプレート2aの内周面2IPから外径方向に所定の深さPD切り欠いた形状に設定した。
  このため、上記(1)の効果に加え、ロータ回転時、コアプレート2aの両端部2PE,2PEの外径方向への遠心力による変形を小さく抑えることができる。
(2) The arc-shaped core plate 2a has a welded portion 5 formed at the inner peripheral edge of the plate,
The joint (weld joint 11) is a weld joint formed by welding and joining linear continuous welds 10 continuously formed by welds 5 between a plurality of core plates 2a stacked in the rotor axial direction. Part 11;
The notch 6 has a region A from the offset position 2FS offset from the welded portion 5 to the circumferential end surface side of the core plate 2a to the end surface 2EF of the core plate 2a in the outer diameter direction from the inner peripheral surface 2IP of the core plate 2a. The depth of PD was set to a notched shape.
For this reason, in addition to the effect of the above (1), the deformation due to the centrifugal force in the outer diameter direction of the both end portions 2PE, 2PE of the core plate 2a can be suppressed to a small level when the rotor rotates.
 実施例2は、切欠部6の変形例である。図7に基づき実施例2の要部構成を以下に説明する。 Example 2 is a modification of the notch 6. Based on FIG. 7, the configuration of the main part of the second embodiment will be described below.
 切欠部6は、図7に示すように、オフセット位置2FSからコアプレート2aの端面2EFへ向かうにしたがって、外径方向への切り欠き深さが徐々に深くなる形状(切欠部6の形状)に設定されている。
この切欠部6の形状は、図7に示すように、曲面形状に形成されている。なお、図7に示すような曲線形状に限らず、図8に示すような図7とは異なる曲線形状であってもよいし、図9に示すような直線形状であってもよい。要するに、この形状は、オフセット位置2FSからコアプレート2aの端面2EFへ向かうにしたがって、外径方向への切り欠き深さが徐々に深くなる形状に設定されていればよい。
なお、他の構成は、実施例1と同様であるので、対応する構成に同一符号を付して説明を省略する。
As shown in FIG. 7, the notch 6 has a shape (shape of the notch 6) in which the notch depth in the outer diameter direction gradually increases from the offset position 2FS toward the end surface 2EF of the core plate 2a. Is set.
The shape of the notch 6 is a curved surface as shown in FIG. 7 is not limited to the curved shape as shown in FIG. 7, and may be a curved shape different from that shown in FIG. 7 or a linear shape as shown in FIG. In short, this shape should just be set to the shape which the notch depth to an outer-diameter direction becomes deep gradually as it goes to the end surface 2EF of the core plate 2a from the offset position 2FS.
Since other configurations are the same as those of the first embodiment, the corresponding components are denoted by the same reference numerals and description thereof is omitted.
 次に、実施例2の回転電機用同期ロータ1における「切欠部形状の作用」について、図7に基づいて説明する。 Next, “the action of the notch shape” in the synchronous rotor 1 for the rotating electrical machine according to the second embodiment will be described with reference to FIG.
 一般に、片持ち構造となる領域では、ロータ回転時、コアプレートの端面へ向かうにしたがって、外径方向への遠心力による変形が大きくなる。 Generally, in a region having a cantilever structure, when the rotor rotates, deformation due to centrifugal force in the outer diameter direction increases toward the end surface of the core plate.
 これに対し、実施例2では、図7に示すように、切欠部6が、オフセット位置2FSからコアプレート2aの端面2EFへ向かうにしたがって、外径方向への切り欠き深さが徐々に深くなる形状(切欠部6の形状)に設定構成を採用した。
すなわち、片持ち構造となる領域Bでは、コアプレート2aの端面2EFへ向かうにしたがって、コアプレート2aの質量軽減が大きくなる。
これにより、ロータ回転時、このように切欠部6の形状を設定しない場合よりも、オフセット位置2FSからコアプレート2aの端面2EFへ向かうにしたがって、遠心力が効果的に低減される。
したがって、ロータ回転時、コアプレート2aの端面2EFへ向かうにしたがって、外径方向への遠心力による変形を効果的に抑えることができる。
なお、実施例1及び実施例2の切欠部6の形状の作用が異なるのみで、他の作用は、実施例1と同様であるので、説明を省略する。
On the other hand, in Example 2, as shown in FIG. 7, the notch depth in the outer diameter direction gradually increases as the notch 6 moves from the offset position 2FS toward the end surface 2EF of the core plate 2a. The setting configuration was adopted for the shape (the shape of the notch 6).
That is, in the region B having the cantilever structure, the mass reduction of the core plate 2a increases as it goes toward the end surface 2EF of the core plate 2a.
Thereby, at the time of rotor rotation, centrifugal force is effectively reduced as it goes from the offset position 2FS toward the end surface 2EF of the core plate 2a as compared with the case where the shape of the notch 6 is not set.
Therefore, when the rotor is rotated, deformation due to the centrifugal force in the outer diameter direction can be effectively suppressed toward the end surface 2EF of the core plate 2a.
In addition, since only the action of the shape of the notch portion 6 of the first embodiment and the second embodiment is different, the other actions are the same as those of the first embodiment, and thus description thereof is omitted.
 次に、効果を説明する。
  実施例2の回転電機用同期ロータ1にあっては、実施例1の(2)の効果に加え、下記の効果を得ることができる。
Next, the effect will be described.
In the rotating electrical machine synchronous rotor 1 of the second embodiment, in addition to the effect (2) of the first embodiment, the following effects can be obtained.
 (3) 切欠部6は、オフセット位置2FSからコアプレート2aの端面2EFへ向かうにしたがって、外径方向への切り欠き深さが徐々に深くなる形状に設定した。
  このため、ロータ回転時、コアプレート2aの端面2EFへ向かうにしたがって、外径方向への遠心力による変形を効果的に抑えることができる。
(3) The notch portion 6 was set to have a shape in which the notch depth in the outer diameter direction gradually increased from the offset position 2FS toward the end surface 2EF of the core plate 2a.
For this reason, at the time of rotor rotation, the deformation | transformation by the centrifugal force to an outer-diameter direction can be effectively suppressed as it goes to the end surface 2EF of the core plate 2a.
 実施例3は、コアプレート2a、溶接部5、及び切欠部6の変形例である。図10に基づき実施例3の要部構成を以下に説明する。 Example 3 is a modification of the core plate 2 a, the welded part 5, and the cutout part 6. Based on FIG. 10, the configuration of the main part of the third embodiment will be described below.
 円弧状のコアプレート2aは、図10に示すように、その外周としての外周側円弧21aと、その内周としてのオフセット円弧22とから形成されている。 As shown in FIG. 10, the arc-shaped core plate 2a is formed by an outer peripheral side arc 21a as an outer periphery thereof and an offset arc 22 as an inner periphery thereof.
 前記外周側円弧21aは、図10に示すように、コアプレート2aの中心点O1(基準中心点)を中心とする円弧である。なお、中心点O1は、実施例1の中心点Oと同一である。 The outer peripheral arc 21a is an arc centered on the center point O1 (reference center point) of the core plate 2a as shown in FIG. The center point O1 is the same as the center point O of the first embodiment.
 前記オフセット円弧22については、図10を用いて、以下の通り説明する。
まず、中心点O1を中心とする同心円の外周側円弧21aと内周側円弧21b(図10の一点鎖線)から形成されたコアプレートを基準コアプレート21とする。図10に示すように、外周側円弧21aの半径を基準外周側半径R1とし、内周側円弧21bの半径を基準内周側半径R2としている。
次に、内周側円弧21bの周方向中央点21b1(周方向中央)と中心点O1を結ぶ直線L1(一点鎖線)を、中心点O1を越えて延長した延長線EL上に、中心点O1からオフセットした中心点をオフセット中心点O2とする。
続いて、オフセット中心点O2と内周側円弧21bの周方向中央点21b1を結ぶ直線L2(一点鎖線)をオフセット半径R3(半径)として、内周側円弧21bの周方向中央点21b1から基準コアプレート21の両端面21EFまで、周方向に広がった円弧をオフセット円弧22としている。
  ここで、オフセット円弧22の曲率半径は内周側円弧21bの曲率半径より大きく、オフセット円弧22は内周側円弧21bよりも、内周側円弧21bの周方向中央点21b1からコアプレート2aの端面2EFへ向かうにしたがって、外周側円弧21aに近づいていく。
The offset arc 22 will be described as follows with reference to FIG.
First, a core plate formed of a concentric outer circumferential arc 21a and inner circumferential arc 21b (a chain line in FIG. 10) centered on the center point O1 is defined as a reference core plate 21. As shown in FIG. 10, the radius of the outer circumferential arc 21a is the reference outer radius R1, and the radius of the inner arc 21b is the reference inner radius R2.
Next, a center point O1 is placed on an extension line EL that extends a straight line L1 (dashed line) connecting the center point O1 and the center point 21b1 (circumferential center) of the inner circular arc 21b beyond the center point O1. The center point offset from is set as the offset center point O2.
Subsequently, a straight line L2 (dashed line) connecting the offset center point O2 and the circumferential center point 21b1 of the inner circumference side arc 21b is set as an offset radius R3 (radius) from the circumferential center point 21b1 of the inner circumference side arc 21b to the reference core. An arc extending in the circumferential direction up to both end faces 21 EF of the plate 21 is defined as an offset arc 22.
Here, the radius of curvature of the offset arc 22 is larger than the radius of curvature of the inner circumference side arc 21b, and the offset arc 22 has an end face of the core plate 2a from the circumferential center point 21b1 of the inner circumference side arc 21b rather than the inner circumference side arc 21b. As it goes to 2EF, it approaches the outer circumferential arc 21a.
 溶接部5については、図4と図10を用いて、以下の通り説明する。
実施例3においても、実施例1のロータコア組み立て工程において説明した通り、図4に示すように、第1層コアプレート2aの上に、第1層コアプレート2aに対しロータコア2の回転方向に角度θ2ずらして、第2層コアプレート2bが積層される。
このとき、実施例3のコアプレート2aに実施例1と同様に4つの同一形状の溶接部5が形成されていると、実施例3のコアプレート2aは外周側円弧21aとオフセット円弧22との中心点O1,O2が異なるので、第1層コアプレート2aと第2層コアプレート2bとの溶接部5がロータ軸Ax方向で一致しなくなる。
このため、実施例3の溶接部5は、コアプレート2aの周方向中央側の溶接部5CEと周方向端面側の溶接部5EFの配置と形状を異ならせる。
すなわち、第1層コアプレート2aに対しロータコア2の回転方向に角度θ2ずらして、第2層コアプレート2bが積層されたとき、第1層コアプレート2aと第2層コアプレート2bとの溶接部の凸部5bがロータ軸Ax方向で一致する位置に、コアプレート2aにおける凸部5bがそれぞれ形成されている。
言い換えると、ロータ軸Ax方向に積層した複数のコアプレート2a間の溶接部5により連続する直線状の連続溶接部10が形成されるように、図10に示すように、コアプレート2aの周方向中央側と周方向端面側の凸部5bがそれぞれ異なる位置に配置されている。
なお、凸部5bの形状は、実施例1と同様に三角形状に形成されている(実施例1の図2参照)。
The welding part 5 is demonstrated as follows using FIG. 4 and FIG.
Also in the third embodiment, as described in the rotor core assembling process of the first embodiment, as shown in FIG. 4, an angle is formed on the first layer core plate 2 a with respect to the first layer core plate 2 a in the rotation direction of the rotor core 2. The second core plate 2b is stacked with a shift of θ2.
At this time, if the four welded parts 5 having the same shape are formed on the core plate 2a of the third embodiment as in the first embodiment, the core plate 2a of the third embodiment is formed by the outer circumferential arc 21a and the offset arc 22 Since the center points O1 and O2 are different, the welded portion 5 between the first layer core plate 2a and the second layer core plate 2b does not match in the rotor axis Ax direction.
For this reason, the welding part 5 of Example 3 makes the arrangement | positioning and shape of the welding part 5CE of the circumferential direction center side of the core plate 2a and the welding part 5EF of the circumferential direction end surface side different.
That is, when the second layer core plate 2b is laminated with the angle θ2 shifted in the rotation direction of the rotor core 2 with respect to the first layer core plate 2a, the welded portion between the first layer core plate 2a and the second layer core plate 2b The convex portions 5b of the core plate 2a are formed at positions where the convex portions 5b coincide with each other in the rotor axis Ax direction.
In other words, as shown in FIG. 10, the circumferential direction of the core plate 2 a is formed such that a continuous linear welded portion 10 is formed by the welded portions 5 between the plurality of core plates 2 a stacked in the rotor axis Ax direction. The convex portions 5b on the center side and the circumferential end surface side are arranged at different positions.
In addition, the shape of the convex part 5b is formed in the triangle shape similarly to Example 1 (refer FIG. 2 of Example 1).
 溶接部5の凹面5aは、コアプレート2aの周方向端面側と周方向中央側との凸部5bに合わせて形成されている。すなわち、凹面5aは、図10に示すように、コアプレート2aの周方向端面側よりも周方向中央側の方が、コアプレート2aの内周面2IPから外径方向に深く凹んで形成されている。これらの凹面5aの形状は、深さが異なる曲面形状に形成されている(実施例1の図2参照)。 The concave surface 5a of the welded portion 5 is formed in accordance with the convex portions 5b on the circumferential end surface side and the circumferential central side of the core plate 2a. That is, as shown in FIG. 10, the concave surface 5a is formed so as to be deeply recessed in the outer diameter direction from the inner peripheral surface 2IP of the core plate 2a on the central side in the circumferential direction rather than the end surface side in the circumferential direction of the core plate 2a. Yes. The shapes of these concave surfaces 5a are formed into curved shapes having different depths (see FIG. 2 of Example 1).
 切欠部6は、図10に示すように、基準コアプレート21より、内周側円弧21bからオフセット円弧22まで外径方向に切り欠いた形状(切欠部6の形状)に設定されている。この切欠部6の形状は、オフセット位置2FSからコアプレート2aの端面2EFへ向かうにしたがって、外径方向への切り欠き深さが徐々に深くなる形状に設定されることになる。
  ここで、外周側円弧21aの周方向中央点21a1(周方向中央)とオフセット円弧22の周方向中央点22a(周方向中央)(=内周側円弧21bの周方向中央点21b1)との中心ヨーク幅W1よりも、コアプレート2aの端面2EFにおける外周側円弧21aとオフセット円弧22との端面ヨーク幅W2の方が小さくなっている。
なお、他の構成は、実施例1と同様であるので、対応する構成に同一符号を付して説明を省略する。
As shown in FIG. 10, the notch 6 is set in a shape (shape of the notch 6) cut from the reference core plate 21 in the outer diameter direction from the inner circumferential arc 21 b to the offset arc 22. The shape of the notch 6 is set to a shape in which the notch depth in the outer diameter direction is gradually increased from the offset position 2FS toward the end surface 2EF of the core plate 2a.
Here, the center between the circumferential center point 21a1 (circumferential center) of the outer circumferential arc 21a and the circumferential center point 22a (circumferential center) of the offset arc 22 (= the circumferential central point 21b1 of the inner circumferential arc 21b). The end face yoke width W2 between the outer peripheral arc 21a and the offset arc 22 on the end face 2EF of the core plate 2a is smaller than the yoke width W1.
Since other configurations are the same as those of the first embodiment, the corresponding components are denoted by the same reference numerals and description thereof is omitted.
 次に、実施例3の回転電機用同期ロータ1における「切欠部形状の作用」について、図10に基づいて説明する。 Next, “the action of the notch shape” in the synchronous rotor 1 for the rotating electrical machine according to the third embodiment will be described with reference to FIG.
 一般に、片持ち構造となる領域では、ロータ回転時、コアプレートの端面へ向かうにしたがって、外径方向への遠心力による変形が大きくなる。 Generally, in a region having a cantilever structure, when the rotor rotates, deformation due to centrifugal force in the outer diameter direction increases toward the end surface of the core plate.
 これに対し、実施例3では、図10に示すように、切欠部6が、基準コアプレート21より、内周側円弧21bからオフセット円弧22まで外径方向に切り欠いた形状(切欠部6の形状)に設定された構成を採用した。
すなわち、片持ち構造となる領域Bでは、オフセット位置2FSからコアプレート2aの端面2EFへ向かうにしたがって、コアプレートの質量軽減が大きくなる。
これにより、ロータ回転時、このように切欠部6の形状を設定しない場合よりも、オフセット位置2FSからコアプレート2aの端面2EFへ向かうにしたがって、遠心力が効果的に低減される。
したがって、ロータ回転時、コアプレート2aの端面2EFへ向かうにしたがって、外径方向への遠心力による変形を効果的に抑えることができる。
なお、実施例1及び実施例3の切欠部6の形状の作用が異なるのみで、他の作用は、実施例1と同様であるので、説明を省略する。
On the other hand, in the third embodiment, as shown in FIG. 10, the cutout portion 6 is cut out from the reference core plate 21 from the inner circumferential side arc 21 b to the offset arc 22 in the outer diameter direction (the cutout portion 6 of the cutout portion 6. The configuration set to (shape) was adopted.
That is, in the region B having a cantilever structure, the mass reduction of the core plate increases from the offset position 2FS toward the end surface 2EF of the core plate 2a.
Thereby, at the time of rotor rotation, centrifugal force is effectively reduced as it goes from the offset position 2FS toward the end surface 2EF of the core plate 2a as compared with the case where the shape of the notch 6 is not set.
Therefore, when the rotor is rotated, deformation due to the centrifugal force in the outer diameter direction can be effectively suppressed toward the end surface 2EF of the core plate 2a.
In addition, since only the action of the shape of the notch portion 6 of the first embodiment and the third embodiment is different, the other actions are the same as those of the first embodiment, and thus the description thereof is omitted.
 次に、効果を説明する。
  実施例3の回転電機用同期ロータ1にあっては、実施例1の(1)の効果に加え、下記の効果を得ることができる。
Next, the effect will be described.
In the rotating electrical machine synchronous rotor 1 of the third embodiment, in addition to the effect of the first embodiment (1), the following effects can be obtained.
 (4) 基準中心点(中心点O1)を中心とする同心円の外周側円弧21aと内周側円弧21bから形成されたコアプレートを基準コアプレート21とし、
  内周側円弧21bの周方向中央(周方向中央点21b1)と基準中心点(中心点O1)を結ぶ直線Lを、基準中心点(中心点O1)を越えて延長した延長線EL上に、基準中心点(中心点O1)からオフセットした中心点をオフセット中心点O2とし、
  オフセット中心点O2と内周側円弧21bの周方向中央(周方向中央点21b1)を結ぶ直線を半径(オフセット半径R3)として、内周側円弧21bの周方向中央(周方向中央点21b1)から基準コアプレート21の両端面21EFまで、周方向に広がった円弧をオフセット円弧22とするとき、
  切欠部6は、基準コアプレート21より、内周側円弧21bからオフセット円弧22まで外径方向に切り欠いた形状に設定した。
  このため、ロータ回転時、コアプレート2aの端面2EFへ向かうにしたがって、外径方向への遠心力による変形を効果的に抑えることができる。
(4) A core plate formed of an outer peripheral arc 21a and an inner arc 21b that are concentric with the reference center point (center O1) as the center is defined as a reference core plate 21.
On the extension line EL that extends a straight line L connecting the center in the circumferential direction (circumferential center point 21b1) and the reference center point (center point O1) of the inner circular arc 21b beyond the reference center point (center point O1), The center point offset from the reference center point (center point O1) is defined as the offset center point O2,
From the circumferential center (circumferential center point 21b1) of the inner circumferential arc 21b, with a straight line connecting the offset center point O2 and the circumferential center (circumferential center point 21b1) of the inner circumferential arc 21b as a radius (offset radius R3). When an arc extending in the circumferential direction up to both end faces 21EF of the reference core plate 21 is an offset arc 22,
The cutout portion 6 was set to have a shape cut out from the reference core plate 21 in the outer diameter direction from the inner circumference side arc 21 b to the offset arc 22.
For this reason, at the time of rotor rotation, the deformation | transformation by the centrifugal force to an outer-diameter direction can be effectively suppressed as it goes to the end surface 2EF of the core plate 2a.
 以上、本発明の回転電機用同期ロータを実施例1~実施例3に基づき説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 As described above, the synchronous rotor for a rotating electrical machine according to the present invention has been described based on the first to third embodiments, but the specific configuration is not limited to these embodiments, and each claim of the claims Design changes and additions are permitted without departing from the spirit of the invention.
 実施例1~3では、1枚のコアプレート2aの構成に、磁石穴3a及び溶接部5のそれぞれを、等間隔に4つずつ形成する例を示した。しかしながら、1枚のコアプレート2aの構成は、実施例1~3に示した構成に限られるものではない。例えば、磁石穴3a及び溶接部5のそれぞれは等間隔に形成されていればよいので、それぞれ4つよりも少なく形成しても多く形成してもよい。 Examples 1 to 3 show an example in which four magnet holes 3a and four welds 5 are formed at equal intervals in the configuration of one core plate 2a. However, the configuration of one core plate 2a is not limited to the configurations shown in the first to third embodiments. For example, each of the magnet holes 3a and the welded portions 5 only needs to be formed at equal intervals, and may be formed in less or more than four.
 実施例1~3では、各層を構成するコアプレート2a枚数を3枚とする例を示した。しかしながら、各層を構成するコアプレート2a枚数は、実施例1~3に示した構成に限られるものではない。例えば、各層を構成するコアプレート2a枚数を3枚よりも少なくしても多くしてもよい。ただし、各層を構成するコアプレート2aの枚数を変更した場合には、円弧の角度θ1及び角度θ2を、各層を構成するコアプレート2aの枚数に合わせて変更する。 Examples 1 to 3 show an example in which the number of core plates 2a constituting each layer is three. However, the number of core plates 2a constituting each layer is not limited to the configuration shown in the first to third embodiments. For example, the number of core plates 2a constituting each layer may be less or more than three. However, when the number of core plates 2a constituting each layer is changed, the angle θ1 and the angle θ2 of the arc are changed according to the number of core plates 2a constituting each layer.
 実施例1~3では、角度θ2を30°とし、左回りにずらす例を示した。しかしながら、角度θ2は、実施例1~3に示した構成に限られるものではない。すなわち、前の層のコアプレート2a間の継ぎ目をまたぐように、次の層が積層されていけばよいので、30°でなくてもよい。また、左回りにずらしたが、右回りにずらしてもよい。 In Examples 1 to 3, an example in which the angle θ2 is set to 30 ° and shifted counterclockwise is shown. However, the angle θ2 is not limited to the configuration shown in the first to third embodiments. In other words, the next layer may be laminated so as to straddle the joint between the core plates 2a of the previous layer, and therefore the angle does not have to be 30 °. Moreover, although it shifted counterclockwise, you may shift clockwise.
 実施例1~3では、磁石穴3aの形状を周方向に広がった矩形形状に形成し、その数を径方向軸線CLの同一軸線上に1つとする例を示した。しかしながら、磁石穴3aの形状及び数は、実施例1~3に示した構成に限られるものではない。例えば、その形状は、楕円形状、ひし形形状又は台形形状等でもよいし、その数は、1つの径方向軸線CLに対して2つ以上の穴が開穴していてもよい。 In Examples 1 to 3, an example is shown in which the shape of the magnet hole 3a is formed in a rectangular shape spreading in the circumferential direction, and the number thereof is one on the same axis of the radial axis CL. However, the shape and number of the magnet holes 3a are not limited to the configurations shown in the first to third embodiments. For example, the shape may be an elliptical shape, a rhombus shape, a trapezoidal shape, or the like, and the number thereof may be two or more holes per one radial axis CL.
 実施例1~3では、溶接部5の凹面5aを曲面に形成し、その凸部5bの形状を三角形状に形成する例を示した。しかしながら、溶接部5の凹面5a及び凸部5bの形状は、実施例1~3に示した構成に限られるものではない。例えば、その凹面5aは、平面であってもよいし曲面及び平面を併せた形状等でもよい。また、その凸部5bは、円形状、楕円形状、矩形形状、ひし形形状又は台形形状等でもよい。 In Examples 1 to 3, an example is shown in which the concave surface 5a of the welded portion 5 is formed into a curved surface, and the shape of the convex portion 5b is formed into a triangular shape. However, the shapes of the concave surface 5a and the convex portion 5b of the welded portion 5 are not limited to the configurations shown in the first to third embodiments. For example, the concave surface 5a may be a flat surface or a shape that combines a curved surface and a flat surface. Moreover, the convex part 5b may be circular, elliptical, rectangular, rhombus or trapezoidal.
 実施例1~3では、溶接により、溶接接合部11(結合部)からコアプレート2aの端部2PEまでの領域Bを片持ち構造とする例を示した。しかしながら、実施例1~3に示した構成に限られるものではない。例えば、かしめ構造を採用して結合部を形成し、結合部からコアプレート2aの端部2PEまでの領域Bを片持ち構造としてもよい。要するに、結合部からコアプレート2aの端部2PEまでの領域Bが片持ち構造になれば、結合部は溶接やかしめに限られない。 Examples 1 to 3 show an example in which the region B from the weld joint 11 (joint portion) to the end 2PE of the core plate 2a is cantilevered by welding. However, the configuration is not limited to those shown in the first to third embodiments. For example, a caulking structure may be employed to form a coupling portion, and the region B from the coupling portion to the end 2PE of the core plate 2a may be a cantilever structure. In short, if the region B from the coupling portion to the end 2PE of the core plate 2a has a cantilever structure, the coupling portion is not limited to welding or caulking.
 実施例1~3では、ロータシャフト4はロータコア2に対して圧入されることにより、ロータコア2にロータシャフト4が嵌合される例を示した。しかしながら、実施例1~3に示した構成に限られるものではない。例えば、圧入の他に、一般的なキー係合を用いてもよい。すなわち、ロータコア2の内周面2IP及びロータシャフト4の外周面に、各1箇所あるいは数か所のキー溝を形成し、このキー溝にキーを挿入して回り止めしてもよい。なお、ロータコア2が複数のコアプレート2aにより形成されている場合には、圧入よりもキー係合により回り止めする方が好ましい。 In Examples 1 to 3, the rotor shaft 4 is press-fitted into the rotor core 2 so that the rotor shaft 4 is fitted to the rotor core 2. However, the configuration is not limited to those shown in the first to third embodiments. For example, general key engagement may be used in addition to press-fitting. That is, one or several key grooves may be formed on the inner peripheral surface 2IP of the rotor core 2 and the outer peripheral surface of the rotor shaft 4, and a key may be inserted into the key groove to prevent rotation. In addition, when the rotor core 2 is formed of a plurality of core plates 2a, it is preferable to prevent rotation by key engagement rather than press-fitting.

Claims (4)

  1.  複数の円弧状のコアプレートを積層することにより形成した円筒状のロータコアと、前記ロータコアに埋め込まれた永久磁石と、を備えた回転電機用同期ロータにおいて、
     前記ロータコアの内周側に、ロータ軸方向に積層した前記複数の円弧状のコアプレート同士を結合する結合部を設け、
     前記円弧状のコアプレートは、プレート外周側に開穴した磁石穴と、前記結合部となる部分を避けた前記コアプレートの内周面の両端部を切り欠いた切欠部と、を有する
     ことを特徴とする回転電機用同期ロータ。
    In a synchronous rotor for a rotating electrical machine comprising a cylindrical rotor core formed by stacking a plurality of arc-shaped core plates, and a permanent magnet embedded in the rotor core,
    Provided on the inner peripheral side of the rotor core is a coupling portion that couples the plurality of arc-shaped core plates stacked in the rotor axial direction;
    The arc-shaped core plate has a magnet hole opened on the outer peripheral side of the plate, and a notch formed by notching both end portions of the inner peripheral surface of the core plate avoiding a portion to be the coupling portion. A synchronous rotor for a rotating electrical machine.
  2.  請求項1に記載された回転電機用同期ロータにおいて、
     前記円弧状のコアプレートは、プレート内周端に形成した溶接部を有し、
     前記結合部は、前記ロータ軸方向に積層した前記複数のコアプレート間の前記溶接部により連続して形成される直線状の連続溶接部を溶接接合して形成された溶接接合部であり、
     前記切欠部は、前記溶接部から前記コアプレートの周方向端面側にオフセットしたオフセット位置から前記コアプレートの端面までの領域を、前記コアプレートの内周面から外径方向に所定の深さ切り欠いた形状に設定した
     ことを特徴とする回転電機用同期ロータ。
    In the synchronous rotor for a rotating electrical machine according to claim 1,
    The arc-shaped core plate has a weld formed at the inner peripheral edge of the plate,
    The joint is a weld joint formed by welding and joining a linear continuous weld formed continuously by the weld between the plurality of core plates stacked in the rotor axial direction.
    The notch cuts a region from an offset position offset from the welded portion toward the circumferential end surface of the core plate to an end surface of the core plate by a predetermined depth from the inner circumferential surface of the core plate in the outer diameter direction. A synchronous rotor for a rotating electrical machine, characterized in that it is set in a missing shape.
  3.  請求項2に記載された回転電機用同期ロータにおいて、
     前記切欠部は、前記オフセット位置から前記コアプレートの端面へ向かうにしたがって、外径方向への切り欠き深さが徐々に深くなる形状に設定した
     ことを特徴とする回転電機用同期ロータ。
    In the synchronous rotor for a rotating electrical machine according to claim 2,
    The synchronous rotor for a rotating electrical machine, wherein the cutout portion is set to have a shape in which a cutout depth in an outer diameter direction is gradually increased from the offset position toward an end surface of the core plate.
  4.  請求項1に記載された回転電機用同期ロータにおいて、
     基準中心点を中心とする同心円の外周側円弧と内周側円弧から形成されたコアプレートを基準コアプレートとし、
     前記内周側円弧の周方向中央と前記基準中心点を結ぶ直線を、前記基準中心点を越えて延長した延長線上に、前記基準中心点からオフセットした中心点をオフセット中心点とし、
     前記オフセット中心点と前記内周側円弧の周方向中央を結ぶ直線を半径として、前記内周側円弧の周方向中央から前記基準コアプレートの両端面まで、周方向に広がった円弧をオフセット円弧とするとき、
     前記切欠部は、前記基準コアプレートより、前記内周側円弧から前記オフセット円弧まで外径方向に切り欠いた形状に設定した
     ことを特徴とする回転電機用同期ロータ。
    In the synchronous rotor for a rotating electrical machine according to claim 1,
    A core plate formed from a concentric outer circumferential arc and inner circumferential arc centered on a reference center point is defined as a reference core plate.
    A straight line connecting the center in the circumferential direction of the inner circumference side arc and the reference center point is an extension line extending beyond the reference center point, and a center point offset from the reference center point is set as an offset center point.
    An arc extending in the circumferential direction from the circumferential center of the inner circumferential arc to both end faces of the reference core plate is defined as an offset arc with a straight line connecting the offset center point and the circumferential center of the inner circumferential arc as a radius. and when,
    The synchronous rotor for a rotating electrical machine, wherein the cutout portion is set in a shape cutout in an outer diameter direction from the inner circumference side arc to the offset arc from the reference core plate.
PCT/JP2014/066585 2014-06-23 2014-06-23 Rotating electric machine synchronous rotor WO2015198382A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016528775A JP6656149B2 (en) 2014-06-23 2014-06-23 Synchronous rotor for rotating electrical machines
PCT/JP2014/066585 WO2015198382A1 (en) 2014-06-23 2014-06-23 Rotating electric machine synchronous rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/066585 WO2015198382A1 (en) 2014-06-23 2014-06-23 Rotating electric machine synchronous rotor

Publications (1)

Publication Number Publication Date
WO2015198382A1 true WO2015198382A1 (en) 2015-12-30

Family

ID=54937520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066585 WO2015198382A1 (en) 2014-06-23 2014-06-23 Rotating electric machine synchronous rotor

Country Status (2)

Country Link
JP (1) JP6656149B2 (en)
WO (1) WO2015198382A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109155555A (en) * 2016-05-20 2019-01-04 Zf腓特烈斯哈芬股份公司 The rotor with stack of laminations of motor
WO2019111414A1 (en) * 2017-12-08 2019-06-13 日産自動車株式会社 Rotor core for rotating electric machine and method for manufacturing rotor core for rotating electric machine
JPWO2020249994A1 (en) * 2019-06-14 2020-12-17

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060738A (en) * 2007-08-31 2009-03-19 Honda Motor Co Ltd Rotating electrical machine
JP2011229312A (en) * 2010-04-21 2011-11-10 Mitsui High Tec Inc Layered core

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4881118B2 (en) * 2006-09-29 2012-02-22 本田技研工業株式会社 Method for manufacturing rotor core
JP2013116010A (en) * 2011-11-30 2013-06-10 Aisin Aw Co Ltd Rotor core of rotary electric machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060738A (en) * 2007-08-31 2009-03-19 Honda Motor Co Ltd Rotating electrical machine
JP2011229312A (en) * 2010-04-21 2011-11-10 Mitsui High Tec Inc Layered core

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109155555A (en) * 2016-05-20 2019-01-04 Zf腓特烈斯哈芬股份公司 The rotor with stack of laminations of motor
CN109155555B (en) * 2016-05-20 2020-11-13 Zf腓特烈斯哈芬股份公司 Rotor of an electric machine having a lamination stack
WO2019111414A1 (en) * 2017-12-08 2019-06-13 日産自動車株式会社 Rotor core for rotating electric machine and method for manufacturing rotor core for rotating electric machine
JPWO2019111414A1 (en) * 2017-12-08 2020-10-22 日産自動車株式会社 Rotor core of rotary electric machine and method of manufacturing rotor core of rotary electric machine
EP3723241A4 (en) * 2017-12-08 2020-12-09 Nissan Motor Co., Ltd. Rotor core for rotating electric machine and method for manufacturing rotor core for rotating electric machine
JPWO2020249994A1 (en) * 2019-06-14 2020-12-17
WO2020249994A1 (en) * 2019-06-14 2020-12-17 日産自動車株式会社 Rotor and method for manufacturing rotor
JP7188588B2 (en) 2019-06-14 2022-12-13 日産自動車株式会社 Rotor and rotor manufacturing method

Also Published As

Publication number Publication date
JPWO2015198382A1 (en) 2017-04-20
JP6656149B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
JP5971418B2 (en) Synchronous rotor for rotating electrical machine and method for manufacturing synchronized rotor for rotating electrical machine
JP6274475B2 (en) Rotor, rotating electric machine, and method of manufacturing rotor
JP5716377B2 (en) Rotating electric machine
JP2013150479A (en) Rotor of motor having division core and manufacturing method therefor
JP2009060738A (en) Rotating electrical machine
CN112119572B (en) Rotor of rotating electrical machine and rotor core support structure of rotating electrical machine
WO2015198382A1 (en) Rotating electric machine synchronous rotor
US9899885B2 (en) Rotor and rotating electric machine
JP2007228720A (en) Core
EP3723241B1 (en) Rotor core for rotating electric machine and method for manufacturing rotor core for rotating electric machine
JP2005312153A (en) Permanent magnet type rotor and its manufacturing method
JP2012249354A (en) Rotor for rotary electric machine
JP6926874B2 (en) Rotor
WO2018105046A1 (en) Permanent magnet type rotating electric machine
JP2012125111A (en) Rotor of outer rotor type rotary machine
JP7188588B2 (en) Rotor and rotor manufacturing method
JP6594143B2 (en) Stator and stator manufacturing method
JP6176379B2 (en) Permanent magnet rotating electric machine
JP2016201870A (en) Rotor for rotary electric machine and manufacturing method of the same
JP2018007380A (en) Rotary electric machine
JP2014096869A (en) Rotor of magnet embedded type motor
KR102228411B1 (en) Stator for motor and manufacturing method of the same
JP2006166515A (en) Motor and its manufacturing process
JP2024058697A (en) Rotor core
JP2013243865A (en) Press-fit fixing structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016528775

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896152

Country of ref document: EP

Kind code of ref document: A1