WO2015194661A1 - Resin composition, polyester film, and molded article - Google Patents

Resin composition, polyester film, and molded article Download PDF

Info

Publication number
WO2015194661A1
WO2015194661A1 PCT/JP2015/067727 JP2015067727W WO2015194661A1 WO 2015194661 A1 WO2015194661 A1 WO 2015194661A1 JP 2015067727 W JP2015067727 W JP 2015067727W WO 2015194661 A1 WO2015194661 A1 WO 2015194661A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituent
general formula
group
resin composition
represented
Prior art date
Application number
PCT/JP2015/067727
Other languages
French (fr)
Japanese (ja)
Inventor
福田 誠
上平 茂生
倫弘 小川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016529541A priority Critical patent/JP6280646B2/en
Publication of WO2015194661A1 publication Critical patent/WO2015194661A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable

Definitions

  • the present invention relates to a resin composition, a polyester film and a molded product containing an aliphatic polyester and a terminal blocking agent.
  • Polyester films such as polyethylene terephthalate (PET) films are widely used industrially because they are excellent in heat resistance, mechanical properties and chemical resistance.
  • PET polyethylene terephthalate
  • the molecular weight decreases due to hydrolysis, and embrittlement progresses, resulting in a decrease in mechanical properties.
  • a method of sealing a terminal carboxyl group of polyester using a terminal blocking agent has been studied.
  • Examples of the terminal blocking agent that seals the carboxylic acid remaining at the terminal of the polyester include a carbodiimide compound or a cyclic imino ether compound.
  • Patent Document 1 discloses a polyester film containing a cyclic carbodiimide compound.
  • Patent Document 2 discloses a polyester film containing a carbodiimide compound or a cyclic imino ether compound.
  • Patent Document 3 it is proposed to improve the dimensional stability and hydrolysis resistance of polyester by reacting a carbodiimide compound or a cyclic imino ether compound with a carboxylic acid at the terminal of the polyester.
  • Patent Document 3 an oxazoline compound or an oxazine compound is used as the cyclic imino ether compound.
  • aliphatic polyesters such as polylactic acid
  • aliphatic polyester is used in the housings, mechanism parts, automobile parts, and the like of home appliances and OA equipment.
  • polylactic acid is a material that is easily hydrolyzed in a moist heat environment, is difficult to use as an industrial material, and has poor versatility.
  • Patent Document 3 discloses a resin composition containing a polylactic acid resin and a terminal blocking agent.
  • tetramethylene bisoxazoline is used as a terminal blocking agent.
  • Patent Document 3 discloses a resin composition containing tetramethylene bisoxazoline and polylactic acid.
  • tetramethylene bisoxazoline is used as an end-capping agent, there is a problem that volatilization gas is generated. It was.
  • the present inventors are an aliphatic polyester resin composition having hydrolysis resistance, which is an aliphatic polyester that does not generate volatilization gas during kneading. Investigations have been made for the purpose of providing a polyester resin composition. Furthermore, the present inventors proceeded with studies for the purpose of providing an aliphatic polyester resin composition that does not thicken during kneading.
  • the present inventors have used an imino ether compound having a specific structure as an end-capping agent and mixed it with an aliphatic polyester, thereby improving hydrolysis resistance. It has been found that an aliphatic polyester resin composition having a low volatilization gas can be obtained. Furthermore, the present inventors have found that such a resin composition does not thicken during kneading or the like and is excellent in processing stability. Specifically, the present invention has the following configuration.
  • a resin composition comprising an aliphatic polyester and a compound represented by the following general formula (1);
  • R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • R 3 represents an alkyl group represented by the following general formula (2) or an aryl group represented by the following general formula (3), and R 11 , R 12 and R 13 are each independently Represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
  • R 2 , R 3 , R 11 , R 12 and R 13 may be bonded to each other to form a ring.
  • R 3 is represented by the following general formula (2)
  • the bond formed by at least one of R 11 to R 13 and at least one of R 31 to R 33 is a bond having two or more linking atoms.
  • R 31 , R 32 and R 33 each independently represent a hydrogen atom or a substituent.
  • R 31 , R 32 and R 33 may be connected to each other to form a ring.
  • R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different.
  • N represents an integer of 0 to 5.
  • * represents a position bonded to a nitrogen atom.
  • Aliphatic polyester is polylactic acid resin, polybutylene succinate, polybutylene succinate / adipate, polyethylene succinate, polyglycolic acid, polycaprolactone, polyhydroxybutyric acid, polyhydroxyvaleric acid and hydroxybutyric acid / hydroxyvaleric acid
  • the resin composition according to [1] which is at least one selected from copolymers.
  • the resin composition according to [1] or [2], wherein the aliphatic polyester is at least one selected from a polylactic acid resin, polybutylene succinate, and polyglycolic acid.
  • R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different.
  • n represents an integer of 0 to 5.
  • R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
  • R 21 and R 41 each independently represent a substituent. When a plurality of R 21 and R 41 are present, they may be the same or different.
  • n represents an integer of 0 to 5
  • m represents an integer of 0 to 5.
  • R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
  • R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different.
  • n represents an integer of 0 to 5.
  • P represents an integer of 2 to 4
  • L 1 represents an alkylene part which may have a substituent, a cycloalkylene part which may have a substituent, or a substituent at the bond terminal to the carbon atom.
  • the p-valent group which is the arylene part which may have or the alkoxylene part which may have a substituent is represented.
  • R 2 has an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, an aryl group that may have a substituent, or a substituent.
  • R 11 , R 12 and R 13 each independently represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
  • P represents an integer of 2 to 4
  • L 2 represents an arylene moiety that may have a substituent, or a cycloalkylene moiety that may have a substituent, at the bond terminal to the nitrogen atom.
  • R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different.
  • n an integer of 0 to 5.
  • P represents an integer of 2 to 4
  • L 3 represents a p-valent group in which the bond terminal to the oxygen atom is an alkylene part. However, in the alkylene part of L 3 , part or all of the hydrogen atoms may be substituted with an alkyl group which may have a substituent or an aryl group which may have a substituent.
  • the hydrolysis resistance of the aliphatic polyester resin composition can be enhanced by sealing the terminal carboxyl group of the aliphatic polyester with the imino ether compound having a specific structure.
  • a polyester film and a molded article with high hydrolysis resistance can be obtained.
  • generation of volatilized gas in the production process can be suppressed, and the thickening of the resin composition can also be suppressed. Therefore, the production suitability and processing when forming a polyester film or a molded product from the aliphatic polyester resin composition Stability can be increased.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the resin composition of the present invention contains an imino ether compound represented by the following general formula (1).
  • R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • R 3 represents an alkyl group represented by the following general formula (2) or an aryl group represented by the following general formula (3), and R 11 , R 12 and R 13 are each independently Represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
  • R 2 , R 3 , R 11 , R 12 and R 13 may be bonded to each other to form a ring.
  • the bond formed by at least one of R 11 to R 13 and at least one of R 31 to R 33 is a bond having two or more linking atoms.
  • R 31 , R 32 and R 33 each independently represent a hydrogen atom or a substituent. R 31 , R 32 and R 33 may be connected to each other to form a ring.
  • R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different.
  • N represents an integer of 0 to 5.
  • * represents a position bonded to a nitrogen atom.
  • the alkyl group represented by R 2 is preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 12 carbon atoms.
  • the alkyl group represented by R 2 may be linear or branched. Further, the alkyl group represented by R 2 may be a cycloalkyl group.
  • Examples of the alkyl group represented by R 2 include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, tert-butyl group, sec-butyl group, iso-butyl group, n-pentyl group, Examples thereof include a sec-pentyl group, an iso-pentyl group, an n-hexyl group, a sec-hexyl group, an iso-hexyl group, and a cyclohexyl group.
  • the alkyl group represented by R 2 may further have a substituent.
  • substituents include the alkyl group, aryl group, alkoxy group, halogen atom, nitro group, amide group, hydroxyl group, ester group, ether group, and aldehyde group.
  • the number of carbon atoms of the alkyl group represented by R 2 may indicate the number of carbon that does not contain a substituent group.
  • the aryl group represented by R 2 is preferably an aryl group having 6 to 20 carbon atoms, and more preferably an aryl group having 6 to 12 carbon atoms.
  • Examples of the aryl group represented by R 2 include a phenyl group and a naphthyl group, and among them, a phenyl group is particularly preferable.
  • the aryl group represented by R 2 may further have a substituent.
  • said substituent said substituent can be illustrated similarly, However, As long as reaction of an imino ether group and a carboxyl group can be advanced, a substituent in particular is not restrict
  • the number of carbon atoms of the aryl group represented by R 2 is the number of carbon atoms not including a substituent.
  • the alkoxy group represented by R 2 is preferably an alkoxy group having 1 to 20 carbon atoms, more preferably an alkoxy group having 1 to 12 carbon atoms, and an alkoxy group having 2 to 6 carbon atoms. Is particularly preferred.
  • the alkoxy group represented by R 2 may be linear, branched or cyclic.
  • Preferable examples of the alkoxy group represented by R 2 include a group in which —O— is linked to the terminal of the alkyl group represented by R 2 .
  • the alkoxy group represented by R 2 may further have a substituent.
  • said substituent can be illustrated similarly, However, as long as reaction of an imino ether group and a carboxyl group can be advanced, a substituent in particular is not restrict
  • R 3 represents an alkyl group represented by the general formula (2) or an aryl group represented by the general formula (3).
  • R 31 , R 32 and R 33 each independently represent a hydrogen atom or a substituent. When R 31 , R 32 and R 33 are substituents, they may be linked to each other to form a ring. Examples of the substituent include the alkyl group, aryl group, alkoxy group, halogen atom, nitro group, amide group, hydroxyl group, ester group, ether group, and aldehyde group.
  • R 31 , R 32 and R 33 may be all hydrogen atoms or the same substituent or different substituents.
  • the alkyl group represented by the general formula (2) may be linear or branched.
  • the alkyl group represented by the general formula (2) may be a cycloalkyl group.
  • R 41 represents a substituent, and n represents an integer of 0 to 5. When n is 2 or more, R 41 may be the same or different. In addition, as a substituent, said substituent can be illustrated similarly. N is more preferably from 0 to 3, and further preferably from 0 to 2.
  • R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
  • the alkyl group and aryl group can be exemplified similarly an alkyl group and aryl group R 2 can be taken.
  • R 2 , R 3 , R 11 , R 12 and R 13 are preferably not bonded to form a ring, but R 2 , R 3 , R 11 , R 12 and R 13 are bonded to each other to form a ring. May be.
  • R 41 and at least one of R 11 to R 13 may combine to form a ring, and a benzene ring and R 11 to R 13 A ring containing any of the above may form a condensed ring.
  • R 41 and at least one of R 11 to R 13 are not bonded to form a ring.
  • R 3 when R 3 is represented by the general formula (2), the bond formed by at least one of R 11 to R 13 and at least one of R 31 to R 33 is a bond having two or more linking atoms.
  • R 3 is represented by the above general formula (2), the bond formed by one of R 11 to R 13 and one of R 31 to R 33 is a bond having two or more linking atoms, and a double bond A bond is preferred.
  • R 3 is represented by the general formula (2), it is preferable that at least one of R 11 to R 13 and at least one of R 31 to R 33 are not bonded to form a ring.
  • General formula (1) may include a repeating unit.
  • at least one of R 2 , R 3 or R 11 to R 13 is a repeating unit, and this repeating unit preferably includes an imino ether part.
  • the imino ether compound used in the present invention is preferably represented by the following general formula (4).
  • R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • R 11 , R 12 and R 13 each independently represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
  • R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different.
  • n represents an integer of 0 to 5.
  • R 2 , R 11 , R 12 and R 13 are the same as those in the general formula (1), and preferred ranges are also the same.
  • R41 is the same as that in General formula (3), and its preferable range is also the same.
  • N is preferably 0 to 3, more preferably 0 to 2.
  • the imino ether compound used in the present invention is preferably represented by the following general formula (5).
  • R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
  • R 21 and R 41 each independently represent a substituent. When a plurality of R 21 and R 41 are present, they may be the same or different.
  • n represents an integer of 0 to 5
  • m represents an integer of 0 to 5.
  • R 11 , R 12 and R 13 are the same as those in the general formula (1), and preferred ranges are also the same.
  • R 41 is the same as that in the general formula (3), and the preferred range is also the same. Incidentally, it is possible to illustrate the same substituents as R 41 in the R 21 also, the general formula (3).
  • n is preferably 0 to 3, and more preferably 0 to 2.
  • m is preferably 0 to 3, and more preferably 0 to 2.
  • the imino ether compound used in the present invention is preferably represented by the following general formula (6).
  • R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
  • R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different.
  • n represents an integer of 0 to 5.
  • P represents an integer of 2 to 4
  • L 1 represents an alkylene part which may have a substituent, a cycloalkylene part which may have a substituent, or a substituent at the bond terminal to the carbon atom.
  • the p-valent group which is the arylene part which may have or the alkoxylene part which may have a substituent is represented.
  • R 11 , R 12 and R 13 are the same as those in the general formula (1), and preferred ranges are also the same.
  • R41 is the same as that in General formula (3), and its preferable range is also the same.
  • N is preferably 0 to 3, more preferably 0 to 2.
  • L 1 may have an alkylene part that may have a substituent, a cycloalkylene part that may have a substituent, or a substituent at the terminal of the bond with the carbon atom.
  • a p-valent group which is an arylene part or an alkoxylene part which may have a substituent is represented.
  • p represents an integer of 2 to 4, and p is preferably 2 or 3.
  • Specific examples of the divalent group include an alkylene group that may have a substituent, a cycloalkylene group that may have a substituent, an arylene group that may have a substituent, and a substituent.
  • an alkoxylene group which may be used is an alkylene group that may have a substituent, a cycloalkylene part that may have a substituent, an arylene group that may have a substituent, and a substituent.
  • the bond terminal to the carbon atom has an alkylene part which may have a substituent, a cycloalkylene part which may have a substituent, an arylene part which may have a substituent, or a substituent.
  • a partial structure such as —SO 2 —, —CO—, a substituted or unsubstituted alkylene part, a substituted or unsubstituted alkenylene part, an alkynylene part, a substituted or unsubstituted phenylene part, And a group containing at least one selected from a substituted or unsubstituted biphenylene moiety, a substituted or unsubstituted naphthylene moiety, —O—, —S— and —SO—.
  • trivalent group examples include, for example, a group obtained by removing one hydrogen atom from those having a substituent among the groups listed as examples of the divalent group.
  • tetravalent group examples include, for example, a group obtained by removing two hydrogen atoms from those having a substituent among the groups listed as examples of the divalent group.
  • a compound having two or more imino ether moieties in one molecule can be obtained, and a more excellent end-capping effect can be exhibited. Furthermore, by using a compound having two or more imino ether moieties in one molecule, the imino ether value (total molecular weight / number of functional groups of imino ether) can be lowered, and the imino ether compound and the terminal carboxyl group of the polyester can be efficiently produced. Can be reacted.
  • the imino ether compound used in the present invention is preferably represented by the following general formula (7).
  • R 2 has an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, an aryl group that may have a substituent, or a substituent.
  • R 11 , R 12 and R 13 each independently represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent.
  • P represents an integer of 2 to 4
  • L 2 represents an arylene moiety that may have a substituent, or a cycloalkylene moiety that may have a substituent, at the bond terminal to the nitrogen atom. Represents a p-valent group.
  • R 2 , R 11 , R 12 and R 13 are the same as those in the general formula (1), and preferred ranges are also the same.
  • L 2 represents a p-valent group whose bond terminal to the nitrogen atom is an arylene part that may have a substituent or a cycloalkylene part that may have a substituent.
  • L 2 is preferably a p-valent group whose bond terminal to the nitrogen atom is an arylene moiety that may have a substituent.
  • p represents an integer of 2 to 4, and p is preferably 2 or 3.
  • Specific examples of L 2 include an arylene group which may have a substituent and a cycloalkylene group which may have a substituent.
  • the bond terminal to the nitrogen atom is an arylene moiety which may have a substituent or a cycloalkylene moiety which may have a substituent, and as a partial structure, —SO 2 —, —CO—, Substituted or unsubstituted alkylene part, substituted or unsubstituted alkenylene part, alkynylene part, substituted or unsubstituted phenylene part, substituted or unsubstituted biphenylene part, substituted or unsubstituted naphthylene part, -O-, -S- And a group containing at least one selected from —SO—.
  • the imino ether compound used in the present invention is preferably represented by the following general formula (8).
  • R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different.
  • n represents an integer of 0 to 5.
  • P represents an integer of 2 to 4
  • L 3 represents a p-valent group in which the bond terminal to the oxygen atom is an alkylene part. However, in the alkylene part of L 3 , part or all of the hydrogen atoms may be substituted with an alkyl group which may have a substituent or an aryl group which may have a substituent.
  • R 2 are each as agreed in the general formula (1), and preferred ranges are also the same.
  • R41 is the same as that in General formula (3), and its preferable range is also the same.
  • N is preferably 0 to 3, more preferably 0 to 2.
  • L 3 represents a p-valent group in which the bond terminal to the oxygen atom is an alkylene part.
  • the alkylene part of L 3 part or all of the hydrogen atoms may be substituted with an alkyl group which may have a substituent or an aryl group which may have a substituent.
  • p represents an integer of 2 to 4, and p is preferably 2 or 3.
  • Specific examples of L 3 include an alkylene group.
  • the bond terminal to the oxygen atom is an alkylene moiety
  • the partial structure includes —SO 2 —, —CO—, a substituted or unsubstituted alkylene group, a substituted or unsubstituted alkenylene group, an alkynylene group, substituted or unsubstituted And a group containing at least one selected from a substituted phenylene group, a substituted or unsubstituted biphenylene group, a substituted or unsubstituted naphthylene group, —O—, —S— and —SO—.
  • the molecular weight per iminoether part of the iminoether compound is preferably 1000 or less, more preferably 750 or less, and even more preferably 500 or less. By setting the molecular weight per imino ether part within this range, it is possible to seal the terminal carboxylic acid group of the polyester with a low addition amount.
  • the molecular weight of the whole imino ether compound is preferably 280 or more, and more preferably 300 or more. By setting the molecular weight of the imino ether within this range, volatilization can be more effectively suppressed.
  • the imino ether compound is preferably a bifunctional or higher functional compound, and more preferably a bifunctional, trifunctional or tetrafunctional compound from the viewpoint of ease of synthesis.
  • the functional number represents the number of imino ether parts contained in the compound
  • the bifunctional imino ether compound means a compound containing two imino ether parts.
  • Chemical modification of the aliphatic polyester terminal carboxyl group can be performed by mixing the imino ether compound represented by the general formula (1) and the aliphatic polyester in a molten state.
  • the imino ether compound and the aliphatic polyester are reacted at 100 to 350 ° C.
  • the imino ether group reacts with the terminal carboxyl group of the aliphatic polyester to form a carboxylic acid ester as shown in the following reaction scheme.
  • the imino ether compound represented by the general formula (1) becomes an amide compound by reacting with the terminal carboxyl group of the aliphatic polyester, the aliphatic polyester and the general formula (1) are represented in the resin composition.
  • an amide compound is also included.
  • the reaction of a compound having a carboxylic acid group such as an imino ether compound and an aliphatic polyester can be carried out at a reaction temperature of 100 to 350 ° C. to chemically modify the terminal carboxyl group of the polyester.
  • the reaction temperature is selected according to the melting point (Tm) of the aliphatic polyester used, and is preferably (Tm + 5) ° C. to (Tm + 100) ° C., more preferably (Tm + 10) ° C. to (Tm + 80) ° C. When it is higher than (Tm + 5) ° C., the aliphatic polyester is completely melted and the surface becomes good.
  • the aliphatic polyester is not thermally decomposed and the hydrolysis resistance is improved.
  • polylactic acid it is preferably 175 ° C. to 270 ° C., more preferably 180 ° C. to 250 ° C.
  • An example of satisfying these temperature ranges is to react at 200 ° C.
  • polybutylene succinate 120 ° C. to 215 ° C. is preferable, and 125 ° C. to 195 ° C. is more preferable.
  • An example of satisfying these temperature ranges is to react at 160 ° C.
  • polyglycolic acid it is preferably 230 ° C. to 325 ° C., more preferably 235 ° C. to 305 ° C.
  • An example of satisfying these temperature ranges is to react at 250 ° C.
  • the reaction rate between the imino ether compound represented by the general formula (1) and the terminal carboxyl group of the aliphatic polyester is preferably 0.1 to 99%, more preferably 1 to 90%. More preferably, it is ⁇ 80%.
  • the hydrolysis resistance can be sufficiently improved.
  • it can suppress that the produced
  • carboxylic acid is esterified by reacting oxazoline or oxazine with carboxylic acid of polyethylene terephthalate. It is known that a ring-opening reaction occurs when oxazoline or oxazine is used as a terminal blocking agent. It is also known that self-condensation proceeds as a side reaction simultaneously with the ring-opening reaction.
  • the self-condensation accompanied by the ring-opening reaction as described above is considered to be caused by the high nucleophilicity of the amide group of the alkylamide generated by the ring-opening reaction.
  • the chain compounds of the imino ethers of the present invention are not self-condensed, and those of cyclic compounds are not highly nucleophilic in the aromatic amide obtained by the esterification reaction. It is thought that there is nothing. Thereby, it can suppress that an imino ether compound gelatinizes in an aliphatic polyester resin.
  • the resin composition of the present invention contains the above-described imino ether compound and an aliphatic polyester.
  • the aliphatic polyester that can be used in the present invention is not particularly limited, but an aliphatic polyester obtained by polycondensation of an aliphatic dicarboxylic acid and an aliphatic dialcohol can be used. Especially, what has biodegradability is preferable and it is more preferable to use plant-derived aliphatic polyester.
  • Aliphatic polyesters include polylactic acid resin, polybutylene succinate, polybutylene succinate / adipate, polyethylene succinate, polyglycolic acid, polycaprolactone, polyhydroxybutyric acid, polyhydroxyvaleric acid and hydroxybutyric acid / hydroxyvaleric acid It is preferably at least one selected from a coalescence, and more preferably at least one selected from a polylactic acid resin, polybutylene succinate and polyglycolic acid.
  • One aliphatic polyester may be used alone, or two or more aliphatic polyesters may be used in combination. Two or more kinds of copolymers of these aliphatic polyesters may be used.
  • Aliphatic polyester is a material with low hydrolysis resistance.
  • polylactic acid-based resins are easily hydrolyzed in a humid heat environment.
  • the hydrolysis resistance of the aliphatic polyester can be improved by sealing the terminal carboxyl group of the aliphatic polyester with the specific imino ether compound described above.
  • production of volatilization gas can be suppressed and the work safety
  • the weight average molecular weight (Mw) of the aliphatic polyester is preferably 10,000 or more, more preferably 30000 or more, and particularly preferably 60000 or more.
  • Mw weight average molecular weight
  • a value in terms of polymethyl methacrylate (PMMA) measured by gel permeation chromatography (GPC) using hexafluoroisopropanol as a solvent can be used.
  • the aliphatic polyester used in the present invention is preferably a polylactic acid resin.
  • the polylactic acid resin is a polymer containing L-lactic acid and / or D-lactic acid as a main constituent component.
  • the polylactic acid-based resin may be a copolymerized polylactic acid copolymerized with a monomer component having other ester forming ability.
  • Other copolymer components include isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenoxyethanedicarboxylic acid, diphenyletherdicarboxylic acid, diphenylsulfonedicarboxylic acid, etc.
  • Arocyclic dicarboxylic acids such as aromatic dicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, malonic acid, dimethylmalonic acid, succinic acid, 3,3 -Aliphatic dicarboxylic acids such as diethyl succinic acid, glutaric acid, 2,2-dimethyl glutaric acid, adipic acid, 2-methyl adipic acid, trimethyl adipic acid, pimelic acid, azelaic acid, sebacic acid, suberic acid, glycolic acid, 3-hydroxybutyric acid, 4-hydro Dicarboxylic acids derived from hydroxycarboxylic acids such as civaleric acid, hydroxypropionic acid, hydroxycaproic acid, hydroxybenzoic acid, and ester-forming derivatives thereof, ethylene glycol, propylene glycol, butanediol,
  • the ratio for which the polymer chain derived from another polymerizable monomer occupies the copolymer whole quantity is 50 mol% or less in conversion of a monomer. Furthermore, it is especially preferable that it is 20 mol% or less.
  • the arrangement pattern of the copolymer may be any of a random copolymer, an alternating copolymer, a block copolymer, or a graft copolymer.
  • the molecular weight and molecular weight distribution of the polylactic acid-based resin are not particularly limited as long as it can be substantially molded, but the weight average molecular weight (Mw) is preferably 10,000 or more, more preferably 30000 or more, 60,000 or more is particularly preferable.
  • Mw weight average molecular weight
  • a value in terms of polymethyl methacrylate (PMMA) measured by gel permeation chromatography (GPC) using hexafluoroisopropanol as a solvent can be used.
  • polylactic acid resin examples include the Lacia (registered trademark) series manufactured by Mitsui Chemicals.
  • the content of the aliphatic polyester in the resin composition is not particularly limited, but is preferably 10 to 99.9% by mass based on the total amount of the resin composition.
  • the lower limit is preferably 10% by mass or more, and more preferably 20% by mass or more.
  • the aliphatic polyester may contain 1 type or 2 types or more, and when it contains 2 types or more, it is preferable that the total amount becomes the said range.
  • the resin composition of the present invention contains the aliphatic polyester and the imino ether compound described above. In addition, unless the resin composition of this invention is contrary to the meaning of this invention, it does not refuse containing compounds other than the imino ether compound mentioned above.
  • a carbodiimide compound, a ketene imine compound, an epoxy compound, an oxazoline compound, and the like can be used in combination.
  • the content of the imino ether compound contained in the resin composition of the present invention is preferably 70% by mass or more, more preferably 80% by mass or more, with respect to the organic compound other than the polyester, More preferably, it is 90 mass% or more.
  • the imino ether compound represented by the general formula (1) is contained in an amount of 0.05 to 10% by mass with respect to the total mass of the aliphatic polyester and the imino ether compound represented by the general formula (1). It is preferably 0.1 to 5% by mass, more preferably 0.1 to 2% by mass, and particularly preferably 0.1 to 1% by mass.
  • content of the iminoether compound represented by General formula (1) into the said range since the hydrolysis resistance of a resin composition can be improved more, it is preferable.
  • the polyester film and molded article with which coloring was suppressed can be formed by making content of the imino ether compound represented by General formula (1) into the said range.
  • 1 type, or 2 or more types may be contained for the imino ether compound. When 2 or more types are included, the total amount is preferably within the above range.
  • the resin composition of the present invention includes various additives such as plasticizers, UV stabilizers, anti-coloring agents, matting agents, deodorants, Inorganic fine particles and organic compounds may be added as necessary as flame retardants, weathering agents, antistatic agents, yarn friction reducing agents, mold release agents, antioxidants, sequestering agents, ion exchangers, or coloring pigments. Good.
  • Color pigments include carbon black, titanium oxide, zinc oxide, barium sulfate, iron oxide, and other inorganic pigments, as well as cyanine, styrene, phthalocyanine, anthraquinone, perinone, isoindolinone, and quinophthalone.
  • Organic pigments such as quinocridone and thioindigo can be used.
  • modifiers such as various inorganic particles such as calcium carbonate, silica, silicon nitride, clay, talc, kaolin, and zirconium acid, and particles such as crosslinked polymer particles and various metal particles can also be used.
  • waxes silicone oils, various surfactants, various fluororesins, polyphenylene sulfides, polyamides, polyacrylates such as ethylene / acrylate copolymers, methyl methacrylate polymers, various rubbers, ionomers, polyurethanes And small amounts of other polymers such as thermoplastic elastomers.
  • the resin composition of the present invention may contain a polyester other than the aliphatic polyester (hereinafter referred to as other polyester).
  • polyesters are not limited, but saturated polyesters are preferable.
  • a saturated polyester By using a saturated polyester, a polyester film that is superior in terms of mechanical strength as compared with a film using an unsaturated polyester can be obtained.
  • the saturated polyester is preferably a linear saturated polyester synthesized from an aromatic dibasic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof.
  • linear saturated polyester for example, those described in JP-A-2009-155479 and JP-A-2010-235824 can be appropriately used.
  • the above-mentioned linear saturated polyester is produced, for example, by subjecting an aromatic dibasic acid or its ester-forming derivative and a diol or its ester-forming derivative to an esterification reaction or a transesterification reaction, and then a polycondensation reaction. Can do.
  • the carboxylic acid value and intrinsic viscosity of the polyester can be controlled by selecting the raw material and reaction conditions. In order to effectively advance the esterification reaction or transesterification reaction and polycondensation reaction, it is preferable to add a polymerization catalyst during these reactions.
  • Al-based, Sb-based, Ge-based, and Ti-based compounds are preferably used from the viewpoint of keeping the carboxyl group content below a predetermined range, and Ti-based compounds are particularly preferable.
  • Ti-based compounds are particularly preferable.
  • an embodiment in which polymerization is performed by using the Ti compound as a catalyst in the range of 1 to 30 ppm, more preferably 3 to 15 ppm is preferable.
  • the ratio of the Ti compound is within the above-described range, the terminal carboxyl group can be adjusted to a preferable range, and the hydrolysis resistance of the polyester film can be kept low.
  • the methods described in Japanese Patent No. 4000086, Japanese Patent No. 4053837, Japanese Patent No. 4127119, Japanese Patent No. 4134710, Japanese Patent No. 4159154, Japanese Patent No. 4269704, Japanese Patent No. 431538, and the like can be applied.
  • the polyester is preferably solid-phase polymerized after polymerization.
  • Solid-phase polymerization may be a continuous method (a method in which a tower is filled with a resin, which is slowly heated for a predetermined time and then sent out), or a batch method (a resin is charged into a container). , A method of heating for a predetermined time).
  • solid phase polymerization is described in Japanese Patent No. 2621563, Japanese Patent No. 3121876, Japanese Patent No. 3136774, Japanese Patent No. 3603585, Japanese Patent No. 3616522, Japanese Patent No. 3617340, Japanese Patent No. 3680523, Japanese Patent No. 3717392, Japanese Patent No. 4167159, etc. The method can be applied.
  • the temperature of the solid phase polymerization is preferably 170 to 240 ° C, more preferably 180 to 230 ° C, and further preferably 190 to 220 ° C.
  • the solid phase polymerization time is preferably 5 to 100 hours, more preferably 10 to 75 hours, and further preferably 15 to 50 hours.
  • the solid phase polymerization is preferably performed in a vacuum or in a nitrogen atmosphere.
  • linear saturated polyester examples include polyethylene terephthalate (PET), polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), and polyethylene-2,6-naphthalate.
  • PET polyethylene terephthalate
  • polyethylene isophthalate polyethylene isophthalate
  • polybutylene terephthalate poly (1,4-cyclohexylenedimethylene terephthalate
  • polyethylene-2,6-naphthalate polyethylene-2,6-naphthalate
  • polyethylene terephthalate or polyethylene-2,6-naphthalate is particularly preferable from the viewpoint of the balance between mechanical properties and cost, and polyethylene terephthalate is more particularly preferable.
  • the other polyester may be a homopolymer or a copolymer. Further, polyester may be blended with a small amount of other types of resins such as polyimide. Moreover, as polyester, you may use crystalline polyester which can form anisotropy at the time of melt film forming.
  • the weight average molecular weight (Mw) of other polyesters is preferably from 5,000 to 100,000, more preferably from 8,000 to 80,000, particularly preferably from 12,000 to 60,000, from the viewpoints of heat resistance and viscosity.
  • Mw weight average molecular weight
  • a value in terms of polymethyl methacrylate (PMMA) measured by gel permeation chromatography (GPC) using hexafluoroisopropanol as a solvent can be used.
  • the resin composition of the present invention may not contain other polyesters, but when other polyesters are contained, the content of other polyesters is 0.01 to 10 with respect to the total mass of the aliphatic polyester.
  • the content is preferably mass%, more preferably 0.01 to 5 mass%.
  • Another polyester may contain 1 type (s) or 2 or more types. When 2 or more types are included, the total amount is preferably within the above range.
  • polyester film The present invention also relates to a polyester film containing the above-described resin composition.
  • the polyester film of the present invention is preferably stretched and more preferably biaxially stretched. That is, the polyester film of the present invention is preferably a biaxially oriented film. Especially, it is especially preferable compared with extending
  • the biaxially stretched polyester film is stretched in the longitudinal direction (MD: Machine Direction) (hereinafter also referred to as “longitudinal stretching”) and in the width direction (TD: Transverse Direction) (hereinafter also referred to as “lateral stretching”). It is a film that has been applied.
  • MD Machine Direction
  • TD Transverse Direction
  • the terminal carboxyl group content in the polyester film (the carboxylic acid value of the polyester, hereinafter also referred to as AV) is preferably 30 eq / ton or less, more preferably 20 eq / ton or less, and particularly preferably 16 eq / ton or less with respect to the polyester. And more particularly preferably 15 eq / ton or less.
  • the carboxyl group content is 25 eq / ton or less, it is possible to maintain the hydrolysis resistance and heat resistance of the polyester film by combining with the imino ether compound, and it is possible to suppress a decrease in strength when the moisture and heat age. .
  • the terminal carboxyl group content in the polyester can be adjusted by polymerization catalyst species, polymerization time, and film forming conditions (film forming temperature and time).
  • the carboxyl group content is H.264. A. Pohl, Anal. Chem. 26 (1954) 2145, and can be measured by a titration method. Specifically, the polyester is dissolved in benzyl alcohol at 205 ° C., a phenol red indicator is added, and titrated with a solution of sodium hydroxide in water / methanol / benzyl alcohol to determine the carboxylic acid value (eq / ton) can be calculated.
  • the terminal hydroxyl group content in the polyester film is preferably 120 eq / ton or less, more preferably 90 eq / ton or less, based on the polyester.
  • the lower limit of the hydroxyl group content is preferably 20 eq / ton or more from the viewpoint of adhesion.
  • the hydroxyl group content in the polyester can be adjusted by the polymerization catalyst species, the polymerization time, and the film forming conditions (film forming temperature and time).
  • As the terminal hydroxyl group content a value measured by 1 H-NMR using a deuterated hexafluoroisopropanol solvent can be used.
  • the thickness of the polyester film of the present invention varies depending on the application. For example, 25 to 300 ⁇ m is preferable, and 120 to 300 ⁇ m is more preferable. When the thickness is 25 ⁇ m or more, sufficient mechanical strength is obtained, and when the thickness is 300 ⁇ m or less, a merit in cost can be obtained.
  • the polyester film of the present invention may be subjected to various surface treatments for the purpose of improving printability, laminate suitability, coating suitability, and the like.
  • the surface treatment include corona discharge treatment, plasma treatment, flame treatment, and acid treatment, and any method can be used, and continuous treatment is possible.
  • the corona discharge treatment can be exemplified as the most preferable in view of easy installation of the apparatus in the existing film forming equipment and the simplicity of the treatment.
  • the polyester film of the present invention may be laminated with other layers.
  • a laminate may be provided by providing a coating layer containing at least one functional group selected from COOH, OH, SO 3 H, NH 2 and a salt thereof.
  • the resin composition of the present invention can form a film or sheet as described above. Furthermore, the resin composition of the present invention can be molded into fibers and various molded products from a molten / solution state. By using the resin composition of the present invention, various molded articles can have sufficiently high heat resistance and hydrolysis resistance, and can be used in a wider field than before. For example, in the textile field, it can be applied to clothing use, fishing lines, fishing nets, laver nets, vegetation-protecting nonwoven fabrics, civil engineering nets, sandbags, seedling pots, agricultural materials or draining bags. Further, the film or sheet can be applied to a packaging film, an agricultural and horticultural film, a shopping bag, a garbage bag or a compost bag. As molded articles, it can be applied to containers and tableware such as beverage and cosmetic bottles, disposable cups, trays, knives, forks, and spoons, flower pots, nurseries, home appliances, OA equipment casings, mechanical parts, and automobile parts.
  • tableware such as beverage and
  • the resin composition of the present invention is preferably used in the fiber and film fields among the above.
  • the volume specific surface area is large and sufficient hydrolysis resistance is required.
  • fibers and films using the resin composition of the present invention are suitable because they have sufficient hydrolysis resistance.
  • the fiber composition When the fiber composition is used from the resin composition of the present invention, it can be dyed at a high temperature with an aqueous dispersion solution of the dye, and can be dyed in a dark or vivid color without impairing the tear strength of the fabric. .
  • the fiber is used underwater for fishery materials such as fishing nets, practically necessary and sufficient strength can be exhibited by appropriately sealing the carboxyl group ends.
  • the fiber and film containing the resin composition of the present invention are rich in aging stability, and can exhibit the original performance without deterioration even after a long period of time after production.
  • stable strength properties and durability can be exhibited even when exposed to various dry heat conditions and high temperature atmospheres.
  • the fiber containing the resin composition of the present invention can be used as a multifilament, monofilament, staple fiber, tow or spunbond.
  • the strength is preferably 3.0 cN / dtex or more, more preferably 4.0 cN / dtex or more from a practical viewpoint.
  • 9.0 cN / dtex or less is preferable from a viewpoint of obtaining a yarn by an industrial yarn-making process with less fluff and yarn breakage.
  • the single fiber fineness of the fiber containing the resin composition of the present invention may be selected according to the required characteristics such as the usage form, mechanical strength, biodegradation rate, etc., but is usually 0.5 dtex or more and 11111 dtex or less. .
  • the total fineness as a multifilament is preferably 5 dtex or more and 11111 dtex or less.
  • the cross-sectional shape is arbitrary, such as round, flat, hollow, Y-type, T-type, or polygonal, but a round cross-section is preferable from the viewpoint of yarn production.
  • the imino ethers (1) to (8) used in Examples and Comparative Examples were synthesized by the following synthesis method.
  • Benzoyl chloride 95 (0.5 mol) was slowly added to an ice-cooled solution of 46.5 g (0.5 mol) of aniline and 44 g (0.6 mol) of pyridine in 300 ml of N, N-dimethylacetamide. The temperature of the reaction system was raised to room temperature, and the completion of the reaction was confirmed by TLC. After adding 50 ml of methanol, the reaction solution was slowly added to 5 L of water to precipitate a solid. The solid was separated by filtration, and the obtained solid was dispersed in methanol and filtered again. This operation was repeated twice, and the obtained solid was dried to obtain 89.7 g (yield 91%) of (8-1).
  • Example 1 Preliminarily dried polylactic acid (PLA) (manufactured by Unitika, Terramac TE-2000) and iminoether (1) as an end-capping agent are premixed in the proportions shown in Table 1, and then a small biaxial kneading extruder After being supplied to (manufactured by Technobel) and melt-kneaded at 200 ° C., it was extruded into a strand, cooled with water, cut and pelletized. The obtained pellets were pressed by a hot press at 190 ° C. to prepare polyester films (press films) having a thickness of 150 ⁇ m and 250 ⁇ m.
  • PVA polylactic acid
  • iminoether (1) iminoether
  • Examples 2 to 10 and Examples 13 to 15 A polyester film was produced in the same manner as in Example 1 except that polylactic acid and various terminal blocking agents were premixed at the ratios shown in Table 1.
  • Example 11 A polyester film was prepared in the same manner as in Example 1 except that polybutylene succinate (PBS) was used as the aliphatic polyester and melt-kneaded at 160 ° C.
  • PBS polybutylene succinate
  • Example 12 A polyester film was produced in the same manner as in Example 1 except that polyglycolic acid (PGA) was used as the aliphatic polyester and melt-kneaded at 250 ° C.
  • PGA polyglycolic acid
  • Example 1 A polyester film was produced in the same manner as in Example 1 except that the end-capping agent was not used.
  • Example 3 A polyester film was produced in the same manner as in Example 12 except that the end-capping agent was not used.
  • Example 4 Preliminarily dried polylactic acid (Mitsui Chemicals, Lacia H-100) and the following carbodiimide (Rhein Chemie, Stabaxol P400) as end-capping agents were premixed in the proportions shown in Table 1, A polyester film was produced in the same manner as in Example 1 except that it was supplied to a shaft kneading extruder (manufactured by Technobel).
  • Comparative Example 6 A polyester film was produced in the same manner as in Comparative Example 4 except that the following BOXA (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the end-capping agent.
  • BOXA manufactured by Wako Pure Chemical Industries, Ltd.
  • Comparative Example 7 A polyester film was produced in the same manner as in Comparative Example 4 except that POXA Epocross RPS (manufactured by Nippon Shokubai Co., Ltd.) was used as the end-capping agent.
  • POXA Epocross RPS manufactured by Nippon Shokubai Co., Ltd.
  • Cyclic carbodiimide is a compound having a molecular weight of 516 described in Examples of Japanese Patent Application Laid-Open No. 2011-258641, and was synthesized with reference to the synthesis method described in Reference Example 2 of Japanese Patent Application Laid-Open No. 2011-258641.
  • Test pieces (size: 100 mm ⁇ 15 mm) for tensile test were collected from a polyester film having a thickness of 250 ⁇ m. Ten test pieces were subjected to a tensile test at a speed of 300 mm / min, and the average value of the tensile breaking strength was calculated and used as the tensile strength value before 80 ° C. hot water treatment. Five test pieces were immersed in deionized water heated to 80 ° C., held for 15 hours, cooled, washed, and dried to obtain test pieces after 80 ° C. hot water treatment. Using the test piece after 80 ° C.
  • a tensile test was performed at a speed of 300 mm / min, and the average value of tensile strength at break was calculated to obtain the tensile strength value after 80 ° C. hot water treatment.
  • the strength retention was calculated by the following formula and evaluated according to the following criteria. In the following evaluation criteria, A and B are practical, and A is particularly preferable. ⁇ Evaluation criteria> A: Strength retention is 90% or more and 100% or less B: Strength retention is 80% or more and less than 90% C: Strength retention is 60% or more and less than 80% D: Strength retention is 0% or more and less than 60%
  • Examples 1 to 15 using a resin composition obtained by adding an imino ether compound represented by the general formula (1) as an end-capping agent to an aliphatic polyester have the strength retention of the polyester film. The rate was good and the hydrolysis resistance was excellent. In Examples 1 to 8 and Examples 11 to 15, there was no change in color of the film, and coloring was suppressed. Further, when the polyester films of Examples 1 to 15 were produced, almost no volatilized gas was generated, and the viscosity of the resin composition did not increase and the ejection stability was excellent. On the other hand, in Comparative Examples 1 to 3 in which no end-capping agent was used, the strength retention of the polyester film was remarkably deteriorated and the hydrolysis resistance was inferior.
  • Comparative Examples 4 to 8 there was a color change in the film. Further, in Comparative Examples 4 to 6, white smoke and odor were generated during the production of the polyester film, and in Comparative Example 7, the hydrolysis resistance was not sufficient. In Comparative Example 8, a cyclic carbodiimide compound was used as the end-capping agent, and the generation of volatilized gas was suppressed, but there was an increase in the viscosity of the molten resin, and the discharge stability deteriorated.
  • the hydrolysis resistance of an aliphatic polyester resin composition can be improved by sealing the terminal carboxyl group of aliphatic polyester with the imino ether compound which has a specific structure.
  • a polyester film and a molded article with high hydrolysis resistance can be obtained.
  • the generation of volatilized gas in the production process can be suppressed, and the thickening of the resin composition can also be suppressed. Therefore, it is easy to form a polyester film or a molded product from the aliphatic polyester resin composition, and industrial High availability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

The present invention addresses the problem of providing an aliphatic polyester resin composition which has hydrolytic resistance and which, during kneading, etc., generates no volatilization gas and is inhibited from increasing in viscosity. This resin composition comprises an aliphatic polyester and a compound represented by the following general formula (1). Also provided are a polyester film and a molded article which comprise the resin composition. In general formula (1), R2 represents an optionally substituted alkyl group, an optionally substituted cycloalkyl group, an optionally substituted aryl group, or an optionally substituted alkoxy group; R3 represents a specific alkyl group or a specific aryl group; and R11, R12, and R13 each independently represent a hydrogen atom, an optionally substituted alkyl group, or an optionally substituted aryl group. AA General formula (1)

Description

樹脂組成物、ポリエステルフィルム及び成形品Resin composition, polyester film and molded article
 本発明は、脂肪族ポリエステルと末端封止剤とを含む樹脂組成物、ポリエステルフィルム及び成形品に関する。 The present invention relates to a resin composition, a polyester film and a molded product containing an aliphatic polyester and a terminal blocking agent.
 ポリエチレンテレフタレート(PET)フィルム等のポリエステルフィルムは、耐熱性、機械特性及び耐薬品性などに優れているため、工業的に広く使用されている。しかし、ポリエステルフィルムは、耐加水分解性に乏しいため、加水分解により分子量が低下し、脆化が進行して機械特性などが低下することが問題となっている。このため、ポリエステルの耐加水分解性を向上させる手段として、末端封止剤を用いてポリエステルの末端カルボキシル基を封止する方法が検討されている。 Polyester films such as polyethylene terephthalate (PET) films are widely used industrially because they are excellent in heat resistance, mechanical properties and chemical resistance. However, since polyester films have poor hydrolysis resistance, the molecular weight decreases due to hydrolysis, and embrittlement progresses, resulting in a decrease in mechanical properties. For this reason, as a means for improving the hydrolysis resistance of polyester, a method of sealing a terminal carboxyl group of polyester using a terminal blocking agent has been studied.
 ポリエステルの末端に残存するカルボン酸を封止する末端封止剤としては、例えば、カルボジイミド化合物又は環状イミノエーテル化合物などが挙げられる。例えば、特許文献1には、環状カルボジイミド化合物を含有するポリエステルフィルムが開示されている。また、特許文献2には、カルボジイミド化合物又は環状イミノエーテル化合物を含有するポリエステルフィルムが開示されている。これらの文献では、カルボジイミド化合物又は環状イミノエーテル化合物をポリエステルの末端のカルボン酸と反応させることにより、ポリエステルの寸法安定性や耐加水分解性を向上させることが提案されている。なお、特許文献3では、環状イミノエーテル化合物として、オキサゾリン化合物やオキサジン化合物を用いている。 Examples of the terminal blocking agent that seals the carboxylic acid remaining at the terminal of the polyester include a carbodiimide compound or a cyclic imino ether compound. For example, Patent Document 1 discloses a polyester film containing a cyclic carbodiimide compound. Patent Document 2 discloses a polyester film containing a carbodiimide compound or a cyclic imino ether compound. In these documents, it is proposed to improve the dimensional stability and hydrolysis resistance of polyester by reacting a carbodiimide compound or a cyclic imino ether compound with a carboxylic acid at the terminal of the polyester. In Patent Document 3, an oxazoline compound or an oxazine compound is used as the cyclic imino ether compound.
 近年、バイオマスの観点からポリ乳酸などの脂肪族ポリエステルを工業材料として用いることが注目されている。例えば、家電製品やOA機器の筺体や機構部品および自動車部品などに脂肪族ポリエステルが用いられている。しかしながら、ポリ乳酸は湿熱環境下で容易に加水分解し易い材料であり、工業材料として使用し難く、汎用性に劣るものであった。 In recent years, attention has been focused on using aliphatic polyesters such as polylactic acid as industrial materials from the viewpoint of biomass. For example, aliphatic polyester is used in the housings, mechanism parts, automobile parts, and the like of home appliances and OA equipment. However, polylactic acid is a material that is easily hydrolyzed in a moist heat environment, is difficult to use as an industrial material, and has poor versatility.
 ポリ乳酸の耐加水分解性を向上させる手段としても、末端封止剤を用いることが検討されている。例えば、特許文献3には、ポリ乳酸系樹脂と末端封止剤を含む樹脂組成物が開示されている。ここでは、末端封止剤としてテトラメチレンビスオキサゾリンが用いられている。 As a means for improving the hydrolysis resistance of polylactic acid, it has been studied to use a terminal blocking agent. For example, Patent Document 3 discloses a resin composition containing a polylactic acid resin and a terminal blocking agent. Here, tetramethylene bisoxazoline is used as a terminal blocking agent.
国際公開WO2011/093478号公報International publication WO2011 / 093478 特開2010-31174号公報JP 2010-31174 A 特開2007-77193号公報JP 2007-77193 A
 ポリエステルに上述したような末端封止剤を添加することでポリエステルの加水分解をある程度抑制することはできる。しかしながら、特許文献2に記載されたカルボジイミド化合物を用いた場合、遊離のイソシアネートが揮散するという問題がある。このような揮散ガスは刺激性のガスであるため、揮散が抑制されることが望まれていた。 By adding an end-capping agent as described above to the polyester, hydrolysis of the polyester can be suppressed to some extent. However, when the carbodiimide compound described in Patent Document 2 is used, there is a problem that free isocyanate is volatilized. Since such a volatilizing gas is an irritating gas, it has been desired that the volatilization be suppressed.
 揮散ガスの発生が少ないと考えられる末端封止剤として、特許文献1に記載されたような環状カルボジイミド化合物や、特許文献2に記載されたような環状イミノエーテル化合物を用いることが考えられる。しかし、環状カルボジイミド化合物を用いた場合、ポリエステル樹脂組成物が増粘するという問題がある。また、環状イミノエーテル化合物は自己重合することが知られており、環状イミノエーテル化合物を用いた場合、自己重合した環状イミノエーテル化合物がポリエステル樹脂中にゲル成分として存在することが本発明者らの検討により明らかとなった。 As end-capping agents that are thought to generate less volatilization gas, it is conceivable to use a cyclic carbodiimide compound as described in Patent Document 1 or a cyclic imino ether compound as described in Patent Document 2. However, when a cyclic carbodiimide compound is used, there is a problem that the polyester resin composition is thickened. In addition, it is known that the cyclic imino ether compound is self-polymerized. When the cyclic imino ether compound is used, the present inventors have found that the self-polymerized cyclic imino ether compound exists as a gel component in the polyester resin. It became clear by examination.
 また、特許文献3には、テトラメチレンビスオキサゾリンとポリ乳酸を含む樹脂組成物が開示されているが、テトラメチレンビスオキサゾリンを末端封止剤として用いた場合、揮散ガスが発生するという問題があった。 Patent Document 3 discloses a resin composition containing tetramethylene bisoxazoline and polylactic acid. However, when tetramethylene bisoxazoline is used as an end-capping agent, there is a problem that volatilization gas is generated. It was.
 そこで本発明者らは、このような従来技術の課題を解決するために、耐加水分解性を有する脂肪族ポリエステル樹脂組成物であって、混練時などに揮散ガスを発生させることのない脂肪族ポリエステル樹脂組成物を提供することを目的として検討を進めた。さらに本発明者らは、混練時などに増粘することのない脂肪族ポリエステル樹脂組成物を提供することを目的として検討を進めた。 Therefore, in order to solve the problems of the prior art, the present inventors are an aliphatic polyester resin composition having hydrolysis resistance, which is an aliphatic polyester that does not generate volatilization gas during kneading. Investigations have been made for the purpose of providing a polyester resin composition. Furthermore, the present inventors proceeded with studies for the purpose of providing an aliphatic polyester resin composition that does not thicken during kneading.
  上記の課題を解決するために鋭意検討を行った結果、本発明者らは、特定構造を有するイミノエーテル化合物を末端封止剤として用い、脂肪族ポリエステルと混合することにより、耐加水分解性を有し、かつ揮散ガスを発生させにくい脂肪族ポリエステル樹脂組成物を得ることができることを見出した。さらに、本発明者らは、このような樹脂組成物は混練時等に増粘することがなく、加工安定性に優れることを見出した。
 具体的に、本発明は、以下の構成を有する。
As a result of intensive studies to solve the above problems, the present inventors have used an imino ether compound having a specific structure as an end-capping agent and mixed it with an aliphatic polyester, thereby improving hydrolysis resistance. It has been found that an aliphatic polyester resin composition having a low volatilization gas can be obtained. Furthermore, the present inventors have found that such a resin composition does not thicken during kneading or the like and is excellent in processing stability.
Specifically, the present invention has the following configuration.
[1]脂肪族ポリエステルと、下記一般式(1)で表される化合物とを含む樹脂組成物;
Figure JPOXMLDOC01-appb-C000008
 一般式(1)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、Rは下記一般式(2)で表されるアルキル基、又は下記一般式(3)で表されるアリール基を表し、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。また、R、R、R11、R12及びR13は互いに結合して環を形成してもよい。但し、Rが下記一般式(2)で表される場合、R11~R13の少なくとも1つとR31~R33の少なくとも1つが形成する結合は連結原子数が2以上の結合である。
Figure JPOXMLDOC01-appb-C000009
 一般式(2)中、R31、R32及びR33はそれぞれ独立に水素原子又は置換基を表す。R31、R32及びR33は互いに連結して環を形成してもよい。一般式(3)中、R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。また、nは0~5の整数を表す。なお、一般式(2)及び(3)において*は、窒素原子と結合する位置を表す。
[2]脂肪族ポリエステルがポリ乳酸系樹脂、ポリブチレンサクシネート、ポリブチレンサクシネート・アジペート、ポリエチレンサクシネート、ポリグリコール酸、ポリカプロラクトン、ポリヒドロキシ酪酸、ポリヒドロキシ吉草酸及びヒドロキシ酪酸・ヒドロキシ吉草酸共重合体から選ばれる少なくとも1種である[1]に記載の樹脂組成物。
[3]脂肪族ポリエステルがポリ乳酸系樹脂、ポリブチレンサクシネート及びポリグリコール酸から選ばれる少なくとも1種である[1]又は[2]に記載の樹脂組成物。
[4]脂肪族ポリエステルと一般式(1)で表される化合物との合計質量に対して、一般式(1)で表される化合物を0.1~5質量%含む[1]~[3]のいずれかに記載の樹脂組成物。
[5]化合物が下記一般式(4)で表される[1]~[4]のいずれかに記載の樹脂組成物;
Figure JPOXMLDOC01-appb-C000010
 一般式(4)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。nは0~5の整数を表す。
[6]化合物が下記一般式(5)で表される[1]~[5]のいずれかに記載の樹脂組成物;
Figure JPOXMLDOC01-appb-C000011
 一般式(5)中、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。R21及びR41はそれぞれ独立に置換基を表す。R21及びR41がそれぞれ複数存在する場合は同じであっても、異なっていてもよい。nは0~5の整数を表し、mは0~5の整数を表す。
[7]化合物が下記一般式(6)で表される[1]~[6]のいずれかに記載の樹脂組成物;
Figure JPOXMLDOC01-appb-C000012
 一般式(6)中、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。nは0~5の整数を表す。また、pは2~4の整数を表し、Lは、炭素原子との結合末端が、置換基を有してもよいアルキレン部、置換基を有してもよいシクロアルキレン部、置換基を有してもよいアリーレン部、又は、置換基を有してもよいアルコキシレン部である、p価の基を表す。
[8]化合物が下記一般式(7)で表される[1]~[7]のいずれかに記載の樹脂組成物;
Figure JPOXMLDOC01-appb-C000013
 一般式(7)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。また、pは2~4の整数を表し、Lは、窒素原子との結合末端が、置換基を有してもよいアリーレン部、又は、置換基を有してもよいシクロアルキレン部であるp価の基を表す。
[9]化合物が下記一般式(8)で表される[1]~[8]のいずれかに記載の樹脂組成物;
Figure JPOXMLDOC01-appb-C000014
 一般式(8)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。nは0~5の整数を表す。また、pは2~4の整数を表し、Lは、酸素原子との結合末端が、アルキレン部であるp価の基を表す。但し、Lのアルキレン部は、水素原子の一部または全部が、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基で置換されていてもよい。
[10][1]~[9]のいずれかに記載の樹脂組成物を含むポリエステルフィルム。
[11]2軸配向フィルムである[10]に記載のポリエステルフィルム。
[12][1]~[9]のいずれかに記載の樹脂組成物を含む成形品。
[1] A resin composition comprising an aliphatic polyester and a compound represented by the following general formula (1);
Figure JPOXMLDOC01-appb-C000008
In general formula (1), R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. R 3 represents an alkyl group represented by the following general formula (2) or an aryl group represented by the following general formula (3), and R 11 , R 12 and R 13 are each independently Represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 2 , R 3 , R 11 , R 12 and R 13 may be bonded to each other to form a ring. However, when R 3 is represented by the following general formula (2), the bond formed by at least one of R 11 to R 13 and at least one of R 31 to R 33 is a bond having two or more linking atoms.
Figure JPOXMLDOC01-appb-C000009
In the general formula (2), R 31 , R 32 and R 33 each independently represent a hydrogen atom or a substituent. R 31 , R 32 and R 33 may be connected to each other to form a ring. In General Formula (3), R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different. N represents an integer of 0 to 5. In general formulas (2) and (3), * represents a position bonded to a nitrogen atom.
[2] Aliphatic polyester is polylactic acid resin, polybutylene succinate, polybutylene succinate / adipate, polyethylene succinate, polyglycolic acid, polycaprolactone, polyhydroxybutyric acid, polyhydroxyvaleric acid and hydroxybutyric acid / hydroxyvaleric acid The resin composition according to [1], which is at least one selected from copolymers.
[3] The resin composition according to [1] or [2], wherein the aliphatic polyester is at least one selected from a polylactic acid resin, polybutylene succinate, and polyglycolic acid.
[4] 0.1 to 5% by mass of the compound represented by the general formula (1) with respect to the total mass of the aliphatic polyester and the compound represented by the general formula (1) [1] to [3 ] The resin composition in any one of.
[5] The resin composition according to any one of [1] to [4], wherein the compound is represented by the following general formula (4);
Figure JPOXMLDOC01-appb-C000010
In general formula (4), R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. R 11 , R 12 and R 13 each independently represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different. n represents an integer of 0 to 5.
[6] The resin composition according to any one of [1] to [5], wherein the compound is represented by the following general formula (5);
Figure JPOXMLDOC01-appb-C000011
In general formula (5), R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 21 and R 41 each independently represent a substituent. When a plurality of R 21 and R 41 are present, they may be the same or different. n represents an integer of 0 to 5, and m represents an integer of 0 to 5.
[7] The resin composition according to any one of [1] to [6], wherein the compound is represented by the following general formula (6):
Figure JPOXMLDOC01-appb-C000012
In General Formula (6), R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different. n represents an integer of 0 to 5. P represents an integer of 2 to 4, and L 1 represents an alkylene part which may have a substituent, a cycloalkylene part which may have a substituent, or a substituent at the bond terminal to the carbon atom. The p-valent group which is the arylene part which may have or the alkoxylene part which may have a substituent is represented.
[8] The resin composition according to any one of [1] to [7], wherein the compound is represented by the following general formula (7);
Figure JPOXMLDOC01-appb-C000013
In general formula (7), R 2 has an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, an aryl group that may have a substituent, or a substituent. R 11 , R 12 and R 13 each independently represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. P represents an integer of 2 to 4, and L 2 represents an arylene moiety that may have a substituent, or a cycloalkylene moiety that may have a substituent, at the bond terminal to the nitrogen atom. Represents a p-valent group.
[9] The resin composition according to any one of [1] to [8], wherein the compound is represented by the following general formula (8);
Figure JPOXMLDOC01-appb-C000014
In general formula (8), R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different. n represents an integer of 0 to 5. P represents an integer of 2 to 4, and L 3 represents a p-valent group in which the bond terminal to the oxygen atom is an alkylene part. However, in the alkylene part of L 3 , part or all of the hydrogen atoms may be substituted with an alkyl group which may have a substituent or an aryl group which may have a substituent.
[10] A polyester film comprising the resin composition according to any one of [1] to [9].
[11] The polyester film according to [10], which is a biaxially oriented film.
[12] A molded article comprising the resin composition according to any one of [1] to [9].
 本発明によれば、脂肪族ポリエステルの末端カルボキシル基を、特定構造を有するイミノエーテル化合物で封止することで、脂肪族ポリエステル樹脂組成物の耐加水分解性を高めることができる。これにより、耐加水分解性の高いポリエステルフィルムや成形品を得ることができる。さらに本発明によれば、製造工程における揮散ガスの発生を抑制でき、樹脂組成物の増粘も抑制できるため、脂肪族ポリエステル樹脂組成物からポリエステルフィルムや成形品を形成する際の製造適性や加工安定性を高めることができる。 According to the present invention, the hydrolysis resistance of the aliphatic polyester resin composition can be enhanced by sealing the terminal carboxyl group of the aliphatic polyester with the imino ether compound having a specific structure. Thereby, a polyester film and a molded article with high hydrolysis resistance can be obtained. Furthermore, according to the present invention, generation of volatilized gas in the production process can be suppressed, and the thickening of the resin composition can also be suppressed. Therefore, the production suitability and processing when forming a polyester film or a molded product from the aliphatic polyester resin composition Stability can be increased.
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。 Hereinafter, the present invention will be described in detail. The description of the constituent elements described below may be made based on representative embodiments and specific examples, but the present invention is not limited to such embodiments. In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
(イミノエーテル化合物)
 本発明の樹脂組成物は下記一般式(1)で表されるイミノエーテル化合物を含む。
(Imino ether compound)
The resin composition of the present invention contains an imino ether compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(1)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、Rは下記一般式(2)で表されるアルキル基、又は下記一般式(3)で表されるアリール基を表し、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。また、R、R、R11、R12及びR13は互いに結合して環を形成してもよい。但し、Rが下記一般式(2)で表される場合、R11~R13の少なくとも1つとR31~R33の少なくとも1つが形成する結合は連結原子数が2以上の結合である。 In general formula (1), R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. R 3 represents an alkyl group represented by the following general formula (2) or an aryl group represented by the following general formula (3), and R 11 , R 12 and R 13 are each independently Represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 2 , R 3 , R 11 , R 12 and R 13 may be bonded to each other to form a ring. However, when R 3 is represented by the following general formula (2), the bond formed by at least one of R 11 to R 13 and at least one of R 31 to R 33 is a bond having two or more linking atoms.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 一般式(2)中、R31、R32及びR33はそれぞれ独立に水素原子又は置換基を表す。R31、R32及びR33は互いに連結して環を形成してもよい。一般式(3)中、R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。また、nは0~5の整数を表す。なお、一般式(2)及び(3)において*は、窒素原子と結合する位置を表す。 In the general formula (2), R 31 , R 32 and R 33 each independently represent a hydrogen atom or a substituent. R 31 , R 32 and R 33 may be connected to each other to form a ring. In General Formula (3), R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different. N represents an integer of 0 to 5. In general formulas (2) and (3), * represents a position bonded to a nitrogen atom.
 一般式(1)において、Rで表されるアルキル基は、炭素数1~20のアルキル基であることが好ましく、炭素数1~12のアルキル基であることがより好ましい。Rが表すアルキル基は直鎖であっても分枝鎖であってもよい。また、Rで表されるアルキル基は、シクロアルキル基であってもよい。Rが表すアルキル基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、sec-ブチル基、iso-ブチル基、n-ペンチル基、sec-ペンチル基、iso-ペンチル基、n-ヘキシル基、sec-ヘキシル基、iso-ヘキシル基、シクロヘキシル基、などを挙げることができる。中でもメチル基、エチル基、n-プロピル基、iso-プロピル基、iso-ブチル基、シクロヘキシル基とすることがより好ましい。
 Rが表すアルキル基はさらに置換基を有していてもよい。置換基としては、上記のアルキル基、アリール基、アルコキシ基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。なお、Rが表すアルキル基の炭素数は、置換基を含まない炭素数を示す。
In the general formula (1), the alkyl group represented by R 2 is preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 12 carbon atoms. The alkyl group represented by R 2 may be linear or branched. Further, the alkyl group represented by R 2 may be a cycloalkyl group. Examples of the alkyl group represented by R 2 include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, tert-butyl group, sec-butyl group, iso-butyl group, n-pentyl group, Examples thereof include a sec-pentyl group, an iso-pentyl group, an n-hexyl group, a sec-hexyl group, an iso-hexyl group, and a cyclohexyl group. Of these, a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an iso-butyl group, and a cyclohexyl group are more preferable.
The alkyl group represented by R 2 may further have a substituent. Examples of the substituent include the alkyl group, aryl group, alkoxy group, halogen atom, nitro group, amide group, hydroxyl group, ester group, ether group, and aldehyde group. The number of carbon atoms of the alkyl group represented by R 2 may indicate the number of carbon that does not contain a substituent group.
 Rで表されるアリール基は、炭素数6~20のアリール基であることが好ましく、炭素数6~12のアリール基であることがより好ましい。Rが表すアリール基としては、フェニル基、ナフチル基などを挙げることができ、その中でもフェニル基が特に好ましい。Rが表すアリール基はさらに置換基を有していてもよい。なお、置換基としては、上記の置換基を同様に例示することができるが、イミノエーテル基とカルボキシル基との反応を進行させ得る限り、置換基は特に制限されない。また、Rが表すアリール基の炭素数は、置換基を含まない炭素数を示す。 The aryl group represented by R 2 is preferably an aryl group having 6 to 20 carbon atoms, and more preferably an aryl group having 6 to 12 carbon atoms. Examples of the aryl group represented by R 2 include a phenyl group and a naphthyl group, and among them, a phenyl group is particularly preferable. The aryl group represented by R 2 may further have a substituent. In addition, as said substituent, said substituent can be illustrated similarly, However, As long as reaction of an imino ether group and a carboxyl group can be advanced, a substituent in particular is not restrict | limited. The number of carbon atoms of the aryl group represented by R 2 is the number of carbon atoms not including a substituent.
 Rで表されるアルコキシ基は、炭素数1~20のアルコキシ基であることが好ましく、炭素数1~12のアルコキシ基であることがより好ましく、炭素数2~6のアルコキシ基であることが特に好ましい。Rが表すアルコキシ基は直鎖であっても分枝であっても環状であってもよい。Rが表すアルコキシ基の好ましい例としては、Rが表すアルキル基の末端に-O-が連結した基を挙げることができる。Rが表すアルコキシ基はさらに置換基を有していてもよい。なお、置換基としては、上記の置換基を同様に例示することができるが、イミノエーテル基とカルボキシル基との反応を進行させ得る限り、置換基は特に制限されない。また、Rが表すアルコキシ基の炭素数は、置換基を含まない炭素数を示す。 The alkoxy group represented by R 2 is preferably an alkoxy group having 1 to 20 carbon atoms, more preferably an alkoxy group having 1 to 12 carbon atoms, and an alkoxy group having 2 to 6 carbon atoms. Is particularly preferred. The alkoxy group represented by R 2 may be linear, branched or cyclic. Preferable examples of the alkoxy group represented by R 2 include a group in which —O— is linked to the terminal of the alkyl group represented by R 2 . The alkoxy group represented by R 2 may further have a substituent. In addition, as said substituent, said substituent can be illustrated similarly, However, As long as reaction of an imino ether group and a carboxyl group can be advanced, a substituent in particular is not restrict | limited. The number of carbon atoms of the alkoxy group represented by R 2, indicate the number of carbon that does not contain a substituent group.
 Rは上記一般式(2)で表されるアルキル基、又は上記一般式(3)で表されるアリール基を表す。一般式(2)中、R31、R32及びR33はそれぞれ独立に水素原子又は置換基を表す。R31、R32及びR33が置換基である場合、互いに連結して環を形成してもよい。置換基としては、上記のアルキル基、アリール基、アルコキシ基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。R31、R32及びR33は全てが水素原子であるか又は同一の置換基であってもよく、異なる置換基であってもよい。また、一般式(2)で表されるアルキル基は、直鎖であっても分枝であってもよい。また、一般式(2)で表されるアルキル基は、シクロアルキル基であってもよい。
 一般式(3)中、R41は置換基を表し、nは0~5の整数を表す。nが2以上の場合、R41は同じであっても、異なっていてもよい。なお、置換基としては、上記の置換基を同様に例示することができる。なお、nは0~3であることがより好ましく、0~2であることがさらに好ましい。
R 3 represents an alkyl group represented by the general formula (2) or an aryl group represented by the general formula (3). In the general formula (2), R 31 , R 32 and R 33 each independently represent a hydrogen atom or a substituent. When R 31 , R 32 and R 33 are substituents, they may be linked to each other to form a ring. Examples of the substituent include the alkyl group, aryl group, alkoxy group, halogen atom, nitro group, amide group, hydroxyl group, ester group, ether group, and aldehyde group. R 31 , R 32 and R 33 may be all hydrogen atoms or the same substituent or different substituents. Further, the alkyl group represented by the general formula (2) may be linear or branched. Further, the alkyl group represented by the general formula (2) may be a cycloalkyl group.
In the general formula (3), R 41 represents a substituent, and n represents an integer of 0 to 5. When n is 2 or more, R 41 may be the same or different. In addition, as a substituent, said substituent can be illustrated similarly. N is more preferably from 0 to 3, and further preferably from 0 to 2.
 R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。アルキル基及びアリール基としては、Rが取り得るアルキル基及びアリール基を同様に例示することができる。 R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. The alkyl group and aryl group can be exemplified similarly an alkyl group and aryl group R 2 can be taken.
 R、R、R11、R12及びR13は互いに結合して環を形成しないことが好ましいが、R、R、R11、R12及びR13は互いに結合して環を形成してもよい。例えば、Rが上記一般式(3)で表される場合、R41とR11~R13の少なくとも一つとが結合して環を形成してもよく、ベンゼン環と、R11~R13のいずれかを含む環が縮合環を形成してもよい。Rが上記一般式(3)で表される場合、R41とR11~R13の少なくとも一つとが結合して環を形成しないことが好ましい。
 但し、Rが上記一般式(2)で表される場合、R11~R13の少なくとも1つとR31~R33の少なくとも1つが形成する結合は連結原子数が2以上の結合である。Rが上記一般式(2)で表される場合、R11~R13の1つとR31~R33の1つが形成する結合は連結原子数が2以上の結合であり、かつ、二重結合であることが好ましい。Rが上記一般式(2)で表される場合、R11~R13の少なくとも1つとR31~R33の少なくとも1つが結合して環を形成しないことが好ましい。
R 2 , R 3 , R 11 , R 12 and R 13 are preferably not bonded to form a ring, but R 2 , R 3 , R 11 , R 12 and R 13 are bonded to each other to form a ring. May be. For example, when R 3 is represented by the above general formula (3), R 41 and at least one of R 11 to R 13 may combine to form a ring, and a benzene ring and R 11 to R 13 A ring containing any of the above may form a condensed ring. When R 3 is represented by the general formula (3), it is preferable that R 41 and at least one of R 11 to R 13 are not bonded to form a ring.
However, when R 3 is represented by the general formula (2), the bond formed by at least one of R 11 to R 13 and at least one of R 31 to R 33 is a bond having two or more linking atoms. When R 3 is represented by the above general formula (2), the bond formed by one of R 11 to R 13 and one of R 31 to R 33 is a bond having two or more linking atoms, and a double bond A bond is preferred. When R 3 is represented by the general formula (2), it is preferable that at least one of R 11 to R 13 and at least one of R 31 to R 33 are not bonded to form a ring.
 一般式(1)は、繰り返し単位を含んでいてもよい。この場合、R、R又はR11~R13の少なくとも1つが繰り返し単位であり、この繰り返し単位には、イミノエーテル部が含まれることが好ましい。 General formula (1) may include a repeating unit. In this case, at least one of R 2 , R 3 or R 11 to R 13 is a repeating unit, and this repeating unit preferably includes an imino ether part.
 また、本発明に用いるイミノエーテル化合物は、下記一般式(4)で表されることが好ましい。 In addition, the imino ether compound used in the present invention is preferably represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 一般式(4)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。nは0~5の整数を表す。 In general formula (4), R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. R 11 , R 12 and R 13 each independently represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different. n represents an integer of 0 to 5.
 一般式(4)中、R、R11、R12及びR13は、一般式(1)における各々と同意であり、好ましい範囲も同様である。また、一般式(4)中、R41は、一般式(3)におけるそれと同意であり、好ましい範囲も同様である。また、nは0~3であることが好ましく、0~2であることがより好ましい。 In the general formula (4), R 2 , R 11 , R 12 and R 13 are the same as those in the general formula (1), and preferred ranges are also the same. Moreover, in General formula (4), R41 is the same as that in General formula (3), and its preferable range is also the same. N is preferably 0 to 3, more preferably 0 to 2.
 本発明に用いるイミノエーテル化合物は、下記一般式(5)で表されることが好ましい。 The imino ether compound used in the present invention is preferably represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 一般式(5)中、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。R21及びR41はそれぞれ独立に置換基を表す。R21及びR41がそれぞれ複数存在する場合は同じであっても、異なっていてもよい。nは0~5の整数を表し、mは0~5の整数を表す。 In general formula (5), R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 21 and R 41 each independently represent a substituent. When a plurality of R 21 and R 41 are present, they may be the same or different. n represents an integer of 0 to 5, and m represents an integer of 0 to 5.
 一般式(5)中、R11、R12及びR13は、一般式(1)における各々と同意であり、好ましい範囲も同様である。一般式(5)中、R41は一般式(3)におけるそれと同意であり、好ましい範囲も同様である。なお、R21についても、一般式(3)におけるR41と同様の置換基を例示することができる。 In the general formula (5), R 11 , R 12 and R 13 are the same as those in the general formula (1), and preferred ranges are also the same. In the general formula (5), R 41 is the same as that in the general formula (3), and the preferred range is also the same. Incidentally, it is possible to illustrate the same substituents as R 41 in the R 21 also, the general formula (3).
 また、一般式(5)中、nは0~3であることが好ましく、0~2であることがより好ましい。また、mは0~3であることが好ましく、0~2であることがより好ましい。 In the general formula (5), n is preferably 0 to 3, and more preferably 0 to 2. Further, m is preferably 0 to 3, and more preferably 0 to 2.
 本発明に用いるイミノエーテル化合物は、下記一般式(6)で表されることが好ましい。 The imino ether compound used in the present invention is preferably represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 一般式(6)中、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。nは0~5の整数を表す。また、pは2~4の整数を表し、Lは、炭素原子との結合末端が、置換基を有してもよいアルキレン部、置換基を有してもよいシクロアルキレン部、置換基を有してもよいアリーレン部、又は、置換基を有してもよいアルコキシレン部である、p価の基を表す。 In General Formula (6), R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different. n represents an integer of 0 to 5. P represents an integer of 2 to 4, and L 1 represents an alkylene part which may have a substituent, a cycloalkylene part which may have a substituent, or a substituent at the bond terminal to the carbon atom. The p-valent group which is the arylene part which may have or the alkoxylene part which may have a substituent is represented.
 一般式(6)中、R11、R12及びR13は、一般式(1)における各々と同意であり、好ましい範囲も同様である。また、一般式(6)中、R41は、一般式(3)におけるそれと同意であり、好ましい範囲も同様である。また、nは0~3であることが好ましく、0~2であることがより好ましい。 In the general formula (6), R 11 , R 12 and R 13 are the same as those in the general formula (1), and preferred ranges are also the same. Moreover, in General formula (6), R41 is the same as that in General formula (3), and its preferable range is also the same. N is preferably 0 to 3, more preferably 0 to 2.
 一般式(6)中、Lは、炭素原子との結合末端が、置換基を有してもよいアルキレン部、置換基を有してもよいシクロアルキレン部、置換基を有してもよいアリーレン部、又は、置換基を有してもよいアルコキシレン部である、p価の基を表す。pは2~4の整数を表し、pは2又は3であることが好ましい。
 二価の基の具体例としては、例えば、置換基を有してもよいアルキレン基、置換基を有してもよいシクロアルキレン基、置換基を有してもよいアリーレン基、置換基を有してもよいアルコキシレン基が挙げられる。また、炭素原子との結合末端が、置換基を有してもよいアルキレン部、置換基を有してもよいシクロアルキレン部、置換基を有してもよいアリーレン部、又は、置換基を有してもよいアルコキシレン部であり、部分構造として、-SO-、-CO-、置換もしくは無置換のアルキレン部、置換もしくは無置換のアルケニレン部、アルキニレン部、置換もしくは無置換のフェニレン部、置換もしくは無置換のビフェニレン部、置換もしくは無置換のナフチレン部、-O-、-S-および-SO-から選ばれる少なくとも一つを含む基が挙げられる。
 好ましくは、例えば、置換もしくは無置換のフェニレン、置換もしくは無置換のビフェニレン、置換もしくは無置換のナフチレン、エチレン、n-ブチレン、置換もしくは無置換のシクロヘキシレン、置換もしくは無置換の-C10-C10-、置換もしくは無置換の-C10-CH-C10-、置換もしくは無置換の-C-C(CH-C-、置換もしくは無置換の-C-CH-C-、置換もしくは無置換の-C-C(O)-C-、置換もしくは無置換の-C-O-C-、置換もしくは無置換の-C-S-C-、置換もしくは無置換の-C-SO-C-、置換もしくは無置換の-C-C(CF-C-、置換もしくは無置換の-C-NHC(O)-C-、置換もしくは無置換の-C-O-C-C(CH-C-O-C-、置換もしくは無置換の-C-O-C-C(O)-C-O-C-、置換もしくは無置換の-C-O-C-SO-C-O-C-、置換もしくは無置換の-C-O-C-S-C-O-C-、置換もしくは無置換の-C-O-(C-O-C-、置換もしくは無置換の-C-O-C-C(CF-C-O-C-、などが挙げられる。
 三価の基の具体例としては、例えば、二価の基の例として挙げた基のうち置換基を有するものから1つの水素原子を取り除いた基が挙げられる。
 四価の基の具体例としては、例えば、二価の基の例として挙げた基のうち置換基を有するものから2つの水素原子を取り除いた基が挙げられる。
In General Formula (6), L 1 may have an alkylene part that may have a substituent, a cycloalkylene part that may have a substituent, or a substituent at the terminal of the bond with the carbon atom. A p-valent group which is an arylene part or an alkoxylene part which may have a substituent is represented. p represents an integer of 2 to 4, and p is preferably 2 or 3.
Specific examples of the divalent group include an alkylene group that may have a substituent, a cycloalkylene group that may have a substituent, an arylene group that may have a substituent, and a substituent. And an alkoxylene group which may be used. In addition, the bond terminal to the carbon atom has an alkylene part which may have a substituent, a cycloalkylene part which may have a substituent, an arylene part which may have a substituent, or a substituent. A partial structure, such as —SO 2 —, —CO—, a substituted or unsubstituted alkylene part, a substituted or unsubstituted alkenylene part, an alkynylene part, a substituted or unsubstituted phenylene part, And a group containing at least one selected from a substituted or unsubstituted biphenylene moiety, a substituted or unsubstituted naphthylene moiety, —O—, —S— and —SO—.
Preferably, for example, substituted or unsubstituted phenylene, substituted or unsubstituted biphenylene, substituted or unsubstituted naphthylene, ethylene, n-butylene, substituted or unsubstituted cyclohexylene, substituted or unsubstituted —C 6 H 10 -C 6 H 10- , substituted or unsubstituted -C 6 H 10 -CH 2 -C 6 H 10- , substituted or unsubstituted -C 6 H 5 -C (CH 3 ) 2 -C 6 H 5- Substituted, unsubstituted —C 6 H 5 —CH 2 —C 6 H 5 —, substituted or unsubstituted —C 6 H 5 —C (O) —C 6 H 5 —, substituted or unsubstituted —C 6 H 5 —O—C 6 H 5 —, substituted or unsubstituted —C 6 H 5 —S—C 6 H 5 —, substituted or unsubstituted —C 6 H 5 —SO 2 —C 6 H 5 — , Substituted or unsubstituted -C 6 H 5 -C (CF 3 ) 2 -C 6 H 5 -, substituted or unsubstituted -C 6 H 5 -NHC (O) -C 6 H 5 -, substituted or unsubstituted -C 6 H 5 —O—C 6 H 5 —C (CH 3 ) 2 —C 6 H 5 —O—C 6 H 5 —, substituted or unsubstituted —C 6 H 5 —O—C 6 H 5 —C (O ) —C 6 H 5 —O—C 6 H 5 —, substituted or unsubstituted —C 6 H 5 —O—C 6 H 5 —SO 2 —C 6 H 5 —O—C 6 H 5 —, substituted Alternatively, unsubstituted —C 6 H 5 —O—C 6 H 5 —S—C 6 H 5 —O—C 6 H 5 —, substituted or unsubstituted —C 6 H 5 —O— (C 6 H 5 ) 2 -O-C 6 H 5 -, substituted or unsubstituted -C 6 H 5 -O-C 6 H 5 -C (CF 3) 2 -C 6 H 5 -O-C 6 H 5 -, I And the like.
Specific examples of the trivalent group include, for example, a group obtained by removing one hydrogen atom from those having a substituent among the groups listed as examples of the divalent group.
Specific examples of the tetravalent group include, for example, a group obtained by removing two hydrogen atoms from those having a substituent among the groups listed as examples of the divalent group.
 本発明では、pを2~4とすることにより、イミノエーテル部を一分子中に2以上有する化合物とすることができ、より優れた末端封止効果を発揮することができる。さらに、イミノエーテル部を一分子中に2以上有する化合物とすることにより、イミノエーテル価(全分子量/イミノエーテルの官能基数)を低くすることができ、効率良くイミノエーテル化合物とポリエステルの末端カルボキシル基を反応させることができる。 In the present invention, by setting p to 2 to 4, a compound having two or more imino ether moieties in one molecule can be obtained, and a more excellent end-capping effect can be exhibited. Furthermore, by using a compound having two or more imino ether moieties in one molecule, the imino ether value (total molecular weight / number of functional groups of imino ether) can be lowered, and the imino ether compound and the terminal carboxyl group of the polyester can be efficiently produced. Can be reacted.
 本発明に用いるイミノエーテル化合物は、下記一般式(7)で表されることが好ましい。 The imino ether compound used in the present invention is preferably represented by the following general formula (7).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 一般式(7)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。また、pは2~4の整数を表し、Lは、窒素原子との結合末端が、置換基を有してもよいアリーレン部、又は、置換基を有してもよいシクロアルキレン部であるp価の基を表す。 In general formula (7), R 2 has an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, an aryl group that may have a substituent, or a substituent. R 11 , R 12 and R 13 each independently represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. P represents an integer of 2 to 4, and L 2 represents an arylene moiety that may have a substituent, or a cycloalkylene moiety that may have a substituent, at the bond terminal to the nitrogen atom. Represents a p-valent group.
 一般式(7)中、R、R11、R12及びR13は、一般式(1)における各々と同意であり、好ましい範囲も同様である。 In the general formula (7), R 2 , R 11 , R 12 and R 13 are the same as those in the general formula (1), and preferred ranges are also the same.
 一般式(7)中、Lは、窒素原子との結合末端が、置換基を有してもよいアリーレン部、又は、置換基を有してもよいシクロアルキレン部であるp価の基を表す。Lは、窒素原子との結合末端が、置換基を有してもよいアリーレン部であるp価の基が好ましい。pは2~4の整数を表し、pは2又は3であることが好ましい。
 Lの具体例としては、置換基を有してもよいアリーレン基、置換基を有してもよいシクロアルキレン基が挙げられる。また、窒素原子との結合末端が、置換基を有してもよいアリーレン部、又は、置換基を有してもよいシクロアルキレン部であり、部分構造として、-SO-、-CO-、置換もしくは無置換のアルキレン部、置換もしくは無置換のアルケニレン部、アルキニレン部、置換もしくは無置換のフェニレン部、置換もしくは無置換のビフェニレン部、置換もしくは無置換のナフチレン部、-O-、-S-および-SO-から選ばれる少なくとも一つを含む基が挙げられる。
 好ましくは、例えば、置換もしくは無置換のフェニレン、置換もしくは無置換のビフェニレン、置換もしくは無置換のナフチレン、置換もしくは無置換のシクロヘキシレン、置換もしくは無置換の-C10-C10-、置換もしくは無置換の-C10-CH-C10-、置換もしくは無置換の-C-C(CH-C-、置換もしくは無置換の-C-CH-C-、置換もしくは無置換の-C-C(O)-C-、置換もしくは無置換の-C-O-C-、置換もしくは無置換の-C-S-C-、置換もしくは無置換の-C-SO-C-、置換もしくは無置換の-C-C(CF-C-、置換もしくは無置換の-C-NHC(O)-C-、置換もしくは無置換の-C-O-C-C(CH-C-O-C-、置換もしくは無置換の-C-O-C-C(O)-C-O-C-、置換もしくは無置換の-C-O-C-SO-C-O-C-、置換もしくは無置換の-C-O-C-S-C-O-C-、置換もしくは無置換の-C-O-(C-O-C-、置換もしくは無置換の-C-O-C-C(CF-C-O-C-、などが挙げられる。
In General Formula (7), L 2 represents a p-valent group whose bond terminal to the nitrogen atom is an arylene part that may have a substituent or a cycloalkylene part that may have a substituent. To express. L 2 is preferably a p-valent group whose bond terminal to the nitrogen atom is an arylene moiety that may have a substituent. p represents an integer of 2 to 4, and p is preferably 2 or 3.
Specific examples of L 2 include an arylene group which may have a substituent and a cycloalkylene group which may have a substituent. The bond terminal to the nitrogen atom is an arylene moiety which may have a substituent or a cycloalkylene moiety which may have a substituent, and as a partial structure, —SO 2 —, —CO—, Substituted or unsubstituted alkylene part, substituted or unsubstituted alkenylene part, alkynylene part, substituted or unsubstituted phenylene part, substituted or unsubstituted biphenylene part, substituted or unsubstituted naphthylene part, -O-, -S- And a group containing at least one selected from —SO—.
Preferably, for example, substituted or unsubstituted phenylene, substituted or unsubstituted biphenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted cyclohexylene, substituted or unsubstituted —C 6 H 10 —C 6 H 10 — Substituted or unsubstituted —C 6 H 10 —CH 2 —C 6 H 10 —, substituted or unsubstituted —C 6 H 5 —C (CH 3 ) 2 —C 6 H 5 —, substituted or unsubstituted —C 6 H 5 —CH 2 —C 6 H 5 —, substituted or unsubstituted —C 6 H 5 —C (O) —C 6 H 5 —, substituted or unsubstituted —C 6 H 5 —O— C 6 H 5 —, substituted or unsubstituted —C 6 H 5 —S—C 6 H 5 —, substituted or unsubstituted —C 6 H 5 —SO 2 —C 6 H 5 —, substituted or unsubstituted -C 6 H 5 -C (CF 3 ) 2 —C 6 H 5 —, substituted or unsubstituted —C 6 H 5 —NHC (O) —C 6 H 5 —, substituted or unsubstituted —C 6 H 5 —O—C 6 H 5 — C (CH 3 ) 2 —C 6 H 5 —O—C 6 H 5 —, substituted or unsubstituted —C 6 H 5 —O—C 6 H 5 —C (O) —C 6 H 5 —O— C 6 H 5 —, substituted or unsubstituted —C 6 H 5 —O—C 6 H 5 —SO 2 —C 6 H 5 —O—C 6 H 5 —, substituted or unsubstituted —C 6 H 5 —O—C 6 H 5 —S—C 6 H 5 —O—C 6 H 5 —, substituted or unsubstituted —C 6 H 5 —O— (C 6 H 5 ) 2 —O—C 6 H 5 -, Substituted or unsubstituted —C 6 H 5 —O—C 6 H 5 —C (CF 3 ) 2 —C 6 H 5 —O—C 6 H 5 —, and the like.
 本発明に用いるイミノエーテル化合物は、下記一般式(8)で表されることが好ましい。 The imino ether compound used in the present invention is preferably represented by the following general formula (8).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 一般式(8)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。nは0~5の整数を表す。また、pは2~4の整数を表し、Lは、酸素原子との結合末端が、アルキレン部であるp価の基を表す。但し、Lのアルキレン部は、水素原子の一部または全部が、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基で置換されていてもよい。 In general formula (8), R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different. n represents an integer of 0 to 5. P represents an integer of 2 to 4, and L 3 represents a p-valent group in which the bond terminal to the oxygen atom is an alkylene part. However, in the alkylene part of L 3 , part or all of the hydrogen atoms may be substituted with an alkyl group which may have a substituent or an aryl group which may have a substituent.
 一般式(8)中、Rは、一般式(1)における各々と同意であり、好ましい範囲も同様である。また、一般式(8)中、R41は、一般式(3)におけるそれと同意であり、好ましい範囲も同様である。また、nは0~3であることが好ましく、0~2であることがより好ましい。 In the general formula (8), R 2 are each as agreed in the general formula (1), and preferred ranges are also the same. Moreover, in General formula (8), R41 is the same as that in General formula (3), and its preferable range is also the same. N is preferably 0 to 3, more preferably 0 to 2.
 一般式(8)中、Lは、酸素原子との結合末端が、アルキレン部であるp価の基を表す。Lのアルキレン部は、水素原子の一部または全部が、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基で置換されていてもよい。pは2~4の整数を表し、pは2又は3であることが好ましい。
 Lの具体例としては、アルキレン基が挙げられる。また、酸素原子との結合末端が、アルキレン部であり、部分構造として、-SO-、-CO-、置換もしくは無置換のアルキレン基、置換もしくは無置換のアルケニレン基、アルキニレン基、置換もしくは無置換のフェニレン基、置換もしくは無置換のビフェニレン基、置換もしくは無置換のナフチレン基、-O-、-S-および-SO-から選ばれる少なくとも一つを含む基が挙げられる。
 好ましくは、例えば、エチレン、n-ブチレン、置換もしくは無置換の-CH-C(CH-CH-、置換もしくは無置換の-CH-C-CH-、などが挙げられる。
In General Formula (8), L 3 represents a p-valent group in which the bond terminal to the oxygen atom is an alkylene part. In the alkylene part of L 3 , part or all of the hydrogen atoms may be substituted with an alkyl group which may have a substituent or an aryl group which may have a substituent. p represents an integer of 2 to 4, and p is preferably 2 or 3.
Specific examples of L 3 include an alkylene group. In addition, the bond terminal to the oxygen atom is an alkylene moiety, and the partial structure includes —SO 2 —, —CO—, a substituted or unsubstituted alkylene group, a substituted or unsubstituted alkenylene group, an alkynylene group, substituted or unsubstituted And a group containing at least one selected from a substituted phenylene group, a substituted or unsubstituted biphenylene group, a substituted or unsubstituted naphthylene group, —O—, —S— and —SO—.
Preferably, for example, ethylene, n-butylene, substituted or unsubstituted —CH 2 —C (CH 3 ) 2 —CH 2 —, substituted or unsubstituted —CH 2 —C 6 H 5 —CH 2 —, etc. Is mentioned.
 イミノエーテル化合物のイミノエーテル部あたりの分子量は1000以下であることが好ましく、750以下であることがより好ましく、500以下であることがさらに好ましい。イミノエーテル部あたりの分子量をこの範囲とすることで、低添加量にてポリエステルの末端カルボン酸基を封止することが可能となる。 The molecular weight per iminoether part of the iminoether compound is preferably 1000 or less, more preferably 750 or less, and even more preferably 500 or less. By setting the molecular weight per imino ether part within this range, it is possible to seal the terminal carboxylic acid group of the polyester with a low addition amount.
 イミノエーテル化合物全体の分子量は、280以上であることが好ましく、300以上であることがより好ましい。イミノエーテルの分子量をこの範囲とすることで、揮散をより効果的に抑制することができる。 The molecular weight of the whole imino ether compound is preferably 280 or more, and more preferably 300 or more. By setting the molecular weight of the imino ether within this range, volatilization can be more effectively suppressed.
 イミノエーテル化合物は、2官能以上の化合物であることが好ましく、合成し易さの観点から2官能、3官能又は4官能の化合物であることがより好ましい。ここで、官能数は、化合物に含まれているイミノエーテル部の数を表し、2官能のイミノエーテル化合物は、イミノエーテル部を2つ含む化合物を意味する。イミノエーテル化合物を2官能以上の化合物とすることにより、末端封止効果をより高めることができる。 The imino ether compound is preferably a bifunctional or higher functional compound, and more preferably a bifunctional, trifunctional or tetrafunctional compound from the viewpoint of ease of synthesis. Here, the functional number represents the number of imino ether parts contained in the compound, and the bifunctional imino ether compound means a compound containing two imino ether parts. By making the iminoether compound a bifunctional or higher compound, the end-capping effect can be further enhanced.
下記に一般式(1)の好ましい具体例を示すが、本発明はこれに限定されない。 Although the preferable specific example of General formula (1) is shown below, this invention is not limited to this.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(脂肪族ポリエステル末端カルボキシル基の化学修飾方法)
 脂肪族ポリエステル末端カルボキシル基の化学修飾は、一般式(1)で表されるイミノエーテル化合物と脂肪族ポリエステルを溶融状態で混合することで行うことができる。イミノエーテル化合物と脂肪族ポリエステルを100~350℃で反応させた場合、下記反応スキームのようにイミノエーテル基と脂肪族ポリエステルの末端カルボキシル基が反応し、カルボン酸エステルを生成する。また、一般式(1)で表されるイミノエーテル化合物は、脂肪族ポリエステルの末端カルボキシル基と反応することでアミド化合物となるため、樹脂組成物において、脂肪族ポリエステルと一般式(1)で表されるイミノエーテル化合物が反応した際にはアミド化合物も含まれることとなる。
(Chemical modification method of aliphatic polyester terminal carboxyl group)
Chemical modification of the aliphatic polyester terminal carboxyl group can be performed by mixing the imino ether compound represented by the general formula (1) and the aliphatic polyester in a molten state. When the imino ether compound and the aliphatic polyester are reacted at 100 to 350 ° C., the imino ether group reacts with the terminal carboxyl group of the aliphatic polyester to form a carboxylic acid ester as shown in the following reaction scheme. Moreover, since the imino ether compound represented by the general formula (1) becomes an amide compound by reacting with the terminal carboxyl group of the aliphatic polyester, the aliphatic polyester and the general formula (1) are represented in the resin composition. When the imino ether compound is reacted, an amide compound is also included.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 イミノエーテル化合物と脂肪族ポリエステルのようなカルボン酸基を有する化合物の反応は、100~350℃の反応温度で行うことでポリエステル末端カルボキシル基の化学修飾を行うことができる。反応温度は用いる脂肪族ポリエステルの融点(Tm)によって選択され、(Tm+5)℃~(Tm+100)℃が好ましく、(Tm+10)℃~(Tm+80)℃がより好ましい。(Tm+5)℃より高いと、脂肪族ポリエステルが完全に溶融し面上が良好になる。また、(Tm+100)℃より低いと、脂肪族ポリエステルが熱分解せず耐加水分解性が良好となる。 
 例えばポリ乳酸の場合は、175℃~270℃が好ましく、180℃~250℃がより好ましい。これらの温度範囲を満たす一例として、200℃で反応させることが挙げられる。ポリブチレンサクシネートの場合は、120℃~215℃が好ましく、125℃~195℃がより好ましい。これらの温度範囲を満たす一例として、160℃で反応させることが挙げられる。ポリグリコール酸の場合は、230℃~325℃が好ましく、235℃~305℃がより好ましい。これらの温度範囲を満たす一例として、250℃で反応させることが挙げられる。
The reaction of a compound having a carboxylic acid group such as an imino ether compound and an aliphatic polyester can be carried out at a reaction temperature of 100 to 350 ° C. to chemically modify the terminal carboxyl group of the polyester. The reaction temperature is selected according to the melting point (Tm) of the aliphatic polyester used, and is preferably (Tm + 5) ° C. to (Tm + 100) ° C., more preferably (Tm + 10) ° C. to (Tm + 80) ° C. When it is higher than (Tm + 5) ° C., the aliphatic polyester is completely melted and the surface becomes good. On the other hand, when the temperature is lower than (Tm + 100) ° C., the aliphatic polyester is not thermally decomposed and the hydrolysis resistance is improved.
For example, in the case of polylactic acid, it is preferably 175 ° C. to 270 ° C., more preferably 180 ° C. to 250 ° C. An example of satisfying these temperature ranges is to react at 200 ° C. In the case of polybutylene succinate, 120 ° C. to 215 ° C. is preferable, and 125 ° C. to 195 ° C. is more preferable. An example of satisfying these temperature ranges is to react at 160 ° C. In the case of polyglycolic acid, it is preferably 230 ° C. to 325 ° C., more preferably 235 ° C. to 305 ° C. An example of satisfying these temperature ranges is to react at 250 ° C.
 一般式(1)で表されるイミノエーテル化合物と脂肪族ポリエステルの末端カルボキシル基との反応率は、0.1~99%であることが好ましく、1~90%であることがより好ましく、2~80%であることがさらに好ましい。反応率を上記範囲内とすることにより、耐加水分解性を十分に向上させることができる。さらに、反応率を上記範囲内とすることにより、生成したアミド化合物がポリエステルフィルムから溶出することを抑制することができ、ポリエステルフィルムの面状をより良好なものにすることができる。 The reaction rate between the imino ether compound represented by the general formula (1) and the terminal carboxyl group of the aliphatic polyester is preferably 0.1 to 99%, more preferably 1 to 90%. More preferably, it is ˜80%. By setting the reaction rate within the above range, the hydrolysis resistance can be sufficiently improved. Furthermore, by making a reaction rate into the said range, it can suppress that the produced | generated amide compound elutes from a polyester film, and can make the surface shape of a polyester film more favorable.
 従来は、オキサゾリンやオキサジンとポリエチレンテレフタレートのカルボン酸を反応させることによりカルボン酸をエステル化することが行われていた。オキサゾリンやオキサジンを末端封止剤として用いた場合、開環反応が起こることが知られている。また、開環反応と同時に自己縮合が副反応として進行することも知られている。 Conventionally, carboxylic acid is esterified by reacting oxazoline or oxazine with carboxylic acid of polyethylene terephthalate. It is known that a ring-opening reaction occurs when oxazoline or oxazine is used as a terminal blocking agent. It is also known that self-condensation proceeds as a side reaction simultaneously with the ring-opening reaction.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 上記のような開環反応を伴う自己縮合は、開環反応により生じるアルキルアミドのアミド基の求核性が高いため生じるものであると考えられる。一方、本発明のイミノエーテルで鎖状化合物のものは自己縮合することはなく、また環状化合物のものはエステル化反応で得られる芳香族アミドはその求核性が高くないため、自己縮合が生じないものと考えられる。これにより、イミノエーテル化合物が脂肪族ポリエステル樹脂中でゲル化することを抑制することができる。 The self-condensation accompanied by the ring-opening reaction as described above is considered to be caused by the high nucleophilicity of the amide group of the alkylamide generated by the ring-opening reaction. On the other hand, the chain compounds of the imino ethers of the present invention are not self-condensed, and those of cyclic compounds are not highly nucleophilic in the aromatic amide obtained by the esterification reaction. It is thought that there is nothing. Thereby, it can suppress that an imino ether compound gelatinizes in an aliphatic polyester resin.
(脂肪族ポリエステル)
 本発明の樹脂組成物は上述したイミノエーテル化合物と、脂肪族ポリエステルを含む。本発明で用いることができる脂肪族ポリエステルは特に限定されるものではないが、脂肪族ジカルボン酸と、脂肪族ジアルコール類とを重縮合して得られるものを用いることができる。中でも、生分解性を有するものが好ましく、植物由来の脂肪族ポリエステルを用いることがより好ましい。
(Aliphatic polyester)
The resin composition of the present invention contains the above-described imino ether compound and an aliphatic polyester. The aliphatic polyester that can be used in the present invention is not particularly limited, but an aliphatic polyester obtained by polycondensation of an aliphatic dicarboxylic acid and an aliphatic dialcohol can be used. Especially, what has biodegradability is preferable and it is more preferable to use plant-derived aliphatic polyester.
 脂肪族ポリエステルは、ポリ乳酸系樹脂、ポリブチレンサクシネート、ポリブチレンサクシネート・アジペート、ポリエチレンサクシネート、ポリグリコール酸、ポリカプロラクトン、ポリヒドロキシ酪酸、ポリヒドロキシ吉草酸及びヒドロキシ酪酸・ヒドロキシ吉草酸共重合体から選ばれる少なくとも1種であることが好ましく、ポリ乳酸系樹脂、ポリブチレンサクシネート及びポリグリコール酸から選ばれる少なくとも1種であることがより好ましい。脂肪族ポリエステルは1種を単独で用いてもよく、また、2種以上を組み合わせて用いてもよい。また、これらの脂肪族ポリエステルの2種以上の共重合体を用いてもよい。 Aliphatic polyesters include polylactic acid resin, polybutylene succinate, polybutylene succinate / adipate, polyethylene succinate, polyglycolic acid, polycaprolactone, polyhydroxybutyric acid, polyhydroxyvaleric acid and hydroxybutyric acid / hydroxyvaleric acid It is preferably at least one selected from a coalescence, and more preferably at least one selected from a polylactic acid resin, polybutylene succinate and polyglycolic acid. One aliphatic polyester may be used alone, or two or more aliphatic polyesters may be used in combination. Two or more kinds of copolymers of these aliphatic polyesters may be used.
 脂肪族ポリエステルは、耐加水分解性が低い材料である。特にポリ乳酸系樹脂は、湿熱環境下で加水分解されやすい。しかし、上述した特定のイミノエーテル化合物で、脂肪族ポリエステルの末端カルボキシル基を封止することで、脂肪族ポリエステルの耐加水分解性を向上させることができる。また、樹脂組成物を混練する際や、樹脂組成物からフィルムや成形品を形成する際に揮散ガスの発生を抑制でき、製造工程における作業安全性を向上できる。 Aliphatic polyester is a material with low hydrolysis resistance. In particular, polylactic acid-based resins are easily hydrolyzed in a humid heat environment. However, the hydrolysis resistance of the aliphatic polyester can be improved by sealing the terminal carboxyl group of the aliphatic polyester with the specific imino ether compound described above. Moreover, when kneading | mixing a resin composition or forming a film and a molded article from a resin composition, generation | occurrence | production of volatilization gas can be suppressed and the work safety | security in a manufacturing process can be improved.
 本発明において、脂肪族ポリエステルの重量平均分子量(Mw)は、10000以上が好ましく、30000以上がより好ましく、60000以上が特に好ましい。脂肪族ポリエステルの重量平均分子量は、ヘキサフルオロイソプロパノールを溶媒として用いたゲルパーミエーションクロマトグラフィー(GPC)によって測定したポリメチルメタクリレート(PMMA)換算の値を用いることができる。 In the present invention, the weight average molecular weight (Mw) of the aliphatic polyester is preferably 10,000 or more, more preferably 30000 or more, and particularly preferably 60000 or more. As the weight average molecular weight of the aliphatic polyester, a value in terms of polymethyl methacrylate (PMMA) measured by gel permeation chromatography (GPC) using hexafluoroisopropanol as a solvent can be used.
 本発明で用いる脂肪族ポリエステルは、ポリ乳酸系樹脂であることが好ましい。ポリ乳酸系樹脂は、L-乳酸及び/又はD-乳酸を主な構成成分とするポリマーである。ポリ乳酸系樹脂は、他のエステル形成能を有する単量体成分と共重合した共重合ポリ乳酸であってもよい。他の共重合成分としては、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ジフェニルジカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルスルホンジカルボン酸などの芳香族ジカルボン酸、1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸などの脂環式ジカルボン酸、マロン酸、ジメチルマロン酸、コハク酸、3,3-ジエチルコハク酸、グルタル酸、2,2-ジメチルグルタル酸、アジピン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、アゼライン酸、セバシン酸、スベリン酸などの脂肪族ジカルボン酸、グリコール酸、3-ヒドロキシ酪酸、4-ヒドロキシ吉草酸、ヒドロキシプロピオン酸、ヒドロキシカプロン酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸、およびそれらのエステル形成性誘導体などから誘導されるジカルボン酸、エチレングリコール、プロピレングリコール、ブダンジオール、ヘプタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオール、デカンジオール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコールなどの脂肪族ジオール、2,2-ビス(4-β-ヒドロキシエトキシフェニル)プロパン、2,2-ビス(4-β-ヒドロキシエトキシフェニル)スルホンなどの芳香族ジオール、ポリエチレングリコール、ポリ-1,3-プロピレングリコール、ポリテトラメチレングリコールなどの低分子量ポリアルキレングリコールなどから誘導されるジオール、グリセリン、ペンタエリスリトールなどの分子内に複数の水酸基を含有する化合物又はそれらの誘導体が挙げられる。なお、他の重合性単量体に由来する重合鎖が共重合体全量に占める割合は、モノマー換算で50モル%以下であることが好ましい。さらに、20モル%以下であることが特に好ましい。また、共重合体の配列様式は、ランダム共重合体、交互共重合体、ブロック共重合体又はグラフト共重合体のいずれであってもよい。 The aliphatic polyester used in the present invention is preferably a polylactic acid resin. The polylactic acid resin is a polymer containing L-lactic acid and / or D-lactic acid as a main constituent component. The polylactic acid-based resin may be a copolymerized polylactic acid copolymerized with a monomer component having other ester forming ability. Other copolymer components include isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenoxyethanedicarboxylic acid, diphenyletherdicarboxylic acid, diphenylsulfonedicarboxylic acid, etc. Arocyclic dicarboxylic acids such as aromatic dicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, malonic acid, dimethylmalonic acid, succinic acid, 3,3 -Aliphatic dicarboxylic acids such as diethyl succinic acid, glutaric acid, 2,2-dimethyl glutaric acid, adipic acid, 2-methyl adipic acid, trimethyl adipic acid, pimelic acid, azelaic acid, sebacic acid, suberic acid, glycolic acid, 3-hydroxybutyric acid, 4-hydro Dicarboxylic acids derived from hydroxycarboxylic acids such as civaleric acid, hydroxypropionic acid, hydroxycaproic acid, hydroxybenzoic acid, and ester-forming derivatives thereof, ethylene glycol, propylene glycol, butanediol, heptanediol, hexanediol, Aliphatic diols such as octanediol, nonanediol, decanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, 2,2-bis (4-β-hydroxyethoxyphenyl) propane, 2,2-bis (4- From aromatic diols such as β-hydroxyethoxyphenyl) sulfone, low molecular weight polyalkylene glycols such as polyethylene glycol, poly-1,3-propylene glycol, and polytetramethylene glycol Guide is the diol, glycerin, compounds or derivatives thereof containing a plurality of hydroxyl groups in the molecule such as pentaerythritol. In addition, it is preferable that the ratio for which the polymer chain derived from another polymerizable monomer occupies the copolymer whole quantity is 50 mol% or less in conversion of a monomer. Furthermore, it is especially preferable that it is 20 mol% or less. Further, the arrangement pattern of the copolymer may be any of a random copolymer, an alternating copolymer, a block copolymer, or a graft copolymer.
 ポリ乳酸系樹脂の分子量や分子量分布は、実質的に成形加工が可能であれば特に制限されるものではないが、重量平均分子量(Mw)としては、10000以上が好ましく、30000以上がより好ましく、60000以上が特に好ましい。ポリ乳酸系樹脂の重量平均分子量は、ヘキサフルオロイソプロパノールを溶媒として用いたゲルパーミエーションクロマトグラフィー(GPC)によって測定したポリメチルメタクリレート(PMMA)換算の値を用いることができる。 The molecular weight and molecular weight distribution of the polylactic acid-based resin are not particularly limited as long as it can be substantially molded, but the weight average molecular weight (Mw) is preferably 10,000 or more, more preferably 30000 or more, 60,000 or more is particularly preferable. As the weight average molecular weight of the polylactic acid-based resin, a value in terms of polymethyl methacrylate (PMMA) measured by gel permeation chromatography (GPC) using hexafluoroisopropanol as a solvent can be used.
 ポリ乳酸系樹脂としては、上市品を用いてもよい。上市品としては、例えば、三井化学社製のレイシア(登録商標)シリーズ等が挙げられる。 Commercially available products may be used as the polylactic acid resin. Examples of the marketed products include the Lacia (registered trademark) series manufactured by Mitsui Chemicals.
 本発明において、樹脂組成物中における脂肪族ポリエステルの含有量は特に制限されないが、樹脂組成物全量を基準として、10~99.9質量%が好ましい。下限値は10質量%以上が好ましく、20質量%以上がより好ましい。脂肪族ポリエステルは1種又は2種以上含んでいてもよく、2種以上含む場合は、その合計量が上記範囲となることが好ましい。 In the present invention, the content of the aliphatic polyester in the resin composition is not particularly limited, but is preferably 10 to 99.9% by mass based on the total amount of the resin composition. The lower limit is preferably 10% by mass or more, and more preferably 20% by mass or more. The aliphatic polyester may contain 1 type or 2 types or more, and when it contains 2 types or more, it is preferable that the total amount becomes the said range.
(樹脂組成物)
 本発明の樹脂組成物は、上述した脂肪族ポリエステルとイミノエーテル化合物とを含む。なお、本発明の樹脂組成物は、本発明の趣旨に反しない限りにおいて、上述したイミノエーテル化合物以外の化合物を含むことを拒むものではない。例えば、カルボジイミド化合物、ケテンイミン化合物、エポキシ化合物、オキサゾリン化合物などを併用することができる。ただし、本発明の樹脂組成物中に含まれるイミノエーテル化合物の含有量は、ポリエステル以外の有機化合物に対して、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
(Resin composition)
The resin composition of the present invention contains the aliphatic polyester and the imino ether compound described above. In addition, unless the resin composition of this invention is contrary to the meaning of this invention, it does not refuse containing compounds other than the imino ether compound mentioned above. For example, a carbodiimide compound, a ketene imine compound, an epoxy compound, an oxazoline compound, and the like can be used in combination. However, the content of the imino ether compound contained in the resin composition of the present invention is preferably 70% by mass or more, more preferably 80% by mass or more, with respect to the organic compound other than the polyester, More preferably, it is 90 mass% or more.
 上述した一般式(1)で表されるイミノエーテル化合物は、脂肪族ポリエステルと一般式(1)で表されるイミノエーテル化合物との合計質量に対して、0.05~10質量%含まれることが好ましく、0.1~5質量%含まれることがより好ましく、0.1~2質量%含まれることがさらに好ましく、0.1~1質量%含まれることが特に好ましい。一般式(1)で表されるイミノエーテル化合物の含有量を上記範囲内とすることにより、樹脂組成物の耐加水分解性をより改善することができるため好ましい。また、一般式(1)で表されるイミノエーテル化合物の含有量を上記範囲内とすることにより、着色が抑えられたポリエステルフィルムや成形品を形成することができる。なお、イミノエーテル化合物は、1種又は2種以上含まれていてもよい。2種以上含まれる場合は、その合計量が上記範囲となることが好ましい。 The imino ether compound represented by the general formula (1) is contained in an amount of 0.05 to 10% by mass with respect to the total mass of the aliphatic polyester and the imino ether compound represented by the general formula (1). It is preferably 0.1 to 5% by mass, more preferably 0.1 to 2% by mass, and particularly preferably 0.1 to 1% by mass. By making content of the iminoether compound represented by General formula (1) into the said range, since the hydrolysis resistance of a resin composition can be improved more, it is preferable. Moreover, the polyester film and molded article with which coloring was suppressed can be formed by making content of the imino ether compound represented by General formula (1) into the said range. In addition, 1 type, or 2 or more types may be contained for the imino ether compound. When 2 or more types are included, the total amount is preferably within the above range.
(添加剤)
 さらに、本発明の効果を阻害しない範囲内であれば、本発明の樹脂組成物には、各種添加剤、例えば、可塑剤、紫外線安定化剤、着色防止剤、艶消し剤、消臭剤、難燃剤、耐候剤、帯電防止剤、糸摩擦低減剤、離型剤、抗酸化剤、金属イオン封鎖剤、イオン交換剤あるいは着色顔料等として無機微粒子や有機化合物を必要に応じて添加してもよい。着色顔料としてはカーボンブラック、酸化チタン、酸化亜鉛、硫酸バリウム、酸化鉄などの無機顔料の他、シアニン系、スチレン系、フタロシアイン系、アンスラキノン系、ペリノン系、イソインドリノン系、キノフタロン系、キノクリドン系、チオインディゴ系などの有機顔料等を使用することができる。同様に、炭酸カルシウムやシリカ、窒化ケイ素、クレー、タルク、カオリン、ジルコニウム酸などの各種無機粒子や架橋高分子粒子、各種金属粒子などの粒子類などの改質剤も使用することができる。さらに、ワックス類、シリコーンオイル、各種界面活性剤、各種フッ素樹脂類、ポリフェニレンスルフィド類、ポリアミド類、エチレン・アクリレート共重合体、メチルメタクリレート重合体等のポリアクリレート類、各種ゴム類、アイオノマー類、ポリウレタン類およびその他熱可塑性エラストマー類などのポリマーを少量含有することができる。
(Additive)
Furthermore, within the range that does not impair the effects of the present invention, the resin composition of the present invention includes various additives such as plasticizers, UV stabilizers, anti-coloring agents, matting agents, deodorants, Inorganic fine particles and organic compounds may be added as necessary as flame retardants, weathering agents, antistatic agents, yarn friction reducing agents, mold release agents, antioxidants, sequestering agents, ion exchangers, or coloring pigments. Good. Color pigments include carbon black, titanium oxide, zinc oxide, barium sulfate, iron oxide, and other inorganic pigments, as well as cyanine, styrene, phthalocyanine, anthraquinone, perinone, isoindolinone, and quinophthalone. Organic pigments such as quinocridone and thioindigo can be used. Similarly, modifiers such as various inorganic particles such as calcium carbonate, silica, silicon nitride, clay, talc, kaolin, and zirconium acid, and particles such as crosslinked polymer particles and various metal particles can also be used. Furthermore, waxes, silicone oils, various surfactants, various fluororesins, polyphenylene sulfides, polyamides, polyacrylates such as ethylene / acrylate copolymers, methyl methacrylate polymers, various rubbers, ionomers, polyurethanes And small amounts of other polymers such as thermoplastic elastomers.
(他のポリエステル)
 本発明の樹脂組成物は、脂肪族ポリエステル以外のポリエステル(以下、他のポリエステルという)を含有していてもよい。
(Other polyester)
The resin composition of the present invention may contain a polyester other than the aliphatic polyester (hereinafter referred to as other polyester).
 他のポリエステルとしては、限定されるものではないが、飽和ポリエステルが好ましい。飽和ポリエステルを用いることで、不飽和ポリエステルを用いたフィルムと比べて力学強度の観点で優れるポリエステルフィルムを得ることができる。 Other polyesters are not limited, but saturated polyesters are preferable. By using a saturated polyester, a polyester film that is superior in terms of mechanical strength as compared with a film using an unsaturated polyester can be obtained.
 飽和ポリエステルとしては、芳香族二塩基酸又はそのエステル形成性誘導体と、ジオール又はそのエステル形成性誘導体から合成される線状飽和ポリエステルであることが好ましい。線状飽和ポリエステルとしては、例えば、特開2009-155479号公報や特開2010-235824号公報に記載のものを適宜用いることができる。 The saturated polyester is preferably a linear saturated polyester synthesized from an aromatic dibasic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof. As the linear saturated polyester, for example, those described in JP-A-2009-155479 and JP-A-2010-235824 can be appropriately used.
 上述した線状飽和ポリエステルは、例えば、芳香族二塩基酸又はそのエステル形成性誘導体とジオール又はそのエステル形成性誘導体を、エステル化反応又はエステル交換反応させ、次いで重縮合反応させることによって製造することができる。また、原料物質や反応条件を選択することにより、ポリエステルのカルボン酸価や固有粘度を制御することができる。なお、エステル化反応又はエステル交換反応及び重縮合反応を効果的に進めるために、これらの反応時に重合触媒を添加することが好ましい。 The above-mentioned linear saturated polyester is produced, for example, by subjecting an aromatic dibasic acid or its ester-forming derivative and a diol or its ester-forming derivative to an esterification reaction or a transesterification reaction, and then a polycondensation reaction. Can do. Moreover, the carboxylic acid value and intrinsic viscosity of the polyester can be controlled by selecting the raw material and reaction conditions. In order to effectively advance the esterification reaction or transesterification reaction and polycondensation reaction, it is preferable to add a polymerization catalyst during these reactions.
 重合触媒としては、カルボキシル基含量を所定の範囲以下に抑える観点から、Al系、Sb系、Ge系、及びTi系の化合物を用いることが好ましいが、特にTi系化合物が好ましい。Ti系化合物を用いる場合、Ti系化合物を1~30ppm、より好ましくは3~15ppmの範囲で触媒として用いることにより重合する態様が好ましい。Ti系化合物の割合が上述した範囲内であれば、末端カルボキシル基を好ましい範囲に調整でき、ポリエステルフィルムの耐加水分解性を低く保つことができる。 As the polymerization catalyst, Al-based, Sb-based, Ge-based, and Ti-based compounds are preferably used from the viewpoint of keeping the carboxyl group content below a predetermined range, and Ti-based compounds are particularly preferable. In the case of using a Ti compound, an embodiment in which polymerization is performed by using the Ti compound as a catalyst in the range of 1 to 30 ppm, more preferably 3 to 15 ppm is preferable. When the ratio of the Ti compound is within the above-described range, the terminal carboxyl group can be adjusted to a preferable range, and the hydrolysis resistance of the polyester film can be kept low.
 Ti系化合物を用いたポリエステルの合成は、例えば、特公平8-301198号公報、特許第2543624、特許第3335683、特許第3717380、特許第3897756、特許第3962226、特許第3979866、特許第3996871、特許第4000867、特許第4053837、特許第4127119、特許第4134710、特許第4159154、特許第4269704、特許第4313538等に記載の方法を適用できる。 For example, Japanese Patent Publication No. 8-301198, Japanese Patent No. 2543624, Japanese Patent No. 3335683, Japanese Patent No. 3717380, Japanese Patent No. 3997756, Japanese Patent No. 3996866, Japanese Patent No. 3997866, Japanese Patent No. 3996871, The methods described in Japanese Patent No. 4000086, Japanese Patent No. 4053837, Japanese Patent No. 4127119, Japanese Patent No. 4134710, Japanese Patent No. 4159154, Japanese Patent No. 4269704, Japanese Patent No. 431538, and the like can be applied.
 ポリエステルは、重合後に固相重合されていることが好ましい。これにより、好ましいカルボン酸価を達成することができる。固相重合は、連続法(タワーの中に樹脂を充満させ、これを加熱しながらゆっくり所定の時間滞流させた後、送り出す方法)でもよいし、バッチ法(容器の中に樹脂を投入し、所定の時間加熱する方法)でもよい。具体的には、固相重合には、特許第2621563、特許第3121876、特許第3136774、特許第3603585、特許第3616522、特許第3617340、特許第3680523、特許第3717392、特許第4167159等に記載の方法を適用することができる。 The polyester is preferably solid-phase polymerized after polymerization. Thereby, a preferable carboxylic acid value can be achieved. Solid-phase polymerization may be a continuous method (a method in which a tower is filled with a resin, which is slowly heated for a predetermined time and then sent out), or a batch method (a resin is charged into a container). , A method of heating for a predetermined time). Specifically, solid phase polymerization is described in Japanese Patent No. 2621563, Japanese Patent No. 3121876, Japanese Patent No. 3136774, Japanese Patent No. 3603585, Japanese Patent No. 3616522, Japanese Patent No. 3617340, Japanese Patent No. 3680523, Japanese Patent No. 3717392, Japanese Patent No. 4167159, etc. The method can be applied.
 固相重合の温度は、170~240℃が好ましく、より好ましくは180~230℃であり、さらに好ましくは190~220℃である。また、固相重合時間は、5~100時間が好ましく、より好ましくは10~75時間であり、さらに好ましくは15~50時間である。固相重合は、真空中あるいは窒素雰囲気下で行なうことが好ましい。 The temperature of the solid phase polymerization is preferably 170 to 240 ° C, more preferably 180 to 230 ° C, and further preferably 190 to 220 ° C. The solid phase polymerization time is preferably 5 to 100 hours, more preferably 10 to 75 hours, and further preferably 15 to 50 hours. The solid phase polymerization is preferably performed in a vacuum or in a nitrogen atmosphere.
 線状飽和ポリエステルの具体例として、ポリエチレンテレフタレート(PET)、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)、ポリエチレン-2,6-ナフタレートが挙げられる。このうち、ポリエチレンテレフタレート又はポリエチレン-2,6-ナフタレートが、力学的物性及びコストのバランスの点で特に好ましく、ポリエチレンテレフタレートがより特に好ましい。 Specific examples of the linear saturated polyester include polyethylene terephthalate (PET), polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), and polyethylene-2,6-naphthalate. Among these, polyethylene terephthalate or polyethylene-2,6-naphthalate is particularly preferable from the viewpoint of the balance between mechanical properties and cost, and polyethylene terephthalate is more particularly preferable.
 他のポリエステルは、単独重合体であってもよいし、共重合体であってもよい。更に、ポリエステルに他の種類の樹脂、例えばポリイミド等を少量ブレンドしたものであってもよい。また、ポリエステルとして、溶融製膜時に異方性を形成することができる結晶性のポリエステルを用いてもよい。 The other polyester may be a homopolymer or a copolymer. Further, polyester may be blended with a small amount of other types of resins such as polyimide. Moreover, as polyester, you may use crystalline polyester which can form anisotropy at the time of melt film forming.
 他のポリエステルの重量平均分子量(Mw)は、耐熱性や粘度の観点から、5000~100000が好ましく、8000~80000が更に好ましく、12000~60000が特に好ましい。重量平均分子量は、ヘキサフルオロイソプロパノールを溶媒として用いたゲルパーミエーションクロマトグラフィー(GPC)によって測定したポリメチルメタクリレート(PMMA)換算の値を用いることができる。 The weight average molecular weight (Mw) of other polyesters is preferably from 5,000 to 100,000, more preferably from 8,000 to 80,000, particularly preferably from 12,000 to 60,000, from the viewpoints of heat resistance and viscosity. As the weight average molecular weight, a value in terms of polymethyl methacrylate (PMMA) measured by gel permeation chromatography (GPC) using hexafluoroisopropanol as a solvent can be used.
 本発明の樹脂組成物は、他のポリエステルを含有しなくてもよいが、他のポリエステルを含有する場合、他のポリエステルの含有量は、脂肪族ポリエステルの全質量に対し、0.01~10質量%であることが好ましく、0.01~5質量%であることがより好ましい。他のポリエステルは、1種又は2種以上含んでいてもよい。2種以上含む場合は、その合計量が上記範囲となることが好ましい。 The resin composition of the present invention may not contain other polyesters, but when other polyesters are contained, the content of other polyesters is 0.01 to 10 with respect to the total mass of the aliphatic polyester. The content is preferably mass%, more preferably 0.01 to 5 mass%. Another polyester may contain 1 type (s) or 2 or more types. When 2 or more types are included, the total amount is preferably within the above range.
(ポリエステルフィルム)
 本発明は、上述した樹脂組成物を含むポリエステルフィルムに関するものでもある。
(Polyester film)
The present invention also relates to a polyester film containing the above-described resin composition.
 本発明のポリエステルフィルムは延伸されていることが好ましく、2軸延伸されていることがさらに好ましい。すなわち、本発明のポリエステルフィルムは2軸配向フィルムであることが好ましい。中でも、平面2軸延伸されていることがチューブラーなどの延伸と比較して特に好ましく、逐次2軸延伸されていることがより特に好ましい。2軸延伸されたポリエステルフィルムは、長手方向(MD:Machine Direction)の延伸(以下「縦延伸」ともいう)と幅方向(TD:Transverse Direction)の延伸(以下、「横延伸」ともいう)が施されたフィルムである。縦延伸、横延伸は各々1回で行っても良く、複数回に亘って実施しても良く、同時に縦、横に延伸してもよい。 The polyester film of the present invention is preferably stretched and more preferably biaxially stretched. That is, the polyester film of the present invention is preferably a biaxially oriented film. Especially, it is especially preferable compared with extending | stretching of tubular etc. that it is plane biaxially stretched, and it is more especially preferable that it is biaxially stretched sequentially. The biaxially stretched polyester film is stretched in the longitudinal direction (MD: Machine Direction) (hereinafter also referred to as “longitudinal stretching”) and in the width direction (TD: Transverse Direction) (hereinafter also referred to as “lateral stretching”). It is a film that has been applied. Each of the longitudinal stretching and the lateral stretching may be performed once, may be performed a plurality of times, and may be stretched longitudinally and laterally at the same time.
 ポリエステルフィルム中の末端カルボキシル基含量(ポリエステルのカルボン酸価、以下、AVともいう)は、ポリエステルに対して30eq/ton以下が好ましく、20eq/ton以下がより好ましく、特に好ましくは16eq/ton以下であり、より特に好ましくは15eq/ton以下である。カルボキシル基含量が25eq/ton以下であると、イミノエーテル化合物と組み合わせることでポリエステルフィルムの耐加水分解性、耐熱性を保持することができ、湿熱経時したときの強度低下を小さく抑制することができる。ポリエステル中の末端カルボキシル基含量は、重合触媒種、重合時間、製膜条件(製膜温度や時間)によって調整することが可能である。カルボキシル基含量は、H.A.Pohl,Anal.Chem.26(1954)2145に記載の方法に従って、滴定法にて測定することができる。具体的には、ポリエステルを、ベンジルアルコールに205℃で溶解し、フェノールレッド指示薬を加え、水酸化ナトリウムの水/メタノール/ベンジルアルコール溶液で滴定することで、その適定量からカルボン酸価(eq/ton)を算出することができる。 The terminal carboxyl group content in the polyester film (the carboxylic acid value of the polyester, hereinafter also referred to as AV) is preferably 30 eq / ton or less, more preferably 20 eq / ton or less, and particularly preferably 16 eq / ton or less with respect to the polyester. And more particularly preferably 15 eq / ton or less. When the carboxyl group content is 25 eq / ton or less, it is possible to maintain the hydrolysis resistance and heat resistance of the polyester film by combining with the imino ether compound, and it is possible to suppress a decrease in strength when the moisture and heat age. . The terminal carboxyl group content in the polyester can be adjusted by polymerization catalyst species, polymerization time, and film forming conditions (film forming temperature and time). The carboxyl group content is H.264. A. Pohl, Anal. Chem. 26 (1954) 2145, and can be measured by a titration method. Specifically, the polyester is dissolved in benzyl alcohol at 205 ° C., a phenol red indicator is added, and titrated with a solution of sodium hydroxide in water / methanol / benzyl alcohol to determine the carboxylic acid value (eq / ton) can be calculated.
 ポリエステルフィルム中の末端ヒドロキシル基含量は、ポリエステルに対して120eq/ton以下が好ましく、より好ましくは90eq/ton以下である。ヒドロキシル基含量の下限は、上層を設ける場合、密着性の観点から20eq/ton以上が望ましい。ポリエステル中のヒドロキシル基含量は、重合触媒種、重合時間、製膜条件(製膜温度や時間)によって調整することが可能である。末端ヒドロキシル基含量は、重水素化ヘキサフルオロイソプロパノール溶媒を用いて、H-NMRにより測定した値を用いることできる。 The terminal hydroxyl group content in the polyester film is preferably 120 eq / ton or less, more preferably 90 eq / ton or less, based on the polyester. When the upper layer is provided, the lower limit of the hydroxyl group content is preferably 20 eq / ton or more from the viewpoint of adhesion. The hydroxyl group content in the polyester can be adjusted by the polymerization catalyst species, the polymerization time, and the film forming conditions (film forming temperature and time). As the terminal hydroxyl group content, a value measured by 1 H-NMR using a deuterated hexafluoroisopropanol solvent can be used.
 本発明のポリエステルフィルムの厚みは、用途によって異なる。例えば、25~300μmが好ましく、120~300μmがより好ましい。厚みが25μm以上であることで、十分な力学強度が得られ、300μm以下とすることで、コスト上のメリットが得られる。 The thickness of the polyester film of the present invention varies depending on the application. For example, 25 to 300 μm is preferable, and 120 to 300 μm is more preferable. When the thickness is 25 μm or more, sufficient mechanical strength is obtained, and when the thickness is 300 μm or less, a merit in cost can be obtained.
 さらに、本発明のポリエステルフィルムは、印刷性、ラミネート適性、コーティング適性などを向上させる目的で各種の表面処理を施しても良い。表面処理の方法としては、コロナ放電処理、プラズマ処理、火炎処理又は酸処理などが挙げられ、いずれの方法をも用いることができ、連続処理が可能である。なお、既存の製膜設備への装置設置が容易な点や処理の簡便さからコロナ放電処理が最も好ましいものとして例示できる。 Furthermore, the polyester film of the present invention may be subjected to various surface treatments for the purpose of improving printability, laminate suitability, coating suitability, and the like. Examples of the surface treatment include corona discharge treatment, plasma treatment, flame treatment, and acid treatment, and any method can be used, and continuous treatment is possible. In addition, the corona discharge treatment can be exemplified as the most preferable in view of easy installation of the apparatus in the existing film forming equipment and the simplicity of the treatment.
 本発明のポリエステルフィルムには、他の層を積層して積層体としてもよい。例えば、COOH、OH、SOH、NH及びその塩から選ばれる少なくとも一つの官能基を含む塗布層を設けて積層体としてもよい。 The polyester film of the present invention may be laminated with other layers. For example, a laminate may be provided by providing a coating layer containing at least one functional group selected from COOH, OH, SO 3 H, NH 2 and a salt thereof.
(成形品)
 本発明の樹脂組成物は、上述したようにフィルム又はシートを形成することができる。さらに、本発明の樹脂組成物は、溶融・溶液状態から繊維や各種成形品に成形加工することができる。本発明の樹脂組成物を用いることにより、各種成形品は、十分に高い耐熱性及び耐加水分解性を兼ね備えることができ、従来以上に広い分野での利用が可能である。例えば、繊維分野では衣料用途、釣り糸、漁網、海苔網、植生保護用不織布、土木用ネット、土嚢、育苗用ポット、農業用資材又は水切り袋などに応用できる。また、フィルムやシートでは包装用フィルム、農園芸用フィルム、ショッピングバック、ごみ袋又は堆肥袋などに応用できる。成形品では飲料や化粧品のボトル、ディスポーザブルカップ、トレイ、ナイフ、フォーク、スプーンなどの容器・食器類、植木鉢、育苗床、家電製品やOA機器の筺体や機構部品及び自動車部品などに応用できる。
(Molding)
The resin composition of the present invention can form a film or sheet as described above. Furthermore, the resin composition of the present invention can be molded into fibers and various molded products from a molten / solution state. By using the resin composition of the present invention, various molded articles can have sufficiently high heat resistance and hydrolysis resistance, and can be used in a wider field than before. For example, in the textile field, it can be applied to clothing use, fishing lines, fishing nets, laver nets, vegetation-protecting nonwoven fabrics, civil engineering nets, sandbags, seedling pots, agricultural materials or draining bags. Further, the film or sheet can be applied to a packaging film, an agricultural and horticultural film, a shopping bag, a garbage bag or a compost bag. As molded articles, it can be applied to containers and tableware such as beverage and cosmetic bottles, disposable cups, trays, knives, forks, and spoons, flower pots, nurseries, home appliances, OA equipment casings, mechanical parts, and automobile parts.
 本発明の樹脂組成物は、上述した中でも繊維及びフィルム分野において好ましく用いられる。繊維及びフィルム分野においては、体積比表面積が大きく、十分な耐加水分解性が求められるが、本発明の樹脂組成物を用いた繊維及びフィルムは、十分な耐加水分解性を有するため好適である。本発明の樹脂組成物から繊維を形成して使用する場合は、染料の水分散溶液による高温での染色が可能となり布帛の引裂強度を損なうことなく濃色あるは鮮明な色合いに染めることができる。また、繊維を漁網などの水産資材用として水中で使用する場合には、カルボキシル基末端の封止を適度に行うことにより実用的に必要十分な強度を発揮することができる。さらに、本発明の樹脂組成物を含む繊維やフィルムは経時安定性に富んでおり、製造後長期間経た後でも劣化することもなく当初の性能を発揮することができる。また、繊維やフィルムの使用時や加工時には、種々の乾熱条件や高温雰囲気に曝しても、安定した強度物性や耐久性を発揮することができる。 The resin composition of the present invention is preferably used in the fiber and film fields among the above. In the fiber and film fields, the volume specific surface area is large and sufficient hydrolysis resistance is required. However, fibers and films using the resin composition of the present invention are suitable because they have sufficient hydrolysis resistance. . When the fiber composition is used from the resin composition of the present invention, it can be dyed at a high temperature with an aqueous dispersion solution of the dye, and can be dyed in a dark or vivid color without impairing the tear strength of the fabric. . In addition, when the fiber is used underwater for fishery materials such as fishing nets, practically necessary and sufficient strength can be exhibited by appropriately sealing the carboxyl group ends. Furthermore, the fiber and film containing the resin composition of the present invention are rich in aging stability, and can exhibit the original performance without deterioration even after a long period of time after production. In addition, when the fiber or film is used or processed, stable strength properties and durability can be exhibited even when exposed to various dry heat conditions and high temperature atmospheres.
 なお、本発明の樹脂組成物を含む繊維は、マルチフィラメント、モノフィラメント、ステープルファイバー、トウ又はスパンボンドなどとして用いることができる。特にマルチフィラメントとして用いる場合は、実用的な観点から強度が3.0cN/dtex以上、さらには4.0cN/dtex以上であることが好ましい。また、毛羽や糸切れの少ない工業的な製糸工程により糸を得るという観点から、9.0cN/dtex以下が好ましい。 The fiber containing the resin composition of the present invention can be used as a multifilament, monofilament, staple fiber, tow or spunbond. In particular, when used as a multifilament, the strength is preferably 3.0 cN / dtex or more, more preferably 4.0 cN / dtex or more from a practical viewpoint. Moreover, 9.0 cN / dtex or less is preferable from a viewpoint of obtaining a yarn by an industrial yarn-making process with less fluff and yarn breakage.
 また、本発明の樹脂組成物を含む繊維の単繊維繊度は、使用形態や機械的強度、生分解速度などの要求特性に応じて選択すればよいが、通常0.5dtex以上、11111dtex以下である。また、マルチフィラメントとしての総繊度では5dtex以上、11111dtex以下とすることが好ましい。さらに、断面形状は、丸、扁平、中空、Y型、T型又は多角形など任意であるが、製糸性の観点から丸断面が好ましい。 Further, the single fiber fineness of the fiber containing the resin composition of the present invention may be selected according to the required characteristics such as the usage form, mechanical strength, biodegradation rate, etc., but is usually 0.5 dtex or more and 11111 dtex or less. . In addition, the total fineness as a multifilament is preferably 5 dtex or more and 11111 dtex or less. Furthermore, the cross-sectional shape is arbitrary, such as round, flat, hollow, Y-type, T-type, or polygonal, but a round cross-section is preferable from the viewpoint of yarn production.
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the features of the present invention will be described more specifically with reference to examples and comparative examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
 実施例及び比較例で用いたイミノエーテル(1)~(8)は以下の合成方法にて合成した。 The imino ethers (1) to (8) used in Examples and Comparative Examples were synthesized by the following synthesis method.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
[合成例1]
<イミノエーテル(1)の合成>
Figure JPOXMLDOC01-appb-C000033
[Synthesis Example 1]
<Synthesis of iminoether (1)>
Figure JPOXMLDOC01-appb-C000033
 5L三口フラスコに、トリエトキシメチルベンゼン600g(2.80mol)、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン498g(1.28mol)、トルエン480ml、メタンスルホン酸0.24g(2.5mmol)を仕込み、加熱還流下2時間攪拌した。反応系温度を100℃以下とし、還流されたエタノールはDean-Stark装置にて取り除いた。TLC(薄層クロマトグラフィー)にて反応終了を確認した後、室温まで冷却し、メタノールを加え晶析することで、イミノエーテル(1)777g(収率95%)を得た。得られた化合物はH-NMRにて同定した。 In a 5 L three-necked flask, 600 g (2.80 mol) of triethoxymethylbenzene, 498 g (1.28 mol) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 480 ml of toluene, 0.24 g of methanesulfonic acid ( 2.5 mmol) was added, and the mixture was stirred for 2 hours with heating under reflux. The reaction system temperature was set to 100 ° C. or lower, and the refluxed ethanol was removed with a Dean-Stark apparatus. After confirming the completion of the reaction by TLC (thin layer chromatography), the reaction mixture was cooled to room temperature, and methanol was added for crystallization to obtain 777 g of iminoether (1) (yield 95%). The obtained compound was identified by 1 H-NMR.
[合成例2]
<イミノエーテル(2)の合成>
Figure JPOXMLDOC01-appb-C000034
[Synthesis Example 2]
<Synthesis of iminoether (2)>
Figure JPOXMLDOC01-appb-C000034
 5L三口フラスコに、トリメトキシメチルベンゼン512g(2.80mol)、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン498g(1.28mol)、トルエン480ml、メタンスルホン酸0.24g(2.5mmol)を仕込み、加熱還流下2時間攪拌した。反応系温度を100℃以下とし、還流されたメタノールはDean-Stark装置にて取り除いた。TLCにて反応終了を確認した後、室温まで冷却し、メタノールを加え晶析することで、イミノエーテル(2)745g(収率95%)を得た。得られた化合物はH-NMRにて同定した。 In a 5 L three-necked flask, 512 g (2.80 mol) of trimethoxymethylbenzene, 498 g (1.28 mol) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 480 ml of toluene, 0.24 g of methanesulfonic acid ( 2.5 mmol) was added, and the mixture was stirred for 2 hours with heating under reflux. The reaction system temperature was set to 100 ° C. or lower, and the refluxed methanol was removed with a Dean-Stark apparatus. After confirming the completion of the reaction by TLC, the reaction mixture was cooled to room temperature, and methanol was added for crystallization to obtain 745 g of iminoether (2) (yield 95%). The obtained compound was identified by 1 H-NMR.
[合成例3]
<イミノエーテル(3)の合成>
Figure JPOXMLDOC01-appb-C000035
[Synthesis Example 3]
<Synthesis of iminoether (3)>
Figure JPOXMLDOC01-appb-C000035
 5L三口フラスコに、オルト酢酸トリメチル338g(2.80mol)、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン498g(1.28mol)、トルエン480ml、メタンスルホン酸0.24g(2.5mmol)を仕込み、加熱還流下2時間攪拌した。反応系温度を100℃以下とし、還流されたメタノールはDean-Stark装置にて取り除いた。TLCにて反応終了を確認した後、室温まで冷却し、メタノールを加え晶析することで、イミノエーテル(3)615g(収率92%)を得た。得られた化合物はH-NMRにて同定した。 In a 5 L three-necked flask, trimethyl orthoacetate 338 g (2.80 mol), 2,2-bis [4- (4-aminophenoxy) phenyl] propane 498 g (1.28 mol), toluene 480 ml, methanesulfonic acid 0.24 g (2 0.5 mmol), and the mixture was stirred for 2 hours under reflux with heating. The reaction system temperature was set to 100 ° C. or lower, and the refluxed methanol was removed with a Dean-Stark apparatus. After confirming the completion of the reaction by TLC, the mixture was cooled to room temperature, and methanol was added for crystallization to obtain 615 g of iminoether (3) (yield 92%). The obtained compound was identified by 1 H-NMR.
[合成例4]
<イミノエーテル(4)の合成>
Figure JPOXMLDOC01-appb-C000036
[Synthesis Example 4]
<Synthesis of iminoether (4)>
Figure JPOXMLDOC01-appb-C000036
 5L三口フラスコに、トリメトキシメチルベンゼン512g(2.80mol)、4,4’-ジアミノベンズアニリド310g(1.28mol)、トルエン480ml、メタンスルホン酸0.24g(2.5mmol)を仕込み、加熱還流下2時間攪拌した。反応系温度を100℃以下とし、還流されたメタノールはDean-Stark装置にて取り除いた。TLCにて反応終了を確認した後、室温まで冷却し、メタノールを加え晶析することで、イミノエーテル(4)504g(収率85%)を得た。得られた化合物はH-NMRにて同定した。 A 5 L three-necked flask was charged with 512 g (2.80 mol) of trimethoxymethylbenzene, 310 g (1.28 mol) of 4,4′-diaminobenzanilide, 480 ml of toluene, and 0.24 g (2.5 mmol) of methanesulfonic acid, and heated to reflux. Stir for 2 hours. The reaction system temperature was set to 100 ° C. or lower, and the refluxed methanol was removed with a Dean-Stark apparatus. After confirming the completion of the reaction by TLC, the reaction mixture was cooled to room temperature, and methanol was added for crystallization to obtain 504 g (yield 85%) of iminoether (4). The obtained compound was identified by 1 H-NMR.
[合成例5]
<イミノエーテル(5)の合成>
Figure JPOXMLDOC01-appb-C000037
[Synthesis Example 5]
<Synthesis of iminoether (5)>
Figure JPOXMLDOC01-appb-C000037
 5L三口フラスコに、トリメトキシメチルベンゼン512g(2.80mol)、4-アミノアセトアニリド191.8g(1.28mol)、トルエン480ml、メタンスルホン酸0.24g(2.5mmol)を仕込み、加熱還流下2時間攪拌した。反応系温度を100℃以下とし、還流されたメタノールはDean-Stark装置にて取り除いた。TLCにて反応終了を確認した後、室温まで冷却し、メタノールを加え晶析することで、イミノエーテル(5)309g(収率90%)を得た。得られた化合物はH-NMRにて同定した。 A 5 L three-necked flask was charged with 512 g (2.80 mol) of trimethoxymethylbenzene, 191.8 g (1.28 mol) of 4-aminoacetanilide, 480 ml of toluene, and 0.24 g (2.5 mmol) of methanesulfonic acid. Stir for hours. The reaction system temperature was set to 100 ° C. or lower, and the refluxed methanol was removed with a Dean-Stark apparatus. After confirming the completion of the reaction by TLC, the mixture was cooled to room temperature, and methanol was added for crystallization to obtain 309 g of iminoether (5) (yield 90%). The obtained compound was identified by 1 H-NMR.
[合成例6]
<イミノエーテル(6)の合成>
Figure JPOXMLDOC01-appb-C000038
[Synthesis Example 6]
<Synthesis of iminoether (6)>
Figure JPOXMLDOC01-appb-C000038
 5L三口フラスコに、4,4’-メチレンビス(シクロヘキシルアミン)210g(1.0mol)、トリエチルアミン243g(2.4mol)、ジメチルアセトアミド1.0Lを仕込み、氷浴下でベンゾイルクロライド336g(2.4mol)を滴下した後、室温下で1時間攪拌した。1mol/Lの塩酸水2.0Lを加え、1時間攪拌し、ろ過することで(6-1)397g(収率95%)を得た。得られた化合物はH-NMRにて同定した。 A 5 L three-necked flask was charged with 210 g (1.0 mol) of 4,4′-methylenebis (cyclohexylamine), 243 g (2.4 mol) of triethylamine and 1.0 L of dimethylacetamide, and 336 g (2.4 mol) of benzoyl chloride in an ice bath. Was added dropwise, and the mixture was stirred at room temperature for 1 hour. 2.0 L of 1 mol / L hydrochloric acid water was added, and the mixture was stirred for 1 hour and filtered to obtain 397 g (yield 95%) of (6-1). The obtained compound was identified by 1 H-NMR.
 5L三口フラスコに、(6-1)300g、塩化チオニル1.0Lを加え、65℃で2時間攪拌した後、過剰量の塩化チオニルを減圧下で除去した。室温まで冷却しTHF(テトラヒドロフラン)1.0mlを加え、氷浴下でSM-28(ナトリウムメチラート28%メタノール溶液)を310g(1.6mol)滴下した後、室温下で1時間攪拌した。酢酸エチル1.5Lと純水1.0Lを加えて分液し、硫酸マグネシウムで乾燥した後、濃縮することで固体が得られた。そこへメタノール2.0Lを加え、室温下で1時間攪拌し、ろ過することでイミノエーテル(6)288g(収率90%)を得た。得られた化合物はH-NMRにて同定した。 To a 5 L three-necked flask, 300 g of (6-1) and 1.0 L of thionyl chloride were added and stirred at 65 ° C. for 2 hours, and then excess thionyl chloride was removed under reduced pressure. After cooling to room temperature, 1.0 ml of THF (tetrahydrofuran) was added, and 310 g (1.6 mol) of SM-28 (sodium methylate 28% methanol solution) was added dropwise in an ice bath, followed by stirring at room temperature for 1 hour. 1.5 L of ethyl acetate and 1.0 L of pure water were added for liquid separation, dried over magnesium sulfate, and concentrated to obtain a solid. Methanol 2.0L was added there, and it stirred at room temperature for 1 hour, and obtained 288 g (yield 90%) of imino ether (6) by filtering. The obtained compound was identified by 1 H-NMR.
 [合成例7]
<イミノエーテル(7)の合成>
Figure JPOXMLDOC01-appb-C000039
[Synthesis Example 7]
<Synthesis of iminoether (7)>
Figure JPOXMLDOC01-appb-C000039
 p-アニシジン92.4g(0.75mol)、ピリジン59g(0.75mol)のN、N-ジメチルアセトアミド500ml溶液に、氷冷下、トリメシン酸トリクロライド50g(0.19mol)のN,N-ジメチルアセトアミド100ml溶液を滴下した。室温まで昇温した後、3時間攪拌した。反応溶液を水5Lにゆっくりと添加し、固体を析出させた。ろ過にて固体を分離し、得られた固体をメタノールに分散させ、再びろ過を行った。この操作を2回繰り返し、得られた固体を乾燥させることで、(7-1)96.8g(収率97%)を得た。 To a solution of 92.4 g (0.75 mol) of p-anisidine and 59 g (0.75 mol) of pyridine in 500 ml of N, N-dimethylacetamide, 50 g (0.19 mol) of trimesic acid trichloride in N, N-dimethyl was added under ice cooling. A solution of 100 ml of acetamide was added dropwise. After heating up to room temperature, it stirred for 3 hours. The reaction solution was slowly added to 5 L of water to precipitate a solid. The solid was separated by filtration, and the obtained solid was dispersed in methanol and filtered again. This operation was repeated twice, and the obtained solid was dried to obtain 96.8 g (97% yield) of (7-1).
 (7-1)26.3g(50mmol)の塩化チオニル100ml懸濁溶液を加熱還流下3時間攪拌した。反応系が透明になったのを確認し、さらに2時間攪拌した。塩化チオニルを留去し、テトラヒドロフラン200mlを添加し、氷冷下、ナトリウムメトキシド28%メタノール溶液21.2g(110mol)を滴下した。系の温度を室温まで昇温させ、10分間攪拌した後、酢酸エチル/水を加えて分液した。水にて有機相を洗浄し、有機相を硫酸マグネシウムにて乾燥させた。溶媒を留去した後、酢酸エチル/ヘキサン混合溶媒を溶離液に用いてシリカゲルカラムクロマトにて精製を行った。溶媒を留去することで、イミノエーテル(7)を25.0g(収率88%)得た。得られた例示化合物はH-NMRにて同定した。 (7-1) A suspension of 26.3 g (50 mmol) of thionyl chloride in 100 ml was stirred with heating under reflux for 3 hours. After confirming that the reaction system became transparent, the mixture was further stirred for 2 hours. Thionyl chloride was distilled off, 200 ml of tetrahydrofuran was added, and 21.2 g (110 mol) of sodium methoxide 28% methanol solution was added dropwise under ice cooling. The temperature of the system was raised to room temperature and stirred for 10 minutes, and then ethyl acetate / water was added for liquid separation. The organic phase was washed with water and the organic phase was dried over magnesium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography using an ethyl acetate / hexane mixed solvent as an eluent. By distilling off the solvent, 25.0 g (yield 88%) of iminoether (7) was obtained. The obtained exemplary compound was identified by 1 H-NMR.
[合成例8]
<イミノエーテル(8)の合成>
Figure JPOXMLDOC01-appb-C000040
[Synthesis Example 8]
<Synthesis of iminoether (8)>
Figure JPOXMLDOC01-appb-C000040
 アニリン46.5g(0.5mol)、ピリジン44g(0.6mol)のN,N-ジメチルアセトアミド300ml溶液を氷冷下、ベンゾイルクロライド95(0.5mol)をゆっくりと添加した。反応系の温度を室温まで昇温し、TLCにて反応の終了を確認した。メタノールを50ml添加した後、反応溶液を水5Lにゆっくりと添加し、固体を析出させた。ろ過にて固体を分離し、得られた固体をメタノールに分散させ、再びろ過を行った。この操作を2回繰り返し、得られた固体を乾燥させることで、(8-1)89.7g(収率91%)を得た。 Benzoyl chloride 95 (0.5 mol) was slowly added to an ice-cooled solution of 46.5 g (0.5 mol) of aniline and 44 g (0.6 mol) of pyridine in 300 ml of N, N-dimethylacetamide. The temperature of the reaction system was raised to room temperature, and the completion of the reaction was confirmed by TLC. After adding 50 ml of methanol, the reaction solution was slowly added to 5 L of water to precipitate a solid. The solid was separated by filtration, and the obtained solid was dispersed in methanol and filtered again. This operation was repeated twice, and the obtained solid was dried to obtain 89.7 g (yield 91%) of (8-1).
 (8-1)9.9g(50mmol)の塩化チオニル400ml、触媒量のN、N-ジメチルホルムアミドの懸濁溶液を加熱還流下、18時間攪拌した。反応系が完溶したことを確認し、さらに2時間攪拌した。その後、塩化チオニルを留去することで、(8-2)10.8g(quant.)を得た。 (8-1) A suspension of 9.9 g (50 mmol) of thionyl chloride (400 ml) and a catalytic amount of N, N-dimethylformamide was stirred with heating under reflux for 18 hours. After confirming that the reaction system was completely dissolved, the reaction system was further stirred for 2 hours. Thereafter, thionyl chloride was distilled off to obtain 10.8 g (quant.) Of (8-2).
 水素化ナトリウム(60%)2.0g(50mmol)をヘキサンにて分散し、静置後上澄みのヘキサンをパスツールピペットにて取り除いた。この操作を2回繰り返し、テトラヒドロフラン溶液50mlを加えた。氷冷下、エチレングリコール1.6g(25mmol)を添加した。系内から泡の発生が終わったことを目視で確認し、エチレンジメトキシドのテトラヒドロフラン溶液を調製した。 Sodium hydride (60%) 2.0 g (50 mmol) was dispersed in hexane, and after standing, the supernatant hexane was removed with a Pasteur pipette. This operation was repeated twice and 50 ml of tetrahydrofuran solution was added. Under ice cooling, 1.6 g (25 mmol) of ethylene glycol was added. It was visually confirmed that the generation of bubbles from the inside of the system was completed, and a tetrahydrofuran solution of ethylene dimethoxide was prepared.
 (8-2)10.8g(50mmol)のテトラヒドロフラン溶液150mlを-5℃まで冷却し、調製したエチレンジメトキシドのテトラヒドロフラン溶液を滴下した。系の温度を室温まで昇温させ、30時間攪拌した後、酢酸エチル/水を加えて分液した。水にて有機相を洗浄し、有機相を硫酸マグネシウムにて乾燥させた。溶媒を留去した後、酢酸エチル/ヘキサン混合溶媒を溶離液に用いてシリカゲルカラムクロマトにて精製を行った。溶媒を留去することで、イミノエーテル(8)を6.5g(収率62%)得た。得られた例示化合物はH-NMRにて同定した。 (8-2) 150 ml of a tetrahydrofuran solution of 10.8 g (50 mmol) was cooled to −5 ° C., and the prepared tetrahydrofuran solution of ethylene dimethoxide was added dropwise. The temperature of the system was raised to room temperature and stirred for 30 hours, and then ethyl acetate / water was added for liquid separation. The organic phase was washed with water and the organic phase was dried over magnesium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography using an ethyl acetate / hexane mixed solvent as an eluent. By distilling off the solvent, 6.5 g (yield 62%) of iminoether (8) was obtained. The obtained exemplary compound was identified by 1 H-NMR.
(ポリエステルフィルムの作製と評価)
(実施例1)
 予備乾燥を行ったポリ乳酸(PLA)(ユニチカ社製、テラマックTE-2000)と、末端封止剤としてイミノエーテル(1)を表1に示す割合で予備混合した後、小型ニ軸混練押出機(テクノベル社製)に供給して200℃で溶融混練した後、ストランド状に押出し、水冷後、切断してペレット化した。
 得られたペレットを、190℃の熱プレス機によりプレス加工して、厚さ150μmと250μmのポリエステルフィルム(プレスフィルム)を作製した。
(Production and evaluation of polyester film)
Example 1
Preliminarily dried polylactic acid (PLA) (manufactured by Unitika, Terramac TE-2000) and iminoether (1) as an end-capping agent are premixed in the proportions shown in Table 1, and then a small biaxial kneading extruder After being supplied to (manufactured by Technobel) and melt-kneaded at 200 ° C., it was extruded into a strand, cooled with water, cut and pelletized.
The obtained pellets were pressed by a hot press at 190 ° C. to prepare polyester films (press films) having a thickness of 150 μm and 250 μm.
(実施例2~10及び実施例13~15)
 ポリ乳酸と、各種末端封止剤を表1に示す割合で予備混合した以外は実施例1と同様にしてポリエステルフィルムを作製した。
(Examples 2 to 10 and Examples 13 to 15)
A polyester film was produced in the same manner as in Example 1 except that polylactic acid and various terminal blocking agents were premixed at the ratios shown in Table 1.
(実施例11)
 脂肪族ポリエステルとしてポリブチレンサクシネート(PBS)を用い、160℃で溶融混練した以外は実施例1と同様にしてポリエステルフィルムを作製した。 
(Example 11)
A polyester film was prepared in the same manner as in Example 1 except that polybutylene succinate (PBS) was used as the aliphatic polyester and melt-kneaded at 160 ° C.
(実施例12)
 脂肪族ポリエステルとしてポリグリコール酸(PGA)を用い、250℃で溶融混練した以外は実施例1と同様にしてポリエステルフィルムを作製した。 
Example 12
A polyester film was produced in the same manner as in Example 1 except that polyglycolic acid (PGA) was used as the aliphatic polyester and melt-kneaded at 250 ° C.
(比較例1)
 末端封止剤を使用しなかった以外は実施例1と同様にしてポリエステルフィルムを作製した。
(Comparative Example 1)
A polyester film was produced in the same manner as in Example 1 except that the end-capping agent was not used.
(比較例2)
 末端封止剤を使用しなかった以外は実施例11と同様にしてポリエステルフィルムを作製した。
(Comparative Example 2)
A polyester film was produced in the same manner as in Example 11 except that the end-capping agent was not used.
(比較例3)
 末端封止剤を使用しなかった以外は実施例12と同様にしてポリエステルフィルムを作製した。
(Comparative Example 3)
A polyester film was produced in the same manner as in Example 12 except that the end-capping agent was not used.
(比較例4)
 予備乾燥を行ったポリ乳酸(三井化学社製、レイシアH-100)と、末端封止剤として下記のカルボジイミド(ラインケミー社製、Stabaxol P400)を表1に示す割合で予備混合した後、小型ニ軸混練押出機(テクノベル社製)に供給した以外は実施例1と同様にしてポリエステルフィルムを作製した。
(Comparative Example 4)
Preliminarily dried polylactic acid (Mitsui Chemicals, Lacia H-100) and the following carbodiimide (Rhein Chemie, Stabaxol P400) as end-capping agents were premixed in the proportions shown in Table 1, A polyester film was produced in the same manner as in Example 1 except that it was supplied to a shaft kneading extruder (manufactured by Technobel).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
(比較例5)
 末端封止剤として下記合成例9で合成したテトラメチレンビスオキサゾリン(TMBO)を用いた以外は比較例4と同様にしてポリエステルフィルムを作製した。  
(Comparative Example 5)
A polyester film was produced in the same manner as in Comparative Example 4 except that tetramethylene bisoxazoline (TMBO) synthesized in Synthesis Example 9 below was used as a terminal blocking agent.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
[合成例9]
<TMBOの合成>
Figure JPOXMLDOC01-appb-C000043
[Synthesis Example 9]
<Synthesis of TMBO>
Figure JPOXMLDOC01-appb-C000043
 5Lフラスコに、アジピン酸ジエチル500g(2.47mol)、エタノールアミン1500g(9.9mol)を仕込み、170℃で1時間攪拌しながら、生成するエタノールを留去した。室温に冷却後、ベンゼンとメタノールを加えて再結晶し、ろ過することでTMBO-1 471g(収率82%)を得た。得られた化合物はH-NMRにて同定した。 A 5 L flask was charged with 500 g (2.47 mol) of diethyl adipate and 1500 g (9.9 mol) of ethanolamine, and ethanol produced was distilled off while stirring at 170 ° C. for 1 hour. After cooling to room temperature, benzene and methanol were added for recrystallization, and filtration was performed to obtain 471 g of TMBO-1 (yield 82%). The obtained compound was identified by 1 H-NMR.
 5L三口フラスコに、TMBO-1 185.7g(0.8mol)、クロロホルム1.0Lを仕込み、氷浴下で塩化チオニル238g(2.0mol)を滴下し、室温下で2時間攪拌した。減圧下で過剰の塩化チオニルを留去した後、メタノール1.0Lを加え、SM-28 771.7g(4.0mol)をゆっくり滴下し、室温下で2時間、40℃で30時間攪拌した。室温に冷却してろ過し、減圧下で溶媒を留去した後、酢酸エチル1.0Lを加え、ろ過した後、減圧下で酢酸エチルを留去した。得られたオイル状の化合物を128℃、133.3 Pa(1Toll)で蒸留精製することで、TMBO 118g(収率75%)を得た。得られた化合物はH-NMRにて同定した。 In a 5 L three-necked flask, 185.7 g (0.8 mol) of TMBO-1 and 1.0 L of chloroform were charged, 238 g (2.0 mol) of thionyl chloride was added dropwise in an ice bath, and the mixture was stirred at room temperature for 2 hours. After distilling off excess thionyl chloride under reduced pressure, 1.0 L of methanol was added, and 771.7 g (4.0 mol) of SM-28 was slowly added dropwise, followed by stirring at room temperature for 2 hours and at 40 ° C. for 30 hours. After cooling to room temperature and filtering, the solvent was distilled off under reduced pressure, and then 1.0 L of ethyl acetate was added and filtered, and then ethyl acetate was distilled off under reduced pressure. The obtained oily compound was purified by distillation at 128 ° C. and 133.3 Pa (1 Toll) to obtain 118 g of TMBO (yield 75%). The obtained compound was identified by 1 H-NMR.
(比較例6)
 末端封止剤として下記のBOXA(和光純薬社製)を用いた以外は比較例4と同様にしてポリエステルフィルムを作製した。
(Comparative Example 6)
A polyester film was produced in the same manner as in Comparative Example 4 except that the following BOXA (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the end-capping agent.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
(比較例7)
 末端封止剤としてPOXA エポクロスRPS(日本触媒社製)を用いた以外は比較例4と同様にしてポリエステルフィルムを作製した。
(Comparative Example 7)
A polyester film was produced in the same manner as in Comparative Example 4 except that POXA Epocross RPS (manufactured by Nippon Shokubai Co., Ltd.) was used as the end-capping agent.
(比較例8)
 末端封止剤として下記の環状カルボジイミド化合物を用いた以外は比較例4と同様にしてポリエステルフィルムを作製した。環状カルボジイミドは特開2011-258641号公報の実施例に記載の分子量516の化合物であり、特開2011-258641号公報の参考例2に記載の合成方法を参考に合成した。
(Comparative Example 8)
A polyester film was produced in the same manner as in Comparative Example 4 except that the following cyclic carbodiimide compound was used as a terminal blocking agent. Cyclic carbodiimide is a compound having a molecular weight of 516 described in Examples of Japanese Patent Application Laid-Open No. 2011-258641, and was synthesized with reference to the synthesis method described in Reference Example 2 of Japanese Patent Application Laid-Open No. 2011-258641.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
(評価)
 <強度保持率の測定>
 厚さ250μmのポリエステルフィルムから、引張試験用試験片(サイズ:100mm×15mm)を10枚採取した。5枚の試験片を、300mm/分の速度で引張テストを行い、引張破断強度の平均値を算出し、80℃熱水処理前の引張強度値とした。5枚の試験片を、80℃に加熱した脱イオン水に浸漬し、15時間保持した後に冷却、水洗、乾燥を行い、80℃熱水処理後の試験片とした。80℃熱水処理後の試験片を用い、300mm/分の速度で引張試験を行い、引張破断強度の平均値を算出して、80℃熱水処理後の引張強度値とした。強度保持率を下式により算出し、以下の基準で評価した。以下の評価基準でA及びBが実用的であり、Aが特に好ましい。
Figure JPOXMLDOC01-appb-M000046
<評価基準>
A:強度保持率が90%以上100%以下
B:強度保持率が80%以上90%未満
C:強度保持率が60%以上80%未満
D:強度保持率が0%以上60%未満
(Evaluation)
<Measurement of strength retention>
Ten test pieces (size: 100 mm × 15 mm) for tensile test were collected from a polyester film having a thickness of 250 μm. Ten test pieces were subjected to a tensile test at a speed of 300 mm / min, and the average value of the tensile breaking strength was calculated and used as the tensile strength value before 80 ° C. hot water treatment. Five test pieces were immersed in deionized water heated to 80 ° C., held for 15 hours, cooled, washed, and dried to obtain test pieces after 80 ° C. hot water treatment. Using the test piece after 80 ° C. hot water treatment, a tensile test was performed at a speed of 300 mm / min, and the average value of tensile strength at break was calculated to obtain the tensile strength value after 80 ° C. hot water treatment. The strength retention was calculated by the following formula and evaluated according to the following criteria. In the following evaluation criteria, A and B are practical, and A is particularly preferable.
Figure JPOXMLDOC01-appb-M000046
<Evaluation criteria>
A: Strength retention is 90% or more and 100% or less B: Strength retention is 80% or more and less than 90% C: Strength retention is 60% or more and less than 80% D: Strength retention is 0% or more and less than 60%
<色味>
 作製したポリエステルフィルム(厚さ150μm及び250μm)を、目視で観察し、以下の基準で評価した。以下の評価基準でA及びBが実用的であり、Aが特に好ましい。
A:厚さ250μmのフィルムの黄色味が比較例(1)と同等
B:厚さ150μmのフィルムの黄色味が比較例(1)と同等、厚さ250μのフィルムの黄色味が比較例(1)より黄色い 
C:厚さ150μmのフィルムの黄色味が比較例(1)より黄色い
<Color>
The produced polyester films (thickness 150 μm and 250 μm) were visually observed and evaluated according to the following criteria. In the following evaluation criteria, A and B are practical, and A is particularly preferable.
A: Yellowness of a film having a thickness of 250 μm is equivalent to Comparative Example (1) B: Yellowness of a film having a thickness of 150 μm is equivalent to Comparative Example (1), and yellowness of a film having a thickness of 250 μm is Comparative Example (1 ) Yellower
C: The yellowness of the film having a thickness of 150 μm is yellower than that of the comparative example (1)
<揮散性>
 樹脂組成物の混練時における、白煙、臭いの有無を、以下の基準で評価した。以下の評価基準でA及びBが実用的であり、Aが特に好ましい。
A:白煙、臭い、ともになし
B:白煙はないが、臭いがする
C:白煙、臭い、ともにある
<Volatilization>
The presence or absence of white smoke and odor during the kneading of the resin composition was evaluated according to the following criteria. In the following evaluation criteria, A and B are practical, and A is particularly preferable.
A: White smoke, odor, none B: No white smoke, but smells C: White smoke, odor both
<吐出安定性>
 溶融混練時の樹脂圧力を、以下の基準で評価した。以下の評価基準でAが実用的である。
A:1.0MPa未満
B:2.0MPa未満、1.0MPa以上
C:2.0MPa以上
<Discharge stability>
The resin pressure at the time of melt kneading was evaluated according to the following criteria. A is practical in the following evaluation criteria.
A: Less than 1.0 MPa B: Less than 2.0 MPa, 1.0 MPa or more C: 2.0 MPa or more
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
 表1からわかるように、脂肪族ポリエステルに、末端封止剤として一般式(1)で表されるイミノエーテル化合物を添加した樹脂組成物を用いた実施例1~15は、ポリエステルフィルムの強度保持率が良好で、耐加水分解性に優れていた。また、実施例1~8及び実施例11~15では、フィルムの色味変化がなく、着色が抑えられていた。さらに、実施例1~15のポリエステルフィルムを製造する際には、揮散ガスがほとんど発生せず、かつ樹脂組成物の粘度上昇がなく吐出安定性に優れていた。
 一方、末端封止剤を使用しなかった比較例1~3は、ポリエステルフィルムの強度保持率が著しく悪化しており、耐加水分解性に劣るものであった。また、比較例4~8では、フィルムに着色変化があった。さらに、比較例4~6では、ポリエステルフィルム作製時に白煙及び臭いの発生があり、比較例7では、耐加水分解性が十分ではなかった。比較例8では、末端封止剤として環状カルボジイミド化合物を用いており、揮散ガスの発生は抑制されているが、溶融樹脂の粘度上昇があり、吐出安定性が悪化した。
As can be seen from Table 1, Examples 1 to 15 using a resin composition obtained by adding an imino ether compound represented by the general formula (1) as an end-capping agent to an aliphatic polyester have the strength retention of the polyester film. The rate was good and the hydrolysis resistance was excellent. In Examples 1 to 8 and Examples 11 to 15, there was no change in color of the film, and coloring was suppressed. Further, when the polyester films of Examples 1 to 15 were produced, almost no volatilized gas was generated, and the viscosity of the resin composition did not increase and the ejection stability was excellent.
On the other hand, in Comparative Examples 1 to 3 in which no end-capping agent was used, the strength retention of the polyester film was remarkably deteriorated and the hydrolysis resistance was inferior. In Comparative Examples 4 to 8, there was a color change in the film. Further, in Comparative Examples 4 to 6, white smoke and odor were generated during the production of the polyester film, and in Comparative Example 7, the hydrolysis resistance was not sufficient. In Comparative Example 8, a cyclic carbodiimide compound was used as the end-capping agent, and the generation of volatilized gas was suppressed, but there was an increase in the viscosity of the molten resin, and the discharge stability deteriorated.
 本発明によれば、脂肪族ポリエステルの末端カルボキシル基を、特定構造を有するイミノエーテル化合物で封止することで、脂肪族ポリエステル樹脂組成物の耐加水分解性を高めることができる。これにより、耐加水分解性の高いポリエステルフィルムや成形品を得ることができる。さらに本発明によれば、製造工程における揮散ガスの発生を抑制でき、樹脂組成物の増粘も抑制できるため、脂肪族ポリエステル樹脂組成物からポリエステルフィルムや成形品を形成しやすくなり、産業上の利用可能性が高い。
 
 
 
According to this invention, the hydrolysis resistance of an aliphatic polyester resin composition can be improved by sealing the terminal carboxyl group of aliphatic polyester with the imino ether compound which has a specific structure. Thereby, a polyester film and a molded article with high hydrolysis resistance can be obtained. Furthermore, according to the present invention, the generation of volatilized gas in the production process can be suppressed, and the thickening of the resin composition can also be suppressed. Therefore, it is easy to form a polyester film or a molded product from the aliphatic polyester resin composition, and industrial High availability.


Claims (12)

  1.  脂肪族ポリエステルと、下記一般式(1)で表される化合物とを含む樹脂組成物;
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、Rは下記一般式(2)で表されるアルキル基、又は下記一般式(3)で表されるアリール基を表し、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。また、R、R、R11、R12及びR13は互いに結合して環を形成してもよい。但し、Rが下記一般式(2)で表される場合、R11~R13の少なくとも1つとR31~R33の少なくとも1つが形成する結合は連結原子数が2以上の結合である。
    Figure JPOXMLDOC01-appb-C000002
     一般式(2)中、R31、R32及びR33はそれぞれ独立に水素原子又は置換基を表す。R31、R32及びR33は互いに連結して環を形成してもよい。一般式(3)中、R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。また、nは0~5の整数を表す。なお、一般式(2)及び(3)において*は、窒素原子と結合する位置を表す。
    A resin composition comprising an aliphatic polyester and a compound represented by the following general formula (1);
    Figure JPOXMLDOC01-appb-C000001
    In general formula (1), R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. R 3 represents an alkyl group represented by the following general formula (2) or an aryl group represented by the following general formula (3), and R 11 , R 12 and R 13 are each independently Represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 2 , R 3 , R 11 , R 12 and R 13 may be bonded to each other to form a ring. However, when R 3 is represented by the following general formula (2), the bond formed by at least one of R 11 to R 13 and at least one of R 31 to R 33 is a bond having two or more linking atoms.
    Figure JPOXMLDOC01-appb-C000002
    In the general formula (2), R 31 , R 32 and R 33 each independently represent a hydrogen atom or a substituent. R 31 , R 32 and R 33 may be connected to each other to form a ring. In General Formula (3), R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different. N represents an integer of 0 to 5. In general formulas (2) and (3), * represents a position bonded to a nitrogen atom.
  2.  前記脂肪族ポリエステルがポリ乳酸系樹脂、ポリブチレンサクシネート、ポリブチレンサクシネート・アジペート、ポリエチレンサクシネート、ポリグリコール酸、ポリカプロラクトン、ポリヒドロキシ酪酸、ポリヒドロキシ吉草酸及びヒドロキシ酪酸・ヒドロキシ吉草酸共重合体から選ばれる少なくとも1種である請求項1に記載の樹脂組成物。 The aliphatic polyester is polylactic acid resin, polybutylene succinate, polybutylene succinate adipate, polyethylene succinate, polyglycolic acid, polycaprolactone, polyhydroxybutyric acid, polyhydroxyvaleric acid and hydroxybutyric acid / hydroxyvaleric acid The resin composition according to claim 1, which is at least one selected from coalescence.
  3.  前記脂肪族ポリエステルがポリ乳酸系樹脂、ポリブチレンサクシネート及びポリグリコール酸から選ばれる少なくとも1種である請求項1又は2に記載の樹脂組成物。 3. The resin composition according to claim 1, wherein the aliphatic polyester is at least one selected from a polylactic acid resin, polybutylene succinate and polyglycolic acid.
  4.  前記脂肪族ポリエステルと前記一般式(1)で表される化合物との合計質量に対して、前記一般式(1)で表される化合物を0.1~5質量%含む請求項1~3のいずれか1項に記載の樹脂組成物。 4. The composition according to claim 1, comprising 0.1 to 5% by mass of the compound represented by the general formula (1) with respect to the total mass of the aliphatic polyester and the compound represented by the general formula (1). The resin composition according to any one of the above.
  5.  前記化合物が下記一般式(4)で表される請求項1~4のいずれか1項に記載の樹脂組成物;
    Figure JPOXMLDOC01-appb-C000003
     一般式(4)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。nは0~5の整数を表す。
    The resin composition according to any one of claims 1 to 4, wherein the compound is represented by the following general formula (4):
    Figure JPOXMLDOC01-appb-C000003
    In general formula (4), R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. R 11 , R 12 and R 13 each independently represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different. n represents an integer of 0 to 5.
  6.  前記化合物が下記一般式(5)で表される請求項1~5のいずれか1項に記載の樹脂組成物;
    Figure JPOXMLDOC01-appb-C000004
     一般式(5)中、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。R21及びR41はそれぞれ独立に置換基を表す。R21及びR41がそれぞれ複数存在する場合は同じであっても、異なっていてもよい。nは0~5の整数を表し、mは0~5の整数を表す。
    The resin composition according to any one of claims 1 to 5, wherein the compound is represented by the following general formula (5):
    Figure JPOXMLDOC01-appb-C000004
    In general formula (5), R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 21 and R 41 each independently represent a substituent. When a plurality of R 21 and R 41 are present, they may be the same or different. n represents an integer of 0 to 5, and m represents an integer of 0 to 5.
  7.  前記化合物が下記一般式(6)で表される請求項1~6のいずれか1項に記載の樹脂組成物;
    Figure JPOXMLDOC01-appb-C000005
     一般式(6)中、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。nは0~5の整数を表す。また、pは2~4の整数を表し、Lは、炭素原子との結合末端が、置換基を有してもよいアルキレン部、置換基を有してもよいシクロアルキレン部、置換基を有してもよいアリーレン部、又は、置換基を有してもよいアルコキシレン部である、p価の基を表す。
    The resin composition according to any one of claims 1 to 6, wherein the compound is represented by the following general formula (6):
    Figure JPOXMLDOC01-appb-C000005
    In General Formula (6), R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different. n represents an integer of 0 to 5. P represents an integer of 2 to 4, and L 1 represents an alkylene part which may have a substituent, a cycloalkylene part which may have a substituent, or a substituent at the bond terminal to the carbon atom. The p-valent group which is the arylene part which may have or the alkoxylene part which may have a substituent is represented.
  8.  前記化合物が下記一般式(7)で表される請求項1~7のいずれか1項に記載の樹脂組成物;
    Figure JPOXMLDOC01-appb-C000006
     一般式(7)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、R11、R12及びR13はそれぞれ独立に水素原子、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表す。また、pは2~4の整数を表し、Lは、窒素原子との結合末端が、置換基を有してもよいアリーレン部、又は、置換基を有してもよいシクロアルキレン部であるp価の基を表す。
    The resin composition according to any one of claims 1 to 7, wherein the compound is represented by the following general formula (7):
    Figure JPOXMLDOC01-appb-C000006
    In general formula (7), R 2 has an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, an aryl group that may have a substituent, or a substituent. R 11 , R 12 and R 13 each independently represents a hydrogen atom, an alkyl group which may have a substituent, or an aryl group which may have a substituent. P represents an integer of 2 to 4, and L 2 represents an arylene moiety that may have a substituent, or a cycloalkylene moiety that may have a substituent, at the bond terminal to the nitrogen atom. Represents a p-valent group.
  9.  前記化合物が下記一般式(8)で表される請求項1~8のいずれか1項に記載の樹脂組成物;
    Figure JPOXMLDOC01-appb-C000007
     一般式(8)中、Rは置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいアルコキシ基を表し、R41は置換基を表し、R41が複数存在する場合は同じであっても、異なっていてもよい。nは0~5の整数を表す。また、pは2~4の整数を表し、Lは、酸素原子との結合末端が、アルキレン部であるp価の基を表す。但し、Lのアルキレン部は、水素原子の一部または全部が、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基で置換されていてもよい。
    The resin composition according to any one of claims 1 to 8, wherein the compound is represented by the following general formula (8):
    Figure JPOXMLDOC01-appb-C000007
    In general formula (8), R 2 has an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. R 41 represents a substituent, and when a plurality of R 41 are present, they may be the same or different. n represents an integer of 0 to 5. P represents an integer of 2 to 4, and L 3 represents a p-valent group in which the bond terminal to the oxygen atom is an alkylene part. However, in the alkylene part of L 3 , part or all of the hydrogen atoms may be substituted with an alkyl group which may have a substituent or an aryl group which may have a substituent.
  10.  請求項1~9のいずれか1項に記載の樹脂組成物を含むポリエステルフィルム。 A polyester film comprising the resin composition according to any one of claims 1 to 9.
  11.  2軸配向フィルムである請求項10に記載のポリエステルフィルム。 The polyester film according to claim 10, which is a biaxially oriented film.
  12.  請求項1~9のいずれか1項に記載の樹脂組成物を含む成形品。
     
     
     
    A molded article comprising the resin composition according to any one of claims 1 to 9.


PCT/JP2015/067727 2014-06-20 2015-06-19 Resin composition, polyester film, and molded article WO2015194661A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016529541A JP6280646B2 (en) 2014-06-20 2015-06-19 Resin composition, polyester film and molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014127045 2014-06-20
JP2014-127045 2014-06-20

Publications (1)

Publication Number Publication Date
WO2015194661A1 true WO2015194661A1 (en) 2015-12-23

Family

ID=54935637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067727 WO2015194661A1 (en) 2014-06-20 2015-06-19 Resin composition, polyester film, and molded article

Country Status (2)

Country Link
JP (1) JP6280646B2 (en)
WO (1) WO2015194661A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121260A1 (en) * 2015-01-27 2016-08-04 富士フイルム株式会社 Acid alkylating agent, method for producing acid alkylated product, resin composition and polyester film
CN108698371A (en) * 2016-03-09 2018-10-23 三井化学株式会社 Laminated body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3637583A (en) * 1968-10-23 1972-01-25 Mobay Chemical Corp Polyesterurethanes stabilized with iminocarbonates
JPS57125219A (en) * 1981-01-27 1982-08-04 Teijin Ltd Preparation of polyester having high polymerization degree
JPH06220005A (en) * 1992-07-30 1994-08-09 Sandoz Ag New imino ether
JP2007077193A (en) * 2005-09-12 2007-03-29 Kohjin Co Ltd Agent for suppressing hydrolysis of polylactic acid and polylactic acid resin composition containing the agent
JP2010031174A (en) * 2008-07-30 2010-02-12 Teijin Ltd Polyester resin composition and biaxially oriented film using the same
WO2015087834A1 (en) * 2013-12-09 2015-06-18 富士フイルム株式会社 Imino ether compound, polyester resin composition, method for producing carboxylic acid ester, polyester film, back sheet for solar cell modules, and solar cell module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5527397B1 (en) * 2012-12-20 2014-06-18 Tdk株式会社 Pulse generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3637583A (en) * 1968-10-23 1972-01-25 Mobay Chemical Corp Polyesterurethanes stabilized with iminocarbonates
JPS57125219A (en) * 1981-01-27 1982-08-04 Teijin Ltd Preparation of polyester having high polymerization degree
JPH06220005A (en) * 1992-07-30 1994-08-09 Sandoz Ag New imino ether
JP2007077193A (en) * 2005-09-12 2007-03-29 Kohjin Co Ltd Agent for suppressing hydrolysis of polylactic acid and polylactic acid resin composition containing the agent
JP2010031174A (en) * 2008-07-30 2010-02-12 Teijin Ltd Polyester resin composition and biaxially oriented film using the same
WO2015087834A1 (en) * 2013-12-09 2015-06-18 富士フイルム株式会社 Imino ether compound, polyester resin composition, method for producing carboxylic acid ester, polyester film, back sheet for solar cell modules, and solar cell module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121260A1 (en) * 2015-01-27 2016-08-04 富士フイルム株式会社 Acid alkylating agent, method for producing acid alkylated product, resin composition and polyester film
CN108698371A (en) * 2016-03-09 2018-10-23 三井化学株式会社 Laminated body
US11088313B2 (en) 2016-03-09 2021-08-10 Mitsui Chemicals, Inc. Layered body

Also Published As

Publication number Publication date
JP6280646B2 (en) 2018-02-14
JPWO2015194661A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
AU2009295910B2 (en) Aliphatic polyester
JP5620061B2 (en) Process for producing polylactic acid block copolymer
JP5157035B2 (en) POLYLACTIC ACID RESIN COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND MOLDED ARTICLE
CN101641409B (en) Crystalline polylactic acid resin composition and molded body made of the same
TW201422661A (en) Method for the production of a high-molecular polyester or copolyester and also of a polymer blend comprising these
JP5057874B2 (en) Polylactic acid resin composition and additive for polylactic acid resin
WO1999023161A2 (en) Polymer blends containing polyhydroxyalkanoates and compositions with good retention of elongation
JP2020519745A (en) Polyester copolymer
JP2001335626A (en) Aliphatic polyester resin and molding
JP2010229407A (en) Resin composition
JP6280646B2 (en) Resin composition, polyester film and molded article
WO2013096373A1 (en) Aliphatic-aromatic copolyetheresters
JP2001323056A (en) Aliphatic polyester resin and molded article
WO2009110171A1 (en) Biodegradable polyester resin composition and molded body composed of the same
JP7481879B2 (en) Crystallization promoter and its uses
JP4325287B2 (en) Resin composition, molded product thereof and dispersion aid
JP2010059354A (en) Polylactic acid composition
JP7397671B2 (en) polyester copolymer
JP5424262B2 (en) Hydroxycarboxylic acid polymer
JP5472502B2 (en) Film containing polyester resin composition
JP4569127B2 (en) Aliphatic polyester and method for producing the same
JP6205279B2 (en) Resin composition, polyester film
KR100255116B1 (en) Process for preparing biodegradable polymer
WO2004005369A1 (en) Aliphatic polyester polyether copolymer, process for producing the same and aliphatic polyester composition using the copolymer
JP4134827B2 (en) Aliphatic polyester polyether copolymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529541

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15809507

Country of ref document: EP

Kind code of ref document: A1