WO2015194533A1 - 開口部を有する成形体の製造方法、及び成形体 - Google Patents

開口部を有する成形体の製造方法、及び成形体 Download PDF

Info

Publication number
WO2015194533A1
WO2015194533A1 PCT/JP2015/067259 JP2015067259W WO2015194533A1 WO 2015194533 A1 WO2015194533 A1 WO 2015194533A1 JP 2015067259 W JP2015067259 W JP 2015067259W WO 2015194533 A1 WO2015194533 A1 WO 2015194533A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding material
molded body
molding
mold
cavity
Prior art date
Application number
PCT/JP2015/067259
Other languages
English (en)
French (fr)
Inventor
秀平 鈴木
横溝 穂高
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to EP15809667.7A priority Critical patent/EP3159132B1/en
Priority to US14/906,637 priority patent/US9533437B2/en
Priority to JP2015554926A priority patent/JP5952510B2/ja
Publication of WO2015194533A1 publication Critical patent/WO2015194533A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/38Moulds for making articles of definite length, i.e. discrete articles with means to avoid flashes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/12Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/3488Feeding the material to the mould or the compression means uniformly distributed into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/256Sheets, plates, blanks or films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof

Definitions

  • a molding material containing discontinuous carbon fibers and a thermoplastic resin is heated to a temperature equal to or higher than the softening temperature of the thermoplastic resin and then charged into the molding die, and the molding material is pressed and shaped by fastening the molding die.
  • the present invention relates to a method for producing a molded article and a molded article obtained by the production method.
  • Molding materials reinforced with carbon fiber are widely used in structural materials such as aircraft and automobiles, general industries such as tennis rackets, golf shafts, fishing rods, and sports applications by utilizing their high specific strength and specific modulus. It has been.
  • Examples of the form of carbon fiber used for these include a woven fabric made using continuous fibers, a UD sheet in which fibers are aligned in one direction, a random sheet made using cut fibers, and a nonwoven fabric.
  • thermosetting resins instead of conventional thermosetting resins, composites using thermoplastic resin as a matrix have attracted attention.
  • a molding base material in which a mat made of discontinuous long fibers is impregnated with a thermoplastic resin is thermoplastic.
  • a molding method has been developed in which heating is performed at a temperature equal to or higher than the melting point of the resin, and the mold is clamped after being put into a mold adjusted to be equal to or lower than the melting point or the glass transition temperature.
  • Patent Document 1 in order to simplify the process and improve workability at the time of manufacturing a molded body, a fiber reinforced molding material larger than the projected area of the mold is placed, and the surplus The part is removed by the shearing force at the time of mold clamping.
  • Patent Document 2 describes a molding method in which a molded body in which the minimum thickness of the flange portion is thinner than the thickness of the wall surface of the opening is obtained by press molding two molding materials.
  • Patent Document 3 employs a mechanism that does not generate surplus by press-molding a die shape using a random mat with a low charge rate.
  • Patent Document 4 describes a technique in which after the flange portion is pressure-molded first, the remaining portion is pressure-molded.
  • an object of the present invention relates to a method for producing a molded body by placing a molding material containing discontinuous carbon fibers and a thermoplastic resin in a mold and cold-pressing it.
  • an object of the present invention is to provide a method for producing a molded body in which the fiber orientation and strength of the obtained molded body are uniform, the process is simplified and the workability is excellent during the production of the molded body.
  • ⁇ 1> A method of producing a molded body having an opening by placing a molding material containing discontinuous carbon fibers and a thermoplastic resin in a mold and cold pressing, (1) The mold has a portion that becomes a cavity that can be sealed; (2) The projected area of the molding material arranged in the mold is greater than the projected area of the mold cavity, In the cold press, the molding material flows to form the end of the molded body, and the distance that the molding material flows is more than 0 mm and 150 mm or less, Manufacturing method of a molded object.
  • ⁇ 2> The method for producing a molded article according to ⁇ 1>, wherein the flow is a flow in an in-plane direction of the molding material.
  • ⁇ 3> The method for producing a molded body according to ⁇ 1> or ⁇ 2>, wherein a projected area of the molding material disposed in the molding die is three times or less of a total area of the molding die cavity.
  • ⁇ 4> ⁇ 1>- ⁇ 3> A method for producing a molded article according to any one of ⁇ 1> to ⁇ 3>, wherein a distance that the molding material flows is more than 1 mm and not more than 100 mm.
  • ⁇ 5> The method for producing a molded article according to any one of ⁇ 1> to ⁇ 4>, wherein the molding material is pre-shaped after being placed in a mold and cold-pressed.
  • ⁇ 6> The method for producing a molded article according to any one of ⁇ 1> to ⁇ 5>, wherein an average fiber length of the discontinuous carbon fibers is 1 to 100 mm.
  • ⁇ 7> The method for producing a molded article according to ⁇ 6>, wherein the discontinuous carbon fibers are two-dimensionally oriented randomly in the molding material.
  • ⁇ 8> The molded body according to any one of ⁇ 1> to ⁇ 7>, wherein a volume V1 of the sealable cavity and a volume V2 of the molding material satisfy 0.8 ⁇ V1 / V2 ⁇ 1.2. Production method.
  • the opening is formed by stretching and / or flowing of the molding material at the time of molding, (3)
  • the tensile breaking elongation of the molding material is ⁇ v
  • the distance of the outlet end of the opening in a cross section of the molded body is L
  • the creepage length of the opening in the cross section is D, D ⁇ L ⁇ If ⁇ v> 0,
  • the length of the molding material to be arranged has a portion of DL ⁇ ⁇ v or more in addition to the distance L at the outlet end of the opening in a section of the molded body, (5)
  • (A) And (b) is a schematic diagram for demonstrating the projection area of the closed mold cavity which is an example of the mold in this invention.
  • (A) And (b) is a schematic diagram for demonstrating the whole area of the closed mold cavity which is an example of the mold in this invention.
  • (A) And (b) is a schematic diagram for demonstrating the whole area of the closed mold cavity which is an example of the mold in this invention.
  • (A) And (b) is a schematic diagram for demonstrating the projection area of a molding material which is an example of the molding material in this invention. It is the schematic diagram which showed the one aspect
  • FIG. 6 is a schematic diagram when a cold pressing is performed using a molding material whose projection area is equal to or less than the projection area of the mold cavity. It is a schematic diagram in the shaping
  • (A) is a schematic diagram (perspective view) which shows an example of the molded object obtained using the manufacturing method in this invention
  • (b) is a side view of the molded object of (a)
  • (c) is It is a top view of the molded object of (a).
  • FIG. 6 is a schematic diagram showing an aspect of a cold press when DL ⁇ ⁇ v ⁇ 0.
  • FIG. 6 is a schematic diagram of cold pressing using a material having a molding material length of L or less when DL ⁇ ⁇ v> 0.
  • DL ⁇ ⁇ v> it is a schematic diagram in which molding materials having a portion equal to or larger than DL ⁇ ⁇ v are stacked in addition to the distance L of the exit end of the opening in a cross section of the molded body.
  • a molding material having a portion of DL ⁇ ⁇ v or more is placed in the molding die.
  • (A) is a schematic diagram which shows the shaping
  • (b) is a schematic diagram of the molded object obtained using the shaping
  • (A) is a schematic diagram which shows the shaping
  • (b) is a schematic diagram of the molded object obtained using the shaping
  • (A) is a schematic diagram which shows the shaping
  • (b) is a schematic diagram of the molded object obtained using the shaping
  • FIGS. 1 to 8, 12 to 17, 20, 21, and 22 for the sake of explanation, there are things drawn like a mold with the front and back open for convenience. In these aspects, when the opposing mold (upper mold in the drawing) is actually combined, the mold becomes a cavity that can be sealed.
  • the method for producing a molded article of the present invention is a method for producing a molded article having an opening by placing a molding material containing discontinuous carbon fibers and a thermoplastic resin in a mold and cold pressing, (1) The mold has a portion that becomes a cavity that can be sealed; (2) The projected area of the molding material arranged in the mold is larger than the projected area of the mold cavity.
  • the present invention relates to a method for producing a molded body. In the manufacturing method of the molded object of this invention, it is preferable in the said cold press that a molding material flows and forms the edge part of a molded object.
  • Carbon fibers are generally polyacrylonitrile (PAN) carbon fiber, petroleum / coal pitch carbon fiber, rayon carbon fiber, cellulosic carbon fiber, lignin carbon fiber, phenolic carbon fiber, vapor growth carbon. Although fiber etc. are known, in the present invention, any of these carbon fibers can be suitably used.
  • PAN polyacrylonitrile
  • polyacrylonitrile (PAN) -based carbon fiber in terms of excellent tensile strength.
  • PAN-based carbon fiber when a PAN-based carbon fiber is used as the carbon fiber, its tensile modulus is preferably in the range of 100 GPa to 600 GPa, more preferably in the range of 200 GPa to 500 GPa, and in the range of 230 to 450 GPa. Is more preferable.
  • the tensile strength is preferably in the range of 2000 MPa to 10,000 MPa, and more preferably in the range of 3000 MPa to 8000 MPa.
  • the carbon fiber used in the present invention may have a sizing agent attached to the surface.
  • the type of the sizing agent can be appropriately selected according to the types of the carbon fiber and the matrix resin, and is not particularly limited.
  • the fiber length of the carbon fiber used in the present invention may be a discontinuous carbon fiber, and can be appropriately determined according to the type of carbon fiber, the type of thermoplastic resin, the orientation state of the carbon fiber in the molding material, and the like. It is a thing and is not specifically limited.
  • the average fiber length of the discontinuous carbon fibers is usually more preferably in the range of 1 mm to 100 mm, still more preferably 3 mm to 50 mm.
  • carbon fibers having different fiber lengths may be used in combination.
  • the carbon fiber used in the present invention may have a single peak in the fiber length distribution or may have a plurality of peaks.
  • the average fiber length of the carbon fiber when the carbon fiber is cut into a certain length with a rotary cutter or the like, the cut length corresponds to the average fiber length, which is also the number average fiber length and the weight average fiber length. .
  • the number average fiber length (Ln) and the weight average fiber length (Lw) can be obtained by the following equations (c) and (d) (constant In the case of the cut length, the weight average fiber length (Lw) is also calculated by the calculation formula (c) of the number average fiber length (Ln)).
  • Ln ⁇ Li / j Expression (c)
  • Lw ( ⁇ Li 2 ) / ( ⁇ Li) Expression (d)
  • the measurement of the average fiber length in the present invention may be a number average fiber length or a weight average fiber length.
  • the number average fiber length of the carbon fibers is measured, for example, by measuring the fiber length of 100 fibers randomly extracted from the molding material to the 1 mm unit using a caliper or the like. Can be based on.
  • the extraction of the carbon fiber from the molding material can be performed, for example, by subjecting the molding material to a heat treatment of about 500 ° C. ⁇ 1 hour and removing the resin in a furnace.
  • La ⁇ Li / 100 Formula (c2)
  • the fiber diameter of the carbon fiber used in the present invention may be appropriately determined according to the type of carbon fiber, and is not particularly limited.
  • the average fiber diameter is usually preferably in the range of 3 ⁇ m to 50 ⁇ m, more preferably in the range of 4 ⁇ m to 12 ⁇ m, and in the range of 5 ⁇ m to 8 ⁇ m. More preferably.
  • the average fiber diameter refers to the diameter of a single yarn of carbon fiber. Therefore, when the carbon fiber is in the form of a fiber bundle, it refers to the diameter of the carbon fiber (single yarn) constituting the fiber bundle, not the diameter of the fiber bundle.
  • the average fiber diameter of the carbon fibers can be measured, for example, by the method described in JIS R-7607: 2000.
  • the carbon fiber used in the present invention may be in the form of a single yarn composed of a single yarn, or in the form of a fiber bundle composed of a plurality of single yarns regardless of the type.
  • the carbon fiber used in the present invention may be only a single yarn, may be a fiber bundle, or a mixture of both. When a fiber bundle is used, the number of single yarns constituting each fiber bundle may be substantially uniform or different in each fiber bundle.
  • the number of single yarns constituting each fiber bundle is not particularly limited, but is usually in the range of 1000 to 100,000.
  • carbon fibers are in the form of fiber bundles in which thousands to tens of thousands of single yarns (filaments) are gathered. If the carbon fiber is used in the form of this fiber bundle, the entangled part of the fiber bundle may be locally thick and it may be difficult to obtain a thin molding material. In order to avoid this, it is usual to use the fiber bundle after widening or opening the fiber bundle.
  • the opening degree of the fiber bundle after opening is not particularly limited.
  • the opening degree of the fiber bundle is controlled, and a carbon fiber made of carbon fibers of a specific number or more is used. It is preferable to include a bundle and less carbon fiber bundles or single yarns.
  • the carbon fiber bundle (A) composed of the number of critical single yarns or more defined by the following formula (a) and the other opened carbon fibers, that is, the state of the single yarn or the critical It is preferably composed of a fiber bundle composed of less than the number of single yarns.
  • Critical single yarn number 600 / D Formula (a) (Where D is the average fiber diameter ( ⁇ m) of the carbon fiber)
  • the ratio of the carbon fiber bundle (A) to the total amount of carbon fibers in the molding material is preferably more than 0 Vol% and less than 99 Vol%, more preferably 20 Vol% or more and less than 99 Vol%, more preferably 30 Vol%. More preferably, it is more than 95 Vol%, and it is most preferable that it is 50 Vol% or more and less than 90 Vol%.
  • the amount of carbon fibers in the molding material that is, the coexistence of a carbon fiber bundle composed of single yarns of a specific number or more and other opened single yarns or carbon fiber bundles in a specific ratio, that is, This is because the fiber volume ratio (Vf) can be increased.
  • “Vol%” is “volume%”.
  • the average number of fibers (N) in the carbon fiber bundle (A) can be appropriately determined as long as the object of the present invention is not impaired, and is not particularly limited.
  • N is usually in the range of 1 ⁇ N ⁇ 12000, but it is more preferable to satisfy the following formula (b). 0.6 ⁇ 10 4 / D 2 ⁇ N ⁇ 6 ⁇ 10 5 / D 2 (b) (Where D is the average fiber diameter ( ⁇ m) of the carbon fiber)
  • the carbon fiber volume fraction (Vf) defined by (d1) is preferably 5 to 80% by volume, and more preferably Vf is 20 to 60% by volume.
  • Vf 100 ⁇ carbon fiber volume / (carbon fiber volume + thermoplastic resin volume)
  • the three-dimensional isotropic carbon in which the long axis direction of the carbon fiber is randomly dispersed in each of the XYZ directions, for example, the carbon fiber is intertwined in a cotton shape. It may be a fiber mat or may be two-dimensionally randomly oriented, but is more preferably two-dimensionally randomly oriented.
  • the two-dimensional random orientation means that the carbon fibers are randomly oriented in the in-plane direction of the molding material, rather than in one specific direction such as one direction.
  • seat surface is shown without showing.
  • the molding material obtained by using the two-dimensional randomly oriented discontinuous fibers is a substantially isotropic molding material having no in-plane anisotropy.
  • the basis weight of the carbon fiber in the molding material is not particularly limited, but is preferably 25 g / m 2 to 10,000 g / m 2 or less.
  • the thickness of the molding material used in the present invention is not particularly limited, but is usually preferably in the range of 0.01 mm to 100 mm, preferably in the range of 0.1 mm to 10 mm, and 0.5 to 3.0 mm. The range of is more preferable.
  • the above thickness does not indicate the thickness of each layer, but indicates the total thickness of the molding material obtained by adding the thicknesses of the respective layers. To do.
  • the molding material used in the present invention may have a single layer structure composed of a single layer, or may have a laminated structure in which a plurality of layers are laminated.
  • the aspect in which the molding material has the above laminated structure may be an aspect in which a plurality of layers having the same composition are laminated, or an aspect in which a plurality of layers having different compositions are laminated. .
  • thermoplastic resin used in the present invention is not particularly limited as long as a molding material having a desired strength can be obtained, and can be appropriately selected and used depending on the use of the molding material. .
  • thermoplastic resin is not particularly limited, and a resin having a desired softening point or melting point can be appropriately selected and used depending on the application of the molding material.
  • thermoplastic resin those having a softening point in the range of 180 ° C. to 350 ° C. are usually used, but are not limited thereto.
  • thermoplastic resin examples include polyethylene resins, polypropylene resins, polybutadiene resins, polymethylpentene resins, vinyl chloride resins, vinylidene chloride resins, vinyl acetate resins, polyvinyl alcohol resins and other polyolefin resins, polystyrene resins, acrylonitrile-styrene resins.
  • ABS resin acrylonitrile-butadiene-styrene resin
  • polyamide 6 resin polyamide 11 resin (nylon 11), polyamide 12 resin (nylon 12), polyamide 46 resin (nylon) 46), polyamide-based resins such as polyamide 66 resin (nylon 66) and polyamide 610 resin (nylon 610), polyethylene terephthalate resin, polyethylene naphthalate resin, boribethylene Phthalate resin, polytrimethylene terephthalate resin, polyester resin such as liquid crystalline polyester, polyacetal resin, polycarbonate resin, polyoxymethylene resin, (meth) acrylic resin such as polymethyl methacrylate, polyarylate resin, polyphenylene ether resin, modified polyphenylene ether resin , Thermoplastic polyimide resin, polyamideimide resin, polyetherimide resin, polyethernitrile resin, phenoxy resin, polyphenylene sulfide resin, polysulfone resin
  • thermoplastic resin used in the present invention may be only one type or two or more types.
  • modes in which two or more types of thermoplastic resins are used in combination include modes in which thermoplastic resins having different softening points or melting points are used in combination, modes in which thermoplastic resins having different average molecular weights are used in combination, and the like. However, this is not the case.
  • the molding material contains various fibrous or non-fibrous fillers such as glass fibers and organic fibers, flame retardants, UV-resistant agents, pigments, mold release agents, softeners, plasticizers, and surfactant additives. May be.
  • the projected area of the molding material arranged in the mold is larger than the projected area of the mold cavity.
  • the projected area S1 of the molding material is a two-dimensional flat area of the molding material viewed from the opening / closing direction of the molding die, and is, for example, an area represented by 5 in FIG. Therefore, as shown in FIG. 4B, when two molding materials overlap each other, one molding material is completely contained inside the other molding material when viewed from the opening / closing direction of the molding die.
  • the projected area of the larger molding material coincides with the projected area of the two overlapping molding materials (5 in FIG. 4B). Accordingly, in this case, the projected area of only the larger molding material is defined as the projected area S1 in the present invention.
  • the projected area of at least one molding material is larger than the projected area of the mold cavity.
  • the projected area of the molding material is the projected area before the molding material is heated.
  • the molding material is heated immediately before cold pressing as will be described later.
  • the mold cavity (also simply referred to as “cavity”) is a space formed when two molds (for example, an upper mold and a lower mold) are clamped.
  • the projected area S2 of the mold cavity is a two-dimensional flat area of the cavity as viewed from the opening / closing direction of the mold. For example, when described with reference to the mold 1 of FIG. 1 (showing the lower mold of the mold when the mold cavity uses a sealed cavity), the projected area of the mold cavity is the area shown in FIG. . When the cavity has an uneven shape, the projected area of the cavity is smaller than the development area of the finished molded body.
  • the molding die in the present invention has a portion that becomes a cavity that can be sealed, and when the two molding dies are clamped, the two molding dies should be at least partially in contact with each other, It may be a completely sealed cavity or may include an open portion in part.
  • the cavity projected area when an open part is included in part is defined as the projected area S2 of the mold cavity in the range where the molded body is in contact with the lower mold of the mold when the cold press is completed.
  • the mold cavity (lower mold) 1 shown in FIGS. 1 and 2 has a concave shape, but may have a convex shape. In this case, the concept of the projected area S2 of the mold cavity is the same as described above. It is.
  • the end portion of the molded body formed by the flow of the fiber is formed by the flow of the molding material at the time of pressing (at the same time the fiber also flows), for example, as indicated by 8′-1 in FIG. Say part.
  • the projection area S1 of the molding material is equal to or less than the projection area S2 of the mold cavity as shown in FIG. 7 (a)
  • the fiber orientation and strength differ depending on the part of the molded body. Since the molding material flows at the end of the molded body, the fiber orientation of the fluidized portion and the non-flowable portion is different when the molded body is formed, and the fiber orientation of the molded body as a whole cannot be controlled. It will be uneven.
  • the projection area S1 of the molding material arranged in the molding die is larger than the projection area S2 of the molding die cavity.
  • Many parts of the material do not flow, and the volume of the molding material is adjusted in advance, so that the inside of the cavity is formed during press molding as shown in FIGS. 5 (b) (c) and 6 (b) (c).
  • the molding material is drawn into. Therefore, the molded body end portion hardly presses or only slightly flows to be press-molded.
  • the physical properties of the obtained molded bodies are uniform in any part of the molded body. And uniform.
  • the molding material is drawn in two dimensions, but the molding material may be drawn in all three-dimensional directions.
  • the reason why the projection area of the molding material arranged in the molding die is based on the size (or charge rate described later) with respect to the projection area S2 of the molding cavity rather than the total area S3 of the molding cavity is the molding. This is because if a molding material larger than the entire area of the mold cavity is introduced, the molding material protrudes to the outside of the sealed cavity, and the end cannot be molded by slightly flowing the end of the molding material.
  • the molding material in the mold at a charge rate represented by the following formula (e) of more than 100% and 250% or less, more preferably more than 100% and 160% or less, More preferably, it is more than 100% and 140% or less.
  • Charge rate (%) 100 ⁇ projection area of molding material S1 / projection area S2 of mold cavity Formula (e)
  • Flow of molding material In the method for producing a molded body according to the present invention, since the projected area S1 of the molding material disposed in the mold is larger than the projected area S2 of the mold cavity, the end of the molded body hardly flows or flows only slightly. And press-molded.
  • the flow of the molding material means that the molding material is pressed and moved by the upper mold of the molding die. That is, the flow of the molding material after the start of pressing (after the completion of stretching) until the molding is completed is called flow of the molding material.
  • the flow and elongation of the molding material are different phenomena, and the elongation of the molding material means that the molding material is stretched before the molding material is pressurized.
  • the molding material in the present invention is preferably cold-pressed so that the molding material flows to form the end of the molded body, and the distance at which the molding material flows is preferably more than 0 mm and 150 mm or less.
  • the upper limit of the flowing distance is preferably 100 mm or less, more preferably 80 mm or less, still more preferably 50 mm or less, and most preferably 40 mm or less.
  • the lower limit of the flowing distance is preferably 1 mm or more, more preferably 5 mm or more, and even more preferably 10 mm or more.
  • the projected area S1 of the molding material arranged in the mold is larger than the projected area S2 of the mold cavity, many portions do not flow at the time of molding, but the end portion of the molding material slightly flows.
  • the molding material is transported by a robot, it takes a lot of man-hours to adjust the positioning of the initial molding material, and the molding material is transported manually and placed in the molding die. To do so, it requires a very good skilled worker. Therefore, a molding material that does not allow even a slight misalignment of the molding material is extremely undesirable in production.
  • molding die is over the projection area S2 of a shaping
  • the fiber orientation is uniform in most places of the molded body. For example, as shown in FIG. 20, it is possible to easily press-mold by forming only the end portion of the molded body by flow.
  • the preferred distance of flow of the molding material is as described above, but if the distance of flow is within the range of the present invention, the end of the molded body (portion formed) and the center of the molded body (non-flowing)
  • the fiber form of (part) is not significantly different, which is preferable.
  • the flow in the present invention is a flow in the in-plane direction of the molding material, and may or may not flow in the plate thickness direction.
  • the method for producing a molded body according to the present invention allows the molding material to flow in an in-plane direction, so that the shape of the molding material does not need to be precisely matched to the shape of the mold cavity, and the periphery of the end of the molded body that was created.
  • the flow in the plate thickness direction may be appropriately selected when it is desired to partially provide the molded body with a thickness or a thin wall.
  • the in-plane direction of the molding material is a direction orthogonal to the thickness direction of the molding material. While the longitudinal direction or the width direction indicates a certain direction, it means an indefinite direction on the same plane (a parallel plane orthogonal to the plate thickness direction).
  • the total area S3 of the mold cavity is the surface area of the part that becomes the cavity of the mold.
  • the total area S3 of the mold cavity will be described with reference to, for example, FIGS. 2 and 3 (showing the lower mold of the mold when the mold cavity uses a sealed cavity). It refers to the area of the solid portion indicated by 3 in FIGS. 2A and 2B and the dotted line portion indicated by 4 in FIGS.
  • the part since the molding die in the present invention only needs to have a part that becomes a cavity that can be sealed, the part may include an open part.
  • the total area S3 of the mold cavity when an open part is included in part is the area in the range where the molded body is in contact with the lower mold of the mold when the cold press is completed. This is defined as S3.
  • the projected area of the molding material is the area of the mold cavity. This may be the case.
  • the molding material corresponding to about three times the molding die area of the corresponding part is stacked.
  • the upper limit of the projected area of the molding material is preferably three times the total area S3 of the molding die cavity.
  • the upper limit of the projected area of the molding material arranged in the mold is more preferably 1.5 times or less of the total area S3 of the mold cavity, and 1.3 times or less. More preferably, 1.2 times or less is still more preferred, and 1.0 times or less is particularly preferred.
  • the lower limit of the projection area of the molding material with respect to the total area S3 of the mold cavity is preferably 0.7 ⁇ S1 / S3, and more preferably 0.8 ⁇ S1 / S3. More specifically, 0.8 ⁇ S1 ⁇ tensile elongation at break ⁇ v / S3 in view of the expansion of the molding material by pre-shaping or the like, and the additional molding material being laminated and molded.
  • the molded body produced in the present invention has an opening.
  • the opening of the molded body according to the present invention may be any opening as long as one closed space is formed when one opening is closed when viewed from the cross-sectional direction (in-plane direction).
  • the opening is typically a recess.
  • FIG. 9A shows a perspective view of the molded body 8.
  • the molded body 8 shown in FIG. 9A has an opening 14.
  • FIG. 9B is a side view of the molded body 8 of FIG. 9A
  • FIG. 9C is a plan view of the molded body 8 of FIG. 9A.
  • the molded body 8 having the opening 14 has a wall surface 11, a top surface 12, and a flange portion 13.
  • FIG. 9A shows a perspective view of the molded body 8.
  • FIG. 9B is a side view of the molded body 8 of FIG. 9A
  • FIG. 9C is a plan view of the molded body 8 of FIG. 9A.
  • FIG. 10 is a cross-sectional view taken along the line AA ′ in FIG.
  • FIG. 9 shows an opening that creates a closed three-dimensional space when one opening is closed.
  • the front and the back are opened.
  • the opening in the present invention is obtained.
  • Capacity V1 of cavity that can be sealed and volume V2 of molding material It is preferable that the volume V1 of the cavity that can be sealed and the volume V2 of the molding material satisfy 0.8 ⁇ V1 / V2 ⁇ 1.2.
  • the capacity V1 of the cavity that can be sealed is a space capacity that is formed when the mold is closed, and is a target capacity that is set so as to have a target plate thickness (wall thickness) of the molded body.
  • the volume V2 of the molding material is the volume of the molding material prepared when the molded body is manufactured.
  • the volume V1 of the cavity that can be sealed and the volume V2 of the molding material satisfy V1 / V2 ⁇ 1.2 because chipping hardly occurs at the end portion of the molded body, and 0.8 ⁇ V1 / V2 If it exists, it becomes easy to close a shaping
  • the volume V1 of the cavity when the mold according to the present invention partially includes an open portion is defined as the volume V1 of the cavity when the cold press is completed.
  • the shape of the opening (14 in FIG. 9) in the present invention is not particularly limited, but when the depth of the opening (E in FIG. 10) becomes deep, the molding material is insufficient to form a wall surface (11 in FIG. 9). Another new problem arises that it cannot be done.
  • an opening is formed by the molding material extending and / or flowing during molding, (3)
  • the tensile elongation at break of the molding material is ⁇ v
  • the distance of the outlet end of the opening in a cross section of the molded body is L
  • the creepage length of the opening in the cross section is D, D ⁇ L ⁇ ⁇ v> If it is 0,
  • the length of the molding material to be arranged has a portion of DL ⁇ ⁇ v or more in addition to the distance L of the outlet end of the opening of the molded body
  • the tensile elongation at break ⁇ v of the molding material is preferably more than 110% and not more than 300%.
  • the distance L at the exit end of the opening in a cross section of the molded body is, for example, a linear distance viewed from the opening direction in the case of the opening of the molded body having a cross section as shown in FIG. As shown in FIG. 11, when the molded body has a complicated uneven shape, the separation L is considerably smaller than the development distance of the molded body.
  • the creepage length D at the outlet end of the opening of the molded body refers to the total length along the surface of the opening of the molded body, as shown in FIGS. The distance L and the creepage length D are measured for the opening in the same cross section.
  • the opening of the molded body that satisfies the above requirement (3) can be used.
  • another new problem in the present invention that the molding material for the wall surface is likely to be insufficient occurs.
  • the tensile elongation at break ⁇ v of the molding material in the present invention is preferably more than 110% and less than 300%, more preferably more than 110% and less than 260%, and still more preferably more than 110%. 230% or less.
  • the tensile elongation at break ⁇ v of the molding material is the elongation of the molding material when the molding material is stretched at a tensile speed of 20 mm / sec at a temperature at which the molding material can be cold pressed, and is represented by the following formula (f).
  • ⁇ v Length after elongation of molding material (y) / Length before elongation of molding material (x) ⁇ 100 Specifically, the temperature of the molding material is raised to a temperature at which cold pressing is possible (temperature at which molding can be performed), and the molding material is placed on a pressing mold for measuring tensile elongation at break as shown in FIG. After the mold was closed until the molding material was broken at a mold clamping speed of 20 mm / sec, the molding material was taken out and the length (y) of the molding material stretched was measured. ) Divided by.
  • the cold-pressable temperature is equal to or higher than the softening temperature of the thermoplastic resin contained in the molding material. For example, in the case of nylon 6, it may be higher than the melting point and lower than 300 ° C.
  • a molded product having a distance E of 5 mm or more and L of 10 mm or less, or a molded article having E of 10 mm or more and L of 20 mm or less can be molded without any problem.
  • the tensile breaking elongation ⁇ v is affected by the carbon fiber content, fiber length, fiber diameter, and the like. The higher the carbon fiber content, the longer the fiber length, and the smaller the fiber diameter, the tensile breaking elongation ⁇ v. Tend to be smaller.
  • the molding material Since the molding material is heated to at least the plasticizing temperature and is press-molded, the molding material has a tensile elongation at break ⁇ v that is large to some extent, or when D is somewhat smaller than L ⁇ ⁇ v, DL ⁇ ⁇ v If the length of the molding material is equal to or greater than the above-described distance L, the molding material can be stretched until the length of the molding material reaches D before the pressurization is started, so that molding can be performed without any problem (see FIG. 12).
  • the elongation of the molding material means that the molding material extends before the molding material is pressurized.
  • the length of the molding material to be arranged has a portion equal to or larger than DL ⁇ ⁇ v in addition to the distance L of the outlet end of the opening of the molded body. It is preferable.
  • the length of the molding material in (4) may be adjusted within the same molding material (for example, FIG. 15), or may be prepared by preparing another molding material (for example, the length). FIG. 14).
  • the layers may be laminated as shown in FIG. 14, or the molding material may be put into the mold cavity as shown in FIG.
  • the laminated molding material has a uniform plate thickness due to flow. This is because the molding material laminated at the time of pressing flows in the plate thickness direction in addition to the in-plane direction.
  • the molding material is put into the mold cavity as shown in FIG. 15, the elongation of the molding material can be reduced, and the form of the fiber can be made uniform between the top surface portion and the side surface portion.
  • the formed article preferably has a flange portion, and the relationship between the thickness t1 of the wall surface of the opening and the thickness t2 of the top surface or the flange portion is 0.5 ⁇ t1 / t2 ⁇ 1.5. It is preferable that 0.7 ⁇ t1 / t2 ⁇ 1 is more preferable.
  • the volume of the wall surface is often smaller than the top surface of the opening.
  • the boss / rib shape on the wall surface is relatively smaller than the top surface portion. This makes it difficult to mold and causes problems.
  • the molding material is formed so that the molding material does not flow at all or slightly flows at the time of molding. There is no difference.
  • the molded body has an end portion and a center portion, and the isotropic i1 of the end portion and the isotropic i2 of the center portion satisfy 0.95 ⁇ i1 / i2 ⁇ 1.05. Can be manufactured.
  • the end portion of the molded body is defined as a portion from the end of the molded body in a certain direction to 10% of the total length, and there are two end portions in a certain direction, and a portion other than the end portion is defined as a central portion. Define.
  • dumbbell test pieces are cut out from the end and the center of the molded body, respectively, the tensile strength is measured in accordance with JIS K7164: 2005, and the tensile strength of the end is measured. (I1) was divided and evaluated by the tensile strength (i2) at the center.
  • the present invention relates to a method of placing a molding material containing discontinuous carbon fibers and a thermoplastic resin in a molding die and performing cold press molding, and the type of press molding can be selected according to the molded body to be obtained.
  • press molding is a method of obtaining a molded body by applying deformations such as bending, shearing, and compression to various materials exemplified by metals, plastic materials, ceramic materials, etc. using a processing machine, a mold, a tool, and the like.
  • examples of the forming form include drawing, deep drawing, flange, call gate, edge curling, and stamping.
  • the mold in the present invention has a portion that becomes a cavity that can be sealed.
  • the cavity structure that can be sealed in the present invention is a core mold and a cavity mold.
  • the cavity structure has a structure that can form one closed space when the upper mold and the lower mold are combined.
  • the mold has a sealed portion as shown in FIGS. 5 and 6, the physical properties of the end of the molded body of that portion are stabilized.
  • a cavity that is partially opened may be used.
  • it is more preferable that the cavity is completely sealed when the mold is closed. That is, the sealable cavity in the present invention does not indicate a closed space.
  • “having a portion that becomes a cavity that can be hermetically sealed” means “when the mold is closed, the portion that closes the mold so that the molding material does not flow out of the mold cavity. To have.
  • the clamping speed of the mold in the present invention is not particularly limited, but is preferably in the range of 10 to 100 mm / sec. Although depending on the shape of the molded body, in particular, in the deep drawing portion shown in E of FIGS. 10 and 11, if the clamping speed is 100 mm / sec or less, the molding material is easily stretched, and the molding material is difficult to cut halfway. When the mold clamping speed is 10 mm / sec or more, the molding material is not easily cooled before the elongation of the molding material is completed, and the moldability is improved.
  • a preferable mold clamping speed is in the range of 30 mm / sec to 100 mm / sec.
  • the cold press in the present invention is one having the following steps (i) to (iv) for press molding.
  • Step (i) A step of heating the molding material to a temperature equal to or higher than the plasticizing temperature of the thermoplastic resin constituting the molding material (a temperature at which cold pressing is possible).
  • Step (ii) A step of conveying the molding material heated to a temperature equal to or higher than the plasticizing temperature and placing it in an opened mold.
  • Step (iv) A step of opening the mold and taking out the molded body from the mold.
  • the plasticizing temperature of the thermoplastic resin in the step (i) can be determined by DSC (Differential Scanning Colorimetry). The measurement is performed at a temperature rising rate of 10 ° C./min, and the peak top of the melting peak in the obtained DSC curve is defined as the plasticization temperature.
  • Step (ii) is a step in which the molding material heated to a temperature equal to or higher than the plasticizing temperature is conveyed and placed on the lower mold of the opened mold.
  • the heated molding material is conveyed manually or by a robot and placed in an open mold.
  • a manpower or a robot is appropriately selected from the viewpoint of work safety and placement accuracy of a molding material on a molding die in which press molding is performed.
  • Step (iii) is a step of cooling the molding material heated to the plasticizing temperature or higher by clamping the molding die to the plasticizing temperature or lower.
  • press molding is used, and the type can be selected according to the obtained molded body.
  • press molding is a method of obtaining a molded body by applying deformations such as bending, shearing, and compression to various materials exemplified by metals, plastic materials, ceramic materials, etc. using a processing machine, a mold, a tool, and the like.
  • examples of the forming form include drawing, deep drawing, flange, call gate, edge curling, and stamping.
  • Examples of the press molding method include a mold press method in which molding is performed using a mold, a rubber press method (hydrostatic pressure molding method), and the like.
  • molding may be performed using a metal mold from the viewpoint of molding pressure and temperature flexibility.
  • Easiness of shaping of plasticized molding material and control of thickness of molded body that the pressure applied to the projected area of the cavity of the opening of the mold forming the molded body is within the range of 0.1 to 50 MPa It is preferable from the viewpoint of ease of handling. In particular, the range of 5 MPa to 30 MPa is preferable from the viewpoint of the equipment cost of the press molding machine.
  • the plasticizing temperature or lower means that the molding temperature of the molding die is within the range of 20 ° C. to 100 ° C.
  • thermoplastic resin lower than the solidification temperature of the thermoplastic resin constituting the molding material. It is preferable from the viewpoint of the surface appearance of the molded body.
  • a preferable range is within a range of 120 ° C. to 160 ° C.
  • a preferable range is within a range of 80 ° C. to 120 ° C.
  • Step (iv) is a step of opening the mold after cooling and taking out the molded body from the mold.
  • the step of operating the ejector is included between step (iii) and step (iv) for the purpose of assisting step (iv), it is possible to simplify the molding operation and prevent molding troubles.
  • the ejector can be preferably used by either a method of blowing compressed air or a method of pushing up by a mechanical structural member.
  • Preliminary shaping In the method for producing a molded body according to the present invention, it is preferable that after the molding material is placed in a molding die, pre-shaped before cold pressing and then press-molded.
  • Pre-shaping means that a molding material is pre-shaped into a shape close to a molded body, and is intended to facilitate loading into a mold and subsequent press molding. For example, when molding is performed using a molding die as shown in FIG. 20, it means that a molding material is arranged in advance along the unevenness of the molding die. This pre-shaping improves moldability and facilitates flow control.
  • the raw material used for the Example is as follows. ⁇ PAN-based carbon fiber ⁇ Polyamide 6 (melting point 225 ° C., thermal decomposition temperature (in air) 300 ° C.)
  • Dumbbell test pieces were cut out from the end portions of the obtained molded body (15 in FIG. 16 (b), 15 in FIG. 17 (b), 15 in FIG. 18 (b)), respectively. 16 (a), FIG. 17 (a), and FIG. 18 (a) were cut so that the direction of W was the length direction of the dumbbell test piece). Dumbbell test pieces were cut out from the center of the molded body (the center in the case of FIGS. 16 to 17 and the pseudo center 17 in the case of FIG. 18). The obtained dumbbell test pieces were each measured for tensile strength according to JIS K7164: 2005, and the tensile strength (i1) at the end portion was divided by the tensile strength (i2) at the central portion for evaluation.
  • molding material (i) or molding material (ii)) to be described later are cut into a length of 200 mm x a width of 25 mm and laminated to a thickness of 3.0 mm, and dried with hot air at 120 ° C. After drying for 4 hours, the temperature was raised to 300 ° C. with an infrared heater.
  • a mold having a depth (16 in FIG. 19) of 200 mm, an outlet end length of 50 mm, and an upper and lower mold clearance of 3.0 mm is prepared and set to 140 ° C.
  • the molding material After closing the mold until the molding material breaks, the molding material is taken out, the stretched length (y) of the molding material is measured, and divided by the length (x) of the molding material before stretching according to the above formula (f) Thus, the tensile elongation at break ⁇ v was calculated. In addition, the length (x) of the molding material before elongation was set to the opening length 50 mm.
  • the molded body obtained by the press molding method was visually observed and judged according to the following criteria.
  • Biting refers to a phenomenon in which the molding material is sandwiched at an inappropriate position (for example, 18 in FIG. 5) between the upper die and the lower die when the molding die is clamped. This is a phenomenon that occurs when it cannot be placed at a desired position.
  • Carbon fiber “Tenax” (registered trademark) STS40-24KS (average fiber diameter 7 ⁇ m) manufactured by Toho Tenax Co., Ltd. cut to an average fiber length of 20 mm was used as the carbon fiber, and nylon 6 resin A1030 manufactured by Unitika Co., Ltd. was used as the resin.
  • a two-dimensional randomly matted carbon fiber having a carbon fiber basis weight of 310 g / m 2 and a nylon resin basis weight of 370 g / m 2 was prepared. The obtained mat was heated at 2.0 MPa for 5 minutes with a press apparatus heated to 260 ° C.
  • a molding material (i) having a thickness of 0.5 mm When the carbon fiber contained in the obtained molding material (i) was analyzed, the number of critical single yarns defined by the formula (a) was 86, and the carbon fiber bundle ( The average number of single yarns (N) in A) was 420, and the proportion of carbon fiber bundles (A) composed of the number of critical single yarns or more was 85 Vol% of the total amount of carbon fibers. The carbon fiber volume fraction was 35% (mass-based carbon fiber content: 46%), and the tensile elongation at break ⁇ v was 200%.
  • Example 1 Six pieces of the molding material (i) are cut out to a size of 200 mm ⁇ 350 mm, (T 1 length shown in FIG. 16 (A) ⁇ T 2 length shown in FIG. 16 (A)), with a hot air dryer at 120 ° C. After drying for 4 hours, the temperature was raised to 300 ° C. with an infrared heater. The molding die was set to 140 ° C., six pieces of molding material cut out and heated up were laminated to a thickness of 3.0 mm, and introduced into the molding die as shown in FIG. At this time, strict preliminary shaping was not performed. Subsequently, it pressed for 1 minute with the press pressure of 2 MPa, and the molded object was obtained.
  • Example 2 A molded body was obtained by molding in the same manner as in Example 1 except that seven molding materials (i) were cut out and laminated to a thickness of 3.5 mm.
  • Example 3 A molded body was obtained by molding in the same manner as in Example 1 except that five molding materials (i) were cut out and laminated to a thickness of 2.5 mm.
  • Example 4 A molded body was obtained by molding in the same manner as in Example 1 except that 8 molding materials (i) were cut out and laminated to a thickness of 4.0 mm. [Comparative Examples 3 to 6] Except for strictly pre-shaping, molded bodies were obtained in the same manner as in Examples 1 to 4.
  • Example 5 A molded body was obtained by molding in the same manner as in Example 1 except that the size of the cut molding material was 200 mm ⁇ 300 mm.
  • Example 6 A molded body was obtained by molding in the same manner as in Example 3 except that the size of the cut molding material was 200 mm ⁇ 260 mm. [Examples 15 to 16] From the viewpoint of reducing product variation, molded bodies were obtained in the same manner as in Examples 5 to 6 except that strict pre-shaping was performed.
  • Example 7 A molded body was obtained by molding in the same manner as in Example 3 except that the molding material (ii) was used.
  • Comparative Example 7 A molded body was obtained in the same manner as in Example 7 except that it was strictly preshaped.
  • Example 8 A molded body was obtained by molding in the same manner as in Example 7 except that the size of the cut molding material was 200 mm ⁇ 270 mm. Further, since the molding material does not flow so much, it was not possible to completely shape the end of the target molded article. [Example 17] A molded body was obtained in the same manner as in Example 8 except that it was strictly preshaped.
  • Example 9 Six pieces of the molding material (i) are cut into a size of 200 mm ⁇ 550 mm (T 1 length shown in FIG. 17A ⁇ T 2 length shown in FIG. 17A), and 4 with a 120 ° C. hot air dryer. After drying for a period of time, the temperature was raised to 300 ° C. with an infrared heater. The molding die was set to 140 ° C., six pieces of molding material cut out and heated up were laminated to a thickness of 3.0 mm, and introduced into the molding die as shown in FIG. Subsequently, it pressed for 1 minute with the press pressure of 2 MPa, and the molded object was obtained. In FIG. 17A, l 3 is 40 mm. [Comparative Example 8] A molded body was obtained in the same manner as in Example 9 except that it was strictly preshaped.
  • Example 10 Using the molding material (i), the molding material was cut out to 200 mm ⁇ 400 mm, and molded in the same manner as in Example 9 except that the thickness of the molding material was 3.5 mm. Thus, a molded body was obtained.
  • Example 11 A molded body was obtained by molding in the same manner as in Example 10 except that the molding material (ii) was used. Further, since the molding material does not flow so much, it was not possible to completely shape the end of the target molded body.
  • Example 12 Six pieces of the molding material (i) are cut into a size of 180 mm ⁇ 180 mm (T 1 length shown in FIG. 18A ⁇ T 2 length shown in FIG. 18A), and 4 with a 120 ° C. hot air dryer. After drying for a period of time, the temperature was raised to 300 ° C. with an infrared heater. The molding die was set at 140 ° C., six pieces of molding material cut out and heated up were laminated to a thickness of 3.0 mm, and introduced into the molding die as shown in FIG. Subsequently, it pressed for 1 minute with the press pressure of 2 MPa, and the molded object was obtained.
  • Example 13 A molded body was obtained by molding in the same manner as in Example 1 except that the size of the cut molding material was 195 mm ⁇ 340 mm.
  • Example 14 A molded body was obtained by molding in the same manner as in Example 1 except that the size of the cut molding material was 195 mm x 300 mm.
  • Examples 18 to 22 Molded bodies were obtained in the same manner as in Examples 11 to 14 except for strictly pre-shaping.
  • the end is made to flow during molding. As a result, the bending strength was inferior.
  • Example 2 A molded body having the shape shown in FIG. 16A was molded in the same manner as in Example 1 except that the upper mold was adjusted so as to be an open cavity instead of a closed cavity, thereby obtaining a molded body. A large amount of burrs was generated because the molding material flowed out of the mold cavity. For this reason, bending strength and isotropy were not evaluated. In addition, since an open cavity was used, evaluation of biting was not performed.
  • Tables 1 to 5 below show molding dies, molding materials, various conditions, and evaluation results of Examples and Comparative Examples.
  • the molded body obtained by the production method of the present invention can be used for various structural members, for example, inner plates, outer plates, structural members of automobiles, various electric products, machine frames and housings, and the like.
  • Mold (lower mold) 2. 2. Projected area of mold cavity Total area of mold cavity S3 4). Total area of mold cavity S3 5. 5. Projected area of molding material Molding material 6 '. 6. Molding material in which the projected area of the molding material is less than or equal to the projected area of the mold cavity Mold (upper mold) 8). Molded body 8 '. Conventional molded body 8'-1. 8. End of conventional molded body 9. Overlapping part of molding material at the time of molding 10. Overlapping part of molding material during molding Wall surface 12. Top surface 13. Flange part 14. Opening 15. End of molded body 16. Mold depth 17. Pseudo central part D.
  • Projection distance of exit end of opening of molded article Creepage length D between projection distance L of the exit end of the opening of the molded body E.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Textile Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

 不連続炭素繊維と熱可塑性樹脂とを含む成形材料を成形型に配置してコールドプレスすることにより、開口部を有する成形体を製造する方法であって、 (1)成形型が密閉可能なキャビティとなる部分を有し、 (2)成形型に配置する成形材料の投影面積が、成形型キャビティの投影面積超である、成形体の製造方法。

Description

開口部を有する成形体の製造方法、及び成形体
 本発明は、不連続炭素繊維と熱可塑性樹脂とを含む成形材料を、熱可塑性樹脂の軟化温度以上に加熱後に成形型内に投入し、成形型を締めることにより成形材料をプレスし賦形する成形体の製造方法、及び該製造方法で得られる成形体に関するものである。
 炭素繊維で強化された成形材料は、その高い比強度・比弾性率を利用して、航空機や自動車などの構造材料や、テニスラケット、ゴルフシャフト、釣竿などの一般産業やスポーツ用途等に広く利用されてきた。これらに用いられる炭素繊維の形態としては、連続繊維を用いて作られる織物や、1方向に繊維が引き揃えられたUDシート、カットした繊維を用いて作られるランダムシート、不織布等がある。
 近年、従来の熱硬化性樹脂に代わり、熱可塑性樹脂をマトリックスに用いたコンポジットが注目されており、例えば、不連続長繊維からなるマットに熱可塑性樹脂を含浸させた成形用基材を熱可塑性樹脂の融点以上に加熱し、融点以下もしくはガラス転移温度以下に調整された金型に投入後、型締めにて賦形する成形方法が開発されている。
 例えば、特許文献1に記載の繊維強化成形材料の成形方法においては、成形体製造時における工程の簡略化および作業性向上のために、金型投影面積以上の繊維強化成形材料を置き、余肉部分を金型型締め時のせん断力によって除去している。特許文献2では、2枚の成形材料をプレス成形することで、フランジ部の最小厚みが開口部の壁面の厚みよりも薄い成形体を得る成形方法が記載されている。
 一方、特許文献3では、金型形状に対し低チャージ率のランダムマットを用いてプレス成形することで、余肉を発生させない機構を採用している。
 特許文献4では、フランジ部を先に加圧成形した後に、残りの部分を加圧成形する技術が記載されている。
日本国特開2011-218798号公報 日本国特開2009-196145号公報 日本国特開2012-250430号公報 日本国特開平6-335934号公報
 しかしながら、特許文献1に記載の方法では、成形材料を金型投影面積に対し大きく置き、金型シャーエッジで余肉部を除去しているが、この方法では金型シャーエッジの耐久性担保、維持が必要となり、製造工程における不都合が多い。さらには、発生する余肉に伴う材料ロス、時間ロスが発生し、全体で膨大な費用が発生する。
 特許文献2に記載の成形方法では、表面性の更なる向上のためには皺押さえが必要であり、追加の設備が必要となる。また、皺押さえ部分を後に切除する必要があり材料ロス、時間ロスが発生する。
 一方、特許文献3に記載の方法では、成形型投影面積に対し、100%以下の大きさの成形材料を置き、成形型締結後に成形材料を流動させて成形体を製造する。この方法では、余肉部の除去の必要は無いが、成形体の部位によって繊維配向や強度が異なってしまったり、成形材料の流動により得られる成形体端部周辺は、成形体中央の非流動部に対し機械物性の安定性が不足しやすかったりする。
 また、特許文献4に記載の方法では、部位によって成形体の密度が異なってしまうことに加えて、プレス工程が煩雑になり生産性に劣る。更に、強化繊維として炭素繊維を使用した場合には、ガラス繊維に比べて流動しにくく、成形材料も冷えやすいため、単純に炭素繊維を含む成形材料を成形型に載置しただけでは、ガラス繊維を用いた場合と同様にはプレス成形できない。
 したがって、本発明の課題は、不連続炭素繊維と熱可塑性樹脂とを含む成形材料を成形型に配置してコールドプレスして成形体を製造する方法に関するものであり、かかる従来技術の問題点を解消し、特に、得られる成形体の繊維配向及び強度が均一であり、成形体製造時における工程の簡略化および作業性に優れる成形体の製造方法を提供することを目的とする。
 本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。
<1>
 不連続炭素繊維と熱可塑性樹脂とを含む成形材料を成形型に配置してコールドプレスすることにより、開口部を有する成形体を製造する方法であって、
(1)成形型が密閉可能なキャビティとなる部分を有し、
(2)成形型に配置する成形材料の投影面積が、成形型キャビティの投影面積超であって、
 前記コールドプレスにおいて、成形材料が流動して成形体の端部を形成し、成形材料の流動する距離が0mm超150mm以下である、
成形体の製造方法。
<2>
 前記流動が、成形材料の面内方向への流動である、<1>に記載の成形体の製造方法。
<3>
 前記成形型に配置する成形材料の投影面積が、成形型キャビティの有する全面積の3倍以下である<1>又は<2>に記載の成形体の製造方法。
<4>
 <1>~<3>のいずれか1項に記載の成形体の製造方法であって、前記成形材料の流動する距離が1mm超100mm以下である成形体の製造方法。
<5>
 前記成形材料を成形型に配置した後、コールドプレスする前に予備賦形する<1>~<4>のいずれか1項に記載の成形体の製造方法。
<6>
 前記不連続炭素繊維の平均繊維長が1~100mmである<1>~<5>のいずれか1項に記載の成形体の製造方法。
<7>
 前記成形材料中で、前記不連続炭素繊維が2次元ランダムに配向している<6>に記載の成形体の製造方法。
<8>
 前記密閉可能なキャビティの容量V1と、前記成形材料の体積V2とが、0.8≦V1/V2≦1.2である<1>~<7>のいずれか1項に記載の成形体の製造方法。
<9>
 <1>~<8>のいずれか1項に記載の成形体の製造方法であって、成形時に前記成形材料が伸長及び/又は流動することにより前記開口部が形成され、
(3)前記成形材料の引張破断伸度をεvとし、前記成形体のある断面における開口部の出口端の距離をL、該断面における開口部の沿面長をDとしたとき、D-L×εv>0である場合、
(4)配置する前記成形材料の長さが、前記成形体のある断面における開口部の出口端の距離Lに加えて、D-L×εv以上の部分を有し、
(5)前記成形材料の引張破断伸度εvが110%超300%以下である
成形体の製造方法。
<10>
 <1>~<9>のいずれか1項に記載の製造方法によって得られた成形体が、自動車用部品である成形体。
<11>
 <1>~<9>のいずれか1項に記載の製造方法によって得られた成形体であって、ある方向における成形体の端から全体の長さの10%までの部分である端部と、それ以外の部分である中央部を有し、端部の等方性i1と、中央部の等方性i2が、0.95<i1/i2<1.05である成形体。
 本発明における製造方法を用いた場合、プレス成形後に余肉部分を切除する工程が必要なく、材料ロス及び時間ロスが発生しない。
 さらには、成形型に配置する際には、成形型キャビティの外側に成形材料がはみ出ている場合であっても、成形型が型締めされた際には、成形型キャビティ内に成形材料が収まる。このため、成形材料末端部をほとんど流動させずに、あるいは流動量を極めて少なくして、プレス成形を完了でき、成形材料の形状を成形型キャビティの形状に厳密にあわせる事を必要とせず、成形体の部位によって繊維配向や強度が異なることがなく、更には作成した成形体の端部周辺の物性を安定化させることができる。
(a)及び(b)は本発明における成形型の一例である、密閉型の成形型キャビティの投影面積を説明するための模式図である。 (a)及び(b)は本発明における成形型の一例である、密閉型の成形型キャビティの全面積を説明するための模式図である。 (a)及び(b)は本発明における成形型の一例である、密閉型の成形型キャビティの全面積を説明するための模式図である。 (a)及び(b)は本発明における成形材料の一例である、成形材料の投影面積を説明するための模式図である。 密閉型の成形型キャビティを用いた、本発明におけるコールドプレスの一態様を示した模式図である。 密閉型の成形型キャビティを用いた、本発明におけるコールドプレスの一態様を示した模式図である。 成形材料の投影面積が、成形型キャビティの投影面積以下の成形材料を用いてコールドプレスした場合の模式図である。 成形材料の一部が折り重なった場合の成形型キャビティ内の模式図である。 (a)は本発明における製造方法を用いて得られた成形体の一例を示す模式図(斜視図)であり、(b)は(a)の成形体の側面図であり、(c)は(a)の成形体の平面図である。 本発明における製造方法を用いて得られた成形体の一例の断面模式図である。 本発明における製造方法を用いて得られた成形体の一例の断面模式図である。 D-L×εv<0である場合の、コールドプレスの一態様を示した模式図である。 D-L×εv>0である場合に、配置する成形材料長さがL以下のものを用いてコールドプレスした模式図である。 D-L×εv>0である場合、成形体のある断面における開口部の出口端の距離Lに加えてD-L×εv以上の部分を有する成形材料を積層して配置した模式図である。 D-L×εv>0である場合、成形体のある断面における開口部の出口端の距離Lに加えてD-L×εv以上の部分を有する成形材料を、成形型の中に成形材料を押し込むことで配置した模式図である。 (a)は本発明の実施形態の1つの例である成形型と成形材料とを示す模式図であり、(b)は(a)の成形型を用いて得られた成形体の模式図である。 (a)は本発明の実施形態の1つの例である成形型と成形材料とを示す模式図であり、(b)は(a)の成形型を用いて得られた成形体の模式図である。 (a)は本発明の実施形態の1つの例である成形型と成形材料とを示す模式図であり、(b)は(a)の成形型を用いて得られた成形体の模式図である。 引張破断伸度εvの測定方法を説明するための模式図である。 成形材料を予備賦形してコールドプレスする場合の一例を示す模式図であり、(b)が予備賦形した状態を表す模式図である。 成形材料を予備賦形してコールドプレスする場合の一例を示す模式図である。 成形材料を予備賦形してコールドプレスする場合の一例を示す模式図である。
 なお、各図面(図1~8、12~17、20、21、22)において、説明のために、便宜上、手前と奥が開放された成形型のように描かれているものがあるが、これらの態様においては、実際は対向成形型(図面の場合は上型)が合わさった際には、成形型が密閉可能なキャビティとなる。
 本発明の成形体の製造方法は、不連続炭素繊維と熱可塑性樹脂とを含む成形材料を成形型に配置してコールドプレスすることにより、開口部を有する成形体を製造する方法であって、
(1)成形型が密閉可能なキャビティとなる部分を有し、
(2)成形型に配置する成形材料の投影面積が、成形型キャビティの投影面積超である、
成形体の製造方法に関するものである。
 本発明の成形体の製造方法においては、上記コールドプレスにおいて、成形材料が流動して成形体の端部を形成することが好ましい。
[炭素繊維]
 炭素繊維としては、一般的にポリアクリロニトリル(PAN)系炭素繊維、石油・石炭ピッチ系炭素繊維、レーヨン系炭素繊維、セルロース系炭素繊維、リグニン系炭素繊維、フェノール系炭素繊維、気相成長系炭素繊維などが知られているが、本発明においてはこれらのいずれの炭素繊維であっても好適に用いることができる。
 なかでも、本発明においては引張強度に優れる点でポリアクリロニトリル(PAN)系炭素繊維を用いることが好ましい。炭素繊維としてPAN系炭素繊維を用いる場合、その引張弾性率は100GPa~600GPaの範囲内であることが好ましく、200GPa~500GPaの範囲内であることがより好ましく、230~450GPaの範囲内であることがさらに好ましい。また、引張強度は2000MPa~10000MPaの範囲内であることが好ましく、3000MPa~8000MPaの範囲内であることがより好ましい。
 本発明に用いられる炭素繊維は、表面にサイジング剤が付着しているものであってもよい。サイジング剤が付着している炭素繊維を用いる場合、当該サイジング剤の種類は、炭素繊維及びマトリックス樹脂の種類に応じて適宜選択することができるものであり、特に限定されるものではない。
[炭素繊維の繊維長]
 本発明に用いられる炭素繊維の繊維長は不連続炭素繊維であれば良く、炭素繊維の種類や熱可塑性樹脂の種類、成形材料中における炭素繊維の配向状態等に応じて適宜決定することができるものであり、特に限定されるものではない。不連続炭素繊維の平均繊維長は、通常、1mm~100mmの範囲内であることがより好ましく、3mm~50mmであることが更に好ましい。
 本発明においては繊維長が互いに異なる炭素繊維を併用してもよい。換言すると、本発明に用いられる炭素繊維は、繊維長の分布に単一のピークを有するものであってもよく、あるいは複数のピークを有するものであってもよい。
 炭素繊維の平均繊維長は、ロータリーカッター等で炭素繊維を一定長に切断して用いた場合は、そのカット長が平均繊維長にあたり、これは数平均繊維長でもあり、重量平均繊維長でもある。
 個々の炭素繊維の繊維長をLi、測定本数をjとすると、数平均繊維長(Ln)と重量平均繊維長(Lw)とは、以下の式(c),(d)により求められる(一定カット長の場合は、数平均繊維長(Ln)の計算式(c)で重量平均繊維長(Lw)を算出していることにもなる)。
 Ln=ΣLi/j ・・・式(c)
 Lw=(ΣLi)/(ΣLi) ・・・式(d)
 なお、本発明における平均繊維長の測定は、数平均繊維長であっても、重量平均繊維長であっても良い。
 具体的には、炭素繊維の数平均繊維長は、例えば、成形材料から無作為に抽出した100本の繊維の繊維長を、ノギス等を用いて1mm単位まで測定し、下記式(c2)に基づいて求めることができる。成形材料からの炭素繊維の抽出は、例えば、成形材料に対し、500℃×1時間程度の加熱処理を施し、炉内にて樹脂を除去することによって行うことができる。
 La=ΣLi/100 式(c2)
[炭素繊維の繊維径]
 本発明に用いられる炭素繊維の繊維径は、炭素繊維の種類に応じて適宜決定すればよく、特に限定されるものではない。例えば、炭素繊維として炭素繊維が用いられる場合、平均繊維径は、通常、3μm~50μmの範囲内であることが好ましく、4μm~12μmの範囲内であることがより好ましく、5μm~8μmの範囲内であることがさらに好ましい。
 ここで、上記平均繊維径は、炭素繊維の単糸の直径を指すものとする。したがって、炭素繊維が繊維束状である場合は、繊維束の径ではなく、繊維束を構成する炭素繊維(単糸)の直径を指す。炭素繊維の平均繊維径は、例えば、JIS R-7607:2000に記載された方法によって測定することができる。
[開繊程度]
 本発明に用いられる炭素繊維は、その種類の関わらず単糸からなる単糸状であってもよく、複数の単糸からなる繊維束状であってもよい。
 本発明に用いられる炭素繊維は、単糸状のもののみであってもよく、繊維束状のもののみであってもよく、両者が混在していてもよい。繊維束状のものを用いる場合、各繊維束を構成する単糸の数は、各繊維束においてほぼ均一であってもよく、あるいは異なっていてもよい。
 本発明に用いられる炭素繊維が繊維束状である場合、各繊維束を構成する単糸の数は特に限定されるものではないが、通常、1000本~10万本の範囲内とされる。
 一般的に、炭素繊維は、数千~数万本の単糸(フィラメント)が集合した繊維束状となっている。炭素繊維がこの繊維束状のままで使用されると、繊維束の交絡部が局部的に厚くなり薄肉の成形材料を得ることが困難になる場合がある。これを避けるため、繊維束を拡幅したり、又は開繊したりして使用するのが通常である。
 繊維束を開繊して用いる場合、開繊後の繊維束の開繊程度は特に限定されるものではないが、繊維束の開繊程度を制御し、特定本数以上の炭素繊維からなる炭素繊維束と、それ未満の炭素繊維束又は単糸を含むことが好ましい。この場合、具体的には、下記式(a)で定義される臨界単糸数以上で構成される炭素繊維束(A)と、それ以外の開繊された炭素繊維、すなわち単糸の状態または臨界単糸数未満で構成される繊維束とからなることが好ましい。
 臨界単糸数=600/D 式(a)
(ここでDは炭素繊維の平均繊維径(μm)である)
 さらに、本発明においては、成形材料中の炭素繊維全量に対する炭素繊維束(A)の割合が0Vol%超99Vol%未満であることが好ましく、20Vol%以上99Vol未満であることがより好ましく、30Vol%以上95Vol%未満であることがさらに好ましく、50Vol%以上90Vol%未満であることが最も好ましい。このように特定本数以上の単糸からなる炭素繊維束と、それ以外の開繊された単糸又は炭素繊維束を特定の比率で共存させることで、成形材料中の炭素繊維の存在量、すなわち繊維体積割合(Vf)を高めることが可能となるからである。「Vol%」は「体積%」である。
 本発明において、炭素繊維束(A)中の平均繊維数(N)は本発明の目的を損なわない範囲で適宜決定することができるものであり、特に限定されるものではない。
 炭素繊維の場合、上記Nは通常1<N<12000の範囲内とされるが、下記式(b)を満たすことがより好ましい。
 0.6×10/D<N<6×10/D  (b)
(ここでDは炭素繊維の平均繊維径(μm)である)
[炭素繊維体積割合(Vf)]
 本発明における製造方法で作成される成形体の炭素繊維体積割合(以下、単に「Vf」ということがある)に特に限定は無いが、いずれも、含有する炭素繊維及び熱可塑性樹脂について、下記式(d1)で定義される炭素繊維体積割合(Vf)が5~80体積%であることが好ましく、Vfが20~60体積%であることがより好ましい。
 式(d1):
 Vf=100×炭素繊維体積/(炭素繊維体積+熱可塑性樹脂体積)
 成形体のVfが5体積%以上であると、補強効果が十分に発現し、また、Vfが80体積%以下であると、得られる成形体中にボイドが発生しにくくなり、成形体の物性が低下するおそれが少なくなる。
[炭素繊維の形態]
 本発明における炭素繊維の形態に特に限定はないが、炭素繊維が綿状に絡み合うなどして、炭素繊維の長軸方向がXYZの各方向においてランダムに分散している3次元等方性の炭素繊維マットであっても良く、2次元ランダムに配向しているものであっても良いが、2次元ランダムに配向しているものであることがより好ましい。
 ここで、2次元ランダムに配向しているとは、炭素繊維が、成形材料の面内方向において一方向のような特定方向ではなく無秩序に配向しており、全体的には特定の方向性を示すことなくシート面内に配置されている状態を言う。この2次元ランダムに配向している不連続繊維を用いて得られる成形材料は、面内に異方性を有しない、実質的に等方性の成形材料である。
 炭素繊維のある本数以上の単糸が集束した繊維束と単糸またはそれに近い状態の繊維束が所定割合で混在している等方性の成形材料の製造法については、国際公開第2012/105080号パンフレット、日本国特開2011-178890号公報に詳しく記載されている。
[炭素繊維の目付量]
 成形材料における炭素繊維の目付量は、特に限定されるものではないが、好ましくは25g/m~10000g/m以下とされる。
 本発明に用いられる成形材料の厚みは特に限定されるものではないが、通常、0.01mm~100mmの範囲内が好ましく、0.1mm~10mmの範囲内が好ましく、0.5~3.0mmの範囲内がより好ましい。
 なお、本発明に用いられる成形材料が、複数の層が積層された構成を有する場合、上記厚みは各層の厚みを指すのではなく、各層の厚みを合計した成形材料全体の厚みを指すものとする。
 本発明に用いられる成形材料は、単一の層からなる単層構造を有するものであってもよく、又は複数層が積層された積層構造を有するものであってもよい。
 成形材料が上記積層構造を有する態様としては、同一の組成を有する複数の層が積層された態様であってもよく、又は互いに異なる組成を有する複数の層が積層された態様であってもよい。
[熱可塑性樹脂]
 本発明に用いられる熱可塑性樹脂は、所望の強度を有する成形材料を得ることができるものであれば特に限定されるものではなく、成形材料の用途等に応じて適宜選択して用いることができる。
 熱可塑性樹脂は特に限定されるものではなく、成形材料の用途等に応じて所望の軟化点又は融点を有するものを適宜選択して用いることができる。
 熱可塑性樹脂としては、通常、軟化点が180℃~350℃の範囲内のものが用いられるが、これに限定されるものではない。
 熱可塑性樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブタジエン樹脂、ポリメチルペンテン樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂等のポリオレフィン系樹脂、ポリスチレン樹脂、アクリロニトリル-スチレン樹脂(AS樹脂)、アクリロニトリル-ブタジエン-スチレン樹脂(ABS樹脂)等のスチレン系樹脂、ポリアミド6樹脂(ナイロン6)、ポリアミド11樹脂(ナイロン11)、ポリアミド12樹脂(ナイロン12)、ポリアミド46樹脂(ナイロン46)、ポリアミド66樹脂(ナイロン66)、ポリアミド610樹脂(ナイロン610)等のポリアミド系樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ボリブチレンテレフタレート樹脂、ポリトリメチレンテレフタレート樹脂、液晶ポリエステル等のポリエステル樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリオキシメチレン樹脂、ポリメチルメタクリレート等の(メタ)アクリル樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、熱可塑性ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリエーテルニトリル樹脂、フェノキシ樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、変性ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリケトン樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトンケトン樹脂、ウレタン樹脂、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリベンズイミダゾール樹脂などが挙げられる。
 本発明に用いられる熱可塑性樹脂は1種類のみであってもよく、2種類以上であってもよい。2種類以上の熱可塑性樹脂を併用する態様としては、例えば、相互に軟化点又は融点が異なる熱可塑性樹脂を併用する態様や、相互に平均分子量が異なる熱可塑性樹脂を併用する態様等を挙げることができるが、この限りではない。
[他の剤]
 成形材料中には、ガラス繊維や有機繊維等の各種繊維状または非繊維状フィラー、難燃剤、耐UV剤、顔料、離型剤、軟化剤、可塑剤、界面活性剤の添加剤を含んでいてもよい。
[配置する成形材料の面積]
 本発明において、成形型に配置する成形材料の投影面積は、成形型キャビティの投影面積超である。
(成形材料の投影面積S1)
 成形材料の投影面積S1とは、成形型の開閉方向から見た成形材料の2次元での平面積であり、たとえば、図4(a)の5で表される面積である。したがって図4(b)に示すように、成形材料が2枚重なっている場合であって、成形型の開閉方向から見て一方の成形材料が、もう一方の成形材料の内側に完全に収まって積層されている場合は、大きい方の成形材料の投影面積と、2枚重なった成形材料の投影面積とは一致する(図4(b)の5)。したがって、この場合は大きい方のみの成形材料の投影面積を、本発明における投影面積S1と定義する。また、部分的に重なって複数枚積層されている場合は、少なくとも1つの成形材料の投影面積が成形型キャビティの投影面積よりも大きければよい。
 また、本発明において、成形材料の投影面積は、成形材料を加熱する前の状態での投影面積である。なお、成形材料を加熱するのは、後述するようにコールドプレスする直前である。
(成形型キャビティの投影面積S2)
 成形型キャビティ(単に「キャビティ」ともいう)とは、2つの成形型(たとえば上型と下型)を型締めした際にできる空間のことである。
 成形型キャビティの投影面積S2とは、成形型の開閉方向から見たキャビティの2次元での平面積である。たとえば、図1の成形型1(成形型キャビティが密閉キャビティを用いた場合の成形型下型を示す)を用いて説明すると、成形型キャビティの投影面積は、図1の2に示す面積である。キャビティが凹凸形状を有している場合は、出来上がった成形体の展開面積よりキャビティの投影面積は小さくなる。
 また、本発明における成形型は密閉可能なキャビティとなる部分を有しており、2つの成形型が型締めされた際に、前記2つの成形型同士は少なくとも一部分が接触していればよく、完全に密閉されたキャビティであっても良いし、一部に開放部分を含んで良い。一部に開放部分を含む場合のキャビティ投影面積は、コールドプレスが完了した時点で、成形体が成形型の下型に接触している範囲の投影面積を、成形型キャビティの投影面積S2と定義する。
 なお、図1、図2に示した成形型キャビティ(下型)1は凹形状であるが、凸形状であっても良く、この場合の成形型のキャビティの投影面積S2の考え方は上述と同様である。
 従来、例えば特開2012-250430号公報に記載の発明では、成形型のキャビティ投影面積以下である基材を投入し、プレス成形時に成形材料を流動することで、成形体(成形体の端部を含む)を形成させていた。しかしながら、この場合、流動して形成された流動成形部分(成形体端部を含む)は、成形材料の流動にともなって繊維が複雑に流動するため、流動しない部分(非流動部)の繊維配向(繊維物性)と同じ物性を持たせることが難しい。例えば繊維配向が、成形体端部(流動した部分)と成形体中央部の非流動部とで異なってしまう。
 ここで、繊維が流動して形成される成形体端部とは、例えば図7の8’-1に示すように、プレス時に成形材料が流動して(同時に繊維も流動して)形成された部分をいう。成形材料の投影面積S1が図7(a)のように成形型キャビティの投影面積S2以下のものを用いた場合、成形体の部位によって繊維配向や強度が異なってしまうことに加えて、得られる成形体の端部は成形材料が流動して成形されているため、成形体としたときに流動部と非流動部の繊維配向が異なってしまい、成形体全体としての繊維配向を制御できずに不均一なものとなる。例えば、炭素繊維を2次元ランダムに配向させて、2次元方向に等方性のある成形材料を用い、成形材料の投影面積を成形型キャビティの投影面積以下にしてプレス機に投入した場合、成形材料が流動して成形された部分(流動成形部)や、成形体端部の機械物性は等方性ではなくなってしまう。同様に、異方性の成形材料を用い、成形材料の投影面積を成形型キャビティの投影面積以下にして準備した場合、非流動部と流動成形部の異方性は異なったものとなってしまう。
 一方、本発明においては、図5(a)、図6(a)に示すように、成形型に配置する成形材料の投影面積S1が、成形型キャビティの投影面積S2超であるため、成形材料の多くの部分は流動せず、また事前に成形材料の体積を調整しておくことで、図5(b)(c)、図6(b)(c)に示すようにプレス成形時にはキャビティ内に成形材料は引き込まれる。したがって、成形体端部はほとんど流動しないか、ほんの僅かにだけ流動してプレス成形される。この結果、得られた成形体(図5の(c)(d)、図6の(c)(d))の物性が、成形体のどの部位をとっても均一な物性となり、中央部分と端部とで均一化される。説明のための便宜上、図5、図6では2次元に成形材料が引き込まれるように描かれているが、3次元方向全ての方向で成形材料が引き込まれても良い。
 ここで、成形型に配置する成形材料の投影面積を、成形型キャビティの全面積S3ではなく、成形型キャビティの投影面積S2に対する大きさ(又は後述するチャージ率)を基準とする理由は、成形型キャビティの全面積以上の成形材料を投入すると、密閉キャビティの外側にまで成形材料がはみ出してしまい、成形材料の端部を僅かに流して端部を成形する事ができないためである。
 更に、通常、成形材料の面積が成形型キャビティ投影面積を超えると成形時にロスになる材料が生じることになるが(例えば特開2011-218798号公報)、本発明において材料ロスはほとんど発生しない。
 すなわち、日本国特開2011-218798号公報に記載の成形ではオープンキャビティを用いているため、目的の成形体の端部が形成されず、成形後にトリミング工程が必須であるために材料ロスが発生する。一方、本発明では成形型が密閉可能なキャビティとなる部分を有しているため、成形が完了した際に、目的の成形体の端部まで必要十分量に充填するため、材料ロスはほとんど発生しない。
 成形型の形状にもよるが、下記式(e)で表されるチャージ率を100%超250%以下で成形材料を成形型に配置することが好ましく、より好ましくは100%超160%以下、更に好ましくは100%超140%以下である。
 チャージ率(%)=100×成形材料の投影面積S1/成形型キャビティの投影面積S2 式(e)
(成形材料の流動)
 本発明における成形体の製造方法は、成形型に配置する成形材料の投影面積S1が、成形型キャビティの投影面積S2超であるため、成形体端部はほとんど流動しないか、ほんの僅かにだけ流動してプレス成形される。
 成形材料の流動とは、成形型上型によって成形材料がプレスされ、成形材料が流れ動くことをいう。すなわち、プレス開始後(伸長が完了した後)、成形が完了するまでに成形材料が流れ動くことを、成形材料の流動という。
 なお、本願明細書において、成形材料の流動と伸長とは異なる現象であり、成形材料の伸長とは、成形材料が加圧される前までに成形材料が伸びることをいう。詳しくは、成形材料の伸長に関しては(引張破断伸度εv)の欄で述べる。
 本発明における成形材料は、コールドプレスにおいて、成形材料が流動して成形体の端部を形成することが好ましく、その際の成形材料が流動する距離が0mm超150mm以下であることが好ましい。
 流動する距離の上限は、100mm以下である成形体の製造方法とすることが好ましく、80mm以下とすることが更に好ましく、50mm以下とすることがより一層好ましく、40mm以下とすることが最も好ましい。
 一方、流動する距離の下限は1mm以上が好ましく、5mm以上がより好ましく、10mm以上がより一層好ましい。
 この場合、成形型に配置する成形材料の投影面積S1が、成形型キャビティの投影面積S2超であるため、多くの部分は成形時に流動しないが、成形材料の端部は僅かに流動する。
 成形材料を全く流動させないで成形体を製造する場合、成形型キャビティの形状に成形材料の形状を厳密にあわせる予備賦形を施し、その後にプレス成形する必要がある。
 成形材料を厳密に成形型にあわせるためには、ロボットで成形材料を搬送する場合、初期の成形材料の位置決めの調整に多大な工数を要するし、人手で成形材料を搬送して成形型に配置するには、極めて優れた熟練工を必要とする。したがって、成形材料の配置のズレが、僅かでも許されないような成形材料は、生産上極めて好ましくない。
 そこで、成形材料を0mm超150mm以下の距離を流動させて成形体の端部を形成することで、成形材料の形状を成形型キャビティの形状に厳密にあわせる必要が無く、更には予備賦形を施さなくとも、成形体を作成することができる。
 また、本発明における成形体の製造方法においては、成形型に配置する成形材料の投影面積S1が、成形型キャビティの投影面積S2超にしているため、成形材料は大幅には流動しないため、作成した成形体のほとんどの箇所で、繊維配向は均一となっている。
 例えば、図20に示すように、成形体端部のみを流動によって形成させることで、容易にプレス成形することが可能となる。
 好ましい成形材料の流動する距離は、上述した通りであるが、流動する距離が本発明における範囲内であれば、成形体端部(流動して形成された部分)と成形体中央部(非流動部分)の繊維形態が大幅に異なる事がなく好ましい。
 なお、出来上がった成形体について、ある方向における成形体の端から全体の長さの10%までの領域を端部とし、それ以外の部分を中央部とすると、端部の等方性i1と、中央部の等方性i2が、0.95<i1/i2<1.05であることが好ましい。
 また、本発明における流動とは、成形材料の面内方向への流動であり、板厚方向へは流動しても、していなくても良い。本発明における成形体の製造方法は、成形材料を面内方向へ流動させることで、成形材料の形状を成形型キャビティの形状に厳密にあわせる事を必要とせず、作成した成形体の端部周辺の物性を安定化させることができる。
 一方、板厚方向への流動は、部分的に肉厚や薄肉を成形体に設けたい場合、適宜選択すれば良い。
 なお、成形材料の面内方向とは、成形材料の板厚方向に直交する方向である。長手方向あるいは幅方向がそれぞれ一定の方向を指すのに対して、同一平面上(板厚方向に直交する平行な面)の不定の方向を意味している。
(成形型キャビティの全面積S3)
 成形型キャビティの全面積S3とは、成形型のキャビティとなる部分の表面積である。成形型キャビティの全面積S3について、例えば図2及び図3(成形型キャビティが密閉キャビティを用いた場合の成形型下型を示す)を用いて説明すると、成形型キャビティの全面積S3とは、図2(a)(b)の3で示した塗りつぶした部分や、図3(a)(b)の4で示される点線部分の面積をいう。
 また、本発明における成形型は密閉可能なキャビティとなる部分を有していれば良いので、一部に開放部分を含んで良い。一部に開放部分を含む場合の成形型キャビティの全面積S3は、コールドプレスが完了した時点で、成形体が成形型の下型に接触している範囲の面積を、成形型のキャビティ全面積S3と定義する。
 成形材料(図8(a)の6)が成形される場合に、図8(a)の9のように、成形材料が互いに折り重なった場合は、成形材料の投影面積は成形型キャビティの有する面積以上となる場合がある。例えば、図8(b)の矢印10部分のように、対応する部分の成形型面積の約3倍面積分の成形材料が積重ねられることになる。成形型の形状にもよるが、成形時に成形材料の重なり部分が発生する場合、成形材料の投影面積は、成形型キャビティの全面積S3の3倍が上限となることが好ましい。
 成形型キャビティの形状にもよるが、成形型に配置する成形材料の投影面積のより好ましい上限としては、成形型キャビティの全面積S3の1.5倍以下がより好ましく、1.3倍以下が更に好ましく、1.2倍以下がより一層好ましく、1.0倍以下が特に好ましい。
 一方、成形型キャビティの全面積S3に対する成形材料の投影面積の下限は、0.7≦S1/S3であることが好ましく、0.8≦S1/S3であることがより好ましい。
 より具体的には、予備賦形などで成形材料が伸長することや、追加の成形材料を積層して成形することを鑑みて、0.8≦S1×引張破断伸度εv/S3であることが好ましい。成形材料の配置の簡便性の観点より、より好ましくは、0.9≦S1×引張破断伸度εv/S3であり更に好ましくは1.0≦S1×引張破断伸度εv/S3である。
[成形体の形状]
 本発明において製造される成形体は開口部を有する。本発明における成形体が有する開口部としては、断面方向(面内方向)から見て、1つの開口部を塞いだ際に1つの閉鎖された空間ができる開口部であれば良く、このような開口部としては典型的には凹部である。例えば図9(a)に成形体8の斜視図を示す。図9(a)に示す成形体8は、開口部14を有している。図9(b)は図9(a)の成形体8の側面図であり、図9(c)は図9(a)の成形体8の平面図である。開口部14を有する成形体8は壁面11、天面12、フランジ部13をそれぞれ有する。また、図9(c)のA-A’間の断面図を図10に示す。
 なお、図9は1つの開口部を塞いだ際には、1つの閉鎖された3次元空間ができる開口部であるが、例えば図10、図11のように、手前と奥が開放された成形体であった場合でも、断面方向(面内方向)から見て、1つの開口部を塞いだ際に1つの閉鎖された空間ができれば、本発明における開口部となる。
[密閉可能なキャビティの容量V1と、成形材料の体積V2]
 密閉可能なキャビティの容量V1と、成形材料の体積V2とが、0.8≦V1/V2≦1.2であることが好ましい。
 密閉可能なキャビティの容量V1とは、成形型を閉じた際にできる空間容量であり、成形体の目的の板厚(肉厚)となるように設定した目標値の空間容量のことである。成形材料の体積V2とは、成形体を製作する際に準備した成形材料の体積そのものである。
 密閉可能なキャビティの容量V1と、成形材料の体積V2とが、V1/V2≦1.2であると成形体の末端部に欠けが発生しにくくなるため好ましく、0.8≦V1/V2であると目的の位置まで成形型を均一に閉じる事が容易になり、製造される成形体の板厚(肉厚)を均一に保ちやすくなるため好ましい。より好ましくは、1.0≦V1/V2≦1.1である。
 また、本発明における成形型が一部に開放部分を含む場合のキャビティの容積V1は、コールドプレスが完了した時点の成形体の体積を、キャビティの容積V1と定義する。
[開口部の形状と成形材料の追加配置]
 本発明における開口部(図9の14)の形状に特に限定はないが、開口部の深さ(図10のE)が深くなると、成形材料が不足して壁面(図9の11)を形成できなくなるという、別の新たな課題が生じる。
 そこで、成形時に成形材料が伸長及び/又は流動することにより開口部が形成され、
(3)成形材料の引張破断伸度をεvとし、成形体のある断面における開口部の出口端の距離をL、該断面における開口部の沿面長をDとしたとき、D-L×εv>0である場合、
(4)配置する成形材料長さが、成形体の開口部の出口端の距離Lに加えてD-L×εv以上の部分を有し、
(5)成形材料の引張破断伸度εvが110%を超300%以下である
ことが好ましい。
(開口部の形状と課題)
 成形体のある断面における開口部の出口端の距離Lとは、例えば図10に示すような断面の成形体の開口部の場合、開口方向からみた直線距離である。図11に示すように成形体が複雑な凹凸形状を有している場合は、成形体の展開距離よりも離Lはかなり小さくなる。
 一方、成形体の開口部の出口端の沿面長Dとは、図10、図11に示すように、成形体の開口部の表面に沿った合計長さをいう。なお、距離Lと沿面長Dとは同じ断面における開口部について測定する。成形体の形状が複雑なため、測定の仕方により距離Lや沿面長Dの値が複数存在する場合であっても、上記(3)の要件を一か所でも満たす成形体の開口部であれば、壁面の成形材料が不足し易くなるという、本発明における別の新たな課題が発生する。
(引張破断伸度εv)
 本発明における成形材料の引張破断伸度εvには特に限定は無いが、好ましくは、110%を超300%以下であり、より好ましくは110%超260%以下であり、更に好ましくは110%超230%以下である。
 ただし、成形材料の引張破断伸度εvは、成形材料がコールドプレス可能な温度で、引張速度20mm/secで伸長させた時の成形材料を伸びであり、下記式(f)で表される。
 式(f):
 εv=成形材料の伸長後の長さ(y)/成形材料の伸長前の長さ(x)×100
 具体的には、成形材料をコールドプレス可能な温度(成形可能な温度)まで昇温して、図19に示す引張破断伸度測定用のプレス用成形型の上に成形材料を配置し、成形型締め付け速度20mm/secで、成形材料を破断させるまで成形型を閉じた後、成形材料を取り出して成形材料が伸長した長さ(y)を測定し、成形材料の伸長前の長さ(x)で除算して計算される。コールドプレス可能な温度(成形可能な温度)とは、成形材料に含まれる熱可塑性樹脂の軟化温度以上であり、例えばナイロン6の場合は融点以上300℃以下であれば良い。
 引張破断伸度εvが300%以下である場合、D=L×300%まで、追加の成形材料を配置しなくてもD(図10、図11)の長さを長くできる。
 すなわち、引張破断伸度εvの範囲で調整した場合(D-L×εv<0の場合)、成形時に成形材料が伸長できるため、たとえば、図10、図11において、天面から開口部入口までの距離Eが5mm以上かつLが10mm以下であるものや、更にはEが10mm以上かつLが20mm以下であるような成形体でも問題なく成形することができる。
 なお、引張破断伸度εvは炭素繊維の含有量、繊維長、繊維径などに影響され、炭素繊維の含有量が多いほど、繊維長が長いほど、繊維径が小さいほど、引張破断伸度εvは小さくなる傾向にある。
(配置する成形材料の好ましい長さ)
 成形材料は少なくとも可塑化温度まで加熱してプレス成形されるため、成形材料の引張破断伸度εvがある程度大きい成形材料、又はL×εvに比べてDがある程度小さい場合にはD-L×εv<0となり、成形材料の長さが前述の距離L以上であれば、加圧開始されるまでに成形材料の長さがDとなるまで伸長できるので、問題なく成形できる(図12参照)。ここで、成形材料の伸長とは、成形材料が加圧される前までに成形材料が伸びることをいう。成形材料が加圧されているかどうかの確認は、成形型に通常配備されている圧力計により行うことができ、この圧力計がほぼ0を指している時に成形材料が伸びる現象を「伸長」と呼び、圧力計で圧力が検出されている時に成形材料が流れ動く現象を「流動」と呼ぶ。
 一方、成形材料の引張破断伸度εvが小さいとき、又はDが非常に大きいときに、D-L×εv>0となる場合がある。この場合、成形材料が長さDまで伸びることができず、プレスする前に成形材料が破れてしまうことがある(図13(b)参照)。そこで、D-L×εv>0となる場合には、配置する成形材料長さが、成形体の開口部の出口端の距離Lに加えてD-L×εv以上の部分を有していることが好ましい。(4)でいう成形材料の長さとは、同一成形材料内で長さを調整しても良いし(例えば図15)、別の成形材料を準備して長さを調整しても良い(例えば図14)。配置する成形材料の場所としては図14のように積層していても良いし、図15のように成形型キャビティ内に成形材料を入れ込んでも良い。
 図14に示すように積層して成形材料を配置する場合、積層した成形材料は、流動によって板厚が均一になる。これは、プレス時に積層した成形材料が、面内方向に加えて板厚方向にも流動するためである。一方、図15のように成形型キャビティ内に成形材料を入れ込んだ場合、成形材料の伸長を少なくすることができ、繊維の形態を天面部と側面部で均一化できる。
[その他の成形体の形状]
(フランジ構造)
 本発明において、製造される成形体は好ましくはフランジ部を有し、開口部壁面の厚みt1と、天面又はフランジ部の厚みt2との関係が、0.5<t1/t2≦1.5であることが好ましく、0.7<t1/t2≦1がより好ましい。
 例えば、日本国特開2009-196145号公報の記載の成形方法では、開口部の天面より壁面の体積が小さくなってしまう場合が多く、例えば壁面にあるボス・リブ形状が天面部よりも相対的に成形しづらくなり問題が生じる。
(成形体の物性)
 本発明における成形体は、端部が成形時に成形材料がまったく流動しないか、または僅かに流動して形成されたものであるため、成形体の端部と中央部でほとんど成形材料の等方性に差が生じない。具体的には、成形体が端部と中央部を有し、端部の等方性i1と、中央部の等方性i2が、0.95<i1/i2<1.05である成形体を製造することができる。成形体の端部とは、ある方向における成形体の端から全体の長さの10%までの部分と定義され、ある方向において2つの端部が存在し、端部以外の部分を中央部と定義する。
 端部と中央部の等方性の評価方法としては、成形体の端部と中央部から、それぞれダンベル試験片を切り出し、JIS K7164:2005に従って、引張強度をそれぞれ測定し、端部の引張強度(i1)を、中央部の引張強度(i2)で除算して評価した。
[成形型]
 本発明は、不連続炭素繊維と熱可塑性樹脂とを含む成形材料を成形型に配置してコールドプレス成形する方法に関するものであり、プレス成形の種類は得られる成形体に応じ選択が可能である。ここで、プレス成形とは、加工機械および型、工具等を用いて金属、プラスチック材料、セラミックス材料などに例示される各種材料に曲げ、剪断、圧縮等の変形を与えて成形体を得る方法であるが、その成形形態として絞り、深絞り、フランジ、コールゲート、エッジカーリング、型打ちなどが例示される。
 本発明における成形型は密閉可能なキャビティとなる部分を有する。本発明における密閉可能なキャビティ構造とはコア型とキャビ型、別の表現をすると上型と下型が合わさった時に1つの閉空間を作ることが出来る構造を有しているものである。例えば成形型は図5、図6に示すような密閉部分があれば、その部分の成形体端部の物性は安定する。
 また、図示していないが、一部が開放されるキャビティであっても良い。ただし、成形型の製造上の観点より、成形型が閉じた際に、完全に密閉されたキャビティであることがより好ましい。
 すなわち、本発明における密閉可能なキャビティとは、閉じられた空間を指すのではない。換言すると、本発明における「成形型が密閉可能なキャビティとなる部分を有する」とは、「コールドプレスする際に、成形型キャビティの外に、成形材料が流出しないように成形型が閉じる部分を有する」ことをいう。
(型締め速度)
 また、本発明における成形型の型締め速度に特に制限は無いが、10~100mm/secの範囲であることが好ましい。成形体の形状にもよるが、特に図10、図11のEに示す深絞り部では型締め速度が100mm/sec以下であれば成形材料が伸長し易く、成形材料が途中で切れにくくなる。型締め速度が10mm/sec以上にすると、成形材料の伸長が完了する以前に成形材料が冷やされにくくなり、成形性が向上する。好ましい型締め速度としては、30mm/sec~100mm/secの範囲である。
[コールドプレス]
 本発明におけるコールドプレスとは、以下の工程(i)~(iv)を有してプレス成形するものである。
工程(i):成形材料を構成する熱可塑性樹脂の可塑化温度(コールドプレス可能な温度)以上に、成形材料を加熱する工程。
工程(ii):可塑化温度以上に加熱せしめた成形材料を搬送し、開放された成形型へ配置する工程。
工程(iii):成形型を型締めすることにより成形材料を加圧し、可塑化温度以下に冷却する工程。
工程(iv):成形型を開放し、成形体を成形型から取り出す工程。
 工程(i)でいう熱可塑性樹脂の可塑化温度とは、DSC(Differntial Scanning Calorimetry)により求めことができる。昇温速度10℃/minで測定し、得られたDSC曲線における融解ピークのピークトップを可塑化温度とする。
 工程(ii)は、可塑化温度以上に加熱せしめた成形材料を搬送し、開放された成形型の下型へ配置をする工程である。加熱された成形材料は人手、ロボットなどで搬送し、開放された成形型へ配置される。搬送に際しては、作業上の安全面や、プレス成形が行われる成形型への成形材料の配置精度の観点から、適宜、人手やロボットが選択される。
 工程(iii)は、成形型を型締めすることにより、可塑化温度以上に加熱せしめた成形材料を、可塑化温度以下に冷却する工程である。加圧冷却する工程には、プレス成形が用いられ、その種類は得られる成形体に応じ選択が可能である。ここで、プレス成形とは、加工機械および型、工具等を用いて金属、プラスチック材料、セラミックス材料などに例示される各種材料に曲げ、剪断、圧縮等の変形を与えて成形体を得る方法であるが、その成形形態として絞り、深絞り、フランジ、コールゲート、エッジカーリング、型打ちなどが例示される。また、プレス成形の方法としては、型を用いて成形を行う金型プレス法、ラバープレス法(静水圧成形法)などが例示される。上記プレス成形の方法のなかでも、成形圧力、温度の自由度の観点から、金属製の型を用いて成形を行なってもよい。
 成形体を形成する成形型の開口部のキャビティの投影面積にかかる加圧力が0.1~50MPaの範囲内であることが可塑化した成形材料の賦形のしやすさや、成形体の厚み制御のしやすさの観点から好ましい。とりわけ、5MPa~30MPaの範囲内がプレス成形機の設備コストの観点から好ましい。
 可塑化温度以下とは、成形型の温度が成形材料を構成する熱可塑性樹脂の固化温度より20℃~100℃低い温度の範囲内で行われることが可塑化した成形材料の賦形のしやすさや、成形体の表面外観の観点から好ましい。例えば、熱可塑性樹脂としてポリアミド6樹脂を用いる場合は、120℃~160℃の範囲内、ポリプロピレン樹脂を用いる場合は80℃~120℃の範囲内が好ましい態様として例示出来る。
 工程(iv)は、冷却後、成形型を開放し、成形型から成形体を取り出す工程である。
 工程(iii)と工程(iv)の間に、工程(iv)を補助する目的で、エジェクタを動作させる工程が含まれていた場合、成形作業の簡素化、成形トラブルなどを防止できるという点で好ましい。また、エジェクタは、圧縮空気をブローする方式、機械的な構造部材により突き上げる方式のいずれも好ましく用いることができる。
[予備賦形]
 本発明における成形体の製造方法において、成形材料を成形型に配置した後、コールドプレスする前に予備賦形し、その後プレス成形することが好ましい。予備賦形とは、成形材料を成形体に近い形状に予め賦形しておくことであり、成形型への装填やその後のプレス成形を容易にするためのものである。例えば、図20のような成形型を用いて成形する場合、予め成形型の凹凸に沿わして成形材料を配置することをいう。この予備賦形により成形性は向上し、流動の制御も容易になる。
 以下、実施例により本発明をさらに詳細に説明する。なお、実施例に用いた原料は以下のとおりである。
 ・PAN系炭素繊維
 ・ポリアミド6(融点225℃、熱分解温度(空気中)300℃)
[各種評価方法、成形条件]
(成形型の形状)
 プレス成形に使用する成形型として、図16(a)の1、図17(a)の1、図18(a)の1に示す成形型を用いた。各寸法、密閉可能なキャビティの容量等を表1~5に示す。全ての成形型は、キャビティが完全に密閉空間を形成するように上型と下型を設計し、開放部分を含むことはないようにした。
 なお、図16のT長さ方向において、成形型は正シャーと呼ばれる、上型にシャーを設けた構造とした。また、シャーエッジの高さをある程度低くして設計し、成形材料の噛みこみを、評価し易くした。
 一方、図17のT長さ方向においては、成形型は逆シャーと呼ばれる下型にシャーを設けた構造としたため、成形材料の成形型への噛みは、ほぼ発生しない形状とした。
(流動距離の評価方法)
 加熱前の成形材料の末端に予め線を引いておき、成形後の成形体の端部と該線との距離を測定した。
 なお、流動距離は、各実施例及び比較例について、「厳密に予備賦形した場合」と、「厳密な予備賦形を行わなかった場合(成型材料の配置を、少しルーズにして配置した場合)」との2種測定した。
 ここで、「厳密に予備賦形した場合」においては、成形材料に切り込みを入れ、その切り込みを成形型の稜線にあわせて予備賦形した。
 「厳密な予備賦形を行わなかった場合」においては、成形材料に切り込みを入れずに予備賦形した。この場合、「厳密に予備賦形した場合」に対して、1~5mmの範囲でずれが生じた。
(等方性の評価方法)
 得られた成形体の端部(図16の(b)の15、図17の(b)の15、図18の(b)の15)から、それぞれダンベル試験片を切り出した(ぞれぞれ、図16(a)、図17(a)、及び図18(a)のWの方向がダンベル試験片の長さ方向となるように切り出した)。
 また、成形体の中央部(図16~17の場合は中央部、図18の場合は疑似中央部17)から、それぞれダンベル試験片を切り出した。
 得られたダンベル試験片を、JIS K7164:2005に従って、引張強度をそれぞれ測定し、端部の引張強度(i1)を、中央部の引張強度(i2)で除算して評価した。
(引張破断伸度εvの評価方法)
 後述する各種の成形材料(成形材料(i)又は成形材料(ii))を、長さ200mm×幅25mmにカットし、厚さ3.0mmになるよう6枚積層して、120℃の熱風乾燥機で4時間乾燥した後、赤外線加熱機により300℃まで昇温した。
 次に、図19(a)に示す、深さ(図19の16)200mm、開口部の出口端の長さ50mm、上下型のクリアランスが3.0mmの成形型を準備して140℃に設定し、この上に上記カットして昇温させた成形材料を6枚積層したまま開口部にかかるように配置し、株式会社放電精密加工研究所製(ZEN Former MPS4200)を用いて型締め付け速度20mm/secで成形型を閉じた。引張破断伸度εvを測定する際の温度は使用する熱可塑性樹脂によって異なるが、プレス成形する際の温度で引張破断伸度εvを測定するものとする。
 成形材料を破断させるまで成形型を閉じた後、成形材料を取り出して成形材料の伸長した長さ(y)を測定し、上記式(f)により伸長前の成形材料長さ(x)で除算して引張破断伸度εvを算出した。なお、伸長前の成形材料長さ(x)は開口部長さ50mmとした。
(表面外観の評価方法)
 プレス成形方法により得られた成形体を目視により観察し、以下の基準で判定した。
 A:成形体に未充填部分が無く、また成形体の表面に皺が無く優れた成形体の表面外観である。
 B:実用上問題はないものの、表面に成形材料が流動した跡が見られる。
 C:成形体に未充填や穴あきがあり劣る。
(成形体端部の曲げ強度の評価方法)
 成形体の端部(又は端部を含む部分)(図16(b)の15、図17(b)の15、図18(b)の15)から長さ100mm、幅10mmの試験片を切出し、インストロン社製の曲げ試験機5966を用い、JIS K7074:1988に準拠して、p/tが40になるよう各支点間を調整し、3点曲げにて曲げ強度を測定した(pは支点間距離、tは板厚)。
 A:400MPa以上
 B:380MPa以上400MPa未満
 C:360MPa以上380MPa未満
 D:360MPa未満
(バリの評価方法)
 得られた成形体について目視で観察し、以下の基準で評価した。
 A:バリの発生が全く見られない。
 B:多少のバリは発生したが、バリを切除する必要は無く、使用上問題ないものであった。
 C:バリが発生したため、バリを切除しなければ、使用上耐えうるものではなかった。
(噛みこみの評価方法)
 噛みこみとは、成形型を型締めする際、上型と下型の間で成形材料が不適切な位置(例えば図5の18)で、成形材料を挟み込んでしまう現象をいい、成形材料が所望の位置に配置出来ていない場合に生じる現象である。
 A:全く噛みこみは発生しなかった。
 B:噛みこみの最大長さが2mm以下であった。
 C:噛みこみの最大長さが2mm超であった。
[炭素繊維強化樹脂成形材料の製造]
(製造例1)
 炭素繊維として、平均繊維長20mmにカットした東邦テナックス社製の炭素繊維“テナックス”(登録商標)STS40-24KS(平均繊維径7μm)を使用し、樹脂として、ユニチカ社製のナイロン6樹脂A1030を用いて、WO2012/105080パンフレットに記載された方法に基づき、炭素繊維目付け310g/m、ナイロン樹脂目付け370g/mである二次元ランダムに炭素繊維が配向したマットを作成した。
 得られたマットを260℃に加熱したプレス装置にて、2.0MPaにて5分間加熱し、厚さ0.5mmの成形材料(i)を得た。
 得られた成形材料(i)について、それに含まれる炭素繊維の解析を行ったところ、前記式(a)で定義される臨界単糸数は86本、臨界単糸数以上で構成される炭素繊維束(A)中の平均単糸数(N)は420本であり、臨界単糸数以上で構成される炭素繊維束(A)の割合は全炭素繊維量の85Vol%であった。また、炭素繊維体積割合は35%(質量基準の炭素繊維含有率46%)であり、引張破断伸度εvは200%であった。
(製造例2)
 開繊度を調整し、前記式(a)で定義される臨界単糸数は86本、臨界単糸数以上で構成される炭素繊維束(A)中の平均単糸数(N)は100本であり、臨界単糸数以上で構成される炭素繊維束(A)の割合は全炭素繊維量の10Vol%であること以外は、製造例1と同様に成形材料を準備し、成形材料(ii)を得た。引張破断伸度εvは110%であった。
[実施例1]
 成形材料(i)を200mm×350mmの大きさに6枚切り出し、(図16(a)に示すT長さ×図16(a)に示すT長さ)、120℃の熱風乾燥機で4時間乾燥した後、赤外線加熱機により300℃まで昇温した。成形型を140℃に設定し、切出して昇温した成形材料6枚を積層させて厚み3.0mmとし、図16(a)に示すように成形型内に導入した。この際、厳密な予備賦形を行わなかった。
 ついで、プレス圧力2MPaで1分間加圧し、成形体を得た。
[実施例2]
 成形材料(i)を7枚切出して厚さ3.5mmとなるように積層したこと以外は実施例1と同様に成形して成形体を得た。
[実施例3]
 成形材料(i)を5枚切出して厚さ2.5mmとなるように積層したこと以外は実施例1と同様に成形して成形体を得た。
[実施例4]
 成形材料(i)を8枚切出して厚さ4.0mmとなるように積層したこと以外は実施例1と同様に成形して成形体を得た。
[比較例3~6]
 厳密に予備賦形したこと以外は、実施例1~4と同様にして成形体を得た。
[実施例5]
 切り出した成形材料の大きさを200mm×300mmにしたこと以外は、実施例1と同様にして成形して成形体を得た。
[実施例6]
 切り出した成形材料の大きさを200mm×260mmにしたこと以外は、実施例3と同様にして成形して成形体を得た。
[実施例15~16]
 製品のバラツキを減らすとの観点より、厳密に予備賦形したこと以外は、実施例5~6と同様にして成形体を得た。
[実施例7]
 成形材料(ii)を用いたこと以外は実施例3と同様に成形して成形体を得た。
[比較例7]
 厳密に予備賦形したこと以外は、実施例7と同様にして成形体を得た。
[実施例8]
 切り出した成形材料の大きさを200mm×270mmにしたこと以外は、実施例7と同様にして成形して成形体を得た。また、成形材料があまり流動しないため、目的とする成形体の端部まで完全に賦形できなかった。
[実施例17]
 厳密に予備賦形したこと以外は、実施例8と同様にして成形体を得た。
[実施例9]
 成形材料(i)を200mm×550mmの大きさに6枚切り出し(図17(a)に示すT長さ×図17(a)に示すT長さ)、120℃の熱風乾燥機で4時間乾燥した後、赤外線加熱機により300℃まで昇温した。成形型を140℃に設定し、切出して昇温した成形材料6枚を積層させて厚み3.0mmとし、図17(a)に示すように成形型内に導入した。ついで、プレス圧力2MPaで1分間加圧し、成形体を得た。なお、図17(a)において、lは40mmである。
[比較例8]
 厳密に予備賦形したこと以外は、実施例9と同様にして成形体を得た。
[実施例10]
 成形材料(i)を用い、200mm×400mmに成形材料を切出し、成形材料の厚みを3.5mmとしたこと以外は実施例9と同様に成形して成形体を得た。
[実施例11]
 成形材料(ii)を用いた事以外は実施例10と同様に成形して成形体を得た。また、成形材料があまり流動しないため、目的とする成形体の端部まで完全には賦形できなかった。
[実施例12]
 成形材料(i)を180mm×180mmの大きさに6枚切り出し(図18(a)に示すT長さ×図18(a)に示すT長さ)、120℃の熱風乾燥機で4時間乾燥した後、赤外線加熱機により300℃まで昇温した。成形型を140℃に設定し、切出して昇温した成形材料6枚を積層させて厚み3.0mmとし、図18(a)に示すように成形型内に導入した。ついで、プレス圧力2MPaで1分間加圧し、成形体を得た。
[実施例13]
 切り出した成形材料の大きさを195mm×340mmにしたこと以外は、実施例1と同様にして成形して成形体を得た。
[実施例14]
 切り出した成形材料の大きさを195mm×300mmにしたこと以外は、実施例1と同様にして成形して成形体を得た。
[実施例18~22]
 厳密に予備賦形したこと以外は、実施例11~14と同様にして成形体を得た。
[比較例1]
 成形材料(i)を200mm×200mmの大きさに10枚切り出し(図16(a)に示すT長さ×図16(a)に示すT長さ)、120℃の熱風乾燥機で4時間乾燥した後、赤外線加熱機により300℃まで昇温した。成形型を140℃に設定し、切出して昇温させた成形材料を10枚重ねて厚み5mmとし、成形型内に導入した。ついで、プレス圧力2MPaで1分間加圧し、成形体を得た。成形型に配置する成形材料の投影面積が、成形型キャビティの投影面積以下(成形型キャビティの投影面積に対するチャージ率(%)が100%以下)であったため、成形時に端部を流動させて成形することとなり、曲げ強度は劣る結果となった。
[比較例2]
 図16(a)に示す形状の成形型を、密閉型キャビティではなく、開放型キャビティとなるように上型を調整したこと以外は実施例1と同様に成形して成形体を得た。成形型キャビティの外側に成形材料が流出しため、バリが多量に発生することとなった。このため、曲げ強度と等方性の評価を行わなかった。また、開放型キャビティを用いたため、噛みこみの評価は行わなかった。
[天面の曲げ強度]
 実施例、比較例の各成形体から天面部を切出し、天面の曲げ強度を、端部と同様に測定したところ、評価は全てAであった。すなわち、上記実施例、比較例の成形体端部の曲げ強度が良好な場合、成形体端部の機械物性は安定していることを意味する。
 実施例及び比較例の成形型、成形材料、各種条件、及び評価結果を下記表1~5に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
※比較例2については、キャビティの外側に成形材料が流出したため曲げ強度と等方性の評価を行わなかった。 
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本発明の製造方法で得られた成形体は、各種構成部材、例えば自動車の内板、外板、構成部材、また各種電気製品、機械のフレームや筐体等に用いることができる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2014年6月20日出願の日本特許出願(特願2014-127295)に基づくものであり、その内容はここに参照として取り込まれる。
 1.成形型(下型)
 2.成形型キャビティの投影面積
 3.成形型キャビティの全面積S3
 4.成形型キャビティの全面積S3
 5.成形材料の投影面積
 6.成形材料
 6’.成形材料の投影面積が、成形型キャビティの投影面積以下の成形材料
 7.成形型(上型)
 8.成形体
 8’.従来の成形体
 8’-1.従来の成形体の端部
 9.成形時の成形材料の重なり部分
 10.成形時の成形材料の重なり部分
 11.壁面
 12.天面
 13.フランジ部
 14.開口部
 15.成形体の端部
 16.成形型の深さ
 17.疑似中央部
 L.成形体の開口部の出口端の投影距離
 D.成形体の開口部の出口端の投影距離Lの間の沿面長D
 E.成形体天面と開口部までの距離E
 x.成形材料の伸長前の長さ
 y.成形材料が伸長した長さ

Claims (11)

  1.  不連続炭素繊維と熱可塑性樹脂とを含む成形材料を成形型に配置してコールドプレスすることにより、開口部を有する成形体を製造する方法であって、
    (1)成形型が密閉可能なキャビティとなる部分を有し、
    (2)成形型に配置する成形材料の投影面積が、成形型キャビティの投影面積超であって、
     前記コールドプレスにおいて、成形材料が流動して成形体の端部を形成し、成形材料の流動する距離が0mm超150mm以下である、
    成形体の製造方法。
  2.  前記流動が、成形材料の面内方向への流動である、請求項1に記載の成形体の製造方法。
  3.  前記成形型に配置する成形材料の投影面積が、成形型キャビティの有する全面積の3倍以下である請求項1又は2に記載の成形体の製造方法。
  4.  請求項1~3のいずれか1項に記載の成形体の製造方法であって、前記成形材料の流動する距離が1mm超100mm以下である成形体の製造方法。
  5.  前記成形材料を成形型に配置した後、コールドプレスする前に予備賦形する請求項1~4のいずれか1項に記載の成形体の製造方法。
  6.  前記不連続炭素繊維の平均繊維長が1~100mmである請求項1~5のいずれか1項に記載の成形体の製造方法。
  7.  前記成形材料中で、前記不連続炭素繊維が2次元ランダムに配向している請求項6に記載の成形体の製造方法。
  8.  前記密閉可能なキャビティの容量V1と、前記成形材料の体積V2とが、0.8≦V1/V2≦1.2である請求項1~7のいずれか1項に記載の成形体の製造方法。
  9.  請求項1~8のいずれか1項に記載の成形体の製造方法であって、成形時に前記成形材料が伸長及び/又は流動することにより前記開口部が形成され、
    (3)前記成形材料の引張破断伸度をεvとし、前記成形体のある断面における開口部の出口端の距離をL、該断面における開口部の沿面長をDとしたとき、D-L×εv>0である場合、
    (4)配置する前記成形材料の長さが、前記成形体のある断面における開口部の出口端の距離Lに加えて、D-L×εv以上の部分を有し、
    (5)前記成形材料の引張破断伸度εvが110%超300%以下である
    成形体の製造方法。
  10.  請求項1~9いずれか1項に記載の製造方法によって得られた成形体が、自動車用部品である成形体。
  11.  請求項1~9のいずれか1項に記載の製造方法によって得られた成形体であって、ある方向における成形体の端から全体の長さの10%までの部分である端部と、それ以外の部分である中央部を有し、端部の等方性i1と、中央部の等方性i2が、0.95<i1/i2<1.05である成形体。
PCT/JP2015/067259 2014-06-20 2015-06-16 開口部を有する成形体の製造方法、及び成形体 WO2015194533A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15809667.7A EP3159132B1 (en) 2014-06-20 2015-06-16 Method for manufacturing molded article having opening
US14/906,637 US9533437B2 (en) 2014-06-20 2015-06-16 Method for producing shaped product with opening, and shaped product
JP2015554926A JP5952510B2 (ja) 2014-06-20 2015-06-16 開口部を有する成形体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014127295 2014-06-20
JP2014-127295 2014-06-20

Publications (1)

Publication Number Publication Date
WO2015194533A1 true WO2015194533A1 (ja) 2015-12-23

Family

ID=54935516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067259 WO2015194533A1 (ja) 2014-06-20 2015-06-16 開口部を有する成形体の製造方法、及び成形体

Country Status (4)

Country Link
US (1) US9533437B2 (ja)
EP (1) EP3159132B1 (ja)
JP (1) JP5952510B2 (ja)
WO (1) WO2015194533A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119465A1 (ja) * 2016-01-08 2017-07-13 帝人株式会社 繊維強化樹脂成形体の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6836489B2 (ja) * 2017-09-27 2021-03-03 本田技研工業株式会社 繊維強化樹脂成形品及びその製造方法と、それを得るための金型装置
US20210154952A1 (en) * 2018-03-30 2021-05-27 Toray Industries, Inc. Press-molded article manufacturing method
AT521672B1 (de) * 2018-09-10 2022-10-15 Facc Ag Verfahren zur Herstellung eines Faser-Kunststoff-Verbund-Vergleichskörpers und Prüfungsverfahren
EP4098438B1 (en) * 2020-01-27 2024-03-13 Teijin Limited Cold press molded body containing carbon fiber and glass fiber, and manufacturing method thereof
JP1677476S (ja) * 2020-04-01 2021-01-25 情報表示用画像
JP1677469S (ja) * 2020-04-01 2021-01-25 情報表示用画像
CN114043567B (zh) * 2021-11-09 2023-07-04 嘉兴雁荡包装有限公司 一种用于铝箔纸切边的装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235779A (ja) * 2009-03-31 2010-10-21 Toray Ind Inc プリプレグ、プリフォームおよび成形品
JP2012051225A (ja) * 2010-09-01 2012-03-15 Toyobo Co Ltd 繊維強化熱可塑性樹脂シートの圧縮成形方法
JP2012250430A (ja) * 2011-06-02 2012-12-20 Teijin Ltd 等方性を維持した成形体の製造方法
WO2013031860A1 (ja) * 2011-08-31 2013-03-07 帝人株式会社 立ち面を有する成形体、およびその製造方法
JP2013176984A (ja) * 2012-02-07 2013-09-09 Toray Ind Inc リブ構造を有する成形品の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3405032C1 (de) * 1984-02-13 1985-04-04 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Vorrichtung zum Herstellen von Pressteilen aus Duroplasten
DE3614533A1 (de) * 1986-04-29 1987-11-05 Walter Isphording Verfahren zum herstellen von kompakten, eine verstaerkungseinlage aus fasern enthaltenden formkoerpern aus thermoplastischem kunststoff
JPH06335934A (ja) 1993-05-28 1994-12-06 Mitsubishi Petrochem Co Ltd フランジ部を有する衝撃吸収部材及びその成形方法
JP5332227B2 (ja) * 2008-02-20 2013-11-06 東レ株式会社 プレス成形方法および成形体
JP5691699B2 (ja) 2010-03-24 2015-04-01 東レ株式会社 プレス成形方法およびその成形体
CN103582556B (zh) * 2011-05-31 2016-03-02 帝人株式会社 用于制造具有维持的各向同性的成形制品的方法
JP5749587B2 (ja) * 2011-06-29 2015-07-15 帝人株式会社 立上部を有する軽量な成形体とその製造方法
RU2535711C1 (ru) * 2011-08-03 2014-12-20 Тейдзин Лимитед Способ изготовления фасонного изделия формованием под низким давлением
JP5855401B2 (ja) * 2011-09-21 2016-02-09 三菱レイヨン株式会社 繊維強化熱可塑性樹脂成形品の製造方法
JP2013126746A (ja) * 2011-12-19 2013-06-27 Teijin Ltd 入れ駒を用いた成形体の製造方法
US9062417B2 (en) * 2013-03-14 2015-06-23 Neenah Paper, Inc. Methods of molding non-woven carbon fiber mats and related molded products

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235779A (ja) * 2009-03-31 2010-10-21 Toray Ind Inc プリプレグ、プリフォームおよび成形品
JP2012051225A (ja) * 2010-09-01 2012-03-15 Toyobo Co Ltd 繊維強化熱可塑性樹脂シートの圧縮成形方法
JP2012250430A (ja) * 2011-06-02 2012-12-20 Teijin Ltd 等方性を維持した成形体の製造方法
WO2013031860A1 (ja) * 2011-08-31 2013-03-07 帝人株式会社 立ち面を有する成形体、およびその製造方法
JP2013176984A (ja) * 2012-02-07 2013-09-09 Toray Ind Inc リブ構造を有する成形品の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119465A1 (ja) * 2016-01-08 2017-07-13 帝人株式会社 繊維強化樹脂成形体の製造方法
JPWO2017119465A1 (ja) * 2016-01-08 2018-10-25 帝人株式会社 繊維強化樹脂成形体の製造方法
US10889076B2 (en) 2016-01-08 2021-01-12 Teijin Limited Method for producing fiber-reinforced resin shaped product

Also Published As

Publication number Publication date
JP5952510B2 (ja) 2016-07-13
US9533437B2 (en) 2017-01-03
JPWO2015194533A1 (ja) 2017-04-20
US20160158975A1 (en) 2016-06-09
EP3159132A1 (en) 2017-04-26
EP3159132B1 (en) 2019-12-18
EP3159132A4 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
JP5952510B2 (ja) 開口部を有する成形体の製造方法
CN105992682B (zh) 纤维增强塑料及其制造方法
US10889076B2 (en) Method for producing fiber-reinforced resin shaped product
JP6782582B2 (ja) 繊維強化複合材料成形体およびその製造方法
EP2752442A1 (en) Molded body having rising surface, and method for producing same
US11084187B2 (en) Fiber-reinforced composite material molded article and method for manufacturing same
JP6807880B2 (ja) 不連続強化繊維と、マトリックスとしての熱可塑性樹脂とを含むプレス成形材料、その成形体、およびそれらの製造方法
JP6085798B2 (ja) 3次元形状成形用複合材及びその製造方法
TW201442862A (zh) 碳纖維強化熱可塑性樹脂複合材料、使用其的成型體、以及電子設備框體用構件
US20140178653A1 (en) Production Method for Composite Shaped Product Having Undercut Portion
JP5851767B2 (ja) 繊維強化基材
EP3042753A1 (en) Production method for fiber-reinforcing component
EP3492233A1 (en) Press molding production method
JP6643126B2 (ja) プレス成形体の製造方法、及びプレス成形体の製造装置
US10086540B2 (en) Method for manufacturing press molded product and manufacturing apparatus for press molded product
US20170015024A1 (en) Molded Product Having Stay Portion and Production Method of Molded Product
JP5598931B2 (ja) 繊維強化された樹脂基材、樹脂成形体の製造方法及びその実施のための樹脂加工機
KR101348948B1 (ko) 함침이 용이한 열가소성 복합재 및 그 제조방법
WO2019131045A1 (ja) プレス成形体の製造方法
JP7130848B2 (ja) プレス成形体の製造方法
JP5958360B2 (ja) Frpシートの製造方法
JP2023101237A (ja) 繊維強化樹脂接合体
JP2016011369A (ja) 炭素繊維強化熱可塑性樹脂複合材料、及びそれを用いた成型体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015554926

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14906637

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015809667

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015809667

Country of ref document: EP