WO2015196726A1 - 数据处理装置及方法、bbu、rru、计算机存储介质 - Google Patents

数据处理装置及方法、bbu、rru、计算机存储介质 Download PDF

Info

Publication number
WO2015196726A1
WO2015196726A1 PCT/CN2014/092157 CN2014092157W WO2015196726A1 WO 2015196726 A1 WO2015196726 A1 WO 2015196726A1 CN 2014092157 W CN2014092157 W CN 2014092157W WO 2015196726 A1 WO2015196726 A1 WO 2015196726A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
module
bbu
sub
submodule
Prior art date
Application number
PCT/CN2014/092157
Other languages
English (en)
French (fr)
Inventor
陆海涛
郭丹旦
李继洲
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015196726A1 publication Critical patent/WO2015196726A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present invention relates to wireless communication technologies, and in particular, to a data processing apparatus and method, a BBU, an RRU, and a computer storage medium.
  • a base station (NodeB) of an access network is usually composed of an indoor baseband processing unit (BBU) and a radio remote unit (RRU), BBU and RRU. Data interaction is performed through the interface, as shown in Figure 1.
  • BBU indoor baseband processing unit
  • RRU radio remote unit
  • the existing BBU and RRU partitions are based on the baseband data entering the digital intermediate frequency, so that the I signal and the Q signal before the digital intermediate frequency processing are transmitted on the interface between the BBU and the RRU.
  • LTE Long Term Evolution
  • multiple antennas are usually configured.
  • the rate (or called data bandwidth) of the interface is very high.
  • sampling rate is about 30.72M/s
  • the required interface rate calculation formula is as follows:
  • Interface rate (I signal bit width + Q signal bit width) ⁇ sampling rate ⁇ number of antennas ⁇ 10 / 8 ⁇ 16 / 15
  • the embodiments of the present invention provide:
  • a data processing apparatus includes: a first data processing module disposed in a baseband processing unit BBU; and a second data processing module disposed in the radio remote unit RRU; wherein the first data processing module and the second data
  • the processing modules are connected through an interface between the BBU and the RRU, and the interface carries IQ data of the effective subcarriers.
  • the first data processing module includes a resource mapping submodule
  • the second data processing module includes an inverse fast Fourier transform IFFT submodule
  • the resource mapping sub-module is configured to map the complex-valued modulation symbols of each antenna port to the physical resource sub-module, and then send the same to the IFFT sub-module;
  • the IFFT sub-module is configured to generate a complex-valued time-domain OFDM symbol for each antenna port by using an inverse fast Fourier transform and a cyclic prefix.
  • the resource mapping sub-module and the IFFT sub-module are connected by an interface between the BBU and the RRU.
  • the first data processing module further includes: a first medium access control MAC entity, a coding submodule, and a baseband modulation submodule for the downlink direction, where
  • the first MAC entity is configured to perform MAC layer processing on the received data, and then send the code to the coding submodule;
  • the encoding submodule is configured to perform channel coding on the data from the MAC entity, and then send the data to the baseband modulation submodule through the interface;
  • the baseband modulation submodule is configured to perform baseband modulation on data received through the interface, generate a complex value modulation symbol, and then send the signal to the resource mapping submodule.
  • the first data processing module further includes: a resource inverse mapping sub-module, where the second data processing module further includes a fast Fourier transform FFT sub-module,
  • the FFT sub-module is configured to perform a de-cyclic prefix and a Fourier transform on the IQ data of the RRU digital intermediate frequency, and then send the data to the resource inverse mapping sub-module;
  • the resource inverse mapping sub-module is configured to separate data extraction on each time-frequency resource and form corresponding antenna sequence data.
  • the FFT sub-module and the resource inverse mapping sub-module are connected by an interface between the RRU and the BBU.
  • the first data processing module further includes: a baseband demodulation submodule, a decoding submodule, and a second MAC entity for an uplink direction, where
  • the resource inverse mapping submodule is further configured to send the antenna sequence data to a baseband demodulation submodule;
  • the baseband demodulation submodule is configured to perform channel estimation, equalization, and demodulation processing on the received data, and then send the signal to the decoding submodule;
  • the decoding submodule is configured to perform channel decoding on data received through the interface, and then send the data to the second MAC entity;
  • the second MAC entity is configured to perform MAC layer processing on data from the decoding submodule.
  • the embodiment of the invention further provides a BBU, which is connected to the RRU through an interface, and the BBU and the BBU are The interface between the RRUs carries the IQ data of the effective subcarriers.
  • the BBU includes a resource mapping submodule.
  • the resource mapping sub-module is configured to map the complex-valued modulation symbols of each antenna port to the physical resource sub-module, and then send the information to the RRU through an interface between the BBU and the RRU.
  • the BBU further includes: a first medium access control MAC entity, a coding submodule, and a baseband modulation submodule for the downlink direction, where
  • the first MAC entity is configured to perform MAC layer processing on the received data, and then send the code to the coding submodule;
  • the encoding submodule is configured to perform channel coding on the data from the MAC entity, and then send the data to the baseband modulation submodule through the interface;
  • the baseband modulation submodule is configured to perform baseband modulation on data received through the interface, generate a complex value modulation symbol, and then send the signal to the resource mapping submodule.
  • the BBU further includes a resource inverse mapping submodule.
  • the resource inverse mapping sub-module is configured to receive data from the RRU, and extract data from each time-frequency resource, and form corresponding antenna sequence data.
  • the BBU further includes: a baseband demodulation submodule, a decoding submodule, and a second MAC entity for an uplink direction, where
  • the resource inverse mapping submodule is further configured to send the antenna sequence data to a baseband demodulation submodule;
  • the baseband demodulation submodule is configured to perform channel estimation, equalization, and demodulation processing on the received data, and then send the signal to the decoding submodule;
  • the decoding submodule is configured to perform channel decoding on data received through the interface, and then send the data to the second MAC entity;
  • the second MAC entity is configured to perform MAC layer processing on data from the decoding submodule.
  • the embodiment of the present invention further provides an RRU, which is connected to the BBU through an interface, and the interface between the BBU and the RRU carries IQ data of the effective subcarrier.
  • the RRU includes an IFFT sub-module
  • the IFFT sub-module is configured to generate a complex-valued time-domain OFDM symbol for each antenna port by using an inverse fast Fourier transform and a cyclic prefix according to data from the BBU.
  • the RRU further includes an FFT sub-module.
  • the FFT sub-module is configured to perform a de-cyclic prefix, a Fourier transform on the IQ data of the RRU digital intermediate frequency, and then send the data to the BBU.
  • a data processing method comprising:
  • the IQ data of the effective subcarrier is carried through the interface between the BBU and the RRU.
  • the method specifically includes:
  • the BBU maps the complex-valued modulation symbols of each antenna port to the physical resource sub-module and sends the signal to the RRU;
  • the RRU generates a complex-valued time-domain OFDM symbol for each antenna port by an inverse fast Fourier transform, plus a cyclic prefix.
  • the method before the BBU maps the complex-valued modulation symbols of each antenna port to the physical resource sub-module, the method further includes:
  • the BBU performs MAC layer processing on the received data
  • the BBU performs channel coding on the data processed by the MAC layer
  • the BBU performs baseband modulation on the channel-coded data to generate a complex-valued modulation symbol.
  • the method further includes:
  • the RRU performs de-cyclic prefix and Fourier transform processing on the IQ data of the digital intermediate frequency, and then sends the data to the BBU;
  • the BBU separates the data on each time-frequency resource and forms a corresponding antenna. Sequence data.
  • the method further includes:
  • Embodiments of the present invention also provide a computer storage medium having stored therein computer executable instructions for performing the above method.
  • the embodiment of the present invention provides a data processing apparatus and method, a BBU, an RRU, and a computer storage medium.
  • the interface between the BBU and the RRU carries IQ data of the effective subcarrier.
  • FIG. 1 is a schematic diagram of a division manner of a BBU and an RRU in a base station in the prior art
  • Figure 2 is a network connection topology diagram that may be faced in the future
  • FIG. 3 is a schematic structural diagram of a data processing apparatus according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a first data processing module according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a first data processing module according to still another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a first data processing module according to still another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a first data processing module according to still another embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a data processing method according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a data processing method according to still another embodiment of the present invention.
  • FIG. 10 is a schematic flowchart diagram of a data processing method according to still another embodiment of the present invention.
  • FIG. 11 is a schematic flowchart of a data processing method according to still another embodiment of the present invention.
  • FIG. 12 is a structure of a data processing apparatus for downlink direction according to Embodiment 1 of the present invention. schematic diagram;
  • FIG. 13 is a schematic structural diagram of a data processing apparatus for downlink direction according to Embodiment 2 of the present invention.
  • the data processing apparatus in the existing BBU shown in FIG. 1 includes, in the downlink direction (ie, the direction from the BBU to the RRU), a Media Access Control (MAC) entity, an encoding submodule, a baseband modulation submodule, a resource mapping sub-module and an IFFT sub-module, wherein the MAC entity is configured to perform MAC layer processing on data from the control and clock module in the BBU, and then sent to the encoding sub-module; the encoding sub-module is configured to perform data from the MAC entity The channel coding is then sent to the baseband modulation sub-module; the baseband modulation sub-module is configured to perform baseband modulation on the data from the coding sub-module, generate a complex-valued modulation symbol, and then send the signal to the resource mapping sub-module; the resource mapping sub-module is configured to The complex-valued modulation symbols of each antenna port are mapped to the physical resource sub-module and then sent to the IFFT sub
  • the IFFT point number in order to facilitate computer processing, the IFFT point number must be a power of 2, for a bandwidth of 20 MHz, 1200.
  • the subcarriers are continuous frequency domain signals, which become time domain signals through IFFT, but the number of points is not the power of 2.
  • 2048 points must be used for IFFT transformation, of which 1200 points transmit effective subcarrier information. The remaining points default to zero. Therefore, after the IFFT sub-module, the modulation symbol data is increased by 70.7%. Therefore, the actual bearer data of the interface between the BBU and the RRU is increased by 70.7% compared with the effective data, which directly leads to a very high rate requirement of the interface.
  • the data processing apparatus in the existing BBU shown in FIG. 1 is in the uplink direction (ie, from the RRU)
  • the direction to the BBU includes: an FFT sub-module, a resource inverse mapping sub-module, a baseband demodulation sub-module, a decoding sub-module, and a MAC entity, where the FFT sub-module is configured to receive from the RRU through an interface between the BBU and the RRU.
  • the data of the digital intermediate frequency module is subjected to de-cyclic prefix and Fourier transform, and then sent to the resource inverse mapping sub-module; the resource inverse mapping sub-module separates the data on each time-frequency resource and forms corresponding antenna sequence data.
  • the baseband demodulation sub-module performs channel estimation, equalization, and demodulation processing on the data, and then sends the data to the decoding sub-module;
  • the decoding sub-module is configured to data from the baseband demodulation sub-module Channel decoding is performed and then sent to the MAC entity;
  • the MAC entity is configured to perform MAC layer processing on the data from the decoding sub-module and then send it to the control and clock module in the BBU.
  • the rate requirement of the interface can be greatly reduced. Therefore, placing the IFFT sub-module and FFT sub-module in the data processing device in the BBU on the other side of the interface, that is, the RRU side, in the downlink direction or the uplink direction, will become a key point for reducing the interface rate requirement. .
  • an embodiment of the present invention provides a data processing apparatus.
  • the apparatus includes: a first data processing module 31 disposed in a baseband processing unit BBU and a second set in a radio remote unit RRU.
  • the data processing module 32 wherein the first data processing module 31 and the second data processing module 32 are connected by an interface between the BBU and the RRU, and the interface carries IQ data of the effective subcarrier.
  • the first data processing module 31 includes a resource mapping sub-module 311
  • the second data processing module 32 includes a fast Fourier inverse transform IFFT sub-module 321
  • the resource mapping sub-module 311 is configured to map the complex-valued modulation symbols of each antenna port to the physical resource sub-module and then to the IFFT sub-module; it should be noted that, for the 20 MHz bandwidth, the resource mapping sub-module transmits 1200 subcarrier modulation symbols.
  • the IFFT sub-module 321 is configured to generate a complex-valued time-domain OFDM symbol for each antenna port by using an inverse fast Fourier transform and adding a cyclic prefix.
  • the resource mapping sub-module 311 and the IFFT sub-module 321 are connected by an interface between the BBU and the RRU.
  • the IFFT point in order to facilitate computer processing, the IFFT point must be a power of 2, and for a 20 MHz bandwidth, 1200 subcarriers are continuous frequency domain signals, which become time domain signals by IFFT, but the number of points is not the power of 2.
  • 2048 points must be used for IFFT transformation, of which 1200 points transmit valid subcarrier information, and the remaining points default to zero. Therefore, after the IFFT sub-module, the modulation symbol data is increased by 70.7% and then sent to the digital intermediate frequency module in the RRU.
  • the first data processing module 31 further includes: a first medium access control MAC for the downlink direction (direction from the BBU to the RRU) An entity 312, an encoding submodule 313, and a baseband modulation submodule 314, wherein
  • the first MAC entity 312 is configured to perform MAC layer processing on the received data, and then send the code to the coding submodule;
  • the encoding sub-module 313 is configured to perform channel coding on the data from the MAC entity, and then send the data to the baseband modulation sub-module through the interface;
  • the baseband modulation sub-module 314 is configured to perform baseband modulation on data received through the interface, generate a complex-valued modulation symbol, and then send the signal to the resource mapping sub-module.
  • the first data processing module 31 may further include: a resource inverse mapping sub-module 311', and the second data processing module 32 further includes a fast Fourier transform.
  • FFT sub-module 321 ' the first data processing module 31 may further include: a resource inverse mapping sub-module 311', and the second data processing module 32 further includes a fast Fourier transform.
  • FFT sub-module 321 ' the second data processing module 32 further includes a fast Fourier transform.
  • the FFT sub-module 321' is configured to perform a de-cyclic prefix, a Fourier transform on the IQ data of the RRU digital intermediate frequency, and then send the data to the resource inverse mapping sub-module;
  • the resource inverse mapping sub-module 311' is configured to separate data extraction on each time-frequency resource and form corresponding antenna sequence data.
  • the FFT sub-module 321' and the resource inverse mapping sub-module 311' are connected through an interface between the RRU and the BBU.
  • the first data processing module 31 further includes: a baseband demodulation submodule 312', a decoding submodule 313', and an uplink direction.
  • a second MAC entity 314' (from the RRU to the direction of the BBU), wherein
  • the resource inverse mapping sub-module 311' is further configured to send the antenna sequence data to a baseband demodulation submodule 312' block;
  • the baseband demodulation sub-module 312' is configured to perform channel estimation, equalization, and demodulation processing on the received data, and then send the decoding to the decoding sub-module;
  • the decoding sub-module 313' is configured to perform channel decoding on the data received through the interface, and then send the data to the second MAC entity;
  • the second MAC entity 314' is configured to perform MAC layer processing on data from the decoding sub-module and then transmit it.
  • the embodiment of the present invention further provides a BBU, which is connected to the RRU through an interface, and the interface between the BBU and the RRU carries IQ data of the effective subcarrier.
  • the BBU includes a resource mapping submodule.
  • the resource mapping sub-module is configured to map the complex-valued modulation symbols of each antenna port to the physical resource sub-module, and then send the information to the RRU through an interface between the BBU and the RRU.
  • the BBU further includes: a first medium access control MAC entity, a coding submodule, and a baseband modulation submodule for the downlink direction, where
  • the first MAC entity is configured to perform MAC layer processing on the received data, and then send the code to the coding submodule;
  • the encoding submodule is configured to perform channel coding on the data from the MAC entity, and then send the data to the baseband modulation submodule through the interface;
  • the baseband modulation submodule is configured to perform baseband modulation on data received through the interface, generate a complex value modulation symbol, and then send the signal to the resource mapping submodule.
  • the BBU further includes a resource inverse mapping submodule.
  • the resource inverse mapping sub-module is configured to receive data from the RRU, and extract data from each time-frequency resource, and form corresponding antenna sequence data.
  • the BBU further includes: a baseband demodulation submodule, a decoding submodule, and a second MAC entity for an uplink direction, where
  • the resource inverse mapping submodule is further configured to send the antenna sequence data to a baseband demodulation submodule;
  • the baseband demodulation submodule is configured to perform channel estimation, equalization, and demodulation processing on the received data, and then send the signal to the decoding submodule;
  • the decoding submodule is configured to perform channel decoding on data received through the interface, and then send the data to the second MAC entity;
  • the second MAC entity is configured to perform MAC layer processing on data from the decoding submodule.
  • the embodiment of the present invention further provides an RRU, which is connected to the BBU through an interface, and the interface between the BBU and the RRU carries the IQ data of the effective subcarrier.
  • the RRU includes an IFFT sub-module
  • the IFFT sub-module is configured to generate a complex-valued time-domain OFDM symbol for each antenna port by using an inverse fast Fourier transform and a cyclic prefix according to data from the BBU.
  • the RRU further includes an FFT sub-module.
  • the FFT sub-module is configured to perform a de-cyclic prefix, a Fourier transform on the IQ data of the RRU digital intermediate frequency, and then send the data to the BBU.
  • an embodiment of the present invention further provides a data processing method, where the method includes:
  • the IQ data of the effective subcarrier is carried through the interface between the BBU and the RRU.
  • the method specifically includes:
  • Step 801 The BBU maps the complex value modulation symbols of each antenna port to the physical resource sub-module and sends the signal to the RRU.
  • Step 802 The RRU generates a complex-valued time-domain OFDM symbol for each antenna port by using an inverse fast Fourier transform and adding a cyclic prefix.
  • the method before the BBU maps the complex-valued modulation symbols of each antenna port to the physical resource sub-module, the method further includes:
  • Step 901 The BBU performs MAC layer processing on the received data.
  • Step 902 The BBU performs channel coding on the data processed by the MAC layer.
  • Step 903 The BBU performs baseband modulation on the channel coded data to generate a complex value modulation symbol.
  • the method includes:
  • Step 1001 The RRU performs de-cyclic prefix and Fourier transform processing on the IQ data of the digital intermediate frequency, and then sends the data to the BBU.
  • Step 1002 The BBU separates data on each time-frequency resource and forms corresponding antenna sequence data.
  • the method further includes:
  • Step 1003 Perform channel estimation, equalization, and demodulation processing on the antenna sequence data.
  • Step 1004 Perform channel decoding on the demodulated data.
  • Step 1005 Perform MAC layer processing on the data decoded by the channel.
  • the embodiment of the present invention transmits only the IQ data of the effective subcarriers on the BBU-RRU interface, thereby reducing the data throughput on the interface between the BBU and the RRU, thereby reducing the cost of the base station and reducing the technical implementation. Difficulty.
  • FIG. 12 is a schematic structural diagram of a data processing apparatus for a downlink direction according to Embodiment 1 of the present invention.
  • the data processing apparatus includes: a MAC entity, a coding submodule, and a baseband modulator located in a BBU.
  • the resource mapping sub-module and the IFFT sub-module are connected through an interface between the BBU and the RRU. among them,
  • a MAC entity configured to perform MAC layer processing on data from a control and clock module in the BBU, and then send the data to the coding submodule;
  • An encoding submodule configured to channel encode data from the MAC entity and then send the data to the baseband modulation submodule through the interface;
  • the baseband modulation submodule is configured to perform baseband modulation on the data received through the interface, and then send the data to the resource mapping submodule;
  • a resource mapping sub-module configured to map a complex-valued modulation symbol of each antenna port to a physical resource sub-module, for transmitting a 1200 sub-carrier modulation symbol for a 20 MHz bandwidth, and then transmitting the signal to an IFFT sub-module;
  • the IFFT sub-module generates a complex-valued OFDM (Orthogonal Frequency Division Multiplexing) symbol for each antenna port by using an inverse fast Fourier transform and a cyclic prefix, and then sends the symbol to the digital intermediate frequency module in the RRU.
  • OFDM Orthogonal Frequency Division Multiplexing
  • an embodiment of the present invention further provides a BBU, as shown in FIG.
  • Some protocol frame processing modules, control and clock modules, and global positioning systems also include baseband sub-modules in the data processing device, namely, a MAC entity, an encoding sub-module, a baseband modulation sub-module, and a resource mapping sub-module.
  • the resource mapping sub-module is connected to the RRU through an interface between the BBU and the RRU. among them,
  • a MAC entity configured to perform MAC layer processing on data from the control and clock module, and then sent to the encoding submodule;
  • the coding submodule is configured to channel encode data from the MAC entity and then send the data to the baseband modulation submodule through the interface.
  • the baseband modulation submodule is configured to perform baseband modulation on the data received through the interface, and then send the data to the resource mapping submodule;
  • the resource mapping sub-module is configured to map the complex-valued modulation symbols of each antenna port to the physical resource sub-module, and for the 20 MHz bandwidth, it transmits 1200 sub-carrier modulation symbols, and then transmits to the RRU.
  • an embodiment of the present invention further provides an RRU.
  • the method further includes: an IFFT sub-module.
  • the IFFT sub-module is connected to the BBU through an interface between the RRU and the BBU. among them,
  • the IFFT sub-module is configured to receive data from the BBU through the interface, perform inverse fast Fourier transform on the received data, add a cyclic prefix, generate a complex-valued time-domain OFDM symbol, and then send the signal to the digital intermediate frequency module.
  • FIG. 13 is a schematic structural diagram of a data processing apparatus for a downlink direction according to Embodiment 2 of the present invention.
  • the data processing apparatus includes: an FFT sub-module located in an RRU, and a resource inverse located in the BBU. Mapping sub-module, baseband demodulation sub-module, decoding sub-module and MAC entity.
  • the FFT sub-module and the resource inverse mapping sub-module are connected through an interface between the RRU and the BBU. among them,
  • the FFT sub-module performs de-cyclic prefix and Fourier transform on the IQ data of the RRU digital intermediate frequency, and then sends the inverse data to the resource inverse mapping sub-module;
  • the resource inverse mapping sub-module separates the data on each time-frequency resource and forms corresponding antenna sequence data, and sends the data to the baseband demodulation sub-module;
  • a baseband demodulation submodule configured to perform channel estimation, equalization, and demodulation processing on the data, and then sent to the decoding submodule through the interface;
  • a decoding submodule configured to perform channel decoding on the data received through the interface, and then send the data to the MAC entity
  • the MAC entity is configured to perform MAC layer processing on the data from the decoding submodule and then send it to the control and clock module in the BBU.
  • the embodiment of the present invention further provides a BBU, as shown in FIG. 13, in addition to the existing protocol frame processing module, the control and clock module, and the global positioning system, and the baseband submodule in the data processing device. That is, the resource inverse mapping sub-module, the baseband demodulation sub-module, the decoding sub-module, and the MAC entity.
  • the resource inverse mapping sub-module is connected to the RRU through an interface between the BBU and the RRU. among them,
  • the resource inverse mapping sub-module is configured to receive data from the RRU through the interface, separate the data on each time-frequency resource from the received data, and form corresponding antenna sequence data, and send the data to the baseband demodulation sub-module;
  • a baseband demodulation submodule configured to perform channel estimation, equalization, and demodulation processing on the data, and then sent to the decoding submodule through the interface;
  • Decoding a sub-module performing channel decoding on the data, and then transmitting the data to the MAC entity;
  • the MAC entity is configured to perform MAC layer processing on the data from the decoding submodule and then send it to the control and clock module.
  • an embodiment of the present invention further provides an RRU.
  • the method further includes: a base in the data processing device.
  • sub-module ie FFT sub-module.
  • the FFT sub-module is connected to the BBU through an interface between the RRU and the BBU. among them,
  • the FFT sub-module performs de-cyclic prefix and Fourier transform on the data from the digital intermediate frequency module, and then sends the data to the BBU through the interface.
  • the embodiment of the present invention further provides a computer storage medium in which computer executable instructions are stored, the computer executable instructions being used to execute the method described in any of the foregoing method embodiments.
  • the solution proposed in the embodiment of the present invention divides the functions of the data processing device into BBUs and RRUs, that is, divides the functions of the data processing device into BBUs and RRUs before the baseband data enters the digital intermediate frequency, so that the existing BBUs
  • the middle part of the function module IFFT sub-module, FFT sub-module
  • IFFT sub-module FFT sub-module
  • the data carried by the interface between the BBU and the RRU will no longer be redundant 2048 sub-carrier IQ data, but 1200 effective subcarrier IQ data, thereby reducing the data throughput of the interface between the BBU and the RRU, thereby reducing the cost of the base station and reducing the difficulty of technical implementation.
  • LTE Long Term Evolution
  • GSM Global System for Mobile communication
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access 2000
  • WiMAX Worldwide Interoperability for Microwave Access
  • Each of the above modules may be implemented by a central processing unit (CPU), a digital signal processor (DSP), or a field-programmable gate array (FPGA) in the electronic device.
  • CPU central processing unit
  • DSP digital signal processor
  • FPGA field-programmable gate array
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention may be employed in one or more of its A computer program product embodied on a computer usable storage medium (including but not limited to disk storage and optical storage, etc.) containing computer usable program code.
  • a computer usable storage medium including but not limited to disk storage and optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种数据处理装置、方法及BBU、RRU、计算机存储介质,该装置包括:设置于基带处理单元BBU的第一数据处理模块和设置于射频拉远单元RRU的第二数据处理模块;其中,所述第一数据处理模块与所述第二数据处理模块之间通过BBU与RRU之间的接口相连,所述接口承载有效子载波的IQ数据。该方法包括:通过BBU与RRU之间的接口承载有效子载波的IQ数据。

Description

数据处理装置及方法、BBU、RRU、计算机存储介质 技术领域
本发明涉及无线通信技术,尤其涉及一种数据处理装置及方法、BBU、RRU、计算机存储介质。
背景技术
在现有的无线通信系统中,接入网的基站(NodeB)通常是由室内基带处理单元(Building Base band Unit,BBU)和射频拉远单元(Radio Remote Unit,RRU)构成的,BBU和RRU之间通过接口进行数据交互,如图1所示。目前已有的BBU和RRU的划分是以基带数据进入数字中频为分界的,这样在BBU与RRU之间的接口上传输的是数字中频处理前的I信号和Q信号。
长期演进(Long Term Evolution,LTE)系统通常支持20MHz带宽,为了增加处理性能,通常又会配置多天线。按照现有BBU与RRU之间的接口划分(参见图1),会导致该接口的速率(或称为数据带宽)需求非常大。以8天线20MHz带宽(采样速率约为30.72M/s)为例,由于目前基于量化精度的考虑,I信号位宽和Q信号位宽都设定为15bit,因此需要的接口速率计算公式如下:
接口速率=(I信号位宽+Q信号位宽)×采样速率×天线数×10/8×16/15
=30bit×30.72M/s×8×10/8×16/15
=9.8304Gbps
≈10Gbps
式中,10/8是编码带来的光口冗余,16/15是控制字带来的冗余。上面 的公式只是考虑了单个扇区的情况,而现在一个典型基站一般都是3扇区,这时就有3倍的流量。未来有可能面对图2所示的网络连接拓扑图。在图2所示的网络连接拓扑图中,一个RRU需要10Gbps的数据带宽,3个RRU级联就需要30Gbps的数据带宽,如此大的接口速率不仅需要大量的光纤资源,提升了成本,同时也使得技术实现变得非常困难,给产品稳定性带来了很大的隐患;同样地,如果100个RRU通过交换网络交换到BBU,那么这个交换网络就需要有1000Gbps的数据交换能力,这显然对交换网络提出了巨大的要求。因此,如何减小接口上的数据吞吐量需求成为了现阶段非常重要的问题。
发明内容
有鉴于此,为解决现有存在的技术问题,本发明实施例提供:
一种数据处理装置,包括:设置于基带处理单元BBU的第一数据处理模块和设置于射频拉远单元RRU的第二数据处理模块;其中,所述第一数据处理模块与所述第二数据处理模块之间通过BBU与RRU之间的接口相连,所述接口承载有效子载波的IQ数据。
一具体实施例中,所述第一数据处理模块包括资源映射子模块,所述第二数据处理模块包括快速傅里叶逆变换IFFT子模块,
所述资源映射子模块,配置为把每个天线端口的复值调制符号映射到物理资源子模块,之后发送给IFFT子模块;
所述IFFT子模块,配置为通过快速傅立叶逆变换、加循环前缀,为每个天线端口产生复值的时域OFDM符号,
所述资源映射子模块与所述IFFT子模块之间通过BBU与RRU之间的接口相连。
一具体实施例中,所述第一数据处理模块还包括:用于下行方向的第一介质访问控制MAC实体、编码子模块、基带调制子模块,其中,
所述第一MAC实体,配置为对接收到的数据进行MAC层处理,然后发送给编码子模块;
所述编码子模块,配置为对来自MAC实体的数据进行信道编码,然后通过接口发送给基带调制子模块;
所述基带调制子模块,配置为对通过接口接收的数据进行基带调制,产生复值调制符号,然后发送给资源映射子模块。
一具体实施例中,所述第一数据处理模块还包括:资源逆映射子模块,所述第二数据处理模块还包括快速傅里叶变换FFT子模块,
所述FFT子模块,配置为对RRU数字中频的IQ数据进行去循环前缀、傅立叶变化,然后送到资源逆映射子模块;
所述资源逆映射子模块,配置为将各个时频资源上的数据抽取分离出来,并组成相应的天线序列数据,
所述FFT子模块与所述资源逆映射子模块之间通过RRU与BBU之间的接口相连。
一具体实施例中,所述第一数据处理模块还包括:基带解调子模块、译码子模块和用于上行方向的第二MAC实体,其中,
所述资源逆映射子模块,还配置为将所述天线序列数据发送到基带解调子模块;
所述基带解调子模块,配置为对接收到的数据进行信道估计、均衡和解调处理,然后发送给译码子模块;
所述译码子模块,配置为对通过接口接收的数据进行信道译码,然后发送给第二MAC实体;
所述第二MAC实体,配置为对来自译码子模块的数据进行MAC层处理。
本发明实施例还提供一种BBU,通过接口与RRU相连,所述BBU与 RRU之间的接口承载有效子载波的IQ数据。
一具体实施例中,所述BBU包括资源映射子模块,
所述资源映射子模块,配置为把每个天线端口的复值调制符号映射到物理资源子模块,之后通过BBU与RRU之间的接口发送至RRU。
一具体实施例中,所述BBU还包括:用于下行方向的第一介质访问控制MAC实体、编码子模块、基带调制子模块,其中,
所述第一MAC实体,配置为对接收到的数据进行MAC层处理,然后发送给编码子模块;
所述编码子模块,配置为对来自MAC实体的数据进行信道编码,然后通过接口发送给基带调制子模块;
所述基带调制子模块,配置为对通过接口接收的数据进行基带调制,产生复值调制符号,然后发送给资源映射子模块。
一具体实施例中,所述BBU还包括资源逆映射子模块,
所述资源逆映射子模块,配置为接收来自RRU的数据,并将各个时频资源上的数据抽取分离出来,并组成相应的天线序列数据。
一具体实施例中,所述BBU还包括:基带解调子模块、译码子模块和用于上行方向的第二MAC实体,其中,
所述资源逆映射子模块,还配置为将所述天线序列数据发送到基带解调子模块;
所述基带解调子模块,配置为对接收到的数据进行信道估计、均衡和解调处理,然后发送给译码子模块;
所述译码子模块,配置为对通过接口接收的数据进行信道译码,然后发送给第二MAC实体;
所述第二MAC实体,配置为对来自译码子模块的数据进行MAC层处理。
本发明实施例还提供一种RRU,通过接口与BBU相连,所述BBU与RRU之间的接口承载有效子载波的IQ数据。
一具体实施例中,所述RRU包括IFFT子模块,
所述IFFT子模块,配置为根据来自BBU的数据,通过快速傅立叶逆变换、加循环前缀,为每个天线端口产生复值的时域OFDM符号。
一具体实施例中,所述RRU还包括FFT子模块,
所述FFT子模块,配置为对RRU数字中频的IQ数据进行去循环前缀、傅立叶变化,然后发送给BBU。
一种数据处理方法,包括:
通过BBU与RRU之间的接口承载有效子载波的IQ数据。
一具体实施例中,该方法具体包括:
BBU将每个天线端口的复值调制符号映射到物理资源子模块后发送给RRU;
RRU通过快速傅立叶逆变换、加循环前缀,为每个天线端口产生复值的时域OFDM符号。
一具体实施例中,所述BBU将每个天线端口的复值调制符号映射到物理资源子模块之前,该方法还包括:
所述BBU对接收到的数据进行MAC层处理;
所述BBU对所述MAC层处理后的数据进行信道编码;
所述BBU对所述信道编码处理后的数据进行基带调制,产生复值调制符号。
一具体实施例中,该方法还包括:
所述RRU对数字中频的IQ数据进行去循环前缀、傅立叶变化处理,之后发送给BBU;
所述BBU将各个时频资源上的数据抽取分离出来,并组成相应的天线 序列数据。
一具体实施例中,所述BBU将各个时频资源上的数据抽取分离出来,并组成相应的天线序列数据之后,该方法还包括:
对所述天线序列数据进行信道估计、均衡和解调处理;
对解调处理后的数据进行信道译码;
对所述信道译码后的数据进行MAC层处理。
本发明实施例还提出了一种计算机存储介质,其中存储有计算机可执行指令,所述计算机可执行指令用于执行上述方法。
本发明实施例一种数据处理装置及方法、BBU、RRU、计算机存储介质,BBU与RRU之间的接口承载有效子载波的IQ数据。通过本发明实施例所述的方案,在BBU与RRU之间的接口上只传输有效子载波的IQ数据,从而能够减小BBU与RRU之间的接口上的数据吞吐量。
附图说明
图1为现有技术中基站中BBU和RRU的划分方式示意图;
图2为未来可能面对的网络连接拓扑图;
图3为本发明实施例提供了一种数据处理装置结构示意图;
图4为本发明一实施例第一数据处理模块的结构示意图;
图5为本发明再一实施例第一数据处理模块的结构示意图;
图6为本发明再一实施例第一数据处理模块的结构示意图;
图7为本发明再一实施例第一数据处理模块的结构示意图;
图8为本发明一实施例一种数据处理方法流程示意图;
图9为本发明再一实施例一种数据处理方法流程示意图;
图10为本发明再一实施例一种数据处理方法流程示意图;
图11为本发明再一实施例一种数据处理方法流程示意图;
图12为本发明实施例1所述的一种用于下行方向的数据处理装置结构 示意图;
图13为本发明实施例2所述的一种用于下行方向的数据处理装置结构示意图。
具体实施方式
图1中所示的现有BBU中的数据处理装置,在下行方向(即从BBU到RRU的方向)包括:介质访问控制(Media Access Control,MAC)实体、编码子模块、基带调制子模块、资源映射子模块和IFFT子模块,其中,MAC实体配置为对来自BBU中的控制与时钟模块的数据进行MAC层处理,然后发送给编码子模块;编码子模块配置为对来自MAC实体的数据进行信道编码,然后发送给基带调制子模块;基带调制子模块配置为对来自编码子模块的数据进行基带调制,产生复值调制符号,然后发送给资源映射子模块;资源映射子模块,配置为把每个天线端口的复值调制符号映射到物理资源子模块,然后发送给IFFT子模块;IFFT子模块通过快速傅立叶逆变换、加循环前缀,为每个天线端口产生复值的时域OFDM(Orthogonal Frequency Division Multiplexing)符号,然后通过BBU与RRU之间的接口发送给RRU中的数字中频模块进行处理。
根据以上描述的下行方向上BBU中数据处理装置中各模块的处理及相互之间的交互可见,在IFFT变换中,为了便于计算机处理,要求IFFT点数必须是2的次幂,对于20MHz带宽,1200个子载波是连续的频域信号,通过IFFT变成时域信号,但点数不是2的次幂,要保证变换后信息不能丢失,必须采用2048点进行IFFT变换,其中1200点传输有效子载波信息,剩下的点默认为零。因此经过IFFT子模块,调制符号数据增加了70.7%,因此,BBU与RRU之间接口的实际承载数据比有效数据增加了70.7%,直接导致了接口的速率需求非常大。
图1中所示的现有BBU中的数据处理装置,在上行方向(即从RRU 到BBU的方向)包括:FFT子模块、资源逆映射子模块、基带解调子模块、译码子模块和MAC实体,其中,FFT子模块配置为通过BBU与RRU之间的接口接收来自RRU中的数字中频模块的数据,对其进行去循环前缀、傅立叶变化,然后送到资源逆映射子模块;资源逆映射子模块将各个时频资源上的数据抽取分离出来,并组成相应的天线序列数据,发送到基带解调子模块;基带解调子模块对数据其进行信道估计、均衡和解调处理,然后发送给译码子模块;译码子模块配置为对来自基带解调子模块的数据进行信道译码,然后发送给MAC实体;MAC实体配置为对来自译码子模块的数据进行MAC层处理,然后发送给BBU中的控制与时钟模块。
根据以上描述的上行方向上BBU中数据处理装置中各模块的处理及相互之间的交互可见,由于FFT变换前处理的是2048点的IQ数据,实际有效数据是1200点,因此,BBU与RRU之间接口的实际承载数据比有效数据增加了70.7%,直接导致了接口的速率需求非常大。
基于以上描述可见,如果在BBU与RRU之间的接口承载的数据只是有效的1200点有效子载波数据,那么就可以大大降低接口的速率需求。因此,无论是在下行方向还是在上行方向,将BBU中的数据处理装置中的IFFT子模块和FFT子模块放置在接口的另一侧、即RRU一侧,将成为降低接口速率需求的关键点。
基于以上考虑,本发明实施例提供了一种数据处理装置,如图3所示,该装置包括:设置于基带处理单元BBU的第一数据处理模块31和设置于射频拉远单元RRU的第二数据处理模块32;其中,所述第一数据处理模块31与所述第二数据处理模块32之间通过BBU与RRU之间的接口相连,所述接口承载有效子载波的IQ数据。
一具体实施例中,如图4所示,在本发明一实施例中,所述第一数据处理模块31包括资源映射子模块311,所述第二数据处理模块32包括快速 傅里叶逆变换IFFT子模块321,
所述资源映射子模块311,配置为把每个天线端口的复值调制符号映射到物理资源子模块,之后发送给IFFT子模块;需要说明的是,对于20MHz带宽,资源映射子模块传输的是1200个子载波调制符号。
所述IFFT子模块321,配置为通过快速傅立叶逆变换、加循环前缀,为每个天线端口产生复值的时域OFDM符号。
所述资源映射子模块311与所述IFFT子模块321之间通过BBU与RRU之间的接口相连。
需要说明的是,为了便于计算机处理,要求IFFT点数必须是2的次幂,对于20MHz带宽,1200个子载波是连续的频域信号,通过IFFT变成时域信号,但点数不是2的次幂,要保证变换后信息不能丢失,必须采用2048点进行IFFT变换,其中1200点传输有效子载波信息,剩下的点默认为零。因此经过IFFT子模块,调制符号数据增加了70.7%,然后发送给RRU中的数字中频模块。
一具体实施例中,如图5所示,在本发明一实施例中,所述第一数据处理模块31还包括:用于下行方向(从BBU到RRU的方向)的第一介质访问控制MAC实体312、编码子模块313、基带调制子模块314,其中,
所述第一MAC实体312,配置为对接收到的数据进行MAC层处理,然后发送给编码子模块;
所述编码子模块313,配置为对来自MAC实体的数据进行信道编码,然后通过接口发送给基带调制子模块;
所述基带调制子模块314,配置为对通过接口接收的数据进行基带调制,产生复值调制符号,然后发送给资源映射子模块。
一具体实施例中,如图6所示,所述第一数据处理模块31还可以包括:资源逆映射子模块311’,所述第二数据处理模块32还包括快速傅里叶变换 FFT子模块321’,
所述FFT子模块321’,配置为对RRU数字中频的IQ数据进行去循环前缀、傅立叶变化,然后送到资源逆映射子模块;
所述资源逆映射子模块311’,配置为将各个时频资源上的数据抽取分离出来,并组成相应的天线序列数据,
所述FFT子模块321’与所述资源逆映射子模块311’之间通过RRU与BBU之间的接口相连。
一具体实施例中,如图7所示,在本发明一实施例中,所述第一数据处理模块31还包括:基带解调子模块312’、译码子模块313’和用于上行方向(从RRU到BBU的方向)的第二MAC实体314’,其中,
所述资源逆映射子模块311’,还配置为将所述天线序列数据发送到基带解调子模312’块;
所述基带解调子模块312’,配置为对接收到的数据进行信道估计、均衡和解调处理,然后发送给译码子模块;
所述译码子模块313’,配置为对通过接口接收的数据进行信道译码,然后发送给第二MAC实体;
所述第二MAC实体314’,配置为对来自译码子模块的数据进行MAC层处理,然后发送出去。
本发明实施例还相应地提出了一种BBU,通过接口与RRU相连,所述BBU与RRU之间的接口承载有效子载波的IQ数据。
一具体实施例中,所述BBU包括资源映射子模块,
所述资源映射子模块,配置为把每个天线端口的复值调制符号映射到物理资源子模块,之后通过BBU与RRU之间的接口发送至RRU。
一具体实施例中,所述BBU还包括:用于下行方向的第一介质访问控制MAC实体、编码子模块、基带调制子模块,其中,
所述第一MAC实体,配置为对接收到的数据进行MAC层处理,然后发送给编码子模块;
所述编码子模块,配置为对来自MAC实体的数据进行信道编码,然后通过接口发送给基带调制子模块;
所述基带调制子模块,配置为对通过接口接收的数据进行基带调制,产生复值调制符号,然后发送给资源映射子模块。
一具体实施例中,所述BBU还包括资源逆映射子模块,
所述资源逆映射子模块,配置为接收来自RRU的数据,并将各个时频资源上的数据抽取分离出来,并组成相应的天线序列数据。
一具体实施例中,所述BBU还包括:基带解调子模块、译码子模块和用于上行方向的第二MAC实体,其中,
所述资源逆映射子模块,还配置为将所述天线序列数据发送到基带解调子模块;
所述基带解调子模块,配置为对接收到的数据进行信道估计、均衡和解调处理,然后发送给译码子模块;
所述译码子模块,配置为对通过接口接收的数据进行信道译码,然后发送给第二MAC实体;
所述第二MAC实体,配置为对来自译码子模块的数据进行MAC层处理。
本发明实施例还相应地提出了一种RRU,通过接口与BBU相连,所述BBU与RRU之间的接口承载有效子载波的IQ数据。
一具体实施例中,所述RRU包括IFFT子模块,
所述IFFT子模块,配置为根据来自BBU的数据,通过快速傅立叶逆变换、加循环前缀,为每个天线端口产生复值的时域OFDM符号。
一具体实施例中,所述RRU还包括FFT子模块,
所述FFT子模块,配置为对RRU数字中频的IQ数据进行去循环前缀、傅立叶变化,然后发送给BBU。
相应的,本发明实施例还提出了一种数据处理方法,该方法包括:
通过BBU与RRU之间的接口承载有效子载波的IQ数据。
一具体实施例中,如图8所示,在本发明一实施例中,该方法具体包括:
步骤801:BBU将每个天线端口的复值调制符号映射到物理资源子模块后发送给RRU;
步骤802:RRU通过快速傅立叶逆变换、加循环前缀,为每个天线端口产生复值的时域OFDM符号。
一具体实施例中,如图9所示,在本发明一实施例中,所述BBU将每个天线端口的复值调制符号映射到物理资源子模块之前,该方法还包括:
步骤901:所述BBU对接收到的数据进行MAC层处理;
步骤902:所述BBU对所述MAC层处理后的数据进行信道编码;
步骤903:所述BBU对所述信道编码处理后的数据进行基带调制,产生复值调制符号。
一具体实施例中,如图10所示,在本发明一实施例中,该方法包括:
步骤1001:RRU对数字中频的IQ数据进行去循环前缀、傅立叶变化处理,之后发送给BBU;
步骤1002:所述BBU将各个时频资源上的数据抽取分离出来,并组成相应的天线序列数据。
一具体实施例中,如图11所示,在本发明一实施例中,所述BBU将各个时频资源上的数据抽取分离出来,并组成相应的天线序列数据之后,该方法还包括:
步骤1003:对所述天线序列数据进行信道估计、均衡和解调处理;
步骤1004:对解调处理后的数据进行信道译码;
步骤1005:对所述信道译码后的数据进行MAC层处理。
根据上述描述,本发明实施例在BBU-RRU接口只传输有效子载波的IQ数据,从而减小了BBU与RRU之间的接口上的数据吞吐量,从而降低基站的成本、减小技术实现的难度。
下面通过具体实施例对本发明的技术方案作进一步详细说明。
实施例1
图12为本发明实施例1所述的一种用于下行方向的数据处理装置结构示意图,如图12所示,所述数据处理装置包括:位于BBU的MAC实体、编码子模块、基带调制子模块和资源映射子模块,以及位于RRU的IFFT子模块。资源映射子模块与IFFT子模块之间通过BBU与RRU之间的接口相连。其中,
MAC实体,配置为对来自BBU中的控制与时钟模块的数据进行MAC层处理,然后发送给编码子模块;
编码子模块,配置为对来自MAC实体的数据进行信道编码,然后通过接口发送给基带调制子模块;
基带调制子模块,配置为对通过接口接收的数据进行基带调制,然后发送给资源映射子模块;
资源映射子模块,配置为把每个天线端口的复值调制符号映射到物理资源子模块,对于20MHz带宽,其传输的是1200个子载波调制符号,然后发送给IFFT子模块;
IFFT子模块,通过快速傅立叶逆变换、加循环前缀,为每个天线端口产生复值的时域OFDM(Orthogonal Frequency Division Multiplexing)符号,然后发送给RRU中的数字中频模块。
相应的,本发明实施例还提出了一种BBU,如图12所示,除了包括现 有的协议帧处理模块、控制与时钟模块和全球定位系统,还包括数据处理装置中的基带子模块、即MAC实体、编码子模块、基带调制子模块和资源映射子模块。资源映射子模块与RRU之间通过BBU与RRU之间的接口相连。其中,
MAC实体,配置为对来自控制与时钟模块的数据进行MAC层处理,然后发送给编码子模块;
编码子模块,配置为对来自MAC实体的数据进行信道编码,然后通过接口发送给基带调制子模块。
基带调制子模块,配置为对通过接口接收的数据进行基带调制,然后发送给资源映射子模块;
资源映射子模块,配置为把每个天线端口的复值调制符号映射到物理资源子模块,对于20MHz带宽,其传输的是1200个子载波调制符号,然后发送给RRU。
相应的,本发明实施例还提出了一种RRU,如图12所示,除了包括现有的数字中频子模块、射频子模块和天线,还包括:IFFT子模块。IFFT子模块与BBU之间通过RRU与BBU之间的接口相连。其中,
IFFT子模块,配置为通过接口接收来自BBU的数据,对接收到的数据进行快速傅立叶逆变换、加循环前缀,产生复值的时域OFDM符号,然后发送给数字中频模块。
实施例2
图13为本发明实施例2所述的一种用于下行方向的数据处理装置结构示意图,如图13所示,所述数据处理装置包括:位于RRU的FFT子模块,以及位于BBU的资源逆映射子模块、基带解调子模块、译码子模块和MAC实体。FFT子模块与资源逆映射子模块之间通过RRU与BBU之间的接口相连。其中,
FFT子模块,对RRU数字中频的IQ数据进行去循环前缀、傅立叶变化,然后送到资源逆映射子模块;
资源逆映射子模块,将各个时频资源上的数据抽取分离出来,并组成相应的天线序列数据,发送到基带解调子模块;
基带解调子模块,配置为对数据进行信道估计、均衡和解调处理,然后通过接口发送给译码子模块;
译码子模块,配置为对通过接口接收的数据进行信道译码,然后发送给MAC实体;
MAC实体,配置为对来自译码子模块的数据进行MAC层处理,然后发送给BBU中的控制与时钟模块。
相应的,本发明实施例还提出了一种BBU,如图13所示,除了包括现有的协议帧处理模块、控制与时钟模块和全球定位系统,还包括数据处理装置中的基带子模块、即资源逆映射子模块、基带解调子模块、译码子模块和MAC实体。资源逆映射子模块与RRU之间通过BBU与RRU之间的接口相连。其中,
资源逆映射子模块,配置为通过接口接收来自RRU的数据,对接收到的数据将各个时频资源上的数据抽取分离出来,并组成相应的天线序列数据,发送到基带解调子模块;
基带解调子模块,配置为对数据进行信道估计、均衡和解调处理,然后通过接口发送给译码子模块;
译码子模块,对数据进行信道译码,然后发送给MAC实体;
MAC实体,配置为对来自译码子模块的数据进行MAC层处理,然后发送给控制与时钟模块。
相应的,本发明实施例还提出了一种RRU,如图13所示,除了包括现有的数字中频子模块、射频子模块和天线,还包括:数据处理装置中的基 带子模块、即FFT子模块。FFT子模块与BBU之间通过RRU与BBU之间的接口相连。其中,
FFT子模块,对来自数字中频模块的数据进行去循环前缀、傅立叶变化,然后通过接口发送给BBU。
本发明实施例还提出了一种计算机存储介质,其中存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一方法实施例所述的方法。
本发明实施例所提出的方案将数据处理装置的功能重新在BBU和RRU中进行划分,即在基带数据进入数字中频之前将数据处理装置的功能重新在BBU和RRU中进行划分,这样现有BBU中部分功能模块(IFFT子模块、FFT子模块)将设置到RRU中,对于20MHz带宽,此时BBU与RRU之间的接口承载的数据将不再是冗余的2048子载波IQ数据,而是1200有效子载波IQ数据,从而能够减小BBU与RRU之间的接口的数据吞吐量,进而降低基站的成本、减小技术实现的难度。
需要说明的是,本发明实施例虽然以LTE系统为实施例,但是同样也可以适用于全球移动通信系统(Global System for Mobile communication,GSM)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、码分多址(Code Division Multiple Access,CDMA)2000、微波存储全球互通(Worldwide Interoperability for Microwave Access,WiMAX)等其他无线通信系统。
上述各模块可以由电子设备中的中央处理器(Central Processing Unit,CPU)、数字信号处理器(Digital Signal Processor,DSP)或可编程逻辑阵列(Field-Programmable Gate Array,FPGA)实现。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其 中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。

Claims (19)

  1. 一种数据处理装置,其中,该装置包括:设置于基带处理单元BBU的第一数据处理模块和设置于射频拉远单元RRU的第二数据处理模块;其中,所述第一数据处理模块与所述第二数据处理模块之间通过BBU与RRU之间的接口相连,所述接口承载有效子载波的IQ数据。
  2. 根据权利要求1所述的装置,其中,所述第一数据处理模块包括资源映射子模块,所述第二数据处理模块包括快速傅里叶逆变换IFFT子模块,
    所述资源映射子模块,配置为把每个天线端口的复值调制符号映射到物理资源子模块,之后发送给IFFT子模块;
    所述IFFT子模块,配置为通过快速傅立叶逆变换、加循环前缀,为每个天线端口产生复值的时域OFDM符号,
    所述资源映射子模块与所述IFFT子模块之间通过BBU与RRU之间的接口相连。
  3. 根据权利要求2所述的装置,其中,所述第一数据处理模块还包括:用于下行方向的第一介质访问控制MAC实体、编码子模块、基带调制子模块,其中,
    所述第一MAC实体,配置为对接收到的数据进行MAC层处理,然后发送给编码子模块;
    所述编码子模块,配置为对来自MAC实体的数据进行信道编码,然后通过接口发送给基带调制子模块;
    所述基带调制子模块,配置为对通过接口接收的数据进行基带调制,产生复值调制符号,然后发送给资源映射子模块。
  4. 根据权利要求1至3任一项所述的装置,其中,所述第一数据处理模块还包括:资源逆映射子模块,所述第二数据处理模块还包括快速傅里叶变换FFT子模块,
    所述FFT子模块,配置为对RRU数字中频的IQ数据进行去循环前缀、傅立叶变化,然后送到资源逆映射子模块;
    所述资源逆映射子模块,配置为将各个时频资源上的数据抽取分离出来,并组成相应的天线序列数据,
    所述FFT子模块与所述资源逆映射子模块之间通过RRU与BBU之间的接口相连。
  5. 根据权利要求4所述的装置,其中,所述第一数据处理模块还包括:基带解调子模块、译码子模块和用于上行方向的第二MAC实体,其中,
    所述资源逆映射子模块,还配置为将所述天线序列数据发送到基带解调子模块;
    所述基带解调子模块,配置为对接收到的数据进行信道估计、均衡和解调处理,然后发送给译码子模块;
    所述译码子模块,配置为对通过接口接收的数据进行信道译码,然后发送给第二MAC实体;
    所述第二MAC实体,配置为对来自译码子模块的数据进行MAC层处理。
  6. 一种BBU,通过接口与RRU相连,其中,所述BBU与RRU之间的接口承载有效子载波的IQ数据。
  7. 根据权利要求6所述的BBU,其中,所述BBU包括资源映射子模块,
    所述资源映射子模块,配置为把每个天线端口的复值调制符号映射到物理资源子模块,之后通过BBU与RRU之间的接口发送至RRU。
  8. 根据权利要求7所述的BBU,其中,所述BBU还包括:用于下行方向的第一介质访问控制MAC实体、编码子模块、基带调制子模块,其中,
    所述第一MAC实体,配置为对接收到的数据进行MAC层处理,然后 发送给编码子模块;
    所述编码子模块,配置为对来自MAC实体的数据进行信道编码,然后通过接口发送给基带调制子模块;
    所述基带调制子模块,配置为对通过接口接收的数据进行基带调制,产生复值调制符号,然后发送给资源映射子模块。
  9. 根据权利要求6至8任一项所述的BBU,其中,所述BBU还包括资源逆映射子模块,
    所述资源逆映射子模块,配置为接收来自RRU的数据,并将各个时频资源上的数据抽取分离出来,并组成相应的天线序列数据。
  10. 根据权利要求9所述的BBU,其中,所述BBU还包括:基带解调子模块、译码子模块和用于上行方向的第二MAC实体,其中,
    所述资源逆映射子模块,还配置为将所述天线序列数据发送到基带解调子模块;
    所述基带解调子模块,配置为对接收到的数据进行信道估计、均衡和解调处理,然后发送给译码子模块;
    所述译码子模块,配置为对通过接口接收的数据进行信道译码,然后发送给第二MAC实体;
    所述第二MAC实体,配置为对来自译码子模块的数据进行MAC层处理。
  11. 一种RRU,通过接口与BBU相连,其中,所述BBU与RRU之间的接口承载有效子载波的IQ数据。
  12. 根据权利要求11所述的RRU,其中,所述RRU包括IFFT子模块,
    所述IFFT子模块,配置为根据来自BBU的数据,通过快速傅立叶逆变换、加循环前缀,为每个天线端口产生复值的时域OFDM符号。
  13. 根据权利要求11或12所述的RRU,其中,所述RRU还包括FFT 子模块,
    所述FFT子模块,配置为对RRU数字中频的IQ数据进行去循环前缀、傅立叶变化,然后发送给BBU。
  14. 一种数据处理方法,其中,该方法包括:
    通过BBU与RRU之间的接口承载有效子载波的IQ数据。
  15. 根据权利要求14所述的方法,其中,该方法具体包括:
    BBU将每个天线端口的复值调制符号映射到物理资源子模块后发送给RRU;
    RRU通过快速傅立叶逆变换、加循环前缀,为每个天线端口产生复值的时域OFDM符号。
  16. 根据权利要求15所述的方法,其中,所述BBU将每个天线端口的复值调制符号映射到物理资源子模块之前,该方法还包括:
    所述BBU对接收到的数据进行MAC层处理;
    所述BBU对所述MAC层处理后的数据进行信道编码;
    所述BBU对所述信道编码处理后的数据进行基带调制,产生复值调制符号。
  17. 根据权利要求14至16任一项所述的方法,其中,该方法还包括:
    所述RRU对数字中频的IQ数据进行去循环前缀、傅立叶变化处理,之后发送给BBU;
    所述BBU将各个时频资源上的数据抽取分离出来,并组成相应的天线序列数据。
  18. 根据权利要求17所述的方法,其中,所述BBU将各个时频资源上的数据抽取分离出来,并组成相应的天线序列数据之后,该方法还包括:
    对所述天线序列数据进行信道估计、均衡和解调处理;
    对解调处理后的数据进行信道译码;
    对所述信道译码后的数据进行MAC层处理。
  19. 一种计算机存储介质,其中存储有计算机可执行指令,所述计算机可执行指令用于执行所述权利要求14至18任一项所述的方法。
PCT/CN2014/092157 2014-06-26 2014-11-25 数据处理装置及方法、bbu、rru、计算机存储介质 WO2015196726A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410299575.8A CN105227280A (zh) 2014-06-26 2014-06-26 一种数据处理装置及方法、bbu、rru
CN201410299575.8 2014-06-26

Publications (1)

Publication Number Publication Date
WO2015196726A1 true WO2015196726A1 (zh) 2015-12-30

Family

ID=54936650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092157 WO2015196726A1 (zh) 2014-06-26 2014-11-25 数据处理装置及方法、bbu、rru、计算机存储介质

Country Status (2)

Country Link
CN (1) CN105227280A (zh)
WO (1) WO2015196726A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886714A (zh) * 2016-04-08 2018-11-23 华为技术有限公司 一种数据通信方法及设备
WO2021052209A1 (zh) * 2019-09-16 2021-03-25 中兴通讯股份有限公司 射频拉远装置、有源天线和基站系统
CN114885343A (zh) * 2022-06-17 2022-08-09 中国联合网络通信集团有限公司 一种通信方法及装置、存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107026719B (zh) * 2016-01-29 2021-02-23 华为技术有限公司 信号传输方法和通信设备
CN107517503B (zh) * 2016-06-17 2020-06-09 中兴通讯股份有限公司 一种处理装置、bbu、rru及天线校正方法
CN108307545B (zh) * 2016-09-23 2023-03-14 中兴通讯股份有限公司 Bbu和rru功能重构后的数据发送装置及方法
CN108471319B (zh) * 2017-02-21 2020-05-22 中兴通讯股份有限公司 基站、射频拉远单元及其主板、射频子卡和通道自建方法
CN108934073B (zh) * 2017-05-26 2022-03-29 上海华为技术有限公司 一种数据传输的方法、基带单元和拉远射频单元
WO2018223396A1 (zh) * 2017-06-09 2018-12-13 华为技术有限公司 基站的拉远装置、基站和随机接入方法
CN113572543B (zh) * 2021-07-19 2023-10-10 深圳市国电科技通信有限公司 用于测试通信发射机性能的装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101175291A (zh) * 2007-11-21 2008-05-07 中兴通讯股份有限公司 对BBU上连接的RRU进行AxC的分配方法及装置
CN101777947A (zh) * 2010-01-19 2010-07-14 中兴通讯股份有限公司 一种基带单元的iq通道分配的方法和装置
CN101932002A (zh) * 2009-06-19 2010-12-29 中兴通讯股份有限公司 实现上下行传输速率匹配的方法及bbu和rru

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101868054B (zh) * 2010-05-07 2012-10-31 武汉邮电科学研究院 一种改进型分布式基站架构及实现方法
CN103428149A (zh) * 2012-05-25 2013-12-04 中兴通讯股份有限公司 一种lte基站系统的上行接收机及其数据处理方法
CN103428148A (zh) * 2012-05-25 2013-12-04 中兴通讯股份有限公司 一种lte基站系统的下行发射机及其数据处理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101175291A (zh) * 2007-11-21 2008-05-07 中兴通讯股份有限公司 对BBU上连接的RRU进行AxC的分配方法及装置
CN101932002A (zh) * 2009-06-19 2010-12-29 中兴通讯股份有限公司 实现上下行传输速率匹配的方法及bbu和rru
CN101777947A (zh) * 2010-01-19 2010-07-14 中兴通讯股份有限公司 一种基带单元的iq通道分配的方法和装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886714A (zh) * 2016-04-08 2018-11-23 华为技术有限公司 一种数据通信方法及设备
WO2021052209A1 (zh) * 2019-09-16 2021-03-25 中兴通讯股份有限公司 射频拉远装置、有源天线和基站系统
CN114885343A (zh) * 2022-06-17 2022-08-09 中国联合网络通信集团有限公司 一种通信方法及装置、存储介质
CN114885343B (zh) * 2022-06-17 2023-04-28 中国联合网络通信集团有限公司 一种通信方法及装置、存储介质

Also Published As

Publication number Publication date
CN105227280A (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
WO2015196726A1 (zh) 数据处理装置及方法、bbu、rru、计算机存储介质
US10764884B2 (en) Method for sending or receiving physical downlink control channel and device
US9461850B2 (en) Parallel data processing
AU2016245681B2 (en) PUCCH resource allocation method in carrier aggregation and equipments thereof
US9948562B2 (en) Method and device for transmitting pilot signal
CN110771105B (zh) 适配于不同子载波间隔配置的频域发射器和接收器
US20130184023A1 (en) Methods, systems, and computer readable media for long term evolution (lte) uplink data processing
US11128508B2 (en) Information transmission method and apparatus in wireless local area network
JP2013517668A5 (zh)
CN107517503B (zh) 一种处理装置、bbu、rru及天线校正方法
JP2018529294A (ja) 超高信頼度(vhr)通信をサポートするためのワイヤレスデバイスアーキテクチャ
WO2018202021A1 (zh) 广播信号的发送方法、接收方法、网络设备和终端设备
CN108289069B (zh) 一种参考信号的传输方法、发送端和接收端
WO2019233373A1 (zh) 电子设备和通信方法
US20220109595A1 (en) Apparatus and method
CN109995486A (zh) 数据传输的方法和装置
WO2016082123A1 (zh) 处理数据的方法、网络节点和终端
US10693696B2 (en) Apparatus and method for transmitting and receiving signals in wireless communication system
WO2018095068A1 (zh) 一种同步接入信号组的传输方法、设备和系统
WO2017133407A1 (zh) 信号传输方法和装置
WO2015143602A1 (zh) 物理层数据的传输方法及数据传输设备
WO2020030127A1 (zh) 一种资源分配方法、相关设备及装置
JP7400794B2 (ja) 無線通信装置、方法、プログラム、コンピュータに読み取り可能な非一時的記録媒体、及びシステム
WO2016095109A1 (zh) 增强下行物理控制信道发送处理方法和设备
WO2018058550A1 (zh) 一种数据映射方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14895649

Country of ref document: EP

Kind code of ref document: A1