WO2015196589A1 - 终端能力指示参数的反馈、反馈处理方法及装置 - Google Patents

终端能力指示参数的反馈、反馈处理方法及装置 Download PDF

Info

Publication number
WO2015196589A1
WO2015196589A1 PCT/CN2014/086759 CN2014086759W WO2015196589A1 WO 2015196589 A1 WO2015196589 A1 WO 2015196589A1 CN 2014086759 W CN2014086759 W CN 2014086759W WO 2015196589 A1 WO2015196589 A1 WO 2015196589A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
performance
link
power adjustment
Prior art date
Application number
PCT/CN2014/086759
Other languages
English (en)
French (fr)
Inventor
陈艺戬
李儒岳
鲁照华
赵晶
肖华华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015196589A1 publication Critical patent/WO2015196589A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present invention relates to the field of communications, and in particular, to a feedback and feedback processing method and apparatus for a terminal capability indication parameter.
  • the FDD (Frequency Division Duplex) system reflects the downlink physical channel state information (CSI: Channel State Information) mainly includes three parts: channel quality indication ( CQI: Channels quality indication), Pre-coding Matrix Indicator (PMI), and Rank Indicator (RI: Rank Indicator).
  • CSI Channel State Information
  • CQI Channels quality indication
  • PMI Pre-coding Matrix Indicator
  • RI Rank Indicator
  • TDD Time Division Duplexing
  • the information CSI of the system mapping downlink physical channel status mainly includes CQI.
  • the CQI is an important information that needs to be reported when the FSI system and the TDD system perform CSI feedback, and can be fed back on the uplink physical control channel or the uplink data channel.
  • CQI is an important indicator to measure the quality of downlink channels.
  • the base station needs to perform accurate scheduling, power allocation and transmission technology selection according to the CQI fed back by the terminal, including proper multi-user pairing, accurate modulation and coding strategy (Modulation and Coding Scheme). , referred to as MCS), efficient user-to-user and power allocation between different transmission resources.
  • MCS Modulation and Coding Scheme
  • CQI states are defined, which are represented by integer values of 0-15, which respectively represent different CQI levels, and different CQIs correspond to respective modulation modes and
  • the code rate (MCS) can be represented by 4-bit information, as shown in Table 1:
  • the modulation coding method may be further increased due to the introduction of 256QAM.
  • CQI is an important indicator to measure the transmission link capability.
  • FDD Frequency Division Duplex
  • PMI Purchasing Manger's Index
  • the channel quality at the time of transmission of MIMO closed-loop precoding is performed in a manner specified by the protocol.
  • CQI cannot exist independently of a specific transmission technology.
  • here is a closed-loop precoding transmission technology, and it is also possible to assume a technique such as transmission diversity to report CQI, for example, in a TDD system, although it is possible The precoding technique is used, but the CQI is reported according to the transmission diversity technique.
  • the optimal CQI is generally selected and reported together with the RI and PMI as quantized channel state information CSI.
  • the basic principles of joint calculation and selection of terminal side CQI, RI, and PMI are:
  • the channel measurement may perform channel measurement based on pilots such as channel measurement pilot CSI-RS, cell common pilot CRS, and the like.
  • the interference measurement may be measured according to pilots defined by various standards such as channel measurement pilot CSI-RS, cell common pilot CRS, proprietary demodulation pilot DMRS, or other methods to obtain interference measurement results.
  • pilots such as channel measurement pilot CSI-RS, cell common pilot CRS, proprietary demodulation pilot DMRS, or other methods to obtain interference measurement results.
  • the data channel transmission power may be different from the pilot, it is also necessary to consider a transmission power offset factor to calculate the SINRs.
  • the UE calculates and assumes the predicted post-receiver SINRs for the SU-MIMO transmission according to the receiving algorithm it uses.
  • the UE assumes a transmission mode and uses a hypothetical receiving algorithm to find the SINRs of the received data according to the input RI, PMI, and can be characterized as CQI according to the SINRs.
  • RI/PMI/CQI When calculating RI/PMI/CQI, it is necessary to traverse multiple "RI and PMI" calculations to obtain corresponding post-receiver SINRs.
  • the previous method is a calculation method. In order to find the best RI/PMI combination to find the best transmission quality (CQI is the best), a traversal of the available RI/PMI is needed (a better method of performance, Complex High noise, other methods may be used). This allows for a combination of multiple RI/PMI/SINRs, which in turn can be characterized as CQI.
  • the most appropriate CQI is selected based on Post-Receiver SINRs.
  • the CQI level should be selected according to the following criteria:
  • the selected CQI level should be such that the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) transport block corresponding to the CQI has a block error rate of less than 0.1 under the corresponding MCS.
  • the transmission capacity is the largest, and the CQI level corresponding to the SINR can be selected according to the requirements of the SINR and the bit error rate.
  • the difference from the CSI feedback content of the FDD system is only that the RI and the PMI are not required to be fed back, and only the CQI information needs to be fed back.
  • the TDD system differs from the closed-loop MIMO mode of FDD in calculating the CQI, and its hypothetical closed-loop transmission technique is replaced by transmission diversity technology and then calculated and reported CQI.
  • CQI is a kind of indication information of modulation and coding mode from the definition
  • the modulation coding method since the modulation coding method has a great correlation with SINR, the information that can be characterized can also be considered. It is the SINR information of the receiver that is predicted by the terminal.
  • the CQI calculated and reported by the terminal in this way is generally not completely accurate, and the CQI information cannot be directly used in any case to obtain the downlink code modulation mode.
  • the assumed transmission power is not exactly the same as the actual transmission power, and the assumed transmission methods are different. Specific details of the following may cause CQI to be inaccurate.
  • the transmission power is different. Since the terminal acquires channel state information based on the channel measurement pilot, in the technical standards such as LTE-A, in order to improve the flexibility of pilot power allocation, the pilot CSI-RS does not notify the absolute value of the transmission power for the channel information measurement pilot.
  • the CQI calculated according to the transmit power of the pilot may have the following characteristics: the larger the pilot transmit power, the larger the post-receiver SINR will be, and the larger the selected CQI index will be. The smaller the pilot transmit power, the smaller the post-receiver SINR will be, and the smaller the selected CQI Index will be.
  • the base station obtains the CQI information and then processes the information, because the CQI is calculated based on the power of the current pilot, and the data transmission may use different power transmission. Therefore, the most typical method is that the base station estimates the post-receiver SINR according to the received CQI information, and performs linear adjustment of the post-receiver SINR according to the ratio of the transmit power of the pilot transmit power domain data. For example, if the data transmission power is X dB higher than the pilot transmission power, then the post-receiver SINR is also increased by X dB.
  • the transmission technique assumed in the CQI calculation is different from the transmission technique used in the actual data transmission.
  • a typical example is in a TDD system. Since the RI and PMI in the channel information do not require feedback, only the CQI needs to be fed back.
  • the CQI calculation in the LTE/LTE-A standard does not assume that the data transmission uses closed-loop transmission precoding. Technology, but assumes that the transmission diversity technique is used to calculate the CQI.
  • the base station estimates the post-receiver SINR when the transmission diversity technology is used according to the received CQI information, and then estimates the gain brought by the transmission diversity technique according to the Nt antenna closed-loop beamforming, for example, the gain is Y dB, then the post-receiver SINR is adjusted in equal proportions, and the post-receiver SINR is also increased by Y dB.
  • Y In general, as the number of transmitting antennas increases, Y will continue to increase. For example, 16Tx, Y is about 11dB, 32 antennas, Y is about 14dB, 64 antennas, and Y is about 17dB.
  • y is the received signal
  • H is the channel
  • s is the data signal.
  • Ndl is additive white Gaussian noise, because the Post-SINR is also proportionally increased after multiplying Hs by a factor.
  • the adjustment of Post-SINR in the prior art is not accurate due to some unsatisfactory factors of hardware.
  • the reason why the transceiver is not ideal is from many different hardware modules, such as power amplifier, A (Analog) / D (Digital) or D / A converter, mixer, filter, oscillator and so on.
  • Each module can cause signal distortion.
  • the distortion caused by these hardware precisions is inevitable. It is related to the hardware cost. Using hardware with large distortion can reduce the cost and reduce the internal power consumption.
  • Massive- MIMO may be more popular with equipment vendors and operators.
  • y is the received signal
  • H is the channel s as the data signal.
  • ndl is additive white Gaussian noise.
  • CN denotes the complex Gaussian distribution, and models the distortion noise caused by the unsatisfactory hardware of the downlink originating terminal and the distortion noise caused by the undesired termination hardware.
  • n dl characterizes the conventional thermal noise present in the UE in downlink transmissions and the received interference from other users or cells.
  • s represents the data signal or pilot signal transmitted on the antenna. Modeled here Both are distortion noises that are not related to the signal s, and are considered to be characteristics that have been processed by some algorithms.
  • the Gaussian distribution characteristic of distortion noise has been verified, which can be used to model many hardware undesired factors that ultimately lead to effects. Note that what we need to emphasize here is that this distortion noise is added to the transceiver antenna.
  • the above s is pre-coded s during data transmission, and is actually f(precoder)*s(signal), and the dimension is Nt dimension (Nt is a natural number).
  • the pilot symbol should also be the Nt-dimensional pilot symbol vector when transmitting the pilot.
  • Table 2 The detailed parameter description is shown in Table 2.
  • R ss E(ss H )
  • R ss,m,n denotes the mth row and the nth column of R ss .
  • EVM EVM in the 3GPP LTE standard.
  • the general EVM requirement is 0.08.
  • M-MIMO we can guess that it is difficult to achieve this requirement.
  • the requirement of EVM indicator will be relaxed, for example, 0.15.
  • the performance may not be improved after the transmission power is increased, resulting in wasted power;
  • the adjusted downlink data modulation and coding mode may be inaccurate and mismatch with the actual channel conditions, resulting in a higher error rate.
  • the linear adjustment method assumed after the base station obtains the Post-SINR according to the CQI reported by the UE may have technical problems such as power waste or inaccurate modulation and coding.
  • the present invention provides feedback and feedback of the terminal capability indication parameter.
  • the processing method and device are to solve at least the above technical problems.
  • a method for feeding back a terminal capability indication parameter including: acquiring, by a terminal, a performance parameter of a sending link or a receiving link, where the performance parameter is used to indicate the terminal Capability; the terminal transmits the performance parameter to a base station.
  • the terminal acquires a performance parameter of the sending link or the receiving link, where the terminal acquires a signal distortion degree of the sending link or the receiving link; and the terminal determines a degree corresponding to the signal distortion degree.
  • a performance indicator where the performance indicator is a performance indicator agreed by the terminal and the base station; the terminal determines performance level information corresponding to the performance indicator, and the performance level information is used as the performance parameter, where the performance The level information is performance level information agreed by the terminal and the base station.
  • the acquiring, by the terminal, the degree of signal distortion of the sending link or the receiving link comprises: acquiring, by the terminal, a degree of signal distortion caused by hardware precision in the sending link or the receiving link.
  • the terminal determines a performance indicator corresponding to the degree of signal distortion, including at least one of the following: when the signal distortion degree is a signal distortion degree of the transmission link, the terminal sends the transmission chain The error vector magnitude EVM of the path is used as the performance indicator; when the degree of signal distortion is the degree of signal distortion of the receiving link, the terminal uses at least one of the following as a performance indicator of the receiving link: The EVM of the receiving link, the maximum modulation and coding mode level that the terminal can support when transmitting downlink, and the maximum value of the SINR when the terminal performs downlink transmission.
  • the method further includes: performing, by the base station, at least one of the following processes according to the received performance level information: uplink user scheduling, uplink power Control and determine the modulation and coding strategy for uplink data transmission.
  • the terminal acquires performance parameters of the receiving link, where the terminal detects the received downlink demodulation pilot and downlink data, and the terminal determines a power adjustment value according to the downlink demodulation pilot and the downlink data, where the power is used.
  • the adjustment value is used as the performance parameter, wherein the power adjustment value is used to indicate a power adjustment size of the base station.
  • the terminal determines a power adjustment value according to the downlink demodulation pilot and the downlink data, where the terminal determines, according to the downlink demodulation pilot and downlink data, a first signal to interference plus noise ratio SINR.
  • the terminal determines a second SINR corresponding to a current modulation and coding mode; the terminal determines the power adjustment value according to a difference between the first SINR and the second SINR.
  • the determining, by the terminal, the power adjustment value according to a difference between the first SINR and the second SINR comprising: acquiring, by the terminal, an average value of the difference in a predetermined time period, the average The value is taken as the power adjustment value.
  • a method for feeding back a terminal capability indication parameter including: detecting, by a terminal, a downlink demodulation pilot and downlink data; and determining, by the terminal, the downlink solution Adjusting a power adjustment value, where the power adjustment value is used as a performance parameter, where the power adjustment value is used to indicate a power adjustment size of the base station; and the terminal sends the performance parameter to the base station .
  • the terminal determines a power adjustment value according to the downlink demodulation pilot and the downlink data, where the terminal determines, according to the downlink demodulation pilot and downlink data, a first signal to interference plus noise ratio SINR.
  • the terminal determines a second SINR corresponding to a current modulation and coding mode; the terminal determines the power adjustment value according to a difference between the first SINR and the second SINR.
  • a feedback processing method for a terminal capability indication parameter including: receiving, by a base station, performance parameters of a transmission link or a reception link from a terminal, where The performance parameter is used to indicate the capability of the terminal; the base station performs transmission adjustment of uplink and downlink data according to the performance parameter.
  • the performance parameter includes performance level information agreed by the base station and the terminal, where the performance level information corresponds to a performance indicator agreed by the base station and the terminal, and the performance indicator is The degree of signal distortion of the transmission link or the receiving link is corresponding.
  • the degree of signal distortion includes: a degree of signal distortion caused by hardware precision in the transmission link or the receiving link.
  • the adjusting, by the base station, the uplink and downlink data transmission according to the performance parameter comprises: performing, by the base station, at least one of the following processes according to the received performance level information: uplink user scheduling, uplink power control, and determining uplink data transmission Modulation and coding strategy.
  • the base station receiving the performance parameter of the receiving link from the terminal comprises: the base station receiving a power adjustment value from the terminal, wherein the power adjustment value is used to indicate a power adjustment size of the base station.
  • a feedback device for a terminal capability indication parameter is further provided, which is applied to a terminal, and includes: an acquiring module, configured to acquire a performance parameter of a sending link or a receiving link.
  • the performance parameter is used to indicate the capability of the terminal, and the sending module is configured to send the performance parameter to the base station.
  • the acquiring module includes: an acquiring unit, configured to acquire a signal distortion degree of the sending link or the receiving link; and a first determining unit configured to determine a performance indicator corresponding to the signal distortion degree And the performance indicator is a performance indicator that is agreed between the terminal and the base station; and determining performance level information corresponding to the performance indicator, where the performance level information is used as the performance parameter, where the performance level information is The performance level information agreed by the terminal and the base station.
  • the acquiring module includes: a detecting unit configured to detect the received downlink demodulation pilot and downlink data; and a second determining unit configured to determine a power adjustment value according to the downlink demodulation pilot and the downlink data
  • the power adjustment value is used as the performance parameter, where the power adjustment value is used to indicate a power adjustment size of the base station.
  • a feedback device for a terminal capability indication parameter is further provided, which is applied to a terminal, and includes: a detection module, configured to detect received downlink demodulation pilot and downlink data; a determining module, configured to determine a power adjustment value according to the downlink demodulation pilot and the downlink data, The power adjustment value is used as a performance parameter, where the power adjustment value is used to indicate a power adjustment size of the base station, and the sending module is configured to send the performance parameter to the base station.
  • a feedback processing apparatus for a terminal capability indication parameter is further provided, which is applied to a base station, and includes: a receiving module, configured to receive a transmission link or a receiving link from the terminal.
  • the performance parameter wherein the performance parameter is used to indicate the capability of the terminal; and the adjustment module is configured to perform transmission adjustment of uplink and downlink data according to the performance parameter.
  • the receiving module is further configured to: when the performance parameter includes the following information, receive the performance parameter: performance level information agreed by the base station and the terminal, where the performance level information is The performance indicator agreed by the base station and the terminal is corresponding, and the performance indicator corresponds to a signal distortion degree of the sending link or the receiving link.
  • the receiving module is further configured to receive a power adjustment value from the terminal, where the power adjustment value is used to indicate a power adjustment size of the base station.
  • the terminal feeds back to the base station a technical means for indicating the performance parameter of the terminal capability, and solves the problem that the linear adjustment method assumed by the base station after the base station obtains the Post-SINR according to the CQI reported by the UE may have power waste or modulation and coding mode.
  • Technical problems such as inaccuracy, thereby avoiding the waste of power of the base station or making the modulation and coding method more accurate.
  • 1 is a schematic diagram showing a relationship between an SINR and an antenna number when an SNR is 30 dB according to the related art
  • FIG. 2 is a flowchart of a method for feeding back a terminal capability indication parameter according to an embodiment of the present invention
  • FIG. 3 is a structural block diagram of a feedback device for a terminal capability indication parameter according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing another structure of a feedback device for a terminal capability indication parameter according to a preferred embodiment of the present invention.
  • FIG. 5 is a flowchart of another feedback method of a terminal capability indication parameter according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of another feedback device of a terminal capability indication parameter according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a feedback processing method of a terminal capability indication parameter according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram of a feedback processing apparatus for a terminal capability indication parameter according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for feeding back a terminal capability indication parameter according to an embodiment of the present invention. As shown in FIG. 2, the method includes steps S202-S204:
  • Step S202 The terminal acquires a performance parameter of the sending link or the receiving link, where the performance parameter is used to indicate the capability of the terminal.
  • Step S204 The terminal sends the foregoing performance parameter to the base station.
  • the linear adjustment method assumed after the base station obtains the Post-SINR according to the CQI reported by the UE may effectively avoid power waste or modulation coding mode. Accurate and other technical issues.
  • the step S202 can be implemented in the following manner: the terminal acquires a signal distortion degree of the foregoing sending link or the foregoing receiving link; the terminal determines a performance indicator corresponding to the signal distortion degree, wherein the performance indicator is a performance index agreed by the terminal and the base station. The terminal determines performance level information corresponding to the performance indicator, and the performance level information is used as the performance parameter, where the performance level information is performance level information agreed by the terminal and the base station.
  • the acquiring, by the terminal, the degree of signal distortion of the foregoing sending link or the receiving link includes: acquiring, by the terminal, a degree of signal distortion caused by hardware precision in the sending link or the receiving link.
  • the terminal determines a performance indicator corresponding to the degree of signal distortion, and includes at least one of the following: when the degree of signal distortion is a signal distortion degree of the foregoing transmission link, the terminal sets an error vector magnitude of the transmission link (Error Vector Magnitude, Referred to as EVM) as the above performance indicators;
  • EVM Error Vector Magnitude
  • the terminal uses at least one of the following as a performance indicator of the receiving link: an EVM of the receiving link, and a maximum modulation coding that can be supported by the terminal in downlink transmission.
  • the base station After the terminal sends the performance level information corresponding to the performance indicator to the base station, the base station performs at least one of the following processes according to the received performance level information: uplink user scheduling, uplink power control, and modulation and coding policies for determining uplink data transmission.
  • the performance parameter of the terminal acquiring the receiving link includes: the terminal detecting the received downlink demodulation pilot and downlink data;
  • the terminal determines a power adjustment value according to the downlink demodulation pilot and the downlink data, and uses the power adjustment value as the performance parameter, wherein the power adjustment value is used to indicate a power adjustment of the base station.
  • the terminal determining, by the terminal, the power adjustment value according to the downlink demodulation pilot and the downlink data, where the terminal determines, according to the downlink demodulation pilot and downlink data, a first signal to interference plus noise ratio SINR; the terminal determining and the current modulation coding a second SINR corresponding to the mode; the terminal determining the power adjustment value according to a difference between the first SINR and the second SINR.
  • the determining, by the terminal, the power adjustment value according to the difference between the first SINR and the second SINR includes: acquiring, by the terminal, an average value of the difference in a predetermined time period, and using the average value as the power adjustment value.
  • the embodiment further provides a feedback device for the terminal capability indication parameter, which is applied to the terminal.
  • the device includes:
  • the obtaining module 30 is configured to acquire a performance parameter of the sending link or the receiving link, where the performance parameter is used to indicate the capability of the terminal;
  • the sending module 32 is connected to the obtaining module 30 and configured to send the foregoing performance parameter to the base station.
  • the acquisition module 30 includes the following processing units:
  • the obtaining unit 300 is configured to acquire a signal distortion degree of the foregoing sending link or the foregoing receiving link.
  • the first determining unit 302 is connected to the obtaining unit 300, and is configured to determine a performance indicator corresponding to the signal distortion degree, where the performance is performed.
  • the indicator is a performance indicator agreed by the terminal and the base station; and the performance level information corresponding to the performance indicator is determined, and the performance level information is used as the performance parameter, where the performance level information is the performance level information agreed by the terminal and the base station. .
  • the obtaining module 30 may further include: a detecting unit 304 configured to detect the received downlink demodulation pilot and downlink data; and a second determining unit 306 connected to the detecting unit 304, configured to be configured according to the foregoing
  • the downlink demodulation pilot and the downlink data determine a power adjustment value, and the power adjustment value is used as the performance parameter, wherein the power adjustment value is used to indicate a power adjustment of the base station.
  • the method includes:
  • Step S502 the terminal detects the received downlink demodulation pilot and downlink data.
  • Step S504 the terminal determines a power adjustment value according to the downlink demodulation pilot and the downlink data, and uses the power adjustment value as a performance parameter, where the power adjustment value is used to indicate a power adjustment of the base station;
  • Step S506 the terminal sends the foregoing performance parameter to the base station.
  • the terminal determining, by the terminal, the power adjustment value according to the downlink demodulation pilot and the downlink data, where the terminal determines, according to the downlink demodulation pilot and downlink data, a first signal to interference plus noise ratio SINR; the terminal determining and the current modulation coding a second SINR corresponding to the mode; the terminal determining the power adjustment value according to a difference between the first SINR and the second SINR.
  • a feedback device for the terminal capability indication parameter is further provided, and is applied to the terminal. As shown in FIG. 6, the device includes:
  • the detecting module 60 is configured to detect the received downlink demodulation pilot and downlink data
  • the determining module 62 is connected to the detecting module 60, and is configured to determine a power adjustment value according to the downlink demodulation pilot and the downlink data, where the power adjustment value is used as the performance parameter, where the power adjustment value is used to indicate the power of the base station. adjust size;
  • the sending module 64 is connected to the determining module 62 and configured to send the foregoing performance parameter to the base station.
  • a feedback processing method for the terminal capability indication parameter is also provided. As shown in FIG. 7, the method includes the following processing steps:
  • Step S702 the base station receives a performance parameter of a sending link or a receiving link from the terminal, where the performance parameter is used to indicate the capability of the terminal;
  • Step S704 the base station performs transmission adjustment of the uplink and downlink data according to the performance parameter.
  • the performance parameter includes: performance level information agreed by the base station and the terminal, wherein the performance level information corresponds to a performance indicator agreed by the base station and the terminal, and the performance indicator and the sending chain are The degree of signal distortion of the path or the above-mentioned receiving link is corresponding.
  • the degree of signal distortion includes: a degree of signal distortion caused by hardware precision in the above-mentioned transmission link or the above-mentioned receiving link.
  • the performance parameter of the base station receiving the receiving link from the terminal includes: the base station receiving a power adjustment value from the terminal, wherein the power adjustment value is used to indicate a power adjustment size of the base station.
  • a feedback processing device for the terminal capability indication parameter is further provided, which is applied to the base station. As shown in FIG. 8, the device includes:
  • the receiving module 80 is configured to receive a performance parameter of a sending link or a receiving link from the terminal, where the performance parameter is used to indicate the capability of the terminal;
  • the adjustment module 82 is connected to the receiving module 80 and configured to perform transmission adjustment of uplink and downlink data according to the performance parameter.
  • the receiving module 80 is further configured to: when the performance parameter includes the following information, receive the performance parameter: performance level information agreed by the base station and the terminal, wherein the performance level information corresponds to a performance indicator agreed by the base station and the terminal
  • the performance indicator corresponds to the signal distortion level of the foregoing transmission link or the foregoing receiving link.
  • the receiving module 80 is further configured to receive a power adjustment value from the terminal, where the power adjustment value is used to indicate a power adjustment of the base station.
  • the terminal and the base station pre-agreed the size of the distortion noise generated by the unsatisfactory transmission link of the terminal, such as EVM, and the terminal and the UE agreed in advance on the four levels of the EVM, as shown in Table 4.
  • the terminal feeds back the capability that can be reached to the base station.
  • the terminal A belongs to the UE with poor hardware performance, and can feed Level 1 to the base station.
  • Terminal B belongs to a UE with better hardware performance and can feed Level 3 to the base station.
  • Each UE can use 2-bit signaling to indicate Level information.
  • the base station After receiving the capability level information of the UE, the base station obtains the EVM of the UE A as 0.2.
  • the base station After receiving the capability level information of the UE, the base station obtains the EVM of the UE b as 0.05.
  • the base station calculates the uplink modulation and coding mode according to the uplink pilot measurement and combines the information.
  • the base station performs uplink pilot estimation/uplink user scheduling and/or uplink power control and/or MCS determination of uplink data transmission according to the level of the indicator fed back by the terminal.
  • the uplink pilot estimation uses the LMMSE estimation algorithm.
  • R is the autocorrelation matrix of the channel and R diag represents the diagonal matrix of the diagonal elements of R.
  • the base station needs to use the base station to measure it. And other information, also need terminal feedback Information can accurately estimate the uplink channel matrix Obtained according to the capability indicator level of the terminal feedback.
  • the SINR prediction algorithm for uplink data reception uses the MMSE algorithm.
  • H can use the estimated channel Obtaining distortion noise acquisition for the uplink receiving link of the base station, For additive white Gaussian noise, obtained by base station measurements, Obtained according to the capability indicator level of the terminal feedback.
  • the uplink user scheduling, the terminal power control, and the modulation coding mode of the uplink transmission are determined according to the estimated result, and the corresponding scheduling information, the power control information, and the uplink transmission modulation coding mode are notified. information.
  • the terminal and the base station pre-arrange the size of the distortion noise generated by the terminal receiving link undesirably, such as EVM, and the terminal and the UE agree on four levels of the EVM in advance, as shown in Table 5.
  • the terminal feeds back the capability that can be reached to the base station.
  • the terminal C belongs to the UE with poor hardware performance, and can feed Level 2 to the base station.
  • Terminal D belongs to a UE with better hardware performance and can feed Level 4 to the base station.
  • Each UE can use 2-bit signaling to indicate Level information.
  • the base station After receiving the capability level information of the UE, the base station obtains the EVM of the UE C as 0.1. After calculation, the base station can estimate that the maximum SINR that the UE C can obtain is
  • the base station After receiving the capability level information of the UE, the base station obtains that the EVM of the UE D is 0.01, and the base station can estimate that the maximum SINR that the UE D can obtain is
  • the base station performs final MCS determination of downlink user scheduling and/or downlink power allocation and/or downlink data transmission according to the level of the indicator fed back by the terminal, in combination with the CQI reported by the terminal.
  • the base station configuration terminal does not need to feed back the RI/PMI, and the terminal calculates the CQI according to the transmission diversity.
  • the UE C and the UE d both feed back the CQI level to 10.
  • Table 6 the corresponding modulation and coding mode is interpreted as:
  • SINR such as a corresponding SINR of 15 dB.
  • the base station considers that multi-antenna transmission should be considered on the basis of the SINR that can be obtained by transmission diversity. Benefits, such as an approximate 16dB, then the base station believes that the SINR can be increased to 31dB when actually performing 64-beam beamforming.
  • the base station For UE c, considering that the maximum SINR that can be obtained by UE c can be calculated as the maximum 20 dB through its feedback level information, then the adjusted 31 dB>20 dB, so the base station should:
  • the transmit power of UE c is reduced, and the transmit power of UE c is allocated to other UEs and other frequency resources.
  • the terminal works in the area where the MCS can be linearly adjusted. There is no need to consider the impact of hardware imperfections.
  • the terminal and the base station pre-agreed the SINR limit caused by the distortion noise generated by the unsatisfactory transmission link of the terminal, and the terminal and the UE agreed in advance on the two levels of the maximum SINR, as shown in Table 7.
  • the terminal feeds back the capability that can be reached to the base station.
  • the terminal A belongs to the UE with poor hardware performance, and can feed Level 1 to the base station.
  • Terminal B belongs to a UE with better hardware performance and can feed Level 2 to the base station.
  • Each UE can use 2-bit signaling to indicate Level information.
  • the base station may indirectly consider that the transmitting EVM of UE A is 0.1.
  • the base station After receiving the maximum SINR capability level information of UE B, the base station may indirectly consider that the transmitting EVM of UE A is 0.01.
  • the base station calculates the uplink modulation and coding mode according to the uplink pilot measurement and combines the information.
  • the base station performs uplink pilot estimation/uplink user scheduling and/or uplink power control and/or MCS determination of uplink data transmission according to the level of the indicator fed back by the terminal.
  • the uplink pilot estimation uses the LMMSE estimation algorithm.
  • R is the autocorrelation matrix of the channel and R diag represents the diagonal matrix of the diagonal elements of R.
  • the base station needs to use the base station to measure it. And other information, also need terminal feedback Information can accurately estimate the uplink channel matrix Obtained according to the maximum SINR capability indicator level fed back by the terminal.
  • the SINR prediction algorithm for uplink data reception uses the MMSE algorithm:
  • H can use the estimated channel Obtaining distortion noise acquisition for the uplink receiving link of the base station, For additive white Gaussian noise, obtained by base station measurements, Obtained according to the maximum SINR capability indicator level fed back by the terminal
  • the uplink user scheduling, the terminal power control, and the modulation coding mode of the uplink transmission are determined according to the estimated result, and the corresponding scheduling information, the power control information, and the uplink transmission modulation coding mode are notified. information.
  • the terminal and the base station pre-agreed the SINR limit caused by the distortion noise generated by the terminal receiving the link undesirably, and the terminal and the UE agreed in advance on the two levels of the maximum SINR, as shown in Table 8.
  • the terminal feeds back the capability that can be reached to the base station.
  • the terminal C belongs to the UE with poor hardware performance, and can feed Level 1 to the base station.
  • Terminal D belongs to a UE with better hardware performance and can feed Level 4 to the base station.
  • Each UE can use 2-bit signaling to indicate Level information.
  • the base station performs final MCS determination of downlink user scheduling and/or downlink power allocation and/or downlink data transmission according to the level of the indicator fed back by the terminal, in combination with the CQI reported by the terminal.
  • the base station configuration terminal does not need to feed back the RI/PMI, and the terminal calculates the CQI according to the transmission diversity.
  • the terminal calculates the CQI according to the transmission diversity.
  • both the UE c and the UE d feedback the CQI levels to 6 and 10, as shown in Table 9, the corresponding modulation and coding modes are explained. for:
  • the base station can each correspond to an SINR, such as a corresponding SINR of 7 dB and 15 dB.
  • SINR such as a corresponding SINR of 7 dB and 15 dB.
  • the base station considers that the multi-antenna transmission gain should be considered on the basis of the SINR that can be obtained by the transmission diversity, for example, the approximate 16 dB, then the SINR of the UEC and the UE D when the base station actually performs the 64-beam beamforming. Can be increased to 23dB and 31dB respectively.
  • the base station For UE c, considering that the maximum SINR that can be obtained by UE c can be calculated as 14 dB maximum by its feedback level information, then the adjusted 23 dB>20 dB, so the base station should:
  • the transmit power of UE c is reduced, and the transmit power of UE c is allocated to other UEs and other frequency resources.
  • the terminal works in the area where the MCS can be linearly adjusted. There is no need to consider the impact of hardware imperfections.
  • the base station sends data to the terminal, and the terminal receives the currently transmitted data.
  • the terminal counts the SINR_delta information for a period of time and feeds back the average value of SINR_delta to the base station.
  • SINR_delta can be quantized by x or y in Table 10 or Table 11, and its overhead corresponds to 3 bits and 2 bits, respectively.
  • SINR_delta Value 0 0dB 1 3dB 2 6dB 3 9dB 4 -3dB 5 -6dB 6 -9dB 7 >9dB
  • the base station After receiving the SINR_delta, the base station adjusts or increases/decreases the paired users according to the corresponding power.
  • the base station After receiving the SINR_delta, the base station adjusts or increases/decreases the paired users according to the corresponding power.
  • SINR_delta 3dB, indicating that the transmit power is too small, the base station should increase the transmit power by one time, or reduce the modulation coding mode level to a lower order mode, or reduce the number of multiplexed users while maintaining the same power.
  • SINR_delta -3dB, indicating that the transmit power is too large, there is waste, the base station should reduce the original 1/2 transmit power to the UE, or reuse one user while maintaining the same power, or increase the modulation and coding mode level to higher. The way of order.
  • a storage medium is further provided, wherein the software includes the above-mentioned software, including but not limited to: an optical disk, a floppy disk, a hard disk, an erasable memory, and the like.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the terminal feeds back to the base station a technical means for indicating the performance parameter of the terminal capability, and solves the problem that the linear adjustment method assumed by the base station after the base station obtains the Post-SINR according to the CQI reported by the UE may have power waste or modulation and coding mode.
  • Technical problems such as inaccuracy, thereby avoiding the waste of power of the base station or making the modulation and coding method more accurate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种终端能力指示参数的反馈、反馈处理方法及装置,其中,所述反馈方法包括:终端获取发送链路或接收链路的性能参数,该性能参数用于指示所述终端的能力;所述终端向基站发送所述性能参数。采用本发明提供的上述技术方案,解决了相关技术中在基站根据UE上报的CQI得到Post-SINR后假设的线性调整方法可能存在功率浪费或调制编码方式不准确等技术问题,从而避免了由于基站的功率浪费或,同时使得调制编码方式更加准确。

Description

终端能力指示参数的反馈、反馈处理方法及装置 技术领域
本发明涉及通信领域,尤其是涉及一种终端能力指示参数的反馈、反馈处理方法及装置。
背景技术
在长期演进系统(LTE:Long Term Evolution)中,频分双工方式(FDD:Frequency Division Duplex)系统反映下行物理信道状态的信息(CSI:Channel State Information)主要包括3部分内容:信道质量指示(CQI:Channels quality indication)、预编码矩阵指示(PMI:Pre-coding Matrix Indicator)、秩指示(RI:Rank Indicator)。时分双工(TDD:Time Division Duplexing),系统映下行物理信道状态的信息CSI主要包括CQI。
其中CQI为FDD系统和TDD系统进行CSI反馈时都需要上报的一种重要信息,可以在上行物理控制信道或上行数据信道上反馈。CQI是衡量下行信道质量好坏的一个重要指标,基站需要根据终端反馈的CQI进行准确的调度,功率分配和传输技术选择,包括合适的多用户配对,准确的调制和编码策略(Modulation and Coding Scheme,简称为MCS),高效的用户间和不同传输资源间的功率分配。在3GPP LTE-A Release8-11的技术规范TS 36.213协议中规定共分16种CQI状态,用0~15的整数值来表示,分别代表了不同的CQI等级,不同CQI对应着各自的调制方式和编码码率(MCS),可以采用4比特信息来表示,如表1所示:
表1 CQI索引与调制编码方式之间关系
Figure PCTCN2014086759-appb-000001
Figure PCTCN2014086759-appb-000002
在最新的正在讨论的Rel-12版本中由于引入了256QAM后,调制编码方式可能还会进一步增加。
CQI是衡量传输链路能力的一个重要指标,在FDD系统其表征的是在采用了RI值作为传输层数,以及选用上报的采购经理指数(Purchasing Manger’s Index,简称为PMI)指示的码字作为预编码时,按照协议规定的方式进行MIMO闭环预编码的传输时的信道质量。一般来说CQI不能独立于一种具体的传输技术而存在,比如这里就是假设了闭环预编码的传输技术,还有可能假设传输分集等技术来上报CQI,比如在TDD系统中,虽然有可能会用预编码技术但CQI就是根据传输分集技术来进行上报的。
对于FDD系统中,一般是选择最优CQI并联合RI和PMI作为量化的信道状态信息CSI一起上报的。终端侧CQI、RI、PMI的联合计算和选择的基本原理是:
基于信道测量结果,干扰测量的结果,及发射功率计算和预测信干噪比Post-receiver SINRs。信道测量可以基于信道测量导频CSI-RS,小区公共导频CRS等导频进行信道测量。干扰测量可以根据信道测量导频CSI-RS,小区公共导频CRS,专有解调导频DMRS等各种标准定义的导频进行测量,或使用其它方法得到干扰测量结果。此时由于数据信道发射功率可能和导频不同,因此还要考虑一个发射功率偏置的因素来计算SINRs
UE根据其使用的接收算法计算并假设SU-MIMO传输计算预测的接收端(post-receiver)SINRs。在计算Post-receiver SINRs时,UE会假设一种传输模式,以及使用一种假设的接收算法,按照输入的RI,PMI,求出接收后数据的SINRs,根据SINRs又可以表征为CQI。
计算RI/PMI/CQI时需要遍历多个“RI和PMI”计算得到对应的post-receiver SINRs。前面说的是一个计算方法,为了求得最佳的RI/PMI组合以找到最好传输质量的情况(CQI最佳),需要对可用的RI/PMI进行一个遍历(一种性能较佳方法,复 杂度高,也可能采用其它方法)。这样可以得到多种RI/PMI/SINR的组合,SINR进一步的又可以表征为CQI。
根据Post-Receiver SINRs选择最合适的CQI。CQI等级的选择应遵循如下准则:所选择的CQI等级,应使得该CQI所对应的物理下行共享信道(Physical Downlink Shared Channel,简称为PDSCH)传输块在相应的MCS下的误块率不超过0.1且传输容量最大,根据SINR和误码率的要求即可选择出SINR对应的CQI等级。
在TDD系统中,与FDD系统CSI反馈内容的区别仅仅在于,不需要反馈RI和PMI,仅需要反馈CQI信息。TDD系统在计算CQI时,与FDD的闭环MIMO模式中不同的是,其假设的闭环传输技术被传输分集技术所替代然后计算得到和上报CQI。
综上所述,可以看出,CQI的含义虽然从定义来看是一种调制编码方式的指示信息,但由于调制编码方式与SINR是存在很大的关联性,实际上可以认为表征的信息也就是终端预测的接收端SINR信息。
终端这种方式计算并上报的CQI一般来说不一定是完全准确,并不能在任何情况下都直接使用该CQI信息获得下行的编码调制方式。比如假设的发射功率与实际发射功率并不完全相同,假设的传输方式不同等。具体的有如下一些情况可能会造成CQI并不准确.
第一类情况,发射功率不同。由于终端是基于信道测量导频获取信道状态信息的,在LTE-A等技术标准中,为了提高导频功率分配的灵活性,对于信道信息测量导频CSI-RS并不通知发射功率绝对值。在计算CQI时,根据导频的发射功率计算得到的CQI可能会有如下特征:导频发射功率越大,得到post-receiver SINR会越大,所选择的CQI Index也就会越大。导频发射功率越小,得到post-receiver SINR会越小,所选择的CQI Index也就会越小
实际情况中,基站获得CQI信息后回对该信息进行处理,因为计算CQI时是基于了当前导频的功率,而数据传输时可能会使用不同的功率发送。因此最典型的做法是,基站根据接收到的CQI信息估计出post-receiver SINR,根据导频发送功率域数据发送功率的比例对post-receiver SINR进行等比例的线性调整。例如数据发射功率比导频发射功率高X dB,那么post-receiver SINR也提高X dB。
第二类情况,CQI计算时假设的传输技术与实际数据发送使用的传输技术不同。典型的例子是TDD系统中,由于信道信息中的RI和PMI不需要反馈,只需要反馈CQI,LTE/LTE-A标准中的CQI计算时并没有假设数据传输是采用了闭环传输预编码 技术,而是假设了使用传输分集技术来计算得到CQI。基站根据接收到的CQI信息估计出采用传输分集技术时的post-receiver SINR,然后根据Nt根天线闭环波束赋形(Beamforming)可能相对传输分集技术带来的增益进行预估,比如为该增益为Y dB,那么对post-receiver SINR进行等比例的调整,post-receiver SINR也提高Y dB。
一般来说,会随着发送天线数目的增多,Y会不断增加,比如,16Tx,Y为11dB左右,32天线,Y为14dB左右,64天线,Y为17dB左右。
可以看到,不管是第一类情况还是第二类情况,存在一个默认假设是,post-receiver SINR在基站端的调整是一个线性调整,因此基站还是可以比较准确的获得其他发送功率传输数据时的最佳CQI。
现有技术中,由于下行传输是采用的系统模型(1)进行分析处理,所有的Post-SINR的调整都假设近似于线性的调整:
y=Hs+ndl    (1)
y为接收信号,H为信道,s为数据信号。ndl为加性高斯白噪声,因为这里对Hs乘以一个系数后Post-SINR也是等比增长。但实际系统中,会因为一些硬件的不理想因素导致现有技术对Post-SINR的调整并不准确。
造成收发端的不理想有来自很多不同硬件模块的原因,例如功放,A(Analog)/D(Digital)或D/A转换器,混频器,滤波器,振荡器等。每个模块都可能造成信号的失真,这些硬件精度造成的失真问题是不可避免的,与硬件成本有关系,采用存在较大的失真的硬件可以降低成本,还可以降低内部功率消耗,在Massive-MIMO中可能更加受到设备商和运营商的青睐。
存在不理想硬件的MIMO系统下行模型应该建模其为公式(2)
Figure PCTCN2014086759-appb-000003
y为接收信号,H为信道s为数据信号。
Figure PCTCN2014086759-appb-000004
为发送端(基站)乘性噪声,
Figure PCTCN2014086759-appb-000005
为接收端(UE)乘性噪声,ndl为加性高斯白噪声,与传统模型不同,这里添加了失真噪声
Figure PCTCN2014086759-appb-000006
CN表示复高斯分布,建模了下行发端硬件不理想造成的失真噪声和收端硬件不理想造成的失真噪声。ndl表征在下行传输中UE存在的传统的热噪声与接收到的来自其他用户或小区的干扰。s表示天线上传输的数据信 号或导频信号。这里建模的
Figure PCTCN2014086759-appb-000007
均是与信号s不相关的失真噪声,认为是通过一些算法进行过处理后具备的特性。失真噪声的高斯分布特性已经被验证,该失真噪声参数可以用于建模很多硬件不理想因素最终导致影响。注意这里我们需要强调的一点是,这个失真噪声是加在收发天线上的。上述s在数据传输时是经过预编码后的s,实际为f(precoder)*s(signal),维度为Nt维(Nt为自然数)。在传输导频时也应该为Nt维的导频符号矢量.详细的参数说明如表2所示
表2 考虑不理想因素的下行系统模型参数说明
Figure PCTCN2014086759-appb-000008
这里Rss=E(ssH),Rss,m,n表示Rss的第m行第n列,
Figure PCTCN2014086759-appb-000009
为分别表征BS和UE侧不理想的硬件造成的失真噪声比例,从建模中可以看出,这个比例可以建模为固定的,但失真噪声的功率是与发送和接收信号功率有关的。一般可以采用EVM(error vector magnitude)表征这些失真,EVM at BS定义如下,
Figure PCTCN2014086759-appb-000010
3GPP LTE标准中关于EVM也有相关的规定,一般EVM requirements需求是0.08,但是对于M-MIMO来说我们可以猜想较难达到这个要求,EVM指标的requirement会放宽,比如达到0.15即可。
通过分析可以发现,对于上述下行系统模型,容量表达式可以写为
Figure PCTCN2014086759-appb-000011
其中
Figure PCTCN2014086759-appb-000012
从该公式可以看出,对于较高的SNR(这里SNR的定义为
Figure PCTCN2014086759-appb-000013
)情况,容量与天线数目增长的倍数及功率并不是一个线性关系,对上式求极限可看出一些特征
DL:
Figure PCTCN2014086759-appb-000014
DL:
Figure PCTCN2014086759-appb-000015
上面两个极限表达式充分说明,实际中SINR并不是总是随发送功率和天线数目成倍增长而线性增大的,例如,SNR为30dB时SINR与天线数的关系如图1所示。
因此现有技术中一个最大的技术缺陷为,基站端根据UE上报的CQI得到Post-SINR后假设的线性调整方法过于理想,这种方法可能会导致几方面严重问题:
可能导致增加发射功率后性能并没有得到提升,造成功率浪费;
可能导致调整后的下行数据调制编码方式不准确,与实际信道条件失配,从而导致较高的误码率。
与之类似的,对于上行链路,我们可以建模为(5):
Figure PCTCN2014086759-appb-000016
该模型中的参数描述如下表3所示
表3 上行系统模型参数说明
Figure PCTCN2014086759-appb-000017
Figure PCTCN2014086759-appb-000018
UL:
Figure PCTCN2014086759-appb-000019
UL:
Figure PCTCN2014086759-appb-000020
从上述极限表达式可以看出,上行的系统性能与图1类似,并不一定随天线数目成倍增加和功率增大线性增长,最终会受限于
Figure PCTCN2014086759-appb-000021
的大小。因此也会出现功率浪费或调制编码方式不准确的问题。
针对相关技术中的上述技术问题,目前尚无有效地解决方案。
发明内容
针对相关技术中,在基站根据UE上报的CQI得到Post-SINR后假设的线性调整方法可能存在功率浪费或调制编码方式不准确等技术问题,本发明提供了一种终端能力指示参数的反馈、反馈处理方法及装置,以至少解决上述技术问题。
为了达到上述目的,根据本发明的一个实施例,提供了一种终端能力指示参数的反馈方法,包括:终端获取发送链路或接收链路的性能参数,该性能参数用于指示所述终端的能力;所述终端向基站发送所述性能参数。
优选地,终端获取发送链路或接收链路的性能参数,包括:所述终端获取所述发送链路或所述接收链路的信号失真程度;所述终端确定与所述信号失真程度对应的性能指标,其中,该性能指标是所述终端与基站约定的性能指标;所述终端确定与所述性能指标对应的性能级别信息,将该性能级别信息作为所述性能参数,其中,所述性能级别信息为所述终端与所述基站约定的性能级别信息。
优选地,所述终端获取所述发送链路或所述接收链路的信号失真程度,包括:所述终端获取所述发送链路或所述接收链路中硬件精度造成的信号失真程度。
优选地,所述终端确定与所述信号失真程度对应的性能指标,包括以下至少之一:在所述信号失真程度为所述发送链路的信号失真程度时,所述终端将所述发送链路的误差向量幅度EVM作为所述性能指标;在所述信号失真程度为所述接收链路的信号失真程度时,所述终端将以下至少之一作为所述接收链路的性能指标:所述接收链路的EVM、所述终端下行传输时能够支持的最大调制编码方式等级、所述终端下行传输时SINR的最大取值。
优选地,所述终端向所述基站发送与所述性能指标对应的性能级别信息之后,还包括:所述基站根据接收的所述性能级别信息执行以下至少之一过程:上行用户调度、上行功率控制、确定上行数据传输的调制与编码策略。
优选地,终端获取接收链路的性能参数包括:终端检测接收的下行解调导频和下行数据;所述终端根据所述下行解调导频和所述下行数据确定功率调整值,将该功率调整值作为所述性能参数,其中,所述功率调整值用于指示所述基站的功率调整大小。
优选地,所述终端根据所述下行解调导频和所述下行数据确定功率调整值,包括:所述终端根据所述下行解调导频和下行数据确定第一信号与干扰加噪声比SINR;所述终端确定与当前调制编码方式对应的第二SINR;所述终端根据所述第一SINR与所述第二SINR的差值确定所述功率调整值。
优选地,所述终端根据所述第一SINR与所述第二SINR的差值确定所述功率调整值,包括:所述终端获取在预定时间段内所述差值的平均值,将该平均值作为所述功率调整值。
为了达到上述目的,根据本发明的又一个实施例,还提供了一种终端能力指示参数的反馈方法,包括:终端检测接收的下行解调导频和下行数据;所述终端根据所述下行解调导频和所述下行数据确定功率调整值,将该功率调整值作为性能参数,其中,所述功率调整值用于指示基站的功率调整大小;所述终端向所述基站发送所述性能参数。
优选地,所述终端根据所述下行解调导频和所述下行数据确定功率调整值,包括:所述终端根据所述下行解调导频和下行数据确定第一信号与干扰加噪声比SINR;所述终端确定与当前调制编码方式对应的第二SINR;所述终端根据所述第一SINR与所述第二SINR的差值确定所述功率调整值。
为了达到上述目的,根据本发明的又一个实施例,还提供了一种终端能力指示参数的反馈处理方法,包括:基站接收来自终端的发送链路或接收链路的性能参数,其 中,该性能参数用于指示所述终端的能力;所述基站根据所述性能参数进行上下行数据的传输调整。
优选地,所述性能参数包括:所述基站与所述终端约定的性能级别信息,其中,所述性能级别信息与所述基站和所述终端约定的性能指标是对应的,所述性能指标与所述发送链路或所述接收链路的信号失真程度是对应的。
优选地,所述信号失真程度,包括:所述发送链路或所述接收链路中硬件精度造成的信号失真程度。
优选地,所述基站根据所述性能参数进行上下行数据的传输调整包括:所述基站根据接收的所述性能级别信息执行以下至少之一过程:上行用户调度、上行功率控制、确定上行数据传输的调制与编码策略。
优选地,基站接收来自终端的接收链路的性能参数包括:所述基站接收来自所述终端的功率调整值,其中,所述功率调整值用于指示所述基站的功率调整大小。
为了达到上述目的,根据本发明的又一个实施例,还提供了一种终端能力指示参数的反馈装置,应用于终端中,包括:获取模块,设置为获取发送链路或接收链路的性能参数,该性能参数用于指示所述终端的能力;发送模块,设置为向基站发送所述性能参数。
优选地,所述获取模块,包括:获取单元,设置为获取所述发送链路或所述接收链路的信号失真程度;第一确定单元,设置为确定与所述信号失真程度对应的性能指标,其中,该性能指标是所述终端与基站约定的性能指标;以及确定与所述性能指标对应的性能级别信息,将该性能级别信息作为所述性能参数,其中,所述性能级别信息为所述终端与所述基站约定的性能级别信息。
优选地,所述获取模块包括:检测单元,设置为检测接收的下行解调导频和下行数据;第二确定单元,设置为根据所述下行解调导频和所述下行数据确定功率调整值,将该功率调整值作为所述性能参数,其中,所述功率调整值用于指示所述基站的功率调整大小。
为了达到上述目的,根据本发明的又一个实施例,还提供了一种终端能力指示参数的反馈装置,应用于终端,包括:检测模块,设置为检测接收的下行解调导频和下行数据;确定模块,设置为根据所述下行解调导频和所述下行数据确定功率调整值, 将该功率调整值作为性能参数,其中,所述功率调整值用于指示基站的功率调整大小;发送模块,设置为向所述基站发送所述性能参数。
为了达到上述目的,根据本发明的又一个实施例,还提供了一种终端能力指示参数的反馈处理装置,应用于基站,包括:接收模块,设置为接收来自终端的发送链路或接收链路的性能参数,其中,该性能参数用于指示所述终端的能力;调整模块,设置为根据所述性能参数进行上下行数据的传输调整。
优选地,所述接收模块,还设置为在所述性能参数包括以下信息时,接收所述性能参数:所述基站与所述终端约定的性能级别信息,其中,所述性能级别信息与所述基站和所述终端约定的性能指标是对应的,所述性能指标与所述发送链路或所述接收链路的信号失真程度是对应的。
优选地,所述接收模块,还设置为接收来自所述终端的功率调整值,其中,所述功率调整值用于指示所述基站的功率调整大小。
通过本发明,终端向基站反馈用于指示终端能力的性能参数的技术手段,解决了相关技术中在基站根据UE上报的CQI得到Post-SINR后假设的线性调整方法可能存在功率浪费或调制编码方式不准确等技术问题,从而避免了由于基站的功率浪费或,同时使得调制编码方式更加准确。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为根据相关技术的SNR为30dB时SINR与天线数的关系示意图;
图2为根据本发明实施例的终端能力指示参数的反馈方法的流程图;
图3为根据本发明实施例的终端能力指示参数的反馈装置的结构框图;
图4为根据本发明优选实施例的终端能力指示参数的反馈装置的另一结构框图;
图5为根据本发明实施例的终端能力指示参数的另一反馈方法的流程图;
图6为根据本发明实施例的终端能力指示参数的另一反馈装置的结构框图;
图7为根据本发明实施例的终端能力指示参数的反馈处理方法的流程图;
图8为根据本发明实施例的终端能力指示参数的反馈处理装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
图2为根据本发明实施例的终端能力指示参数的反馈方法的流程图,如图2所示,该方法包括步骤S202-S204:
步骤S202,终端获取发送链路或接收链路的性能参数,该性能参数用于指示终端的能力;
步骤S204,终端向基站发送上述性能参数。
通过上述各个处理步骤,由于终端向基站反馈了指示终端能力的指示参数,因此,可以有效避免在基站根据UE上报的CQI得到Post-SINR后假设的线性调整方法可能存在功率浪费或调制编码方式不准确等技术问题。
步骤S202可以通过以下方式实现:终端获取上述发送链路或上述接收链路的信号失真程度;终端确定与上述信号失真程度对应的性能指标,其中,该性能指标是上述终端与基站约定的性能指标;终端确定与上述性能指标对应的性能级别信息,将该性能级别信息作为上述性能参数,其中,上述性能级别信息为上述终端与上述基站约定的性能级别信息。
终端获取上述发送链路或上述接收链路的信号失真程度,包括:上述终端获取上述发送链路或上述接收链路中硬件精度造成的信号失真程度。
终端确定与上述信号失真程度对应的性能指标,包括以下至少之一:在上述信号失真程度为上述发送链路的信号失真程度时,上述终端将上述发送链路的误差向量幅度(Error Vector Magnitude,简称为EVM)作为上述性能指标;
在上述信号失真程度为上述接收链路的信号失真程度时,上述终端将以下至少之一作为上述接收链路的性能指标:上述接收链路的EVM、上述终端下行传输时能够支持的最大调制编码方式等级、上述终端下行传输时信号与干扰加噪声比(Singal Interference puls Noise Ratio,简称为SINR)的最大取值。
上述终端向上述基站发送与上述性能指标对应的性能级别信息之后,基站根据接收的上述性能级别信息执行以下至少之一过程:上行用户调度、上行功率控制、确定上行数据传输的调制与编码策略。
终端获取接收链路的性能参数包括:终端检测接收的下行解调导频和下行数据;
上述终端根据上述下行解调导频和上述下行数据确定功率调整值,将该功率调整值作为上述性能参数,其中,上述功率调整值用于指示上述基站的功率调整大小。
上述终端根据上述下行解调导频和上述下行数据确定功率调整值,包括:上述终端根据上述下行解调导频和下行数据确定第一信号与干扰加噪声比SINR;上述终端确定与当前调制编码方式对应的第二SINR;上述终端根据上述第一SINR与上述第二SINR的差值确定上述功率调整值。
上述终端根据上述第一SINR与上述第二SINR的差值确定上述功率调整值,包括:上述终端获取在预定时间段内上述差值的平均值,将该平均值作为上述功率调整值。
本实施例还提供一种终端能力指示参数的反馈装置,应用于终端中,如图3所示,该装置包括:
获取模块30,设置为获取发送链路或接收链路的性能参数,该性能参数用于指示上述终端的能力;
发送模块32,连接至获取模块30,设置为向基站发送上述性能参数。
优选地,如图4所示,获取模块30,包括以下处理单元:
获取单元300,设置为获取上述发送链路或上述接收链路的信号失真程度;第一确定单元302,连接至获取单元300,设置为确定与上述信号失真程度对应的性能指标,其中,该性能指标是上述终端与基站约定的性能指标;以及确定与上述性能指标对应的性能级别信息,将该性能级别信息作为上述性能参数,其中,上述性能级别信息为上述终端与上述基站约定的性能级别信息。
优选地,如图4所示,获取模块30还可以包括:检测单元304,设置为检测接收的下行解调导频和下行数据;第二确定单元306,连接至检测单元304,设置为根据上述下行解调导频和上述下行数据确定功率调整值,将该功率调整值作为上述性能参数,其中,上述功率调整值用于指示上述基站的功率调整大小。
在本实施例中,还提供另外一种终端能力指示参数的反馈方法,如图5所示,该方法包括:
步骤S502,终端检测接收的下行解调导频和下行数据;
步骤S504,终端根据上述下行解调导频和上述下行数据确定功率调整值,将该功率调整值作为性能参数,其中,上述功率调整值用于指示基站的功率调整大小;
步骤S506,终端向基站发送上述性能参数。
上述终端根据上述下行解调导频和上述下行数据确定功率调整值,包括:上述终端根据上述下行解调导频和下行数据确定第一信号与干扰加噪声比SINR;上述终端确定与当前调制编码方式对应的第二SINR;上述终端根据上述第一SINR与上述第二SINR的差值确定上述功率调整值。
在本实施例中,还提供一种终端能力指示参数的反馈装置,应用于终端,如图6所示,该装置包括:
检测模块60,设置为检测接收的下行解调导频和下行数据;
确定模块62,连接至检测模块60,设置为根据上述下行解调导频和上述下行数据确定功率调整值,将该功率调整值作为上述性能参数,其中,上述功率调整值用于指示基站的功率调整大小;
发送模块64,连接至确定模块62,设置为向上述基站发送上述性能参数。
在本实施例中,还提供一种终端能力指示参数的反馈处理方法,如图7所示,该方法包括以下处理步骤:
步骤S702,基站接收来自终端的发送链路或接收链路的性能参数,其中,该性能参数用于指示终端的能力;
步骤S704,基站根据上述性能参数进行上下行数据的传输调整。
在一个优选实施例中,上述性能参数包括:上述基站与上述终端约定的性能级别信息,其中,上述性能级别信息与上述基站和上述终端约定的性能指标是对应的,上述性能指标与上述发送链路或上述接收链路的信号失真程度是对应的。
在一个优选实施方式中,上述信号失真程度,包括:上述发送链路或上述接收链路中硬件精度造成的信号失真程度。
在本实施例中,上述基站根据上述性能参数进行上下行数据的传输调整包括:上述基站根据接收的上述性能级别信息执行以下至少之一过程:上行用户调度、上行功率控制、确定上行数据传输的调制与编码策略。
基站接收来自终端的接收链路的性能参数包括:上述基站接收来自上述终端的功率调整值,其中,上述功率调整值用于指示上述基站的功率调整大小。
在本实施例中,还提供一种终端能力指示参数的反馈处理装置,应用于基站,如图8所示,该装置包括:
接收模块80,设置为接收来自终端的发送链路或接收链路的性能参数,其中,该性能参数用于指示上述终端的能力;
调整模块82,连接至接收模块80,设置为根据上述性能参数进行上下行数据的传输调整。
接收模块80,还设置为在上述性能参数包括以下信息时,接收上述性能参数:基站与上述终端约定的性能级别信息,其中,上述性能级别信息与上述基站和上述终端约定的性能指标是对应的,上述性能指标与上述发送链路或上述接收链路的信号失真程度是对应的。
在一个优选实施例中,接收模块80,还设置为接收来自上述终端的功率调整值,其中,上述功率调整值用于指示上述基站的功率调整大小
为了更好地理解上述实施例,以下结合优选实施例详细说明。
实施例1(上行):
终端与基站预先约定由于终端发送链路不理想会产生的失真噪声大小,比如为EVM,并且终端与UE事先约定EVM的4个级别,如表4所示
表4
Level 1 EVM=0.2
Level 2 EVM=0.1
Level 3 EVM=0.05
Level 4 EVM=0.01
终端反馈其能达到的能力给基站,如终端A属于硬件性能较差的UE,可以反馈Level 1给基站。终端B属于硬件性能较好的UE,可以反馈Level3给基站。
每个UE可以采用2bit的信令来表示Level信息。
基站接收到UE的能力级别信息后,获得UE A的EVM为0.2
基站接收到UE的能力级别信息后,获得UE b的EVM为0.05
基站根据上行导频测量,并结合该信息进行计算上行调制编码方式。
基站根据终端反馈的所述指标的级别进行上行导频估计/上行用户调度和/或上行功率控制和/或上行数据传输的MCS确定。
例如,假设上行导频估计采用LMMSE估计算法。
Figure PCTCN2014086759-appb-000022
其中R为信道的自相关矩阵,Rdiag表示R的对角线元素组成的对角阵。
此时基站除了需要使用基站端测量到的
Figure PCTCN2014086759-appb-000023
等信息,还需要终端反馈的
Figure PCTCN2014086759-appb-000024
信息才能准确的估计出上行信道矩阵
Figure PCTCN2014086759-appb-000025
根据终端反馈的能力指标级别获得。
例如,假设上行数据接收的SINR预测算法采用MMSE算法,
Figure PCTCN2014086759-appb-000026
这里
Figure PCTCN2014086759-appb-000027
H可以使用估计的信道
Figure PCTCN2014086759-appb-000028
为基站测量自身上行接收链路的失真噪声获得,
Figure PCTCN2014086759-appb-000029
为加性高斯白噪,由基站测量获得,
Figure PCTCN2014086759-appb-000030
根据终端反馈的能力指标级别获得。
估计出了上行的SINR后,可以根据估计出的结果进行,上行用户调度,终端功率控制,及确定上行传输的调制编码方式并通知终端相应的调度信息,功控信息和上行传输调制编码方式的信息。
实施例2(下行):
终端与基站预先约定由于终端接收链路不理想会产生的失真噪声大小,比如为EVM,并且终端与UE事先约定EVM的4个级别,如表5所示
表5
Level 1 EVM=0.2
Level 2 EVM=0.1
Level 3 EVM=0.05
Level 4 EVM=0.01
终端反馈其能达到的能力给基站,如终端C属于硬件性能较差的UE,可以反馈Level 2给基站。终端D属于硬件性能较好的UE,可以反馈Level4给基站。
每个UE可以采用2bit的信令来表示Level信息。
基站接收到UE的能力级别信息后,获得UE C的EVM为0.1,经过计算,基站可以估计出该UE C最大能获得的SINR应该为
Figure PCTCN2014086759-appb-000031
基站接收到UE的能力级别信息后,获得UE D的EVM为0.01经过计算,基站可以估计出该UE D最大能获得的SINR应该为
Figure PCTCN2014086759-appb-000032
基站根据终端反馈的所述指标的级别,结合终端上报的CQI进行下行用户调度和/或下行功率分配和/或下行数据传输的最终MCS确定。
例如,TDD系统,基站配置终端不需要反馈RI/PMI,终端按照传输分集计算CQI,比如UE c和UE d均反馈CQI等级为10,如表6所示,其对应的调制编码方式解释为:
表6
Figure PCTCN2014086759-appb-000033
其还可以对应到一个SINR,比如对应SINR为15dB。假设基站使用了64天线进行传输,基站处理时认为应该在传输分集能获得的SINR基础上考虑多天线传输增 益,比如近似的为16dB,那么基站认为实际进行64天线beamforming时SINR可以提升到31dB。
对于UE c,考虑到UE c最大能获得的SINR前面经过其反馈Level信息可以计算出为最大20dB,那么,而调整后的31dB>20dB,因此此时基站应该:
降低UE c的发射功率,将UE c的发射功率分配给其他UE和其他频率资源。
还可以考虑增加同时同频调度的用户数,如果没有进行功率降低,也需要考虑其MCS方式调整为SINR 20dB对应的最佳调制编码方式。
对于UE d,考虑到UE c最大能获得的SINR前面经过其反馈Level信息可以计算出为最大40dB,31dB<40dB,那么由于终端硬件性能较好,此时终端还工作在MCS可以线性调整的区域,不需要考虑硬件不理想带来的影响。
实施例3(上行):
终端与基站预先约定由于终端发送链路不理想会产生的失真噪声大小造成的SINR限制,并且终端与UE事先约定最大SINR的2个级别,如表7所示
表7
Level 1 Max SINR=20dB
Level 2 Max SINR=40dB
终端反馈其能达到的能力给基站,如终端A属于硬件性能较差的UE,可以反馈Level 1给基站。终端B属于硬件性能较好的UE,可以反馈Level2给基站。
每个UE可以采用2bit的信令来表示Level信息。
基站接收到UE A的最大SINR能力级别信息后,可以间接的认为UE A的发射EVM为0.1。
基站接收到UE B的最大SINR能力级别信息后,可以间接的认为UE A的发射EVM为0.01。
基站根据上行导频测量,并结合该信息进行计算上行调制编码方式。
基站根据终端反馈的所述指标的级别进行上行导频估计/上行用户调度和/或上行功率控制和/或上行数据传输的MCS确定。
例如,假设上行导频估计采用LMMSE估计算法。
Figure PCTCN2014086759-appb-000034
其中R为信道的自相关矩阵,Rdiag表示R的对角线元素组成的对角阵。
此时基站除了需要使用基站端测量到的
Figure PCTCN2014086759-appb-000035
等信息,还需要终端反馈的
Figure PCTCN2014086759-appb-000036
信息才能准确的估计出上行信道矩阵
Figure PCTCN2014086759-appb-000037
根据终端反馈的最大SINR能力指标级别获得。
例如,假设上行数据接收的SINR预测算法采用MMSE算法:
Figure PCTCN2014086759-appb-000038
这里
Figure PCTCN2014086759-appb-000039
H可以使用估计的信道
Figure PCTCN2014086759-appb-000040
为基站测量自身上行接收链路的失真噪声获得,
Figure PCTCN2014086759-appb-000041
为加性高斯白噪,由基站测量获得,
Figure PCTCN2014086759-appb-000042
根据终端反馈的最大SINR能力指标级别获得
估计出了上行的SINR后,可以根据估计出的结果进行,上行用户调度,终端功率控制,及确定上行传输的调制编码方式并通知终端相应的调度信息,功控信息和上行传输调制编码方式的信息。
实施例4(下行):
终端与基站预先约定由于终端接收链路不理想会产生的失真噪声大小造成的SINR限制,并且终端与UE事先约定最大SINR的2个级别,如表8所示
表8
Level 1 Max SINR=14dB
Level 2 Max SINR=20dB
Level 3 Max SINR=26dB
Level 4 Max SINR=40dB
终端反馈其能达到的能力给基站,如终端C属于硬件性能较差的UE,可以反馈Level 1给基站。终端D属于硬件性能较好的UE,可以反馈Level4给基站。
每个UE可以采用2bit的信令来表示Level信息。
基站接收到UE的能力级别信息后,获得UE C的Max SINR=14dB。
基站接收到UE的能力级别信息后,获得UE D的Max SINR=40dB。
基站根据终端反馈的所述指标的级别,结合终端上报的CQI进行下行用户调度和/或下行功率分配和/或下行数据传输的最终MCS确定。
例如,TDD系统,基站配置终端不需要反馈RI/PMI,终端按照传输分集计算CQI,比如UE c和UE d均反馈CQI等级为6和10,如表9所示,其对应的调制编码方式解释为:
表9
6 QPSK 602 1.1758
10 64QAM 466 2.7305
其分别可以对应到一个SINR,比如对应SINR为7dB和15dB。假设基站使用了64天线进行传输,基站处理时认为应该在传输分集能获得的SINR基础上考虑多天线传输增益,比如近似的为16dB,那么基站认为实际进行64天线beamforming时UEC和UE D的SINR可以分别提升到23dB和31dB。
对于UE c,考虑到UE c最大能获得的SINR前面经过其反馈Level信息可以计算出为最大14dB,那么,而调整后的23dB>20dB,因此此时基站应该:
降低UE c的发射功率,将UE c的发射功率分配给其他UE和其他频率资源。
还可以考虑增加同时同频调度的用户数,如果没有进行功率降低,也需要考虑其MCS方式调整为SINR 14dB对应的最佳调制编码方式。
对于UE d,考虑到UE c最大能获得的SINR前面经过其反馈Level信息可以计算出为最大40dB,31dB<40dB,那么由于终端硬件性能较好,此时终端还工作在MCS可以线性调整的区域,不需要考虑硬件不理想带来的影响。
实施例5(下行):
基站给终端发送数据,终端对当前发送的数据进行接收,终端计算出当前接收数据的SINR信息记为SINR_r,并且计算与当前调制编码方式对应的SINR信息记为SINR_m的差值,SINR_delta=-SINR_m-SINR_r。
终端统计一个段时间内的SINR_delta信息,并反馈SINR_delta的平均值给基站。
SINR_delta可以用表10或表11中x或y进行量化,其开销分别对应3bit和2bit。
表10
SINR_delta Value
0 0dB
1 3dB
2 6dB
3 9dB
4 -3dB
5 -6dB
6 -9dB
7 >9dB
表11
SINR_delta Value
0 0dB
1 >=3dB
2 <=6dB
3 3dB
基站收到SINR_delta后根据进行相应的功率调整或增加/减少配对用户。例如
SINR_delta=3dB,说明发射功率过小,基站应该提高一倍发射功率,或者将调制编码方式等级降低为更低阶的方式,或者保持相同功率情况下减少复用用户数。
SINR_delta=-3dB,说明发射功率过大,存在浪费,基站应该降低到原来1/2发射功率给该UE,或者保持相同功率情况下多复用一个用户,或者将调制编码方式等级提高为更高阶的方式。
在另外一个实施例中,还提供了一种软件,该软件用于执行上述实施例及优选实施方式中描述的技术方案。
在另外一个实施例中,还提供了一种存储介质,该存储介质中存储有上述软件,该存储介质包括但不限于:光盘、软盘、硬盘、可擦写存储器等。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
通过本发明,终端向基站反馈用于指示终端能力的性能参数的技术手段,解决了相关技术中在基站根据UE上报的CQI得到Post-SINR后假设的线性调整方法可能存在功率浪费或调制编码方式不准确等技术问题,从而避免了由于基站的功率浪费或,同时使得调制编码方式更加准确。

Claims (22)

  1. 一种终端能力指示参数的反馈方法,包括:
    终端获取发送链路或接收链路的性能参数,该性能参数用于指示所述终端的能力;
    所述终端向基站发送所述性能参数。
  2. 根据权利要求1所述的方法,其中,终端获取发送链路或接收链路的性能参数,包括:
    所述终端获取所述发送链路或所述接收链路的信号失真程度;
    所述终端确定与所述信号失真程度对应的性能指标,其中,该性能指标是所述终端与基站约定的性能指标;
    所述终端确定与所述性能指标对应的性能级别信息,将该性能级别信息作为所述性能参数,其中,所述性能级别信息为所述终端与所述基站约定的性能级别信息。
  3. 根据权利要求2所述的方法,其中,所述终端获取所述发送链路或所述接收链路的信号失真程度,包括:
    所述终端获取所述发送链路或所述接收链路中硬件精度造成的信号失真程度。
  4. 根据权利要求2所述的方法,其中,所述终端确定与所述信号失真程度对应的性能指标,包括以下至少之一:
    在所述信号失真程度为所述发送链路的信号失真程度时,所述终端将所述发送链路的误差向量幅度EVM作为所述性能指标;
    在所述信号失真程度为所述接收链路的信号失真程度时,所述终端将以下至少之一作为所述接收链路的性能指标:所述接收链路的EVM、所述终端下行传输时能够支持的最大调制编码方式等级、所述终端下行传输时SINR的最大取值。
  5. 根据权利要求1至4任一项所述的方法,其中,所述终端向所述基站发送与所述性能指标对应的性能级别信息之后,还包括:
    所述基站根据接收的所述性能级别信息执行以下至少之一过程:上行用户调度、上行功率控制、确定上行数据传输的调制与编码策略。
  6. 根据权利要求1所述的方法,其中,终端获取接收链路的性能参数包括:
    终端检测接收的下行解调导频和下行数据;
    所述终端根据所述下行解调导频和所述下行数据确定功率调整值,将该功率调整值作为所述性能参数,其中,所述功率调整值用于指示所述基站的功率调整大小。
  7. 根据权利要求6所述的方法,其中,所述终端根据所述下行解调导频和所述下行数据确定功率调整值,包括:
    所述终端根据所述下行解调导频和下行数据确定第一信号与干扰加噪声比SINR;
    所述终端确定与当前调制编码方式对应的第二SINR;
    所述终端根据所述第一SINR与所述第二SINR的差值确定所述功率调整值。
  8. 根据权利要求7所述的方法,其中,所述终端根据所述第一SINR与所述第二SINR的差值确定所述功率调整值,包括:
    所述终端获取在预定时间段内所述差值的平均值,将该平均值作为所述功率调整值。
  9. 一种终端能力指示参数的反馈方法,包括:
    终端检测接收的下行解调导频和下行数据;
    所述终端根据所述下行解调导频和所述下行数据确定功率调整值,将该功率调整值作为性能参数,其中,所述功率调整值用于指示基站的功率调整大小;
    所述终端向所述基站发送所述性能参数。
  10. 根据权利要求9所述的方法,其中,所述终端根据所述下行解调导频和所述下行数据确定功率调整值,包括:
    所述终端根据所述下行解调导频和下行数据确定第一信号与干扰加噪声比SINR;
    所述终端确定与当前调制编码方式对应的第二SINR;
    所述终端根据所述第一SINR与所述第二SINR的差值确定所述功率调整值。
  11. 一种终端能力指示参数的反馈处理方法,包括:
    基站接收来自终端的发送链路或接收链路的性能参数,其中,该性能参数用于指示所述终端的能力;
    所述基站根据所述性能参数进行上下行数据的传输调整。
  12. 根据权利要求11所述的方法,其中,所述性能参数包括:
    所述基站与所述终端约定的性能级别信息,其中,所述性能级别信息与所述基站和所述终端约定的性能指标是对应的,所述性能指标与所述发送链路或所述接收链路的信号失真程度是对应的。
  13. 根据权利要求12所述的方法,其中,所述信号失真程度,包括:所述发送链路或所述接收链路中硬件精度造成的信号失真程度。
  14. 根据权利要求11至13任一项所述的方法,其中,所述基站根据所述性能参数进行上下行数据的传输调整包括:
    所述基站根据接收的所述性能级别信息执行以下至少之一过程:上行用户调度、上行功率控制、确定上行数据传输的调制与编码策略。
  15. 根据权利要求11所述的方法,其中,基站接收来自终端的接收链路的性能参数包括:
    所述基站接收来自所述终端的功率调整值,其中,所述功率调整值用于指示所述基站的功率调整大小。
  16. 一种终端能力指示参数的反馈装置,应用于终端中,包括:
    获取模块,设置为获取发送链路或接收链路的性能参数,该性能参数用于指示所述终端的能力;
    发送模块,设置为向基站发送所述性能参数。
  17. 根据权利要求16所述的装置,其中,所述获取模块,包括:
    获取单元,设置为获取所述发送链路或所述接收链路的信号失真程度;
    第一确定单元,设置为确定与所述信号失真程度对应的性能指标,其中,该性能指标是所述终端与基站约定的性能指标;以及确定与所述性能指标对应的性能级别信息,将该性能级别信息作为所述性能参数,其中,所述性能级别信息为所述终端与所述基站约定的性能级别信息。
  18. 根据权利要求16所述的装置,其中,所述获取模块包括:
    检测单元,设置为检测接收的下行解调导频和下行数据;
    第二确定单元,设置为根据所述下行解调导频和所述下行数据确定功率调整值,将该功率调整值作为所述性能参数,其中,所述功率调整值用于指示所述基站的功率调整大小。
  19. 一种终端能力指示参数的反馈装置,应用于终端,包括:
    检测模块,设置为检测接收的下行解调导频和下行数据;
    确定模块,设置为根据所述下行解调导频和所述下行数据确定功率调整值,将该功率调整值作为性能参数,其中,所述功率调整值用于指示基站的功率调整大小;
    发送模块,设置为向所述基站发送所述性能参数。
  20. 一种终端能力指示参数的反馈处理装置,应用于基站,包括:
    接收模块,设置为接收来自终端的发送链路或接收链路的性能参数,其中,该性能参数用于指示所述终端的能力;
    调整模块,设置为根据所述性能参数进行上下行数据的传输调整。
  21. 根据权利要求20所述的装置,其中,所述接收模块,还设置为在所述性能参数包括以下信息时,接收所述性能参数:
    所述基站与所述终端约定的性能级别信息,其中,所述性能级别信息与所述基站和所述终端约定的性能指标是对应的,所述性能指标与所述发送链路或所述接收链路的信号失真程度是对应的。
  22. 根据权利要求20所述的装置,其中,所述接收模块,还设置为接收来自所述终端的功率调整值,其中,所述功率调整值用于指示所述基站的功率调整大小。
PCT/CN2014/086759 2014-06-23 2014-09-17 终端能力指示参数的反馈、反馈处理方法及装置 WO2015196589A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410284300.7 2014-06-23
CN201410284300.7A CN105323747B (zh) 2014-06-23 2014-06-23 终端能力指示参数的反馈、反馈处理方法及装置

Publications (1)

Publication Number Publication Date
WO2015196589A1 true WO2015196589A1 (zh) 2015-12-30

Family

ID=54936580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086759 WO2015196589A1 (zh) 2014-06-23 2014-09-17 终端能力指示参数的反馈、反馈处理方法及装置

Country Status (2)

Country Link
CN (1) CN105323747B (zh)
WO (1) WO2015196589A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112788614A (zh) * 2021-01-13 2021-05-11 上海闻泰信息技术有限公司 波束赋形的方法和装置、波束赋形系统和计算机存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016416734B2 (en) 2016-07-28 2022-01-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Communication method, network equipment, and terminal equipment
CN108023700B (zh) * 2016-11-04 2022-08-26 中兴通讯股份有限公司 一种导频参数的反馈、配置方法及装置、用户终端、基站
CN109474992B (zh) * 2017-09-08 2023-07-25 中国移动通信有限公司研究院 数据传输方法、基站及用户终端
CN110177070B (zh) * 2019-05-28 2022-01-11 北京星网锐捷网络技术有限公司 信号解调方法及装置
CN114070335A (zh) * 2020-08-06 2022-02-18 索尼公司 电子设备、通信方法和存储介质
CN117917104A (zh) * 2022-08-18 2024-04-19 北京小米移动软件有限公司 一种传输能力信息的方法、装置以及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101103564A (zh) * 2005-01-12 2008-01-09 美商亚瑟罗斯通讯股份有限公司 使用一定范围的发射功率的校准
CN102077657A (zh) * 2009-05-21 2011-05-25 华为技术有限公司 一种功率控制方法、装置和基站
WO2013137165A1 (ja) * 2012-03-16 2013-09-19 シャープ株式会社 端末装置、基地局装置、通信システム、制御方法および集積回路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100466488C (zh) * 2005-09-28 2009-03-04 华为技术有限公司 一种自适应调整高速共享控制信道功率的方法
GB2469229B (en) * 2005-11-04 2011-02-02 Nec Corp Wireless communication system and method of controlling a transmission power
EP2252120A4 (en) * 2008-03-07 2014-05-14 Nec Corp Radio communication system, communication device, radio communication network system and method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101103564A (zh) * 2005-01-12 2008-01-09 美商亚瑟罗斯通讯股份有限公司 使用一定范围的发射功率的校准
CN102077657A (zh) * 2009-05-21 2011-05-25 华为技术有限公司 一种功率控制方法、装置和基站
WO2013137165A1 (ja) * 2012-03-16 2013-09-19 シャープ株式会社 端末装置、基地局装置、通信システム、制御方法および集積回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112788614A (zh) * 2021-01-13 2021-05-11 上海闻泰信息技术有限公司 波束赋形的方法和装置、波束赋形系统和计算机存储介质

Also Published As

Publication number Publication date
CN105323747A (zh) 2016-02-10
CN105323747B (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
US11057093B2 (en) Methods and arrangements for CSI reporting
US10880059B2 (en) Multiple CSI reports for multi-user superposition transmission
WO2015196589A1 (zh) 终端能力指示参数的反馈、反馈处理方法及装置
US8798550B2 (en) Methods and arrangements for CSI reporting
US9832780B2 (en) Method for estimating uplink control channel quality
US8593989B2 (en) Method and device for determining CQI value in coordinated multi-point transmission/reception
TWI580209B (zh) 用於具有天線陣列之基地台之預編碼矩陣指示符增益正規化校正及通道品質指示符回授之方法及裝置
US9179427B2 (en) Transmission power dependent imbalance compensation for multi-antenna systems
EP3282629A1 (en) Method for reporting channel state and apparatus therefor
US20140355468A1 (en) Methods and devices for notifying interference measurement signaling, interference measurement and feedback
US9872190B2 (en) Method for reporting channel quality information and device thereof
JP2013507075A (ja) ワイヤレス通信のためのスケーラブルなチャネルフィードバック
WO2012020312A2 (en) A method and device for obtaining enhanced channel quality indicator
TWI559696B (zh) 無線通信系統內之方法及配置
WO2013139036A1 (en) Method and apparatus for scheduling user equipment
US9615280B2 (en) Calculating and reporting channel characteristics
US11223401B2 (en) Technique for selecting a MIMO transport format
US20130303220A1 (en) Configuration of pilot signals by network for enabling comp
WO2017016477A1 (zh) 一种协调小区边缘用户干扰的方法、装置及基站
CN106160820B (zh) 一种基于信道互易性获取下行信道信息的方法
JP2010212856A (ja) 無線基地局
EP3169000B1 (en) Methods and arrangements for csi reporting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896134

Country of ref document: EP

Kind code of ref document: A1