WO2015196412A1 - Metal doped ge-sb-te-based multivalue storage phase-change material and phase-change memory - Google Patents

Metal doped ge-sb-te-based multivalue storage phase-change material and phase-change memory Download PDF

Info

Publication number
WO2015196412A1
WO2015196412A1 PCT/CN2014/080823 CN2014080823W WO2015196412A1 WO 2015196412 A1 WO2015196412 A1 WO 2015196412A1 CN 2014080823 W CN2014080823 W CN 2014080823W WO 2015196412 A1 WO2015196412 A1 WO 2015196412A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
change material
doped
metal
resistance state
Prior art date
Application number
PCT/CN2014/080823
Other languages
French (fr)
Chinese (zh)
Inventor
缪向水
余念念
童浩
徐荣刚
赵俊峰
张树杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/080823 priority Critical patent/WO2015196412A1/en
Priority to CN201480037056.2A priority patent/CN105393375B/en
Publication of WO2015196412A1 publication Critical patent/WO2015196412A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching

Landscapes

  • Semiconductor Memories (AREA)

Abstract

A metal doped Ge-Sb-Te-based multivalue storage phase-change material, represented by general formula MX(GeaSbbTec)1-X, wherein M is a doping metal element, M is at least one of Cu, Ag and Zn, x represents the atom number percentage of M, 0<x<20%, and M is uniformly distributed among the GeaSbbTec. Under an externally applied impulse voltage or impulse current, three-state storage in an amorphous high-resistance state, an amorphous low-resistance state and a crystalline low-resistance state of the phase-change material is achieved, the states are apparently distinguished, the intermediate resistance state is highly controllable, a small electric field is required to acquire the intermediate resistance state, the power consumption is low, and the acquired intermediate resistance state has good stability and good repeatability. Also provided is a phase-change memory comprising the metal doped Ge-Sb-Te-based multivalue storage phase-change material.

Description

一种金属掺杂的 Ge-Sb-Te基多值存储相变材料及相变存储器 技术领域  Metal-doped Ge-Sb-Te based multi-value storage phase change material and phase change memory
本发明涉及相变存储材料领域, 特别是涉及一种金属掺杂的 Ge-Sb-Te基 多值存储相变材料及相变存储器。 背景技术  The present invention relates to the field of phase change memory materials, and more particularly to a metal doped Ge-Sb-Te based multi-value storage phase change material and phase change memory. Background technique
相变存储器由于表现出显著的技术优势,被国际半导体工业协会认为可取 代闪存和动态随机存储等而成为未来半导体存储器主流产品之一。 目前,相变 存储器的研究主要集中在高速、 低功耗等方面。 为适应海量信息存储的要求, 相变存储器的高密度存储研究显得尤为重要。  Phase change memory has become one of the mainstream semiconductor memory products in the future due to its outstanding technical advantages and the International Semiconductor Industry Association's belief that it can replace flash memory and dynamic random access. At present, research on phase change memory mainly focuses on high speed and low power consumption. In order to meet the requirements of massive information storage, high-density storage research of phase change memory is particularly important.
而实现高密度相变存储器的传统方法包括:减小相变单元面积和减小外围 电路面积, 前者需要对器件结构进行改进以及受到光刻尺寸的限制; 后者需对 集成电路设计优化。如果能够充分利用相变材料在晶态和非晶态之间电阻的差 异(通常为几十倍到上百倍)实现大于 2位的多值存储, 则可避开上述传统方 法的问题。这样就可以基于现有的相变存储器光刻技术和集成电路设计而大大 扩充存储容量。  Conventional methods for implementing high-density phase-change memories include: reducing the area of the phase-change unit and reducing the area of the peripheral circuit. The former requires improvement of the device structure and is limited by the size of the lithography; the latter requires optimization of the integrated circuit design. The problem of the above conventional method can be avoided if the difference in resistance between the crystalline state and the amorphous state (usually several tens to hundreds of times) can be fully utilized to realize multi-value storage of more than 2 bits. This greatly expands the memory capacity based on existing phase change memory lithography and integrated circuit design.
目前,业内报道的多值存储材料多为主流相变材料( Ge-Sb-Te基相变材料) 掺杂非金属元素或掺杂非主流相变材料, 前者存在中间阻态难以控制、所需电 场大, 能耗高等缺点, 后者则存在相变性能较差, 中间态不稳定等缺点。 发明内容  At present, the multi-value storage materials reported in the industry are mostly mainstream phase change materials (Ge-Sb-Te-based phase change materials) doped with non-metallic elements or doped with non-mainstream phase change materials. The former has an intermediate resistance state that is difficult to control and needs. The electric field is large, the energy consumption is high, and the latter has the disadvantages of poor phase transition performance and unstable intermediate state. Summary of the invention
有鉴于此, 本发明实施例第一方面提供了一种金属掺杂的 Ge-Sb-Te基多 值存储相变材料, 用以解决现有技术中多值存储材料存在的相变性能较差、 中 间态不稳定、 能耗高等问题。 In view of this, the first aspect of the present invention provides a metal-doped Ge-Sb-Te based multi-value storage phase change material for solving the poor phase change performance of the multi-valued storage material in the prior art. , medium Problems such as unstable state of the environment and high energy consumption.
第一方面, 本发明实施例提供了一种金属掺杂的 Ge-Sb-Te基多值存储相 变材料, 所述存储相变材料的通式为: M GeaSbbTeJn, 其中 M为掺杂金属元 素, 所述 M为 Cu、 Ag和 Zn中的至少一种, X代表 M的原子个数百分比, 0<x<20%, 所述 M均匀散布在 GeaSbbTec中。 In a first aspect, an embodiment of the present invention provides a metal-doped Ge-Sb-Te based multi-value storage phase change material, wherein the storage phase change material has the general formula: M GeaSbbTeJn, wherein M is a doped metal element The M is at least one of Cu, Ag, and Zn, and X represents a percentage of the number of atoms of M, 0 < x < 20%, and the M is uniformly dispersed in Ge a Sb b Te c .
本发明实施方式中, 所述相变材料为 M GezSbzTeA^  In an embodiment of the invention, the phase change material is M GezSbzTeA^
本发明实施方式中, 所述相变材料为 M Ge^bzTe^^  In an embodiment of the invention, the phase change material is M Ge^bzTe^^
本发明实施方式中, 所述相变材料为 Mx(Ge2Sb2Te4)k。 In an embodiment of the invention, the phase change material is M x (Ge 2 Sb 2 Te 4 )k.
本发明实施方式中, 所述相变材料为 Mx(Ge3Sb4Te8)k。 In an embodiment of the invention, the phase change material is M x (Ge 3 Sb 4 Te 8 )k.
本发明实施方式中, 通过给所述相变材料施加脉冲电压或脉冲电流, 所述 相变材料可在非晶高阻态、 非晶低阻态、 晶态低阻态三种不同状态之间转换, 从而实现多值存储。  In the embodiment of the present invention, by applying a pulse voltage or a pulse current to the phase change material, the phase change material may be in three different states of an amorphous high resistance state, an amorphous low resistance state, and a crystalline low resistance state. Convert to achieve multi-value storage.
本发明实施方式中,通过给所述相变材料施加第一脉冲电压或脉冲电流可 使所述掺杂金属元素 M原子在两极之间形成导电通路, 实现非晶高阻态到非 晶低阻态的转变,通过给所述相变材料施加第二脉冲电压或脉冲电流使所述相 变材料晶化, 实现非晶低阻态到晶态低阻态的转变, 所述第一脉冲电压或脉冲 电流小于或等于第二脉冲电压或脉冲电流的 1/2。  In the embodiment of the present invention, by applying a first pulse voltage or a pulse current to the phase change material, the doped metal element M atom can form a conductive path between the two poles to realize an amorphous high resistance state to an amorphous low resistance. Transition of the state, by applying a second pulse voltage or a pulse current to the phase change material to crystallize the phase change material to achieve a transition from an amorphous low resistance state to a crystalline low resistance state, the first pulse voltage or The pulse current is less than or equal to 1/2 of the second pulse voltage or pulse current.
本发明实施方式中, 所述第一脉冲电压为 0.25V-1V; 所述第二脉冲电压 为 0.5V-2V。  In an embodiment of the invention, the first pulse voltage is 0.25V-1V; and the second pulse voltage is 0.5V-2V.
本发明实施方式中,所述非晶高阻态与所述晶态低阻态之间的电阻变化幅 度在两个数量级以上。  In an embodiment of the invention, the magnitude of the change in resistance between the amorphous high resistance state and the crystalline low resistance state is more than two orders of magnitude.
本发明实施方式中, 所述相变材料釆用溅射法、 电子束蒸发法、 气相沉积 法或原子层沉积法制备得到。 In an embodiment of the invention, the phase change material is sputtered, electron beam evaporated, vapor deposited Prepared by law or atomic layer deposition.
本发明实施方式中, 所述相变材料在惰性气体的氛围下, 釆用 Ge、 Sb、 Te、 金属 M 、 四个单质靶共溅射形成。  In an embodiment of the invention, the phase change material is formed by co-sputtering with four elemental targets of Ge, Sb, Te, metal M and under an inert gas atmosphere.
本发明实施方式中, 所述相变材料在惰性气体的氛围下, 釆用 Ge-Sb-Te 合金靶、 金属 M单质靶共溅射形成。  In an embodiment of the invention, the phase change material is formed by co-sputtering with a Ge-Sb-Te alloy target and a metal M elemental target under an inert gas atmosphere.
本发明实施例第一方面提供的金属掺杂的 Ge-Sb-Te基多值存储相变材料, 在外加脉冲电压或脉冲电流下, 可实现非晶高阻态, 非晶低阻态, 晶态低阻态 的三态存储,各个状态之间区分明显且中间阻态可控性强, 获取中间阻态所需 的电场较小, 能耗较低, 利用非晶态相变材料中金属原子 M在电场作用下形 成导电通道获得的中间阻态具有良好的稳定性, 可重复性好。  The metal-doped Ge-Sb-Te-based multi-value storage phase change material provided by the first aspect of the present invention can realize amorphous high-resistance state, amorphous low-resistance state, and crystal under external pulse voltage or pulse current. Three-state storage of low-resistance state, the distinction between each state is obvious and the intermediate resistance state is controllable, the electric field required to obtain the intermediate resistance state is small, the energy consumption is low, and the metal atom in the amorphous phase change material is utilized. The intermediate resistance state obtained by forming a conductive path under the action of an electric field has good stability and good repeatability.
第二方面, 本发明实施例提供了一种相变存储器, 包括相变存储单元, 所 述相变存储单元包括依次设置于衬底上的顶电极、第一隔离层、相变存储材料 薄膜层、第二隔离层、下电极,所述顶电极与所述相变存储材料薄膜层电接触, 所述相变存储材料薄膜层的材质为本发明实施例第一方面所述的金属掺杂的 Ge-Sb-Te基多值存储相变材料。  In a second aspect, an embodiment of the present invention provides a phase change memory including a phase change memory unit, wherein the phase change memory unit includes a top electrode, a first isolation layer, and a phase change memory material film layer sequentially disposed on a substrate. a second isolation layer and a lower electrode, wherein the top electrode is in electrical contact with the phase change memory material film layer, and the material of the phase change memory material film layer is metal doped according to the first aspect of the present invention. Ge-Sb-Te based multi-value storage phase change material.
本发明实施方式中, 所述相变存储材料薄膜层的厚度为 10nm-120nm。 本发明实施例第二方面提供的相变存储器, 在外加脉冲电压或脉冲电流 下, 可实现非晶高阻态, 非晶低阻态, 晶态低阻态的三态存储, 可实现高密度 多值存储, 稳定性高, 可重复性好, 且基于传统的相变存储器单元结构, 没有 提升工艺复杂度, 编程方法简单, 没有提升电路设计复杂度。  In an embodiment of the invention, the phase change memory material thin film layer has a thickness of 10 nm to 120 nm. The phase change memory provided by the second aspect of the present invention can realize a three-state storage of an amorphous high-resistance state, an amorphous low-resistance state, and a crystalline low-resistance state under an applied pulse voltage or pulse current, and can realize high density. Multi-value storage, high stability, good repeatability, and based on the traditional phase change memory cell structure, no process complexity is improved, the programming method is simple, and there is no improvement in circuit design complexity.
本发明实施例的优点将会在下面的说明书中部分阐明, 一部分根据说明书 是显而易见的, 或者可以通过本发明实施例的实施而获知。 附图说明 The advantages of the embodiments of the present invention will be set forth in part in the description which follows. DRAWINGS
图 1 为 GST晶态薄膜的 NaCl型原子排列;  Figure 1 shows the NaCl-type atomic arrangement of the GST crystalline film;
图 2 为本发明实施例的金属掺杂 Ge-Sb-Te基多值存储相变材料分别处 于晶化低阻态、 非晶低阻态和非晶高阻态的微观结构;  2 is a microstructure of a metal-doped Ge-Sb-Te based multi-value storage phase change material in a crystallization low resistance state, an amorphous low resistance state, and an amorphous high resistance state according to an embodiment of the present invention;
图 3为基于本发明实施例的金属掺杂的 Ge-Sb-Te基多值存储相变材料的 相变存储器单元结构示意图;  3 is a schematic structural diagram of a phase change memory cell of a metal-doped Ge-Sb-Te based multi-value storage phase change material according to an embodiment of the present invention;
图 4 为本发明实施例一的相变存储器实现多值存储的脉冲示意图; 图 5本发明实施例一的相变存储器的存储单元的脉冲测试结果。 具体实施方式  4 is a schematic diagram of a pulse for realizing multi-value storage of a phase change memory according to Embodiment 1 of the present invention; FIG. 5 is a pulse test result of a memory cell of a phase change memory according to Embodiment 1 of the present invention. detailed description
以下所述是本发明实施例的优选实施方式,应当指出,对于本技术领域的 普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以做出若干改 进和润饰, 这些改进和润饰也视为本发明实施例的保护范围。  The following are the preferred embodiments of the embodiments of the present invention, and it should be noted that those skilled in the art can make some improvements and refinements without departing from the principles of the embodiments of the present invention. And retouching is also considered to be the scope of protection of the embodiments of the present invention.
本发明实施例第一方面提供了一种金属掺杂的 Ge-Sb-Te基多值存储相变 材料, 用以解决现有技术中多值存储材料存在相变性能较差, 中间态不稳定, 能耗高等问题。  The first aspect of the present invention provides a metal-doped Ge-Sb-Te-based multi-valued storage phase change material, which is used to solve the problem that the multi-value storage material in the prior art has poor phase transition performance and the intermediate state is unstable. , high energy consumption and other issues.
第一方面, 本发明实施例提供了一种金属掺杂的 Ge-Sb-Te基多值存储相 变材料, 所述存储相变材料的通式为: M GeaSbbTeJn, 其中 M为掺杂金属元 素, 所述 M为 Cu、 Ag和 Zn中的至少一种, X代表 M的原子个数百分比, 0<x<20%, 所述 M均匀散布在 GeaSbbTec中。 In a first aspect, an embodiment of the present invention provides a metal-doped Ge-Sb-Te based multi-value storage phase change material, wherein the storage phase change material has the general formula: M GeaSbbTeJn, wherein M is a doped metal element The M is at least one of Cu, Ag, and Zn, and X represents a percentage of the number of atoms of M, 0 < x < 20%, and the M is uniformly dispersed in Ge a Sb b Te c .
本发明实施方式中, 所述相变材料为 M GezSbzTe^^  In an embodiment of the invention, the phase change material is M GezSbzTe^^
本发明实施方式中, 所述相变材料为 M Ge^bzTe ^ 本发明实施方式中, 所述相变材料为
Figure imgf000007_0001
In an embodiment of the invention, the phase change material is M Ge^bzTe ^ In an embodiment of the invention, the phase change material is
Figure imgf000007_0001
本发明实施方式中, 所述相变材料为 Mx(Ge3Sb4Te8)k。 In an embodiment of the invention, the phase change material is M x (Ge 3 Sb 4 Te 8 )k.
本发明实施方式中,通过给所述相变材料施加脉冲电压或脉冲电流, 所述 相变材料可在非晶高阻态、 非晶低阻态、 晶态低阻态三种不同状态之间转换, 从而实现多值存储。  In the embodiment of the present invention, by applying a pulse voltage or a pulse current to the phase change material, the phase change material may be in three different states of an amorphous high resistance state, an amorphous low resistance state, and a crystalline low resistance state. Convert to achieve multi-value storage.
本发明实施方式中,通过给所述相变材料施加第一脉冲电压或脉冲电流可 使所述掺杂金属元素 M原子在两极之间形成导电通路, 实现非晶高阻态到非 晶低阻态的转变,通过给所述相变材料施加第二脉冲电压或脉冲电流使所述相 变材料晶化, 实现非晶低阻态到晶态低阻态的转变, 所述第一脉冲电压或脉冲 电流小于或等于第二脉冲电压或脉冲电流的 1/2。  In the embodiment of the present invention, by applying a first pulse voltage or a pulse current to the phase change material, the doped metal element M atom can form a conductive path between the two poles to realize an amorphous high resistance state to an amorphous low resistance. Transition of the state, by applying a second pulse voltage or a pulse current to the phase change material to crystallize the phase change material to achieve a transition from an amorphous low resistance state to a crystalline low resistance state, the first pulse voltage or The pulse current is less than or equal to 1/2 of the second pulse voltage or pulse current.
本发明实施方式中, 所述第一脉冲电压为 0.25V-1V; 所述第二脉冲电压 为 0.5V-2V。  In an embodiment of the invention, the first pulse voltage is 0.25V-1V; and the second pulse voltage is 0.5V-2V.
本发明实施方式中,所述非晶高阻态与所述晶态低阻态之间的电阻变化幅 度在两个数量级以上。  In an embodiment of the invention, the magnitude of the change in resistance between the amorphous high resistance state and the crystalline low resistance state is more than two orders of magnitude.
GST ( Ge-Sb-Te )薄膜的原子排列如图 1所示, 为 NaCl型原子排列, 其 结构中, 存在未被填入原子的晶格点, 即空位, 空位占整个晶格的比率为空位 率。 由于 Ge-Sb-Te基相变材料具有 10%-20%的空位率, 为金属原子提供了迁 移的空间。 金属具有良好的导电性, 在 Ge-Sb-Te基相变材料中掺入原子半径 较小、 活性较大的金属材料 Cu ( 128pm )、 Ag ( 144pm )、 Zn ( 133pm ), 当没 有外加电压时, 金属原子均匀的散布在 Ge-Sb-Te基相变材料之中, 其微观结 构如图 2 A所示, 此时为非晶高阻态。 当非晶态 Ge-Sb-Te基相变材料上下两 端加一定电压, 金属原子在电场的作用下迁移在上下电极之间形成导电通路, 该电场提供的能量足够低,保证相变材料仍为非晶态,从而得到介于非晶高阻 态和晶态低阻态之间的非晶低阻态, 此时的微观结构如图 2 B所示。 继续加大 电压至单元发生相变达到晶态低阻态, 此时的微观结构如图 2 C所示。 图 2中 的 M为金属原子。 利用掺杂的金属原子在低压下形成的导电通道得到的非晶 低阻态, 与相变材料本身所具有的非晶高阻态和多晶低阻态形成三态存储,从 而实现了高密度存储。 The atomic arrangement of the GST (Ge-Sb-Te) film is shown in Figure 1. It is a NaCl-type atomic arrangement. In its structure, there are lattice points that are not filled with atoms, that is, vacancies. The ratio of vacancies to the entire lattice is Vacancy rate. Since the Ge-Sb-Te-based phase change material has a vacancy rate of 10% to 20%, it provides a space for migration of metal atoms. The metal has good electrical conductivity. The Ge-Sb-Te-based phase change material is doped with a small atomic radius and a relatively active metal material Cu (128pm), Ag (144pm), Zn (133pm), when no applied voltage. When the metal atoms are uniformly dispersed in the Ge-Sb-Te-based phase change material, the microstructure is as shown in Fig. 2A, and the amorphous state is high. When a certain voltage is applied to the upper and lower ends of the amorphous Ge-Sb-Te-based phase change material, the metal atoms migrate under the action of the electric field to form a conductive path between the upper and lower electrodes. The energy provided by the electric field is sufficiently low to ensure that the phase change material is still amorphous, thereby obtaining an amorphous low resistance state between the amorphous high resistance state and the crystalline low resistance state, and the microstructure at this time is as shown in FIG. 2 . B shows. Continue to increase the voltage until the phase transition of the cell reaches the crystalline low-resistance state. The microstructure at this time is shown in Figure 2C. M in Fig. 2 is a metal atom. The amorphous low-resistance state obtained by using the conductive channel formed by the doped metal atom at a low voltage forms a tri-state memory with the amorphous high-resistance state and the polycrystalline low-resistance state of the phase change material itself, thereby realizing high density. storage.
本发明实施方式中, 所述相变材料釆用溅射法、 电子束蒸发法、 气相沉积 法或原子层沉积法制备得到。  In an embodiment of the invention, the phase change material is prepared by a sputtering method, an electron beam evaporation method, a vapor deposition method or an atomic layer deposition method.
本发明实施方式中, 所述相变材料在惰性气体的氛围下, 釆用 Ge、 Sb、 Te、 金属 M 、 四个单质靶共溅射形成。  In an embodiment of the invention, the phase change material is formed by co-sputtering with four elemental targets of Ge, Sb, Te, metal M and under an inert gas atmosphere.
本发明实施方式中, 所述相变材料在惰性气体的氛围下, 釆用 Ge-Sb-Te 合金靶、 金属 M单质靶共溅射形成。  In an embodiment of the invention, the phase change material is formed by co-sputtering with a Ge-Sb-Te alloy target and a metal M elemental target under an inert gas atmosphere.
本发明实施例第一方面提供的金属掺杂的 Ge-Sb-Te基多值存储相变材 料, 在外加脉冲电压或脉冲电流下, 可实现非晶高阻态, 非晶低阻态, 晶态低 阻态的三态存储,各个状态之间区分明显且中间阻态可控性强, 获取中间阻态 所需的电场较小, 能耗较低, 利用非晶态相变材料中金属原子 M在电场作用 下形成导电通道获得的中间阻态具有良好的稳定性, 可重复性好。  The metal-doped Ge-Sb-Te-based multi-value storage phase change material provided by the first aspect of the present invention can realize amorphous high-resistance state, amorphous low-resistance state, and crystal under external pulse voltage or pulse current. Three-state storage of low-resistance state, the distinction between each state is obvious and the intermediate resistance state is controllable, the electric field required to obtain the intermediate resistance state is small, the energy consumption is low, and the metal atom in the amorphous phase change material is utilized. The intermediate resistance state obtained by forming a conductive path under the action of an electric field has good stability and good repeatability.
第二方面, 本发明实施例提供了一种相变存储器, 包括相变存储单元, 所 述相变存储单元包括依次设置于衬底上的顶电极、第一隔离层、相变存储材料 薄膜层、第二隔离层、下电极,所述顶电极与所述相变存储材料薄膜层电接触, 所述相变存储材料薄膜层的材质为本发明实施例第一方面所述的金属掺杂的 Ge-Sb-Te基多值存储相变材料。 本发明实施方式中, 所述相变存储材料薄膜层的厚度为 10nm-120nm。 本发明实施例对所述衬底、 顶电极、 下电极、 第一隔离层与第二隔离层的 材质不做特殊限定, 现有常用均可。 In a second aspect, an embodiment of the present invention provides a phase change memory including a phase change memory unit, wherein the phase change memory unit includes a top electrode, a first isolation layer, and a phase change memory material film layer sequentially disposed on a substrate. a second isolation layer and a lower electrode, wherein the top electrode is in electrical contact with the phase change memory material film layer, and the material of the phase change memory material film layer is metal doped according to the first aspect of the present invention. Ge-Sb-Te based multi-value storage phase change material. In an embodiment of the invention, the phase change memory material thin film layer has a thickness of 10 nm to 120 nm. In the embodiment of the present invention, the materials of the substrate, the top electrode, the lower electrode, the first isolation layer and the second isolation layer are not particularly limited, and may be commonly used.
本发明实施方式中, 所述衬底的材质为 Si02In an embodiment of the invention, the material of the substrate is Si0 2 .
本发明实施方式中, 所述顶电极和下电极的材质为 TiW。  In the embodiment of the invention, the material of the top electrode and the lower electrode is TiW.
本发明实施方式中, 所述第一隔离层与第二隔离层的材质均为 Si02。 本发明实施例第二方面提供的相变存储器, 在外加脉冲电压或脉冲电流 下, 可实现非晶高阻态, 非晶低阻态, 晶态低阻态的三态存储, 可实现高密度 多值存储, 稳定性高, 可重复性好, 且基于传统的相变存储器单元结构, 没有 提升工艺复杂度, 编程方法简单, 没有提升电路设计复杂度。 In the embodiment of the present invention, the materials of the first isolation layer and the second isolation layer are both SiO 2 . The phase change memory provided by the second aspect of the present invention can realize a three-state storage of an amorphous high-resistance state, an amorphous low-resistance state, and a crystalline low-resistance state under an applied pulse voltage or pulse current, and can realize high density. Multi-value storage, high stability, good repeatability, and based on the traditional phase change memory cell structure, no process complexity is improved, the programming method is simple, and there is no improvement in circuit design complexity.
下面分多个实施例对本发明实施例进行进一步的说明。本发明实施例不限 定于以下的具体实施例。 在不变主权利的范围内, 可以适当的进行变更实施。  The embodiments of the present invention are further described below in various embodiments. The embodiments of the present invention are not limited to the specific embodiments below. Changes can be implemented as appropriate within the scope of the invariable principal rights.
实施例一  Embodiment 1
一种 Cu掺杂的 Ge2Sb2Te5相变存储材料, 结构式为: Cux(Ge2Sb2Te5 x, 其中 x=5%, 其釆用 Cu、 Ge、 Sb、 Te四种单质靶共溅射而成。 A Cu-doped Ge 2 Sb 2 Te 5 phase change memory material having the structural formula: Cu x (Ge 2 Sb 2 Te 5 x , wherein x=5%, and the other elements are Cu, Ge, Sb, Te The target is co-sputtered.
将 Ci GezSbzTes)^作为相变存储材料薄膜层材质,制备得到相变存储器, 该相变存储器的相变存储单元示意图如图 3 所示, 包括依次设置在衬底 101 上的顶电极 10、 第一隔离层 20、 相变存储材料薄膜层 30、 第二隔离层 40、 下 电极 50,顶电极 10与相变存储材料薄膜层 30电接触,顶电极 10和下电极 50 的材质为 TiW, 厚度为 200nm, 第一隔离层 20与第二隔离层 40的材质均为 Si02, 厚度为 100nm, 相变存储材料薄膜层 30的材质为
Figure imgf000009_0001
厚 度为 120nm。 实施例二
A phase change memory is prepared by using Ci GezSbzTes) as a material of a phase change memory material film layer. The phase change memory cell of the phase change memory is shown in FIG. 3, and includes a top electrode 10, which is sequentially disposed on the substrate 101. An isolation layer 20, a phase change memory material film layer 30, a second isolation layer 40, a lower electrode 50, and a top electrode 10 are in electrical contact with the phase change memory material film layer 30. The top electrode 10 and the lower electrode 50 are made of TiW, and have a thickness. The material of the first isolation layer 20 and the second isolation layer 40 is Si0 2 and the thickness is 100 nm, and the material of the phase change memory material film layer 30 is 200 nm.
Figure imgf000009_0001
The thickness is 120 nm. Embodiment 2
一种 Ag掺杂的 Ge2Sb2Te5相变存储材料, 结构式为: Agx(Ge2Sb2Te5)1-x, 其中 x=10%, 其釆用 Ag、 Ge、 Sb、 Te四种单质靶共溅射而成。 An Ag-doped Ge 2 Sb 2 Te 5 phase change memory material having the structural formula: Ag x (Ge 2 Sb 2 Te 5 ) 1-x , wherein x=10%, and its use of Ag, Ge, Sb, Te Four elemental targets are co-sputtered.
实施例三  Embodiment 3
一种 Zn掺杂的 Ge2Sb2Te5相变存储材料, 结构式为: Znx(Ge2Sb2Te5)1-x, 其中 x=15%, 其采用 Zn、 Ge、 Sb、 Te四种单质靶共溅射而成。 A Zn-doped Ge 2 Sb 2 Te 5 phase change memory material having the structural formula: Zn x (Ge 2 Sb 2 Te 5 ) 1-x , wherein x=15%, which uses Zn, Ge, Sb, Te IV Single element targets are co-sputtered.
实施例四  Embodiment 4
一种 Cu掺杂的 GeiSbzTea相变存储材料, 结构式为:
Figure imgf000010_0001
A Cu-doped GeiSbzTea phase change memory material having the structural formula:
Figure imgf000010_0001
其中 x=5%, 其采用 Cu、 Ge、 Sb、 Te四种单质靶共溅射而成。 Among them, x=5%, which is formed by sputtering of four kinds of single targets of Cu, Ge, Sb and Te.
实施例五  Embodiment 5
一种 Ag掺杂的 Ge3Sb4Te8相变存储材料, 结构式为: Agx(Ge3Sb4Te8)1-x, 其中 x=15%, 其釆用 Ag、 Ge、 Sb、 Te四种单质靶共溅射而成。 An Ag-doped Ge 3 Sb 4 Te 8 phase change memory material having the structural formula: Ag x (Ge 3 Sb 4 Te 8 ) 1-x , wherein x=15%, and its use of Ag, Ge, Sb, Te Four elemental targets are co-sputtered.
实施例六  Embodiment 6
一种 Zn掺杂的 Ge2Sb2Te4相变存储材料, 结构式为: Znx(Ge2Sb2Te4)1-x, 其中 x=15%, 其釆用 Zn、 Ge、 Sb、 Te四种单质靶共溅射而成。 A Zn-doped Ge 2 Sb 2 Te 4 phase change memory material having the structural formula: Zn x (Ge 2 Sb 2 Te 4 ) 1-x , wherein x=15%, and 釆, Zn, Ge, Sb, Te Four elemental targets are co-sputtered.
实施例七  Example 7
一种 Cu掺杂的 Ge3Sb4Te8相变存储材料, 结构式为: Cux(Ge3Sb4Te8)1-x, 其中 x=10%, 其釆用 Cu、 Ge、 Sb、 Te四种单质靶共溅射而成。 A Cu-doped Ge 3 Sb 4 Te 8 phase change memory material having the structural formula: Cu x (Ge 3 Sb 4 Te 8 ) 1-x , wherein x=10%, and its use of Cu, Ge, Sb, Te Four elemental targets are co-sputtered.
实施例八  Example eight
一种 Ag掺杂的 Ge^bzTeA相变存储材料, 结构式为:
Figure imgf000010_0002
An Ag-doped Ge^bzTeA phase change memory material having the structural formula:
Figure imgf000010_0002
其中 x=10%, 其采用 Ag、 Ge、 Sb、 Te四种单质靶共溅射而成。 Among them, x=10%, which is sputtered by four kinds of single targets of Ag, Ge, Sb and Te.
实施例九 一种 Cu掺杂的 Ge2Sb2Te4相变存储材料, 结构式为: Cux(Ge2Sb2Te4)n, 其中 x=10%, 其釆用 Cu、 Ge、 Sb、 Te四种单质靶共溅射而成。 Example nine A Cu-doped Ge 2 Sb 2 Te 4 phase change memory material having the structural formula: Cu x (Ge 2 Sb 2 Te 4 )n, wherein x=10%, and the other uses Cu, Ge, Sb, Te The single target is co-sputtered.
实施例十  Example ten
一种 Ag掺杂的 Ge2Sb2Te4相变存储材料, 结构式为: Agx(Ge2Sb2Te4)n, 其中 x=20%, 其釆用 Ag、 Ge、 Sb、 Te四种单质靶共溅射而成。 效果实施例 为有力支持本发明实施例的有益效果, 提供效果实施例如 下, 用以评测本发明实施例提供的产品的性能。 An Ag-doped Ge 2 Sb 2 Te 4 phase change memory material having the structural formula: Ag x (Ge 2 Sb 2 Te 4 )n, wherein x=20%, and the latter are four kinds of Ag, Ge, Sb and Te The single target is co-sputtered. The effect embodiment is to strongly support the beneficial effects of the embodiments of the present invention, and provides an effect implementation, for example, to evaluate the performance of the product provided by the embodiment of the present invention.
将本发明实施例一的釆用 Ci GezSbzTes)^相变存储材料的相变存储单元 进行脉冲测试, 图 4为测试脉冲示意图。 其中, 测试数据如表 1所示; 脉冲测 试结果如图 5所示。  The phase change memory cell of the Ci GezSbzTes) phase change memory material of the first embodiment of the present invention is subjected to pulse test, and FIG. 4 is a schematic diagram of the test pulse. Among them, the test data is shown in Table 1; the pulse test results are shown in Figure 5.
表 1  Table 1
Figure imgf000011_0001
图 5中曲线由上至下依次为: 非晶高阻态, 非晶低阻态, 晶化低阻态。 从 图中可以看出, 本发明实施例提供的金属掺杂的 Ge-Sb-Te基多值存储相变材 料在各个状态之间区分明显且中间状态可控性强。本发明金属掺杂的 Ge-Sb-Te 基多值存储相变材料,利用非晶态相变材料中金属原子在电场作用下形成导电 通道获得的中间阻态具有良好的稳定性, 可重复性好。且获取中间阻态形成导 电通道所需的电场较小, 能耗较低。 此外, 基于传统的相变存储器单元结构 没有提升工艺复杂度, 编程方法简单, 没有提升电路设计复杂度。
Figure imgf000011_0001
The curves in Figure 5 are from top to bottom: amorphous high resistance state, amorphous low resistance state, and crystallized low resistance state. It can be seen from the figure that the metal-doped Ge-Sb-Te based multi-value storage phase change material provided by the embodiment of the invention has obvious distinction between states and strong controllability of the intermediate state. The metal-doped Ge-Sb-Te based multi-value storage phase change material of the invention has good stability and repeatability by using an intermediate phase change state obtained by forming a conductive path by a metal atom in an amorphous phase change material under an electric field. it is good. Obtaining an intermediate resistance state guide The electric field requires less electric field and lower energy consumption. In addition, the traditional phase change memory cell structure does not improve the process complexity, the programming method is simple, and there is no improvement in circuit design complexity.

Claims

权 利 要 求 Rights request
1、 一种金属掺杂的 Ge-Sb-Te基多值存储相变材料, 其特征在于, 所述存 储相变材料的通式为: M GeaSbbTeJ^, 其中 M为掺杂金属元素, 所述 M为 Cu、 Ag和 Zn中的至少一种, X代表 M的原子个数百分比, 0<x<20%, 所述 M均匀散布在 GeaSbbTec中。 A metal-doped Ge-Sb-Te-based multi-value storage phase change material, characterized in that: the memory phase change material has the general formula: M GeaSbbTeJ^, wherein M is a doped metal element, M is at least one of Cu, Ag, and Zn, and X represents a percentage of the number of atoms of M, 0 < x < 20%, and the M is uniformly dispersed in Ge a Sb b Te c .
2、如权利要求 1所述的金属掺杂的 Ge-Sb-Te基多值存储相变材料, 其特 征在于, 所述相变材料为 Mx(Ge2Sb2Te5)^。 2. The metal-doped Ge-Sb-Te based multi-value storage phase change material according to claim 1, wherein the phase change material is M x (Ge 2 Sb 2 Te 5 )^.
3、 如权利要求 1所述的金属掺杂的 Ge-Sb-Te基多值存储相变材料, 其特 征在于, 所述相变材料为
Figure imgf000013_0001
3. The metal-doped Ge-Sb-Te based multi-value storage phase change material according to claim 1, wherein the phase change material is
Figure imgf000013_0001
4、 如权利要求 1所述的金属掺杂的 Ge-Sb-Te基多值存储相变材料, 其特 征在于, 所述相变材料为 Mx(Ge2Sb2Te4 x4. The metal-doped Ge-Sb-Te based multi-value storage phase change material according to claim 1, wherein the phase change material is M x (Ge 2 Sb 2 Te 4 x .
5、 如权利要求 1所述的金属掺杂的 Ge-Sb-Te基多值存储相变材料, 其特 征在于, 所述相变材料为 Mx(Ge3Sb4Te8 x5. The metal-doped Ge-Sb-Te based multi-value storage phase change material according to claim 1, wherein the phase change material is M x (Ge 3 Sb 4 Te 8 x .
6、 如权利要求 1-5任一项所述的金属掺杂的 Ge-Sb-Te基多值存储相变材 料, 其特征在于, 通过给所述相变材料施加脉冲电压或脉冲电流, 所述相变材 料可在非晶高阻态、 非晶低阻态、 晶态低阻态三种不同状态之间转换, 从而实 现多值存储。  6. The metal-doped Ge-Sb-Te based multi-value storage phase change material according to any one of claims 1 to 5, wherein a pulse voltage or a pulse current is applied to the phase change material. The phase change material can be converted between three different states of amorphous high resistance state, amorphous low resistance state and crystalline low resistance state, thereby realizing multi-value storage.
7、 如权利要求 1-6任一项所述的金属掺杂的 Ge-Sb-Te基多值存储相变材 料, 其特征在于,通过给所述相变材料施加第一脉冲电压或脉冲电流可使所述 掺杂金属元素 M原子在两极之间形成导电通路, 实现非晶高阻态到非晶低阻 态的转变,通过给所述相变材料施加第二脉冲电压或脉冲电流使所述相变材料 晶化, 实现非晶低阻态到晶态低阻态的转变, 所述第一脉冲电压或脉冲电流小 于或等于第二脉冲电压或脉冲电流的 1/2。 The metal-doped Ge-Sb-Te based multi-value storage phase change material according to any one of claims 1 to 6, wherein a first pulse voltage or a pulse current is applied to the phase change material. The doped metal element M atom can form a conductive path between the two poles to realize a transition from an amorphous high resistance state to an amorphous low resistance state, by applying a second pulse voltage or a pulse current to the phase change material. Crystallization of the phase change material to achieve a transition from an amorphous low resistance state to a crystalline low resistance state, the first pulse voltage or pulse current is small At or equal to 1/2 of the second pulse voltage or pulse current.
8、 如权利要求 7所述的金属掺杂的 Ge-Sb-Te基多值存储相变材料, 其特 征在于, 所述第一脉冲电压为 0.25V-1V; 所述第二脉冲电压为 0.5V-2V。  8. The metal-doped Ge-Sb-Te based multi-value storage phase change material according to claim 7, wherein said first pulse voltage is 0.25 V-1 V; and said second pulse voltage is 0.5 V-2V.
9、 如权利要求 6-8任一项所述的金属掺杂的 Ge-Sb-Te基多值存储相变材 料, 其特征在于, 所述非晶高阻态与所述晶态低阻态之间的电阻变化幅度在两 个数量级以上。  The metal-doped Ge-Sb-Te based multi-value storage phase change material according to any one of claims 6 to 8, wherein the amorphous high resistance state and the crystalline low resistance state The magnitude of the change in resistance is more than two orders of magnitude.
10、 如权利要求 1-9任一项所述的金属掺杂的 Ge-Sb-Te基多值存储相变 材料, 其特征在于, 所述相变材料釆用溅射法、 电子束蒸发法、 气相沉积法或 原子层沉积法制备得到。  The metal-doped Ge-Sb-Te-based multi-value storage phase change material according to any one of claims 1 to 9, wherein the phase change material is sputtered by a method of electron beam evaporation. Prepared by vapor deposition or atomic layer deposition.
11、 如权利要求 1-9任一项所述的金属掺杂的 Ge-Sb-Te基多值存储相变 材料, 其特征在于, 所述相变材料在惰性气体的氛围下, 釆用 Ge、 Sb、 Te、 金属 M 、 四个单质靶共溅射形成。  The metal-doped Ge-Sb-Te based multi-value storage phase change material according to any one of claims 1 to 9, wherein the phase change material is in an inert gas atmosphere, and Ge is used. , Sb, Te, metal M, and four elemental targets are co-sputtered.
12、 如权利要求 1-9任一项所述的金属掺杂的 Ge-Sb-Te基多值存储相变 材料, 其特征在于, 所述相变材料在惰性气体的氛围下, 釆用 Ge-Sb-Te合金 靶、 金属 M单质靶共溅射形成。  The metal-doped Ge-Sb-Te-based multi-value storage phase change material according to any one of claims 1 to 9, wherein the phase change material is in an inert gas atmosphere, and Ge is used. - Sb-Te alloy target, metal M elemental target is co-sputtered.
13、 一种相变存储器, 包括相变存储单元, 其特征在于, 所述相变存储单 元包括依次设置于衬底上的顶电极、 第一隔离层、 相变存储材料薄膜层、 第二 隔离层、 下电极, 所述顶电极与所述相变存储材料薄膜层电接触, 所述相变存 储材料薄膜层的材质为权利要求 1-12任一项所述的金属掺杂的 Ge-Sb-Te基多 值存储相变材料。  13. A phase change memory, comprising a phase change memory cell, wherein the phase change memory cell comprises a top electrode, a first isolation layer, a phase change memory material film layer, and a second isolation layer sequentially disposed on a substrate a layer, a lower electrode, the top electrode is in electrical contact with the phase change memory material film layer, and the material of the phase change memory material film layer is the metal doped Ge-Sb according to any one of claims 1-12 -Te based multi-value storage phase change material.
14、 如权利要求 13所述的相变存储器, 其特征在于, 所述相变存储材料 薄膜层的厚度为 10-120nm。  The phase change memory according to claim 13, wherein the phase change memory material thin film layer has a thickness of 10 to 120 nm.
PCT/CN2014/080823 2014-06-26 2014-06-26 Metal doped ge-sb-te-based multivalue storage phase-change material and phase-change memory WO2015196412A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/080823 WO2015196412A1 (en) 2014-06-26 2014-06-26 Metal doped ge-sb-te-based multivalue storage phase-change material and phase-change memory
CN201480037056.2A CN105393375B (en) 2014-06-26 2014-06-26 A kind of metal-doped Ge-Sb-Te base multilevel storage phase-change material and phase transition storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/080823 WO2015196412A1 (en) 2014-06-26 2014-06-26 Metal doped ge-sb-te-based multivalue storage phase-change material and phase-change memory

Publications (1)

Publication Number Publication Date
WO2015196412A1 true WO2015196412A1 (en) 2015-12-30

Family

ID=54936477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080823 WO2015196412A1 (en) 2014-06-26 2014-06-26 Metal doped ge-sb-te-based multivalue storage phase-change material and phase-change memory

Country Status (2)

Country Link
CN (1) CN105393375B (en)
WO (1) WO2015196412A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11195999B2 (en) * 2019-11-13 2021-12-07 International Business Machines Corporation Phase change material with reduced reset state resistance drift
CN114717524A (en) * 2022-04-02 2022-07-08 昆明贵研新材料科技有限公司 Ru-Sb-Te alloy sputtering target material suitable for serving as long-storage phase change storage medium and preparation method thereof
CN114892133A (en) * 2022-04-02 2022-08-12 昆明贵研新材料科技有限公司 Ru-Sb-Te alloy sputtering target material used as long-storage phase change storage medium and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110718628B (en) * 2019-09-03 2022-03-08 华中科技大学 Phase change alloy material, phase change memory and preparation method of phase change alloy material
CN112820823A (en) * 2020-12-31 2021-05-18 华为技术有限公司 Multi-value phase change memory cell, phase change memory, electronic equipment and preparation method
CN113921707B (en) * 2021-09-14 2023-02-14 华中科技大学 Resistance value measuring method of two-bit phase change memory
CN114361335A (en) * 2021-12-15 2022-04-15 华中科技大学 Cu-doped Sb-Te system phase-change material, phase-change memory and preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1953229A (en) * 2006-10-31 2007-04-25 中国科学院上海微系统与信息技术研究所 Germanium-titanium base memory material for phase transition memory and its manufacture method
US20100038614A1 (en) * 2008-08-14 2010-02-18 Micron Technology, Inc. Methods of forming a phase change material, a phase change material, a phase change random access memory device including the phase change material, and a semiconductor structure including the phase change material
CN102820427A (en) * 2012-07-31 2012-12-12 宁波大学 Zn-doped Ge2Sb2Te5 phase-change storage film material and preparation method thereof
CN102842341A (en) * 2011-06-23 2012-12-26 旺宏电子股份有限公司 High-endurance phase change memory devices and methods for operating the same
CN103346258A (en) * 2013-07-19 2013-10-09 中国科学院上海微系统与信息技术研究所 Phase change storage unit and preparing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064276B (en) * 2010-11-01 2014-06-04 华中科技大学 Asymmetric phase-change memory unit and element
CN102142517B (en) * 2010-12-17 2017-02-08 华中科技大学 Multiple-layer phase-change material with low thermal conductivity
CN103594621B (en) * 2013-11-05 2016-03-09 中国科学院苏州纳米技术与纳米仿生研究所 A kind of phase-change memory cell and preparation method thereof
CN103762308B (en) * 2014-01-09 2016-08-24 同济大学 Polymorphic gallium antimony-tin selenide multilayer nano-composite phase change material and preparation thereof and application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1953229A (en) * 2006-10-31 2007-04-25 中国科学院上海微系统与信息技术研究所 Germanium-titanium base memory material for phase transition memory and its manufacture method
US20100038614A1 (en) * 2008-08-14 2010-02-18 Micron Technology, Inc. Methods of forming a phase change material, a phase change material, a phase change random access memory device including the phase change material, and a semiconductor structure including the phase change material
CN102842341A (en) * 2011-06-23 2012-12-26 旺宏电子股份有限公司 High-endurance phase change memory devices and methods for operating the same
CN102820427A (en) * 2012-07-31 2012-12-12 宁波大学 Zn-doped Ge2Sb2Te5 phase-change storage film material and preparation method thereof
CN103346258A (en) * 2013-07-19 2013-10-09 中国科学院上海微系统与信息技术研究所 Phase change storage unit and preparing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11195999B2 (en) * 2019-11-13 2021-12-07 International Business Machines Corporation Phase change material with reduced reset state resistance drift
CN114717524A (en) * 2022-04-02 2022-07-08 昆明贵研新材料科技有限公司 Ru-Sb-Te alloy sputtering target material suitable for serving as long-storage phase change storage medium and preparation method thereof
CN114892133A (en) * 2022-04-02 2022-08-12 昆明贵研新材料科技有限公司 Ru-Sb-Te alloy sputtering target material used as long-storage phase change storage medium and preparation method thereof

Also Published As

Publication number Publication date
CN105393375A (en) 2016-03-09
CN105393375B (en) 2018-12-14

Similar Documents

Publication Publication Date Title
WO2015196412A1 (en) Metal doped ge-sb-te-based multivalue storage phase-change material and phase-change memory
US9543510B2 (en) Multi-layer phase change material
JP6062155B2 (en) Ge-rich GST-212 phase change material
US9276202B2 (en) Phase-change storage unit containing TiSiN material layer and method for preparing the same
CN103794723A (en) Phase change memory unit and method for manufacturing phase change memory unit
JP2006165553A (en) Phase-change memory device comprising phase-change substance layer including phase-change nano particle and method for manufacturing the same
US20180269388A1 (en) Phase change memory unit and preparation method therefor
US8828785B2 (en) Single-crystal phase change material on insulator for reduced cell variability
CN112713242B (en) Preparation method of phase change memory based on nano current channel
Shen et al. Toward the Speed Limit of Phase‐Change Memory
US6825135B2 (en) Elimination of dendrite formation during metal/chalcogenide glass deposition
US7884345B2 (en) Phase-change material, memory unit and method for electrically storing/reading data
US11765987B2 (en) Phase change memory device based on nano current channel
CN112687359B (en) Screening and matching method for insulating heat-insulating material and nanocrystalline metal material in nano current channel layer
JP6270600B2 (en) Phase change memory
CN103794722A (en) Novel phase change storage cell structure and manufacturing method thereof
KR20090077232A (en) Phase change layer and phase change memory device comprising the same
JP2020155560A (en) Memory device
CN108666416B (en) Phase change memory unit and preparation method thereof
WO2022198623A1 (en) Sb2te3 phase-change material based on oxygen doping, phase-change memory, and preparation method
CN115084368A (en) Phase change memory based on conductive wire electrode and preparation method thereof
WO2013060034A1 (en) Storage material based on silicon doped bismuth-tellurium for phase-changing storage devices and preparation method therefor
CN112786784B (en) Phase change memory device and manufacturing method thereof
Song et al. Metal–insulator transition in ScxSb2Te3 phase-change memory alloys
WO2023186148A1 (en) Confinement layer material of phase change heterojunction

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480037056.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896242

Country of ref document: EP

Kind code of ref document: A1