WO2015196554A1 - 一种生物电信号传感器 - Google Patents

一种生物电信号传感器 Download PDF

Info

Publication number
WO2015196554A1
WO2015196554A1 PCT/CN2014/085141 CN2014085141W WO2015196554A1 WO 2015196554 A1 WO2015196554 A1 WO 2015196554A1 CN 2014085141 W CN2014085141 W CN 2014085141W WO 2015196554 A1 WO2015196554 A1 WO 2015196554A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
electrode
signal sensor
electrolyte
bioelectric signal
Prior art date
Application number
PCT/CN2014/085141
Other languages
English (en)
French (fr)
Inventor
樊安生
Original Assignee
苏州格林泰克科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州格林泰克科技有限公司 filed Critical 苏州格林泰克科技有限公司
Priority to US15/322,231 priority Critical patent/US20170135596A1/en
Priority to CN201480079909.9A priority patent/CN106999087A/zh
Publication of WO2015196554A1 publication Critical patent/WO2015196554A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6803Head-worn items, e.g. helmets, masks, headphones or goggles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • A61B2562/0215Silver or silver chloride containing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • A61B2562/0217Electrolyte containing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • A61B2562/168Fluid filled sensor housings

Definitions

  • the invention relates to a bioelectric signal sensor, belonging to the field of bioelectric technology, widely used for bioelectric recording, measurement and stimulation, including high density electrode measurement, medical equipment, mobile equipment, home health care, psychological cognition, games, brain-computer interface, Rehabilitation training, etc., is especially suitable for EEG measurement.
  • the EEG signal is a very weak bioelectrical signal, generally in the microvolt range. Accurate access to EEG signals requires sophisticated and reliable equipment systems.
  • the EEG measuring device system generally includes an EEG sensor, a signal amplifier, a signal processing system, a signal display and a recording system, wherein the EEG sensor is a key component for acquiring a weak EEG signal.
  • EEG signals are carried out in the intercellular fluid (electrolyte) of the organism, which is essentially the propagation of weak ionic electrical signals in the electrolyte. Because the skin or hair of the human body is poorly conductive, the impedance between the brain electrical electrode and the human skin (hair) is too large, and the contact is unstable. The EEG signal will have a large attenuation through the interface between the electrode and the human skin, directly affecting Collection of EEG signals. In order to accurately measure the EEG without invading the subcutaneous electrode, there are applications such as conductive paste and conductive adhesive to provide an electrolyte environment and form an ion conductive channel.
  • Products such as conductive adhesives or conductive pastes help bioelectricity propagate from the body to the measured electrodes, forming a good interface between the electrodes and the skin, and converting the weak ionic electrical signals in the body into electrical and electronic signals. For measurement. This extends the ion channel-to-electrode contact, resulting in low electrode-skin impedance and stability for satisfactory measurement.
  • This method of applying a conductive paste or a conductive paste between an electrode and a skin is a wet electrode technology that is widely used at present. Although the wet electrode can reduce the impedance between the electrode and the skin and obtain accurate EEG signals, it has the following disadvantages:
  • conductive adhesive or conductive paste is prone to dry cracking or falling off for a long time, resulting in measurement interruption, not suitable for long-term use of EEG signal rehabilitation equipment applications;
  • Subjects are often covered with conductive adhesive or conductive paste. After the test, the subject needs to wash their hair to give the subject an uncomfortable feeling. In addition, the operator needs to clean the electrode with conductive adhesive after the measurement, which brings some trouble to the operator;
  • the contact problem is basically solved, but the water absorbing material tends to be retracted into the small tube due to multiple liquid absorption and cleaning, resulting in poor contact between the ionic conductor material and the scalp, affecting the long-term use of the electrode; After the water-absorbing material is depleted in the conductive liquid in the cavity, it is difficult to replenish the electrolyte such as the conductive liquid, and it cannot be recycled for a long period of time.
  • the invention is designed for the shortcomings of the existing bioelectric signal sensor technology, and still uses the principle of extending the ion channel to the electrode contact, but it does not need to be coated with a conductive adhesive, which is as convenient as using a dry electrode.
  • the object of the present invention is to provide a bioelectric signal sensor with simple structure, reliable contact, accurate positioning, low electrode-skin impedance and stability, low measurement noise, small false aberration, convenient and comfortable use, and long-term recycling.
  • Various bioelectrical related recording, measurement and stimulation applications are possible.
  • a bioelectric signal sensor includes an electrode, an electrolyte and a cavity capable of accommodating the electrolyte, and a porous column; the cavity has one end sealed end, the other end communicates with the electrolyte inlet end of the porous column, and the other end of the porous column a working end in contact with the living body; at least a portion of the electrode is immersed in the electrolyte; the electrode is an electrical conductor, and the cavity is an electrical conductor or an insulator.
  • the bioelectric signal sensor has a porous column made of a porous ceramic material or a porous ceramic composite material, and the porous column is one or more.
  • the bioelectric signal sensor has a conductor made of a conductive material, a conductor coated with a conductive material on the surface of the insulating material, or a conductor composed of a conductive material and an insulating material.
  • the electrode and the cavity are integrally formed by one time of the conductive material; or the whole body is integrally formed by the insulating material, and the surface is plated with a conductive material plating layer.
  • the sealed end of the cavity is a sealing cover, and the sealing cover is detachably and sealingly connected with the body of the cavity; the mounting hole of the porous column electrolyte inlet end and the end surface of the cavity is Fixed connection.
  • the bioelectric signal sensor has a sealed end of the cavity as a sealing cover, the sealing cover is bonded to the body of the cavity, or welded, or is integrally formed in one time; the porous column electrolyte inlet end and the cavity
  • the mounting holes on the end faces are detachable fixed connections, selected as inlays or threaded connections.
  • the bioelectric signal sensor has a cavity divided into upper and lower parts, and the two parts are connected by a detachable seal, and the upper part of the cavity is bonded to the sealing cover, or welded, or is integrally formed by one cavity, under the cavity Part of the fixed connection with the electrolyte inlet end of the porous column.
  • the porous column is a tapered column; the tapered column is an area of the porous column that contacts the working end surface of the living body and is smaller than the area of the electrolyte entering the end surface.
  • the bioelectric signal sensor has an electrolyte supply hole and a hole cover on the sealing cover.
  • the bioelectric signal sensor has an electrode connected to an independent conductor of the electrode line, or an electrical conductor end of the electrode line exposed from the inner wall of the cavity, or a cavity conductive inner wall to which the conductive line is connected; A part of the electrode or the electrode line is sealed and fixed on the cavity, and another part or all of the electrode is in contact with the electrolyte.
  • the bioelectric signal sensor has an electrode fixedly connected to the sealed end of the cavity by injection molding, or the electrode is bonded to the sealed end of the cavity.
  • the bioelectric signal sensor has a conductive material selected from the group consisting of gold, or silver, or silver/silver chloride, or conductive silica gel, or a conductive polymer, or a conductive carbon material, or a composite material of the conductive material.
  • the bioelectric signal sensor has an insulator material selected from the group consisting of plastic, rubber, or a composite material of the two.
  • the bioelectric signal sensor has an electrolyte of a conductive liquid, or a conductive paste, or a combination of the two.
  • the bioelectric signal sensor provided by the invention adopts a porous ceramic column design with a cone shape, which can quickly contact the scalp through the hair, overcome the influence of the hair, maintain the contact between the porous column and the scalp, and provide electrolyte.
  • the channel reduces the electrode-scalp impedance and improves the measured signal-to-noise ratio, but does not require a conductive paste.
  • Other technologies use flexible absorbent fabrics such as absorbent fabrics and absorbent fibers as ion-conducting channels, which do not penetrate the hair and skin well.
  • the porous column is a tapered column, and the contact surface area with the living body is relatively small, and the positioning is relatively small. more acurrate.
  • the porous column is made of porous ceramic material to make.
  • the capillary permeation of the electrolyte through the porous ceramic column causes a small amount of electrolyte to wet the skin, does not have a large amount of liquid or colloid flowing out, does not short circuit with other test sites, and provides a good ion channel, and a dry electrode that does not use electrolyte at all.
  • the electrode-skin impedance is low and stable, and the EEG signal can be accurately acquired, and the measurement accuracy is high, the noise is low, and the artifact is small.
  • the porous ceramic column is a rigid column, which does not require additional support, avoids the impedance instability caused by the support of the ion channel being too small, the ion channel is relatively large, the area in contact with the skin is relatively large, and the electrolyte is relatively fast. In addition, when the pores are clogged due to contamination, they can be removed by a small knife.
  • the bioelectric signal sensor provided by the invention has a detachable and fixed connection for the sealing cover or the porous column, and is convenient for cleaning the electrolyte cavity; and when the electrode is used in a hospital, especially in an emergency room, in order to prevent cross-contamination, direct contact with the skin
  • the porous column is detachable and can be made into disposable consumables.
  • the bioelectric signal sensor provided by the invention can be cleaned by immersion in water after testing, and is convenient to clean. Once the bioelectric signal sensor is used, it can be inhaled in the electrolyte as long as it is immersed in the electrolyte to restore the original full state.
  • the bioelectric signal sensor provided by the invention patent does not need to be coated with conductive glue on the surface of the skin compared with the wet electrode, and is convenient and comfortable to use, and expands the application range of the electrode, such as the rehabilitation treatment of the brain EEG feedback of the family, without professional staff. It is easy to use by applying conductive adhesive; it can also be widely used in brain electrical related psychological cognition, brain-computer interface, mobile medical, rehabilitation training, games, wearable devices and so on.
  • FIG. 1 is a schematic cross-sectional view showing a detachable sealing connection between a cavity sealing end sealing cover and a body of the cavity, and a fixed connection between the electrolyte inlet end of the porous column and the mounting hole on the end surface of the cavity; in the figure, the sealing cover
  • the detachable sealing connection of the body of the cavity is a threaded connection, and the electrolyte inlet end of the porous column is fixedly connected with the mounting hole on the end surface of the cavity to be a single injection molding connection.
  • FIG. 3 is a schematic cross-sectional view showing a cavity-sealed end seal cap and a body of the cavity being integrally formed at one time, and a mounting connection hole of the porous column electrolyte inlet end and the cavity end face being detachable; FIG. The detachable fixed connection of the column electrolyte inlet end and the mounting hole on the end surface of the cavity is in engagement.
  • FIG. 4 is a schematic view showing the sealing joint of the sealing cap and the cavity by adhesive bonding, and the detachable fixed connection of the porous column electrolyte inlet end and the mounting hole on the end surface of the cavity is a screw connection.
  • FIG. 5 is a schematic structural view of a bioelectric signal sensor having an electrolyte supply hole on a sealing cover, and the electrode is sealed and fixed to the sealing cover.
  • Fig. 6 is a schematic view showing a groove for fixing the bioelectric signal sensor of the present invention to a support belt or an electrode cap on the outer circumference of the chamber.
  • Fig. 7 is a structural schematic view showing that the bioelectric signal sensor is fixed by a positioning ring fixed on the elastic fabric, and an O-shaped pressing ring is arranged between the positioning ring and the sealing cover.
  • Figure 8 is a schematic view of the cavity divided into upper and lower parts, the two parts are connected by a detachable threaded seal, the upper part and the sealing cover are integrally formed at one time, and the lower part of the cavity is fixedly connected with the electrolyte inlet end of the porous column.
  • FIG. 9 is a schematic view showing an integral part of an electrode and a cavity as an insulating material, and an outer surface of the electrode and a surface of the cavity are plated with a conductive material plating layer. After the electrode wire passes through the cavity wall and is sealed and fixed, the electrical signal input end of the electrode wire is in communication with the conductive material plating on the inner surface of the cavity.
  • Figure 10 is a schematic diagram of the electrode and the cavity being combined into one.
  • the cavity is made of a conductive material, and the electrode wire is directly connected to the cavity, and the inner wall of the cavity is an electrode.
  • the electrode is an electrical conductor end of the electrode wire exposed from the inner wall of the cavity.
  • Figure 11 is a schematic cross-sectional view of a bioelectric signal sensor having a plurality of porous columns on the end face of the cavity
  • Figure 12 is a schematic view showing the uniform distribution of a plurality of porous columns on the end face of the cavity centered on the center of the cavity end face;
  • Figure 13 is a schematic illustration of the juxtaposed uniform distribution of a plurality of porous columns on the end faces of the cavities.
  • the reference numerals in the figures are: 1-electrode; 2-electrolyte; 3-cavity; 3'-body; 3.1-lower cavity portion; 3.2-upper cavity portion; 4-porous column; ; 6-electrode wire; 7-internal thread; 8-external thread; 9-binder; 10-electrolyte replenishment hole; 11-hole cover; 12-groove; 13-bioelectric signal sensor support; Ring; 15-sealing ring; 16-pressing ring; 17-conductive material plating.
  • Embodiment 1 A basic embodiment of the bioelectric signal sensor of the present invention.
  • the bioelectric signal sensor comprises an electrode 1, an electrolyte 2 and a cavity 3 capable of accommodating the electrolyte, and a porous column 4; the cavity 3 has one end sealed end and the other end connected to the electrolyte inlet end of the porous column 4, porous
  • the other end of the column 4 is a working end in contact with a living body; at least a part of the electrode 1 is immersed in the electrolyte 2; the electrode 1 is an electric conductor, and the cavity 3 is an electric conductor or an insulator.
  • Embodiment 2 It is a further embodiment of Embodiment 1.
  • the bioelectric signal sensor has one number of porous columns.
  • the number of porous columns may also be plural, as shown in Figs. 11, 12, and 13.
  • the porous column is evenly distributed on the end face of the cavity 3 centered on the center of the cavity end face, or the porous column may be uniformly arranged side by side on the end face of the cavity.
  • the porous column adopts a plurality of porous columns on the end face of the cavity, and a fine ion permeating electrolyte through each porous column establishes a good ion channel with the electrode and conducts with the electrode, and the bioelectric signal is equivalent to the addition of a single porous column.
  • the bioelectric signal sensor has a porous column 4 made of a porous ceramic material or a porous ceramic composite material.
  • a porous ceramic composite refers to a porous ceramic material having a surface modified with an organic functional group.
  • the porous ceramic is selected from the group consisting of alumina ceramics, silicon oxide ceramics, and silicon carbide ceramics.
  • the advantages of the porous ceramic material are as follows: 1) The pores of the porous ceramic column can absorb the electrolyte, form an ion conductor channel connecting the living body, keep the electrode-skin impedance low and stable, make the bioelectric measurement noise low, and the measurement signal is stable;
  • the porous column prepared by ceramics is a rigid solid. When measuring brain electricity, it easily passes through the hair and contacts the skin, so that a small amount of electrolyte liquid can provide a good ion conductive channel.
  • Prior art absorbent fabrics, or absorbent fibers, hydrogels, etc. are not rigid materials.
  • porous ceramic columns are rigid The column does not need additional support to avoid the impedance instability caused by the support of the ion channel being too small, the ion channel is relatively large, the area in contact with the skin is relatively large, and the electrolyte is relatively fast; 4) when the pore is blocked due to pollution In time, it can be removed by a small knife; 5) The porous ceramic material can adjust the osmotic speed of the electrolyte liquid by selecting its pore size and quantity.
  • Embodiment 3 It is a further embodiment of Embodiment 1.
  • the bioelectric signal sensor has a sealed end of the cavity 3 of the cavity 3 , and the sealing cover 5 and the body 3 ′ of the cavity 3 are detachably sealed and fixed, as shown in FIG. 1 and FIG. 2 . 5, 6, 7, 11, the sealing cover 5 and the body 3' of the cavity 3 are screwed; the electrolyte inlet end of the porous column 4 is fixedly connected with the mounting hole on the end surface of the cavity 3, this embodiment
  • the electrolyte inlet end of the porous column 4 and the mounting hole on the end surface of the cavity 3 are connected by injection molding.
  • the electrolyte inlet end of the porous column 4 is connected to the mounting hole on the end surface of the cavity 3, and an equivalent embodiment is shown.
  • the electrolyte inlet end of the porous column 4 is cylindrical, and the porous column 4 can also be made into a cylindrical shape as a whole.
  • the fixed connection of the press-fit tight fit is formed by pressing the electrolyte inlet end of the porous column 4 into the mounting hole on the end surface of the cavity 3, and the porous column 4 may be bonded to the hole wall of the mounting hole on the end surface of the cavity 3, Or as shown in Figure 4 threaded connection.
  • Embodiment 4 It is a further embodiment of Embodiment 1.
  • the bioelectric signal sensor has a cavity 3 sealing end sealing cover 5 and a body 3' of the cavity 3 as a whole molding, and may also be bonded as shown in FIG. 4, or may be Welding; the porous column 4 of the porous column 4 and the mounting hole on the end surface of the cavity 3 is a detachable fixed connection.
  • it is embedded as shown in FIG. 3, and may also be a screw connection as shown in FIG.
  • the above embodiment 3 and the equivalent scheme have shown that when the sealed end of the cavity 3 is a detachable fixed structure, the fixed connection of the cavity 3 to the electrolyte inlet end of the porous column 4 is not limited to whether it can be disassembled, and the sealed end is detachably fixed.
  • the structure facilitates cleaning of the cavity of the chamber 3 containing the electrolyte, but with a sealing ring 15 to ensure a sealed state, ensuring that the electrolyte only seeps out of the porous column 4 and does not enter the air at the sealed end of the cavity 3 to affect the rate of electrolyte permeation.
  • the equivalent embodiment of the above embodiment 4 has shown that when the sealed end of the cavity 3 is a non-removable fixed structure, the cavity 3 and the electrolyte inlet end of the porous column 4 are detachably fixedly connected, and the detachment facilitates the accommodation of the cleaning cavity 3.
  • the cavity of the electrolyte, which has no seal ring 15, absolutely ensures that the electrolyte only seeps out of the porous column 4 and does not enter the air at the sealed end of the cavity 3 to affect the rate of electrolyte permeation.
  • the sealing cover or the porous column adopts a detachable and fixed connection, and the advantage is that the disassembly is convenient for cleaning; and the use place is a hospital, a special emergency room, in order to prevent cross-contamination, the porous column directly contacting the skin is detachably connected, and can be manufactured.
  • a disposable consumable Into a disposable consumable.
  • Embodiment 5 It is a further embodiment of Embodiment 1.
  • the bioelectric signal sensor has a cavity 3 divided into upper and lower parts, and the two parts are connected by a detachable threaded seal.
  • the upper part of the cavity 3.2 and the sealing cover 5 are integrally formed in one time.
  • the lower part 3.1 is fixedly connected to the electrolyte inlet end of the porous column, and if necessary, a sealing ring may be placed thereon.
  • the detachable sealing connection of the upper and lower portions of the cavity 3 is not limited to a threaded connection.
  • the upper and lower parts can be disassembled and sealed. The advantage is that it is easy to disassemble. The other place is hospital, special emergency room. In order to prevent cross-contamination, the lower part of the cavity is in direct contact with the skin. Disassembled and connected, it can be made into disposable consumables.
  • Embodiment 6 It is a further embodiment of Embodiment 1.
  • the bioelectric signal sensor has an electrode 1 and a cavity 3 integrally formed by an insulating material.
  • the inner surface of the cavity 3 and the surface of the electrode 1 are plated with a conductive material plating layer 17, and the electrode line 6 passes through.
  • the electrical signal input end of the electrode wire is in communication with the conductive material plating layer on the inner surface of the cavity, and the electrode 1 is a conductive inner wall of the cavity 3 to which the conductive wire is connected and a convex electric conductor in the cavity.
  • Embodiment 7 It is a further embodiment of Embodiment 1. About the electrode there are:
  • the electrode (1) is an independent conductor to which the electrode wire (6) is connected.
  • the electrode 1 and the cavity 3 are combined into one, the cavity 3 is made of a conductive material, the electrode wire 6 is directly connected to the cavity 3, and the inner wall of the cavity 3 is the electrode 1.
  • the electrode 1 is an electrical conductor end of an electrode line exposed from the inner wall of the cavity 3.
  • a part of the above electrode 1 (as shown in FIGS. 5, 6, 8, 11) is sealed and fixed on the cavity 3, or the electrode wire 6 (as shown in FIGS. 1, 2, 3, 4, 7, 9, 10) is sealed and fixed in the cavity. On the 3rd, another part or all of the electrode 1 is in contact with the electrolyte 2.
  • the electrode wires 6 shown in the above embodiments 6 and 7 can be directly connected to the recess 12 of the cavity 3 to facilitate wiring on the bioelectric signal sensor support member 13.
  • the electrode wire 6 can communicate with an external transmission line on the positioning ring 14 through a conductive member (such as a terminal) on the cavity 3 of FIG.
  • Embodiment 8 It is a further embodiment of Embodiment 1.
  • the bioelectric signal sensor has a porous column 4 which is a tapered column, and an area of the working end surface of the tapered porous column 4 contacting the living body is smaller than an area of the end surface of the electrolyte.
  • the effect of the column effect on the cylindrical shape is that the tapered column can pass through the hair like a comb, overcoming the influence of the hair, ensuring good contact with the skin in order to establish a stable ion channel.
  • the tapered column and the living body have a small end face and accurate positioning.
  • Example 9 is a further example of Example 1.
  • the bioelectric signal sensor has an electrolyte supply hole 10 and a hole cover 11 on the sealing cover 5 , and the effect thereof is beneficial to the penetration of certain bioelectric signal sensors in the work. Quickly add, it can be a life
  • the electrical signal sensor is used to replenish the electrolyte after the operation. Normally, the bioelectric signal sensor is immersed in the electrolyte after the operation, and after a certain period of time, the porous column 4 can be sucked into the electrolyte to restore the original full state. In addition, it is convenient to observe the capacity of the electrolyte in order to replenish the electrolyte through the electrolyte supply hole in time.
  • Example 10 is a further example of Example 1.
  • the bioelectric signal sensor has an electrode 1 fixedly connected to the sealed end of the cavity 3 by injection molding, or may be an electrode as shown in FIGS. 1, 2, 3, 4 and 7.
  • the electrode wire 6 of 1 is fixedly connected to the sealed end of the cavity 3.
  • Example 11 is a further example of Example 1.
  • the bioelectric signal sensor is provided with a cushion on the end surface of the working end of the porous column 4 contacting the living body, the area of the cushion being approximately equal to the area of the working end surface of the porous column 4 contacting the living body, and the cushion material is selected from sponge or cotton. Fabric.
  • the effect is that the porous column 4 is in soft contact with the contact end of the living body, and is particularly suitable for newborns, infants and children.
  • Embodiment 12 It is a further embodiment of Embodiment 1.
  • the bioelectric signal sensor has a conductor made of a conductive material, a conductor coated with a conductive material on the surface of the insulating material, or a conductor composed of a conductive material and an insulating material.
  • the conductive material is composited with the insulating material: the conductive material is mixed with the insulating material, and the conductive material is filled or dispersed in the conductor formed in the insulating material, such as the conductive material uniformly filled and dispersed in the insulating material silicone rubber. Silicone conductor.
  • the conductive material is selected from the group consisting of gold, or silver, or silver/silver chloride, or conductive silica gel, or a conductive polymer, or a conductive carbon material, or a composite thereof.
  • the insulator material is selected from the group consisting of plastic, or rubber, or a composite of the two.
  • the electrolyte 2 is a conductive liquid, or a conductive paste, or a hydrogel, or a conductive liquid that is drawn into a sponge, or a combination thereof.
  • the electrolyte is a conductive liquid containing sodium chloride or/and potassium chloride.
  • the electrolyte may further comprise a surfactant to enhance the electrolyte to wet the skin; when it contains a disinfectant and bacteriostatic component, it acts as a disinfectant and bacteriostasis.
  • the cavity 3 is fixedly connected with the bioelectric signal sensor support member 13, and the bioelectric signal sensor support member is an electrode cap, or an electrode vest, or an electrode wrist.
  • the outer wall of the cavity 3 is provided with a groove 12, and the surrounding bioelectric signal sensor support body 13 is embedded in the groove 12 for fixing and positioning.
  • the outer periphery of the cavity 3 is sleeved with a positioning ring 14, and the groove around the positioning ring 14 is matched with the mounting hole on the bioelectric signal sensor support member 13.
  • An O-shaped compression ring 16 is interposed between the positioning ring 14 and the sealing cover.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种生物电信号传感器,包括电极(1)、电解质(2)和能容纳电解质(2)的腔体(3),以及多孔柱(4);所述的腔体(3)的一端为密封端,另一端与多孔柱(4)的电解质(2)进入端联通,多孔柱(4)的另一端为与生物体接触的工作端;所述的电极(1)至少一部分位于电解质(2)中;所述的电极(1)为导电体,所述的腔体(3)为导电体或绝缘体。其优点主要是:结构简单,接触可靠,定位精确,电极-皮肤阻抗低且稳定,测量噪音低,伪差小,使用方便舒适,可长期循环使用,适合各种与生物电相关的记录、测量和刺激应用,特别适用于脑电测量。

Description

一种生物电信号传感器
相关申请的交叉引用
本申请主张在2014年6月28日在中国提交的中国专利申请No.201410302153.1的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及生物电信号传感器,属于生物电技术领域,广泛用于生物电记录、测量和刺激,包括高密度电极测量、医疗设备、移动设备、家庭保健、心理认知、游戏、脑机接口、康复训练等,特别适用于脑电测量。
背景技术
随着科学技术的发展,生物电已经广泛应用于各种神经系统疾病的监测诊断,以及生物电反馈的康复设备。生物电测量还是认知心理研究的一个重要实验手段。脑电信号是一种很微弱的生物电信号,一般为微伏级,精确获取脑电信号需要精密可靠的设备系统。脑电测量设备系统一般包括脑电传感器、信号放大器、信号处理系统、信号显示及记录系统,其中脑电传感器是获取微弱脑电信号的关键部件。
脑电信号的传播是在生物体的细胞间液(电解质)中进行的,实质上是微弱的离子电信号在电解质中的传播。由于人体的皮肤或毛发的导电性很差,脑电电极与人体皮肤(毛发)之间阻抗过大,而且接触不稳定,脑电信号经过电极和人体皮肤界面会出现较大的衰减,直接影响脑电信号的采集。为对脑电进行精确测量又不用侵入皮下式电极,就有了导电糊、导电胶等产品的应用,以提供电解液的环境,形成离子导电通道。导电胶或导电糊等产品帮助生物电从体内传播到测量的电极,在电极和皮肤之间构成一个很好的电子导体和离子导体界面,将体内的微弱的离子电信号转换成电子电信号以供测量。这样延长了离子通道到电极接触,使得电极-皮肤阻抗低和稳定,以达到满意的测量效果。这种在电极与皮肤之间涂覆导电胶或导电糊的方法,就是目前广泛应用的湿电极技术。湿电极虽然可以降低电极与皮肤之间的阻抗,获取精确的脑电信号,但存在以下缺点:
1、需要专业的医护人员涂覆导电胶或导电糊,限制了湿电极在家庭、游 戏等方面的应用;此外涂抹导电胶或导电糊,需要花费较长的时间;
2、导电胶或导电糊长时间使用易出现干裂或者脱落的情况,导致测量中断,不适合长期使用的脑电信号的康复设备应用;
3、受试者往往满头都是导电胶或导电糊,测试后受试者需要洗头,给受试者带来不舒适的感觉。此外操作人员测量后需要将沾有导电胶的电极清洗干净,给操作人员带来一定的麻烦;
4、高密度电极测量(64导及64导以上),电极数目很多,注胶花费的时间很长,操作人员一不小心就会出现个别电极未注胶的情况,需要检查、重新注胶。这些无疑给高密度电极测量带来了很多麻烦。
为克服湿电极的上述缺点,近年来人们一直探索发展新的电极技术,即无需涂覆导电胶或导电糊的电极技术。这类新的电极技术主要在两个方向上进行探索:
1、采用纤维织物,水凝胶等保水材料代替导电胶;其优点是较湿电极,受试者容易接受,避免了涂覆导电胶的不方便,缺点是这些纤维织物、水凝胶等保水材料一般为柔性的整块,它们不易像导电糊一样钻入头发,很难与皮肤接触良好,无法形成稳定的离子导体通道,因此有时会出现电极阻抗大或不稳定,影响测量的质量。为解决不能穿过头发与皮肤接触不好的问题,往往需要刚性的小管支撑,但实际使用过程中会造成离子通道过于细小而使得阻抗不稳定,因为穿过头发的小圆柱本身必须细小,而作为支撑的小圆柱管壁占有一定体积。另外虽然依靠小管支撑,基本上解决了接触问题,但吸水材料因多次吸液和清洗后往往会缩进小管内,导致离子导体材料与头皮接触不好,影响电极的长期使用;此外这种吸水材料在腔内的导电液体损耗后,很难补充导电液体等电解质,不能长期循环使用。
2、发展干电极技术,即在电极和头皮间完全不用导电胶、水凝胶,吸水纤维等电解质,这样的电极用电子导体直接与头皮接触。它的优点是无需使用导电胶、导电糊或水凝胶等电解质,非常方便安放。美国g.tek公司已经上市的产品g.SAHARA干电极,就是电极与头皮接触端采用多个针柱状电极设计,像梳子一样,使之较好穿过头发,直接与头皮接触。由于未使用电解质,不能在电极和头皮间的建立离子通道,电极-皮肤阻抗很高。为了克服高阻抗 缺点,这款产品将一个前置信号放大的芯片封装在电极后面,这无疑增加制作的复杂性。这类干电极的另一个缺点就是多个刚性柱碰到头皮,易造成疼痛感觉。WO 2013/142316 A1采用活动的小爪样式的干电极,使得电极柔和地穿透头发,电极能施加一定压力给头皮,受试者又不感到疼痛。这些干电极的现有技术都是采用固体的电子导体和皮肤的直接接触,均未能建立理想的离子通道,这种电极-皮肤接触方式会造成电极阻抗高,而且不太稳定,带来测量噪音和不稳定信号。
本发明是针对现有生物电信号传感器技术的缺点而设计的,依然采用延长离子通道到电极接触的原理,但是使用起来无需涂覆导电胶,与使用干电极一样方便。
发明内容
本发明的目的是:提供一种生物电信号传感器,其结构简单,接触可靠,定位精确,电极-皮肤阻抗低且稳定,测量噪音低,伪差小,使用方便舒适,可长期循环使用,适合各种与生物电相关的记录、测量和刺激应用。
本发明技术方案如下:
一种生物电信号传感器,包括电极、电解质和能容纳电解质的腔体,以及多孔柱;所述的腔体的一端为密封端,另一端与多孔柱的电解质进入端联通,多孔柱的另一端为与生物体接触的工作端;所述的电极至少有一部分浸入电解质中;所述的电极为导电体,腔体为导电体或绝缘体。
进一步的技术方案是:
所述的生物电信号传感器,其多孔柱由多孔陶瓷材料或多孔陶瓷的复合材料制成,多孔柱为一个或多个。
所述的生物电信号传感器,其导电体是导电材料制成的导体,或是绝缘材料表面镀有导电材料的导体,或是导电材料与绝缘材料复合而成的导体。
所述的生物电信号传感器,其电极与腔体为导电材料一次成型的整体;或以绝缘材料一次成型的整体,表面镀有导电材料镀层。
所述的生物电信号传感器,其腔体密封端为密封盖,该密封盖与腔体的本体为能拆卸的密封固定连接;所述的多孔柱电解质进入端与腔体端面上的安装孔为固定连接。
所述的生物电信号传感器,其腔体密封端为密封盖,该密封盖与腔体的本体为粘接,或焊接,或为一次成型的整体;所述的多孔柱电解质进入端与腔体端面上的安装孔为能拆卸的固定连接,选为嵌接,或螺纹连接。
所述的生物电信号传感器,其腔体分为上下两部分,两部分通过能拆卸的密封连接,腔体上部分与密封盖为粘接,或焊接,或为一次成型的整体,腔体下部分与多孔柱电解质进入端固定连接。
所述的生物电信号传感器,其多孔柱为锥状柱;该锥状柱是多孔柱的与生物体接触工作端面的面积小于与电解质进入端面的面积。
所述的生物电信号传感器,其密封盖上设有电解质补给孔及孔盖。
所述的生物电信号传感器,其电极为连接有电极线的一个独立的导电体,或为从腔体内壁露出的电极线的导电体端头,或为连接有导电线的腔体导电内壁;所述电极的一部分或电极线密封固定在腔体上,电极另一部分或全部与电解质接触联通。
所述的生物电信号传感器,其电极通过注塑与腔体的密封端固定连接,或电极与腔体的密封端粘接。
所述的生物电信号传感器,其导电材料选自金,或银,或银/氯化银,或导电硅胶,或导电聚合物,或导电碳材料,或为所述导电材料的复合材料。
所述的生物电信号传感器,其绝缘体材料选自塑料,或橡胶,或两者的复合材料。
所述的生物电信号传感器,其电解质为导电液体,或导电胶,或两者的组合。
本发明有益效果显著:
1、本发明专利提供的生物电信号传感器,采用一个锥状体的多孔陶瓷柱设计,一方面能快速穿过头发直接与头皮接触,克服头发的影响,保持多孔柱与头皮接触良好,提供电解质通道,降低电极-头皮阻抗,提高测量信噪比,但是不需要用导电糊。其它技术采用柔性的吸水织物、吸水纤维等电解质材料作为离子导电通道,不能很好地穿透头发与皮肤接触;另一方面多孔柱为锥状柱,与生物体接触端面面积相对较小,定位更准确。
2、本发明专利提供的生物电信号传感器,多孔柱采用多孔陶瓷材料制 成。电解质经多孔陶瓷柱的毛细渗透作用,使得少量的电解质润湿皮肤,没有大量的液体或胶体流出,不会与其他测试位点短路,又提供良好的离子通道,与完全不使用电解质的干电极相比,电极-皮肤阻抗低且稳定,能精密获取脑电信号,测量精度高、噪音低、伪差小。多孔陶瓷柱为刚性柱,无需额外的支撑,避免因支撑造成离子通道过于细小出现阻抗不稳定,离子通道相对较大,与皮肤接触的面积相对大,电解质的补充也相对较快。此外当孔隙由于污染堵塞时,可用小刀轻刮去除。
3、本发明提供的生物电信号传感器,密封盖或多孔柱采用能拆卸固定连接,方便清洗电解质内腔;另外当电极在医院,特别急诊室场所使用时,为防止交叉污染,与皮肤直接接触的多孔柱采用可拆卸连接,可以制成一次性耗材。
4、本发明提供的生物电信号传感器,测试后用水浸泡即可清洗干净,清洗方便。生物电信号传感器使用后只要浸泡在电解质中,即可吸入电解质,恢复原始充满状态。
5、本发明专利提供的生物电信号传感器,与湿电极相比,无需在皮肤表面涂覆导电胶,使用方便舒适,扩大了电极应用范围,如家庭的脑电反馈的康复治疗,无需专业人员涂覆导电胶,使用简单;还可广泛应用于脑电相关的心理认知、脑机接口、移动医疗、康复训练、游戏、可穿戴设备等方面。
附图说明
图1是腔体密封端密封盖与腔体的本体为能拆卸的密封连接,以及多孔柱电解质进入端与腔体端面上的安装孔为固定连接的剖面示意图;图中,所述密封盖与腔体的本体能拆卸的密封连接为螺纹连接,多孔柱电解质进入端与腔体端面上的安装孔固定连接为一次注塑成型连接。
图2为多孔柱电解质进入端为圆柱形,该圆柱压入腔体端面上的安装孔中构成紧配合的固定连接。
图3是腔体密封端密封盖与腔体的本体为一次成型的整体,以及多孔柱电解质进入端与腔体端面上的安装孔为能拆卸的固定连接的剖面示意图;图中,所述多孔柱电解质进入端与腔体端面上的安装孔能拆卸的固定连接为嵌接。
图4是密封盖与腔体通过粘结剂粘结连接示意图,多孔柱电解质进入端与腔体端面上的安装孔能拆卸的固定连接为螺纹连接。
图5是一种密封盖上具有电解质补给孔的生物电信号传感器结构示意图,且电极与密封盖密封固定。
图6是腔体外周设有用于将本发明生物电信号传感器固定到支撑带或电极帽上的凹槽示意图。
图7是生物电信号传感器通过弹性织物上固定的定位环固定,定位环与密封盖之间设有O形的压紧圈的结构示意图。
图8是腔体分为上下两部分,两部分通过能拆卸的螺纹密封连接,上部分与密封盖为一次成型的整体,腔体下部分与多孔柱电解质进入端固定连接的示意图。
图9是电极与腔体为绝缘材料一次成型的整体,电极外表面和腔体内表面镀有导电材料镀层的示意图。电极线穿过腔体壁并密封固定后,电极线的电信号输入端与腔体内表面导电材料镀层联通。
图10是电极和腔体合二为一的示意图腔体由导电材料制成,电极线与腔体直接连接,腔体内壁即为电极。当腔体为非金属导电材料,或绝缘材料制成时,电极为从腔体内壁露出的电极线的导电体端头。
图11是一种腔体端面具有多个多孔柱的生物电信号传感器剖面示意图
图12是多个多孔柱在腔体的端面上以腔体端面形心为中心均匀分布示意图;
图13是多个多孔柱在腔体的端面上并列均匀分布示意图。
图中各附图标记名称为:1-电极;2-电解质;3-腔体;3’-本体;3.1-腔体下部分;3.2-腔体上部分;4-多孔柱;5-密封盖;6-电极线;7-内螺纹;8-外螺纹;9-粘结剂;10-电解质补给孔;11-孔盖;12-凹槽;13-生物电信号传感器支撑件;14-定位环;15-密封圈;16-压紧圈;17-导电材料镀层。
具体实施方式
结合附图和实施例对本发明作进一步说明如下:
实施例1:是本发明生物电信号传感器的基本实施例。如图所示,一种 生物电信号传感器,包括电极1、电解质2和能容纳电解质的腔体3,以及多孔柱4;所述的腔体3的一端为密封端,另一端与多孔柱4的电解质进入端联通,多孔柱4的另一端为与生物体接触的工作端;所述的电极1至少有一部分浸入电解质2中;所述的电极1为导电体,腔体3为导电体或绝缘体。
实施例2:是实施例1进一步的实施例。如图1-10所示,所述的生物电信号传感器,其多孔柱的数量为一个。多孔柱的数量还可以是多个,如图11、12、13所示。多孔柱在腔体3的端面上以腔体端面形心为中心均匀分布,还可以是多孔柱在腔体的端面上并列均匀分布。多孔柱在腔体的端面上采用多个多孔柱,通过各个多孔柱毛细渗出的电解质,与电极建立良好的离子通道,与电极进行导通,测得生物电信号相当于单个多孔柱的加和,测量信号质量好。所述的生物电信号传感器,其多孔柱4由多孔陶瓷材料或多孔陶瓷的复合材料制成。多孔陶瓷复合材料是指表面有有机功能基团修饰的多孔陶瓷材料。优选地多孔陶瓷选自氧化铝陶瓷、氧化硅陶瓷、碳化硅陶瓷。
多孔陶瓷材料的优点在于:1)、多孔陶瓷柱的小孔能吸收电解质,形成连接生物体的离子导体通道,保持电极-皮肤阻抗低和稳定,使得生物电测量噪音低,测量信号稳定;2)、陶瓷制备的多孔柱是刚性固体,在测量脑电时,容易穿过头发,接触皮肤,使得少量电解质液体就能提供良好的离子导电通道。现有技术吸水织物,或吸水纤维,水凝胶等都不是刚性材料,虽然它们能吸收电解质,但是不能像刚性柱一样穿过头发,无法形成稳定的离子通道;3)、多孔陶瓷柱为刚性柱,无需额外的支撑,避免因支撑造成离子通道过于细小出现阻抗不稳定,离子通道相对较大,与皮肤接触的面积相对大,电解质的补充也相对较快;4)、当孔隙由于污染堵塞时,可用小刀轻刮去除;5)、多孔陶瓷材料可以通过选择其孔径大小和数量,调整电解质液体的渗出快慢。
实施例3:是实施例1进一步的实施例。如图1所示,所述的生物电信号传感器,其腔体3密封端为密封盖5,该密封盖5与腔体3的本体3’为能拆卸的密封固定连接,如图1、2、5、6、7、11所示,密封盖5与腔体3的本体3’为螺纹连接;所述的多孔柱4电解质进入端与腔体3端面上的安装孔为固定连接,本实施例多孔柱4电解质进入端与腔体3端面上的安装孔为一次注塑成型连接。
多孔柱4电解质进入端与腔体3端面上的安装孔连接还有等同的实施例,如图2所示,多孔柱4电解质进入端为圆柱形,多孔柱4还可做成整体为圆柱形,通过将多孔柱4电解质进入端压入腔体3端面上的安装孔中构成压入紧配合的固定连接,还可以是多孔柱4与腔体3端面上的安装孔的孔壁粘接,或如图4的螺纹连接。
实施例4:是实施例1进一步的实施例。如图3所示,所述的生物电信号传感器,其腔体3密封端密封盖5与腔体3的本体3’为一次成型的整体,还可以如图4所示粘接,也可以为焊接;所述的多孔柱4电解质进入端与腔体3端面上的安装孔为能拆卸的固定连接,本实施例为如图3所示嵌接,还可以为如图4所示螺纹连接。
上述实施3和等同的方案已表明:腔体3的密封端为能拆卸的固定结构时,则腔体3与多孔柱4电解质进入端的固定连接不限于是否能拆卸,密封端为能拆卸的固定结构便于清洗腔体3的容纳电解质的空腔,但要有密封圈15来保证密封状态,确保电解质只从多孔柱4渗出而不至于腔体3密封端进入空气而影响电解质渗出速率。
上述实施例4等同的方案已表明:腔体3的密封端为不可拆卸的固定结构时,则腔体3与多孔柱4电解质进入端为能拆卸的固定连接,拆卸便于清洗腔体3的容纳电解质的空腔,此结构没有密封圈15,绝对确保电解质只从多孔柱4渗出而不至于腔体3密封端进入空气而影响电解质渗出速率。
上述实施例中密封盖或多孔柱采用能拆卸固定连接,优点是拆卸方便清洗;另外使用场所为医院,特别急诊室,为防止交叉污染,与皮肤直接接触的多孔柱采用能拆卸连接,可以制成一次性耗材。
实施例5:是实施例1进一步的实施例。如图8所述,所述的生物电信号传感器,其腔体3分为上下两部分,两部分通过能拆卸的螺纹密封连接,腔体上部分3.2与密封盖5为一次成型的整体,腔体下部分3.1与多孔柱电解质进入端固定连接,必要时可垫上密封圈。腔体3上下两部分的能拆卸密封连接不限于螺纹连接。当腔体上部分3.2与密封盖5为粘结或焊接时,又是另外的实施例。上下两部分能拆卸密封连接,优点是拆卸方便清洗;另外使用场所为医院,特别急诊室,为防止交叉污染,与皮肤直接接触的腔体下部 分采用能拆卸连接,可以制成一次性耗材。
实施例6:是实施例1进一步的实施例。如图9所示,所述的生物电信号传感器,其电极1与腔体3为绝缘材料一次成型的整体,腔体3内表面和电极1表面镀有导电材料镀层17,电极线6穿过腔体3的壁并密封固定后,电极线的电信号输入端与腔体内表面导电材料镀层联通,电极1为连接有导电线的腔体3导电内壁和腔体内凸起的导电体。
实施例7:是实施例1进一步的实施例。关于电极还有:
如图1~8及图11所述,电极(1)为连接有电极线(6)的一个独立的导电体。
进一步的是如图10所示,电极1和腔体3合二为一,腔体3由导电材料制成,电极线6与腔体3直接连接,腔体3内壁即为电极1。
还有进一步的实例:当图10所示实例的腔体3为非金属导电材料,或绝缘材料制成时,电极1为从腔体3内壁露出的电极线的导电体端头。
上述电极1的一部分(如图5、6、8、11)密封固定在腔体3上,或电极线6(如图1、2、3、4、7、9、10)密封固定在腔体3上,电极1另一部分或全部与电解质2接触联通。
如图9、10所示,上述实施例6及实施例7所示的电极线6可以直接与腔体3的凹槽12相连,便于在生物电信号传感器支撑件13上布线。当腔体3外侧无凹槽12时,电极线6可以通过如图7的腔体3上的导电元件(如接线端子)与定位环14上的外接传输线连通。
实施例8:是实施例1进一步的实施例。如图1至11所示,所述的生物电信号传感器,其多孔柱4为锥状柱,所述锥状多孔柱4的与生物体接触工作端面的面积小于与电解质进入端面的面积,锥状柱效果相对圆柱状的效果差别在于,锥状柱能像梳子一样穿过毛发,克服毛发的影响,确保与皮肤接触良好,以便建立稳定的离子通道。另外锥状柱与生物体接触端面较小,定位准确。
实施例9:是实施例1进一步的实施例。如图5、图6所示,所述的生物电信号传感器,其密封盖5上设有电解质补给孔10及孔盖11,其效果是有利于对工作中某些生物电信号传感器因渗透过快而进行补充,还可以是当生 物电信号传感器使用操作完后进行电解质的补充。通常情况下,生物电信号传感器使用操作完后只要浸泡在电解质中,经过一定时间,多孔柱4即可吸入电解质,恢复原始充满状态。此外方便观察电解质的容量,以便及时通过电解质补给孔补充电解质。
实施例10:是实施例1进一步的实施例。如图5、图6所示,所述的生物电信号传感器,其电极1通过注塑与腔体3的密封端固定连接,也可以是如图1、2、3、4、7所示,电极1的电极线6与腔体3的密封端固定连接。
实施例11:是实施例1进一步的实施例。生物电信号传感器其多孔柱4与生物体接触的工作端的端面上设置有软垫,该软垫的面积约等于多孔柱4的与生物体接触工作端面的面积,软垫材料选自海绵或棉织物。其效果是使多孔柱4与生物体接触端以柔软方式接触,特别适用于新生儿、婴儿及儿童。
实施例12:是实施例1进一步的实施例。所述的生物电信号传感器,其导电体是导电材料制成的导体,或是绝缘材料表面镀有导电材料镀层的导体,或是导电材料与绝缘材料复合而成的导体。导电材料与绝缘材料复合而成的导体是:导电材料与绝缘材料混合,导电材料填充或分散在在绝缘材料中形成的导体,如金属材料均匀填充分散在绝缘材料硅橡胶中而制成的导电硅胶导体。所述的导电材料选自金,或银,或银/氯化银,或导电硅胶,或导电聚合物,或导电碳材料,或它们的复合材料。所述的绝缘体材料选自塑料,或橡胶,或两者的复合材料。所述的电解质2为导电液体,或导电胶,或水凝胶,或吸入海绵中的导电液体,或它们的组合。优选地电解质为含有氯化钠或/和氯化钾的导电液体。电解质中还可以包含表面活性剂,增强电解质润湿皮肤;当含消毒抑菌成分,则起消毒抑菌作用。
上述实施例中,为使本发明生物电信号传感器在使用时得到支撑,腔体3与生物电信号传感器支撑件13固定连接,生物电信号传感器支撑件是电极帽,或电极背心,或电极腕带;如图6所示,腔体3外壁上设有凹槽12,将周边的生物电信号传感器支撑体13嵌入凹槽12内实现固定和定位。或者如图7所示,腔体3外周套有定位环14,该定位环14周边的凹槽与生物电信号传感器支撑件13上的安装孔匹配连接。定位环14与密封盖之间垫有O型压紧圈16。
本发明的权利要求保护范围不限于上述实施例。

Claims (14)

  1. 一种生物电信号传感器,其特征在于,包括电极(1)、电解质(2)和能容纳电解质的腔体(3),以及多孔柱(4);所述的腔体(3)的一端为密封端,另一端与多孔柱(4)的电解质进入端联通,多孔柱(4)的另一端为与生物体接触的工作端;所述的电极(1)至少有一部分位于电解质(2)中;所述的电极(1)为导电体,腔体(3)为导电体或绝缘体。
  2. 根据权利要求1所述的生物电信号传感器,其特征在于,所述的多孔柱(4)由多孔陶瓷材料或多孔陶瓷的复合材料制成,多孔柱(4)为一个或多个。
  3. 根据权利要求1所述的生物电信号传感器,其特征在于,所述导电体是导电材料制成的导体,或是绝缘材料表面镀有导电材料的导体,或是导电材料与绝缘材料复合而成的导体。
  4. 根据权利要求1所述的生物电信号传感器,其特征在于所述的电极(1)与腔体(3)为导电材料一次成型的整体;或以绝缘材料一次成型的整体,表面镀有导电材料镀层(17)。
  5. 根据权利要求1所述的生物电信号传感器,其特征在于,所述的腔体(3)密封端为密封盖(5),该密封盖(5)与腔体(3)的本体(3’)为能拆卸的密封固定连接;所述的多孔柱(4)电解质进入端与腔体(3)端面上的安装孔为固定连接。
  6. 根据权利要求1所述的生物电信号传感器,其特征在于,所述的腔体(3)密封端为密封盖(5),该密封盖(5)与腔体(3)的本体(3’)为粘接,或焊接,或为一次成型的整体;所述的多孔柱(4)电解质进入端与腔体(3)端面上的安装孔为能拆卸的固定连接,选为嵌接,或螺纹连接。
  7. 根据权利要求1所述的生物电信号传感器,其特征在于,所述的腔体(3)分为上下两部分,两部分通过能拆卸的密封连接,腔体上部分(3.2)与密封盖(5)为粘接,或焊接,或为一次成型的整体,腔体下部分(3.1)与多孔柱(4)电解质进入端固定连接。
  8. 根据权利要求1所述的生物电信号传感器,其特征在于,所述的多孔 柱(4)为锥状柱;该锥状柱是多孔柱(4)的与生物体接触工作端面的面积小于与电解质进入端面的面积。
  9. 根据权利要求1所述的生物电信号传感器,其特征在于,所述的密封盖(5)上设有电解质补给孔(10)及孔盖(11)。
  10. 根据权利要求1所述的生物电信号传感器,其特征在于,所述的电极(1)为连接有电极线(6)的一个独立的导电体,或为从腔体内壁露出的电极线的导电体端头,或为连接有导电线的腔体导电内壁;所述电极(1)的一部分或电极线(6)密封固定在腔体(3)上,电极(1)另一部分或全部与电解质(2)接触联通。
  11. 根据权利要求1所述的生物电信号传感器,其特征在于,所述的电极(1)通过注塑与腔体(3)的密封端固定连接,或电极(1)与腔体(3)的密封端粘接。
  12. 根据权利要求3所述的生物电信号传感器,其特征在于,所述的导电材料选自金,或银,或银/氯化银,或导电硅胶,或导电聚合物,或导电碳材料,或为所述导电材料的复合材料。
  13. 根据权利要求3所述的生物电信号传感器,其特征在于,所述的绝缘材料选自塑料,或橡胶,或两者的复合材料。
  14. 根据权利要求1所述的生物电信号传感器,其特征在于,所述的电解质(2)为导电液体,或导电胶,或两者的组合。
PCT/CN2014/085141 2014-06-28 2014-08-26 一种生物电信号传感器 WO2015196554A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/322,231 US20170135596A1 (en) 2014-06-28 2014-08-26 Bioelectrical Signal Sensor
CN201480079909.9A CN106999087A (zh) 2014-06-28 2014-08-26 一种生物电信号传感器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410302153.1 2014-06-28
CN201410302153.1A CN104068852A (zh) 2014-06-28 2014-06-28 一种生物电信号传感器

Publications (1)

Publication Number Publication Date
WO2015196554A1 true WO2015196554A1 (zh) 2015-12-30

Family

ID=51590754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085141 WO2015196554A1 (zh) 2014-06-28 2014-08-26 一种生物电信号传感器

Country Status (3)

Country Link
US (1) US20170135596A1 (zh)
CN (3) CN104068852A (zh)
WO (1) WO2015196554A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017172742A1 (en) 2016-03-29 2017-10-05 CeriBell, Inc. Methods and apparatus for electrode placement and tracking
CN108652620A (zh) * 2018-05-30 2018-10-16 华南理工大学 用于采集脑电信号的柔性半干式多层结构电极
TWI673039B (zh) * 2018-08-23 2019-10-01 林必盛 可持續性探測之電極裝置
US11357434B2 (en) 2018-05-31 2022-06-14 CeriBell, Inc. Adjustable geometry wearable electrodes

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10736528B2 (en) * 2015-05-28 2020-08-11 Koninklijke Philips N.V. Dry electrode for bio-potential and skin impedance sensing and method of use
CN105011926B (zh) * 2015-08-11 2018-05-04 苏州格林泰克科技有限公司 一种生物电信号传感器及其用于制作电信号采集装置的方法
CN106560157B (zh) * 2015-10-01 2019-09-03 青岛柏恩鸿泰电子科技有限公司 采集脑电信号的电极和该电极制成的电极帽及其制作工艺
CN105232035B (zh) * 2015-10-15 2018-11-02 苏州格林泰克科技有限公司 一种生物电信号传感器
CN105411584B (zh) * 2015-12-30 2018-04-20 中国科学院半导体研究所 一种集中供湿的脑电帽及柔性微渗电极结构
WO2017150207A1 (ja) * 2016-03-03 2017-09-08 株式会社リコー 磁気計測装置
CN105997061B (zh) * 2016-05-17 2020-11-24 段晏文 生物电信号采集装置
CN107049307A (zh) * 2017-05-02 2017-08-18 臧大维 全自动脑电信号读取头盔
WO2018230445A1 (ja) * 2017-06-16 2018-12-20 Nok株式会社 生体電極
CN107928667B (zh) * 2017-11-28 2020-07-31 北京机械设备研究所 一种脑电采集湿电极
WO2019165606A1 (zh) * 2018-02-28 2019-09-06 陈晓苏 一种生物电采集电极及脑电采集帽
CN108309291B (zh) * 2018-03-12 2023-11-24 复旦大学 一种柔性接触脑电电极及其制备方法
CN109288519A (zh) * 2018-05-29 2019-02-01 兰州大学 一种小型化高耐久的高精度舒适型脑电电极
WO2019239996A1 (ja) * 2018-06-15 2019-12-19 Nok株式会社 生体電極の製造方法
KR102123065B1 (ko) * 2018-07-20 2020-06-15 고려대학교 산학협력단 뇌파 측정을 위한 투과막 기반 반건식 전극
CN110811628A (zh) * 2018-08-14 2020-02-21 智识互通(苏州)生物科技有限公司 具有同步经颅直流电刺激功能的步态图像分析系统
FR3086527B1 (fr) * 2018-10-02 2023-01-06 Urgotech Capteur pour mesurer un potentiel biologique
CN109480836B (zh) * 2019-01-11 2021-10-26 苏州大学附属儿童医院 一种脑电监测用穿戴设备
CN209574689U (zh) * 2019-01-15 2019-11-05 浙江强脑科技有限公司 水凝胶储库脑电电极
CN109893131A (zh) * 2019-03-15 2019-06-18 彭小虎 一种用于生物电信号感测的电极和系统
CN109893143B (zh) * 2019-03-22 2022-05-24 焦作大学 一种心理综合测试仪
CN110786852B (zh) * 2019-10-29 2023-04-07 北京机械设备研究所 一种干湿通用型脑电传感电极
US20230009938A1 (en) 2019-12-12 2023-01-12 Nok Corporation Method for manufacturing biological electrode
WO2021157287A1 (ja) 2020-02-07 2021-08-12 Nok株式会社 生体電極
CN111419229A (zh) * 2020-03-17 2020-07-17 上海交通大学 一种用于脑电采集的准干电极及其制备方法
CN111772630B (zh) * 2020-07-15 2021-09-24 清华大学 具有凝胶微针脑电极的脑机接口
CN113229824A (zh) * 2021-05-18 2021-08-10 十堰市郧阳区人民医院 一种新型自动脑电图帽
CN113959938B (zh) * 2021-09-29 2022-12-09 西安交通大学 一种用于局部电化学阻抗测试的辅助电极连接装置及基于其的测试系统和测试方法
US11724099B1 (en) * 2022-08-16 2023-08-15 Brain Electrophysiology Laboratory Company, LLC Semi-dry electrode for a neural sensor net
CN115844413B (zh) * 2022-11-21 2023-09-22 天津大学 一种新型梳状脑电采集干电极
CN115998413A (zh) * 2023-03-27 2023-04-25 成都美创医疗科技股份有限公司 一种鼻炎治疗器械及生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2287722Y (zh) * 1997-03-04 1998-08-12 北京大学化学与分子工程学院 一种生物电化学传感器
US20020173710A1 (en) * 2001-05-18 2002-11-21 Licata Mark J. Sensor for biopotential measurements
US20020177767A1 (en) * 2000-05-16 2002-11-28 Steve Burton Sensor for biopotential measurements
CN103932704A (zh) * 2013-01-23 2014-07-23 上海帝仪科技有限公司 用于湿电极的皮肤接触装置、湿电极储液箱以及具有该湿电极储液箱的脑电采集电极
CN204142965U (zh) * 2014-08-08 2015-02-04 苏州格林泰克科技有限公司 一种不极化电极

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2895479A (en) * 1957-09-13 1959-07-21 Roger A Lloyd Electrocardiograph electrode
US3474775A (en) * 1967-02-27 1969-10-28 William R Johnson Electrode assembly for skin contact
US3590810A (en) * 1968-05-27 1971-07-06 Honeywell Inc Biomedical body electrode
NL7402355A (nl) * 1974-02-21 1975-08-25 Philips Nv Huidelektrode.
US3862633A (en) * 1974-05-06 1975-01-28 Kenneth C Allison Electrode
US3989036A (en) * 1975-04-02 1976-11-02 Dia Medical System Co., Ltd. Biophysical electrode
US4220159A (en) * 1976-04-23 1980-09-02 Biomedical International Company Electrode
DE2921858A1 (de) * 1979-05-25 1980-11-27 Biotronik Mess & Therapieg Elektrolytelektrode zur ableitung bioelektrischer signale
US6510333B1 (en) * 2000-05-16 2003-01-21 Mark J. Licata Sensor for biopotential measurements
JP2002177231A (ja) * 2000-12-18 2002-06-25 Nou Kinou Kenkyusho:Kk 生体電極構造及び脳波測定用ヘッドギア
CA2613122C (en) * 2005-06-29 2013-01-22 Compumedics Limited Sensor assembly with conductive bridge
JP2009530064A (ja) * 2006-03-22 2009-08-27 エモーティブ システムズ ピーティーワイ リミテッド 電極および電極ヘッドセット
JP5277405B2 (ja) * 2009-11-10 2013-08-28 公益財団法人ヒューマンサイエンス振興財団 脳波測定用電極、脳波測定用電極付きキャップ及び脳波測定装置
JP6003437B2 (ja) * 2012-09-14 2016-10-05 ソニー株式会社 生体信号測定電極及び生体信号測定装置
CN102871657B (zh) * 2012-10-16 2014-04-02 中国人民解放军国防科学技术大学 基于阻抗自适应的脑电信号采集系统及方法
WO2014152806A1 (en) * 2013-03-14 2014-09-25 Encephalodynamics, Inc. Electrode assemblies and electroencephalographs devices
CN104068853B (zh) * 2014-06-28 2016-07-06 苏州格林泰克科技有限公司 一种生物电电极

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2287722Y (zh) * 1997-03-04 1998-08-12 北京大学化学与分子工程学院 一种生物电化学传感器
US20020177767A1 (en) * 2000-05-16 2002-11-28 Steve Burton Sensor for biopotential measurements
US20020173710A1 (en) * 2001-05-18 2002-11-21 Licata Mark J. Sensor for biopotential measurements
CN103932704A (zh) * 2013-01-23 2014-07-23 上海帝仪科技有限公司 用于湿电极的皮肤接触装置、湿电极储液箱以及具有该湿电极储液箱的脑电采集电极
CN204142965U (zh) * 2014-08-08 2015-02-04 苏州格林泰克科技有限公司 一种不极化电极

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017172742A1 (en) 2016-03-29 2017-10-05 CeriBell, Inc. Methods and apparatus for electrode placement and tracking
EP3435859A4 (en) * 2016-03-29 2019-11-13 Ceribell, Inc. METHODS AND APPARATUS FOR PLACING AND MONITORING ELECTRODES
US10888240B2 (en) 2016-03-29 2021-01-12 CeriBell, Inc. Methods and apparatus for electrode placement and tracking
EP4230128A1 (en) * 2016-03-29 2023-08-23 Ceribell, Inc. System for electrode placement
CN108652620A (zh) * 2018-05-30 2018-10-16 华南理工大学 用于采集脑电信号的柔性半干式多层结构电极
US11357434B2 (en) 2018-05-31 2022-06-14 CeriBell, Inc. Adjustable geometry wearable electrodes
TWI673039B (zh) * 2018-08-23 2019-10-01 林必盛 可持續性探測之電極裝置

Also Published As

Publication number Publication date
CN104068852A (zh) 2014-10-01
CN104688223B (zh) 2017-08-04
CN104688223A (zh) 2015-06-10
US20170135596A1 (en) 2017-05-18
CN106999087A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
WO2015196554A1 (zh) 一种生物电信号传感器
CN107690307B (zh) 用于生物电势和皮肤阻抗感测的干电极以及使用方法
JP6215215B2 (ja) 乾式電極による生体電位検出のための装置、システムおよび方法
CN104068853B (zh) 一种生物电电极
Wang et al. PDMS-based low cost flexible dry electrode for long-term EEG measurement
CN105011926B (zh) 一种生物电信号传感器及其用于制作电信号采集装置的方法
CN104382594B (zh) 脑电电极帽
US20210361235A1 (en) Electroencephalogram electrode cap
US20020177767A1 (en) Sensor for biopotential measurements
CN106419913A (zh) 一种用于生物电信号感测的半干电极、系统以及方法
JP2005521458A (ja) 突起をもつ電極を有するモニタリングシステム
CN105232035B (zh) 一种生物电信号传感器
JP2012183302A (ja) 生体情報測定及び生体治療に使用する生体電極と、これに使用する電極パッド
Gao et al. A novel bristle-shaped semi-dry electrode with low contact impedance and ease of use features for EEG signal measurements
WO2017156716A1 (zh) 一种传感器组件
Paul et al. Electrode-skin impedance characterization of in-ear electrophysiology accounting for cerumen and electrodermal response
WO2012036639A1 (en) Eeg electrodes with gated electrolyte storage chamber and an adjustable eeg headset assembly
CN108309291A (zh) 一种柔性接触脑电电极及其制备方法
CN105997061B (zh) 生物电信号采集装置
CN201067402Y (zh) 医用皮肤电极装置
CN102894976B (zh) 一种圆形阵列脑部电阻抗断层成像用电极
CN204909429U (zh) 生物电信号传感器
KR200278492Y1 (ko) 심전도용 생체전극
CN108042128A (zh) 心电图监测装置及其制造方法
CN216439210U (zh) 一种脑电采集装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895675

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15322231

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14895675

Country of ref document: EP

Kind code of ref document: A1