WO2015196399A1 - 离子注入设备 - Google Patents

离子注入设备 Download PDF

Info

Publication number
WO2015196399A1
WO2015196399A1 PCT/CN2014/080783 CN2014080783W WO2015196399A1 WO 2015196399 A1 WO2015196399 A1 WO 2015196399A1 CN 2014080783 W CN2014080783 W CN 2014080783W WO 2015196399 A1 WO2015196399 A1 WO 2015196399A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion implantation
ion
wafer
ion beam
detecting
Prior art date
Application number
PCT/CN2014/080783
Other languages
English (en)
French (fr)
Inventor
洪俊华
沈培俊
Original Assignee
上海凯世通半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海凯世通半导体有限公司 filed Critical 上海凯世通半导体有限公司
Priority to PCT/CN2014/080783 priority Critical patent/WO2015196399A1/zh
Priority to CN201480078355.0A priority patent/CN106233422A/zh
Publication of WO2015196399A1 publication Critical patent/WO2015196399A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof

Definitions

  • the present invention relates to an ion implantation apparatus, and more particularly to two capable of simultaneously processing a wafer Surface ion implantation equipment.
  • Wafer processing into the required doped wafer requires a number of process processes, and in the multiple process processes There are many that need to be done in a vacuum environment, such as an ion implantation process to generate a P-type semiconductor, An ion implantation process for forming an N-type semiconductor, an annealing process, and the like. Widely adopted at present In doping fabrication techniques, typically only a single process is performed in each vacuum process chamber. To complete For multiple processes, multiple vacuum process chambers that perform different processes must be accessed.
  • the current ion implantation device can only be implemented.
  • the existing injection device is highly targeted when needed
  • the doping must be performed by sequentially placing the wafers into different implanting devices. For example, in the case of three times doping of two surfaces (P-type heavily doped on the back side, P-type lightly doped and surfaced)
  • the existing injection equipment can only be completed in the N-type injection device.
  • the above semiconductor manufacturing technology has the following defects: First, it needs to be mixed multiple times. When it is time-consuming, the wafer needs to enter and exit the vacuum multiple times between the vacuum processing chambers of the multiple ion implantation devices. Complete all doping, and multiple vacuums will not only reduce the processing efficiency of the solar wafer, It will also reduce the yield of the product due to the increase of the number of process steps. Second, it can only be used in each vacuum process chamber.
  • the technical problem to be solved by the present invention is to overcome the need for multiple ion implantation plus in the prior art.
  • the wafer When the wafer is processed, the wafer must be inserted into and out of the vacuum process chamber multiple times to complete the ion implantation and processing efficiency.
  • Low cost the cost of purchasing equipment that performs different types of ion implantation is high, providing a kind of Ion-implanted ions can be processed on both surfaces of the wafer and in a vacuum process chamber Inject the device.
  • An ion implantation apparatus comprising a vacuum processing chamber, characterized in that the ion implantation apparatus also includes:
  • the carrier frame includes a frame portion and the frame a hollow portion that is used to carry a wafer by supporting an edge of the wafer, the carrier frame The frame is parallel to the horizontal plane;
  • At least one first ion implantation device on one side of the wafer surface for ion removal from the wafer The surface is implanted into the wafer;
  • At least one second ion implantation device on the back side of the wafer for ion removal from the wafer The back side is injected into the wafer
  • the plane of the ion beam is perpendicular to the direction of movement of the carrier frame, and the carrier frame is used for Carrying a region of the ion beam and each second ion of the ion beam passing through each of the first ion implantation devices The area of action of the ion beam injected into the device.
  • the first ion implantation device and the second ion implantation device An ion beam will be extracted, and the ion beam can be formed in a plane perpendicular to the direction of movement of the carrier frame
  • the distribution is the parallel spacing between the trajectories of the ions. It can also be said that the ion beam is projected on the wafer. It is long strips (or strips).
  • a carrier frame having a hollow portion is adopted, and an ion beam can pass through The hollow portion.
  • the first ion implantation device and the second ion implantation The ion beam generated by the input device can dope the surface and the back surface of the wafer (ie, the two faces of the wafer). That is, as the carrier frame moves, the surface and back of the wafer will pass through the first side of the surface.
  • a sub-injection device and a second ion implantation device on the back side complete the surface and during the movement Doping on the back side, thereby increasing processing efficiency.
  • the plane of the ion beam is perpendicular to the direction of movement of the carrier frame, if the ion beam is The projection on the wafer is strip-shaped (or strip-shaped), then the square perpendicular to the direction of motion Up, the ion beam has been able to form a strip-like overlay on the wafer, as the carrier frame moves, the wafer A more uniform injection can be achieved in all areas.
  • the ion beam is a ribbon ion beam, i.e., the projection of the ion beam on the wafer is in the form of a strip.
  • the carrier frame includes a mask portion connecting the frame portion and shielding the portion a hollow portion for blocking a portion of ions implanted from the back side of the wafer to form a surface on the back side of the wafer Doping.
  • the mask portion is a mask plate, and the mask plate is detachably connected to the frame portion. such, The user can easily replace the mask to form different partial doping patterns.
  • the bezel portion includes a flange for supporting the edge of the wafer.
  • the face of the frame portion that is connected to the flange is a sloped surface.
  • the first ion implantation device comprises a beam delivery system, wherein the beam transmission system
  • the system includes an ion source and an extraction electrode, and the extraction electrode is used to extract ions in the ion source to form ions bundle;
  • the second ion implantation apparatus includes a beam current transmission system, wherein the beam current transmission system Including an ion source and an extraction electrode, the extraction electrode is used to extract ions in the ion source to form ions bundle.
  • the beam current transmission system Including an ion source and an extraction electrode, the extraction electrode is used to extract ions in the ion source to form ions bundle.
  • the beam delivery system further comprises a mass analysis magnet for selecting Select the ion beam with a preset charge-to-mass ratio.
  • the ions whose mass-to-mass ratio does not meet the requirements will not pass through the mass. Magnetizing, then even the active region of the ion beam of the first ion implantation device and the second ion implantation The area of action of the ion beam entering the device overlaps, and the ion beam on both sides of the wafer does not hedge (ie, when When the wafer is not in the ion beam application region, the first ion implantation device and the second ion implantation device are separated from each other The relative movement of the beamlets causes damage to the ion implantation apparatus.
  • the doping type of the ions implanted by the second ion implantation device and the background doping of the wafer is consistent.
  • the ion implantation device further includes each first separation a first detecting device corresponding to the sub-injecting device and a corresponding portion corresponding to each of the second ion injecting devices a second detecting device for detecting a flow of the ion beam of the first ion implantation device
  • the second detecting device is configured to detect a flow rate of the ion beam of the second ion implantation device, preferably,
  • the first detecting device and the second detecting device are each independently a Faraday cup.
  • an active region of the ion beam of the first ion implantation device and the second ion implantation When the active regions of the ion beam of the device at least partially overlap,
  • the ion implantation apparatus further includes a movable rotation detecting device for detecting Measuring the flow rate of the ion beam, the rotation detecting device includes a moving mechanism, a rotating mechanism, and a detecting mechanism, The moving mechanism is configured to move the detecting mechanism in a moving direction of the carrying frame, the rotating mechanism For rotating the detecting mechanism to enable the detecting mechanism to receive an ion beam; preferably, the detecting mechanism For the Faraday Cup;
  • the ion implantation apparatus further includes a first inspection corresponding to each of the first ion implantation apparatuses Measuring device and second detecting device corresponding to each second ion implantation device, and for respectively moving Moving the first detecting device and the first moving device and the second moving device of the second detecting device, the first a detecting device for detecting a flow rate of the ion beam of the first ion implantation device, the second detecting device a flow rate for detecting an ion beam of the second ion implantation device, the first mobile device being used at the beginning Moving the first detecting device out of the active region of the ion beam of the first ion implantation device before ion implantation Domain, the second moving device is configured to move the second detecting device out of the second leaving before starting ion implantation An area of action of the ion beam of the sub-injection device, preferably, the first detecting device and the second detecting device They are each independently the Faraday Cup.
  • the ion implantation apparatus further comprises a measuring instrument for the ion beam
  • the plane moves in a direction perpendicular to the ion beam to detect the flow rate of the ion beam and the uniformity of the injection.
  • the present invention provides an ion implantation apparatus on both sides of a wafer in the same vacuum processing chamber. Achieve ion implantation on both surfaces of the wafer, improving processing efficiency, eliminating the need for two ion implantations The action of removing the wafer from a vacuum process chamber and reinserting it into another vacuum process chamber. Moreover, since the ion implantation apparatus located on the same side of the wafer can also be provided in plurality, then on the wafer In the case where the same surface also requires multiple ion implantations, the ion implantation apparatus of the present invention may be the same Multiple ion implantations in the vacuum process chamber, without multiple vacuum process chambers to complete multiple ions Injection, processing efficiency has been greatly improved.
  • the wafer Since a plurality of ion implantation devices are disposed in a vacuum process chamber, the wafer only needs to be inserted once.
  • the vacuum processing chamber can complete all the required doping processing without being used in multiple vacuum processing chambers.
  • the second in and out, thereby reducing the defective rate caused by multiple entry and exit of the vacuum environment.
  • the back of the wafer is facing the horizontal plane, and is made by gravity. In use, the back side of the wafer is less susceptible to particles such as dust, thereby reducing the defective rate of the product.
  • both sides of the carrier frame are provided with ion implantation devices, the two faces of the wafer can be Time processing, so the temperature of the wafer will be relatively high, and the wafer is placed in a vacuum environment, the heat is relatively It can last for a long time, so this part of the heat can also be used for annealing after ion implantation.
  • FIG. 1 is a front elevational view showing an ion implantation apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a schematic view showing the distribution of an ion beam according to Embodiment 1 of the present invention.
  • FIG 3 is a plan view of a carrier frame according to Embodiment 1 of the present invention.
  • Figure 4 is a cross-sectional view taken along line A-A of Figure 3.
  • Figure 5 is a schematic illustration of the carrier frame carrying the wafer in the view of Figure 4.
  • Figure 6 is a plan view of a carrier frame according to Embodiment 2 of the present invention.
  • Figure 7 is a cross-sectional view taken along line B-B of Figure 6.
  • Figure 8 is a schematic illustration of the carrier frame carrying the wafer in the view of Figure 7.
  • Figure 9 is a plan view of a carrier frame in accordance with a third embodiment of the present invention.
  • Figure 10 is a cross-sectional view taken along line C-C of Figure 9.
  • Figure 11 is a front elevational view showing an ion implantation apparatus of Embodiment 7 of the present invention.
  • the ion implantation apparatus of the embodiment includes a vacuum processing chamber, and The ion implantation apparatus further includes:
  • the carrier frame 3 that moves in the vacuum processing chamber, the carrier frame 3 includes a frame portion 31 and The frame portion 31 encloses a hollow portion 32 for receiving the edge of the supporting wafer 4 Loading the wafer 4, the carrier frame 3 is parallel to the horizontal plane;
  • At least one second ion implantation device 2 on the back side of the wafer for ion removal from the wafer The back side is injected into the wafer 4 (for the sake of simplicity and clarity of the illustration, the shaded portions in Figures 1 and 2) Representing the area of ion implantation, top-down ion implantation enables all exposed areas of the wafer surface All doping, bottom-up ion implantation enables the area of the back of the wafer not supported by the carrier frame Doping),
  • the carrier frame is used to carry the wafer through each first ion implantation
  • the first ion implantation device and the second ion implantation device will extract an ion beam, and the ion beam can be vertical Forming a certain distribution, ie, the movement of ions, in a plane (yz plane) of the direction of motion of the carrier frame
  • the tracks are spaced apart in parallel. It can also be said that the projection of the ion beam on the wafer is strip-shaped (or tape). Shaped).
  • the bezel portion 31 includes a flange 311 for supporting the edge of the wafer, reference drawing 5.
  • the wafer 4 is placed on the flange 311.
  • the first ion implantation device and the second ion implantation device both include a beam current a transmission system, wherein the beam delivery system includes an ion source and an extraction electrode, the extraction electrode being used Extracting ions from the ion source to form a band-shaped ion beam, ie, forming parallel lines in the yz plane Distributed across the ground.
  • the beam delivery system includes an ion source and an extraction electrode, the extraction electrode being used Extracting ions from the ion source to form a band-shaped ion beam, ie, forming parallel lines in the yz plane Distributed across the ground.
  • Embodiment 2 The basic principle of Embodiment 2 is the same as that of Embodiment 1, except that:
  • the surface of the frame portion connected to the flange is a slope, as shown in FIGS. 7-8.
  • the face connected to the flange 311 is a slope 312, and the case where the wafer 4 is placed on the carrier frame is as shown in FIG.
  • Embodiment 3 The basic principle of Embodiment 3 is the same as that of Embodiment 1, except that:
  • the carrier frame includes a mask 5 that connects the frame portion and covers Blocking the hollow portion, the mask portion is for blocking a portion of ions implanted from the back side of the wafer to be on the back of the wafer The face forms a local doping.
  • the mask portion 5 is a mask plate, and the mask plate is detachable from the frame portion. Pick up. In this way, the user can easily replace the mask to form different partial doping patterns.
  • Embodiment 4 The basic principle of Embodiment 4 is the same as that of Embodiment 1, except that:
  • the beam delivery system further includes a mass analysis magnet for selecting a preset Charge-to-mass ion beam.
  • the ions whose mass-to-mass ratio does not meet the requirements will not pass through the mass. Magnetizing, then even the active region of the ion beam of the first ion implantation device and the second ion implantation The area of action of the ion beam entering the device overlaps, and the ion beam on both sides of the wafer does not cause ionization. The sub-injection device is damaged.
  • the doping type of the ions implanted by the second ion implantation device and the wafer is consistent, which is extremely important in the doping of solar cells.
  • Embodiment 5 The basic principle of Embodiment 5 is the same as that of Embodiment 4, except that:
  • the active region of the ion beam of the first ion implantation device and the second ion implantation The active regions of the ion beam entering the device at least partially overlap
  • the ion implantation apparatus further includes a movable rotation detecting device for detecting Measuring the flow rate of the ion beam
  • the rotation detecting device includes a moving mechanism, a rotating mechanism, and a detecting mechanism
  • the moving mechanism is configured to move the detecting mechanism in a moving direction of the carrying frame, the rotating mechanism For rotating the detecting mechanism to enable the detecting mechanism to receive the ion beam; wherein the detecting mechanism is Faraday Cup.
  • the Faraday cup can be used for inspection under the action of the moving mechanism and the rotating mechanism. Measuring a flow rate of the ion beam of the first ion implantation device and an ion beam of the second ion implantation device flow.
  • Embodiment 6 The basic principle of Embodiment 6 is the same as that of Embodiment 4, except that:
  • the ion implantation apparatus further includes a measuring instrument for locating in the plane of the ion beam Moving perpendicular to the direction of the ion beam to detect ion beam flow and injection uniformity, if reference is made to Figure 2, The measuring instrument is moved in the y direction in the yz plane to scan the ion beam to detect the strip shape. Whether the distribution of the ion beam is uniform and the flow rate.
  • Embodiment 7 The basic principle of Embodiment 7 is the same as that of Embodiment 1, except that:
  • the ion implantation apparatus further includes each first when the action areas of the ion beams entering the device do not overlap
  • the first detecting device 101 corresponding to the ion implantation device corresponds to each second ion implantation device Second detecting device 201 (only one first ion implantation device and one second ion injection are shown in the figure)
  • the first detecting device 101 is configured to detect the flow of the ion beam of the first ion implantation device
  • the second detecting device 201 is configured to detect the flow rate of the ion beam of the second ion implantation device,
  • the first detecting device 101 and the second detecting device 201 are each independently Farah. The first cup.
  • the two detecting devices 101 and 201 can The dose of the ion beam is detected.
  • the parallelism here also includes geometrically parallel cases and basics within the system error range.
  • the substantially parallel refers to the fact that the angle between the bearing frame and the horizontal plane is less than 10°. condition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种离子注入设备,其包括:在该真空制程腔中移动的承载框架,该承载框架包括边框部和由该边框部围成的中空部,该边框部用于通过支撑晶片的边缘来承载晶片;位于晶片表面一侧的至少一个第一离子注入装置,用于将离子从晶片的表面注入至晶片中;位于晶片背面一侧的至少一个第二离子注入装置,用于将离子从晶片的背面注入至晶片中,离子束所在平面与该承载框架的运动方向垂直,该承载框架用于承载晶片经过每个第一离子注入装置和每个第二离子注入装置的离子束的作用区域。所述离子注入设备通过在同一真空制程腔中在晶片的两侧设置离子注入装置来实现对晶片两个表面的离子注入,提高了加工效率,且无需设置额外的支撑装置,精简了结构。

Description

离子注入设备 技术领域
本发明涉及一种离子注入设备,特别是涉及一种能够同时加工晶片的两 个表面的离子注入设备。
背景技术
在半导体工艺中,例如太阳能电池的制作或者电子元器件的制作中,将 晶片加工为所需的掺杂晶片需要经过多个工艺制程,而该多个工艺制程中又 有许多是需要在真空环境中完成的,例如生成P型半导体的离子注入制程、 生成N型半导体的离子注入制程以及退火处理制程等等。在目前广为采用的 掺杂制造技术中,通常在每个真空制程腔中仅执行一个单一制程。如要完成 多个制程,则必须进出多个执行不同制程的真空制程腔。
而且,拿离子注入这一掺杂工艺来说,目前的离子注入装置一般只能执 行某一种特定的离子注入,也就是说,现有注入装置的针对性很强,当需要 执行多道掺杂工序时,必须依次将晶片置入不同的注入装置中来完成掺杂。 例如在需要两个表面的三次掺杂(背面的P型重掺杂、P型轻掺杂和表面的 N型掺杂)的制程中,现有的注入设备就只能先在N型注入设备完成N型 掺杂,之后将晶片取出,置入P型注入设备中翻转至晶片背面完成第一次P 型离子注入,之后再取出形成掩膜,再次置入P型注入设备中,完成重掺杂。
很明显,上述的半导体制造技术中存在着以下缺陷:一,在需要多次掺 杂时,晶片需要在多个离子注入装置的真空制程腔之间多次进出真空才能够 完成所有掺杂,而多次进出真空的动作不但会降低太阳能晶片的加工效率, 还会因工艺步骤增多而降低产品的良品率;二,在每个真空制程腔中只能够 完成对晶片的一个表面的离子注入,这将进一步降低太阳能晶片的加工效 率,而且,当需要在两个表面均形成掺杂时,必须有翻转晶片的机构,以将 待注入表面暴露于束流头下;三,需要多次或者多种类离子注入时,必须购 买多套用于执行不同制程的离子注入设备,生产成本较高。
发明内容
本发明要解决的技术问题是为了克服现有技术中需要多次离子注入加 工晶片时必须使晶片多次进出真空制程腔逐次完成各次离子注入、加工效率 低下、购置执行不同类型离子注入的设备成本高昂的缺陷,提供一种能够同 时加工晶片的两个表面且在一个真空制程腔中能完成多次离子注入的离子 注入设备。
本发明是通过下述技术方案来解决上述技术问题的:
一种离子注入设备,其包括真空制程腔,其特点在于,该离子注入设备 还包括:
在该真空制程腔中移动的承载框架,该承载框架包括边框部和由该边框 部围成的中空部,该边框部用于通过支撑晶片的边缘来承载晶片,该承载框 架与水平面平行;
位于晶片表面一侧的至少一个第一离子注入装置,用于将离子从晶片的 表面注入至晶片中;
位于晶片背面一侧的至少一个第二离子注入装置,用于将离子从晶片的 背面注入至晶片中,
其中,离子束所在平面与该承载框架的运动方向垂直,该承载框架用于 承载晶片经过每个第一离子注入装置的离子束的作用区域和每个第二离子 注入装置的离子束的作用区域。该第一离子注入装置和该第二离子注入装置 将引出离子束,离子束可以在垂直于该承载框架的运动方向的平面内形成一 定分布,即离子的运动轨迹之间平行间隔,也可以说离子束在晶片上的投影 是长条状(或者说是带状)的。
在该离子注入设备中,采用了具有中空部的承载框架,离子束可以穿过 该中空部。而当该承载框架上承载晶片时,第一离子注入装置和第二离子注 入装置产生的离子束可以对晶片的表面和背面(即晶片的两个面)进行掺杂, 即随着该承载框架的移动,晶片的表面和背面将通过位于表面一侧的第一离 子注入装置和位于背面一侧的第二离子注入装置,在移动过程中完成表面和 背面的掺杂,由此提高了加工效率。
再者,由于离子束所在平面与该承载框架的运动方向垂直,若离子束在 晶片上的投影是带状(或者说是长条状)的,那么与该运动方向相垂直的方 向上,离子束已经能在晶片上形成带状覆盖,随着承载框架的移动,晶片的 全部区域均能实现较为均匀的注入。
优选地,该离子束为带状离子束,即离子束在该晶片上的投影为带状。
优选地,该承载框架包括掩膜部,该掩膜部连接该框架部且遮挡部分该 中空部,该掩膜部用于阻挡部分自晶片背面注入的离子以在晶片背面形成局 部掺杂。
当需要在晶片背面形成局部掺杂时,可以通过掩膜部的设置来实现,在 掩膜部的遮挡下,并非背面的所有区域都会被掺杂,合理地设置掩膜部的图 样就能获得理想的局部掺杂图样。
优选地,该掩膜部为掩膜板,该掩膜板与该边框部为可拆卸连接。这样, 用户可以便捷地更换掩膜板,从而形成不同的局部掺杂图样。
优选地,该边框部包括用于支撑晶片边缘的凸缘。
较佳地,该边框部的与该凸缘相连的面为斜面。
优选地,该第一离子注入装置包括束流传输系统,其中,该束流传输系 统包括离子源和引出电极,该引出电极用于引出离子源中的离子以形成离子 束;
或者,该第二离子注入装置包括束流传输系统,其中,该束流传输系统 包括离子源和引出电极,该引出电极用于引出离子源中的离子以形成离子 束。
优选地,该束流传输系统还包括质量分析磁铁,该质量分析磁铁用于选 择出预设荷质比的离子束。
在该质量分析磁铁的作用下,荷质比不符合要求的离子不会穿过质量分 析磁铁,那么即使该第一离子注入装置的离子束的作用区域和该第二离子注 入装置的离子束的作用区域有重叠,位于晶片两侧离子束也不会对冲(即当 晶片不在离子束作用区域内时第一离子注入装置和第二离子注入装置的离 子束相对运动)致使离子注入装置受到损坏。
优选地,该第二离子注入装置所注入的离子的掺杂类型与晶片的本底掺 杂类型一致。
优选地,当该第一离子注入装置的离子束的作用区域与该第二离子注入 装置的离子束的作用区域不相重叠时,该离子注入设备还包括与每个第一离 子注入装置相对应的第一检测装置和与每个第二离子注入装置相对应的第 二检测装置,该第一检测装置用于检测该第一离子注入装置的离子束的流 量,该第二检测装置用于检测该第二离子注入装置的离子束的流量,较佳地, 该第一检测装置和该第二检测装置各自独立地为法拉第杯。
优选地,当该第一离子注入装置的离子束的作用区域与该第二离子注入 装置的离子束的作用区域至少部分重叠时,
该离子注入设备还包括可移动的旋转检测装置,该旋转检测装置用于检 测离子束的流量,该旋转检测装置包括移动机构、旋转机构和检测机构,其 中该移动机构用于在该承载框架的运动方向上移动该检测机构,该旋转机构 用于旋转该检测机构以使该检测机构得以接受离子束;较佳地,该检测机构 为法拉第杯;
或者,该离子注入设备还包括与每个第一离子注入装置相对应的第一检 测装置和与每个第二离子注入装置相对应的第二检测装置,以及分别用于移 动该第一检测装置和该第二检测装置的第一移动装置和第二移动装置,该第 一检测装置用于检测该第一离子注入装置的离子束的流量,该第二检测装置 用于检测该第二离子注入装置的离子束的流量,该第一移动装置用于在开始 离子注入前将该第一检测装置移出该第一离子注入装置的离子束的作用区 域,该第二移动装置用于在开始离子注入前将该第二检测装置移出该第二离 子注入装置的离子束的作用区域,较佳地,该第一检测装置和该第二检测装 置各自独立地为法拉第杯。
优选地,该离子注入设备还包括一测量仪,该测量仪用于在离子束所在 平面内在垂直于离子束的方向上运动以检测离子束的流量和注入均匀性。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发 明各较佳实例。
本发明的积极进步效果在于:
1、本发明通过在同一真空制程腔中在晶片的两侧设置离子注入装置来 实现对晶片两个表面的离子注入,提高了加工效率,免去了在两次离子注入 之间将晶片从一真空制程腔中取出并且再次置入另一真空制程腔中的动作。 而且,由于位于晶片同一侧的离子注入装置也可以设置多个,那么在晶片的 同一面也需要多次离子注入的情况下,本发明的离子注入设备也可以在同一 真空制程腔中完成多次离子注入,不用进出多个真空制程腔来完成多次离子 注入,加工效率得到了很大提高。
2、由于多个离子注入装置设置于一个真空制程腔中,晶片只需一次进 出真空制程腔即可完成所需的全部掺杂加工,而不用在多个真空制程腔中多 次进出,由此降低了因多次出入真空环境而引起的次品率。
3、由于采用了具有中空部的承载框架,晶片的背面也被大面积暴露, 因此可以直接通过移动承载框架完成对晶片两个面的离子注入,而无需设置 其他的支撑装置,例如静电吸盘等,精简了离子注入设备的结构。
4、位于晶片表面一侧或者位于背面一侧的离子注入装置的数量和设置 位置可以根据实际需要来调节,灵活性更强。
5、由于承载框架是水平设置的,晶片背面是面对水平面的,在重力作 用下,晶片的背面不易受到灰尘等颗粒物的影响,由此降低了产品的次品率。
6、由于承载框架的两侧都设有离子注入装置,可以对晶片的两个面同 时加工,因而晶片的温度也会比较高,加之晶片置于真空环境下,热量相对 能保持较久的时间,所以这部分热量还能被用于离子注入之后的退火。
附图说明
图1为本发明实施例1的离子注入设备的主视图。
图2为本发明实施例1的离子束的分布示意图。
图3为本发明实施例1的承载框架的俯视图。
图4为沿图3中线A-A的剖面图。
图5为图4的视图中承载了晶片的承载框架的示意图。
图6为本发明实施例2的承载框架的俯视图。
图7为沿图6中线B-B的剖面图。
图8为图7的视图中承载了晶片的承载框架的示意图。
图9为本发明实施例3的承载框架的俯视图。
图10为沿图9中线C-C的剖面图。
图11为本发明实施例7的离子注入设备的主视图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在 所述的实施例范围之中。
实施例1
参考图1-图5,本实施例所述的离子注入设备,其包括真空制程腔,具 体来说该离子注入设备还包括:
在该真空制程腔中移动的承载框架3,该承载框架3包括边框部31和由 该边框部31围成的中空部32,该边框部31用于通过支撑晶片4的边缘来承 载晶片4,该承载框架3与水平面平行;
位于晶片表面一侧的至少一个第一离子注入装置1,用于将离子从晶片 的表面注入至晶片4中;
位于晶片背面一侧的至少一个第二离子注入装置2,用于将离子从晶片 的背面注入至晶片4中(为了图示的简洁和清楚,图1和图2中以阴影部分 表示离子注入的区域,自上而下的离子注入能够将晶片表面所有暴露的区域 全部掺杂,自下而上的离子注入能实现晶片背面未被承载框架所支承的区域 的掺杂),
其中,离子束11和12所在平面(yz平面)与该承载框架的运动方向(图 1中所示的x方向)垂直,该承载框架用于承载晶片经过每个第一离子注入 装置的离子束的作用区域和每个第二离子注入装置的离子束的作用区域。该 第一离子注入装置和该第二离子注入装置将引出离子束,离子束可以在垂直 于该承载框架的运动方向的平面(yz平面)内形成一定分布,即离子的运动 轨迹之间平行间隔,也可以说离子束在晶片上的投影是长条状(或者说是带 状)的。
参考图3-图5,该边框部31包括用于支撑晶片边缘的凸缘311,参考图 5,晶片4被搁置于该凸缘311上。
在本实施例中,该第一离子注入装置和该第二离子注入装置均包括束流 传输系统,其中,该束流传输系统包括离子源和引出电极,该引出电极用于 引出离子源中的离子以形成带状的离子束,即在yz平面内形成相互平行间 隔地分布。
实施例2
实施例2的基本原理与实施例1相同,不同之处在于:
参考图6-图8,该边框部的与该凸缘相连的面为斜面,如图7-图8所示, 与凸缘311相连的面为斜面312,承载框架上搁置晶片4的情形如图8所示。
其余未提及之处参照实施例1。
实施例3
实施例3的基本原理与实施例1相同,不同之处在于:
参考图9-图10,该承载框架包括掩膜5,该掩膜部5连接该框架部且遮 挡部分该中空部,该掩膜部用于阻挡部分自晶片背面注入的离子以在晶片背 面形成局部掺杂。
当需要在晶片背面形成局部掺杂时,可以通过掩膜部的设置来实现,在 掩膜部的遮挡下,并非背面的所有区域都会被掺杂,合理地设置掩膜部的图 样就能获得理想的局部掺杂图样。
在本实施例中,该掩膜部5为掩膜板,该掩膜板与该边框部为可拆卸连 接。这样,用户可以便捷地更换掩膜板,从而形成不同的局部掺杂图样。
其余未提及之处参照实施例1。
实施例4
实施例4的基本原理与实施例1相同,不同之处在于:
该束流传输系统还包括质量分析磁铁,该质量分析磁铁用于选择出预设 荷质比的离子束。
在该质量分析磁铁的作用下,荷质比不符合要求的离子不会穿过质量分 析磁铁,那么即使该第一离子注入装置的离子束的作用区域和该第二离子注 入装置的离子束的作用区域有重叠,位于晶片两侧离子束也不会对冲致使离 子注入装置受到损坏。
在本实施例中,该第二离子注入装置所注入的离子的掺杂类型与晶片的 本底掺杂类型一致,这在太阳能电池片的掺杂中是极为重要的。
其余未提及之处参照实施例1。
实施例5
实施例5的基本原理与实施例4相同,不同之处在于:
本实施例中,该第一离子注入装置的离子束的作用区域与该第二离子注 入装置的离子束的作用区域至少部分重叠,
该离子注入设备还包括可移动的旋转检测装置,该旋转检测装置用于检 测离子束的流量,该旋转检测装置包括移动机构、旋转机构和检测机构,其 中该移动机构用于在该承载框架的运动方向上移动该检测机构,该旋转机构 用于旋转该检测机构以使该检测机构得以接受离子束;其中,该检测机构为 法拉第杯。在移动机构和旋转机构的作用下,该法拉第杯可以相继被用于检 测该第一离子注入装置的离子束的流量和该第二离子注入装置的离子束的 流量。
其余未提及之处参照实施例4。
实施例6
实施例6的基本原理与实施例4相同,不同之处在于:
该离子注入设备还包括一测量仪,该测量仪用于在离子束所在平面内在 垂直于离子束的方向上运动以检测离子束的流量和注入均匀性,若参考图2, 该测量仪就是在yz平面内,在y方向上运动以扫描离子束,从而检测带状 离子束的分布是否均匀以及流量。
其余未提及之处参照实施例4。
实施例7
实施例7的基本原理与实施例1一致,不同之处在于:
参考图11,当该第一离子注入装置的离子束的作用区域与该第二离子注 入装置的离子束的作用区域不相重叠时,该离子注入设备还包括与每个第一 离子注入装置相对应的第一检测装置101和与每个第二离子注入装置相对应 的第二检测装置201(图中仅示出一个第一离子注入设备和一个第二离子注 入设备),该第一检测装置101用于检测该第一离子注入装置的离子束的流 量,该第二检测装置201用于检测该第二离子注入装置的离子束的流量,在 本实施例中,该第一检测装置101和该第二检测装置201各自独立地为法拉 第杯。当承载框架继续沿x方向向右运动,两个检测装置101和201就可以 检测离子束的剂量了。
这里的平行也包括了几何上平行的情况以及在系统误差范围内的基本 平行的情况,所述基本平行指的是承载框架与水平面的夹角小于10°的情 况。
为了清楚地显示各个结构,附图中的各个部分的大小并非按比例描绘, 本领域技术人员应当理解附图中的比例并非对本发明的限制。另外,上述的 表面和背面是为了描述的方便(只是为了方便地描述晶片的两个面),也不 应当理解为对本实用新型的限制。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理 解,这些仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本 领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方 式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (10)

  1. 一种离子注入设备,其包括真空制程腔,其特征在于,该离子注入 设备还包括:
    在该真空制程腔中移动的承载框架,该承载框架包括边框部和由该边框 部围成的中空部,该边框部用于通过支撑晶片的边缘来承载晶片,该承载框 架与水平面平行;
    位于晶片表面一侧的至少一个第一离子注入装置,用于将离子从晶片的 表面注入至晶片中;
    位于晶片背面一侧的至少一个第二离子注入装置,用于将离子从晶片的 背面注入至晶片中,
    其中,离子束所在平面与该承载框架的运动方向垂直,该承载框架用于 承载晶片经过每个第一离子注入装置的离子束的作用区域和每个第二离子 注入装置的离子束的作用区域。
  2. 如权利要求1所述的离子注入设备,其特征在于,该离子束为带状 离子束。
  3. 如权利要求1所述的离子注入设备,其特征在于,该承载框架包括 掩膜部,该掩膜部连接该框架部且遮挡部分该中空部,该掩膜部用于阻挡部 分自晶片背面注入的离子以在晶片背面形成局部掺杂;
    较佳地,该掩膜部为掩膜板,该掩膜板与该边框部为可拆卸连接。
  4. 如权利要求1所述的离子注入设备,其特征在于,该边框部包括用 于支撑晶片边缘的凸缘,
    较佳地,该边框部的与该凸缘相连的面为斜面。
  5. 如权利要求1所述的离子注入设备,其特征在于,该第一离子注入 装置包括束流传输系统,其中,该束流传输系统包括离子源和引出电极,该 引出电极用于引出离子源中的离子以形成离子束;
    或者,该第二离子注入装置包括束流传输系统,其中,该束流传输系统 包括离子源和引出电极,该引出电极用于引出离子源中的离子以形成离子 束。
  6. 如权利要求5所述的离子注入设备,其特征在于,该束流传输系统 还包括质量分析磁铁,该质量分析磁铁用于选择出预设荷质比的离子束。
  7. 如权利要求1-6中任意一项所述的离子注入设备,其特征在于,该 第二离子注入装置所注入的离子的掺杂类型与晶片的本底掺杂类型一致。
  8. 如权利要求1-6中任意一项所述的离子注入设备,其特征在于,
    当该第一离子注入装置的离子束的作用区域与该第二离子注入装置的 离子束的作用区域不相重叠时,该离子注入设备还包括与每个第一离子注入 装置相对应的第一检测装置和与每个第二离子注入装置相对应的第二检测 装置,该第一检测装置用于检测该第一离子注入装置的离子束的流量,该第 二检测装置用于检测该第二离子注入装置的离子束的流量,
    较佳地,该第一检测装置和该第二检测装置各自独立地为法拉第杯。
  9. 如权利要求1-6中任意一项所述的离子注入设备,其特征在于,当 该第一离子注入装置的离子束的作用区域与该第二离子注入装置的离子束 的作用区域至少部分重叠时,
    该离子注入设备还包括可移动的旋转检测装置,该旋转检测装置用于检 测离子束的流量,该旋转检测装置包括移动机构、旋转机构和检测机构,其 中该移动机构用于在该承载框架的运动方向上移动该检测机构,该旋转机构 用于旋转该检测机构以使该检测机构得以接受离子束;较佳地,该检测机构 为法拉第杯;
    或者,该离子注入设备还包括与每个第一离子注入装置相对应的第一检 测装置和与每个第二离子注入装置相对应的第二检测装置,以及分别用于移 动该第一检测装置和该第二检测装置的第一移动装置和第二移动装置,该第 一检测装置用于检测该第一离子注入装置的离子束的流量,该第二检测装置 用于检测该第二离子注入装置的离子束的流量,该第一移动装置用于在开始 离子注入前将该第一检测装置移出该第一离子注入装置的离子束的作用区 域,该第二移动装置用于在开始离子注入前将该第二检测装置移出该第二离 子注入装置的离子束的作用区域,
    较佳地,该第一检测装置和该第二检测装置各自独立地为法拉第杯。
  10. 如权利要求1-6中任意一项所述的离子注入设备,其特征在于,该 离子注入设备还包括一测量仪,该测量仪用于在离子束所在平面内在垂直于 离子束的方向上运动以检测离子束的流量和注入均匀性。
PCT/CN2014/080783 2014-06-26 2014-06-26 离子注入设备 WO2015196399A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/080783 WO2015196399A1 (zh) 2014-06-26 2014-06-26 离子注入设备
CN201480078355.0A CN106233422A (zh) 2014-06-26 2014-06-26 离子注入设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/080783 WO2015196399A1 (zh) 2014-06-26 2014-06-26 离子注入设备

Publications (1)

Publication Number Publication Date
WO2015196399A1 true WO2015196399A1 (zh) 2015-12-30

Family

ID=54936466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080783 WO2015196399A1 (zh) 2014-06-26 2014-06-26 离子注入设备

Country Status (2)

Country Link
CN (1) CN106233422A (zh)
WO (1) WO2015196399A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284125A (zh) * 2021-12-30 2022-04-05 上海集成电路研发中心有限公司 离子注入装置及其控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108766916A (zh) * 2018-04-28 2018-11-06 东莞帕萨电子装备有限公司 离子注入跑片装置及离子注入跑片方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116787A (ja) * 2003-10-08 2005-04-28 Canon Inc イオンミリング装置
US20080038908A1 (en) * 2006-07-25 2008-02-14 Silicon Genesis Corporation Method and system for continuous large-area scanning implantation process
CN101770932A (zh) * 2009-01-04 2010-07-07 北京北方微电子基地设备工艺研究中心有限责任公司 等离子体处理设备
CN102403249A (zh) * 2010-09-07 2012-04-04 上海凯世通半导体有限公司 真空传输制程设备及方法
CN102486988A (zh) * 2010-12-03 2012-06-06 上海凯世通半导体有限公司 真空传输制程设备
CN102677020A (zh) * 2012-05-22 2012-09-19 山东力诺太阳能电力股份有限公司 一种晶体硅太阳能电池双层镀膜设备
CN103219217A (zh) * 2013-03-25 2013-07-24 中国电子科技集团公司第四十八研究所 一种用于离子注入机靶室的法拉第系统及离子束束流品质检测的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8309938B2 (en) * 2009-09-29 2012-11-13 Varian Semiconductor Equipment Associates, Inc. Ion beam incident angle detection assembly and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116787A (ja) * 2003-10-08 2005-04-28 Canon Inc イオンミリング装置
US20080038908A1 (en) * 2006-07-25 2008-02-14 Silicon Genesis Corporation Method and system for continuous large-area scanning implantation process
CN101770932A (zh) * 2009-01-04 2010-07-07 北京北方微电子基地设备工艺研究中心有限责任公司 等离子体处理设备
CN102403249A (zh) * 2010-09-07 2012-04-04 上海凯世通半导体有限公司 真空传输制程设备及方法
CN102486988A (zh) * 2010-12-03 2012-06-06 上海凯世通半导体有限公司 真空传输制程设备
CN102677020A (zh) * 2012-05-22 2012-09-19 山东力诺太阳能电力股份有限公司 一种晶体硅太阳能电池双层镀膜设备
CN103219217A (zh) * 2013-03-25 2013-07-24 中国电子科技集团公司第四十八研究所 一种用于离子注入机靶室的法拉第系统及离子束束流品质检测的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284125A (zh) * 2021-12-30 2022-04-05 上海集成电路研发中心有限公司 离子注入装置及其控制方法
CN114284125B (zh) * 2021-12-30 2024-01-16 上海集成电路研发中心有限公司 离子注入装置及其控制方法

Also Published As

Publication number Publication date
CN106233422A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
TWI486991B (zh) Ion implantation methods and ion implantation devices
US9305784B2 (en) Ion implantation method and ion implantation apparatus
JP2009545178A (ja) 連続大面積走査注入プロセスのための方法およびシステム
US8242005B1 (en) Using multiple masks to form independent features on a workpiece
JP2011513997A (ja) 太陽電池の連鎖注入の使用
TW201142906A (en) Apparatus and method for controllably implanting workpieces
JP2006196752A (ja) プラズマドーピング装置及びプラズマドーピング方法
JP2013502077A5 (zh)
TWI457968B (zh) 量測離子束電流之儀器及方法
CN103219217A (zh) 一种用于离子注入机靶室的法拉第系统及离子束束流品质检测的方法
TW201431099A (zh) 用於電漿離子植入之柵極
Darbo Experience on 3D silicon sensors for ATLAS IBL
WO2015196399A1 (zh) 离子注入设备
CN110416044B (zh) 离子注入转角监控方法及离子注入机
EP2622634A1 (en) Integrated shadow mask/carrier for pattern ion implantation
JP2007052941A (ja) イオン注入装置およびイオン注入方法
TW201403680A (zh) 處理基材陣列的技術
CN102237243B (zh) 离子注入系统及方法
JPH10302707A (ja) イオン注入装置
CN102301453B (zh) 使用高透明电极改善撷取的离子束的品质的技术
JP2008047459A (ja) イオン注入装置におけるビーム進行角補正方法
TWI437605B (zh) 量測離子束電流的方法與裝置
JP6920195B2 (ja) 基板をアクティブに位置合わせするアクティブ基板位置合わせシステム及び方法
US10559710B2 (en) System of height and alignment rollers for precise alignment of wafers for ion implantation
KR101751307B1 (ko) 고-스루풋 이온 주입기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14895872

Country of ref document: EP

Kind code of ref document: A1