WO2015194427A1 - Flexographic printing plate precursor for laser engraving use and method for production thereof, and flexographic printing plate and method for production thereof - Google Patents

Flexographic printing plate precursor for laser engraving use and method for production thereof, and flexographic printing plate and method for production thereof Download PDF

Info

Publication number
WO2015194427A1
WO2015194427A1 PCT/JP2015/066700 JP2015066700W WO2015194427A1 WO 2015194427 A1 WO2015194427 A1 WO 2015194427A1 JP 2015066700 W JP2015066700 W JP 2015066700W WO 2015194427 A1 WO2015194427 A1 WO 2015194427A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming layer
relief forming
printing plate
crosslinked
flexographic printing
Prior art date
Application number
PCT/JP2015/066700
Other languages
French (fr)
Japanese (ja)
Inventor
守 倉本
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015194427A1 publication Critical patent/WO2015194427A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/02Engraving; Heads therefor
    • B41C1/04Engraving; Heads therefor using heads controlled by an electric information signal
    • B41C1/05Heat-generating engraving heads, e.g. laser beam, electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/12Printing plates or foils; Materials therefor non-metallic other than stone, e.g. printing plates or foils comprising inorganic materials in an organic matrix
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor

Definitions

  • the present invention relates to a flexographic printing plate precursor for laser engraving and a manufacturing method thereof, and a flexographic printing plate and a plate making method thereof.
  • Flexographic printing is a printing method in which an ink is applied to a convex portion on a printing plate using an anilox roll or the like and transferred to a printing object.
  • a flexographic printing plate uses an elastic resin layer (relief layer).
  • a crosslinked relief forming layer is formed by subjecting a resin layer (relief forming layer) before crosslinking to a crosslinking treatment.
  • a method of irradiating the resin layer with active rays such as ultraviolet rays and electron beams (photocrosslinking), a vulcanization method, and a method using an organic peroxide (thermal crosslinking) are performed.
  • a method for making a plate (patterning) of a crosslinked relief forming layer by scanning exposure has been studied.
  • a so-called “direct engraving CTP (Computer To Plate) method” in which a cross-linked relief forming layer is directly engraved with a laser to make a plate has been proposed.
  • the direct engraving CTP method has an advantage that the relief shape can be freely controlled by literally engraving with a laser to form a relief asperity. For this reason, when an image such as a letter is formed, the area is engraved deeper than other areas, or the fine halftone dot image is engraved with a shoulder in consideration of resistance to printing pressure. Is also possible.
  • a printing original plate for laser engraving for forming a printing plate by image formation by laser light irradiation having a printing layer, Resin obtained by photoreacting a photosensitive resin composition in which the print layer mainly contains a non-photoreactive synthetic rubber or / and natural rubber, an ethylenically unsaturated compound, and a photopolymerization initiator
  • a printing original plate for laser engraving comprising a composition is described.
  • Patent Document 2 discloses that “a conductive support and a resin layer formed on the surface of the conductive support are included, and the resin layer heats the conductive support by high frequency induction.
  • the printing original plate formed by the thermosetting resin composition arrange
  • the inventor examined the printing plate precursor for laser engraving described in Patent Documents 1 and 2, and in the halftone image portion, the pressure between the printing plate and the printing medium during printing (hereinafter referred to as “printing pressure”). It was clarified that the tolerance of concentration fluctuations (hereinafter referred to as “printing pressure latitude”) due to.
  • the present invention has an object to provide a flexographic printing plate precursor for laser engraving capable of widening the printing pressure latitude in the halftone image portion of the printing plate and a method for producing the same, and a flexographic printing plate and a method for producing the same.
  • the present inventor has provided at least two cross-linked relief forming layers having a predetermined thickness and satisfying a specific hardness ratio in a flexographic printing plate precursor for laser engraving.
  • the present inventors have found that the printing pressure latitude in the halftone image portion can be widened, and have reached the present invention. That is, the present inventor has found that the above problem can be solved by the following configuration.
  • a flexographic printing plate precursor for laser engraving having at least two crosslinked relief forming layers, The first crosslinked relief forming layer disposed on the surface side subjected to laser engraving and the second crosslinked relief forming layer adjacent to the first crosslinked relief forming layer, and the Martens hardness B of the second crosslinked relief forming layer
  • the ratio of the Martens hardness A of the first crosslinked relief forming layer to 1.1 is 1.1 or more,
  • the thickness of the first crosslinked relief forming layer is 10 to 300 ⁇ m;
  • the thickness of the second crosslinked relief forming layer is 500 to 1600 ⁇ m;
  • the first crosslinked relief forming layer contains a binder polymer and a photothermal conversion material,
  • the resin composition further contains a polymerizable compound.
  • the first relief forming layer and the second relief forming layer are brought into contact with each other by heat, and the first crosslinked relief forming layer in which the first relief forming layer is crosslinked and the second crosslinked relief in which the second relief forming layer is crosslinked.
  • a crosslinking step of forming at least two crosslinked relief forming layers adjacent to the forming layer The ratio of the Martens hardness A of the first crosslinked relief forming layer disposed on the surface side subjected to laser engraving to the Martens hardness B of the second crosslinked relief forming layer adjacent to the first crosslinked relief forming layer is 1.1. That's it, The thickness of the first crosslinked relief forming layer is 10 to 300 ⁇ m; A method for producing a flexographic printing plate precursor for laser engraving, wherein the second crosslinked relief forming layer has a thickness of 500 to 1600 ⁇ m.
  • a flexographic printing plate precursor for laser engraving which can widen the printing pressure latitude in the halftone image portion of the printing plate and a method for producing the same, as well as a flexographic printing plate and a method for making the same.
  • lower limit to upper limit representing the numerical range
  • upper limit to lower limit represents “lower limit or higher and lower limit or higher”. That is, it represents a numerical range including an upper limit and a lower limit.
  • parts by mass” and “% by mass” are synonymous with “parts by weight” and “% by weight”, respectively.
  • an uncrosslinked crosslinkable layer is referred to as a “relief forming layer”, and a layer obtained by crosslinking the relief forming layer is referred to as a “crosslinked relief forming layer”.
  • a layer in which irregularities are formed on the surface by laser engraving is referred to as a “relief layer”.
  • the crosslinking is performed by heat.
  • the crosslinking is not particularly limited as long as the resin composition is cured, and is a concept including a crosslinked structure by reaction between diene polymers.
  • a binder polymer or a diene polymer described below may be used.
  • a crosslinked structure may be formed by reacting with the above components.
  • a flexographic printing plate is produced by laser engraving a printing plate precursor having a crosslinked relief forming layer and rinsing as required.
  • the flexographic printing plate precursor for laser engraving of the present invention (hereinafter abbreviated as “printing plate precursor of the present invention”) is a flexographic printing plate precursor for laser engraving having at least two cross-linked relief forming layers. And a second crosslinked relief forming layer adjacent to the first crosslinked relief forming layer, wherein the second crosslinked relief forming layer has a second strength against the Martens hardness B.
  • the ratio of Martens hardness A (hardness A / hardness B) of one crosslinked relief forming layer is 1.1 or more.
  • the thickness of the first crosslinked relief forming layer is 10 to 300 ⁇ m
  • the thickness of the second crosslinked relief forming layer is 500 to 1600 ⁇ m.
  • the first crosslinked relief forming layer contains a binder polymer and a photothermal conversion material
  • the second crosslinked relief forming layer is formed from a resin composition containing a diene polymer and a thermal crosslinking agent. It is a layer formed by heat and then crosslinked.
  • the halftone image of the printing plate is provided by providing at least two crosslinked relief forming layers having a predetermined thickness and satisfying a specific hardness ratio.
  • the printing pressure latitude in the part can be widened.
  • the detailed mechanism is unknown, it is guessed as follows. That is, in the printing plate on which an image is formed by laser engraving using the printing plate precursor of the present invention, the surface of the halftone dot image portion is harder than the inside, and therefore the printing effect is caused by the cushioning effect inside the halftone dot image portion. This is considered to be because the deformation was reduced and the density fluctuation was suppressed.
  • the first crosslinked relief forming layer and the second crosslinked relief forming layer of the printing plate precursor of the present invention, and the resin composition and forming method for forming them will be described in detail.
  • the first crosslinked relief forming layer of the printing plate precursor of the present invention is a layer that contains a binder polymer and a photothermal conversion material and is disposed on the surface side on which laser engraving is applied.
  • the “layer disposed on the surface side subjected to laser engraving” refers to the case where it has an optional crosslinked relief forming layer other than the first crosslinked relief forming layer and the second crosslinked relief forming layer described later, A layer having the outermost surface on which laser engraving is performed during image formation.
  • the Martens hardness A of the first crosslinked relief forming layer is a hardness satisfying a ratio (hardness A / hardness B) of 1.1 or more with respect to the Martens hardness B of the second crosslinked relief forming layer adjacent to the first crosslinked relief forming layer.
  • a ratio (hardness A / hardness B) of 1.1 or more with respect to the Martens hardness B of the second crosslinked relief forming layer adjacent to the first crosslinked relief forming layer is preferably 1 to 15 N / mm 2 , more preferably 3 to 8 N / mm 2 .
  • the Martens hardness in the first crosslinked relief forming layer and the second crosslinked relief forming layer is a hardness measured at an indentation depth of 1 ⁇ m by a nanoindentation method according to ISO 14577-1 (instrumented indentation hardness).
  • the Martens hardness A of the first crosslinked relief forming layer is measured by pressing an indenter perpendicularly to the surface of the flexographic printing plate precursor under the following conditions.
  • the Martens hardness B of the second crosslinked relief forming layer is as follows with respect to the central portion in the thickness direction of the second crosslinked relief forming layer in the obtained section by cutting a section perpendicular to the surface of the flexographic printing plate precursor. It was measured by pressing the indenter vertically under the conditions. For example, it can be measured using an ultra micro hardness meter (DUH-201S, manufactured by Shimadzu Corporation).
  • the thickness of the first crosslinked relief forming layer is not particularly limited as long as it is 10 to 300 ⁇ m. However, it is preferably 20 to 150 ⁇ m because the printing pressure latitude in the halftone image portion of the printing plate can be further increased. 20 to 70 ⁇ m is more preferable.
  • the first crosslinked relief forming layer contains a binder polymer and a photothermal conversion material.
  • the first crosslinked relief forming layer is, for example, a resin composition (hereinafter referred to as “binder polymer”, a photothermal conversion material, and an optional additive).
  • binder polymer a resin composition
  • photothermal conversion material a photothermal conversion material
  • optional additive an optional additive
  • thermoplastic polymer Although it does not restrict
  • a thermoplastic polymer will not be specifically limited if it is a polymer which shows thermoplasticity. Examples of such thermoplastic polymers include polystyrene resins, polyester resins, polyamide resins, polysulfone resins, polyethersulfone resins, polyimide resins, hydrophilic polymers containing hydroxyethylene units, acrylic resins, acetal resins, epoxy resins, and polycarbonates. Resins, rubbers, thermoplastic elastomers and the like can be mentioned.
  • a polymer including a partial structure that is thermally decomposed by exposure or heating is preferable.
  • Preferred examples of such polymers include those described in paragraph [0038] of JP-A-2008-163081.
  • a soft resin or a thermoplastic elastomer is preferable.
  • Preferred examples of such resins and polymers include those described in paragraphs [0039] to [0040] of JP-A-2008-163081.
  • a hydrophilic or alcoholic polymer from the viewpoint of easy preparation of the first resin composition and improvement of resistance to oil-based ink in the printing plate to be produced.
  • the hydrophilic polymer those described in paragraph [0041] of JP-A-2008-163081 can be used.
  • a polymer having an ethylenically unsaturated bond in the molecule is preferably used.
  • examples of such a polymer that includes an ethylenically unsaturated bond in the main chain include SB (polystyrene-polybutadiene), SBS (polystyrene-polybutadiene-polystyrene), SIS (polystyrene-polyisoprene-polystyrene), SEBS ( Polystyrene-polyethylene / polybutylene-polystyrene) and the like.
  • an ethylenically unsaturated group such as an allyl group, an acryloyl group, a methacryloyl group, a styryl group, or a vinyl ether group is included in the side chain of the binder polymer skeleton described later. It is obtained by introducing.
  • the method for introducing an ethylenically unsaturated group into the side chain of the binder polymer is as follows: (1) copolymerizing a structural unit having a polymerizable group precursor formed by bonding a protective group to a polymerizable group to remove the protective group.
  • a polymer compound having a plurality of reactive groups such as a hydroxyl group, an amino group, an epoxy group, and a carboxyl group, and a group that reacts with these reactive groups and an ethylenic group.
  • Known methods such as a method of introducing a compound having an unsaturated group by a polymer reaction can be employed. According to these methods, the amount of ethylenically unsaturated groups introduced into the polymer compound can be controlled.
  • the binder polymer is preferably a binder polymer having a reactive functional group such as a hydroxyl group, a silanol group, or a hydrolyzable silyl group.
  • vinyl copolymers such as polyvinyl alcohol and polyvinyl acetal
  • vinyl monomers copolymers and derivatives thereof
  • acrylic resins copolymers and derivatives of acrylic monomers such as hydroxyethyl (meth) acrylate
  • examples of the diene polymer include those exemplified as a diene polymer contained as an essential component in a resin composition (hereinafter referred to as “second resin composition”) that forms a second crosslinked relief forming layer described later. It is done.
  • a liquid polymer for example, liquid butadiene rubber
  • the melting point is 20 mg of a thermoplastic polymer before heating in a differential scanning calorimetry (DSC) pan, and the temperature is from 30 ° C. to 300 ° C. at 10 ° C./min in a nitrogen stream. It is the starting temperature of the endothermic peak observed when the temperature is raised.
  • a crystalline polymer is preferable from the viewpoint of ease of forming a relief layer and hardness.
  • a crystalline polymer means a polymer in which a crystalline region in which long chain molecules are regularly arranged in a molecular structure and an amorphous region that is not regularly arranged are mixed. It refers to a polymer having a crystallinity of 25% or more and 1% by volume or more, which is a ratio of the sex region.
  • the degree of crystallinity refers to an endothermic peak ( ⁇ H (J) due to crystal melting while changing the temperature at a temperature rising rate of 20 ° C./min in a range from 25 ° C. to 200 ° C.
  • Crystallinity (%) ⁇ H / a ⁇ ⁇ 100
  • “a” is the heat of crystal melting when the crystalline region component is crystallized 100% (for example, 94 J / g for polylactic acid, polyethylene (HDPE) 293 ( J / g)).
  • crystalline polymer examples include SB (polystyrene-polybutadiene), SBS (polystyrene-polybutadiene-polystyrene), SIS (polystyrene-polyisoprene-polystyrene), and SEBS (polystyrene-polyethylene / polybutylene-).
  • SBS SBS
  • SIS SBS
  • SEBS polypropylene
  • polybutadiene polyisoprene
  • polyoctenylene trans-polyisoprene
  • ethylene- ⁇ -olefin copolymer ethylene- ⁇ -olefin copolymer
  • propylene- ⁇ -olefin copolymer polyoctenylene is particularly preferable.
  • the thermal crosslinking agent of the second resin composition moves to the first resin composition, and the first resin A polymer having a melting point of 50 to 200 ° C. is preferable, and a polymer having a melting point of 50 to 150 ° C. is more preferable because the composition is more easily crosslinked.
  • the photothermal conversion material is considered to be a component that promotes thermal decomposition of a cured product during laser engraving by absorbing laser light and generating heat. Therefore, it is preferable to select a photothermal conversion material that absorbs light having a laser wavelength used for engraving.
  • a photothermal conversion material that absorbs light having a laser wavelength used for engraving.
  • a photothermal conversion material a compound having a maximum absorption wavelength at 700 to 1,300 nm is preferably used.
  • Various dyes or pigments are used as such a photothermal conversion material.
  • the dyes commercially available dyes and known materials described in documents such as “Dye Handbook” (edited by the Society for Synthetic Organic Chemistry, published in 1970) can be used. Specific examples include those having a maximum absorption wavelength at 700 to 1,300 nm, such as azo dyes, metal complex azo dyes, pyrazolone azo dyes, naphthoquinone dyes, anthraquinone dyes, phthalocyanine dyes, carbonium dyes, diimmonium compounds, and quinoneimine dyes. Preferred are dyes such as methine dyes, cyanine dyes, squarylium dyes, pyrylium salts, metal thiolate complexes.
  • Dyes preferably used in the present invention include cyanine dyes such as heptamethine cyanine dyes, oxonol dyes such as pentamethine oxonol dyes, phthalocyanine dyes, and paragraphs 0124 to 0137 of JP-A-2008-63554. Mention may be made of dyes.
  • photothermal conversion materials used in the present invention commercially available pigments and color index (CI) manuals, “Latest Pigment Handbook” (edited by the Japan Pigment Technical Association, 1977), “Latest Pigment Application” The pigments described in “Technology” (CMC Publishing, 1986) and “Printing Ink Technology” CMC Publishing, 1984) can be used.
  • Examples of the pigment include pigments described in paragraphs 0122 to 0125 of JP2009-178869A.
  • carbon black described later is preferable.
  • Carbon black Specific examples of carbon black include furnace black, thermal black, channel black, lamp black, acetylene black, and the like. These may be used alone or in combination of two or more. Good. These carbon blacks can be used as color chips or color pastes that are dispersed in nitrocellulose or a binder in advance using a dispersant as needed to facilitate dispersion. To powder.
  • the average particle size of carbon black is preferably 13 nm or more and 50 nm or less, because the viscosity and workability of the first resin composition are good and the printing durability is good. It is more preferably 40 nm or less and particularly preferably 15 nm or more and 31 nm or less.
  • the average particle diameter in carbon black is the number average particle diameter, and is measured by a transmission electron microscope.
  • the nitrogen adsorption specific surface area (hereinafter also abbreviated as “N 2 SA”) of carbon black is preferably 25 m 2 / g or more and 180 m 2 / g or less.
  • N 2 SA of the carbon black used is more preferably 30 m 2 / g to 160 m 2 / g, and particularly preferably 40 m 2 / g to 150 m 2 / g.
  • N 2 SA in carbon black is obtained according to JIS K6217-2: 2001.
  • carbon black for rubber can be used.
  • Specific examples thereof include SAF, SAF-HS, ISAF, ISAF-LS, ISAF-HS, IISAF, IISAF-HS, IISAF-HS, HAF, HAF-HS, HAF-LS, LI-HAF, FEF, FEF-HS, MAF, MAF-HS, T-NS, and the like may be used. These may be used alone or in combination of two or more. May be.
  • commercially available carbon black shown below can be used, but is not limited thereto. In the parentheses, an average particle diameter (nm) and a nitrogen adsorption specific surface area (m 2 / g) are sequentially shown.
  • the carbon black of Asahi Carbon Co., Ltd. for example, Asahi ⁇ 78 (22nm, 124m 2 / g ), Asahi ⁇ 80 (22nm, 115m 2 / g ), Asahi ⁇ 70 (28nm, 77m 2 / g ), Asahi ⁇ 70L (27nm, 84m 2 / g ), Asahi F-200 (38nm, 51m 2 / g), Asahi ⁇ 66 (44nm, 43m 2 / g ), Asahi ⁇ 65 (44nm, 42m 2 / g ), Asahi ⁇ 60HN (40 nm, 48 m 2 / g), Asahi # 60H (41 nm, 45 m 2 / g), Asahi # 60U (43 nm, 43 m 2 / g), Asahi # 60 (45 nm, 40 m 2 /
  • the carbon black of Nippon Carbon Co., Ltd. for example, ⁇ 300IH (19nm, 120m 2 / g), ⁇ 300 (24nm, 117m 2 / g), ⁇ 200IS (26nm, 95m 2 / g), ⁇ 200 (29nm, 75m 2 / g) , ⁇ 200L (29nm, 81m 2 / g), ⁇ 200IN (31nm, 71m 2 / g), ⁇ 10 (40nm, 49m 2 / g), ⁇ 10K (39nm, 48m 2 / g), ⁇ 10S (42nm, 53m 2 / g), ⁇ 100 (44nm, include 41m 2 / g) and the like.
  • the carbon black of Tokai Carbon Co., Ltd. for example, SEAST 9H (18nm, 142m 2 / g ), SEAST 9 (19nm, 142m 2 / g ), Seast 7HM: N234 (19nm, 126m 2 / g), SEAST 6 (22 nm, 119 m 2 / g), seast 600 (23 nm, 106 m 2 / g), seast 5H (22 nm, 99 m 2 / g), seast KH: N339 (24 nm, 93 m 2 / g), seast 3H (27 nm, 82 m 2 / g), Seest NH: N351 (29 nm, 74 m 2 / g), Seest 3 (28 nm, 79 m 2 / g), Seest N (29 nm, 74 m 2 / g), Seest 300 (28 nm, 84 m 2
  • Examples of carbon black manufactured by Mitsubishi Chemical Corporation include Diablack A (19 nm, 142 m 2 / g), Dia Black N234 (22 nm, 123 m 2 / g), Dia Black I (23 nm, 114 m 2 / g), Dia Black LI (23 nm, 107 m 2 / g), Dia Black II (24 nm, 98 m 2 / g), Dia Black N339 (26 nm, 96 m 2 / g), Dia Black SH (31 nm, 78 m 2 / g), Dia Black H (31 nm, 79 m 2 / g), Dia Black LH (31 nm, 84 m 2 / g), Dia Black HA (32 nm, 74 m 2 / g), Dia Black N550M (43 nm, 47 m 2 / g), Dia Black E (48 nm 41 m 2 / g) and the like.
  • color carbon black can be used as the carbon black. Specific examples thereof include commercially available carbon blacks shown below, but are not limited thereto. In the parentheses, an average particle diameter (nm) and a nitrogen adsorption specific surface area (m 2 / g) are sequentially shown.
  • Examples of the carbon black manufactured by Mitsubishi Chemical Corporation for example, ⁇ 1000 (18nm, 180m 2 / g), MCF88 (18nm, 180m 2 / g), MA600 (20nm, 140m 2 / g), ⁇ 750B (22nm, 124m 2 / g), ⁇ 650B (22nm , 124m 2 / g), ⁇ 52 (27nm, 88m 2 / g), ⁇ 47 (23nm, 132m 2 / g), ⁇ 45 (24nm, 120m 2 / g), ⁇ 45L (24 nm, 125 m 2 / g), # 44 (24 nm, 110 m 2 / g), # 40 (24 nm, 115 m 2 / g), # 33 (30 nm, 85 m 2 / g), # 32 (30 nm, 83 m 2) / g), ⁇ 30 (30nm, 74m 2 / g), ⁇ 25 (47n
  • the content of the photothermal conversion material is 1 to 30 masses per 100 mass parts of the binder polymer because the sensitivity at the time of laser engraving is good and the ink inking property is also good. Part is preferable, and 5 to 20 parts by mass is more preferable.
  • the first crosslinked relief forming layer may contain, for example, a polymerizable compound, a filler other than carbon black, and the like as an optional additive other than the binder polymer and the photothermal conversion material.
  • polymerizable compound As a polymeric compound, the thing similar to the polymeric compound contained as an arbitrary component in the 2nd resin composition mentioned later can be used. Further, the content in the case of containing an optional polymerizable compound is preferably 0.1 to 30% by mass, more preferably 1 to 20% by mass with respect to the total mass of the first resin composition. preferable.
  • Other fillers may be organic or inorganic, but are made of silica, calcium carbonate, mica, talc, and metal stearate from the viewpoint of better processability and cost and strength of the cured film. It is preferable to use at least one selected from the group, and it is particularly preferable to use silica and / or calcium carbonate.
  • additives Various known additives can be appropriately added to the first resin composition as long as the effects of the present invention are not impaired. Examples include cross-linking aids, silane coupling agents, waxes, process oils, metal oxides, antiozonants, anti-aging agents, polymerization inhibitors, colorants, etc., and these can be used alone. Alternatively, two or more kinds may be used in combination.
  • the second crosslinked relief forming layer of the printing plate precursor of the present invention is a layer adjacent to the first crosslinked relief forming layer, and comprises a resin composition (second resin composition) containing a diene polymer and a thermal crosslinking agent. It is a layer that is crosslinked by heat after forming a relief forming layer.
  • the “layer adjacent to the first crosslinked relief forming layer” refers to a layer that is in direct contact with the outermost layer (first crosslinked relief forming layer) on which laser engraving is performed during image formation.
  • the Martens hardness B of the second crosslinked relief forming layer is not particularly limited as long as the ratio (hardness A / hardness B) with the Martens hardness A of the adjacent first crosslinked relief forming layer satisfies 1.1 or more, 1 to 15 N / mm 2 is preferable, and 1 to 3 N / mm 2 is more preferable.
  • the thickness of the second crosslinked relief forming layer is not particularly limited as long as it is 500 to 1600 ⁇ m, but it has sufficient cushioning properties against printing pressure, and from the viewpoint of imparting unevenness necessary for forming a non-image part. 700 to 900 ⁇ m or 1400 to 1600 ⁇ m is preferable.
  • the second crosslinked relief forming layer is referred to as a relief forming layer (hereinafter referred to as “second relief forming layer”) using a resin composition (second resin composition) containing a diene polymer and a thermal crosslinking agent. ), And then crosslinked by heat.
  • second resin composition a resin composition containing a diene polymer and a thermal crosslinking agent.
  • the diene polymer contained in the second resin composition is not particularly limited, and a conventionally known diene polymer can be used without limitation.
  • Specific examples of the diene polymer include polyisoprene, polybutadiene, ethylene-propylene-diene copolymer (EPDM), acrylonitrile-butadiene copolymer, styrene-butadiene copolymer (SBR), and styrene- Examples include isoprene copolymers, styrene-isoprene-butadiene copolymers, polystyrene-polybutadiene-polystyrene block copolymers (SBS), and these may be used alone or in combination of two or more.
  • SBS polystyrene-polybutadiene-polystyrene block copolymers
  • At least one polymer selected from the group consisting of polyisoprene, polybutadiene, and ethylene-propylene-diene copolymer is preferable from the viewpoint of easy removal of residue on the plate generated during engraving. .
  • polyisoprene or polybutadiene may be a polymer whose main chain is mainly composed of isoprene or butadiene as monomer units, and a part thereof may be hydrogenated to be converted to a saturated bond. Further, the main chain or the terminal of the polymer may be modified with an amino group, an isocyanato group, a carboxy group, a hydroxy group, a (meth) acryloyl group or the like, or may be epoxidized.
  • the (meth) acryloyl group means an acryloyl group or a methacryloyl group.
  • the proportion of monomer units derived from aliphatic hydrocarbons (isoprene, butadiene, or hydrogenated products thereof) in the main chain of polyisoprene or polybutadiene may be 80 mol% or more. preferable. It is preferable that the proportion of monomer units derived from aliphatic hydrocarbons in the main chain is 80 mol% or more, since the engraving residue rinse property is good.
  • the content of the monomer unit derived from the aliphatic hydrocarbon is more preferably 90 mol% or more of the total monomer units constituting the main chain of the diene polymer, more preferably 95 mol%, and more preferably 99 mol% or more. It is particularly preferred.
  • main chain represents a relatively long bond chain in the molecule of the polymer compound constituting the resin
  • side chain represents a carbon chain branched from the main chain.
  • the side chain may contain a hetero atom. That is, for example, in polyisoprene, the proportion of monomer units derived from isoprene and the hydrogenated product of isoprene is preferably 80 mol% or more in total, more preferably 90 mol% or more, and more preferably 95 mol% or more. More preferably, it is 99 mol% or more.
  • the proportion of monomer units derived from butadiene and a hydrogenated product of butadiene is preferably 80 mol% or more in total, more preferably 90 mol% or more, and 95 mol% or more. Is more preferable, and 99 mol% or more is particularly preferable.
  • the monomer units derived from isoprene, butadiene and hydrogenated products thereof are contained in a total of 80 mol% or more, and 90 mol% or more. It is more preferably contained, more preferably 95 mol% or more, and particularly preferably 99 mol% or more.
  • Isoprene is known to be polymerized by 1,2-, 3,4- or 1,4-addition depending on the catalyst and reaction conditions. Good. Among these, from the viewpoint of obtaining a desired Mooney viscosity, it is preferable to contain cis-1,4-polyisoprene as a main component.
  • the content of cis-1,4-polyisoprene is preferably 50% by mass or more, more preferably 65% by mass or more, still more preferably 80% by mass or more, and 90% by mass. The above is particularly preferable.
  • polyisoprene natural rubber may be used, and commercially available polyisoprene can also be used. For example, the NIPOL IR series (manufactured by Nippon Zeon Co., Ltd.) is exemplified.
  • butadiene is known to be polymerized by 1,2- or 1,4-addition depending on the catalyst and reaction conditions, but the present invention may be polybutadiene polymerized by any of the above additions.
  • 1,4-polybutadiene is the main component.
  • the content of 1,4-polybutadiene is preferably 50% by mass or more, more preferably 65% by mass or more, further preferably 80% by mass or more, and 90% by mass or more. It is particularly preferred.
  • the content of the cis body and the trans body is not particularly limited and may be appropriately selected within a desired Mooney viscosity range.
  • the cis body is preferable, and cis-1,4-polybutadiene is preferable.
  • the content of is preferably 50% by mass or more, more preferably 65% by mass or more, still more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
  • the polybutadiene commercially available products may be used, and examples thereof include the NIPOL BR series (manufactured by Zeon Corporation) and the UBEPOL BR series (manufactured by Ube Industries).
  • the ethylene-propylene-diene copolymer is preferably a polymer having a Mooney viscosity ML 1 + 4 (100 ° C.) of 25 to 90.
  • the Mooney viscosity ML 1 + 4 (100 ° C.) is a value measured in accordance with ASTM D 1646.
  • EPDM is preferably a polymer having an ethylene content of 40 to 70% by mass, and is preferably a polymer having a diene content of 1 to 20% by mass.
  • Examples of the diene component of EPDM include dicyclopentadiene (DCPD), 5-ethylidene-2-norbornene, and 1,4 hexadiene.
  • the diene polymer preferably has a weight average molecular weight of 200,000 or more, from 300,000 to 2,000,000, from the viewpoint of the tensile strength of the relief forming layer formed into a sheet by a calender roll. More preferred is 300,000 to 1,500,000, still more preferred is 300,000 to 700,000.
  • the weight average molecular weight is measured by a gel permeation chromatography method (GPC), and is calculated in terms of standard polystyrene.
  • GPC uses HLC-8220GPC (manufactured by Tosoh Corporation), and 3 columns of TSKgeL Super HZM-H, TSKgeL SuperHZ4000, TSKgeL SuperHZ2000 (4.6 mm ID ⁇ 15 cm) manufactured by Tosoh Corporation.
  • THF tetrahydrofuran
  • the sample concentration is 0.35% by mass
  • the flow rate is 0.35 mL / min
  • the sample injection amount is 10 ⁇ L
  • the measurement temperature is 40 ° C.
  • an IR detector is used.
  • the calibration curve is “Standard sample TSK standard, polystyrene” manufactured by Tosoh Corporation: “F-40”, “F-20”, “F-4”, “F-1”, “A-5000”, “ It is prepared from 8 samples of “A-2500”, “A-1000” and “n-propylbenzene”.
  • the Mooney viscosity of the diene polymer is preferably 20 or more, more preferably 25 or more, and still more preferably 35 or more, from the viewpoint of printing durability.
  • the Mooney viscosity of the diene polymer is preferably 90 or less, more preferably 70 or less, and still more preferably 60 or less, from the standpoint of solvent solubility and ease of handling during mixing.
  • the Mooney viscosity is a value measured according to JIS K6300-1. Specifically, a cylindrical space is formed between dies capable of temperature control to form a sample chamber, a rotor is disposed in the center of the sample chamber, and a sample to be measured is filled into the sample chamber.
  • the Mooney viscosity value used in the present invention indicates the Mooney viscosity (ML1 + 4) after 4 minutes by rotating the rotor using an L-shaped rotor at a preheating period of 1 minute at 100 ° C.
  • the content of the diene polymer in the second resin composition is preferably 5 to 90% by mass, more preferably 15 to 85% by mass, and more preferably 30 to 80% by mass with respect to the total solid content. More preferably. It is preferable for the content of the diene polymer to be in the above range since a relief layer having excellent engraving residue rinsing properties and ink transfer properties can be obtained.
  • the thermal crosslinking agent contained in the second resin composition is not particularly limited, and a conventionally known thermal crosslinking agent (so-called vulcanizing agent) can be used without limitation.
  • the thermal cross-linking agent refers to a compound that advances a cross-linking reaction by the action of heat rather than light, and examples thereof include organic peroxides, sulfur-based compounds, isocyanate-based cross-linking agents, and epoxy resins.
  • a thermal cross-linking agent that generates radicals and proceeds with cross-linking is preferable because of its high reaction rate (cross-linking reaction).
  • it is composed of an organic peroxide and a sulfur-based compound described later. It is preferably at least one selected from the group.
  • organic peroxide examples include dicumyl peroxide (10-hour half-life temperature: 116 ° C.), ⁇ , ⁇ ′-di (t-butylperoxy) diisopropylbenzene (10-hour half-life temperature: 119 ° C.), 2,5-dimethyl-2,5-di (t-butylperoxy) hexane (10-hour half-life temperature: 118 ° C.), etc., and these may be used alone. More than one species may be used in combination.
  • the form of the organic peroxide can be used as it is, but from the viewpoint of handling (danger, workability, etc.), the raw material is converted into an inorganic filler such as calcium carbonate.
  • Diluted products with a concentration of 40 wt% (non-dangerous materials, powder), and master batch type diluted products for the purpose of preventing dusting during kneading and improving dispersibility in polymers can be more preferably used. .
  • Park Mill D (manufactured by NOF Corporation), Perkadox BC-FF (manufactured by Kayaku Akzo Corporation), Luperox DC (manufactured by Arkema Yoshitomi Corporation), Perbutyl P (manufactured by NOF Corporation), Parka Docks 14 (manufactured by Kayaku Akzo Co., Ltd.), Lupelox F (manufactured by Arkema Yoshitomi Co., Ltd.), Lupelox F90P (manufactured by Arkema Yoshitomi Co., Ltd.), Perhexa 25B (manufactured by NOF Corporation), Kayahexa AD (manufactured by Kayaku Akzo Corporation) ), Lupelox 101 (manufactured by Arkema Yoshitomi Co., Ltd.) or the like can be used, but is not limited thereto.
  • Examples of the diluted product include, for example, Park Mill D-40 (manufactured by NOF Corporation: diluted inert filler), Park Mill D-40MB (manufactured by NOF Corporation: diluted silica / polymer, etc.), Kayak Mill D- 40C (manufactured by Kayaku Akzo Co., Ltd .: calcium carbonate diluted product), Kayak Mill D-40MB-S (manufactured by Kayaku Akzo Co., Ltd .: rubber master batch), Kayaku Mill D-40MB (manufactured by Kayaku Akzo Co., Ltd .: rubber master batch) Perbutyl P-40 (manufactured by NOF Corporation: diluted inert filler), PERBUTYL P-40MB (manufactured by NOF Corporation: silica / polymer and other diluted products), Perkadox 14/40 (Kayaku Akzo Corporation) Manufactured by: calcium carbonate diluted product), Parka dox 14-40C (manufact
  • sulfur compounds examples include sulfur (elemental sulfur), sulfur chloride, sulfur dichloride, mercapto compounds, sulfide compounds, disulfide compounds, polysulfide compounds, thiuram compounds, thiocarbamic acid compounds, polyfunctional mercapto compounds, and the like.
  • sulfur, sulfur chloride, sulfur dichloride, disulfide compounds, thiuram compounds, thiocarbamic acid compounds, and polyfunctional mercapto compounds are preferred.
  • sulfur compounds include sulfur, sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, tetramethylthiuram disulfide, selenium dimethyldithiocarbamate, pentaerythritol tetrakis (3-mercaptobutyrate), pentaerythritol.
  • sulfur compounds include sulfur, sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, tetramethylthiuram disulfide, selenium dimethyldithiocarbamate, pentaerythritol tetrakis (3-mercaptobutyrate), pentaerythritol.
  • examples thereof include tetrakisthiopropionate, tris (3-mercaptobutyloxyethyl) isocyanurate, dipentaerythritol hexakisthiopropionate, and the like.
  • sulfur, alkylphenol disulfide, and pentaerythritol tetrakis (3-mercaptobutyrate) are preferred, and alkylphenyl disulfide and pentaerythritol tetrakis (3-mercaptobutyrate) are more preferred.
  • the content of the thermal crosslinking agent is 100 masses of the diene polymer contained in the second resin composition from the viewpoint of adjusting the degree of crosslinking of the relief forming layer after crosslinking, that is, the hardness of the crosslinked relief forming layer.
  • the amount is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 3 parts by mass with respect to parts.
  • the second resin composition may contain, for example, a polymerizable compound, a polymerization initiator, a photothermal conversion material, and the like as optional additives other than the diene polymer and the thermal crosslinking agent.
  • the polymerizable compound is preferably, for example, a compound having an ethylenically unsaturated bond (hereinafter referred to as “ethylenically unsaturated compound”).
  • the ethylenically unsaturated compound may be a monofunctional ethylenically unsaturated compound or a polyfunctional ethylenically unsaturated compound, but is preferably a polyfunctional ethylenically unsaturated compound.
  • the polyfunctional ethylenically unsaturated compound is preferably a compound having 2 to 20 terminal ethylenically unsaturated groups. Such a compound group is widely known in this industrial field, and in the present invention, these can be used without particular limitation.
  • the ethylenically unsaturated compound is an ethylenically unsaturated compound other than the above-described diene polymer, and is preferably a compound having a molecular weight of less than 1,000.
  • examples of compounds derived from an ethylenically unsaturated group in a polyfunctional ethylenically unsaturated compound include unsaturated carboxylic acids (eg, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.) Examples include esters and amides.
  • esters of unsaturated carboxylic acids and aliphatic polyhydric alcohol compounds, and amides of unsaturated carboxylic acids and aliphatic polyvalent amine compounds are used.
  • unsaturated carboxylic acid esters having nucleophilic substituents such as hydroxy groups and amino groups, amides and polyfunctional isocyanates, addition reaction products of epoxies, and dehydration condensation reaction products of polyfunctional carboxylic acids Etc. are also preferably used.
  • an unsaturated carboxylic acid ester having an electrophilic substituent such as an isocyanato group or an epoxy group, an amide and a monofunctional or polyfunctional alcohol, an addition reaction product of an amine, a halogen group, a tosyloxy group, A substituted reaction product of unsaturated carboxylic acid ester, amide and monofunctional or polyfunctional alcohols or amines having a leaving substituent such as the above is also suitable.
  • a compound group in which a vinyl compound, an allyl compound, an unsaturated phosphonic acid, styrene, or the like is substituted for the above unsaturated carboxylic acid can be used.
  • an acrylate compound, a methacrylate compound, a vinyl compound, and an allyl compound are preferable from the viewpoint of reactivity.
  • allyl compounds include polyethylene glycol diallyl ether, 1,4-cyclohexane diallyl ether, 1,4-diethylcyclohexyl diallyl ether, 1,8-octane diallyl ether, trimethylol propane diallyl ether, trimethylol ethane triallyl ether, pentaerythritol.
  • Triaryl ether pentaerythritol tetraallyl ether, dipentaerythritol pentaallyl ether, dipentaerythritol hexaallyl ether, diallyl phthalate, diallyl terephthalate, diallyl isophthalate, triallyl isocyanurate, triallyl cyanurate, triallyl phosphate, etc. It is done. Among these, as the allyl compound, triallyl isocyanurate and triallyl cyanurate are particularly preferable.
  • ester monomer of an aliphatic polyhydric alcohol compound and an unsaturated carboxylic acid include acrylic acid esters such as ethylene glycol diacrylate, triethylene glycol diacrylate, 1,3-butanediol diacrylate, and tetramethylene glycol.
  • Methacrylic acid esters include tetramethylene glycol dimethacrylate, triethylene glycol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, ethylene glycol dimethacrylate, 1,3-butanediol dimethacrylate, Hexanediol dimethacrylate, pentaerythritol dimethacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol dimethacrylate, dipentaerythritol hexamethacrylate, sorbitol trimethacrylate, sorbitol tetramethacrylate, bis [p- (3-methacryloxy- 2-hydroxyp Epoxy) phenyl] dimethyl methane, bis [p- (methacryl
  • Itaconic acid esters include ethylene glycol diitaconate, propylene glycol diitaconate, 1,3-butanediol diitaconate, 1,4-butanediol diitaconate, tetramethylene glycol diitaconate, pentaerythritol diitaconate Sorbitol tetritaconate and the like.
  • crotonic acid esters include ethylene glycol dicrotonate, tetramethylene glycol dicrotonate, pentaerythritol dicrotonate, and sorbitol tetracrotonate.
  • isocrotonic acid esters examples include ethylene glycol diisocrotonate, pentaerythritol diisocrotonate, and sorbitol tetraisocrotonate.
  • maleic acid esters examples include ethylene glycol dimaleate, triethylene glycol dimaleate, pentaerythritol dimaleate, and sorbitol tetramaleate.
  • esters examples include aliphatic alcohol esters described in JP-B-46-27926, JP-B-51-47334, JP-A-57-196231, JP-A-59-5240, Those having an aromatic skeleton described in JP-A-59-5241 and JP-A-2-226149 and those containing an amino group described in JP-A-1-165613 are also preferably used.
  • the ester monomers can also be used as a mixture.
  • amide monomers of an aliphatic polyvalent amine compound and an unsaturated carboxylic acid include methylene bisacrylamide, methylene bismethacrylamide, 1,6-hexamethylene bisacrylamide, 1,6-hexamethylene bismethacrylate.
  • amide, diethylenetriamine trisacrylamide, xylylene bisacrylamide, and xylylene bismethacrylamide examples include amide, diethylenetriamine trisacrylamide, xylylene bisacrylamide, and xylylene bismethacrylamide.
  • Examples of other preferable amide monomers include those having a cyclohexylene structure described in JP-B No. 54-21726.
  • urethane-based addition polymerizable compounds produced by using an addition reaction of isocyanate and hydroxyl group are also suitable. Specific examples thereof include, for example, one molecule described in JP-B-48-41708.
  • a vinyl urethane compound containing two or more polymerizable vinyl groups in one molecule obtained by adding a vinyl monomer containing a hydroxyl group represented by the following formula (i) to a polyisocyanate compound having two or more isocyanato groups. Etc.
  • CH 2 C (R) COOCH 2 CH (R ') OH (i) (However, R and R ′ each represent H or CH 3. )
  • urethane acrylates such as those described in JP-A-51-37193, JP-B-2-32293, JP-B-2-16765, JP-B-58-49860, JP-B-56-17654 Urethane compounds having an ethylene oxide skeleton described in JP-B-62-39417 and JP-B-62-39418 are also suitable.
  • vinyl compound examples include butanediol-1,4-divinyl ether, ethylene glycol divinyl ether, 1,2-propanediol divinyl ether, 1,3-propanediol divinyl ether, 1,3-butanediol divinyl ether, 1,4 -Butanediol divinyl ether, neopentyl glycol divinyl ether, trimethylolpropane trivinyl ether, trimethylol ethane trivinyl ether, hexanediol divinyl ether, tetraethylene glycol divinyl ether, pentaerythritol divinyl ether, pentaerythritol trivinyl ether, pentaerythritol tetravinyl ether, Sorbitol tetravinyl ether, sorbitol pentavinyl ether, ethylene glycol Rudi
  • the said polymeric compound may contain individually by 1 type, or may contain 2 or more types.
  • the content is preferably 0.1 to 30% by mass, and more preferably 1 to 20% by mass with respect to the total mass of the second resin composition.
  • the polymerization initiator may be a radical polymerization initiator or a cationic polymerization initiator, but is preferably a radical polymerization initiator.
  • the polymerization initiator may be a thermal polymerization initiator or a photopolymerization initiator, but is preferably a thermal polymerization initiator.
  • photothermal conversion material As a photothermal conversion material, the same thing as the photothermal conversion material contained as an essential component in the 1st resin composition mentioned above (especially carbon black) can be used. Further, the content in the case of containing an arbitrary photothermal conversion material is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the diene polymer contained in the second resin composition, and 2 to 5 parts by mass. More preferably, it is a part.
  • additives Various known additives can be appropriately blended with the second resin composition as long as the effects of the present invention are not impaired. Examples include crosslinking aids, silane coupling agents, fillers other than carbon black, waxes, process oils, metal oxides, antiozonants, antioxidants, polymerization inhibitors, colorants, and the like. A seed may be used independently and two or more sorts may be used together.
  • the printing plate precursor of the present invention may have a support for supporting the first or second crosslinked relief forming layer, if necessary.
  • the material used for the support is not particularly limited, but those having high dimensional stability are preferably used.
  • metals such as steel, stainless steel, and aluminum; polyester (for example, PET (polyethylene terephthalate), PBT (polybutylene terephthalate)) , PAN (polyacrylonitrile)), polyvinyl chloride and other plastic resins; styrene-butadiene rubber and other synthetic rubbers; plastic fibers reinforced with glass fibers (such as epoxy resins and phenolic resins); and the like.
  • PET film, PEN film, PI film, PA film, fluororesin film, and silicone resin film are preferably used.
  • Adhesive layer When forming the 1st or 2nd bridge
  • the material (adhesive) that can be used for the adhesive layer include I.I. Those described in the edition of Skeist, “Handbook of Adhesives”, the second edition (1977) can be used.
  • it can respond by using the support body which apply
  • the method for producing a flexographic printing plate precursor for laser engraving of the present invention (hereinafter also abbreviated as “method for producing a printing plate precursor of the present invention”) is a production method for producing the printing plate precursor of the present invention described above, A first layer forming step of forming a first relief forming layer using a resin composition (first resin composition) containing a binder polymer and a photothermal conversion material, and a resin composition containing a diene polymer and a thermal crosslinking agent The second layer forming step of forming the second relief forming layer using the (second resin composition), the first relief forming layer and the second relief forming layer are brought into contact with each other by heat, A crosslinking step of forming at least two crosslinked relief forming layers adjacent to each other, the first crosslinked relief forming layer crosslinked by the relief forming layer and the second crosslinked relief forming layer crosslinked by the second relief forming layer.
  • the first layer forming step and the second layer is a production method for producing the printing plate precursor of the present
  • the method for producing a printing plate precursor according to the present invention includes a first layer forming step of forming a first relief forming layer using the first resin composition described above, and a second relief forming using the second resin composition described above.
  • a second layer forming step of forming a layer As a formation method of a 1st relief forming layer and a 2nd relief forming layer, the method etc. which shape
  • each resin composition is not particularly limited, each component described above, for example, a single-screw extruder, a multi-screw extruder, a Banbury mixer, an intermix mixer, a kneader or other closed kneader, Examples of the method include kneading using a non-sealing (open type) kneader such as a mixing roll (open roll).
  • molding mentioned in full detail below may be implemented in the state which provided the prepared resin composition on a support body, and may be implemented in the state without a support body.
  • the first relief forming layer is preferably provided on the support because the thickness of the first crosslinked relief forming layer after crosslinking is as thin as 10 to 300 ⁇ m, and the second relief forming layer is preferably formed after crosslinking. Since the thickness of the second crosslinked relief forming layer is as thick as 500 to 1600 ⁇ m, it may be carried out without a support.
  • Sheet molding for molding each prepared resin composition into a sheet will be described.
  • a method of forming the first resin composition into a sheet for example, a method in which the first resin composition is heated and melted and applied on a support, and then the coating film is cooled and solidified. Examples of the method include preparing a solution in which the first resin composition is dissolved in an organic solvent, applying the solution on the support, and drying and solidifying the coating film.
  • the thickness of the first relief forming layer is 10 to 300 ⁇ m after the crosslinking. From the viewpoint, it is preferably 10 to 300 ⁇ m.
  • the calender roll can be a calender roll having a combination of a plurality of rolls from one set of rolls (a pair of upper and lower two rolls), and the roll can be used depending on the film thickness accuracy required for the product.
  • the number and roll interval (clearance) can be set.
  • the number of rolls is two or more and can be appropriately selected according to the purpose.
  • the shape of the roll can be set in various shapes depending on how the rolls are combined. For example, in the case of a combination of four rolls, the I type in which the four are arranged vertically, the S type, and the inverted L type.
  • the roll interval is usually set so that the initial roll interval is larger than the target film thickness, and gradually decreased, and the final roll interval is set so that the final sheet thickness becomes the target film thickness.
  • the thickness of the second relief forming layer is 500 to 500 mm after the crosslinking. From the standpoint of 1600 ⁇ m, the last roll interval is preferably set in the range of 500 to 1600 ⁇ m.
  • the first relief forming layer and the second relief forming layer are cross-linked by heat in a contact state, and the first relief forming layer and the first cross-linked relief forming layer are cross-linked.
  • the first relief forming layer is applied by a method in which the first resin composition is heated and melted and applied onto the support.
  • the thermal crosslinking agent in the adjacent second relief forming layer is used as the first relief forming layer in the present invention. It is used for cross-linking.
  • Examples of such crosslinking include a method of heating while pressing in a state where the first relief forming layer and the second relief forming layer are bonded together.
  • the pressing pressure is preferably from 1 MPa to 20 MPa, more preferably from 3 MPa to 12 MPa, from the viewpoint of suppressing in-plane variation of the film thickness in a state where the first relief forming layer and the second relief forming layer are bonded together.
  • the heating temperature is preferably from 100 ° C. to 200 ° C., more preferably from 120 ° C. to 190 ° C., and particularly preferably from 140 ° C. to 180 ° C. from the viewpoints of the strength (printing durability), rinse properties and surface tack of the cured film. .
  • the heating time is preferably 1 minute to 100 minutes, more preferably 3 minutes to 60 minutes, and particularly preferably 5 minutes to 30 minutes.
  • the heating temperature and heating time if heating is performed at a temperature at which the half-life of the thermal crosslinking agent is 1 minute, the heating time is 5 to 10 minutes.
  • thermal crosslinking equipment examples include, but are not limited to, a hot-air heating furnace, a heating press machine (single-wafer heating press machine, continuous press conveyor), a heating roll, and the like.
  • a heating press machine single-wafer heating press machine, continuous press conveyor
  • a heating roll and the like.
  • a single-wafer type heat press is used.
  • the plate making method of the flexographic printing plate of the present invention is a sculpture in which a relief layer is formed by performing laser engraving on the crosslinked relief forming layer of the flexographic printing plate precursor for laser engraving obtained by the method for producing a printing plate precursor of the present invention. It is a plate making method which has a process. Moreover, it is preferable that the plate making method of the flexographic printing plate of the present invention has a rinsing step of rinsing the surface of the relief layer with an alkaline aqueous solution after the engraving step to obtain a flexographic printing plate. The engraving process and the rinsing process will be described in detail below.
  • the plate making method of the flexographic printing plate according to the present invention includes at least two crosslinked reliefs in which a first crosslinked relief forming layer obtained by crosslinking a first relief forming layer and a second crosslinked relief forming layer obtained by crosslinking a second relief forming layer are adjacent to each other.
  • the engraving step is a step of forming a relief layer by laser engraving the crosslinked relief forming layer crosslinked in the crosslinking step.
  • crosslinking relief forming layer is mentioned preferably.
  • an infrared laser is preferably used.
  • the molecules in the crosslinked relief forming layer undergo molecular vibrations and generate heat.
  • a high-power laser such as a carbon dioxide laser or YAG laser is used as an infrared laser, a large amount of heat is generated in the laser irradiation part, and molecules in the crosslinked relief forming layer are selectively cut by molecular cutting or ionization. That is, engraving is performed.
  • the advantage of laser engraving is that the engraving depth can be set arbitrarily, so that the structure can be controlled three-dimensionally.
  • the portion that prints fine halftone dots can be engraved shallowly or with a shoulder so that the relief does not fall down due to printing pressure, and the portion of the groove that prints fine punched characters is engraved deeply
  • the ink is less likely to be buried in the groove, and it is possible to suppress the crushing of the extracted characters.
  • the crosslinked relief forming layer can be selectively removed with higher sensitivity, and a relief layer having a sharp image can be obtained.
  • a carbon dioxide laser (CO 2 laser) or a semiconductor laser is preferable from the viewpoints of productivity and cost.
  • a semiconductor infrared laser with a fiber (FC-LD) is preferably used.
  • a semiconductor laser can be downsized with high efficiency and low cost of laser oscillation compared to a CO 2 laser. Moreover, since it is small, it is easy to form an array. Furthermore, the beam shape can be controlled by processing the fiber.
  • the semiconductor laser preferably has a wavelength of 700 to 1,300 nm, more preferably 800 to 1,200 nm, still more preferably 860 to 1,200 nm, and particularly preferably 900 to 1,100 nm.
  • the semiconductor laser with a fiber can output a laser beam efficiently by attaching an optical fiber, it is effective for the engraving process in the present invention.
  • the beam shape can be controlled by processing the fiber.
  • the beam profile can have a top hat shape, and energy can be stably given to the plate surface.
  • Details of the semiconductor laser are described in “Laser Handbook 2nd Edition” edited by Laser Society, “Practical Laser Technology”, Electronic Communication Society, etc.
  • a plate making apparatus equipped with a fiber-coupled semiconductor laser that can be suitably used in a method for making a flexographic printing plate using the flexographic printing plate precursor of the present invention is disclosed in JP 2009-172658 A and JP 2009-214334 A. It is described in detail in the official gazette and can be used for making a flexographic printing plate according to the present invention.
  • the plate making method of the flexographic printing plate of the present invention preferably has a rinsing step of rinsing the surface of the relief layer with an alkaline aqueous solution after the engraving step.
  • the plate making method of the flexographic printing plate of the present invention has a rinsing step, so that the engraving residue adhering and remaining on the surface of the relief layer can be washed away and removed.
  • a method of immersing in an alkaline aqueous solution a method of rotating a rinsing solution while immersing in an alkaline aqueous solution, a method of sliding an engraving plate with a brush, a method of spraying an alkaline aqueous solution, a developing machine for a photosensitive resin relief plate
  • a known batch type or conveying type brush type washing machine there are methods such as brushing the engraved surface mainly in the presence of an alkaline aqueous solution. If the engraving residue cannot be removed, use soap or a surfactant. An added rinse solution may be used.
  • the pH of the rinsing liquid (alkaline aqueous solution) that can be used in the present invention is preferably 10.0 or more, more preferably 12 or more, and still more preferably 13 or more. Moreover, it is preferable that the pH of the rinse liquid is 14 or less. It is excellent in rinse property as it is the said range. What is necessary is just to adjust pH using an acid and / or a base suitably in order to make a rinse liquid into said pH range, and the acid and base to be used are not specifically limited.
  • the rinsing liquid that can be used in the present invention preferably contains water as a main component. Moreover, the rinse liquid may contain water miscible solvents, such as alcohol, acetone, tetrahydrofuran, etc. as solvents other than water.
  • the rinse liquid contains a surfactant.
  • a surfactant that can be used in the present invention, a carboxybetaine compound, a sulfobetaine compound, a phosphobetaine compound, an amine oxide compound, or a viewpoint of reducing engraving residue removal and the influence on the flexographic printing plate
  • betaine compounds such as phosphine oxide compounds.
  • surfactant examples include known anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic surfactants. Furthermore, fluorine-based and silicone-based nonionic surfactants can be used in the same manner. Surfactant may be used individually by 1 type, or may use 2 or more types together. The amount of the surfactant used is not particularly limited, but is preferably 0.01 to 20% by mass, and more preferably 0.05 to 10% by mass with respect to the total mass of the rinsing liquid.
  • the plate making method of the flexographic printing plate of the present invention may further include a drying step and / or a post-crosslinking step as necessary.
  • Drying step a step of drying the engraved relief layer.
  • Post-crosslinking step a step of imparting energy to the relief layer after engraving and further crosslinking the relief layer.
  • a drying process for drying the engraved relief forming layer and volatilizing the rinsing liquid it is preferable to add a drying process for drying the engraved relief forming layer and volatilizing the rinsing liquid.
  • the post-crosslinking step which is an additional cross-linking step, the relief formed by engraving can be further strengthened.
  • the flexographic printing plate of the present invention is a flexographic printing plate having a relief layer made by the method of making a flexographic printing plate of the present invention.
  • the thickness of the relief layer of the flexographic printing plate is preferably from 0.05 mm to 10 mm, more preferably from the viewpoint of satisfying various printability such as wear resistance and ink transferability. It is from 05 mm to 7 mm, particularly preferably from 0.05 mm to 3 mm.
  • the Shore A hardness of the relief layer which a flexographic printing plate has is 50 or more and 90 or less.
  • the Shore A hardness of the relief layer is 50 or more, the fine halftone dots formed by engraving will not collapse and collapse even when subjected to the strong printing pressure of the relief printing press, and normal printing can be performed.
  • the Shore A hardness of the relief layer is 90 or less, it is possible to prevent faint printing in a solid portion even in flexographic printing with a kiss touch.
  • the Shore A hardness in this specification conforms to ISO868: 2003, and at 25 ° C., an indenter (called a push needle or an indenter) is pushed into the surface of the object to be measured, and the amount of deformation (indentation depth). Is a value measured by a durometer (spring type rubber hardness tester) which measures and digitizes.
  • the flexographic printing plate of the present invention is particularly suitable for printing with water-based ink by a flexographic printing machine, but printing is possible with any of water-based ink, oil-based ink and UV ink by a relief printing press. In addition, printing with UV ink by a flexographic printing machine is also possible.
  • the flexographic printing plate of the present invention has excellent rinsing properties, no engraving residue remains, and the obtained relief layer is excellent in elasticity, so that it has excellent water-based ink transfer properties and printing durability, and a relief layer over a long period of time. Thus, printing can be carried out without concern for plastic deformation or deterioration of printing durability.
  • CB carbon black (# 45L, average particle size: 24 nm, specific surface area: 125 m 2 / g, manufactured by Mitsubishi Chemical Corporation)
  • HDDA polymerizable compound (1,6-hexanediol diacrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd.)
  • HDDA polymerizable compound (1,6-hexanediol diacrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd.
  • first resin composition obtained above was melted at 150 ° C., applied on a PET substrate so that the thickness after crosslinking was as shown in Table 1 below, and cooled at 25 ° C. for 20 minutes, One relief forming layer was formed.
  • the thickness in Table 1 below is the thickness of the “first crosslinked relief forming layer” after crosslinking, but no change in thickness was observed before and after crosslinking.
  • ⁇ Preparation of flexographic printing plate precursor> The first relief forming layer formed on the PET substrate is attached to the second relief forming layer, and the thickness after crosslinking is the thickness of the first relief forming layer and the second relief forming layer shown in Table 1 below, respectively.
  • the substrate was hot-pressed at 160 ° C. for 20 minutes to obtain a flexographic printing plate precursor having a first crosslinked relief forming layer and a second crosslinked relief forming layer.
  • Comparative Example 1 A flexographic printing plate precursor was produced in the same manner as in Example 1 except that the first relief forming layer was not formed. That is, the flexographic printing plate precursor produced in Comparative Example 1 is an embodiment in which the crosslinked relief forming layer is one layer as in Patent Documents 1 and 2.
  • solvent ink (XS-716 507, primary color indigo (manufactured by DIC Graphics Corporation)) was used. Printing was performed using full-color foam M70 (manufactured by Nippon Paper Industries Co., Ltd., thickness: 100 ⁇ m) as printing paper.
  • the distance between the plate cylinder and the thick cylinder can be controlled with a dial, so the distance is adjusted and the reflection density of 2% halftone dot is measured by a densitometer (Macbeth RD-19I manufactured by Gretag). It measured by measurement.
  • the printing pressure (indentation amount) at which the solid was printed uniformly was used as the reference (0 ⁇ m). Table 1 below shows the difference (value) between the halftone dot reflection density under the indentation amount of 20 ⁇ m and the halftone dot reflection density under the indentation amount of 120 ⁇ m. A smaller value means a wider printing pressure latitude.
  • the results of Examples 1 to 6 indicate that when the binder polymer contained in the first crosslinked relief forming layer is a crystalline polymer, the difference in reflection density is the smallest and the printing pressure latitude is wider ( Example 6).
  • the resin composition forming the second crosslinked relief forming layer contains a polymerizable compound, so that the printing pressure latitude becomes wider.
  • the resin composition that forms the second crosslinked relief forming layer uses polybutadiene as the diene polymer, so that the printing pressure latitude is wider. .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Printing Plates And Materials Therefor (AREA)

Abstract

The present invention addresses the problem of providing: a flexographic printing plate precursor for laser engraving use, from which a printing plate that has a dot image area improved in a printing pressure latitude can be produced; a method for producing the flexographic printing plate precursor; a flexographic printing plate; and a method for producing the flexographic printing plate. The flexographic printing plate precursor for laser engraving use according to the present invention comprises a first crosslinked relief-forming layer which is arranged on the laser-engraving surface side of the flexographic printing plate precursor and a second crosslinked relief-forming layer which is adjacent to the first crosslinked relief-forming layer, wherein the ratio of the Martens' hardness of the first crosslinked relief-forming layer to that of the second crosslinked relief-forming layer is 1.1 or more, the first crosslinked relief-forming layer has a thickness of 10 to 300 μm, the second crosslinked relief-forming layer has a thickness of 500 to 1600 μm, the first crosslinked relief-forming layer contains a binder polymer and a light-to-heat conversion material, and the second crosslinked relief-forming layer is a layer which is produced by forming a relief-forming layer using a resin composition containing a diene polymer and a thermal crosslinking agent and then causing crosslinking in the relief-forming layer.

Description

レーザー彫刻用フレキソ印刷版原版およびその製造方法、ならびに、フレキソ印刷版およびその製版方法Flexographic printing plate precursor for laser engraving and method for producing the same, and flexographic printing plate and method for making the same
 本発明は、レーザー彫刻用フレキソ印刷版原版およびその製造方法、ならびに、フレキソ印刷版およびその製版方法に関する。 The present invention relates to a flexographic printing plate precursor for laser engraving and a manufacturing method thereof, and a flexographic printing plate and a plate making method thereof.
 フレキソ印刷は、アニロックスロール等を用いて印刷版上の凸部にインキを付けて、印刷対象物に転写する印刷方式である。
 通常、フレキソ印刷版には、弾性を有する樹脂層(レリーフ層)が用いられる。そして、フレキソ印刷版原版では、印刷版の強度を確保する目的で、架橋前の樹脂層(レリーフ形成層)に架橋処理を施し、架橋レリーフ形成層を形成することが行われている。架橋処理は、紫外線や電子線等の活性線を樹脂層に照射する方法(光架橋)や、加硫や、有機過酸化物を用いる方法(熱架橋)が行われている。
Flexographic printing is a printing method in which an ink is applied to a convex portion on a printing plate using an anilox roll or the like and transferred to a printing object.
Usually, a flexographic printing plate uses an elastic resin layer (relief layer). In the flexographic printing plate precursor, for the purpose of ensuring the strength of the printing plate, a crosslinked relief forming layer is formed by subjecting a resin layer (relief forming layer) before crosslinking to a crosslinking treatment. For the crosslinking treatment, a method of irradiating the resin layer with active rays such as ultraviolet rays and electron beams (photocrosslinking), a vulcanization method, and a method using an organic peroxide (thermal crosslinking) are performed.
 また近年では、走査露光により架橋レリーフ形成層の製版(パターニング)を行う方法が検討されている。
 例えば、架橋レリーフ形成層をレーザーにより直接彫刻し製版する、いわゆる「直彫りCTP(Computer To Plate)方式」が、多く提案されている。
 直彫りCTP方式は、文字通りレーザーで彫刻することにより、レリーフとなる凹凸を形成する方法で、自由にレリーフ形状を制御することができるという利点がある。このため、抜き文字の如き画像を形成する場合、その領域を他の領域よりも深く彫刻する、または、微細網点画像では、印圧に対する抵抗を考慮し、ショルダーをつけた彫刻をする、なども可能である。
In recent years, a method for making a plate (patterning) of a crosslinked relief forming layer by scanning exposure has been studied.
For example, a so-called “direct engraving CTP (Computer To Plate) method” in which a cross-linked relief forming layer is directly engraved with a laser to make a plate has been proposed.
The direct engraving CTP method has an advantage that the relief shape can be freely controlled by literally engraving with a laser to form a relief asperity. For this reason, when an image such as a letter is formed, the area is engraved deeper than other areas, or the fine halftone dot image is engraved with a shoulder in consideration of resistance to printing pressure. Is also possible.
 このようなレーザー彫刻用フレキソ印刷版原版としては、例えば、特許文献1には、「レーザー光照射により画像形成して印刷版を形成するレーザー彫刻用印刷原版であって、印刷層を有し、該印刷層が、光反応性を有さない合成ゴムまたは/および天然ゴムと、エチレン性不飽和化合物と、光重合開始剤とを主として含有する感光性樹脂組成物を光反応させて得られる樹脂組成物からなることを特徴とするレーザー彫刻用印刷原版。」が記載されている。 As such a flexographic printing plate precursor for laser engraving, for example, in Patent Document 1, “a printing original plate for laser engraving for forming a printing plate by image formation by laser light irradiation, having a printing layer, Resin obtained by photoreacting a photosensitive resin composition in which the print layer mainly contains a non-photoreactive synthetic rubber or / and natural rubber, an ethylenically unsaturated compound, and a photopolymerization initiator A printing original plate for laser engraving comprising a composition ”is described.
 また、特許文献2には、「導電性支持体と、前記導電性支持体の表面上に形成された、樹脂層と、を含み、前記樹脂層は、前記導電性支持体を高周波誘導加熱することによって、前記導電性支持体の表面上に配置された、熱硬化性樹脂組成物が、前記導電性支持体と接する面側から加熱されて硬化することにより形成された、印刷原版。」が記載されている。 Patent Document 2 discloses that “a conductive support and a resin layer formed on the surface of the conductive support are included, and the resin layer heats the conductive support by high frequency induction. By this, the printing original plate formed by the thermosetting resin composition arrange | positioned on the surface of the said electroconductive support body being heated and hardened from the surface side which contact | connects the said electroconductive support body. " Are listed.
特開平11-338139号公報JP 11-338139 A 特開2011-020363号公報JP 2011-020363 A
 本発明者は、特許文献1および2に記載されたレーザー彫刻用印刷原版について検討したところ、網点画像部において、印刷時の印刷版と被印刷体との圧力(以下、「印圧」という。)に起因した濃度変動の寛容度(以下、「印圧ラチチュード」という。)が狭いことを明らかとした。 The inventor examined the printing plate precursor for laser engraving described in Patent Documents 1 and 2, and in the halftone image portion, the pressure between the printing plate and the printing medium during printing (hereinafter referred to as “printing pressure”). It was clarified that the tolerance of concentration fluctuations (hereinafter referred to as “printing pressure latitude”) due to.
 そこで、本発明は、印刷版の網点画像部における印圧ラチチュードを広くすることができるレーザー彫刻用フレキソ印刷版原版およびその製造方法、ならびに、フレキソ印刷版およびその製版方法を提供することを課題とする。 Therefore, the present invention has an object to provide a flexographic printing plate precursor for laser engraving capable of widening the printing pressure latitude in the halftone image portion of the printing plate and a method for producing the same, and a flexographic printing plate and a method for producing the same. And
 本発明者は、上記課題について鋭意検討した結果、レーザー彫刻用フレキソ印刷版原版において、所定の厚みを有し、特定の硬度比率を満たす架橋レリーフ形成層を少なくとも2層設けることにより、印刷版の網点画像部における印圧ラチチュードを広くすることができることを見出し、本発明に至った。
 すなわち、本発明者は、以下の構成により上記課題が解決できることを見出した。
As a result of earnestly examining the above-mentioned problems, the present inventor has provided at least two cross-linked relief forming layers having a predetermined thickness and satisfying a specific hardness ratio in a flexographic printing plate precursor for laser engraving. The present inventors have found that the printing pressure latitude in the halftone image portion can be widened, and have reached the present invention.
That is, the present inventor has found that the above problem can be solved by the following configuration.
 [1] 少なくとも2層の架橋レリーフ形成層を有するレーザー彫刻用フレキソ印刷版原版であって、
 レーザー彫刻が施される表面側に配置された第1架橋レリーフ形成層と、第1架橋レリーフ形成層に隣接する第2架橋レリーフ形成層とを有し、第2架橋レリーフ形成層のマルテンス硬度Bに対する第1架橋レリーフ形成層のマルテンス硬度Aの比率が1.1以上であり、
 第1架橋レリーフ形成層の厚みが10~300μmであり、
 第2架橋レリーフ形成層の厚みが500~1600μmであり、
 第1架橋レリーフ形成層が、バインダーポリマーおよび光熱変換材料を含有し、
 第2架橋レリーフ形成層が、ジエン系ポリマーおよび熱架橋剤を含有する樹脂組成物を用いてレリーフ形成層を形成した後に熱により架橋させた層である、レーザー彫刻用フレキソ印刷版原版。
 [2] 熱架橋剤が、有機過酸化物およびイオウ系化合物からなる群から選択される少なくとも1種である、[1]に記載のレーザー彫刻用フレキソ印刷版原版。
 [3] 樹脂組成物が、更に、重合性化合物を含有する、[1]または[2]に記載のレーザー彫刻用フレキソ印刷版原版。
 [4] バインダーポリマーが、結晶性ポリマーである、[1]~[3]のいずれかに記載のレーザー彫刻用フレキソ印刷版原版。
 [5] ジエン系ポリマーが、ポリイソプレン、ポリブタジエンおよびエチレン-プロピレン-ジエン共重合体からなる群から選択される少なくとも1種のポリマーである、[1]~[4]のいずれかに記載のレーザー彫刻用フレキソ印刷版原版。
 [6] バインダーポリマーおよび光熱変換材料を含有する樹脂組成物を用いて第1レリーフ形成層を形成する第1層形成工程と、
 ジエン系ポリマーおよび熱架橋剤を含有する樹脂組成物を用いて第2レリーフ形成層を形成する第2層形成工程と、
 第1レリーフ形成層と第2レリーフ形成層とを接触させた状態で熱により架橋し、第1レリーフ形成層が架橋した第1架橋レリーフ形成層と第2レリーフ形成層が架橋した第2架橋レリーフ形成層とが隣接した少なくとも2層の架橋レリーフ形成層を形成する架橋工程とを有し、
 第1架橋レリーフ形成層に隣接する第2架橋レリーフ形成層のマルテンス硬度Bに対する、レーザー彫刻が施される面側に配置された第1架橋レリーフ形成層のマルテンス硬度Aの比率が、1.1以上であり、
 第1架橋レリーフ形成層の厚みが10~300μmであり、
 第2架橋レリーフ形成層の厚みが500~1600μmである、レーザー彫刻用フレキソ印刷版原版の製造方法。
 [7] [6]に記載されたレーザー彫刻用フレキソ印刷版原版の製造方法で作製されたレーザー彫刻用フレキソ印刷版原版の架橋レリーフ形成層に対してレーザー彫刻を施し、レリーフ層を形成する彫刻工程を有する、フレキソ印刷版の製版方法。
 [8] [7]に記載のフレキソ印刷版の製版方法により製版されたレリーフ層を有するフレキソ印刷版。
[1] A flexographic printing plate precursor for laser engraving having at least two crosslinked relief forming layers,
The first crosslinked relief forming layer disposed on the surface side subjected to laser engraving and the second crosslinked relief forming layer adjacent to the first crosslinked relief forming layer, and the Martens hardness B of the second crosslinked relief forming layer The ratio of the Martens hardness A of the first crosslinked relief forming layer to 1.1 is 1.1 or more,
The thickness of the first crosslinked relief forming layer is 10 to 300 μm;
The thickness of the second crosslinked relief forming layer is 500 to 1600 μm;
The first crosslinked relief forming layer contains a binder polymer and a photothermal conversion material,
The flexographic printing plate precursor for laser engraving, wherein the second crosslinked relief-forming layer is a layer formed by forming a relief-forming layer using a resin composition containing a diene polymer and a thermal crosslinking agent and then crosslinking by heat.
[2] The flexographic printing plate precursor for laser engraving according to [1], wherein the thermal crosslinking agent is at least one selected from the group consisting of an organic peroxide and a sulfur compound.
[3] The flexographic printing plate precursor for laser engraving according to [1] or [2], wherein the resin composition further contains a polymerizable compound.
[4] The flexographic printing plate precursor for laser engraving according to any one of [1] to [3], wherein the binder polymer is a crystalline polymer.
[5] The laser according to any one of [1] to [4], wherein the diene polymer is at least one polymer selected from the group consisting of polyisoprene, polybutadiene, and ethylene-propylene-diene copolymer. Flexographic printing plate precursor for engraving.
[6] A first layer forming step of forming a first relief forming layer using a resin composition containing a binder polymer and a photothermal conversion material;
A second layer forming step of forming a second relief forming layer using a resin composition containing a diene polymer and a thermal crosslinking agent;
The first relief forming layer and the second relief forming layer are brought into contact with each other by heat, and the first crosslinked relief forming layer in which the first relief forming layer is crosslinked and the second crosslinked relief in which the second relief forming layer is crosslinked. A crosslinking step of forming at least two crosslinked relief forming layers adjacent to the forming layer,
The ratio of the Martens hardness A of the first crosslinked relief forming layer disposed on the surface side subjected to laser engraving to the Martens hardness B of the second crosslinked relief forming layer adjacent to the first crosslinked relief forming layer is 1.1. That's it,
The thickness of the first crosslinked relief forming layer is 10 to 300 μm;
A method for producing a flexographic printing plate precursor for laser engraving, wherein the second crosslinked relief forming layer has a thickness of 500 to 1600 μm.
[7] Engraving for forming a relief layer by applying laser engraving to the crosslinked relief forming layer of the flexographic printing plate precursor for laser engraving produced by the method for producing a flexographic printing plate precursor for laser engraving described in [6] A method for making a flexographic printing plate, comprising a step.
[8] A flexographic printing plate having a relief layer made by the plate making method of a flexographic printing plate according to [7].
 本発明によれば、印刷版の網点画像部における印圧ラチチュードを広くすることができるレーザー彫刻用フレキソ印刷版原版およびその製造方法、ならびに、フレキソ印刷版およびその製版方法を提供することができる。 According to the present invention, it is possible to provide a flexographic printing plate precursor for laser engraving which can widen the printing pressure latitude in the halftone image portion of the printing plate and a method for producing the same, as well as a flexographic printing plate and a method for making the same. .
 以下、本発明について詳細に説明する。
 なお、本発明において、数値範囲を表す「下限~上限」の記載は、「下限以上、上限以下」を表し、「上限~下限」の記載は、「上限以下、下限以上」を表す。すなわち、上限及び下限を含む数値範囲を表す。
 また、「質量部」および「質量%」は、それぞれ、「重量部」および「重量%」と同義である。
Hereinafter, the present invention will be described in detail.
In the present invention, the description of “lower limit to upper limit” representing the numerical range represents “lower limit or higher and lower limit or lower”, and the description of “upper limit to lower limit” represents “lower limit or higher and lower limit or higher”. That is, it represents a numerical range including an upper limit and a lower limit.
Further, “parts by mass” and “% by mass” are synonymous with “parts by weight” and “% by weight”, respectively.
 ここで、フレキソ印刷版およびフレキソ印刷版原版の説明に関し、未架橋の架橋性層を「レリーフ形成層」と称し、上記レリーフ形成層を架橋した層を「架橋レリーフ形成層」と称し、これをレーザー彫刻して表面に凹凸を形成した層を「レリーフ層」と称する。
 また、上記架橋は、熱により行われる。また、上記架橋は、樹脂組成物が硬化される反応であれば特に限定されず、ジエン系ポリマー同士の反応による架橋構造を含む概念であるが、例えば、後述するバインダーポリマーやジエン系ポリマーが他の成分と反応して架橋構造を形成していてもよい。
 また、架橋レリーフ形成層を有する印刷版原版をレーザー彫刻し、所望によりリンスすることによりフレキソ印刷版が作製される。
Here, regarding the description of the flexographic printing plate and the flexographic printing plate precursor, an uncrosslinked crosslinkable layer is referred to as a “relief forming layer”, and a layer obtained by crosslinking the relief forming layer is referred to as a “crosslinked relief forming layer”. A layer in which irregularities are formed on the surface by laser engraving is referred to as a “relief layer”.
The crosslinking is performed by heat. The crosslinking is not particularly limited as long as the resin composition is cured, and is a concept including a crosslinked structure by reaction between diene polymers. For example, a binder polymer or a diene polymer described below may be used. A crosslinked structure may be formed by reacting with the above components.
Further, a flexographic printing plate is produced by laser engraving a printing plate precursor having a crosslinked relief forming layer and rinsing as required.
[レーザー彫刻用フレキソ印刷版原版]
 本発明のレーザー彫刻用フレキソ印刷版原版(以下、「本発明の印刷版原版」と略す。)は、少なくとも2層の架橋レリーフ形成層を有するレーザー彫刻用フレキソ印刷版原版であって、レーザー彫刻が施される表面側に配置された第1架橋レリーフ形成層と、第1架橋レリーフ形成層に隣接する第2架橋レリーフ形成層とを有し、第2架橋レリーフ形成層のマルテンス硬度Bに対する第1架橋レリーフ形成層のマルテンス硬度Aの比率(硬度A/硬度B)が1.1以上である。
 本発明においては、第1架橋レリーフ形成層の厚みは10~300μmであり、かつ、第2架橋レリーフ形成層の厚みは500~1600μmである。
 また、第1架橋レリーフ形成層は、バインダーポリマーおよび光熱変換材料を含有しており、第2架橋レリーフ形成層は、ジエン系ポリマーおよび熱架橋剤を含有する樹脂組成物を用いてレリーフ形成層を形成した後に熱により架橋させた層である。
[Flexographic printing plate precursor for laser engraving]
The flexographic printing plate precursor for laser engraving of the present invention (hereinafter abbreviated as “printing plate precursor of the present invention”) is a flexographic printing plate precursor for laser engraving having at least two cross-linked relief forming layers. And a second crosslinked relief forming layer adjacent to the first crosslinked relief forming layer, wherein the second crosslinked relief forming layer has a second strength against the Martens hardness B. The ratio of Martens hardness A (hardness A / hardness B) of one crosslinked relief forming layer is 1.1 or more.
In the present invention, the thickness of the first crosslinked relief forming layer is 10 to 300 μm, and the thickness of the second crosslinked relief forming layer is 500 to 1600 μm.
The first crosslinked relief forming layer contains a binder polymer and a photothermal conversion material, and the second crosslinked relief forming layer is formed from a resin composition containing a diene polymer and a thermal crosslinking agent. It is a layer formed by heat and then crosslinked.
 本発明によれば、上述した通り、レーザー彫刻用フレキソ印刷版原版において、所定の厚みを有し、特定の硬度比率を満たす架橋レリーフ形成層を少なくとも2層設けることにより、印刷版の網点画像部における印圧ラチチュードを広くすることができる。
 その詳細な機構は不明であるが、以下のように推察される。
 すなわち、本発明の印刷版原版を用い、レーザー彫刻により画像を形成した印刷版は、網点画像部の表面が内部よりも硬くなるため、網点画像部の内部のクッション効果によって印圧に起因した変形が少なくなり、濃度変動が抑制されたためと考えられる。
 以下、本発明の印刷版原版が有する第1架橋レリーフ形成層および第2架橋レリーフ形成層ならびにこれらを形成する樹脂組成物や形成方法などについて詳述する。
According to the present invention, as described above, in the flexographic printing plate precursor for laser engraving, the halftone image of the printing plate is provided by providing at least two crosslinked relief forming layers having a predetermined thickness and satisfying a specific hardness ratio. The printing pressure latitude in the part can be widened.
Although the detailed mechanism is unknown, it is guessed as follows.
That is, in the printing plate on which an image is formed by laser engraving using the printing plate precursor of the present invention, the surface of the halftone dot image portion is harder than the inside, and therefore the printing effect is caused by the cushioning effect inside the halftone dot image portion. This is considered to be because the deformation was reduced and the density fluctuation was suppressed.
Hereinafter, the first crosslinked relief forming layer and the second crosslinked relief forming layer of the printing plate precursor of the present invention, and the resin composition and forming method for forming them will be described in detail.
 〔第1架橋レリーフ形成層〕
 本発明の印刷版原版が有する第1架橋レリーフ形成層は、バインダーポリマーおよび光熱変換材料を含有し、レーザー彫刻が施される表面側に配置される層である。
 ここで、「レーザー彫刻が施される表面側に配置される層」とは、第1架橋レリーフ形成層および後述する第2架橋レリーフ形成層以外の任意の架橋レリーフ形成層を有する場合においても、画像形成時にレーザー彫刻が施される最表面を有している層をいう。
[First cross-linked relief forming layer]
The first crosslinked relief forming layer of the printing plate precursor of the present invention is a layer that contains a binder polymer and a photothermal conversion material and is disposed on the surface side on which laser engraving is applied.
Here, the “layer disposed on the surface side subjected to laser engraving” refers to the case where it has an optional crosslinked relief forming layer other than the first crosslinked relief forming layer and the second crosslinked relief forming layer described later, A layer having the outermost surface on which laser engraving is performed during image formation.
 第1架橋レリーフ形成層のマルテンス硬度Aは、第1架橋レリーフ形成層に隣接する第2架橋レリーフ形成層のマルテンス硬度Bとの比率(硬度A/硬度B)が1.1以上を満たす硬度であれば特に限定されないが、1~15N/mm2であるのが好ましく、3~8N/mm2であるのがより好ましい。
 ここで、第1架橋レリーフ形成層および第2架橋レリーフ形成層におけるマルテンス硬度は、ISO 14577-1(計装化押し込み硬さ)に準拠したナノインデンテーション法により、押し込み深さ1μmで測定した硬度をいう。
 具体的には、第1架橋レリーフ形成層のマルテンス硬度Aは、フレキソ印刷版原版の表面に対して下記条件にて圧子を垂直に押し付けて測定したものである。
 また、第2架橋レリーフ形成層のマルテンス硬度Bは、フレキソ印刷版原版の表面に対して垂直に断面を切り出し、得られた断面における第2架橋レリーフ形成層の厚み方向の中央部分に対して下記条件にて圧子を垂直に押し付けて測定したものである。
 例えば、超微小硬度計(DUH-201S、島津製作所社製)を用いて測定することができる。
<測定条件>
・圧子:ビッカース圧子(圧子対面角度136°の四角錐型ダイヤモンド圧子)
・押し込み速度:0.83mN/sec
・押し込み深さ:1μm
・測定温度:25℃
The Martens hardness A of the first crosslinked relief forming layer is a hardness satisfying a ratio (hardness A / hardness B) of 1.1 or more with respect to the Martens hardness B of the second crosslinked relief forming layer adjacent to the first crosslinked relief forming layer. Although there is no particular limitation as long as it is, it is preferably 1 to 15 N / mm 2 , more preferably 3 to 8 N / mm 2 .
Here, the Martens hardness in the first crosslinked relief forming layer and the second crosslinked relief forming layer is a hardness measured at an indentation depth of 1 μm by a nanoindentation method according to ISO 14577-1 (instrumented indentation hardness). Say.
Specifically, the Martens hardness A of the first crosslinked relief forming layer is measured by pressing an indenter perpendicularly to the surface of the flexographic printing plate precursor under the following conditions.
Further, the Martens hardness B of the second crosslinked relief forming layer is as follows with respect to the central portion in the thickness direction of the second crosslinked relief forming layer in the obtained section by cutting a section perpendicular to the surface of the flexographic printing plate precursor. It was measured by pressing the indenter vertically under the conditions.
For example, it can be measured using an ultra micro hardness meter (DUH-201S, manufactured by Shimadzu Corporation).
<Measurement conditions>
・ Indenter: Vickers indenter (a quadrangular pyramid diamond indenter with an indenter angle of 136 °)
・ Push-in speed: 0.83mN / sec
・ Indentation depth: 1μm
・ Measurement temperature: 25 ℃
 第1架橋レリーフ形成層の厚みは、10~300μmであれば特に限定されないが、印刷版の網点画像部における印圧ラチチュードを更に広くすることができる理由から、20~150μmであるのが好ましく、20~70μmであるのがより好ましい。 The thickness of the first crosslinked relief forming layer is not particularly limited as long as it is 10 to 300 μm. However, it is preferably 20 to 150 μm because the printing pressure latitude in the halftone image portion of the printing plate can be further increased. 20 to 70 μm is more preferable.
 第1架橋レリーフ形成層は、上述した通り、バインダーポリマーおよび光熱変換材料を含有する。
 なお、後述する本発明のフレキソ印刷版原版の製造方法に示す通り、第1架橋レリーフ形成層は、例えば、以下に示すバインダーポリマーおよび光熱変換材料ならびに任意の添加剤を含有する樹脂組成物(以下、「第1樹脂組成物」ともいう。)を溶融させた状態で、任意の支持体上に塗布し、冷却させてレリーフ形成層(以下、「第1レリーフ形成層」という。)を形成した後に、加熱し、架橋させることにより形成することができる。
 以下に、第1樹脂組成物に含有するバインダーポリマーおよび光熱変換材料ならびに任意の添加剤について詳述する。
As described above, the first crosslinked relief forming layer contains a binder polymer and a photothermal conversion material.
In addition, as shown in the manufacturing method of the flexographic printing plate precursor of the present invention to be described later, the first crosslinked relief forming layer is, for example, a resin composition (hereinafter referred to as “binder polymer”, a photothermal conversion material, and an optional additive). , Also referred to as “first resin composition”), in a molten state, applied onto an arbitrary support and cooled to form a relief forming layer (hereinafter referred to as “first relief forming layer”). Later, it can be formed by heating and crosslinking.
Hereinafter, the binder polymer, the photothermal conversion material, and optional additives contained in the first resin composition will be described in detail.
 <バインダーポリマー>
 バインダーポリマーとしては特に制限されないが、熱可塑性ポリマー、ジエン系ポリマーなどが挙げられる。
 熱可塑性ポリマーは、熱可塑性を示すポリマーであれば特に限定されない。
 このような熱可塑性ポリマーとしては、例えば、ポリスチレン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリイミド樹脂、ヒドロキシエチレン単位を含む親水性ポリマー、アクリル樹脂、アセタール樹脂、エポキシ樹脂、ポリカーボネート樹脂、ゴム、熱可塑性エラストマー等が挙げられる。
 これらのうち、レーザー彫刻感度の観点から、露光または加熱により熱分解する部分構造を含むポリマーが好ましい。このようなポリマーは、特開2008-163081号公報の[0038]段落に記載されているものが好ましく挙げられる。
 また、柔軟で可撓性を有する膜形成が目的とされる場合には、軟質樹脂や熱可塑性エラストマーが好ましい。このような樹脂やポリマーは、特開2008-163081号公報の[0039]~[0040]段落に記載されているものが好ましく挙げられる。
 更に、第1樹脂組成物の調製の容易性や、作製される印刷版における油性インクに対する耐性向上の観点から、親水性または親アルコール性ポリマーを使用することも好ましい。親水性ポリマーとしては、特開2008-163081号公報の[0041]段落に記載されているものを使用することができる。
<Binder polymer>
Although it does not restrict | limit especially as a binder polymer, A thermoplastic polymer, a diene polymer, etc. are mentioned.
A thermoplastic polymer will not be specifically limited if it is a polymer which shows thermoplasticity.
Examples of such thermoplastic polymers include polystyrene resins, polyester resins, polyamide resins, polysulfone resins, polyethersulfone resins, polyimide resins, hydrophilic polymers containing hydroxyethylene units, acrylic resins, acetal resins, epoxy resins, and polycarbonates. Resins, rubbers, thermoplastic elastomers and the like can be mentioned.
Among these, from the viewpoint of laser engraving sensitivity, a polymer including a partial structure that is thermally decomposed by exposure or heating is preferable. Preferred examples of such polymers include those described in paragraph [0038] of JP-A-2008-163081.
In addition, when the purpose is to form a soft and flexible film, a soft resin or a thermoplastic elastomer is preferable. Preferred examples of such resins and polymers include those described in paragraphs [0039] to [0040] of JP-A-2008-163081.
Furthermore, it is also preferable to use a hydrophilic or alcoholic polymer from the viewpoint of easy preparation of the first resin composition and improvement of resistance to oil-based ink in the printing plate to be produced. As the hydrophilic polymer, those described in paragraph [0041] of JP-A-2008-163081 can be used.
 加えて、加熱や露光により硬化させ、強度を向上させる目的に使用する場合には、分子内にエチレン性不飽和結合をもつポリマーが好ましく用いられる。
 このようなポリマーとして、主鎖にエチレン性不飽和結合を含むポリマーとしては、例えば、SB(ポリスチレン-ポリブタジエン)、SBS(ポリスチレン-ポリブタジエン-ポリスチレン)、SIS(ポリスチレン-ポリイソプレン-ポリスチレン)、SEBS(ポリスチレン-ポリエチレン/ポリブチレン-ポリスチレン)等が挙げられる。
 また、側鎖にエチレン性不飽和結合をもつポリマーとしては、後記のバインダーポリマーの骨格に、アリル基、アクリロイル基、メタクリロイル基、スチリル基、ビニルエーテル基のようなエチレン性不飽和基を側鎖に導入することにより得られる。バインダーポリマー側鎖にエチレン性不飽和基を導入する方法は、(1)重合性基に保護基を結合させてなる重合性基前駆体を有する構成単位をポリマーに共重合させ、保護基を脱離させて重合性基とする方法、(2)水酸基、アミノ基、エポキシ基、カルボキシル基などの反応性基を複数有する高分子化合物を作製し、これらの反応性基と反応する基及びエチレン性不飽和基を有する化合物を高分子反応により導入する方法など、公知の方法をとることができる。これらの方法によれば、高分子化合物中へのエチレン性不飽和基の導入量を制御することができる。
 なお、バインダーポリマーは、ヒドロキシル基、シラノール基、加水分解性シリル基等の反応性官能基を有するバインダーポリマーであることが好ましく、その具体例としては、ビニル共重合体(ポリビニルアルコールやポリビニルアセタールなどのビニルモノマーの共重合体及びその誘導体)やアクリル樹脂(ヒドロキシエチル(メタ)アクリレートなどのアクリル系モノマーの共重合体及びその誘導体)が挙げられる。
In addition, when used for the purpose of curing by heating or exposure and improving the strength, a polymer having an ethylenically unsaturated bond in the molecule is preferably used.
Examples of such a polymer that includes an ethylenically unsaturated bond in the main chain include SB (polystyrene-polybutadiene), SBS (polystyrene-polybutadiene-polystyrene), SIS (polystyrene-polyisoprene-polystyrene), SEBS ( Polystyrene-polyethylene / polybutylene-polystyrene) and the like.
In addition, as a polymer having an ethylenically unsaturated bond in the side chain, an ethylenically unsaturated group such as an allyl group, an acryloyl group, a methacryloyl group, a styryl group, or a vinyl ether group is included in the side chain of the binder polymer skeleton described later. It is obtained by introducing. The method for introducing an ethylenically unsaturated group into the side chain of the binder polymer is as follows: (1) copolymerizing a structural unit having a polymerizable group precursor formed by bonding a protective group to a polymerizable group to remove the protective group. (2) A polymer compound having a plurality of reactive groups such as a hydroxyl group, an amino group, an epoxy group, and a carboxyl group, and a group that reacts with these reactive groups and an ethylenic group. Known methods such as a method of introducing a compound having an unsaturated group by a polymer reaction can be employed. According to these methods, the amount of ethylenically unsaturated groups introduced into the polymer compound can be controlled.
The binder polymer is preferably a binder polymer having a reactive functional group such as a hydroxyl group, a silanol group, or a hydrolyzable silyl group. Specific examples thereof include vinyl copolymers (such as polyvinyl alcohol and polyvinyl acetal). And vinyl monomers (copolymers and derivatives thereof) and acrylic resins (copolymers and derivatives of acrylic monomers such as hydroxyethyl (meth) acrylate).
 一方、ジエン系ポリマーとしては、後述する第2架橋レリーフ形成層を形成する樹脂組成物(以下、「第2樹脂組成物」という。)において必須成分として含有するジエン系ポリマーとして例示するものが挙げられる。
 これらのジエン系ポリマーのうち、第1架橋レリーフ形成層の製膜性を向上させる観点から、融点が23℃以下の液状ポリマー(例えば、液状ブタジエンゴムなど)を好適に用いることができる。
 ここで、融点とは、示差走査熱量測定(DSC:Differential scanning calorimetry)の測定パンに加温前の熱可塑性ポリマーを20mg入れ、これを窒素気流中で10℃/分で30℃から300℃まで昇温した際に、観測された吸熱ピークの開始温度である。
On the other hand, examples of the diene polymer include those exemplified as a diene polymer contained as an essential component in a resin composition (hereinafter referred to as “second resin composition”) that forms a second crosslinked relief forming layer described later. It is done.
Among these diene polymers, a liquid polymer (for example, liquid butadiene rubber) having a melting point of 23 ° C. or lower can be suitably used from the viewpoint of improving the film forming property of the first crosslinked relief forming layer.
Here, the melting point is 20 mg of a thermoplastic polymer before heating in a differential scanning calorimetry (DSC) pan, and the temperature is from 30 ° C. to 300 ° C. at 10 ° C./min in a nitrogen stream. It is the starting temperature of the endothermic peak observed when the temperature is raised.
 このようなバインダーポリマーのうち、レリーフ層の形成しやすさや硬度の観点から、結晶性ポリマーであるの好ましい。
 ここで、結晶性ポリマーとは、分子構造の中に長い鎖状の分子が規則的に並んだ結晶性領域と、規則的に並んでいない非結晶性領域が混在したポリマーを意味し、その結晶性領域の割合である結晶化度が25度で1体積%以上有するポリマーのことを指す。
 ここで結晶化度とは、示差走査熱量計により窒素雰囲気下、25℃から200℃までの範囲で昇温速度20℃/minにて温度を変化させながら、結晶融解による吸熱ピーク(ΔH(J/g))を求める。測定されたΔHに基づき、以下の式により到達結晶化度(%)を算出する。
 結晶化度(%)={ΔH/a}×100
 上式中、「a」は公知の文献で示されている、結晶性領域の成分が100%結晶化した場合の結晶融解熱量(例えば、ポリ乳酸の場合94J/g、ポリエチレン(HDPE)293(J/g))を意味する。
Among such binder polymers, a crystalline polymer is preferable from the viewpoint of ease of forming a relief layer and hardness.
Here, a crystalline polymer means a polymer in which a crystalline region in which long chain molecules are regularly arranged in a molecular structure and an amorphous region that is not regularly arranged are mixed. It refers to a polymer having a crystallinity of 25% or more and 1% by volume or more, which is a ratio of the sex region.
Here, the degree of crystallinity refers to an endothermic peak (ΔH (J) due to crystal melting while changing the temperature at a temperature rising rate of 20 ° C./min in a range from 25 ° C. to 200 ° C. in a nitrogen atmosphere using a differential scanning calorimeter. / G)). Based on the measured ΔH, the ultimate crystallinity (%) is calculated by the following formula.
Crystallinity (%) = {ΔH / a} × 100
In the above formula, “a” is the heat of crystal melting when the crystalline region component is crystallized 100% (for example, 94 J / g for polylactic acid, polyethylene (HDPE) 293 ( J / g)).
 このような結晶性ポリマーとしては、具体的には、例えば、SB(ポリスチレン-ポリブタジエン)、SBS(ポリスチレン-ポリブタジエン-ポリスチレン)、SIS(ポリスチレン-ポリイソプレン-ポリスチレン)、SEBS(ポリスチレン-ポリエチレン/ポリブチレン-ポリスチレン)、ABS(アクリロニトリルブタジエンスチレン共重合体)、ACM(アクリル酸エステルゴム)、ACS(アクリロニトリル塩素化ポリエチレンスチレン共重合体)、非晶性ポリアルファオレフィン、アタクチックポリプロピレン、アクリロニトリルスチレン共重合体、セルロースアセテートブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、エチレン酢酸ビニル共重合体、エチルビニルエーテル、ポリアクリル酸、ポリプロピレン、ポリブタジエン、ポリイソプレン、ポリオクテニレン、トランス-ポリイソプレン,ポリビニルブチラール、エチレン-α-オレフィンコポリマー、プロピレン-α-オレフィンコポリマー、1,3-ペンタジエン重合体などが挙げられる。
 これらのうち、SBS、SIS、SEBS、ポリプロピレン、ポリブタジエン、ポリイソプレン、ポリオクテニレン、トランス-ポリイソプレン,エチレン-α-オレフィンコポリマー、プロピレン-α-オレフィンコポリマーが好ましく、その中でも、ポリオクテニレンが特に好ましい。
Specific examples of such a crystalline polymer include SB (polystyrene-polybutadiene), SBS (polystyrene-polybutadiene-polystyrene), SIS (polystyrene-polyisoprene-polystyrene), and SEBS (polystyrene-polyethylene / polybutylene-). Polystyrene), ABS (acrylonitrile butadiene styrene copolymer), ACM (acrylic ester rubber), ACS (acrylonitrile chlorinated polyethylene styrene copolymer), amorphous polyalphaolefin, atactic polypropylene, acrylonitrile styrene copolymer, Cellulose acetate butyrate, cellulose acetate propionate, cellulose acetate butyrate, ethylene vinyl acetate copolymer, ethyl vinyl ether, poly Acrylic acid, polypropylene, polybutadiene, polyisoprene, polyoctenylene, trans - polyisoprene, polyvinyl butyral, ethylene -α- olefin copolymers, propylene -α- olefin copolymers, and the like 1,3-pentadiene polymers.
Of these, SBS, SIS, SEBS, polypropylene, polybutadiene, polyisoprene, polyoctenylene, trans-polyisoprene, ethylene-α-olefin copolymer, and propylene-α-olefin copolymer are preferable, and among them, polyoctenylene is particularly preferable.
 また、このようなバインダーポリマーのうち、熱架橋する際に、第1樹脂組成物が軟化していると、第2樹脂組成物の熱架橋剤が第1樹脂組成物に移行し、第1樹脂組成物がより架橋されやすくなる理由から、融点が50~200℃であるポリマーであるのが好ましく、融点が50~150℃であるポリマーであるのがより好ましい。 Further, among such binder polymers, if the first resin composition is softened during thermal crosslinking, the thermal crosslinking agent of the second resin composition moves to the first resin composition, and the first resin A polymer having a melting point of 50 to 200 ° C. is preferable, and a polymer having a melting point of 50 to 150 ° C. is more preferable because the composition is more easily crosslinked.
 <光熱変換材料>
 光熱変換材料は、レーザーの光を吸収し発熱することで、レーザー彫刻時の硬化物の熱分解を促進する成分と考えられる。
 そのため、彫刻に用いるレーザー波長の光を吸収する光熱変換材料を選択することが好ましい。
 例えば、本発明の印刷版原版を、700~1,300nmの赤外線を発するレーザー(YAG(Yttrium Alminium Garnet)レーザー、半導体レーザー、ファイバーレーザー、面発光レーザー等)を光源としてレーザー彫刻に用いる場合は、光熱変換材料としては、700~1,300nmに極大吸収波長を有する化合物を用いることが好ましい。
 このような光熱変換材料としては、種々の染料又は顔料が用いられる。
<Photothermal conversion material>
The photothermal conversion material is considered to be a component that promotes thermal decomposition of a cured product during laser engraving by absorbing laser light and generating heat.
Therefore, it is preferable to select a photothermal conversion material that absorbs light having a laser wavelength used for engraving.
For example, when the printing plate precursor of the present invention is used for laser engraving using a laser emitting a 700 to 1,300 nm infrared ray (YAG (Yttrium Alminium Garnet) laser, semiconductor laser, fiber laser, surface emitting laser, etc.) as a light source, As the photothermal conversion material, a compound having a maximum absorption wavelength at 700 to 1,300 nm is preferably used.
Various dyes or pigments are used as such a photothermal conversion material.
 光熱変換材料のうち、染料としては、市販の染料及び例えば「染料便覧」(有機合成化学協会編集、昭和45年刊)等の文献に記載されている公知のものが利用できる。具体的には、700~1,300nmに極大吸収波長を有するものが挙げられ、アゾ染料、金属錯塩アゾ染料、ピラゾロンアゾ染料、ナフトキノン染料、アントラキノン染料、フタロシアニン染料、カルボニウム染料、ジインモニウム化合物、キノンイミン染料、メチン染料、シアニン染料、スクワリリウム色素、ピリリウム塩、金属チオレート錯体等の染料が好ましく挙げられる。本発明において好ましく用いられる染料としては、ヘプタメチンシアニン色素等のシアニン系色素、ペンタメチンオキソノール色素等のオキソノール系色素、フタロシアニン系色素及び特開2008-63554号公報の段落0124~0137に記載の染料を挙げることができる。 Among the photothermal conversion materials, as the dyes, commercially available dyes and known materials described in documents such as “Dye Handbook” (edited by the Society for Synthetic Organic Chemistry, published in 1970) can be used. Specific examples include those having a maximum absorption wavelength at 700 to 1,300 nm, such as azo dyes, metal complex azo dyes, pyrazolone azo dyes, naphthoquinone dyes, anthraquinone dyes, phthalocyanine dyes, carbonium dyes, diimmonium compounds, and quinoneimine dyes. Preferred are dyes such as methine dyes, cyanine dyes, squarylium dyes, pyrylium salts, metal thiolate complexes. Dyes preferably used in the present invention include cyanine dyes such as heptamethine cyanine dyes, oxonol dyes such as pentamethine oxonol dyes, phthalocyanine dyes, and paragraphs 0124 to 0137 of JP-A-2008-63554. Mention may be made of dyes.
 本発明において使用される光熱変換材料のうち、顔料としては、市販の顔料及びカラーインデックス(C.I.)便覧、「最新顔料便覧」(日本顔料技術協会編、1977年刊)、「最新顔料応用技術」(CMC出版、1986年刊)、「印刷インキ技術」CMC出版、1984年刊)に記載されている顔料が利用できる。また、顔料としては、特開2009-178869号公報の段落0122~0125に記載の顔料が例示できる。
 これらの顔料のうち、好ましいものは後述するカーボンブラックである。
Among the photothermal conversion materials used in the present invention, commercially available pigments and color index (CI) manuals, “Latest Pigment Handbook” (edited by the Japan Pigment Technical Association, 1977), “Latest Pigment Application” The pigments described in “Technology” (CMC Publishing, 1986) and “Printing Ink Technology” CMC Publishing, 1984) can be used. Examples of the pigment include pigments described in paragraphs 0122 to 0125 of JP2009-178869A.
Among these pigments, carbon black described later is preferable.
 (カーボンブラック)
 カーボンブラックとしては、具体的には、例えば、ファーネスブラック、サーマルブラック、チャンネルブラック、ランプブラック、アセチレンブラック等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 なお、これらのカーボンブラックは、分散を容易にするため、必要に応じて分散剤を用い、予めニトロセルロースやバインダーなどに分散させたカラーチップやカラーペーストとして使用することができるが、コストの観点から粉体で使用することが好ましい。
(Carbon black)
Specific examples of carbon black include furnace black, thermal black, channel black, lamp black, acetylene black, and the like. These may be used alone or in combination of two or more. Good.
These carbon blacks can be used as color chips or color pastes that are dispersed in nitrocellulose or a binder in advance using a dispersant as needed to facilitate dispersion. To powder.
 本発明においては、カーボンブラックの平均粒子径は、第1樹脂組成物の粘度や加工性が良好となり、また、耐刷性が良好となる理由から、13nm以上50nm以下であることが好ましく、15nm以上40nm以下であることがより好ましく、15nm以上31nm以下であることが特に好ましい。
 ここで、カーボンブラックにおける平均粒子径は、数平均粒子径であり、透過型電子顕微鏡により測定される。
In the present invention, the average particle size of carbon black is preferably 13 nm or more and 50 nm or less, because the viscosity and workability of the first resin composition are good and the printing durability is good. It is more preferably 40 nm or less and particularly preferably 15 nm or more and 31 nm or less.
Here, the average particle diameter in carbon black is the number average particle diameter, and is measured by a transmission electron microscope.
 カーボンブラックの窒素吸着比表面積(以下、「N2SA」とも略す。)は、25m2/g以上180m2/g以下が好ましい。用いるカーボンブラックのN2SAは30m2/g以上160m2/g以下であることがより好ましく、40m2/g以上150m2/g以下であることが特に好ましい。
 ここで、カーボンブラックにおけるN2SAは、JIS K6217-2:2001によって求められる。
The nitrogen adsorption specific surface area (hereinafter also abbreviated as “N 2 SA”) of carbon black is preferably 25 m 2 / g or more and 180 m 2 / g or less. N 2 SA of the carbon black used is more preferably 30 m 2 / g to 160 m 2 / g, and particularly preferably 40 m 2 / g to 150 m 2 / g.
Here, N 2 SA in carbon black is obtained according to JIS K6217-2: 2001.
 また、上記カーボンブラックとしては、ゴム用カーボンブラックを用いることができ、その具体例としては、SAF、SAF-HS、ISAF、ISAF-LS、ISAF-HS、IISAF、IISAF-HS、IISAF-HS、HAF、HAF-HS、HAF-LS、LI-HAF、FEF、FEF-HS、MAF、MAF-HS、T-NS等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 具体的には、以下に示す市販のカーボンブラックを使用することができるが、これらに限定されるものではない。括弧内は順に、平均粒子径(nm)、窒素吸着比表面積(m2/g)を表わす。
As the carbon black, carbon black for rubber can be used. Specific examples thereof include SAF, SAF-HS, ISAF, ISAF-LS, ISAF-HS, IISAF, IISAF-HS, IISAF-HS, HAF, HAF-HS, HAF-LS, LI-HAF, FEF, FEF-HS, MAF, MAF-HS, T-NS, and the like may be used. These may be used alone or in combination of two or more. May be.
Specifically, commercially available carbon black shown below can be used, but is not limited thereto. In the parentheses, an average particle diameter (nm) and a nitrogen adsorption specific surface area (m 2 / g) are sequentially shown.
 旭カーボン株式会社製のカーボンブラックとしては、例えば、旭♯78(22nm、124m2/g)、旭♯80(22nm、115m2/g)、旭♯70(28nm、77m2/g)、旭♯70L(27nm、84m2/g)、旭F-200(38nm、51m2/g)、旭♯66(44nm、43m2/g)、旭♯65(44nm、42m2/g)、旭♯60HN(40nm、48m2/g)、旭♯60H(41nm、45m2/g)、旭♯60U(43nm、43m2/g)、旭♯60(45nm、40m2/g)、旭AX-015(19nm、145m2/g)等が挙げられる。
 新日化カーボン株式会社製のカーボンブラックとしては、例えば、♯300IH(19nm、120m2/g)、♯300(24nm、117m2/g)、♯200IS(26nm、95m2/g)、♯200(29nm、75m2/g)、♯200L(29nm、81m2/g)、♯200IN(31nm、71m2/g)、♯10(40nm、49m2/g)、♯10K(39nm、48m2/g)、♯10S(42nm、53m2/g)、♯100(44nm、41m2/g)等が挙げられる。
 東海カーボン株式会社製のカーボンブラックとしては、例えば、シースト9H(18nm、142m2/g)、シースト9(19nm、142m2/g)、シースト7HM:N234(19nm、126m2/g)、シースト6(22nm、119m2/g)、シースト600(23nm、106m2/g)、シースト5H(22nm、99m2/g)、シーストKH:N339(24nm、93m2/g)、シースト3H(27nm、82m2/g)、シーストNH:N351(29nm、74m2/g)、シースト3(28nm、79m2/g)、シーストN(29nm、74m2/g)、シースト300(28nm、84m2/g)、シースト116HM(38nm、56m2/g)、シースト116(38nm、49m2/g)、シーストFM(50nm、42m2/g)、シーストSO(43nm、42m2/g)等が挙げられる。
 三菱化学株式会社製のカーボンブラックとしては、例えば、ダイアブラックA(19nm、142m2/g)、ダイアブラックN234(22nm、123m2/g)、ダイアブラックI(23nm、114m2/g)、ダイアブラックLI(23nm、107m2/g)、ダイアブラックII(24nm、98m2/g)、ダイアブラックN339(26nm、96m2/g)、ダイアブラックSH(31nm、78m2/g)、ダイアブラックH(31nm、79m2/g)、ダイアブラックLH(31nm、84m2/g)、ダイアブラックHA(32nm、74m2/g)、ダイアブラックN550M(43nm、47m2/g)、ダイアブラックE(48nm、41m2/g)等が挙げられる。
The carbon black of Asahi Carbon Co., Ltd., for example, Asahi ♯78 (22nm, 124m 2 / g ), Asahi ♯80 (22nm, 115m 2 / g ), Asahi ♯70 (28nm, 77m 2 / g ), Asahi ♯70L (27nm, 84m 2 / g ), Asahi F-200 (38nm, 51m 2 / g), Asahi ♯66 (44nm, 43m 2 / g ), Asahi ♯65 (44nm, 42m 2 / g ), Asahi ♯ 60HN (40 nm, 48 m 2 / g), Asahi # 60H (41 nm, 45 m 2 / g), Asahi # 60U (43 nm, 43 m 2 / g), Asahi # 60 (45 nm, 40 m 2 / g), Asahi AX-015 (19 nm, 145 m 2 / g) and the like.
The carbon black of Nippon Carbon Co., Ltd., for example, ♯300IH (19nm, 120m 2 / g), ♯300 (24nm, 117m 2 / g), ♯200IS (26nm, 95m 2 / g), ♯200 (29nm, 75m 2 / g) , ♯200L (29nm, 81m 2 / g), ♯200IN (31nm, 71m 2 / g), ♯10 (40nm, 49m 2 / g), ♯10K (39nm, 48m 2 / g), ♯10S (42nm, 53m 2 / g), ♯100 (44nm, include 41m 2 / g) and the like.
The carbon black of Tokai Carbon Co., Ltd., for example, SEAST 9H (18nm, 142m 2 / g ), SEAST 9 (19nm, 142m 2 / g ), Seast 7HM: N234 (19nm, 126m 2 / g), SEAST 6 (22 nm, 119 m 2 / g), seast 600 (23 nm, 106 m 2 / g), seast 5H (22 nm, 99 m 2 / g), seast KH: N339 (24 nm, 93 m 2 / g), seast 3H (27 nm, 82 m 2 / g), Seest NH: N351 (29 nm, 74 m 2 / g), Seest 3 (28 nm, 79 m 2 / g), Seest N (29 nm, 74 m 2 / g), Seest 300 (28 nm, 84 m 2 / g) , Seast 116HM (38nm, 56m 2 / g ), Seast 116 (38nm, 49m 2 / g ), shea Strike FM (50nm, 42m 2 / g ), Seast SO (43nm, 42m 2 / g ) , and the like.
Examples of carbon black manufactured by Mitsubishi Chemical Corporation include Diablack A (19 nm, 142 m 2 / g), Dia Black N234 (22 nm, 123 m 2 / g), Dia Black I (23 nm, 114 m 2 / g), Dia Black LI (23 nm, 107 m 2 / g), Dia Black II (24 nm, 98 m 2 / g), Dia Black N339 (26 nm, 96 m 2 / g), Dia Black SH (31 nm, 78 m 2 / g), Dia Black H (31 nm, 79 m 2 / g), Dia Black LH (31 nm, 84 m 2 / g), Dia Black HA (32 nm, 74 m 2 / g), Dia Black N550M (43 nm, 47 m 2 / g), Dia Black E (48 nm 41 m 2 / g) and the like.
 また、上記カーボンブラックとしては、カラー用カーボンブラックを用いることができ、その具体例としては、以下に示す市販のカーボンブラックを使用することができるが、これらに限定されるものではない。括弧内は順に、平均粒子径(nm)、窒素吸着比表面積(m2/g)を表わす。 As the carbon black, color carbon black can be used. Specific examples thereof include commercially available carbon blacks shown below, but are not limited thereto. In the parentheses, an average particle diameter (nm) and a nitrogen adsorption specific surface area (m 2 / g) are sequentially shown.
 三菱化学株式会社製のカーボンブラックとしては、例えば、♯1000(18nm、180m2/g)、MCF88(18nm、180m2/g)、MA600(20nm、140m2/g)、♯750B(22nm、124m2/g)、♯650B(22nm、124m2/g)、♯52(27nm、88m2/g)、♯47(23nm、132m2/g)、♯45(24nm、120m2/g)、♯45L(24nm、125m2/g)、♯44(24nm、110m2/g)、♯40(24nm、115m2/g)、♯33(30nm、85m2/g)、♯32(30nm、83m2/g)、♯30(30nm、74m2/g)、♯25(47nm、55m2/g)、♯20(50nm、45m2/g)、♯95(40nm、55m2/g)、♯85(40nm、60m2/g)、♯260(40nm、70m2/g)、MA77(23nm、130m2/g)、MA7(24nm、115m2/g)、MA8(24nm、120m2/g)、MA11(29nm、92m2/g)、MA100(24nm、110m2/g)、MA100R(24nm、110m2/g)、MA100S(24nm、110m2/g)、MA230(30nm、74m2/g)、MA14(40nm、56m2/g)等が挙げられる。 Examples of the carbon black manufactured by Mitsubishi Chemical Corporation, for example, ♯1000 (18nm, 180m 2 / g), MCF88 (18nm, 180m 2 / g), MA600 (20nm, 140m 2 / g), ♯750B (22nm, 124m 2 / g), ♯650B (22nm , 124m 2 / g), ♯52 (27nm, 88m 2 / g), ♯47 (23nm, 132m 2 / g), ♯45 (24nm, 120m 2 / g), ♯ 45L (24 nm, 125 m 2 / g), # 44 (24 nm, 110 m 2 / g), # 40 (24 nm, 115 m 2 / g), # 33 (30 nm, 85 m 2 / g), # 32 (30 nm, 83 m 2) / g), ♯30 (30nm, 74m 2 / g), ♯25 (47nm, 55m 2 / g), ♯20 (50nm, 45m 2 / g), ♯95 (40nm, 55m 2 g), ♯85 (40nm, 60m 2 / g), ♯260 (40nm, 70m 2 / g), MA77 (23nm, 130m 2 / g), MA7 (24nm, 115m 2 / g), MA8 (24nm, 120m 2 / g), MA11 (29 nm, 92 m 2 / g), MA100 (24 nm, 110 m 2 / g), MA100R (24 nm, 110 m 2 / g), MA100S (24 nm, 110 m 2 / g), MA230 (30 nm, 74 m 2 / g), MA14 (40 nm, 56 m 2 / g) and the like.
 本発明においては、光熱変換材料(特にカーボンブラック)の含有量は、レーザー彫刻時の感度が良好となり、インキ着肉性も良好となる理由から、バインダーポリマー100質量部に対して1~30質量部であることが好ましく、5~20質量部であることがより好ましい。 In the present invention, the content of the photothermal conversion material (particularly carbon black) is 1 to 30 masses per 100 mass parts of the binder polymer because the sensitivity at the time of laser engraving is good and the ink inking property is also good. Part is preferable, and 5 to 20 parts by mass is more preferable.
 <任意の添加剤>
 第1架橋レリーフ形成層は、バインダーポリマーおよび光熱変換材料以外の任意の添加剤として、例えば、重合性化合物、カーボンブラック以外の他の充填剤などを含有してもよい。
<Optional additives>
The first crosslinked relief forming layer may contain, for example, a polymerizable compound, a filler other than carbon black, and the like as an optional additive other than the binder polymer and the photothermal conversion material.
 (重合性化合物)
 重合性化合物としては、後述する第2樹脂組成物において任意成分として含有する重合性化合物と同様のものを用いることができる。
 また、任意の重合性化合物を含有する場合の含有量は、第1樹脂組成物の全質量に対し、0.1~30質量%であることが好ましく、1~20質量%であることがより好ましい。
(Polymerizable compound)
As a polymeric compound, the thing similar to the polymeric compound contained as an arbitrary component in the 2nd resin composition mentioned later can be used.
Further, the content in the case of containing an optional polymerizable compound is preferably 0.1 to 30% by mass, more preferably 1 to 20% by mass with respect to the total mass of the first resin composition. preferable.
 (他の充填剤)
 他の充填剤は、有機でも無機でもよいが、加工性がより良好となる理由や、コストや硬化膜の強度の観点から、シリカ、炭酸カルシウム、マイカ、タルク、および、ステアリン酸金属塩からなる群から選択される少なくとも1種以上を用いるのが好ましく、シリカおよび/または炭酸カルシウムを用いるのが特に好ましい。
(Other fillers)
Other fillers may be organic or inorganic, but are made of silica, calcium carbonate, mica, talc, and metal stearate from the viewpoint of better processability and cost and strength of the cured film. It is preferable to use at least one selected from the group, and it is particularly preferable to use silica and / or calcium carbonate.
 (その他の添加剤)
 第1樹脂組成物には、公知の各種添加剤を、本発明の効果を阻害しない範囲で適宜配合することができる。例えば、架橋助剤、シランカップリング剤、ワックス、プロセス油、金属酸化物、オゾン分解防止剤、老化防止剤、重合禁止剤、着色剤等が挙げられ、これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
(Other additives)
Various known additives can be appropriately added to the first resin composition as long as the effects of the present invention are not impaired. Examples include cross-linking aids, silane coupling agents, waxes, process oils, metal oxides, antiozonants, anti-aging agents, polymerization inhibitors, colorants, etc., and these can be used alone. Alternatively, two or more kinds may be used in combination.
 〔第2架橋レリーフ形成層〕
 本発明の印刷版原版が有する第2架橋レリーフ形成層は、第1架橋レリーフ形成層に隣接する層であり、ジエン系ポリマーおよび熱架橋剤を含有する樹脂組成物(第2樹脂組成物)を用いてレリーフ形成層を形成した後に熱により架橋させた層である。
 ここで、「第1架橋レリーフ形成層に隣接する層」とは、画像形成時にレーザー彫刻が施される最表面を有している層(第1架橋レリーフ形成層)に直接接している層をいう。
[Second cross-linked relief forming layer]
The second crosslinked relief forming layer of the printing plate precursor of the present invention is a layer adjacent to the first crosslinked relief forming layer, and comprises a resin composition (second resin composition) containing a diene polymer and a thermal crosslinking agent. It is a layer that is crosslinked by heat after forming a relief forming layer.
Here, the “layer adjacent to the first crosslinked relief forming layer” refers to a layer that is in direct contact with the outermost layer (first crosslinked relief forming layer) on which laser engraving is performed during image formation. Say.
 第2架橋レリーフ形成層のマルテンス硬度Bは、隣接する第1架橋レリーフ形成層のマルテンス硬度Aとの比率(硬度A/硬度B)が1.1以上を満たす硬度であれば特に限定されないが、1~15N/mm2であるのが好ましく、1~3N/mm2であるのがより好ましい。 The Martens hardness B of the second crosslinked relief forming layer is not particularly limited as long as the ratio (hardness A / hardness B) with the Martens hardness A of the adjacent first crosslinked relief forming layer satisfies 1.1 or more, 1 to 15 N / mm 2 is preferable, and 1 to 3 N / mm 2 is more preferable.
 第2架橋レリーフ形成層の厚みは、500~1600μmであれば特に限定されないが、印圧に対する十分なクッション性を有し、また、非画像部を形成するために必要な凹凸を付与させる観点から、700~900μmまたは1400~1600μmであるのが好ましい。 The thickness of the second crosslinked relief forming layer is not particularly limited as long as it is 500 to 1600 μm, but it has sufficient cushioning properties against printing pressure, and from the viewpoint of imparting unevenness necessary for forming a non-image part. 700 to 900 μm or 1400 to 1600 μm is preferable.
 第2架橋レリーフ形成層は、上述した通り、ジエン系ポリマーおよび熱架橋剤を含有する樹脂組成物(第2樹脂組成物)を用いてレリーフ形成層(以下、「第2レリーフ形成層」という。)を形成した後に熱により架橋させた層である。
 以下に、第2樹脂組成物に含有するジエン系ポリマーおよび熱架橋剤ならびに任意の添加剤について詳述する。
As described above, the second crosslinked relief forming layer is referred to as a relief forming layer (hereinafter referred to as “second relief forming layer”) using a resin composition (second resin composition) containing a diene polymer and a thermal crosslinking agent. ), And then crosslinked by heat.
Hereinafter, the diene polymer, the thermal crosslinking agent, and optional additives contained in the second resin composition will be described in detail.
 <ジエン系ポリマー>
 第2樹脂組成物に含有するジエン系ポリマーは特に限定されず、従来公知のジエン系ポリマーを制限なく使用することができる。
 上記ジエン系ポリマーとしては、具体的には、例えば、ポリイソプレン、ポリブタジエン、エチレン-プロピレン-ジエン共重合体(EPDM)、アクリロニトリル-ブタジエン共重合体、スチレン-ブタジエン共重合体(SBR)、スチレン-イソプレン共重合体、スチレン-イソプレン-ブタジエン共重合体、ポリスチレン-ポリブタジエン-ポリスチレンブロック共重合体(SBS)等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 これらのうち、彫刻時に発生する版上カスの除去しやすさの観点から、ポリイソプレン、ポリブタジエンおよびエチレン-プロピレン-ジエン共重合体からなる群から選択される少なくとも1種のポリマーであるのが好ましい。
<Diene polymer>
The diene polymer contained in the second resin composition is not particularly limited, and a conventionally known diene polymer can be used without limitation.
Specific examples of the diene polymer include polyisoprene, polybutadiene, ethylene-propylene-diene copolymer (EPDM), acrylonitrile-butadiene copolymer, styrene-butadiene copolymer (SBR), and styrene- Examples include isoprene copolymers, styrene-isoprene-butadiene copolymers, polystyrene-polybutadiene-polystyrene block copolymers (SBS), and these may be used alone or in combination of two or more. Good.
Of these, at least one polymer selected from the group consisting of polyisoprene, polybutadiene, and ethylene-propylene-diene copolymer is preferable from the viewpoint of easy removal of residue on the plate generated during engraving. .
 本発明においては、ポリイソプレンまたはポリブタジエンは、それぞれ、主鎖が主としてイソプレンまたはブタジエンを単量体単位とするポリマーであればよく、一部が水素添加されて飽和結合に変換されていてもよい。また、ポリマーの主鎖中または末端が、アミノ基、イソシアナト基、カルボキシ基、ヒドロキシ基、(メタ)アクリロイル基等で変性されていてもよく、エポキシ化されていてもよい。
 なお、本明細書において、(メタ)アクリロイル基とは、アクリロイル基またはメタクリロイル基のことをいう。
In the present invention, polyisoprene or polybutadiene may be a polymer whose main chain is mainly composed of isoprene or butadiene as monomer units, and a part thereof may be hydrogenated to be converted to a saturated bond. Further, the main chain or the terminal of the polymer may be modified with an amino group, an isocyanato group, a carboxy group, a hydroxy group, a (meth) acryloyl group or the like, or may be epoxidized.
In the present specification, the (meth) acryloyl group means an acryloyl group or a methacryloyl group.
 また、本発明においては、ポリイソプレンまたはポリブタジエンは、それぞれ、主鎖中に占める脂肪族炭化水素(イソプレン、ブタジエンまたはそれらの水素添加物)に由来するモノマー単位の割合が80mol%以上であることが好ましい。
 主鎖中に占める脂肪族炭化水素に由来するモノマー単位の割合が80mol%以上であると、彫刻カスのリンス性が良好であるので好ましい。
 脂肪族炭化水素に由来するモノマー単位の含有量は、ジエン系ポリマーの主鎖を構成する全モノマー単位の90mol%以上であることがより好ましく、95mol%であることが更に好ましく、99mol%以上であることが特に好ましい。
 なお、本発明において、「主鎖」とは樹脂を構成する高分子化合物の分子中で相対的に最も長い結合鎖を表し、「側鎖」とは主鎖から枝分かれしている炭素鎖を表し、側鎖にはヘテロ原子を含んでもよい。
 すなわち、例えば、ポリイソプレンは、イソプレン及びイソプレンの水素添加物に由来するモノマー単位の割合が、合計して80mol%以上であることが好ましく、90mol%以上であることがより好ましく、95mol%以上であることが更に好ましく、99mol%以上であることが特に好ましい。
 同様に、ポリブタジエンは、ブタジエン及びブタジエンの水素添加物に由来するモノマー単位の割合が、合計して80mol%以上であることが好ましく、90mol%以上であることがより好ましく、95mol%以上であることが更に好ましく、99mol%以上であることが特に好ましい。
 また、ジエン系ポリマーとして、イソプレン/ブタジエン共重合体を使用する場合には、イソプレン、ブタジエン及びそれらの水素添加物に由来するモノマー単位を合計して80mol%以上含有することが好ましく、90mol%以上含有することがより好ましく、95mol%以上含有することが更に好ましく、99mol%以上含有することが特に好ましい。
In the present invention, the proportion of monomer units derived from aliphatic hydrocarbons (isoprene, butadiene, or hydrogenated products thereof) in the main chain of polyisoprene or polybutadiene may be 80 mol% or more. preferable.
It is preferable that the proportion of monomer units derived from aliphatic hydrocarbons in the main chain is 80 mol% or more, since the engraving residue rinse property is good.
The content of the monomer unit derived from the aliphatic hydrocarbon is more preferably 90 mol% or more of the total monomer units constituting the main chain of the diene polymer, more preferably 95 mol%, and more preferably 99 mol% or more. It is particularly preferred.
In the present invention, “main chain” represents a relatively long bond chain in the molecule of the polymer compound constituting the resin, and “side chain” represents a carbon chain branched from the main chain. The side chain may contain a hetero atom.
That is, for example, in polyisoprene, the proportion of monomer units derived from isoprene and the hydrogenated product of isoprene is preferably 80 mol% or more in total, more preferably 90 mol% or more, and more preferably 95 mol% or more. More preferably, it is 99 mol% or more.
Similarly, in polybutadiene, the proportion of monomer units derived from butadiene and a hydrogenated product of butadiene is preferably 80 mol% or more in total, more preferably 90 mol% or more, and 95 mol% or more. Is more preferable, and 99 mol% or more is particularly preferable.
Further, when an isoprene / butadiene copolymer is used as the diene-based polymer, it is preferable that the monomer units derived from isoprene, butadiene and hydrogenated products thereof are contained in a total of 80 mol% or more, and 90 mol% or more. It is more preferably contained, more preferably 95 mol% or more, and particularly preferably 99 mol% or more.
 イソプレンは、触媒や反応条件により、1,2-、3,4-又は1,4-付加により重合することが知られているが、本発明は上記のいずれの付加により重合されたポリイソプレンでもよい。これらの中でも所望のムーニー粘度を得る観点から、主成分としてcis-1,4-ポリイソプレンを含有することが好ましい。なお、cis-1,4-ポリイソプレンの含有量は、50質量%以上であることが好ましく、65質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、90質量%以上であることが特に好ましい。
 また、ポリイソプレンとしては、天然ゴムを使用してもよく、また、上市されているポリイソプレンを使用することもでき、例えば、NIPOL IRシリーズ(日本ゼオン株式会社製)が例示される。
Isoprene is known to be polymerized by 1,2-, 3,4- or 1,4-addition depending on the catalyst and reaction conditions. Good. Among these, from the viewpoint of obtaining a desired Mooney viscosity, it is preferable to contain cis-1,4-polyisoprene as a main component. The content of cis-1,4-polyisoprene is preferably 50% by mass or more, more preferably 65% by mass or more, still more preferably 80% by mass or more, and 90% by mass. The above is particularly preferable.
As polyisoprene, natural rubber may be used, and commercially available polyisoprene can also be used. For example, the NIPOL IR series (manufactured by Nippon Zeon Co., Ltd.) is exemplified.
 ブタジエンは、触媒や反応条件により1,2-又は1,4-付加により重合することが知られているが、本発明は上記のいずれの付加により重合されたポリブタジエンでもよい。これらの中でも、所望のムーニー粘度を得る観点から、1,4-ポリブタジエンが主成分であることがより好ましい。
 なお、1,4-ポリブタジエンの含有量は、50質量%以上であることが好ましく、65質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、90質量%以上であることが特に好ましい。
 なお、cis体とtrans体の含有量は特に制限はなく、所望のムーニー粘度の範囲で適宜選択すればよいが、ゴム弾性を発現させる観点から、cis体が好ましく、cis-1,4-ポリブタジエンの含有量が50質量%以上であることが好ましく、65質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、90質量%以上であることが特に好ましい。
 ポリブタジエンとしては、上市されている製品を使用してもよく、例えば、NIPOL BRシリーズ(日本ゼオン株式会社製)、UBEPOL BRシリーズ(宇部興産株式会社製)等が例示される。
Butadiene is known to be polymerized by 1,2- or 1,4-addition depending on the catalyst and reaction conditions, but the present invention may be polybutadiene polymerized by any of the above additions. Among these, from the viewpoint of obtaining a desired Mooney viscosity, it is more preferable that 1,4-polybutadiene is the main component.
The content of 1,4-polybutadiene is preferably 50% by mass or more, more preferably 65% by mass or more, further preferably 80% by mass or more, and 90% by mass or more. It is particularly preferred.
The content of the cis body and the trans body is not particularly limited and may be appropriately selected within a desired Mooney viscosity range. However, from the viewpoint of developing rubber elasticity, the cis body is preferable, and cis-1,4-polybutadiene is preferable. The content of is preferably 50% by mass or more, more preferably 65% by mass or more, still more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
As the polybutadiene, commercially available products may be used, and examples thereof include the NIPOL BR series (manufactured by Zeon Corporation) and the UBEPOL BR series (manufactured by Ube Industries).
 一方、エチレン-プロピレン-ジエン共重合体(EPDM)は、ムーニー粘度ML1+4(100℃)が25~90であるポリマーであるのが好ましい。なお、ムーニー粘度ML1+4(100℃)は、ASTM D 1646の規定に準じて測定される値である。
 また、EPDMは、エチレン含量が40~70質量%であるポリマーであるのが好ましく、ジエン含量が1~20質量%であるポリマーであるのが好ましい。
 また、EPDMのジエン成分としては、例えば、ジシクロペンタジエン(DCPD)、5-エチリデン-2-ノルボルネン、1,4ヘキサジエン等が挙げられる。
On the other hand, the ethylene-propylene-diene copolymer (EPDM) is preferably a polymer having a Mooney viscosity ML 1 + 4 (100 ° C.) of 25 to 90. The Mooney viscosity ML 1 + 4 (100 ° C.) is a value measured in accordance with ASTM D 1646.
EPDM is preferably a polymer having an ethylene content of 40 to 70% by mass, and is preferably a polymer having a diene content of 1 to 20% by mass.
Examples of the diene component of EPDM include dicyclopentadiene (DCPD), 5-ethylidene-2-norbornene, and 1,4 hexadiene.
 本発明においては、ジエン系ポリマーは、カレンダーロールによりシート成形したレリーフ形成層の引張強度の観点から、重量平均分子量は200,000以上であることが好ましく、300,000~2,000,000であることがより好ましく、300,000~1,500,000であることが更に好ましく、300,000~700,000であることが特に好ましい。
 ここで、重量平均分子量は、ゲル浸透クロマトグラフィー法(GPC)にて測定され、標準ポリスチレンで換算して求められる。具体的には、例えば、GPCは、HLC-8220GPC(東ソー株式会社製)を用い、カラムとして、TSKgeL Super HZM-H、TSKgeL SuperHZ4000、TSKgeL SuperHZ2000(東ソー株式会社製、4.6mmID×15cm)を3本用い、溶離液としてTHF(テトラヒドロフラン)を用いる。また、条件としては、試料濃度を0.35質量%、流速を0.35mL/min、サンプル注入量を10μL、測定温度を40℃とし、IR検出器を用いて行う。また、検量線は、東ソー株式会社製「標準試料TSK standard,polystyrene」:「F-40」、「F-20」、「F-4」、「F-1」、「A-5000」、「A-2500」、「A-1000」、「n-プロピルベンゼン」の8サンプルから作製する。
In the present invention, the diene polymer preferably has a weight average molecular weight of 200,000 or more, from 300,000 to 2,000,000, from the viewpoint of the tensile strength of the relief forming layer formed into a sheet by a calender roll. More preferred is 300,000 to 1,500,000, still more preferred is 300,000 to 700,000.
Here, the weight average molecular weight is measured by a gel permeation chromatography method (GPC), and is calculated in terms of standard polystyrene. Specifically, for example, GPC uses HLC-8220GPC (manufactured by Tosoh Corporation), and 3 columns of TSKgeL Super HZM-H, TSKgeL SuperHZ4000, TSKgeL SuperHZ2000 (4.6 mm ID × 15 cm) manufactured by Tosoh Corporation. In this use, THF (tetrahydrofuran) is used as an eluent. As conditions, the sample concentration is 0.35% by mass, the flow rate is 0.35 mL / min, the sample injection amount is 10 μL, the measurement temperature is 40 ° C., and an IR detector is used. The calibration curve is “Standard sample TSK standard, polystyrene” manufactured by Tosoh Corporation: “F-40”, “F-20”, “F-4”, “F-1”, “A-5000”, “ It is prepared from 8 samples of “A-2500”, “A-1000” and “n-propylbenzene”.
 また、本発明においては、ジエン系ポリマーのムーニー粘度は、耐刷性の観点から、20以上であることが好ましく、25以上であることがより好ましく、35以上であることが更に好ましい。
 同様に、ジエン系ポリマーのムーニー粘度は、溶剤溶解性や混合時の取り扱いの簡便さから、90以下であることが好ましく、70以下であることがより好ましく、60以下であることが更に好ましい。
 ここで、ムーニー粘度は、JIS K6300-1に準拠して測定した値である。具体的には、温度制御が可能なダイ間に円筒状の空間を形成して試料室とすると共に、その試料室の中心部にローターを配置し、試料室内に被測定試料を充填してその温度を所定の温度に保った状態で、ローターを規定回転数で回転させ、溶融した試料の粘性抵抗によって生じるローターの反トルクをロードセルで検出することによって測定される。なお、本発明で用いるムーニー粘度の値は、L型ローターを用いて、100℃で1分間の予熱期間をおいてローターを回転させ、4分後のムーニー粘度(ML1+4)を示している。
In the present invention, the Mooney viscosity of the diene polymer is preferably 20 or more, more preferably 25 or more, and still more preferably 35 or more, from the viewpoint of printing durability.
Similarly, the Mooney viscosity of the diene polymer is preferably 90 or less, more preferably 70 or less, and still more preferably 60 or less, from the standpoint of solvent solubility and ease of handling during mixing.
Here, the Mooney viscosity is a value measured according to JIS K6300-1. Specifically, a cylindrical space is formed between dies capable of temperature control to form a sample chamber, a rotor is disposed in the center of the sample chamber, and a sample to be measured is filled into the sample chamber. While maintaining the temperature at a predetermined temperature, the rotor is rotated at a specified rotational speed, and the rotor counter torque generated by the viscous resistance of the molten sample is detected by a load cell. The Mooney viscosity value used in the present invention indicates the Mooney viscosity (ML1 + 4) after 4 minutes by rotating the rotor using an L-shaped rotor at a preheating period of 1 minute at 100 ° C.
 ジエン系ポリマーの第2樹脂組成物中の含有量は、全固形分に対して、5~90質量%であることが好ましく、15~85質量%であることがより好ましく、30~80質量%であることが更に好ましい。ジエン系ポリマーの含有量が上記範囲内であると、彫刻カスのリンス性に優れ、インキ転移性に優れるレリーフ層が得られるので好ましい。 The content of the diene polymer in the second resin composition is preferably 5 to 90% by mass, more preferably 15 to 85% by mass, and more preferably 30 to 80% by mass with respect to the total solid content. More preferably. It is preferable for the content of the diene polymer to be in the above range since a relief layer having excellent engraving residue rinsing properties and ink transfer properties can be obtained.
 <熱架橋剤>
 第2樹脂組成物に含有する熱架橋剤は特に限定されず、従来公知の熱架橋剤(いわゆる加硫剤)を制限なく使用することができる。
 ここで、熱架橋剤とは、光ではなく熱の作用で架橋反応を進行させる化合物をいい、例えば、有機過酸化物、イオウ系化合物、イソシアネート系架橋剤、エポキシ樹脂等が挙げられる。
 これらのうち、反応速度(架橋反応)が速い理由から、ラジカルを生成して架橋を進行させる熱架橋剤であるのが好ましく、具体的には、後述する有機過酸化物およびイオウ系化合物からなる群から選択される少なくとも1種であるのが好ましい。
<Thermal crosslinking agent>
The thermal crosslinking agent contained in the second resin composition is not particularly limited, and a conventionally known thermal crosslinking agent (so-called vulcanizing agent) can be used without limitation.
Here, the thermal cross-linking agent refers to a compound that advances a cross-linking reaction by the action of heat rather than light, and examples thereof include organic peroxides, sulfur-based compounds, isocyanate-based cross-linking agents, and epoxy resins.
Among these, a thermal cross-linking agent that generates radicals and proceeds with cross-linking is preferable because of its high reaction rate (cross-linking reaction). Specifically, it is composed of an organic peroxide and a sulfur-based compound described later. It is preferably at least one selected from the group.
 (有機過酸化物)
 有機過酸化物としては、具体的には、例えば、ジクミルペルオキシド(10時間半減期温度:116℃)、α,α’-ジ(t-ブチルパーオキシ)ジイソプロピルベンゼン(10時間半減期温度:119℃)、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(10時間半減期温度:118℃)等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
(Organic peroxide)
Specific examples of the organic peroxide include dicumyl peroxide (10-hour half-life temperature: 116 ° C.), α, α′-di (t-butylperoxy) diisopropylbenzene (10-hour half-life temperature: 119 ° C.), 2,5-dimethyl-2,5-di (t-butylperoxy) hexane (10-hour half-life temperature: 118 ° C.), etc., and these may be used alone. More than one species may be used in combination.
 本発明において、有機過酸化物の形態としては、原体のまま使用することも可能であるが、取扱い上の問題(危険性、作業性など)から、原体を炭酸カルシウムなどの無機フィラーに吸着させた濃度40wt%の希釈品(非危険物、粉状)や更に、混練時の粉立ち防止、ポリマーへの分散性改善を目的としたマスターバッチタイプの希釈品をより好ましく用いることができる。
 原体としては、例えば、パークミルD(日油株式会社製)、PerkadoxBC-FF(化薬アクゾ株式会社製)、ルペロックスDC(アルケマ吉富株式会社製)、パーブチルP(日油株式会社製)、パーカドックス14(化薬アクゾ株式会社製)、ルペロックスF(アルケマ吉富株式会社製)、ルペロックスF90P(アルケマ吉富株式会社製)、パーヘキサ25B(日油株式会社製)、カヤヘキサAD(化薬アクゾ株式会社製)、ルペロックス101(アルケマ吉富株式会社製)等を用いることができるが、これらに限定されるものではない。
 また、希釈品としては、例えば、パークミルD-40(日油株式会社製:不活性充填剤希釈品)、パークミルD-40MB(日油株式会社製:シリカ/ポリマー他希釈品)、カヤクミルD-40C(化薬アクゾ株式会社製:炭酸カルシウム希釈品)、カヤクミルD-40MB-S(化薬アクゾ株式会社製:ゴムマスターバッチ)、カヤクミルD-40MB(化薬アクゾ株式会社製:ゴムマスターバッチ)、パーブチルP-40(日油株式会社製:不活性充填剤希釈品)、パーブチルP-40MB(日油株式会社製:シリカ/ポリマー他希釈品)、パーカドックス14/40(化薬アクゾ株式会社製:炭酸カルシウム希釈品)、パーカドックス14-40C(化薬アクゾ株式会社製:炭酸カルシウム希釈品)、ルペロックスF40(アルケマ吉富株式会社製)、パーヘキサ25B-40(日油株式会社製:シリカ他希釈品)、カヤヘキサAD-40C(化薬アクゾ株式会社製:ケイ酸カルシウム希釈品)、トリゴノックス101-40MB(化薬アクゾ株式会社製:ゴムマスターバッチ)、ルペロックス101XL(アルケマ吉富株式会社製)等を用いることができるが、これらに限定されるものではない。
In the present invention, the form of the organic peroxide can be used as it is, but from the viewpoint of handling (danger, workability, etc.), the raw material is converted into an inorganic filler such as calcium carbonate. Diluted products with a concentration of 40 wt% (non-dangerous materials, powder), and master batch type diluted products for the purpose of preventing dusting during kneading and improving dispersibility in polymers can be more preferably used. .
For example, Park Mill D (manufactured by NOF Corporation), Perkadox BC-FF (manufactured by Kayaku Akzo Corporation), Luperox DC (manufactured by Arkema Yoshitomi Corporation), Perbutyl P (manufactured by NOF Corporation), Parka Docks 14 (manufactured by Kayaku Akzo Co., Ltd.), Lupelox F (manufactured by Arkema Yoshitomi Co., Ltd.), Lupelox F90P (manufactured by Arkema Yoshitomi Co., Ltd.), Perhexa 25B (manufactured by NOF Corporation), Kayahexa AD (manufactured by Kayaku Akzo Corporation) ), Lupelox 101 (manufactured by Arkema Yoshitomi Co., Ltd.) or the like can be used, but is not limited thereto.
Examples of the diluted product include, for example, Park Mill D-40 (manufactured by NOF Corporation: diluted inert filler), Park Mill D-40MB (manufactured by NOF Corporation: diluted silica / polymer, etc.), Kayak Mill D- 40C (manufactured by Kayaku Akzo Co., Ltd .: calcium carbonate diluted product), Kayak Mill D-40MB-S (manufactured by Kayaku Akzo Co., Ltd .: rubber master batch), Kayaku Mill D-40MB (manufactured by Kayaku Akzo Co., Ltd .: rubber master batch) Perbutyl P-40 (manufactured by NOF Corporation: diluted inert filler), PERBUTYL P-40MB (manufactured by NOF Corporation: silica / polymer and other diluted products), Perkadox 14/40 (Kayaku Akzo Corporation) Manufactured by: calcium carbonate diluted product), Parka dox 14-40C (manufactured by Kayaku Akzo Co., Ltd .: calcium carbonate diluted product), Luperox F40 (Arkemakichi) Co., Ltd.), Perhexa 25B-40 (manufactured by NOF Corporation: Silica and other diluted products), Kayahexa AD-40C (manufactured by Kayaku Akzo Co., Ltd .: calcium silicate diluted product), Trigonox 101-40MB (Kayaku Akzo Stock) (Manufactured by company: rubber master batch), Lupelox 101XL (manufactured by Arkema Yoshitomi Co., Ltd.) and the like can be used, but are not limited thereto.
 (イオウ系化合物)
 イオウ系化合物としては、例えば、イオウ(元素状硫黄)、塩化イオウ、二塩化イオウ、メルカプト化合物、スルフィド化合物、ジスルフィド化合物、ポリスルフィド化合物、チウラム化合物、チオカルバミン酸化合物、多官能メルカプト化合物等が挙げられ、中でも、イオウ、塩化イオウ、二塩化イオウ、ジスルフィド化合物、チウラム化合物、チオカルバミン酸化合物、多官能メルカプト化合物が好適に挙げられる。
(Sulfur compounds)
Examples of sulfur compounds include sulfur (elemental sulfur), sulfur chloride, sulfur dichloride, mercapto compounds, sulfide compounds, disulfide compounds, polysulfide compounds, thiuram compounds, thiocarbamic acid compounds, polyfunctional mercapto compounds, and the like. Among these, sulfur, sulfur chloride, sulfur dichloride, disulfide compounds, thiuram compounds, thiocarbamic acid compounds, and polyfunctional mercapto compounds are preferred.
 このようなイオウ系化合物の具体例としては、イオウ、塩化イオウ、二塩化イオウ、モルホリンジスルフィド、アルキルフェノールジスルフィド、テトラメチルチウラムジスルフィド、ジメチルジチオカルバミン酸セレン、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールテトラキスチオプロピオネート、トリス(3-メルカプトブチルオキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサキスチオプロピオネート等が挙げられる。
 これらのうち、イオウ、アルキルフェノールジスルフィド、ペンタエリスリトールテトラキス(3-メルカプトブチレート)が好ましく、アルキルフェニールジスルフィド、ペンタエリスリトールテトラキス(3-メルカプトブチレート)がより好ましい。
Specific examples of such sulfur compounds include sulfur, sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, tetramethylthiuram disulfide, selenium dimethyldithiocarbamate, pentaerythritol tetrakis (3-mercaptobutyrate), pentaerythritol. Examples thereof include tetrakisthiopropionate, tris (3-mercaptobutyloxyethyl) isocyanurate, dipentaerythritol hexakisthiopropionate, and the like.
Of these, sulfur, alkylphenol disulfide, and pentaerythritol tetrakis (3-mercaptobutyrate) are preferred, and alkylphenyl disulfide and pentaerythritol tetrakis (3-mercaptobutyrate) are more preferred.
 本発明においては、熱架橋剤の含有量は、架橋後のレリーフ形成層の架橋度、すなわち、架橋レリーフ形成層の硬度の調整の観点から、第2樹脂組成物に含有するジエン系ポリマー100質量部に対して0.1~10質量部であることが好ましく、0.5~3質量部であることがより好ましい。 In the present invention, the content of the thermal crosslinking agent is 100 masses of the diene polymer contained in the second resin composition from the viewpoint of adjusting the degree of crosslinking of the relief forming layer after crosslinking, that is, the hardness of the crosslinked relief forming layer. The amount is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 3 parts by mass with respect to parts.
 <任意の添加剤>
 第2樹脂組成物は、ジエン系ポリマーおよび熱架橋剤以外の任意の添加剤として、例えば、重合性化合物、重合開始剤、光熱変換材料などを含有してもよい。
<Optional additives>
The second resin composition may contain, for example, a polymerizable compound, a polymerization initiator, a photothermal conversion material, and the like as optional additives other than the diene polymer and the thermal crosslinking agent.
 (重合性化合物)
 重合性化合物としては、例えば、エチレン性不飽和結合を有する化合物(以下、「エチレン性不飽和化合物」という。)であるのが好ましい。
(Polymerizable compound)
The polymerizable compound is preferably, for example, a compound having an ethylenically unsaturated bond (hereinafter referred to as “ethylenically unsaturated compound”).
 上記エチレン性不飽和化合物としては、単官能エチレン性不飽和化合物であっても、多官能エチレン性不飽和化合物であってもよいが、多官能エチレン性不飽和化合物であることが好ましい。具体的には、多官能エチレン性不飽和化合物としては、末端エチレン性不飽和基を2~20個有する化合物が好ましい。このような化合物群は当産業分野において広く知られるものであり、本発明においてはこれらを特に制限なく用いることができる。 The ethylenically unsaturated compound may be a monofunctional ethylenically unsaturated compound or a polyfunctional ethylenically unsaturated compound, but is preferably a polyfunctional ethylenically unsaturated compound. Specifically, the polyfunctional ethylenically unsaturated compound is preferably a compound having 2 to 20 terminal ethylenically unsaturated groups. Such a compound group is widely known in this industrial field, and in the present invention, these can be used without particular limitation.
 また、上記エチレン性不飽和化合物は、上述したジエン系ポリマー以外のエチレン性不飽和化合物であり、分子量1,000未満の化合物であるのが好ましい。
 多官能エチレン性不飽和化合物におけるエチレン不飽和基が由来する化合物の例としては、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸など)や、そのエステル類、アミド類が挙げられ、好ましくは、不飽和カルボン酸と脂肪族多価アルコール化合物とのエステル類、不飽和カルボン酸と脂肪族多価アミン化合物とのアミド類が用いられる。
 また、ヒドロキシ基や、アミノ基等の求核性置換基を有する不飽和カルボン酸エステル、アミド類と多官能イソシアネート類、エポキシ類との付加反応物、多官能のカルボン酸との脱水縮合反応物等も好適に使用される。
 また、イソシアナト基やエポキシ基等の親電子性置換基を有する、不飽和カルボン酸エステル、アミド類と単官能又は多官能のアルコール類、アミン類との付加反応物、ハロゲン基や、トシルオキシ基、等の脱離性置換基を有する、不飽和カルボン酸エステル、アミド類と単官能若しくは多官能のアルコール類、アミン類との置換反応物も好適である。
 また、別の例として、上記の不飽和カルボン酸の代わりに、ビニル化合物、アリル化合物、不飽和ホスホン酸、スチレン等に置き換えた化合物群を使用することも可能である。
The ethylenically unsaturated compound is an ethylenically unsaturated compound other than the above-described diene polymer, and is preferably a compound having a molecular weight of less than 1,000.
Examples of compounds derived from an ethylenically unsaturated group in a polyfunctional ethylenically unsaturated compound include unsaturated carboxylic acids (eg, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.) Examples include esters and amides. Preferably, esters of unsaturated carboxylic acids and aliphatic polyhydric alcohol compounds, and amides of unsaturated carboxylic acids and aliphatic polyvalent amine compounds are used.
In addition, unsaturated carboxylic acid esters having nucleophilic substituents such as hydroxy groups and amino groups, amides and polyfunctional isocyanates, addition reaction products of epoxies, and dehydration condensation reaction products of polyfunctional carboxylic acids Etc. are also preferably used.
In addition, an unsaturated carboxylic acid ester having an electrophilic substituent such as an isocyanato group or an epoxy group, an amide and a monofunctional or polyfunctional alcohol, an addition reaction product of an amine, a halogen group, a tosyloxy group, A substituted reaction product of unsaturated carboxylic acid ester, amide and monofunctional or polyfunctional alcohols or amines having a leaving substituent such as the above is also suitable.
As another example, a compound group in which a vinyl compound, an allyl compound, an unsaturated phosphonic acid, styrene, or the like is substituted for the above unsaturated carboxylic acid can be used.
 第2樹脂組成物に含むことができる、エチレン性不飽和基化合物としては、反応性の観点から、アクリレート化合物、メタクリレート化合物、ビニル化合物、及び、アリル化合物が好ましい。 As the ethylenically unsaturated group compound that can be contained in the second resin composition, an acrylate compound, a methacrylate compound, a vinyl compound, and an allyl compound are preferable from the viewpoint of reactivity.
 アリル化合物としては、ポリエチレングリコールジアリルエーテル、1,4-シクロヘキサンジアリルエーテル、1,4-ジエチルシクロヘキシルジアリルエーテル、1,8-オクタンジアリルエーテル、トリメチロールプロパンジアリルエーテル、トリメチロールエタントリアリルエーテル、ペンタエリスリトールトリアリルエーテル、ペンタエリスリトールテトラアリルエーテル、ジペンタエリスリトールペンタアリルエーテル、ジペンタエリスリトールヘキサアリルエーテル、フタル酸ジアリル、テレフタル酸ジアリル、イソフタル酸ジアリル、イソシアヌル酸トリアリル、シアヌル酸トリアリル、リン酸トリアリル等が挙げられる。
 これらの中でも、アリル化合物としては、イソシアヌル酸トリアリル、及び、シアヌル酸トリアリルが特に好ましい。
Examples of allyl compounds include polyethylene glycol diallyl ether, 1,4-cyclohexane diallyl ether, 1,4-diethylcyclohexyl diallyl ether, 1,8-octane diallyl ether, trimethylol propane diallyl ether, trimethylol ethane triallyl ether, pentaerythritol. Triaryl ether, pentaerythritol tetraallyl ether, dipentaerythritol pentaallyl ether, dipentaerythritol hexaallyl ether, diallyl phthalate, diallyl terephthalate, diallyl isophthalate, triallyl isocyanurate, triallyl cyanurate, triallyl phosphate, etc. It is done.
Among these, as the allyl compound, triallyl isocyanurate and triallyl cyanurate are particularly preferable.
 脂肪族多価アルコール化合物と不飽和カルボン酸とのエステルのモノマーの具体例としては、アクリル酸エステルとして、エチレングリコールジアクリレート、トリエチレングリコールジアクリレート、1,3-ブタンジオールジアクリレート、テトラメチレングリコールジアクリレート、プロピレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリメチロールエタントリアクリレート、ヘキサンジオールジアクリレート、1,4-シクロヘキサンジオールジアクリレート、テトラエチレングリコールジアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールジアクリレート、ジペンタエリスリトールヘキサアクリレート、ソルビトールトリアクリレート、ソルビトールテトラアクリレート、ソルビトールペンタアクリレート、ソルビトールヘキサアクリレート、トリ(アクリロイルオキシエチル)イソシアヌレート、ポリエステルアクリレートオリゴマー等が挙げられる。 Specific examples of the ester monomer of an aliphatic polyhydric alcohol compound and an unsaturated carboxylic acid include acrylic acid esters such as ethylene glycol diacrylate, triethylene glycol diacrylate, 1,3-butanediol diacrylate, and tetramethylene glycol. Diacrylate, propylene glycol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolpropane tri (acryloyloxypropyl) ether, trimethylolethane triacrylate, hexanediol diacrylate, 1,4-cyclohexanediol diacrylate , Tetraethylene glycol diacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate , Pentaerythritol tetraacrylate, dipentaerythritol diacrylate, dipentaerythritol hexaacrylate, sorbitol triacrylate, sorbitol tetraacrylate, sorbitol pentaacrylate, sorbitol hexaacrylate, tri (acryloyloxyethyl) isocyanurate, polyester acrylate oligomer, etc. It is done.
 メタクリル酸エステルとしては、テトラメチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、エチレングリコールジメタクリレート、1,3-ブタンジオールジメタクリレート、ヘキサンジオールジメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールジメタクリレート、ジペンタエリスリトールヘキサメタクリレート、ソルビトールトリメタクリレート、ソルビトールテトラメタクリレート、ビス〔p-(3-メタクリルオキシ-2-ヒドロキシプロポキシ)フェニル〕ジメチルメタン、ビス〔p-(メタクリルオキシエトキシ)フェニル〕ジメチルメタン等が挙げられる。 Methacrylic acid esters include tetramethylene glycol dimethacrylate, triethylene glycol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, ethylene glycol dimethacrylate, 1,3-butanediol dimethacrylate, Hexanediol dimethacrylate, pentaerythritol dimethacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol dimethacrylate, dipentaerythritol hexamethacrylate, sorbitol trimethacrylate, sorbitol tetramethacrylate, bis [p- (3-methacryloxy- 2-hydroxyp Epoxy) phenyl] dimethyl methane, bis [p- (methacryloxyethoxy) phenyl] dimethyl methane, and the like.
 イタコン酸エステルとしては、エチレングリコールジイタコネート、プロピレングリコールジイタコネート、1,3-ブタンジオールジイタコネート、1,4-ブタンジオールジイタコネート、テトラメチレングリコールジイタコネート、ペンタエリスリトールジイタコネート、ソルビトールテトライタコネート等が挙げられる。 Itaconic acid esters include ethylene glycol diitaconate, propylene glycol diitaconate, 1,3-butanediol diitaconate, 1,4-butanediol diitaconate, tetramethylene glycol diitaconate, pentaerythritol diitaconate Sorbitol tetritaconate and the like.
 クロトン酸エステルとしては、エチレングリコールジクロトネート、テトラメチレングリコールジクロトネート、ペンタエリスリトールジクロトネート、ソルビトールテトラクロトネート等が挙げられる。 Examples of crotonic acid esters include ethylene glycol dicrotonate, tetramethylene glycol dicrotonate, pentaerythritol dicrotonate, and sorbitol tetracrotonate.
 イソクロトン酸エステルとしては、エチレングリコールジイソクロトネート、ペンタエリスリトールジイソクロトネート、ソルビトールテトライソクロトネート等が挙げられる。 Examples of isocrotonic acid esters include ethylene glycol diisocrotonate, pentaerythritol diisocrotonate, and sorbitol tetraisocrotonate.
 マレイン酸エステルとしては、エチレングリコールジマレート、トリエチレングリコールジマレート、ペンタエリスリトールジマレート、ソルビトールテトラマレート等が挙げられる。 Examples of maleic acid esters include ethylene glycol dimaleate, triethylene glycol dimaleate, pentaerythritol dimaleate, and sorbitol tetramaleate.
 その他のエステルの例として、例えば、特公昭46-27926号、特公昭51-47334号、特開昭57-196231号各公報記載の脂肪族アルコール系エステル類や、特開昭59-5240号、特開昭59-5241号、特開平2-226149号各公報記載の芳香族系骨格を有するもの、特開平1-165613号公報記載のアミノ基を含有するもの等も好適に用いられる。
 上記エステルモノマーは混合物としても使用することができる。
Examples of other esters include aliphatic alcohol esters described in JP-B-46-27926, JP-B-51-47334, JP-A-57-196231, JP-A-59-5240, Those having an aromatic skeleton described in JP-A-59-5241 and JP-A-2-226149 and those containing an amino group described in JP-A-1-165613 are also preferably used.
The ester monomers can also be used as a mixture.
 また、脂肪族多価アミン化合物と不飽和カルボン酸とのアミドのモノマーの具体例としては、メチレンビスアクリルアミド、メチレンビスメタクリルアミド、1,6-ヘキサメチレンビスアクリルアミド、1,6-ヘキサメチレンビスメタクリルアミド、ジエチレントリアミントリスアクリルアミド、キシリレンビスアクリルアミド、キシリレンビスメタクリルアミド等が挙げられる。 Specific examples of amide monomers of an aliphatic polyvalent amine compound and an unsaturated carboxylic acid include methylene bisacrylamide, methylene bismethacrylamide, 1,6-hexamethylene bisacrylamide, 1,6-hexamethylene bismethacrylate. Examples include amide, diethylenetriamine trisacrylamide, xylylene bisacrylamide, and xylylene bismethacrylamide.
 その他の好ましいアミド系モノマーの例としては、特公昭54-21726号公報記載のシクロへキシレン構造を有すものを挙げることができる。 Examples of other preferable amide monomers include those having a cyclohexylene structure described in JP-B No. 54-21726.
 また、イソシアネートと水酸基の付加反応を用いて製造されるウレタン系付加重合性化合物も好適であり、そのような具体例としては、例えば、特公昭48-41708号公報中に記載されている1分子に2個以上のイソシアナト基を有するポリイソシアネート化合物に、下記式(i)で示される水酸基を含有するビニルモノマーを付加させた1分子中に2個以上の重合性ビニル基を含有するビニルウレタン化合物等が挙げられる。 In addition, urethane-based addition polymerizable compounds produced by using an addition reaction of isocyanate and hydroxyl group are also suitable. Specific examples thereof include, for example, one molecule described in JP-B-48-41708. A vinyl urethane compound containing two or more polymerizable vinyl groups in one molecule obtained by adding a vinyl monomer containing a hydroxyl group represented by the following formula (i) to a polyisocyanate compound having two or more isocyanato groups. Etc.
 CH=C(R)COOCHCH(R’)OH   (i)
 (ただし、R及びR’は、それぞれ、H又はCHを示す。)
CH 2 = C (R) COOCH 2 CH (R ') OH (i)
(However, R and R ′ each represent H or CH 3. )
 また、特開昭51-37193号、特公平2-32293号、特公平2-16765号各公報に記載されているようなウレタンアクリレート類や、特公昭58-49860号、特公昭56-17654号、特公昭62-39417号、特公昭62-39418号各公報記載のエチレンオキサイド系骨格を有するウレタン化合物類も好適である。 Further, urethane acrylates such as those described in JP-A-51-37193, JP-B-2-32293, JP-B-2-16765, JP-B-58-49860, JP-B-56-17654 Urethane compounds having an ethylene oxide skeleton described in JP-B-62-39417 and JP-B-62-39418 are also suitable.
 更に、特開昭63-277653号、特開昭63-260909号、特開平1-105238号各公報に記載される、分子内にアミノ構造を有する付加重合性化合物類を用いることによって、短時間で硬化組成物を得ることができる。 Further, by using addition polymerizable compounds having an amino structure in the molecule described in JP-A-63-277653, JP-A-63-260909, and JP-A-1-105238, a short time can be obtained. A cured composition can be obtained.
 その他の例としては、特開昭48-64183号、特公昭49-43191号、特公昭52-30490号各公報に記載されているようなポリエステルアクリレート類、エポキシ樹脂と(メタ)アクリル酸を反応させたエポキシアクリレート類等の多官能のアクリレートやメタクリレートを挙げることができる。また、特公昭46-43946号、特公平1-40337号、特公平1-40336号各公報記載の特定の不飽和化合物や、特開平2-25493号公報記載のビニルホスホン酸系化合物等も挙げることができる。また、ある場合には、特開昭61-22048号公報記載のペルフルオロアルキル基を含有する構造が好適に使用される。更に、日本接着協会誌vol.20、No.7、300~308ページ(1984年)に光硬化性モノマー及びオリゴマーとして紹介されているものも使用することができる。 Other examples include reacting polyester acrylates, epoxy resins and (meth) acrylic acid as described in JP-A-48-64183, JP-B-49-43191, JP-B-52-30490. And polyfunctional acrylates and methacrylates such as epoxy acrylates. Further, specific unsaturated compounds described in JP-B-46-43946, JP-B-1-40337, JP-B-1-40336, and vinylphosphonic acid-based compounds described in JP-A-2-25493 are also included. be able to. In some cases, a structure containing a perfluoroalkyl group described in JP-A-61-22048 is preferably used. Furthermore, the Japan Adhesion Association magazine vol. 20, no. 7, pages 300 to 308 (1984), which are introduced as photocurable monomers and oligomers, can also be used.
 ビニル化合物としては、ブタンジオール-1,4-ジビニルエーテル、エチレングリコールジビニルエーテル、1,2-プロパンジオールジビニルエーテル、1,3-プロパンジオールジビニルエーテル、1,3-ブタンジオールジビニルエーテル、1,4-ブタンジオールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、トリメチロールエタントリビニルエーテル、ヘキサンジオールジビニルエーテル、テトラエチレングリコールジビニルエーテル、ペンタエリスリトールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ソルビトールテトラビニルエーテル、ソルビトールペンタビニルエーテル、エチレングリコールジエチレンビニルエーテル、エチレングリコールジプロピレンビニルエーテル、トリメチロールプロパントリエチレンビニルエーテル、トリメチロールプロパンジエチレンビニルエーテル、ペンタエリスリトールジエチレンビニルエーテル、ペンタエリスリトールトリエチレンビニルエーテル、ペンタエリスリトールテトラエチレンビニルエーテル、1,1,1-トリス〔4-(2-ビニロキシエトキシ)フェニル〕エタン、ビスフェノールAジビニロキシエチルエーテル、アジピン酸ジビニル等が挙げられる。 Examples of the vinyl compound include butanediol-1,4-divinyl ether, ethylene glycol divinyl ether, 1,2-propanediol divinyl ether, 1,3-propanediol divinyl ether, 1,3-butanediol divinyl ether, 1,4 -Butanediol divinyl ether, neopentyl glycol divinyl ether, trimethylolpropane trivinyl ether, trimethylol ethane trivinyl ether, hexanediol divinyl ether, tetraethylene glycol divinyl ether, pentaerythritol divinyl ether, pentaerythritol trivinyl ether, pentaerythritol tetravinyl ether, Sorbitol tetravinyl ether, sorbitol pentavinyl ether, ethylene glycol Rudiethylene vinyl ether, ethylene glycol dipropylene vinyl ether, trimethylolpropane triethylene vinyl ether, trimethylolpropane diethylene vinyl ether, pentaerythritol diethylene vinyl ether, pentaerythritol triethylene vinyl ether, pentaerythritol tetraethylene vinyl ether, 1,1,1-tris [4- (2-vinyloxyethoxy) phenyl] ethane, bisphenol A divinyloxyethyl ether, divinyl adipate and the like.
 上記重合性化合物は、1種単独で含有しても、2種以上を含有してもよい。
 上記重合性化合物を含有する場合の含有量は、第2樹脂組成物の全質量に対し、0.1~30質量%であることが好ましく、1~20質量%であることがより好ましい。
The said polymeric compound may contain individually by 1 type, or may contain 2 or more types.
When the polymerizable compound is contained, the content is preferably 0.1 to 30% by mass, and more preferably 1 to 20% by mass with respect to the total mass of the second resin composition.
 (重合開始剤)
 第2樹脂組成物は、上述した重合性化合物(特にエチレン性不飽和化合物)を含有する場合は、重合開始剤を併用するのが好ましい。
 上記重合開始剤は、従来公知の重合開始剤を制限なく使用することができる。
 また、上記重合開始剤は、ラジカル重合開始剤であっても、カチオン重合開始剤であってもよいが、ラジカル重合開始剤であることが好ましい。
 また、上記重合開始剤は、熱重合開始剤であっても、光重合開始剤であってもよいが、熱重合開始剤であることが好ましい。
(Polymerization initiator)
When the 2nd resin composition contains the polymeric compound (especially ethylenically unsaturated compound) mentioned above, it is preferable to use a polymerization initiator together.
A conventionally well-known polymerization initiator can be used for the said polymerization initiator without a restriction | limiting.
The polymerization initiator may be a radical polymerization initiator or a cationic polymerization initiator, but is preferably a radical polymerization initiator.
The polymerization initiator may be a thermal polymerization initiator or a photopolymerization initiator, but is preferably a thermal polymerization initiator.
 (光熱変換材料)
 光熱変換材料としては、上述した第1樹脂組成物において必須成分として含有する光熱変換材料と同様のもの(特に、カーボンブラック)を用いることができる。
 また、任意の光熱変換材料を含有する場合の含有量は、第2樹脂組成物に含有するジエン系ポリマー100質量部に対して0.1~30質量部であることが好ましく、2~5質量部であることがより好ましい。
(Photothermal conversion material)
As a photothermal conversion material, the same thing as the photothermal conversion material contained as an essential component in the 1st resin composition mentioned above (especially carbon black) can be used.
Further, the content in the case of containing an arbitrary photothermal conversion material is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the diene polymer contained in the second resin composition, and 2 to 5 parts by mass. More preferably, it is a part.
 (その他の添加剤)
 第2樹脂組成物には、公知の各種添加剤を、本発明の効果を阻害しない範囲で適宜配合することができる。例えば、架橋助剤、シランカップリング剤、カーボンブラック以外の充填剤、ワックス、プロセス油、金属酸化物、オゾン分解防止剤、老化防止剤、重合禁止剤、着色剤等が挙げられ、これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
(Other additives)
Various known additives can be appropriately blended with the second resin composition as long as the effects of the present invention are not impaired. Examples include crosslinking aids, silane coupling agents, fillers other than carbon black, waxes, process oils, metal oxides, antiozonants, antioxidants, polymerization inhibitors, colorants, and the like. A seed may be used independently and two or more sorts may be used together.
 〔支持体〕
 本発明の印刷版原版は、必要に応じて、第1または第2架橋レリーフ形成層を支持する支持体を有していてもよい。
 支持体に使用する素材は特に限定されないが、寸法安定性の高いものが好ましく使用され、例えば、スチール、ステンレス、アルミニウムなどの金属;ポリエステル(例えば、PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、PAN(ポリアクリロニトリル))、ポリ塩化ビニルなどのプラスチック樹脂;スチレン-ブタジエンゴムなどの合成ゴム;ガラスファイバーで補強されたプラスチック樹脂(エポキシ樹脂やフェノール樹脂など);等が挙げられる。
 支持体としては、PETフィルム、PENフィルム、PIフィルム、PAフィルム、フッ素樹脂フィルム、シリコーン樹脂フィルムが好ましく用いられる。
[Support]
The printing plate precursor of the present invention may have a support for supporting the first or second crosslinked relief forming layer, if necessary.
The material used for the support is not particularly limited, but those having high dimensional stability are preferably used. For example, metals such as steel, stainless steel, and aluminum; polyester (for example, PET (polyethylene terephthalate), PBT (polybutylene terephthalate)) , PAN (polyacrylonitrile)), polyvinyl chloride and other plastic resins; styrene-butadiene rubber and other synthetic rubbers; plastic fibers reinforced with glass fibers (such as epoxy resins and phenolic resins); and the like.
As the support, PET film, PEN film, PI film, PA film, fluororesin film, and silicone resin film are preferably used.
 〔接着層〕
 第1または第2架橋レリーフ形成層を支持体上に形成する場合、両者の間には、層間の接着力を強化する目的で接着層を設けてもよい。
 接着層に用いることができる材料(接着剤)としては、例えば、I.Skeist編、「Handbook of Adhesives」、第2版(1977)に記載のものを用いることができる。
 接着層を設ける場合は、接着層を塗布した支持体を用いることで対応できる。
(Adhesive layer)
When forming the 1st or 2nd bridge | crosslinking relief forming layer on a support body, you may provide an adhesive layer between both in order to strengthen the adhesive force of an interlayer.
Examples of the material (adhesive) that can be used for the adhesive layer include I.I. Those described in the edition of Skeist, “Handbook of Adhesives”, the second edition (1977) can be used.
When providing an adhesive layer, it can respond by using the support body which apply | coated the adhesive layer.
[レーザー彫刻用フレキソ印刷版原版の製造方法]
 本発明のレーザー彫刻用フレキソ印刷版原版の製造方法(以下、「本発明の印刷版原版の製造方法」とも略す。)は、上述した本発明の印刷版原版を製造する製造方法であって、バインダーポリマーおよび光熱変換材料を含有する樹脂組成物(第1樹脂組成物)を用いて第1レリーフ形成層を形成する第1層形成工程と、ジエン系ポリマーおよび熱架橋剤を含有する樹脂組成物(第2樹脂組成物)を用いて第2レリーフ形成層を形成する第2層形成工程と、第1レリーフ形成層と第2レリーフ形成層とを接触させた状態で熱により架橋し、第1レリーフ形成層が架橋した第1架橋レリーフ形成層と第2レリーフ形成層が架橋した第2架橋レリーフ形成層とが隣接した少なくとも2層の架橋レリーフ形成層を形成する架橋工程とを有する。
 以下に、第1層形成工程および第2層形成工程(以下、これらをまとめて「層形成工程」ともいう。)ならびに架橋工程について詳述する。
[Method of manufacturing flexographic printing plate precursor for laser engraving]
The method for producing a flexographic printing plate precursor for laser engraving of the present invention (hereinafter also abbreviated as “method for producing a printing plate precursor of the present invention”) is a production method for producing the printing plate precursor of the present invention described above, A first layer forming step of forming a first relief forming layer using a resin composition (first resin composition) containing a binder polymer and a photothermal conversion material, and a resin composition containing a diene polymer and a thermal crosslinking agent The second layer forming step of forming the second relief forming layer using the (second resin composition), the first relief forming layer and the second relief forming layer are brought into contact with each other by heat, A crosslinking step of forming at least two crosslinked relief forming layers adjacent to each other, the first crosslinked relief forming layer crosslinked by the relief forming layer and the second crosslinked relief forming layer crosslinked by the second relief forming layer.
The first layer forming step and the second layer forming step (hereinafter collectively referred to as “layer forming step”) and the crosslinking step will be described in detail below.
 〔層形成工程〕
 本発明の印刷版原版の製造方法は、上述した第1樹脂組成物を用いて第1レリーフ形成層を形成する第1層形成工程と、上述した第2樹脂組成物を用いて第2レリーフ形成層を形成する第2層形成工程とを有する。
 第1レリーフ形成層および第2レリーフ形成層の形成方法としては、例えば、混練により調製した各樹脂組成物(混練物)をシート状に成形する方法等が挙げられる。
 ここで、各樹脂組成物の調製方法は特に限定されず、上述した各成分を、例えば、単軸押出機、多軸押出機、バンバリーミキサー、インターミックスミキサー、ニーダーなどの密閉式混練機や、ミキシングロール(オープンロール)などの非密閉式(オープン型)混練機などを用いて混練する方法が挙げられる。
 また、以下に詳述するシート成形は、調製した樹脂組成物を支持体上に設けた状態で実施されてもよいし、支持体がない状態で実施されてもよい。なお、本発明において、第1レリーフ形成層は、架橋後の第1架橋レリーフ形成層の厚みが10~300μmと薄いため、支持体上に設けるのが好ましく、第2レリーフ形成層は、架橋後の第2架橋レリーフ形成層の厚みが500~1600μmと厚いため、支持体がない状態で実施されてもよい。
[Layer formation process]
The method for producing a printing plate precursor according to the present invention includes a first layer forming step of forming a first relief forming layer using the first resin composition described above, and a second relief forming using the second resin composition described above. A second layer forming step of forming a layer.
As a formation method of a 1st relief forming layer and a 2nd relief forming layer, the method etc. which shape | mold each resin composition (kneaded material) prepared by kneading | mixing in a sheet form etc. are mentioned, for example.
Here, the preparation method of each resin composition is not particularly limited, each component described above, for example, a single-screw extruder, a multi-screw extruder, a Banbury mixer, an intermix mixer, a kneader or other closed kneader, Examples of the method include kneading using a non-sealing (open type) kneader such as a mixing roll (open roll).
Moreover, the sheet | seat shaping | molding mentioned in full detail below may be implemented in the state which provided the prepared resin composition on a support body, and may be implemented in the state without a support body. In the present invention, the first relief forming layer is preferably provided on the support because the thickness of the first crosslinked relief forming layer after crosslinking is as thin as 10 to 300 μm, and the second relief forming layer is preferably formed after crosslinking. Since the thickness of the second crosslinked relief forming layer is as thick as 500 to 1600 μm, it may be carried out without a support.
 <シート成形>
 調製した各樹脂組成物をシート状に成形するシート成形について説明する。
 第1樹脂組成物をシート状に成形する方法としては、例えば、第1樹脂組成物を加熱して溶融させた状態で、支持体上に塗布した後、塗膜を冷却して固化させる方法や、第1樹脂組成物を有機溶媒で溶解した溶液を調製し、支持体上に塗布した後、塗膜を乾燥して固化させる方法などが挙げられる。
 また、第1樹脂組成物をシート状に成形して第1レリーフ形成層を形成した場合、第1レリーフ形成層の厚みは、架橋後の第1架橋レリーフ形成層の厚みを10~300μmとする観点から、10~300μmとするのが好ましい。
<Sheet molding>
Sheet molding for molding each prepared resin composition into a sheet will be described.
As a method of forming the first resin composition into a sheet, for example, a method in which the first resin composition is heated and melted and applied on a support, and then the coating film is cooled and solidified. Examples of the method include preparing a solution in which the first resin composition is dissolved in an organic solvent, applying the solution on the support, and drying and solidifying the coating film.
Further, when the first relief forming layer is formed by molding the first resin composition into a sheet shape, the thickness of the first relief forming layer is 10 to 300 μm after the crosslinking. From the viewpoint, it is preferably 10 to 300 μm.
 また、第2樹脂組成物をシート状に成形する方法としては、例えば、カレンダー加工により圧延成形する方法などが挙げられる。なお、カレンダーロールは、1組のロール(上下1対の2本のロール)から複数のロールの組み合わせを有するカレンダーロールを使用することができ、製品に要求される膜厚精度に応じて、ロール数及びロール間隔(クリアランス)を設定することができる。ロール数は2本以上であり、目的に応じて適宜選択することができる。また、ロールの形状は、ロールの組み合わせの仕方により様々な形状に設定することができ、例えば4本のロールの組み合わせでは、4本が縦に並んだI型をはじめ、S型、逆L型、Z型、斜Z型など様々な配列を取らせることができる。ロール間隔は通常、最初のロール間隔を目的の膜厚より大きめに設定し、徐々に小さくし、最後のロール間隔を、出来上がりのシート膜厚が目的の膜厚になるように設定する。
 また、第2樹脂組成物をカレンダー加工によりシート状に成形し、第2レリーフ形成層を形成した場合、第2レリーフ形成層の厚みは、架橋後の第2架橋レリーフ形成層の厚みを500~1600μmとする観点から、最後のロール間隔を500~1600μmの範囲に設定するのが好ましい。
Moreover, as a method of shape | molding 2nd resin composition in a sheet form, the method etc. which carry out rolling shaping | molding by calendering are mentioned, for example. The calender roll can be a calender roll having a combination of a plurality of rolls from one set of rolls (a pair of upper and lower two rolls), and the roll can be used depending on the film thickness accuracy required for the product. The number and roll interval (clearance) can be set. The number of rolls is two or more and can be appropriately selected according to the purpose. Moreover, the shape of the roll can be set in various shapes depending on how the rolls are combined. For example, in the case of a combination of four rolls, the I type in which the four are arranged vertically, the S type, and the inverted L type. Various arrangements such as Z-type and oblique Z-type can be taken. The roll interval is usually set so that the initial roll interval is larger than the target film thickness, and gradually decreased, and the final roll interval is set so that the final sheet thickness becomes the target film thickness.
In addition, when the second resin composition is formed into a sheet by calendering to form the second relief forming layer, the thickness of the second relief forming layer is 500 to 500 mm after the crosslinking. From the standpoint of 1600 μm, the last roll interval is preferably set in the range of 500 to 1600 μm.
 〔架橋工程〕
 本発明の印刷版原版の製造方法は、第1レリーフ形成層と第2レリーフ形成層とを接触させた状態で熱により架橋し、第1レリーフ形成層が架橋した第1架橋レリーフ形成層と第2レリーフ形成層が架橋した第2架橋レリーフ形成層とが隣接した少なくとも2層の架橋レリーフ形成層を形成する架橋工程を有する。
 このように接触させた状態で熱により架橋させることにより、第2レリーフ形成層中の熱架橋剤が第1レリーフ形成層中に層間移動するため、10~300μmという厚みの薄い第1架橋レリーフ形成層を形成(架橋)することができる。
 すなわち、第1架橋レリーフ形成層の厚みが10~300μmであるため、上述した通り、第1樹脂組成物を加熱して溶融させた状態で支持体上に塗布する方法により第1レリーフ形成層を設けることが好ましいが、この方法では、第1樹脂組成物に熱架橋剤を含有させることができないため、本発明においては、隣接する第2レリーフ形成層中の熱架橋剤を第1レリーフ形成層の架橋に利用するものである。
[Crosslinking process]
In the method for producing a printing plate precursor according to the present invention, the first relief forming layer and the second relief forming layer are cross-linked by heat in a contact state, and the first relief forming layer and the first cross-linked relief forming layer are cross-linked. A crosslinking step of forming at least two crosslinked relief forming layers adjacent to the second crosslinked relief forming layer crosslinked by the two relief forming layers;
Since the thermal crosslinking agent in the second relief forming layer moves into the first relief forming layer by crosslinking with heat in such a contact state, the first crosslinked relief having a thin thickness of 10 to 300 μm is formed. Layers can be formed (crosslinked).
That is, since the thickness of the first crosslinked relief forming layer is 10 to 300 μm, as described above, the first relief forming layer is applied by a method in which the first resin composition is heated and melted and applied onto the support. However, in this method, the thermal crosslinking agent in the adjacent second relief forming layer is used as the first relief forming layer in the present invention. It is used for cross-linking.
 このような架橋は、例えば、第1レリーフ形成層と第2レリーフ形成層とを張り合わせた状態でプレスしながら加熱する方法などが挙げられる。
 ここで、プレスする圧力は、第1レリーフ形成層と第2レリーフ形成層とを張り合わせた状態の膜厚の面内におけるバラツキを抑制する観点から、1MPa~20MPaが好ましく、3MPa~12MPaがより好ましい。
 また、加熱温度は、硬化膜の強度(耐刷性)、リンス性および表面タックの観点から、100℃~200℃が好ましく、120℃~190℃がより好ましく、140℃~180℃が特に好ましい。
 また、加熱時間は、1分~100分が好ましく、3分~60分がより好ましく、5分~30分が特に好ましい。
 なお、加熱温度および加熱時間の一般的目安として、熱架橋剤の半減期1分を得る温度で加熱するならば、加熱時間は5~10分である。
Examples of such crosslinking include a method of heating while pressing in a state where the first relief forming layer and the second relief forming layer are bonded together.
Here, the pressing pressure is preferably from 1 MPa to 20 MPa, more preferably from 3 MPa to 12 MPa, from the viewpoint of suppressing in-plane variation of the film thickness in a state where the first relief forming layer and the second relief forming layer are bonded together. .
The heating temperature is preferably from 100 ° C. to 200 ° C., more preferably from 120 ° C. to 190 ° C., and particularly preferably from 140 ° C. to 180 ° C. from the viewpoints of the strength (printing durability), rinse properties and surface tack of the cured film. .
The heating time is preferably 1 minute to 100 minutes, more preferably 3 minutes to 60 minutes, and particularly preferably 5 minutes to 30 minutes.
As a general guideline for the heating temperature and heating time, if heating is performed at a temperature at which the half-life of the thermal crosslinking agent is 1 minute, the heating time is 5 to 10 minutes.
 熱架橋設備としては、熱風加熱炉、加熱プレス機(枚葉型加熱プレス機、連続型プレスコンベア)、加熱ロール等を挙げられるが特に限定するものではない。架橋工程前にカッターで目的の大きさに裁断した後に架橋する場合は、枚葉型加熱プレス機が使用される。 Examples of the thermal crosslinking equipment include, but are not limited to, a hot-air heating furnace, a heating press machine (single-wafer heating press machine, continuous press conveyor), a heating roll, and the like. When cross-linking after cutting to a desired size with a cutter before the cross-linking step, a single-wafer type heat press is used.
[フレキソ印刷版の製版方法]
 本発明のフレキソ印刷版の製版方法は、本発明の印刷版原版の製造方法によって得られたレーザー彫刻用フレキソ印刷版原版の架橋レリーフ形成層に対してレーザー彫刻を施し、レリーフ層を形成する彫刻工程を有する、製版方法である。
 また、本発明のフレキソ印刷版の製版方法は、彫刻工程の後に、レリーフ層の表面をアルカリ水溶液でリンスし、フレキソ印刷版を得るリンス工程を有しているのが好ましい。
 以下に、彫刻工程およびリンス工程について詳述する。
[How to make flexographic printing plates]
The plate making method of the flexographic printing plate of the present invention is a sculpture in which a relief layer is formed by performing laser engraving on the crosslinked relief forming layer of the flexographic printing plate precursor for laser engraving obtained by the method for producing a printing plate precursor of the present invention. It is a plate making method which has a process.
Moreover, it is preferable that the plate making method of the flexographic printing plate of the present invention has a rinsing step of rinsing the surface of the relief layer with an alkaline aqueous solution after the engraving step to obtain a flexographic printing plate.
The engraving process and the rinsing process will be described in detail below.
 〔彫刻工程〕
 本発明のフレキソ印刷版の製版方法は、第1レリーフ形成層が架橋した第1架橋レリーフ形成層と第2レリーフ形成層が架橋した第2架橋レリーフ形成層とが隣接した少なくとも2層の架橋レリーフ形成層に対してレーザー彫刻する彫刻工程を有する。
 ここで、彫刻工程は、上記架橋工程で架橋された架橋レリーフ形成層をレーザー彫刻してレリーフ層を形成する工程である。
 具体的には、架橋された架橋レリーフ形成層に対して、所望の画像に対応したレーザー光を照射して彫刻を行うことによりレリーフ層を形成することが好ましい。また、所望の画像のデジタルデータを元にコンピューターでレーザーヘッドを制御し、架橋レリーフ形成層に対して走査照射する工程が好ましく挙げられる。
 この彫刻工程には、赤外線レーザーが好ましく用いられる。赤外線レーザーが照射されると、架橋レリーフ形成層中の分子が分子振動し、熱が発生する。赤外線レーザーとして炭酸ガスレーザーやYAGレーザーのような高出力のレーザーを用いると、レーザー照射部分に大量の熱が発生し、架橋レリーフ形成層中の分子は分子切断又はイオン化されて選択的な除去、すなわち、彫刻がなされる。レーザー彫刻の利点は、彫刻深さを任意に設定できるため、構造を3次元的に制御することができる点である。例えば、微細な網点を印刷する部分は、浅く又はショルダーをつけて彫刻することで、印圧でレリーフが転倒しないようにすることができ、細かい抜き文字を印刷する溝の部分は深く彫刻することで、溝にインキが埋まりにくくなり、抜き文字つぶれを抑制することが可能となる。
 中でも、光熱変換剤の吸収波長に対応した赤外線レーザーで彫刻する場合には、より高感度で架橋レリーフ形成層の選択的な除去が可能となり、シャープな画像を有するレリーフ層が得られる。
[Engraving process]
The plate making method of the flexographic printing plate according to the present invention includes at least two crosslinked reliefs in which a first crosslinked relief forming layer obtained by crosslinking a first relief forming layer and a second crosslinked relief forming layer obtained by crosslinking a second relief forming layer are adjacent to each other. An engraving step of laser engraving the formation layer;
Here, the engraving step is a step of forming a relief layer by laser engraving the crosslinked relief forming layer crosslinked in the crosslinking step.
Specifically, it is preferable to form a relief layer by engraving a crosslinked crosslinked relief forming layer by irradiating a laser beam corresponding to a desired image. Moreover, the process of controlling a laser head with a computer based on the digital data of a desired image, and carrying out scanning irradiation with respect to a bridge | crosslinking relief forming layer is mentioned preferably.
In this engraving process, an infrared laser is preferably used. When irradiated with an infrared laser, the molecules in the crosslinked relief forming layer undergo molecular vibrations and generate heat. When a high-power laser such as a carbon dioxide laser or YAG laser is used as an infrared laser, a large amount of heat is generated in the laser irradiation part, and molecules in the crosslinked relief forming layer are selectively cut by molecular cutting or ionization. That is, engraving is performed. The advantage of laser engraving is that the engraving depth can be set arbitrarily, so that the structure can be controlled three-dimensionally. For example, the portion that prints fine halftone dots can be engraved shallowly or with a shoulder so that the relief does not fall down due to printing pressure, and the portion of the groove that prints fine punched characters is engraved deeply As a result, the ink is less likely to be buried in the groove, and it is possible to suppress the crushing of the extracted characters.
In particular, when engraving with an infrared laser corresponding to the absorption wavelength of the photothermal conversion agent, the crosslinked relief forming layer can be selectively removed with higher sensitivity, and a relief layer having a sharp image can be obtained.
 彫刻工程に用いられる赤外線レーザーとしては、生産性、コスト等の面から、炭酸ガスレーザー(CO2レーザー)又は半導体レーザーが好ましい。特に、ファイバー付き半導体赤外線レーザー(FC-LD)が好ましく用いられる。一般に、半導体レーザーは、CO2レーザーに比べレーザー発振が高効率かつ安価で小型化が可能である。また、小型であるためアレイ化が容易である。更に、ファイバーの処理によりビーム形状を制御できる。
 半導体レーザーとしては、波長が700~1,300nmのものが好ましく、800~1,200nmのものがより好ましく、860~1,200nmのものが更に好ましく、900~1,100nmのものが特に好ましい。
As the infrared laser used in the engraving process, a carbon dioxide laser (CO 2 laser) or a semiconductor laser is preferable from the viewpoints of productivity and cost. In particular, a semiconductor infrared laser with a fiber (FC-LD) is preferably used. In general, a semiconductor laser can be downsized with high efficiency and low cost of laser oscillation compared to a CO 2 laser. Moreover, since it is small, it is easy to form an array. Furthermore, the beam shape can be controlled by processing the fiber.
The semiconductor laser preferably has a wavelength of 700 to 1,300 nm, more preferably 800 to 1,200 nm, still more preferably 860 to 1,200 nm, and particularly preferably 900 to 1,100 nm.
 また、ファイバー付き半導体レーザーは、更に光ファイバーを取り付けることで効率よくレーザー光を出力できるため、本発明における彫刻工程には有効である。更に、ファイバーの処理によりビーム形状を制御できる。例えば、ビームプロファイルはトップハット形状とすることができ、安定に版面にエネルギーを与えることができる。半導体レーザーの詳細は、「レーザーハンドブック第2版」レーザー学会編、「実用レーザー技術」電子通信学会等に記載されている。
 また、本発明のフレキソ印刷版原版を用いたフレキソ印刷版の製版方法に好適に用いることができるファイバー付き半導体レーザーを備えた製版装置は、特開2009-172658号公報及び特開2009-214334号公報に詳細に記載され、これを本発明に係るフレキソ印刷版の製版に使用することができる。
Moreover, since the semiconductor laser with a fiber can output a laser beam efficiently by attaching an optical fiber, it is effective for the engraving process in the present invention. Furthermore, the beam shape can be controlled by processing the fiber. For example, the beam profile can have a top hat shape, and energy can be stably given to the plate surface. Details of the semiconductor laser are described in “Laser Handbook 2nd Edition” edited by Laser Society, “Practical Laser Technology”, Electronic Communication Society, etc.
Also, a plate making apparatus equipped with a fiber-coupled semiconductor laser that can be suitably used in a method for making a flexographic printing plate using the flexographic printing plate precursor of the present invention is disclosed in JP 2009-172658 A and JP 2009-214334 A. It is described in detail in the official gazette and can be used for making a flexographic printing plate according to the present invention.
 〔リンス工程〕
 本発明のフレキソ印刷版の製版方法は、彫刻工程に次いで、レリーフ層の表面をアルカリ水溶液でリンスするリンス工程を有しているのが好ましい。
 本発明のフレキソ印刷版の製版方法は、リンス工程を有することにより、レリーフ層の表面の付着・残留する彫刻カスを洗い流し、除去することができる。
 リンスの手段として、アルカリ水溶液に浸漬する方法、アルカリ水溶液に浸漬しながら、リンス液を回転させたり、彫刻板をブラシで摺る方法、アルカリ水溶液をスプレー噴射する方法、感光性樹脂凸版の現像機として公知のバッチ式又は搬送式のブラシ式洗い出し機で、彫刻表面を主にアルカリ水溶液の存在下でブラシ擦りする方法などが挙げられ、彫刻カスのヌメリがとれない場合は、石鹸や界面活性剤を添加したリンス液を用いてもよい。
[Rinse process]
The plate making method of the flexographic printing plate of the present invention preferably has a rinsing step of rinsing the surface of the relief layer with an alkaline aqueous solution after the engraving step.
The plate making method of the flexographic printing plate of the present invention has a rinsing step, so that the engraving residue adhering and remaining on the surface of the relief layer can be washed away and removed.
As a rinsing method, a method of immersing in an alkaline aqueous solution, a method of rotating a rinsing solution while immersing in an alkaline aqueous solution, a method of sliding an engraving plate with a brush, a method of spraying an alkaline aqueous solution, a developing machine for a photosensitive resin relief plate In a known batch type or conveying type brush type washing machine, there are methods such as brushing the engraved surface mainly in the presence of an alkaline aqueous solution. If the engraving residue cannot be removed, use soap or a surfactant. An added rinse solution may be used.
 本発明に用いることができるリンス液(アルカリ水溶液)のpHは、10.0以上であることが好ましく、12以上であることがより好ましく、13以上であることが更に好ましい。また、リンス液のpHは14以下であることが好ましい。上記範囲であると、リンス性に優れる。
 リンス液を上記のpH範囲とするために、適宜、酸及び/又は塩基を用いてpHを調整すればよく、使用する酸及び塩基は特に限定されない。
 本発明に用いることができるリンス液は、主成分として水を含有することが好ましい。
 また、リンス液は、水以外の溶剤として、アルコール類、アセトン、テトラヒドロフラン等などの水混和性溶剤を含有していてもよい。
The pH of the rinsing liquid (alkaline aqueous solution) that can be used in the present invention is preferably 10.0 or more, more preferably 12 or more, and still more preferably 13 or more. Moreover, it is preferable that the pH of the rinse liquid is 14 or less. It is excellent in rinse property as it is the said range.
What is necessary is just to adjust pH using an acid and / or a base suitably in order to make a rinse liquid into said pH range, and the acid and base to be used are not specifically limited.
The rinsing liquid that can be used in the present invention preferably contains water as a main component.
Moreover, the rinse liquid may contain water miscible solvents, such as alcohol, acetone, tetrahydrofuran, etc. as solvents other than water.
 リンス液は、界面活性剤を含有することが好ましい。
 本発明に用いることができる界面活性剤としては、彫刻カスの除去性、及び、フレキソ印刷版への影響を少なくする観点から、カルボキシベタイン化合物、スルホベタイン化合物、ホスホベタイン化合物、アミンオキシド化合物、又は、ホスフィンオキシド化合物等のベタイン化合物(両性界面活性剤)が好ましく挙げられる。
It is preferable that the rinse liquid contains a surfactant.
As a surfactant that can be used in the present invention, a carboxybetaine compound, a sulfobetaine compound, a phosphobetaine compound, an amine oxide compound, or a viewpoint of reducing engraving residue removal and the influence on the flexographic printing plate Preferred are betaine compounds (amphoteric surfactants) such as phosphine oxide compounds.
 また、界面活性剤としては、公知のアニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、ノニオン界面活性剤等も挙げられる。更に、フッ素系、シリコーン系のノニオン界面活性剤も同様に使用することができる。
 界面活性剤は、1種単独で使用しても、2種以上を併用してもよい。
 界面活性剤の使用量は特に限定する必要はないが、リンス液の全質量に対し、0.01~20質量%であることが好ましく、0.05~10質量%であることがより好ましい。
Examples of the surfactant include known anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic surfactants. Furthermore, fluorine-based and silicone-based nonionic surfactants can be used in the same manner.
Surfactant may be used individually by 1 type, or may use 2 or more types together.
The amount of the surfactant used is not particularly limited, but is preferably 0.01 to 20% by mass, and more preferably 0.05 to 10% by mass with respect to the total mass of the rinsing liquid.
 本発明のフレキソ印刷版の製版方法は、更に、必要に応じて乾燥工程、及び/又は、後架橋工程を含んでもよい。
 乾燥工程:彫刻されたレリーフ層を乾燥する工程。
 後架橋工程:彫刻後のレリーフ層にエネルギーを付与し、レリーフ層を更に架橋する工程。
 彫刻表面をリンスするリンス工程を行った場合、彫刻されたレリーフ形成層を乾燥してリンス液を揮発させる乾燥工程を追加することが好ましい。
 更に、必要に応じてレリーフ層を更に架橋させる後架橋工程を追加してもよい。追加の架橋工程である後架橋工程を行うことにより、彫刻によって形成されたレリーフをより強固にすることができる。
The plate making method of the flexographic printing plate of the present invention may further include a drying step and / or a post-crosslinking step as necessary.
Drying step: a step of drying the engraved relief layer.
Post-crosslinking step: a step of imparting energy to the relief layer after engraving and further crosslinking the relief layer.
When the rinsing process for rinsing the engraving surface is performed, it is preferable to add a drying process for drying the engraved relief forming layer and volatilizing the rinsing liquid.
Furthermore, you may add the post-crosslinking process which further bridge | crosslinks a relief layer as needed. By performing the post-crosslinking step, which is an additional cross-linking step, the relief formed by engraving can be further strengthened.
[フレキソ印刷版]
 本発明のフレキソ印刷版は、本発明のフレキソ印刷版の製版方法により製版されたレリーフ層を有するフレキソ印刷版である。
 ここで、フレキソ印刷版が有するレリーフ層の厚さは、耐磨耗性やインキ転移性のような種々の印刷適性を満たす観点からは、0.05mm以上10mm以下が好ましく、より好ましくは0.05mm以上7mm以下、特に好ましくは0.05mm以上3mm以下である。
[Flexographic printing plate]
The flexographic printing plate of the present invention is a flexographic printing plate having a relief layer made by the method of making a flexographic printing plate of the present invention.
Here, the thickness of the relief layer of the flexographic printing plate is preferably from 0.05 mm to 10 mm, more preferably from the viewpoint of satisfying various printability such as wear resistance and ink transferability. It is from 05 mm to 7 mm, particularly preferably from 0.05 mm to 3 mm.
 また、フレキソ印刷版が有するレリーフ層のショアA硬度は、50以上90以下であることが好ましい。レリーフ層のショアA硬度が50以上であると、彫刻により形成された微細な網点が凸版印刷機の強い印圧を受けても倒れてつぶれることがなく、正常な印刷ができる。また、レリーフ層のショアA硬度が90以下であると、印圧がキスタッチのフレキソ印刷でもベタ部での印刷かすれを防止することができる。
 なお、本明細書におけるショアA硬度は、ISO868:2003に準拠し、25℃において、測定対象の表面に圧子(押針又はインデンタと呼ばれる。)を押し込み変形させ、その変形量(押込み深さ)を測定して、数値化するデュロメータ(スプリング式ゴム硬度計)により測定した値である。
Moreover, it is preferable that the Shore A hardness of the relief layer which a flexographic printing plate has is 50 or more and 90 or less. When the Shore A hardness of the relief layer is 50 or more, the fine halftone dots formed by engraving will not collapse and collapse even when subjected to the strong printing pressure of the relief printing press, and normal printing can be performed. In addition, when the Shore A hardness of the relief layer is 90 or less, it is possible to prevent faint printing in a solid portion even in flexographic printing with a kiss touch.
The Shore A hardness in this specification conforms to ISO868: 2003, and at 25 ° C., an indenter (called a push needle or an indenter) is pushed into the surface of the object to be measured, and the amount of deformation (indentation depth). Is a value measured by a durometer (spring type rubber hardness tester) which measures and digitizes.
 本発明のフレキソ印刷版は、フレキソ印刷機による水性インキでの印刷に特に好適であるが、凸版用印刷機による水性インキ、油性インキ及びUVインキ、いずれのインキを用いた場合でも、印刷が可能であり、また、フレキソ印刷機によるUVインキでの印刷も可能である。本発明のフレキソ印刷版は、リンス性に優れており彫刻カスの残存がなく、かつ、得られたレリーフ層が弾性に優れるため、水性インキ転移性及び耐刷性に優れ、長期間にわたりレリーフ層の塑性変形や耐刷性低下の懸念がなく、印刷が実施できる。 The flexographic printing plate of the present invention is particularly suitable for printing with water-based ink by a flexographic printing machine, but printing is possible with any of water-based ink, oil-based ink and UV ink by a relief printing press. In addition, printing with UV ink by a flexographic printing machine is also possible. The flexographic printing plate of the present invention has excellent rinsing properties, no engraving residue remains, and the obtained relief layer is excellent in elasticity, so that it has excellent water-based ink transfer properties and printing durability, and a relief layer over a long period of time. Thus, printing can be carried out without concern for plastic deformation or deterioration of printing durability.
 以下に実施例および比較例を示し、本発明をより具体的に説明する。ただし、本発明はこれらの実施例によって限定されるものではない。なお、以下の記載における「部」とは、特に断りのない限り「質量部」を示し、「%」は「質量%」を示すものとする。
 なお、実施例におけるポリマーの数平均分子量(Mn)及び重量平均分子量(Mw)は、特に断りのない限りにおいて、GPC法で測定した値を表示している。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited to these examples. In the following description, “part” means “part by mass” and “%” means “mass%” unless otherwise specified.
In addition, the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the polymer in an Example have shown the value measured by GPC method unless there is particular notice.
 下記表1中、各実施例および比較例で使用した成分の詳細は以下の通りである。 In Table 1 below, details of the components used in each Example and Comparative Example are as follows.
 〔第1架橋レリーフ形成層〕
 <バインダーポリマー>
 ・SBS(30/70):スチレン系熱可塑性エラストマー〔アサプレン(登録商標、以下同様)T-411、重量平均分子量:43万、旭化成ケミカルズ社製〕
 ・SBS(46/54):スチレン系熱可塑性エラストマー〔アサプレン303、重量平均分子量:17万、旭化成ケミカルズ社製〕
 ・SBS(40/60):スチレン系熱可塑性エラストマー〔タフプレン(登録商標、以下同様)125、重量平均分子量:10万、旭化成ケミカルズ社製〕
 ・結晶性ポリオクテナマー:ベステナマー8012(重量平均分子量:10万、ヒュルス社製)
 ・エチレン-α-オレフィンコポリマー:タフマーDF840(重量平均分子量:15万、三井化学社製)
 ・ポリプロピレン:エルモーデュS901(重量平均分子量:17万、出光興産社製)
[First cross-linked relief forming layer]
<Binder polymer>
SBS (30/70): Styrenic thermoplastic elastomer [ASAPRENE (registered trademark, hereinafter the same) T-411, weight average molecular weight: 430,000, manufactured by Asahi Kasei Chemicals Corporation]
SBS (46/54): Styrenic thermoplastic elastomer [ASAPRENE 303, weight average molecular weight: 170,000, manufactured by Asahi Kasei Chemicals Corporation]
SBS (40/60): Styrenic thermoplastic elastomer [Tufprene (registered trademark, the same applies hereinafter) 125, weight average molecular weight: 100,000, manufactured by Asahi Kasei Chemicals Corporation]
Crystalline polyoctenamer: Bestenamer 8012 (weight average molecular weight: 100,000, manufactured by Huls)
-Ethylene-α-olefin copolymer: Tafmer DF840 (weight average molecular weight: 150,000, manufactured by Mitsui Chemicals)
Polypropylene: El Modu S901 (weight average molecular weight: 170,000, manufactured by Idemitsu Kosan Co., Ltd.)
 <光熱変換材料>
 ・CB:カーボンブラック(♯45L、平均粒子径:24nm、比表面積:125m2/g、三菱化学株式会社製)
<Photothermal conversion material>
CB: carbon black (# 45L, average particle size: 24 nm, specific surface area: 125 m 2 / g, manufactured by Mitsubishi Chemical Corporation)
 <その他の成分>
 ・液状BR:ジエン系ポリマー(液状ブタジエンゴム、LBR305、重量平均分子量:3万、クラレ社製)
 ・HDDA:重合性化合物(1,6-ヘキサンジオールジアクリレート、大阪有機化学工業社製)
<Other ingredients>
-Liquid BR: diene polymer (liquid butadiene rubber, LBR305, weight average molecular weight: 30,000, manufactured by Kuraray Co., Ltd.)
HDDA: polymerizable compound (1,6-hexanediol diacrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd.)
 〔第2架橋レリーフ形成層〕
 <ジエン系ポリマー>
 ・BR:ブタジエンゴム(BR150L、重量平均分子量:47万、宇部興産社製)
 ・EPDM:エチレン-プロピレン-ジエン共重合体(EP24、重量平均分子量:50万以上、JSR社製)
 ・IR:イソプレンゴム(IR2200L、宇部興産社製)
 ・SBS(30/70):スチレン系熱可塑性エラストマー〔アサプレンT-411、重量平均分子量:43万、旭化成ケミカルズ社製〕
[Second cross-linked relief forming layer]
<Diene polymer>
-BR: Butadiene rubber (BR150L, weight average molecular weight: 470,000, manufactured by Ube Industries)
EPDM: ethylene-propylene-diene copolymer (EP24, weight average molecular weight: 500,000 or more, manufactured by JSR)
IR: Isoprene rubber (IR2200L, manufactured by Ube Industries)
SBS (30/70): Styrenic thermoplastic elastomer [Asaprene T-411, weight average molecular weight: 430,000, manufactured by Asahi Kasei Chemicals Corporation]
 <熱架橋剤>
 ・パークミルD:有機過酸化物〔ジクミルペルオキシド(40質量%)、日油株式会社製〕
<Thermal crosslinking agent>
Park mill D: organic peroxide [dicumyl peroxide (40% by mass), manufactured by NOF Corporation]
 <その他の成分>
 ・HDDA:重合性化合物(1,6-ヘキサンジオールジアクリレート、大阪有機化学工業社製)
<Other ingredients>
HDDA: polymerizable compound (1,6-hexanediol diacrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd.)
[実施例1~35]
 <第1樹脂組成物の調製>
 MS式小型加圧ニーダー(株式会社モリヤマ製)を用いて、下記表1に示すバインダーポリマー、光熱変換材料およびその他の成分を同表に示す配合量(グラム)で10分間混練し、第1レリーフ形成層用の第1樹脂組成物を調製した。なお、下記表1中、配合量として「-」が記載されている箇所は、該当する成分を配合していないことを示す。
[Examples 1 to 35]
<Preparation of first resin composition>
Using an MS-type compact pressure kneader (manufactured by Moriyama Co., Ltd.), the binder polymer, photothermal conversion material and other components shown in Table 1 below were kneaded for 10 minutes at the blending amounts (grams) shown in the same table, and the first relief A first resin composition for the forming layer was prepared. In Table 1 below, “-” as the blending amount indicates that the corresponding component is not blended.
 <第2樹脂組成物の調製>
 MS式小型加圧ニーダー(株式会社モリヤマ製)を用いて、下記表1に示すジエン系ポリマー、光熱変換材料、熱架橋剤およびその他成分を同表に示す配合量(グラム)で10分間混練し、第2レリーフ形成層用の第2樹脂組成物を調製した。
<Preparation of second resin composition>
Using an MS-type compact pressure kneader (Moriyama Co., Ltd.), the diene polymer, photothermal conversion material, thermal crosslinking agent and other components shown in Table 1 below were kneaded for 10 minutes at the blending amounts (grams) shown in the same table. A second resin composition for the second relief forming layer was prepared.
 <第1レリーフ形成層の作製>
 上記で得た第1樹脂組成物を150℃で溶融させ、PET基板上に、架橋後の厚みが下記表1に示す厚みとなるように塗布し、25℃で20分間冷却させることにより、第1レリーフ形成層を形成した。なお、下記表1中の厚みは、架橋後の「第1架橋レリーフ形成層」の厚みであるが、架橋の前後において、厚みの変化は見られなかった。
<Preparation of first relief forming layer>
The first resin composition obtained above was melted at 150 ° C., applied on a PET substrate so that the thickness after crosslinking was as shown in Table 1 below, and cooled at 25 ° C. for 20 minutes, One relief forming layer was formed. The thickness in Table 1 below is the thickness of the “first crosslinked relief forming layer” after crosslinking, but no change in thickness was observed before and after crosslinking.
 <第2レリーフ形成層の作製>
 上記で得た第2樹脂組成物を、架橋後の厚みが下記表1に示す厚みとなるように、スペーサーを挟み、80℃で5分間加熱しながらプレスすることで、実質的に未架橋である第2レリーフ形成層を得た。なお、下記表1中の厚みは、架橋後の「第2架橋レリーフ形成層」の厚みであるが、架橋の前後において、厚みの変化は見られなかった。
<Preparation of second relief forming layer>
The second resin composition obtained above is pressed while sandwiching a spacer and heated at 80 ° C. for 5 minutes so that the thickness after crosslinking is the thickness shown in Table 1 below. A certain second relief forming layer was obtained. The thickness in Table 1 below is the thickness of the “second crosslinked relief forming layer” after crosslinking, but no change in thickness was observed before and after crosslinking.
 <フレキソ印刷版原版の作製>
 PET基板上に形成された第1レリーフ形成層を第2レリーフ形成層に貼り付け、架橋後の厚みが各々下記表1に示す第1レリーフ形成層および第2レリーフ形成層の厚みとなるように、スペーサーを挟み、160℃20分熱プレスし、第1架橋レリーフ形成層と第2架橋レリーフ形成層を有するフレキソ印刷版原版を得た。
<Preparation of flexographic printing plate precursor>
The first relief forming layer formed on the PET substrate is attached to the second relief forming layer, and the thickness after crosslinking is the thickness of the first relief forming layer and the second relief forming layer shown in Table 1 below, respectively. The substrate was hot-pressed at 160 ° C. for 20 minutes to obtain a flexographic printing plate precursor having a first crosslinked relief forming layer and a second crosslinked relief forming layer.
[比較例1]
 第1レリーフ形成層を形成しなかった以外は、実施例1と同様の方法により、フレキソ印刷版原版を作製した。すなわち、比較例1で作製したフレキソ印刷版原版は、特許文献1および2などと同様、架橋レリーフ形成層が1層となる態様である。
[Comparative Example 1]
A flexographic printing plate precursor was produced in the same manner as in Example 1 except that the first relief forming layer was not formed. That is, the flexographic printing plate precursor produced in Comparative Example 1 is an embodiment in which the crosslinked relief forming layer is one layer as in Patent Documents 1 and 2.
 〔マルテンス硬度の測定〕
 作製した各フレキソ印刷版原版について、第1架橋レリーフ形成層および第2架橋レリーフ形成層のマルテンス硬度を測定した。マルテンス硬度の評価方法は上述のとおりである。第1架橋レリーフ形成層および第2架橋レリーフ形成層のマルテンス硬度のマルテンス硬度を下記表1に示す。
[Measurement of Martens hardness]
About each produced flexographic printing plate precursor, the Martens hardness of the 1st crosslinked relief forming layer and the 2nd crosslinked relief forming layer was measured. The evaluation method of Martens hardness is as described above. Table 1 below shows the Martens hardness of the Martens hardness of the first crosslinked relief forming layer and the second crosslinked relief forming layer.
 〔印圧ラチチュード〕
 得られたレーザー彫刻用フレキソ印刷版原版の架橋後のレリーフ形成層に対し、半導体レーザー彫刻機として、最大出力8.0Wのファイバー付き半導体レーザー(FC-LD)SDL-6390(JDSU社製、波長915nm)を装備したレーザー記録装置を用いて、レーザー出力:7.5W、ヘッド速度:409mm/秒、ピッチ設定:2,400DPIの条件で、2%網点を彫刻した後、炭酸水素ナトリウムを1質量%含有する水溶液を用いてリンス洗浄し、フレキソ印刷版を作製した。
 得られたフレキソ印刷版をフレキソ印刷機(ITM-4型、株式会社 伊予機械製作所製)にセットした。印刷インクとしては、溶剤インキ(XS-716 507、原色藍(DICグラフィックス株式会社製))を用いた。印刷紙として、フルカラーフォームM 70(日本製紙株式会社製、厚さ100μm)を用いて印刷を行った。
 上記のフレキソ印刷機は、版胴と厚胴の間隔をダイヤル式で制御が可能であるため、間隔を調整し、2%網点の反射濃度を濃度計(グレタグ社製、マクベスRD-19I)で測定にて測定した。なお、ベタが均一に印刷される印圧(押込み量)を基準(0μm)とした。
 押込み量20μmの条件における網点の反射濃度と押込み量120μmの条件における網点の反射濃度との差(値)を下記表1に示す。なお、この値が小さい方が印圧ラチチュードが広いことを意味する。
[Printing pressure latitude]
For the relief forming layer after crosslinking of the obtained flexographic printing plate precursor for laser engraving, a semiconductor laser engraving machine (FC-LD) SDL-6390 with a maximum output of 8.0 W (manufactured by JDSU, wavelength) Using a laser recording apparatus equipped with 915 nm), 2% halftone dots were engraved under the conditions of laser output: 7.5 W, head speed: 409 mm / second, pitch setting: 2,400 DPI, and then sodium bicarbonate 1 A flexographic printing plate was prepared by rinsing with an aqueous solution containing mass%.
The obtained flexographic printing plate was set in a flexographic printing machine (ITM-4 type, manufactured by Iyo Machinery Co., Ltd.). As the printing ink, solvent ink (XS-716 507, primary color indigo (manufactured by DIC Graphics Corporation)) was used. Printing was performed using full-color foam M70 (manufactured by Nippon Paper Industries Co., Ltd., thickness: 100 μm) as printing paper.
In the above flexographic printing press, the distance between the plate cylinder and the thick cylinder can be controlled with a dial, so the distance is adjusted and the reflection density of 2% halftone dot is measured by a densitometer (Macbeth RD-19I manufactured by Gretag). It measured by measurement. The printing pressure (indentation amount) at which the solid was printed uniformly was used as the reference (0 μm).
Table 1 below shows the difference (value) between the halftone dot reflection density under the indentation amount of 20 μm and the halftone dot reflection density under the indentation amount of 120 μm. A smaller value means a wider printing pressure latitude.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、第1架橋レリーフ形成層を設けなかった場合、言い換えると、架橋レリーフ形成層に硬度差がない場合は、印圧ラチチュードが狭くなることが分かった(比較例1)。
 これに対し、所定の厚みを有する第1架橋レリーフ形成層および第2架橋レリーフ形成層を設け、かつ、これらのマルテンス硬度の比率が特定の関係を満たす場合は、印刷版の網点画像部における印圧ラチチュードを広くすることができることが分かった(実施例1~35)。
 特に、実施例1~6の結果から、第1架橋レリーフ形成層に含まれるバインダーポリマーが結晶性ポリマーであると、反射濃度の差が最も小さく、印圧ラチチュードがより広くなることが分かった(実施例6)。
 また、実施例4と実施例34との対比から、第2架橋レリーフ形成層を形成する樹脂組成物が、重合性化合物を含有することにより、印圧ラチチュードがより広くなることが分かった。
 また、実施例4と実施例35との対比から、第2架橋レリーフ形成層を形成する樹脂組成物が、ジエン系ポリマーとしてポリブタジエンを用いた方が、印圧ラチチュードがより広くなることが分かった。
As shown in Table 1, it was found that when the first crosslinked relief forming layer was not provided, in other words, when there was no hardness difference in the crosslinked relief forming layer, the printing pressure latitude was narrowed (Comparative Example 1).
On the other hand, in the case where a first crosslinked relief forming layer and a second crosslinked relief forming layer having a predetermined thickness are provided and the ratio of these Martens hardnesses satisfies a specific relationship, in the halftone image portion of the printing plate It was found that the printing pressure latitude can be widened (Examples 1 to 35).
In particular, the results of Examples 1 to 6 indicate that when the binder polymer contained in the first crosslinked relief forming layer is a crystalline polymer, the difference in reflection density is the smallest and the printing pressure latitude is wider ( Example 6).
In addition, it was found from the comparison between Example 4 and Example 34 that the resin composition forming the second crosslinked relief forming layer contains a polymerizable compound, so that the printing pressure latitude becomes wider.
Further, from comparison between Example 4 and Example 35, it was found that the resin composition that forms the second crosslinked relief forming layer uses polybutadiene as the diene polymer, so that the printing pressure latitude is wider. .

Claims (8)

  1.  少なくとも2層の架橋レリーフ形成層を有するレーザー彫刻用フレキソ印刷版原版であって、
     レーザー彫刻が施される表面側に配置された第1架橋レリーフ形成層と、前記第1架橋レリーフ形成層に隣接する第2架橋レリーフ形成層とを有し、前記第2架橋レリーフ形成層のマルテンス硬度Bに対する前記第1架橋レリーフ形成層のマルテンス硬度Aの比率が1.1以上であり、
     前記第1架橋レリーフ形成層の厚みが10~300μmであり、
     前記第2架橋レリーフ形成層の厚みが500~1600μmであり、
     前記第1架橋レリーフ形成層が、バインダーポリマーおよび光熱変換材料を含有し、
     前記第2架橋レリーフ形成層が、ジエン系ポリマーおよび熱架橋剤を含有する樹脂組成物を用いてレリーフ形成層を形成した後に熱により架橋させた層である、レーザー彫刻用フレキソ印刷版原版。
    A flexographic printing plate precursor for laser engraving having at least two crosslinked relief forming layers,
    The first crosslinked relief forming layer disposed on the surface side subjected to laser engraving, and the second crosslinked relief forming layer adjacent to the first crosslinked relief forming layer, the Martens of the second crosslinked relief forming layer The ratio of the Martens hardness A of the first crosslinked relief forming layer to the hardness B is 1.1 or more,
    The first crosslinked relief forming layer has a thickness of 10 to 300 μm;
    The second crosslinked relief forming layer has a thickness of 500 to 1600 μm;
    The first crosslinked relief forming layer contains a binder polymer and a photothermal conversion material,
    The flexographic printing plate precursor for laser engraving, wherein the second crosslinked relief-forming layer is a layer that is crosslinked by heat after forming a relief-forming layer using a resin composition containing a diene polymer and a thermal crosslinking agent.
  2.  前記熱架橋剤が、有機過酸化物およびイオウ系化合物からなる群から選択される少なくとも1種である、請求項1に記載のレーザー彫刻用フレキソ印刷版原版。 The flexographic printing plate precursor for laser engraving according to claim 1, wherein the thermal crosslinking agent is at least one selected from the group consisting of organic peroxides and sulfur-based compounds.
  3.  前記樹脂組成物が、更に、重合性化合物を含有する、請求項1または2に記載のレーザー彫刻用フレキソ印刷版原版。 The flexographic printing plate precursor for laser engraving according to claim 1 or 2, wherein the resin composition further contains a polymerizable compound.
  4.  前記バインダーポリマーが、結晶性ポリマーである、請求項1~3のいずれか1項に記載のレーザー彫刻用フレキソ印刷版原版。 The flexographic printing plate precursor for laser engraving according to any one of claims 1 to 3, wherein the binder polymer is a crystalline polymer.
  5.  前記ジエン系ポリマーが、ポリイソプレン、ポリブタジエンおよびエチレン-プロピレン-ジエン共重合体からなる群から選択される少なくとも1種のポリマーである、請求項1~4のいずれか1項に記載のレーザー彫刻用フレキソ印刷版原版。 The laser engraving according to any one of claims 1 to 4, wherein the diene polymer is at least one polymer selected from the group consisting of polyisoprene, polybutadiene, and ethylene-propylene-diene copolymers. Flexographic printing plate precursor.
  6.  バインダーポリマーおよび光熱変換材料を含有する樹脂組成物を用いて第1レリーフ形成層を形成する第1層形成工程と、
     ジエン系ポリマーおよび熱架橋剤を含有する樹脂組成物を用いて第2レリーフ形成層を形成する第2層形成工程と、
     前記第1レリーフ形成層と前記第2レリーフ形成層とを接触させた状態で熱により架橋し、前記第1レリーフ形成層が架橋した第1架橋レリーフ形成層と前記第2レリーフ形成層が架橋した第2架橋レリーフ形成層とが隣接した少なくとも2層の架橋レリーフ形成層を形成する架橋工程とを有し、
     前記第1架橋レリーフ形成層に隣接する前記第2架橋レリーフ形成層のマルテンス硬度Bに対する、レーザー彫刻が施される面側に配置された前記第1架橋レリーフ形成層のマルテンス硬度Aの比率が、1.1以上であり、
     前記第1架橋レリーフ形成層の厚みが10~300μmであり、
     前記第2架橋レリーフ形成層の厚みが500~1600μmである、レーザー彫刻用フレキソ印刷版原版の製造方法。
    A first layer forming step of forming a first relief forming layer using a resin composition containing a binder polymer and a photothermal conversion material;
    A second layer forming step of forming a second relief forming layer using a resin composition containing a diene polymer and a thermal crosslinking agent;
    The first relief forming layer and the second relief forming layer are crosslinked by heat in a state where the first relief forming layer and the second relief forming layer are in contact with each other, and the first crosslinked relief forming layer and the second relief forming layer are crosslinked by the first relief forming layer. A crosslinking step of forming at least two crosslinked relief forming layers adjacent to the second crosslinked relief forming layer;
    The ratio of the Martens hardness A of the first crosslinked relief forming layer disposed on the surface side subjected to laser engraving to the Martens hardness B of the second crosslinked relief forming layer adjacent to the first crosslinked relief forming layer, 1.1 or more,
    The first crosslinked relief forming layer has a thickness of 10 to 300 μm;
    A method for producing a flexographic printing plate precursor for laser engraving, wherein the second crosslinked relief forming layer has a thickness of 500 to 1600 μm.
  7.  請求項6に記載されたレーザー彫刻用フレキソ印刷版原版の製造方法で作製されたレーザー彫刻用フレキソ印刷版原版の架橋レリーフ形成層に対してレーザー彫刻を施し、レリーフ層を形成する彫刻工程を有する、フレキソ印刷版の製版方法。 It has the engraving process which gives a laser engraving with respect to the bridge | crosslinking relief forming layer of the flexographic printing plate precursor for laser engraving produced with the manufacturing method of the flexographic printing plate precursor for laser engraving according to claim 6, and forms a relief layer , Plate making method of flexographic printing plate.
  8.  請求項7に記載のフレキソ印刷版の製版方法により製版されたレリーフ層を有するフレキソ印刷版。 A flexographic printing plate having a relief layer made by the plate making method of a flexographic printing plate according to claim 7.
PCT/JP2015/066700 2014-06-16 2015-06-10 Flexographic printing plate precursor for laser engraving use and method for production thereof, and flexographic printing plate and method for production thereof WO2015194427A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014123647 2014-06-16
JP2014-123647 2014-06-16

Publications (1)

Publication Number Publication Date
WO2015194427A1 true WO2015194427A1 (en) 2015-12-23

Family

ID=54935414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066700 WO2015194427A1 (en) 2014-06-16 2015-06-10 Flexographic printing plate precursor for laser engraving use and method for production thereof, and flexographic printing plate and method for production thereof

Country Status (1)

Country Link
WO (1) WO2015194427A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001005171A (en) * 1999-06-23 2001-01-12 Toyobo Co Ltd Water-developable photosensitive flexographic printing plate
JP2008296541A (en) * 2007-06-04 2008-12-11 Shinoda Shoji Kk Printing plate material, and its plate manufacturing method
JP2010188610A (en) * 2009-02-18 2010-09-02 Asahi Kasei E-Materials Corp Method of manufacturing laser engraved printing original plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001005171A (en) * 1999-06-23 2001-01-12 Toyobo Co Ltd Water-developable photosensitive flexographic printing plate
JP2008296541A (en) * 2007-06-04 2008-12-11 Shinoda Shoji Kk Printing plate material, and its plate manufacturing method
JP2010188610A (en) * 2009-02-18 2010-09-02 Asahi Kasei E-Materials Corp Method of manufacturing laser engraved printing original plate

Similar Documents

Publication Publication Date Title
JP6395920B2 (en) Flexographic printing plate
US20140265031A1 (en) Resin composition for laser engraving, flexographic printing plate precursor for laser engraving and process for producing same, and process for making flexographic printing plate
US10807401B2 (en) Cylindrical printing plate, cylindrical printing plate precursor, method for manufacturing cylindrical printing plate precursor, and method for manufacturing cylindrical printing plate
WO2016136357A1 (en) Flexographic printing plate and method for manufacturing flexographic printing plate
JP2012030587A (en) Resin composition for laser engraving, relief printing plate precursor for laser engraving, process for producing relief printing plate and relief printing plate
JP6469106B2 (en) Flexographic printing plate precursor and flexographic printing plate for laser engraving
JP5918731B2 (en) Resin composition for laser engraving, flexographic printing plate precursor for laser engraving and method for producing the same, and flexographic printing plate and method for making the same
JP6144350B2 (en) Method for producing flexographic printing plate precursor for laser engraving, plate making method for flexographic printing plate, and resin composition for laser engraving
JP2015123714A (en) Resin composition for laser-engraving, original plate for laser-engravable flexographic printing plate and method for producing the same, and platemaking method for flexographic printing plate
JP6061911B2 (en) Resin composition for laser engraving, flexographic printing plate precursor for laser engraving and method for producing the same, and plate making method for flexographic printing plate
JP2017154301A (en) Flexographic printing plate, manufacturing method of flexographic printing platte and manufacturing device of flexographic printing plate
WO2015194427A1 (en) Flexographic printing plate precursor for laser engraving use and method for production thereof, and flexographic printing plate and method for production thereof
JP5752752B2 (en) Resin composition for laser engraving, method for producing flexographic printing plate precursor for laser engraving, flexographic printing plate precursor, plate making method for flexographic printing plate, and flexographic printing plate
JP6055092B2 (en) How to make flexographic printing plates
JPWO2015046297A1 (en) Resin composition for laser engraving, flexographic printing plate precursor for laser engraving and method for producing the same, and flexographic printing plate and method for making the same
JP2016000476A (en) Flexographic printing original plate for laser engraving and flexographic printing plate
WO2015152213A1 (en) Manufacturing method for cylindrical printing plate precursor, platemaking method and manufacturing method for cylindrical printing plate, and removal method for flexographic printing plate
JP2016135550A (en) Flexographic printing plate original plate for laser engraving, method for producing the same, and platemaking method for flexographic printing plate
JP2015150805A (en) Resin composition for laser engraving, original film for laser engraving type flexographic printing plate and method for manufacturing the same, and flexographic printing plate and method for platemaking the same
US20140352563A1 (en) Resin composition for laser engraving, flexographic printing plate precursor for laser engraving and process for producing same, and flexographic printing plate and process for making same
JP2015208929A (en) Resin composition for laser engraving, method of producing flexographic printing plate original plate for laser engraving, flexographic printing plate original plate, method of making flexographic printing plate and flexographic printing plate
JP2016210104A (en) Flexographic printing plate having adhesive layer, flexographic printing plate original plate having adhesive layer, laminated structure and method for producing thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15810001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP