WO2015196722A1 - 一种基带数据交换装置、方法和计算机存储介质 - Google Patents

一种基带数据交换装置、方法和计算机存储介质 Download PDF

Info

Publication number
WO2015196722A1
WO2015196722A1 PCT/CN2014/092142 CN2014092142W WO2015196722A1 WO 2015196722 A1 WO2015196722 A1 WO 2015196722A1 CN 2014092142 W CN2014092142 W CN 2014092142W WO 2015196722 A1 WO2015196722 A1 WO 2015196722A1
Authority
WO
WIPO (PCT)
Prior art keywords
baseband data
rru
module
bbu
interface module
Prior art date
Application number
PCT/CN2014/092142
Other languages
English (en)
French (fr)
Inventor
陆海涛
郭丹旦
刘喜林
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015196722A1 publication Critical patent/WO2015196722A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a baseband data exchange device, method, and computer storage medium.
  • the Radio Access Network is an important part of the mobile communication network system.
  • the traditional radio access network has the following features: 1.
  • Each base station is connected to a fixed number of sector antennas and covers a small area.
  • Each base station can only process the signal transmitted and received by the local cell.
  • Second, the capacity of the system is limited, and each base station works independently, which has difficulty in improving spectrum efficiency.
  • Third, the base station is usually a "vertical solution" developed based on a proprietary platform. .
  • a large number of base stations means high construction investment, site matching, site rental and maintenance costs, and building more base stations means more capital expenditures and operating expenses;
  • the actual utilization of base stations is very low, the average load of the network is usually much lower than the busy hour load, and the processing power cannot be shared between different base stations, and it is difficult to improve the spectrum efficiency.
  • the proprietary platform means mobile operation. Businesses need to maintain multiple incompatible platforms, and they need higher costs when expanding or upgrading.
  • C-RAN Centralized, Cooperative, Cloud RAN, centralized/cooperative/cloud computing radio access network
  • C-RAN Centralized, Cooperative, Cloud RAN, centralized/cooperative/cloud computing radio access network
  • C-RAN is achieved by centralizing the base stations. Reduce the number of base station rooms, reduce energy consumption, adopt collaborative and virtualization technologies, achieve base station resource sharing and dynamic scheduling, and improve spectrum efficiency to achieve low-cost, high-bandwidth and flexible operations.
  • the C-RAN is a change to the traditional BBU+RRU distributed base station deployment.
  • the traditional BBU+RRU wireless communication network architecture is shown in Figure 1, where the BBU and the RRU are fixedly connected, and the BBU Resources are independent of each other, and even if the BBU is idle, it cannot be used by other RRUs that do not have a fixed connection.
  • the C-RAN combines the baseband units (BBUs) to form a centralized baseband pool, and connects the remote radio unit (RRU, Radio Remote Unit) and the transmission through a packet transport network (PTN, Packet Transport Network). antenna.
  • BBUs baseband units
  • PTN Packet Transport Network
  • the number of base stations can be greatly reduced, and the energy consumption of the supporting equipment, especially the air conditioner, can be reduced; the RRU can be placed closer to the user, thereby reducing the transmission power; and the shared baseband pool is more suitable for mobile communication.
  • the tidal effect of the system when the late night mobile communication system is lightly loaded, some of the processing units in the baseband pool can be turned off to achieve power saving.
  • the baseband IQ data transmission between the BBU and the RRU is implemented by using an IP softswitch, that is, the baseband IQ data is IP-encapsulated at the transmitting end, and then passed through a medium such as an optical fiber or an Ethernet. Transmission, the IP packet is decapsulated at the receiving end, and the baseband IQ data is restored.
  • IP softswitch processing technology for IP-based baseband data is flexible, there is also a problem of large delay, that is, IP packet encapsulation, decapsulation, storage and forwarding are introduced in the process of IP-based baseband data. Processing delays such as transmission.
  • GSM Global System for Mobile Communication
  • WCDMA Wideband Code Division Multiple Access
  • All mobile systems require absolute time error of less than 3us for each antenna.
  • the LTE (Long Term Evolution) system requires hybrid automatic repeat request (HARQ) feedback in three subframes, which raises higher requirements for baseband data exchange delay than ordinary packet switching. Therefore, the existing C-RAN baseband data IP processing technology has a certain delay effect on the popularization and application of C-RAN in the mobile communication system, especially in the future demand of 5G mobile communication. A lower latency is required.
  • the small cell Small Cell
  • the small cell will also be deployed in the baseband of the C-RAN architecture.
  • embodiments of the present invention provide a baseband data exchange apparatus, method, and computer storage medium.
  • the embodiment of the present invention provides a baseband data exchange device, where the device is located between a baseband unit BBU and a remote radio unit RRU, and the BBUs are collectively arranged to form a baseband pool, and the device includes: a BBU interface module and an RRU interface module. , switching module and control module;
  • the BBU interface module is connected to the BBU;
  • the RRU interface module is connected to the RRU
  • the switching module is configured to perform baseband data exchange between the BBU antenna channel and the RRU antenna channel;
  • the control module is configured to control an exchange mapping relationship between the BBU antenna channel and the RRU antenna channel.
  • the BBU interface module, the RRU interface module, the switch module, and the control module are respectively composed of a corresponding number of field programmable gate array FPGA chips.
  • the switching module includes an uplink switching sub-module and a downlink switching sub-module, where the uplink switching sub-module and the downlink switching sub-module are respectively composed of a corresponding number of FPGA chips; and an uplink input interface of the uplink switching sub-module is connected to the An uplink output interface of the RRU interface module, where a downlink output interface of the downlink switching submodule is connected to a downlink input interface of the RRU interface module.
  • the BBU interface module and the switch module share an FPGA chip, and the FPGA chip in the BBU interface module also serves as a part of the FPGA chip that constitutes the switch module, and the FPGA chip in the BBU interface module is connected to the FPGA chip.
  • BBU in the baseband pool BBU in the baseband pool.
  • the BBU interface module is configured to receive downlink baseband data of the BBU. Inputting, by the input link of the BBU interface module, the downlink baseband data into a baseband data exchange network of the switching module;
  • the switching module is configured to, under the control of the control module, exchange the downlink baseband data to a designated control module output link through the baseband data exchange network, and the control module output link connects the RRU Downlink baseband data exchange network of the interface module;
  • the RRU interface module is configured to, under the control of the control module, exchange the downlink baseband data to a designated RRU interface module output link through the downlink baseband data switching network, and the RRU interface module input link Connect the corresponding RRU optical port.
  • the RRU interface module is configured to receive uplink baseband data of the RRU, and input the uplink baseband data to an uplink baseband data exchange network of the RRU interface module by using an input link of the RRU interface module, Controlling, by the control module, the uplink baseband data to a designated RRU interface module output link, where the RRU interface module output link is connected to the baseband data exchange network of the switch module;
  • the switching module is configured to, under the control of the control module, exchange the uplink baseband data to a designated switching module output link through the baseband data switching network, and the switching module output link is connected to the Corresponding output optical port of the BBU interface module;
  • the BBU interface module is configured to send the uplink baseband data to the BBU through the corresponding output optical port.
  • the embodiment of the invention further provides a baseband data exchange method, the method comprising:
  • a baseband data switching device between the baseband unit BBU and the remote radio unit RRU, transmitting the received downlink baseband data of the BBU to the designated RRU through the baseband data exchange network inside the device, and receiving the received The uplink baseband data of the RRU is sent to the designated BBU through a baseband data exchange network inside the device.
  • the baseband data switching device includes: a BBU interface module, an RRU interface module, a switch module, and a control module, and the BBU interface module, the RRU interface module, the switch module, and the control module respectively have a corresponding number of field programmable gate arrays
  • the FPGA chip is composed.
  • the downlink baseband data of the received BBU is sent to the designated RRU through the baseband data exchange network in the device, including:
  • control module controlling, by the control module, the downlink baseband data to be exchanged to a designated control module output link by using the baseband data exchange network, where the control module output link is connected to the downlink baseband data exchange of the RRU interface module.
  • the downlink baseband data is exchanged to the designated RRU interface module output link by the downlink baseband data exchange network, and the RRU interface module input link is connected to the corresponding RRU optical port.
  • the uplink baseband data of the received RRU is sent to the designated BBU through the baseband data exchange network in the device, including:
  • control module controlling, by the control module, the uplink baseband data to be exchanged to a designated switch module output link by using the baseband data exchange network, where the switch module output link is connected to a corresponding output light of the BBU interface module. mouth;
  • the embodiment of the invention further provides a computer storage medium, the storage medium comprising a set of computer executable instructions for performing the baseband data exchange method according to the embodiment of the invention.
  • a baseband data exchange device, method and computer storage medium provided by an embodiment of the present invention perform baseband data exchange through an FPGA, and in a baseband data exchange process of a C-RAN architecture, only There is a transmission delay (that is, a transmission delay of the baseband data exchange by the FPGA), which is much lower than the delay of the existing IP-based softswitch method; the baseband data exchange device in the embodiment of the present invention controls the exchange route in real time, Flexible mapping between the baseband pool and the RRU.
  • FIG. 1 is a schematic diagram of a conventional BBU+RRU wireless communication network architecture
  • FIG. 2 is a schematic diagram of a C-RAN networking structure of a BBU+ large-capacity baseband data switch+RRU according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a baseband data exchange device according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an internal connection structure of a large-capacity baseband switch according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of connection between an RRU interface module and a switch module of a large-capacity baseband switch according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of internal connection of a switch module of a large-capacity baseband switch according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of connection between a BBU interface module and a switch module of a large-capacity baseband switch according to an embodiment of the present invention
  • FIG. 8 is an internal schematic diagram of a switch module FPGA chip of a large-capacity baseband switch according to an embodiment of the present invention
  • FIG. 9 is an internal schematic diagram of an RRU interface module FPGA chip of a large-capacity baseband switch according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of downlink baseband data exchange processing according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of an uplink baseband data exchange process according to an embodiment of the present invention.
  • the embodiment of the present invention is an improvement on the basis of the C-RAN networking architecture, as shown in FIG. 2, the present invention
  • a baseband data exchange device is added between the baseband pool and the RRU, and the baseband data exchange device can be a large-capacity baseband data switch.
  • the baseband data exchange device can connect all BBUs and RRUs through the optical fiber;
  • the connection relationship with the RRU is not fixed, and is dynamically controlled by the baseband data switching device.
  • the dynamic BBU can establish a connection relationship with any of the multiple RRUs, or the BBU is in an idle state, that is, there is no connection relationship with any RRU.
  • the BBU can be a wireless base station, and the large-capacity baseband switch can be independently arranged with the BBU, that is, the large-capacity baseband switch and the BBU are respectively deployed in different equipment rooms; of course, the large-capacity baseband switch and all BBUs can also be arranged in the same core network.
  • the computer room is used to reduce the number of traditional base station rooms.
  • RRUs can be distributed across wireless cells in the city.
  • a baseband data exchange device includes: a BBU interface module 10, an RRU interface module 20, a switch module 30, and a control module 40;
  • the BBU interface module 10 is connected to the BBU.
  • the RRU interface module 20 is connected to the RRU;
  • the switching module 30 is configured to perform baseband data exchange between the BBU antenna channel and the RRU antenna channel;
  • the control module 40 is configured to control an exchange mapping relationship between the BBU antenna channel and the RRU antenna channel.
  • the BBU interface module 10, the RRU interface module 20, the switching module 30, and the control module 40 of the embodiment of the present invention are respectively composed of a corresponding number of Field Programmable Gate Array (FPGA) chips. That is to say, the baseband data switching device of the embodiment of the present invention can be implemented by a certain number of FPGA chips.
  • FPGA Field Programmable Gate Array
  • the BBU interface module 10 supports 384 10G optical ports, or 768 6.144G optical ports, or 1536 2.5G optical ports to connect to the BBU.
  • the RRU interface module 20 supports 768 10G optical ports or 1536. 6.144G optical port, or 3072 2.5G optical port to connect to the RRU.
  • the switching module 30 includes an uplink switching submodule and a downlink switching submodule, and the uplink The switching sub-module and the downlink switching sub-module are respectively composed of a corresponding number of FPGA chips; the uplink input interface of the uplink switching sub-module is connected to the uplink output interface of the RRU interface module, and the downlink output interface of the downlink switching sub-module is connected The downlink input interface of the RRU interface module.
  • the uplink switching submodule and the downlink switching submodule are used for the exchange transmission of the uplink baseband data and the downlink baseband data, respectively.
  • the BBU interface module 10 and the switch module 30 can share an FPGA chip, that is, an FPGA chip in the BBU interface module 10, and also serve as a part of the FPGA chip that constitutes the switch module 30.
  • the FPGA chip in the BBU interface module 10 is connected to the BBU in the baseband pool. .
  • the BBU interface module 10 is configured to receive the downlink baseband data of the BBU, and input the downlink baseband data to the baseband data exchange network of the switching module 30 through the input link of the BBU interface module 10;
  • the switching module 30 is configured to, under the control of the control module 40, exchange downlink baseband data through the baseband data exchange network to a designated control module output link, and the control module output link is connected to the RRU interface module 20.
  • Downlink baseband data exchange network ;
  • the RRU interface module 20 is configured to, under the control of the control module 40, exchange the downlink baseband data to the designated RRU interface module output link through the downlink baseband data exchange network, where the RRU interface module inputs The link is connected to the corresponding RRU optical port.
  • the RRU interface module 20 is configured to receive the uplink baseband data of the RRU, and input the uplink baseband data to the uplink baseband data exchange network of the RRU interface module 20 through the input link of the RRU interface module 20, where the control module 40 Controlling, the uplink baseband data is exchanged to a designated RRU interface module output link, and the RRU interface module output link is connected to the baseband data exchange network of the switching module 30;
  • the switching module 30 is configured to, under the control of the control module 40, exchange the uplink baseband data to the designated switching module output link through the baseband data switching network, and the switching module output link is connected to the BBU interface. a corresponding output optical port of the module 10;
  • the BBU interface module 10 is configured to pass the uplink baseband data to the corresponding output optical port. Send to the BBU.
  • the baseband data switching device of the embodiment of the present invention and the C-RAN network architecture including the baseband data switching device are further elaborated below in conjunction with a specific internal structure of a large-capacity baseband switch.
  • a large-capacity baseband switch includes an RRU interface module, a BBU interface module, a switch module, and a control module.
  • the RRU interface module is composed of 12 FPGA chips (such as RRU FPGA0 to RRU FPGA11 in FIG. 4).
  • the FPGA chip in this embodiment can select Xilinx XC7VX1140T chip, and has 96 Serdes (SERializer/DESerializer, serial/ Deserializer) interface, each channel supports the common public radio interface (CPRI) of 13G or less.
  • CPRI common public radio interface
  • each FPGA chip of the RRU interface module of the embodiment of the present invention is the same.
  • the 64-way Serdes interface of each FPGA chip is used to connect to the RRU, and the 16-way Serdes interface is used to connect a switching module (ie, the uplink switching sub-module).
  • the 16-way Serdes interface is used to connect another switching module (ie, the downlink switching sub-module), as shown in the connection diagram of the RRU interface module and the switching module in the embodiment of the present invention.
  • the switch module is composed of two sets of sub-modules with the same structure, each set of sub-modules is composed of 6 FPGA chips, as shown in the internal connection diagram of the switch module of the embodiment of the present invention, and the switch sub-module is composed of SW FPGA0.
  • the switching sub-module 2 is composed of SW FPGA2, SW FPGA3, SW FPGA6, SW FPGA7, BBU FPGA2, and BBU FPGA3.
  • the 96 input Serdes interfaces of SW FPGA2 and SW FPGA3 are used to connect the RRU interface module and output the Serdes interface average. Divided into two parts, of which 48 The Serdes interface is output to SW FPGA6, and the other 48 Serdes interfaces are output to SW FPGA7.
  • the SW input interfaces of SW FPGA6 and SW FPGA7 are used to connect SW FPGA2 and SWFPGA3.
  • the output Serdes interface is divided into two parts, 48 of which are Serdes.
  • the interface is output to BBU FPGA2, and the other 48 Serdes interfaces are output to BBU FPGA3.
  • One of the switching sub-module 1 and the switching sub-module 2 is used for uplink baseband data exchange transmission, and the other is used for downlink baseband data exchange transmission.
  • the BBU interface module shares the chip with the BBU FPGA0, BBU FPGA1, BBU FPGA2, and BBU FPGA3 of the switch module.
  • Figure 7 shows the connection diagram between the BBU interface module and the switch module.
  • the CPRI interface output of the switch module is directly connected to the optical port output of the BBU interface.
  • the control module is used to control the Serdes link and bearer CPRI inside all FPGA chips.
  • FIG. 8 is an internal schematic diagram of a switch module FPGA chip of a large-capacity baseband switch according to an embodiment of the present invention, including 96 CPRI inputs (ICPRI) and 96 CPRI outputs (OCPRI), each CPRI link rate is 10 Gbps, input and The output links are connected through a baseband data exchange network, and the control module controls the exchange connection relationship of the baseband data.
  • ICPRI 96 CPRI inputs
  • OCPRI 96 CPRI outputs
  • each CPRI link rate is 10 Gbps
  • the output links are connected through a baseband data exchange network, and the control module controls the exchange connection relationship of the baseband data.
  • a 768 ⁇ 768 antenna channel switching network is formed.
  • FIG. 9 is an internal schematic diagram of an RRU interface module FPGA chip of a large-capacity baseband switch according to an embodiment of the present invention, which is divided into an uplink and downlink two-part switching network connection, wherein the uplink portion includes 64 CPRI inputs and 32 CPRI outputs, each of which includes 64 CPRI inputs and 32 CPRI outputs, each of which The CPRI link rate is 10 Gbps, and the input and output links are connected through an uplink baseband data exchange network.
  • the control module controls the exchange connection relationship of the baseband data. For the 20M 4 antenna configuration, a 512 ⁇ 128 antenna channel uplink switching network is formed.
  • the downlink part includes 32 CPRI inputs and 64 CPRI outputs, each CPRI link rate is 10 Gbps, and the input and output links are connected through a downlink baseband data exchange network, and the control module controls the exchange connection relationship of the baseband data.
  • 20M 4 antenna configuration forming a 128 ⁇ 512 antenna channel downlink switching network.
  • Baseband data exchange device and the baseband data exchange device C-RAN network architecture, baseband data exchange through FPGA, in the baseband data exchange process of C-RAN architecture, there is only one transmission delay (that is, the transmission delay of FPGA for baseband data exchange), compared with the existing IP
  • the time delay of the softswitch mode is much lower.
  • the baseband data switching device in the embodiment of the present invention performs real-time control on the switched route, and flexibly implements the mapping association between the baseband pool and the RRU.
  • the baseband data exchange device according to the embodiment of the present invention, and the C-RAN network architecture including the baseband data exchange device, the embodiment of the present invention further provides a baseband data exchange method, which mainly includes: located between the BBU and the RRU
  • the baseband data exchange device transmits the downlink baseband data of the received BBU to the designated RRU through the baseband data exchange network inside the device, and sends the uplink baseband data of the received RRU to the baseband data exchange network inside the device to The specified BBU.
  • the baseband data exchange device includes: a BBU interface module, an RRU interface module, a switch module, and a control module, and the BBU interface module, the RRU interface module, the switch module, and the control module respectively comprise a corresponding number of field programmable gate array FPGA chips. composition.
  • the function of each module is as described in the foregoing embodiment, and details are not described herein again.
  • the baseband data exchange device sends the downlink baseband data of the received BBU to the designated RRU through the internal baseband data exchange network, and describes the exchange transmission process of the downlink baseband data. As shown in FIG. 10, the process specifically includes:
  • Step 1001 The baseband data switching device receives the downlink baseband data of the BBU through the BBU interface module.
  • the downlink baseband data of the BBU is connected to the BBU interface module of the baseband data switching device through a fiber interface.
  • Step 1002 Input the downlink baseband data into the baseband data exchange network of the switching module by using an input link of the BBU interface module.
  • Step 1003 Pass the downlink baseband data through the baseband data exchange under the control of the control module.
  • the network switches to the output link of the designated control module, and the output link of the control module is connected to the downlink baseband data exchange network of the RRU interface module.
  • Step 1004 The downlink baseband data is exchanged to the designated RRU interface module output link through the downlink baseband data exchange network, and the RRU interface module input link is connected to the corresponding RRU optical port, that is, the RRU to which the final BBU downlink baseband data needs to be connected. device.
  • the baseband data switching device sends the uplink baseband data of the received RRU to the designated BBU through the baseband data exchange network in the device, and describes the exchange transmission process of the uplink baseband data, as shown in FIG. include:
  • Step 1101 The baseband data switching device receives the uplink baseband data of the RRU through the RRU interface module.
  • the uplink baseband data of the RRU is connected to the RRU interface module of the baseband data switching device through a fiber interface.
  • Step 1102 The uplink baseband data is input to the uplink baseband data exchange network of the RRU interface module through the input link of the RRU interface module, and the uplink baseband data is exchanged to the designated RRU interface module output link under the control of the control module.
  • the RRU interface module outputs a link to the baseband data exchange network of the switch module.
  • the uplink baseband data of the RRU is input to the uplink baseband data switching network through the CPRI input link of the RRU interface module, and is controlled by the control module to be exchanged to the designated RRU interface module CPRI output link; the RRU interface module CPRI output link is connected to the switching module.
  • the baseband data exchange network is controlled by the control module and switched to the designated switch module CPRI output link.
  • Step 1103 Under the control of the control module, the uplink baseband data is exchanged to the designated switch module output link through the baseband data exchange network, and the switch module output link is connected to the corresponding output optical port of the BBU interface module.
  • the output module of the switch module is connected to the corresponding output optical port of the BBU interface module, that is, the BBU device to which the final RRU uplink baseband data needs to be connected.
  • step 1104 the uplink baseband data is sent to the BBU through the corresponding output optical port.
  • the embodiment of the present invention performs baseband data exchange through an FPGA.
  • the baseband data exchange process of the C-RAN architecture there is only one transmission delay (that is, a transmission delay of baseband data exchange through an FPGA), which is The IP-based softswitch mode has a much lower delay.
  • the baseband data switching device in the embodiment of the present invention performs real-time control on the switched route, and flexibly implements the mapping association between the baseband pool and the RRU.
  • the embodiment of the present invention supports the implementation foundation of C-RAN centralized, cooperative, and cloud computing, and has a large system capacity, can satisfy the C-RAN usage of a large city, and is beneficial to the maximum use of the C-RAN to reduce energy consumption.
  • the advantage of pool resource sharing has promoted the promotion and application of C-RAN.
  • the baseband data switching apparatus of the embodiment of the present invention supports a 384 ⁇ 768 BBU and RRU switch connection for a 20M 8-antenna configuration; or a 768 ⁇ 1536 BBU and RRU switch connection for a 20M 4-antenna configuration; or 20M
  • the 2 antenna configuration supports 1536 ⁇ 3072 BBU and RRU switch connections, which can fully meet the layout requirements of BBU and RRU covered by a large urban wireless cell.
  • the capacity of the switching module of the baseband data switching device in the embodiment of the present invention is 3072 ⁇ 6144 antenna channels, and the concentration ratio of the BBU to the RRU is 1:2, which realizes base station resource sharing and improves spectrum efficiency.
  • the control module of the baseband data exchange device is used to control the exchange mapping relationship between the BBU antenna and the RRU antenna, and supports base station virtualization.
  • the embodiment of the invention further provides a computer storage medium, the storage medium comprising a set of computer executable instructions for performing the baseband data exchange method according to the embodiment of the invention.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种基带数据交换装置,所述装置位于基带单元(BBU)和远端射频单元(RRU)之间,BBU集中布置组成基带池,所述装置包括:BBU接口模块、RRU接口模块、交换模块和控制模块;所述BBU接口模块,连接所述BBU;所述RRU接口模块,连接所述RRU;所述交换模块,配置为执行BBU天线通道和RRU天线通道之间的基带数据交换;所述控制模块,配置为控制所述BBU天线通道和RRU天线通道的交换映射关系。本发明还公开了一种基带数据交换方法和计算机存储介质。

Description

一种基带数据交换装置、方法和计算机存储介质 技术领域
本发明涉及无线通信领域,尤其涉及一种基带数据交换装置、方法和计算机存储介质。
背景技术
无线接入网(RAN,Radio Access Network)是移动通信网系统的重要组成部分,传统的无线接入网有以下特点:一、每个基站连接若干固定数量的扇区天线,并覆盖小片区域,每个基站只能处理本小区收发信号;二、系统的容量是干扰受限,各个基站独立工作,已经很难提高频谱效率;三、基站通常都是基于专有平台开发的“垂直解决方案”。这些特点带来了以下问题:数量巨大的基站意味着高额的建设投资、站址配套、站址租赁以及维护费用,建设更多的基站意味着更多的资本开支和运营开支;另外,现有基站的实际利用率很低,网络的平均负载通常远远低于忙时负载,而不同的基站间不能共享处理能力,也很难提高频谱效率;再有,专有的平台意味着移动运营商需要维护多个不兼容的平台,在扩容或者升级时也需要更高的成本。
为此,业界提出C-RAN(Centralized、Cooperative、Cloud RAN,集中式/协作式/云计算无线接入网)的新型无线接入网架构的概念,C-RAN是通过集中化布置基站来实现减少基站机房数量,减少能耗,采用协作化、虚拟化技术,实现基站资源共享和动态调度,提高频谱效率,以达到低成本、高带宽和灵活度的运营。
C-RAN是对传统BBU+RRU分布式基站部署的改变,传统BBU+RRU无线通信网架构如图1所示,其中BBU与RRU固定连接在一起,BBU的 资源是各自独立的,即使BBU空闲,也不能被其它没有固定连接关系的RRU使用。而C-RAN是将基带单元(BBU,Base Band Unit)集中起来形成集中式的基带池,通过光纤分组传送网(PTN,Packet Transport Network)连接远端射频单元(RRU,Radio Remote Unit)和发射天线。通过对BBU的集中化部署,可以极大减少基站机房数量,减少配套设备特别是空调的能耗;RRU可以布置得离用户更近,从而减少发射功率;使用共享的基带池,更适应移动通信系统的潮汐效应,当深夜移动通信系统负荷较轻时,可以关闭基带池中的部分处理单元来实现节电。
现有的C-RAN基带集中处理技术中,BBU和RRU间的基带IQ数据传输是采用IP化的软交换实现,即在发送端将基带IQ数据进行IP封装,然后通过光纤、以太网等介质传输,在接收端对IP包进行解封装,还原得到基带IQ数据。这种对基带数据进行IP化的软交换处理技术,虽然交换灵活,但也存在着时延较大的问题,即在基带数据IP化的过程中,引入了IP包封装、解封装、存储转发、传输等处理时延。移动系统除全球移动通信系统(GSM,Global System for Mobile communication)、宽带码分多址(WCDMA,Wideband Code Division Multiple Access)外的其它所有制式,均要求各天线发射绝对时间误差小于3us,另外长期演进(LTE,Long Term Evolution)系统要求在3个子帧内完成混合自动重传请求(HARQ,Hybrid Automatic Repeat Request)反馈,这对于基带数据交换的延迟提出了比普通分组交换更高的要求。因此,现有的C-RAN基带数据IP化的处理技术,其所产生的时延问题对C-RAN在移动通信系统的推广应用会产生一定不利影响,特别是未来5G移动通信的需求中,要求有更低的时延,例如5G超密集组网应用中,小基站(Small Cell)也会采用C-RAN架构的基带集中化部署,由于Small Cell根据业务状况会经常做开关控制,相应地频繁进行基带池资源的分配和释放操作,这就要求基带数据在传输和交换过程中较低的时延,确保Small Cell基带池有足够时间响应资源分配和释放命令,因此 基带数据低时延交换和传输可以保证Small Cell基带池部署的节约能耗的性能实现。
发明内容
为解决现有存在的技术问题,本发明实施例提供一种基带数据交换装置、方法和计算机存储介质。
本发明实施例提供了一种基带数据交换装置,所述装置位于基带单元BBU和远端射频单元RRU之间,所述BBU集中布置组成基带池,所述装置包括:BBU接口模块、RRU接口模块、交换模块和控制模块;
所述BBU接口模块,连接所述BBU;
所述RRU接口模块,连接所述RRU;
所述交换模块,配置为执行BBU天线通道和RRU天线通道之间的基带数据交换;
所述控制模块,配置为控制所述BBU天线通道和RRU天线通道的交换映射关系。
其中,所述BBU接口模块、RRU接口模块、交换模块和控制模块分别由相应数量的现场可编程门阵列FPGA芯片组成。
其中,所述交换模块包括上行交换子模块和下行交换子模块,所述上行交换子模块和下行交换子模块分别由相应数量的FPGA芯片组成;所述上行交换子模块的上行输入接口连接所述RRU接口模块的上行输出接口,所述下行交换子模块的下行输出接口连接所述RRU接口模块的下行输入接口。
其中,所述BBU接口模块与所述交换模块共用FPGA芯片,所述BBU接口模块中的FPGA芯片,也作为组成所述交换模块的一部分FPGA芯片,所述BBU接口模块中的FPGA芯片连接所述基带池中的BBU。
其中,所述BBU接口模块配置为,接收所述BBU的下行基带数据, 通过所述BBU接口模块的输入链路,将所述下行基带数据输入到所述交换模块的基带数据交换网络;
所述交换模块配置为,在所述控制模块的控制下,将所述下行基带数据通过所述基带数据交换网络交换到指定的控制模块输出链路,所述控制模块输出链路连接所述RRU接口模块的下行基带数据交换网络;
所述RRU接口模块配置为,在所述控制模块的控制下,将所述下行基带数据通过所述下行基带数据交换网络交换到指定的RRU接口模块输出链路,所述RRU接口模块输入链路连接相应的RRU光口。
其中,所述RRU接口模块配置为,接收所述RRU的上行基带数据,通过所述RRU接口模块的输入链路,将所述上行基带数据输入到所述RRU接口模块的上行基带数据交换网络,在所述控制模块的控制下,将所述上行基带数据交换到指定的RRU接口模块输出链路,所述RRU接口模块输出链路连接所述交换模块的基带数据交换网络;
所述交换模块配置为,在所述控制模块的控制下,将所述上行基带数据通过所述基带数据交换网络交换到指定的交换模块输出链路,所述交换模块输出链路连接到所述BBU接口模块的对应输出光口;
所述BBU接口模块配置为,将所述上行基带数据通过所述对应输出光口发送给所述BBU。
本发明实施例还提供了一种基带数据交换方法,所述方法包括:
位于基带单元BBU和远端射频单元RRU之间的基带数据交换装置,将接收的所述BBU的下行基带数据通过所述装置内部的基带数据交换网络发送到指定的所述RRU,并将接收的所述RRU的上行基带数据通过所述装置内部的基带数据交换网络发送到指定的所述BBU。
其中,所述基带数据交换装置包括:BBU接口模块、RRU接口模块、交换模块和控制模块,且所述BBU接口模块、RRU接口模块、交换模块和控制模块分别由相应数量的现场可编程门阵列FPGA芯片组成。
其中,所述将接收的BBU的下行基带数据通过所述装置内部的基带数据交换网络发送到指定的RRU,包括:
接收所述BBU的下行基带数据,通过所述BBU接口模块的输入链路,将所述下行基带数据输入到所述交换模块的基带数据交换网络;
在所述控制模块的控制下,将所述下行基带数据通过所述基带数据交换网络交换到指定的控制模块输出链路,所述控制模块输出链路连接所述RRU接口模块的下行基带数据交换网络;
将所述下行基带数据通过所述下行基带数据交换网络交换到指定的RRU接口模块输出链路,所述RRU接口模块输入链路连接相应的RRU光口。
其中,所述将接收的RRU的上行基带数据通过所述装置内部的基带数据交换网络发送到指定的BBU,包括:
接收所述RRU的上行基带数据,通过所述RRU接口模块的输入链路,将所述上行基带数据输入到所述RRU接口模块的上行基带数据交换网络,在所述控制模块的控制下,将所述上行基带数据交换到指定的RRU接口模块输出链路,所述RRU接口模块输出链路连接所述交换模块的基带数据交换网络;
在所述控制模块的控制下,将所述上行基带数据通过所述基带数据交换网络交换到指定的交换模块输出链路,所述交换模块输出链路连接到所述BBU接口模块的对应输出光口;
将所述上行基带数据通过所述对应输出光口发送给所述BBU。
本发明实施例还提供了一种计算机存储介质,所述存储介质包括一组计算机可执行指令,所述指令用于执行本发明实施例所述的基带数据交换方法。
本发明实施例提供的一种基带数据交换装置、方法和计算机存储介质,通过FPGA进行基带数据交换,在C-RAN架构的基带数据交换过程中,只 有一个传输时延(即通过FPGA进行基带数据交换的传输时延),比现有的IP化软交换方式的时延低很多;本发明实施例的基带数据交换装置对交换路由进行实时控制,灵活实现基带池与RRU间的映射关联。
附图说明
图1为传统BBU+RRU无线通信网架构的示意图;
图2为本发明实施例的BBU+大容量基带数据交换机+RRU的C-RAN组网架构示意图;
图3为本发明实施例的一种基带数据交换装置的组成结构示意图;
图4为本发明实施例的一种大容量基带交换机内部连接结构示意图;
图5为本发明实施例的一种大容量基带交换机的RRU接口模块与交换模块的连接示意图;
图6为本发明实施例的一种大容量基带交换机的交换模块内部连接示意图;
图7为本发明实施例的一种大容量基带交换机的BBU接口模块与交换模块的连接示意图;
图8为本发明实施例的一种大容量基带交换机的交换模块FPGA芯片的内部原理图;
图9为本发明实施例的一种大容量基带交换机的RRU接口模块FPGA芯片的内部原理图;
图10为本发明实施例的一种下行基带数据交换处理流程图;
图11为本发明实施例的一种上行基带数据交换处理流程图。
具体实施方式
下面结合附图和具体实施例对本发明的技术方案进一步详细阐述。
本发明实施例是在C-RAN组网架构基础上的改进,如图2所示,本发 明实施例在由BBU集中布置组成基带池与RRU之间,增设基带数据交换装置,该基带数据交换装置可以是大容量基带数据交换机,基带数据交换装置可以通过光纤连接所有的BBU和RRU;BBU与RRU之间的连接关系不固定,由基带数据交换装置动态控制,通过动态控制,BBU可以和任意多个RRU建立连接关系,或者BBU处于空闲态、即与任意一个RRU都没有连接关系。其中,BBU可以是无线基站,大容量基带交换机可以与BBU分别独立的布置,即大容量基带交换机与BBU分别部署于不同的机房;当然,大容量基带交换机与所有BBU也可以布置在同一核心网机房,以实现减少传统基站机房数量。RRU可以分布在城市的各个无线小区。
本发明实施例的一种基带数据交换装置,如图3所示,该装置包括:BBU接口模块10、RRU接口模块20、交换模块30和控制模块40;其中,
BBU接口模块10,连接BBU;
RRU接口模块20,连接RRU;
交换模块30,配置为执行BBU天线通道和RRU天线通道之间的基带数据交换;
控制模块40,配置为控制BBU天线通道和RRU天线通道的交换映射关系。
其中,本发明实施例的BBU接口模块10、RRU接口模块20、交换模块30和控制模块40分别由相应数量的现场可编程门阵列(FPGA,Field Programmable Gate Array)芯片组成。也就是说,本发明实施例的基带数据交换装置可以由一定数量的FPGA芯片来实现。
具体实施时,BBU接口模块10支持提供384个10G光口、或者768个6.144G光口、或者1536个2.5G光口来连接BBU;RRU接口模块20支持提供768个10G光口、或者1536个6.144G光口、或者3072个2.5G光口来连接RRU。
其中,交换模块30包括上行交换子模块和下行交换子模块,所述上行 交换子模块和下行交换子模块分别由相应数量的FPGA芯片组成;所述上行交换子模块的上行输入接口连接所述RRU接口模块的上行输出接口,所述下行交换子模块的下行输出接口连接所述RRU接口模块的下行输入接口。上行交换子模块和下行交换子模块分别用于上行基带数据和下行基带数据的交换传输。
其中,BBU接口模块10与交换模块30可以共用FPGA芯片,即BBU接口模块10中的FPGA芯片,也作为组成交换模块30的一部分FPGA芯片,BBU接口模块10中的FPGA芯片连接基带池中的BBU。
其中,BBU接口模块10配置为,接收BBU的下行基带数据,通过BBU接口模块10的输入链路,将所述下行基带数据输入到交换模块30的基带数据交换网络;
交换模块30配置为,在控制模块40的控制下,将下行基带数据通过所述基带数据交换网络交换到指定的控制模块输出链路,所述控制模块输出链路连接所述RRU接口模块20的下行基带数据交换网络;
所述RRU接口模块20配置为,在所述控制模块40的控制下,将所述下行基带数据通过所述下行基带数据交换网络交换到指定的RRU接口模块输出链路,所述RRU接口模块输入链路连接相应的RRU光口。
其中,RRU接口模块20配置为,接收RRU的上行基带数据,通过RRU接口模块20的输入链路,将所述上行基带数据输入到RRU接口模块20的上行基带数据交换网络,在控制模块40的控制下,将所述上行基带数据交换到指定的RRU接口模块输出链路,所述RRU接口模块输出链路连接所述交换模块30的基带数据交换网络;
交换模块30配置为,在控制模块40的控制下,将所述上行基带数据通过所述基带数据交换网络交换到指定的交换模块输出链路,所述交换模块输出链路连接到所述BBU接口模块10的对应输出光口;
BBU接口模块10配置为,将所述上行基带数据通过所述对应输出光口 发送给BBU。
下面结合一种大容量基带交换机的具体内部结构,对本发明实施例的基带数据交换装置、以及包含所述基带数据交换装置的C-RAN网络架构进一步详细阐述。
如图4,本发明实施例的一种大容量基带交换机包括RRU接口模块、BBU接口模块、交换模块和控制模块。所述RRU接口模块由12块FPGA芯片组成(如图4中的RRU FPGA0~RRU FPGA11),本实施例中的FPGA芯片可以选择Xilinx公司的XC7VX1140T芯片,具有96路Serdes(SERializer/DESerializer,串联/解串器)接口,每路都支持13G以下通用公共无线接口(CPRI,Common Public Radio Interface)光纤连接。
本发明实施例的RRU接口模块的每个FPGA芯片的处理结构相同,每个FPGA芯片的64路Serdes接口用来连接RRU,16路Serdes接口用来连接一个交换模块(即上行交换子模块),16路Serdes接口用来连接另一个交换模块(即下行交换子模块),如图5的本发明实施例的RRU接口模块与交换模块的连接图所示。所述交换模块由两组结构相同的子模块组成,每组子模块由6个FPGA芯片组成,如图6的本发明实施例的交换模块内部连接图所示,交换子模块一由SW FPGA0、SW FPGA1、SW FPGA4、SW FPGA5、BBU FPGA0、BBU FPGA1组成,其中SW FPGA0、SW FPGA1的96个输入Serdes接口用来连接RRU接口模块,输出Serdes接口平均分成两部分,其中48路Serdes接口输出到SW FPGA4,另外48路Serdes接口输出到SW FPGA5;SW FPGA4、SW FPGA5的96个输入Serdes接口用来连接SW FPGA0、SW FPGA1,输出平均分成两部分,48路Serdes接口输出到BBU FPGA0,另外48路Serdes接口输出到BBU FPGA1。同样的,交换子模块二由SW FPGA2、SW FPGA3、SW FPGA6、SW FPGA7、BBU FPGA2、BBU FPGA3组成,其中SW FPGA2、SW FPGA3的96个输入Serdes接口用来连接RRU接口模块,输出Serdes接口平均分成两部分,其中48 路Serdes接口输出到SW FPGA6,另外48路Serdes接口输出到SW FPGA7;SW FPGA6、SW FPGA7的96个输入Serdes接口用来连接SW FPGA2、SW FPGA3,输出Serdes接口平均分成两部分,其中48路Serdes接口输出到BBU FPGA2,另外48路Serdes接口输出到BBU FPGA3。交换子模块一和交换子模块二中的其中之一用于上行基带数据交换传输,另一用于下行基带数据交换传输。
另外,如图4所示,BBU接口模块与交换模块的BBU FPGA0、BBU FPGA1、BBU FPGA2、BBU FPGA3共用芯片。如图7所示为BBU接口模块与交换模块的连接图,交换模块的CPRI接口输出直接连接到BBU接口的光口输出;所述控制模块用来控制所有FPGA芯片内部的Serdes链路及承载CPRI帧基带数据通路的交换映射关系。
图8为本发明实施例的大容量基带交换机的交换模块FPGA芯片的内部原理图,包括96个CPRI输入(ICPRI)和96个CPRI输出(OCPRI),每个CPRI链路速率是10Gbps,输入与输出链路间通过基带数据交换网络连接,由控制模块来控制基带数据的交换连接关系,对于20M的4天线配置,形成768×768的天线通道交换网络。
图9为本发明实施例的大容量基带交换机的RRU接口模块FPGA芯片的内部原理图,分成上行和下行两部分交换网络连接,其中,上行部分包括64个CPRI输入和32个CPRI输出,每个CPRI链路速率是10Gbps,输入与输出链路间通过上行基带数据交换网络连接,由控制模块来控制基带数据的交换连接关系,对于20M的4天线配置,形成512×128的天线通道上行交换网络;下行部分包括32个CPRI输入和64个CPRI输出,每个CPRI链路速率是10Gbps,输入与输出链路间通过下行基带数据交换网络连接,由控制模块来控制基带数据的交换连接关系,对于20M的4天线配置,形成128×512的天线通道下行交换网络。
本发明实施例的基带数据交换装置、以及包含所述基带数据交换装置 的C-RAN网络架构,通过FPGA进行基带数据交换,在C-RAN架构的基带数据交换过程中,只有一个传输时延(即FPGA进行基带数据交换的传输时延),比现有的IP化软交换方式的时延低很多,同时本发明实施例的基带数据交换装置对交换路由进行实时控制,灵活实现了基带池与RRU间的映射关联。
基于本发明实施例的基带数据交换装置、以及包含所述基带数据交换装置的C-RAN网络架构,本发明实施例还提供了一种基带数据交换方法,主要包括:位于BBU和RRU之间的基带数据交换装置,将接收的BBU的下行基带数据通过所述装置内部的基带数据交换网络发送到指定的RRU,并将接收的RRU的上行基带数据通过所述装置内部的基带数据交换网络发送到指定的BBU。
其中,基带数据交换装置包括:BBU接口模块、RRU接口模块、交换模块和控制模块,且所述BBU接口模块、RRU接口模块、交换模块和控制模块分别由相应数量的现场可编程门阵列FPGA芯片组成。各模块的功能作用如前述实施例中所述,此处不再赘述。
其中,基带数据交换装置将接收的BBU的下行基带数据通过内部的基带数据交换网络发送到指定的RRU,描述的是下行基带数据的交换传输过程,如图10所示,该过程具体包括:
步骤1001,基带数据交换装置通过BBU接口模块接收BBU的下行基带数据。
BBU的下行基带数据通过光纤接口连接到基带数据交换装置的BBU接口模块。
步骤1002,通过BBU接口模块的输入链路,将下行基带数据输入到交换模块的基带数据交换网络。
步骤1003,在控制模块的控制下,将下行基带数据通过基带数据交换 网络交换到指定的控制模块输出链路,控制模块输出链路连接RRU接口模块的下行基带数据交换网络。
步骤1004,将下行基带数据通过下行基带数据交换网络交换到指定的RRU接口模块输出链路,所述RRU接口模块输入链路连接相应的RRU光口,即是最终BBU下行基带数据需要连接的RRU设备。
其中,基带数据交换装置将接收的RRU的上行基带数据通过所述装置内部的基带数据交换网络发送到指定的BBU,描述的是上行基带数据的交换传输过程,如图11所示,该过程具体包括:
步骤1101,基带数据交换装置通过RRU接口模块接收RRU的上行基带数据。
RRU的上行基带数据通过光纤接口连接到基带数据交换装置的RRU接口模块。
步骤1102,通过RRU接口模块的输入链路,将上行基带数据输入到RRU接口模块的上行基带数据交换网络,在控制模块的控制下,将上行基带数据交换到指定的RRU接口模块输出链路,RRU接口模块输出链路连接交换模块的基带数据交换网络。
RRU的上行基带数据通过RRU接口模块的CPRI输入链路输入到上行基带数据交换网络,由控制模块控制,交换到指定的RRU接口模块CPRI输出链路;RRU接口模块CPRI输出链路连接到交换模块的基带数据交换网络,由控制模块控制,交换到指定的交换模块CPRI输出链路。
步骤1103,在控制模块的控制下,将上行基带数据通过基带数据交换网络交换到指定的交换模块输出链路,交换模块输出链路连接到BBU接口模块的对应输出光口。
交换模块CPRI输出链路连接到BBU接口模块的对应输出光口,即是最终RRU上行基带数据需要连接的BBU设备。
步骤1104,将上行基带数据通过对应输出光口发送给BBU。
综上所述,本发明实施例通过FPGA进行基带数据交换,在C-RAN架构的基带数据交换过程中,只有一个传输时延(即通过FPGA进行基带数据交换的传输时延),比现有的IP化软交换方式的时延低很多;本发明实施例的基带数据交换装置对交换路由进行实时控制,灵活实现基带池与RRU间的映射关联。另外,本发明实施例支持C-RAN的集中、协作和云计算的实现基础,并且系统容量大,可以满足一个大型城市的C-RAN使用,有利于最大发挥C-RAN的减少能耗,基带池资源共享的优势,为C-RAN的推广应用起到了促进作用。
本发明实施例的基带数据交换装置,对于20M的8天线配置,支持384×768的BBU和RRU交换连接;或者对于20M的4天线配置,支持768×1536的BBU和RRU交换连接;或者对于20M的2天线配置,支持1536×3072的BBU和RRU交换连接,其完全能够满足一个大型城市无线小区覆盖的BBU和RRU的布置数量要求。例如:对于20M的4天线配置,本发明实施例的基带数据交换装置的交换模块的容量是3072×6144个天线通道,BBU与RRU的集中比是1:2,实现基站资源共享,提高频谱效率;且基带数据交换装置的控制模块用来控制BBU天线和RRU天线的交换映射关系,支持实现基站虚拟化。
本发明实施例还提供了一种计算机存储介质,所述存储介质包括一组计算机可执行指令,所述指令用于执行本发明实施例所述的基带数据交换方法。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。

Claims (11)

  1. 一种基带数据交换装置,所述装置位于基带单元BBU和远端射频单元RRU之间,所述BBU集中布置组成基带池,所述装置包括:BBU接口模块、RRU接口模块、交换模块和控制模块;
    所述BBU接口模块,连接所述BBU;
    所述RRU接口模块,连接所述RRU;
    所述交换模块,配置为执行BBU天线通道和RRU天线通道之间的基带数据交换;
    所述控制模块,配置为控制所述BBU天线通道和RRU天线通道的交换映射关系。
  2. 根据权利要求1所述基带数据交换装置,其中,所述BBU接口模块、RRU接口模块、交换模块和控制模块分别由相应数量的现场可编程门阵列FPGA芯片组成。
  3. 根据权利要求2所述基带数据交换装置,其中,所述交换模块包括上行交换子模块和下行交换子模块,所述上行交换子模块和下行交换子模块分别由相应数量的FPGA芯片组成;所述上行交换子模块的上行输入接口连接所述RRU接口模块的上行输出接口,所述下行交换子模块的下行输出接口连接所述RRU接口模块的下行输入接口。
  4. 根据权利要求2所述基带数据交换装置,其中,所述BBU接口模块与所述交换模块共用FPGA芯片,所述BBU接口模块中的FPGA芯片,也作为组成所述交换模块的一部分FPGA芯片,所述BBU接口模块中的FPGA芯片连接所述基带池中的BBU。
  5. 根据权利要求1至4任一项所述基带数据交换装置,其中,
    所述BBU接口模块配置为,接收所述BBU的下行基带数据,通过所述BBU接口模块的输入链路,将所述下行基带数据输入到所述交换模块的基带数据交换网络;
    所述交换模块配置为,在所述控制模块的控制下,将所述下行基带数据通过所述基带数据交换网络交换到指定的控制模块输出链路,所述控制模块输出链路连接所述RRU接口模块的下行基带数据交换网络;
    所述RRU接口模块配置为,在所述控制模块的控制下,将所述下行基带数据通过所述下行基带数据交换网络交换到指定的RRU接口模块输出链路,所述RRU接口模块输入链路连接相应的RRU光口。
  6. 根据权利要求1至4任一项所述基带数据交换装置,其中,
    所述RRU接口模块配置为,接收所述RRU的上行基带数据,通过所述RRU接口模块的输入链路,将所述上行基带数据输入到所述RRU接口模块的上行基带数据交换网络,在所述控制模块的控制下,将所述上行基带数据交换到指定的RRU接口模块输出链路,所述RRU接口模块输出链路连接所述交换模块的基带数据交换网络;
    所述交换模块配置为,在所述控制模块的控制下,将所述上行基带数据通过所述基带数据交换网络交换到指定的交换模块输出链路,所述交换模块输出链路连接到所述BBU接口模块的对应输出光口;
    所述BBU接口模块配置为,将所述上行基带数据通过所述对应输出光口发送给所述BBU。
  7. 一种基带数据交换方法,所述方法包括:
    位于基带单元BBU和远端射频单元RRU之间的基带数据交换装置,将接收的所述BBU的下行基带数据通过所述装置内部的基带数据交换网络发送到指定的所述RRU,并将接收的所述RRU的上行基带数据通过所述装置内部的基带数据交换网络发送到指定的所述BBU。
  8. 根据权利要求7所述基带数据交换方法,其中,所述基带数据交换装置包括:BBU接口模块、RRU接口模块、交换模块和控制模块,且所述BBU接口模块、RRU接口模块、交换模块和控制模块分别由相应数量的现场可编程门阵列FPGA芯片组成。
  9. 根据权利要求8所述基带数据交换方法,其中,所述将接收的BBU的下行基带数据通过所述装置内部的基带数据交换网络发送到指定的RRU,包括:
    接收所述BBU的下行基带数据,通过所述BBU接口模块的输入链路,将所述下行基带数据输入到所述交换模块的基带数据交换网络;
    在所述控制模块的控制下,将所述下行基带数据通过所述基带数据交换网络交换到指定的控制模块输出链路,所述控制模块输出链路连接所述RRU接口模块的下行基带数据交换网络;
    将所述下行基带数据通过所述下行基带数据交换网络交换到指定的RRU接口模块输出链路,所述RRU接口模块输入链路连接相应的RRU光口。
  10. 根据权利要求9所述基带数据交换方法,其中,所述将接收的RRU的上行基带数据通过所述装置内部的基带数据交换网络发送到指定的BBU,包括:
    接收所述RRU的上行基带数据,通过所述RRU接口模块的输入链路,将所述上行基带数据输入到所述RRU接口模块的上行基带数据交换网络,在所述控制模块的控制下,将所述上行基带数据交换到指定的RRU接口模块输出链路,所述RRU接口模块输出链路连接所述交换模块的基带数据交换网络;
    在所述控制模块的控制下,将所述上行基带数据通过所述基带数据交换网络交换到指定的交换模块输出链路,所述交换模块输出链路连接到所述BBU接口模块的对应输出光口;
    将所述上行基带数据通过所述对应输出光口发送给所述BBU。
  11. 一种计算机存储介质,所述存储介质包括一组计算机可执行指令,所述指令用于执行权利要求7-10任一项所述的基带数据交换方法。
PCT/CN2014/092142 2014-06-26 2014-11-25 一种基带数据交换装置、方法和计算机存储介质 WO2015196722A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410298835.XA CN105323194A (zh) 2014-06-26 2014-06-26 一种基带数据交换装置和方法
CN201410298835.X 2014-06-26

Publications (1)

Publication Number Publication Date
WO2015196722A1 true WO2015196722A1 (zh) 2015-12-30

Family

ID=54936646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092142 WO2015196722A1 (zh) 2014-06-26 2014-11-25 一种基带数据交换装置、方法和计算机存储介质

Country Status (2)

Country Link
CN (1) CN105323194A (zh)
WO (1) WO2015196722A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113965263A (zh) * 2021-09-17 2022-01-21 中国人民解放军国防科技大学 异步系统请求答复式光纤数字信号传输的同步方法及装置
CN113973386A (zh) * 2021-12-27 2022-01-25 成都爱瑞无线科技有限公司 非授权频段资源的调度方法、系统、装置及存储介质
EP3874701A4 (en) * 2018-10-31 2022-07-27 John Mezzalingua Associates, LLC ORCHESTRATOR AND LINK STRUCTURE MAPPER FOR A VIRTUAL WIRELESS BASE STATION

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107087306A (zh) * 2016-02-12 2017-08-22 台扬科技股份有限公司 用于无线信源调度的方法
CN107528669B (zh) * 2016-06-22 2021-11-12 中兴通讯股份有限公司 数据传输方法及微波传输装置
CN108882251B (zh) * 2018-06-12 2019-08-30 京信通信系统(中国)有限公司 分布式Femto基站组网系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101150348A (zh) * 2006-03-28 2008-03-26 华为技术有限公司 一种室内分布系统及其组网方法
CN101232653A (zh) * 2007-01-22 2008-07-30 中兴通讯股份有限公司 一种基于数字中频传输的射频拉远系统
CN101330400A (zh) * 2007-06-19 2008-12-24 中兴通讯股份有限公司 基带配置资源的共享备份方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101150348A (zh) * 2006-03-28 2008-03-26 华为技术有限公司 一种室内分布系统及其组网方法
CN101232653A (zh) * 2007-01-22 2008-07-30 中兴通讯股份有限公司 一种基于数字中频传输的射频拉远系统
CN101330400A (zh) * 2007-06-19 2008-12-24 中兴通讯股份有限公司 基带配置资源的共享备份方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3874701A4 (en) * 2018-10-31 2022-07-27 John Mezzalingua Associates, LLC ORCHESTRATOR AND LINK STRUCTURE MAPPER FOR A VIRTUAL WIRELESS BASE STATION
US11689939B2 (en) 2018-10-31 2023-06-27 John Mezzalingua Associates, LLC Orchestrator and interconnection fabric mapper for a virtual wireless base station
CN113965263A (zh) * 2021-09-17 2022-01-21 中国人民解放军国防科技大学 异步系统请求答复式光纤数字信号传输的同步方法及装置
CN113965263B (zh) * 2021-09-17 2022-08-12 中国人民解放军国防科技大学 异步系统请求答复式光纤数字信号传输的同步方法及装置
CN113973386A (zh) * 2021-12-27 2022-01-25 成都爱瑞无线科技有限公司 非授权频段资源的调度方法、系统、装置及存储介质

Also Published As

Publication number Publication date
CN105323194A (zh) 2016-02-10

Similar Documents

Publication Publication Date Title
WO2015196722A1 (zh) 一种基带数据交换装置、方法和计算机存储介质
CN108966282B (zh) 数据传输方法和装置
US10085302B2 (en) Access node architecture for 5G radio and other access networks
EP3076750B1 (en) System for the distribution of wireless signals in telecommunication networks
WO2013102368A1 (zh) 一种扁平化网络架构的无线通信系统、方法及扩展装置
CN103580791A (zh) 用户设备到用户设备的通信方法及设备
CN107277858B (zh) 一种基于sdn的多信道传输的5g网络及传输数据的方法
JP2017534222A (ja) クラウドベースのアクセスネットワーク
JP2015524636A (ja) ワイヤレスソフト基地局におけるbbuフレーム間のデータ相互作用の方法及び装置
CN102932850A (zh) 基站、网络系统和通信方法
EP3038401B1 (en) Communication system, control device and network management server
CN105554821B (zh) 面向智能移动终端协议的移动流量管理系统
JP2017529777A (ja) 通信モード調整を実現する方法、マイクロ基地局及びマクロ基地局
Chabbouh et al. A novel cloud RAN architecture for 5G HetNets and QoS evaluation
CN102742317B (zh) 通信系统、方法及设备
CN106470389A (zh) 一种通信方法及基站
CN103702374A (zh) 一种支持lte网络拓扑的切换系统及方法
CN104735704B (zh) 一种载波迁移方法及装置
WO2015085572A1 (zh) 分布式天线系统及近端机
CN103096507A (zh) 一种数据通道的建立方法及装置
CN102508797A (zh) 闪存控制扩展模块、控制器、存储系统及其数据传输方法
US10694582B2 (en) Apparatus and method for radio interface switching
CN112583487B (zh) 一种应用于跨接系统的数据传输方法
JP6274590B2 (ja) サービス処理方法およびシステム、ならびに基地局
US20220330097A1 (en) Access Network System, Transmission Method, and Related Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896012

Country of ref document: EP

Kind code of ref document: A1