WO2015194344A1 - 電極材料の製造方法及び電極材料 - Google Patents

電極材料の製造方法及び電極材料 Download PDF

Info

Publication number
WO2015194344A1
WO2015194344A1 PCT/JP2015/065499 JP2015065499W WO2015194344A1 WO 2015194344 A1 WO2015194344 A1 WO 2015194344A1 JP 2015065499 W JP2015065499 W JP 2015065499W WO 2015194344 A1 WO2015194344 A1 WO 2015194344A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode material
powder
heat
hip
sintered body
Prior art date
Application number
PCT/JP2015/065499
Other languages
English (en)
French (fr)
Inventor
薫 北寄崎
啓太 石川
将大 林
鈴木 伸尚
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Priority to EP15809862.4A priority Critical patent/EP3156154B1/en
Priority to US15/318,448 priority patent/US10086433B2/en
Publication of WO2015194344A1 publication Critical patent/WO2015194344A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0475Impregnated alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches
    • H01H1/0206Contacts characterised by the material thereof specially adapted for vacuum switches containing as major components Cu and Cr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/20Use of vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
    • H01H11/048Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by powder-metallurgical processes

Definitions

  • the present invention relates to a method for manufacturing an electrode material and an electrode material.
  • Electrode materials used for electrodes such as vacuum interrupter (VI) include (1) large breaking capacity, (2) high withstand voltage performance, (3) low contact resistance, and (4) welding resistance. It is required to satisfy the following characteristics: (5) low contact consumption, (6) low cutting current, (7) excellent workability, (8) high mechanical strength, etc. .
  • a copper (Cu) -chromium (Cr) electrode has characteristics such as a large breaking capacity, a high withstand voltage performance, and a high resistance to welding, and is widely used as a contact material for a vacuum interrupter.
  • Cu—Cr electrodes it has been reported that a smaller Cr particle size is better in terms of breaking current and contact resistance (for example, Non-Patent Document 1).
  • a method for producing a Cu—Cr electrode material generally, two methods, a sintering method (solid phase sintering method) and an infiltration method, are well known.
  • a sintering method solid phase sintering method
  • an infiltration method In the sintering method, Cu having good conductivity and Cr having excellent arc resistance are mixed at a certain ratio, the mixed powder is pressure-molded, and then sintered in a non-oxidizing atmosphere such as in a vacuum. Manufacture a knot.
  • the sintering method has an advantage that the composition of Cu and Cr can be freely selected, the gas content is higher than the infiltration method, and the mechanical strength may be lowered.
  • infiltration is performed by pressing Cr powder (or without molding), filling the container, and heating it above the melting point of Cu in a non-oxidizing atmosphere, such as in a vacuum.
  • Cu is infiltrated into the electrode to produce an electrode.
  • the infiltration method cannot freely select the composition ratio of Cu and Cr, but has the advantage that a material with less gas and voids is obtained and the mechanical strength is higher than the sintering method.
  • a Cr powder that improves electrical characteristics and a finer Cr particle are used as the base Cu powder.
  • heat-resistant element mobdenum (Mo), tungsten (W), niobium (Nb), tantalum (Ta), vanadium (V), zirconium (Zr), etc.
  • the mixed powder is inserted into a mold and added.
  • Patent Documents 1 and 2 There is a method of manufacturing an electrode that is compacted to form a sintered body.
  • a heat-resistant element is added to a Cu—Cr-based electrode material made from Cr having a particle size of 200 to 300 ⁇ m, and Cr is refined through a microstructure technique. That is, alloying of Cr and a heat-resistant element is promoted, and precipitation of fine Cr—X (X is a heat-resistant element) particles is increased inside the Cu base material structure. As a result, Cr particles having a diameter of 20 to 60 ⁇ m are uniformly dispersed in the Cu substrate structure in a form having a heat-resistant element therein.
  • the content of heat-resistant elements such as Cr and Mo in the Cu—Cr-based electrode material is increased, and further It is preferable that the particle diameter of Cr, Mo, etc. is made fine and dispersed uniformly.
  • the conductivity of the electrode material is lowered, resulting in a drawback that the contact resistance value is increased and the interruption performance is lowered.
  • the present invention aims to provide an electrode material having a withstand voltage performance superior to that of a conventional Cu—Cr electrode, and particularly in an electrode material produced by an infiltration method, such as Cu and silver.
  • An object is to improve the filling rate of a porous body infiltrating a highly conductive metal.
  • a porous body is molded by a mold molding method or the like.
  • the molding pressure is increased in order to improve the filling rate of the porous body, the mold is severely worn. Therefore, the life of the mold may be shortened.
  • One aspect of a method for producing an electrode material of the present invention that achieves the above object is to provide a powder containing a heat-resistant element or a molded body of a powder containing a heat-resistant element at a hot isostatic pressure at a temperature lower than the melting point of the heat-resistant element.
  • the powder or the molded body is sintered, and the sintered powder or the molded body is heated. It is subjected to an isostatic pressure treatment.
  • the metal infiltrated into the porous body is a highly conductive metal.
  • the highly conductive metal is copper
  • the heat-resistant elements are chromium and molybdenum.
  • One embodiment of the electrode material of the present invention that achieves the above object is to infiltrate a porous body containing a heat-resistant element and having a filling rate of 70% or more with a metal having a melting point lower than the melting point of the heat-resistant element. It becomes.
  • the metal infiltrated into the porous body is a highly conductive metal.
  • the highly conductive metal is copper
  • the heat-resistant elements are chromium and molybdenum.
  • the average particle diameter is a value measured by a laser diffraction particle size distribution measuring device (Cirrus Corporation: Cirrus 1090L). Show.
  • the present invention relates to a technique for manufacturing an electrode material having a composition of metal (Cu or Ag, etc.)-Cr-heat-resistant element (Mo, W, V, etc.) by an infiltration method.
  • a mixed powder containing a heat-resistant element such as Cr powder or Mo powder is molded by press molding or the like, and an electrode material is manufactured by infiltrating a highly conductive metal such as Cu or Ag into this molded body.
  • a metal such as Cu or Ag may be infiltrated without forming the mixed powder.
  • HIP treatment pressure treatment
  • the refractory elements include molybdenum (Mo), tungsten (W), tantalum (Ta), niobium (Nb), vanadium (V), zirconium (Zr), beryllium (Be), hafnium (Hf), and iridium (Ir).
  • elements selected from elements such as platinum (Pt), titanium (Ti), silicon (Si), rhodium (Rh), and ruthenium (Ru) can be used alone or in combination.
  • Mo, W, Ta, Nb, V, or Zr which has a remarkable effect of refining Cr particles.
  • Cr is contained in an amount of 0.65 to 76% by weight, more preferably 0.7 to 46% by weight, based on the electrode material, so that the withstand voltage of the electrode material is not impaired without impairing the mechanical strength, workability and current interruption performance. Performance can be improved.
  • the particle size of Cr powder is, for example, 48 mesh under (particle size less than 300 ⁇ m), more preferably 100 mesh under (particle size less than 150 ⁇ m), and even more preferably 325 mesh under (particle size less than 45 ⁇ m). By doing so, an electrode material excellent in withstand voltage performance and current interruption performance can be obtained.
  • the particle size of the Cr powder By setting the particle size of the Cr powder to 100 mesh under, it is possible to reduce the amount of residual Cr that causes the particle size of Cu infiltrated into the electrode material to increase.
  • the oxygen content contained in the electrode material increases. As a result, the current interruption performance decreases.
  • the increase in the oxygen content of the electrode material by reducing the particle size of the Cr particles is considered to be caused by the oxidation of Cr when finely pulverizing Cr.
  • a Cr powder having a particle size of less than 325 mesh may be used. It is preferable to use a Cr powder having a small particle diameter in order to disperse the particles containing modified Cr.
  • a highly conductive metal such as copper (Cu), silver (Ag), or an alloy of Cu and Ag is used.
  • These metals are contained in an amount of 5 to 35% by weight, more preferably 7.5 to 30% by weight, based on the electrode material, so that the electrode material can be used without decreasing the current blocking performance of the electrode material and increasing the contact resistance. Withstand voltage performance can be improved.
  • content of Cu contained in an electrode material will be defined by an infiltration process, the sum total of the heat-resistant element, Cr, and Cu contained in an electrode material does not exceed 100 weight%.
  • heat-resistant element powder for example, Mo powder
  • Cr powder heat-resistant element powder
  • the Mo powder and the Cr powder can be mixed in a weight ratio such that Cr is 1 or less with respect to Mo1 to produce an electrode material excellent in withstand voltage performance and current interruption performance.
  • the mixed powder of Mo powder and Cr powder (hereinafter referred to as mixed powder) obtained in the mixing step S1 is pressure molded using a press machine or the like.
  • the molding pressure at this time is not particularly limited.
  • the molding pressure is 2 to 4.5 t / cm 2 .
  • the formed mixed powder is sintered to obtain a sintered body.
  • Sintering is performed, for example, by sintering a compact of the mixed powder in a vacuum atmosphere at 1150 ° C. for 2 hours.
  • Sintering step S3 is a step of obtaining a denser MoCr sintered body by deformation and joining of Mo powder and Cr powder.
  • the sintering of the mixed powder is desirably performed at a temperature condition in the subsequent infiltration step S5, for example, at a temperature of 1150 ° C. or higher.
  • a sintered body (porous body) can also be obtained by performing HIP process S4 directly, without performing sintering process S3.
  • the obtained sintered body (or a mixed powder compact) is subjected to HIP processing.
  • the treatment temperature of the HIP treatment is not particularly limited as long as it is lower than the melting point of the sintered body (or mixed powder). That is, the processing temperature and processing pressure of the HIP processing are appropriately determined according to the performance required for the electrode. For example, the HIP process is performed at a processing temperature of 700 to 1100 ° C., a processing pressure of 30 to 100 MPa, and a processing time of 1 to 5 hours.
  • Cu is infiltrated into the MoCr sintered body (porous body) after the HIP treatment.
  • the infiltration of Cu is performed, for example, by placing a Cu plate material on the sintered body and holding in a non-oxidizing atmosphere at a temperature equal to or higher than the melting point of Cu for a predetermined time (for example, 1150 ° C.-2 hours).
  • a vacuum interrupter can be comprised using the electrode material which concerns on embodiment of this invention.
  • a vacuum interrupter 1 having an electrode material according to an embodiment of the present invention includes a vacuum vessel 2, a fixed electrode 3, a movable electrode 4, and a main shield 10.
  • the vacuum vessel 2 is configured by sealing both open end portions of the insulating cylinder 5 with a fixed side end plate 6 and a movable side end plate 7, respectively.
  • the fixed electrode 3 is fixed in a state of passing through the fixed side end plate 6.
  • One end of the fixed electrode 3 is fixed so as to face one end of the movable electrode 4 in the vacuum vessel 2, and the end of the fixed electrode 3 facing the movable electrode 4 is in accordance with the embodiment of the present invention.
  • An electrode contact material 8 which is an electrode material is provided.
  • Example 1 A specific example is given and the manufacturing method and electrode material of the electrode material which concern on embodiment of this invention are demonstrated still in detail.
  • the electrode material of Example 1 is an electrode material manufactured according to the flowchart shown in FIG.
  • Mo powder having a particle size of 0.8 to 6.0 ⁇ m was used.
  • the Cr powder 235 mesh under (a sieve opening of 63 ⁇ m) was used.
  • the sintered body of stainless steel cylindrical vessel (cylindrical inner height 11 mm, internal diameter Fai62mm, wall thickness 5mm) placed in and then vacuum sealed, in the HIP treatment apparatus, 1050 °C -70MPa (0.714t / cm 2 ) -2 hours of HIP treatment.
  • the electrode material of Comparative Example 1 is an electrode material produced by the same method as Example 1 except that no HIP treatment is performed.
  • the electrode material of Comparative Example 1 is an electrode material produced according to the flowchart shown in FIG. In the flowchart of FIG. 4, the same steps as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • Example 3 The electrode material of Example 3 is an electrode material produced by the same method as Example 1 except that the pressure in the pressure molding step S2 is different.
  • the product was pressure-molded at a press pressure of 3.1 t / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat-treated in vacuum at 1150 ° C. for 1.5 hours to obtain a sintered body.
  • the filling factor of the sintered body was 60.1%.
  • the sintered body was subjected to HIP treatment at 1050 ° C.-70 MPa-2 hours.
  • the filling factor after HIP processing was 72.7%.
  • Cu was infiltrated into this HIP-treated body to obtain an electrode material of Example 3.
  • Example 6 The electrode material of Example 6 is an electrode material produced by the same method as Example 1 except that the mixing ratio of Mo and Cr in the mixing step S1 is different.
  • the mixture was press-molded at a press pressure of 4.5 t / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat-treated in vacuum at 1150 ° C. for 1.5 hours to obtain a sintered body.
  • the filling factor of the sintered body was 68.7%.
  • the sintered body was subjected to HIP treatment at 1050 ° C.-70 MPa-2 hours.
  • the filling factor after HIP processing was 79.2%.
  • Cu was infiltrated into this HIP-treated body to obtain an electrode material of Example 6.
  • Example 7 The electrode material of Example 7 is an electrode material produced by the same method as Example 6 except that the particle size of Cr mixed with Mo in the mixing step S1 is different. Specifically, the electrode material of Example 7 is an electrode material manufactured using Cr powder of 180 mesh under (less than 80 ⁇ m).
  • the mixture was press-molded at a press pressure of 4.5 t / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat-treated in vacuum at 1150 ° C. for 1.5 hours to obtain a sintered body.
  • the filling factor of the sintered body was 69.0%.
  • the sintered body was subjected to HIP treatment at 1050 ° C.-70 MPa-2 hours.
  • the filling factor after HIP processing was 76.9%.
  • Cu was infiltrated into this HIP-treated body to obtain an electrode material of Example 7.
  • Example 8 The electrode material of Example 8 is an electrode material produced by the same method as Example 7 except that the pressure in the pressure molding step S2 is different.
  • the product was pressure molded at a press pressure of 3.8 t / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat-treated in vacuum at 1150 ° C. for 1.5 hours to obtain a sintered body.
  • the filling factor of the sintered body was 63.1%.
  • the sintered body was subjected to HIP treatment at 1050 ° C.-70 MPa-2 hours.
  • the filling factor after HIP processing was 73.9%.
  • Cu was infiltrated into this HIP-treated body to obtain an electrode material of Example 8.
  • Example 9 The electrode material of Example 9 is an electrode material manufactured by the same method as Example 7 except that the mixing ratio of Mo and Cr in the mixing step S1 is different.
  • the mixture was press-molded at a press pressure of 4.5 t / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat-treated in vacuum at 1150 ° C. for 1.5 hours to obtain a sintered body.
  • the filling factor of the sintered body was 68.0%.
  • the sintered body was subjected to HIP treatment at 1050 ° C.-70 MPa-2 hours.
  • the filling factor after HIP processing was 74.6%.
  • Cu was infiltrated into this HIP-treated body to obtain an electrode material of Example 9.
  • the product was pressure molded at a press pressure of 3.8 t / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat-treated in vacuum at 1150 ° C. for 1.5 hours to obtain a sintered body.
  • the filling factor of the sintered body was 63.0%.
  • the sintered body was subjected to HIP treatment at 1050 ° C.-70 MPa-2 hours.
  • the filling factor after HIP processing was 72.7%.
  • Cu was infiltrated into this HIP-treated body to obtain an electrode material of Example 10.
  • Example 11 The electrode material of Example 11 is an electrode material produced by the same method as Example 7 except that the mixing ratio of Mo and Cr in the mixing step S1 is different.
  • the mixture was press-molded at a press pressure of 4.5 t / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat-treated in vacuum at 1150 ° C. for 1.5 hours to obtain a sintered body.
  • the filling factor of the sintered body was 67.6%.
  • the sintered body was subjected to HIP treatment at 1050 ° C.-70 MPa-2 hours.
  • the filling factor after HIP processing was 73.8%.
  • Cu was infiltrated into this HIP-treated body to obtain an electrode material of Example 11.
  • Example 12 The electrode material of Example 12 is an electrode material produced by the same method as Example 11 except that the pressure in the pressure molding step S2 is different.
  • the product was pressure molded at a press pressure of 3.8 t / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat-treated in vacuum at 1150 ° C. for 1.5 hours to obtain a sintered body.
  • the filling factor of the sintered body was 62.2%.
  • the sintered body was subjected to HIP treatment at 1050 ° C.-70 MPa-2 hours.
  • the filling factor after HIP processing was 72.2%.
  • Cu was infiltrated into this HIP-treated body to obtain an electrode material of Example 12.
  • the mixture was press-molded at a press pressure of 4.5 t / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat-treated in vacuum at 1150 ° C. for 1.5 hours to obtain a sintered body.
  • the filling factor of the sintered body was 69.3%.
  • the sintered body was subjected to HIP treatment at 1050 ° C.-70 MPa-2 hours.
  • the filling factor after HIP processing was 78.1%.
  • Cu was infiltrated into this HIP-treated body to obtain an electrode material of Example 13.
  • Example 15 The electrode material of Example 15 is an electrode material produced by the same method as Example 14 except that the mixing ratio of Mo and Cr in the mixing step S1 is different.
  • the mixture was press-molded at a press pressure of 4.5 t / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat-treated in vacuum at 1150 ° C. for 1.5 hours to obtain a sintered body.
  • the filling factor of the sintered body was 66.0%.
  • the sintered body was subjected to HIP treatment at 1050 ° C.-70 MPa-2 hours.
  • the filling factor after HIP processing was 75.3%.
  • Cu was infiltrated into this HIP-treated body to obtain an electrode material of Example 15.
  • the mixture was press-molded at a press pressure of 4.5 t / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat-treated in vacuum at 1150 ° C. for 1.5 hours to obtain a sintered body.
  • the filling factor of the sintered body was 64.6%.
  • the sintered body was subjected to HIP treatment at 1050 ° C.-70 MPa-2 hours.
  • the filling factor after HIP processing was 74.6%.
  • Cu was infiltrated into this HIP-treated body to obtain an electrode material of Example 16.
  • Comparative Examples 2 to 16 As Comparative Examples 2 to 16 corresponding to the electrode materials of Examples 2 to 16, electrode materials were prepared in the same manner as in Examples 2 to 16, except that the HIP treatment was not performed.
  • Table 1 shows the electrical conductivity (% IACS), micro Vickers hardness, and impulse withstand voltage measurement results of the electrode materials of Examples 1 to 16 and Comparative Examples 1 to 16. Table 1 also shows the measurement results of the filling rate of the sintered bodies before and after the HIP treatment step of Examples 1 to 16 and the filling rate after the sintering step of Comparative Examples 1 to 16.
  • the impulse withstand voltage measurement was performed by processing each electrode material into a disk electrode having a diameter of 25 mm as an electrode of a vacuum circuit breaker (the same applies to other examples and comparative examples).
  • the withstand voltage is shown as a relative value to the electrode material produced under the same conditions except for the presence or absence of the HIP treatment. That is, the withstand voltage indicates a relative value based on the electrode material that has not been subjected to the HIP process (reference value 1.0).
  • the Vickers hardness after Cu infiltration is improved, the decrease in conductivity (% IACS) is not so much, and compared with the electrode material not subjected to the HIP treatment.
  • the withstand voltage was improved by 2 to 15%.
  • the conventional processing is performed by performing the HIP treatment. It was possible to obtain a sintered body having a high powder filling ratio of a heat-resistant element of 75% or more (porosity 25% or less) that could not be obtained by a series of manufacturing methods such as pressure forming, sintering, and Cu infiltration. .
  • Example 17 The electrode material of Example 17 is an electrode material produced by the same method as Example 5 except that the sintering step S3 is not performed.
  • Table 2 shows the electrical conductivity (% IACS), micro Vickers hardness, and impulse withstand voltage measurement results of the electrode material of Example 17.
  • Example 17 since the sintering step S3 is not performed, it is considered that the amount of gas leaked into the cylindrical container subjected to the HIP process is larger than that in Example 5. That is, it is conceivable that an oxide is generated on the surface of the sintered body due to the gas leaked from the inside of the sintered body and the withstand voltage performance of the electrode material is lowered. However, there was no significant difference in withstand voltage performance between the electrode material of Example 5 and the electrode material of Example 17. This is considered to be due to the fact that Cu was melted during Cu infiltration and the oxide was removed by covering the periphery of the MoCr particles.
  • the mixture was press-molded at a press pressure of 4.5 t / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat-treated in vacuum at 1150 ° C. for 1.5 hours to obtain a sintered body.
  • the filling factor of the sintered body was 67.1%.
  • the sintered body was subjected to HIP treatment at 1050 ° C.-70 MPa-2 hours.
  • the filling factor after HIP processing was 75.0%.
  • Cu was infiltrated into this HIP-treated body to obtain an electrode material of Example 18.
  • Example 19 The electrode material of Example 19 is an electrode material produced by the same method as Example 18 except that the mixing ratio of Mo and Cr in the mixing step S1 is different.
  • the mixture was press-molded at a press pressure of 4.5 t / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat-treated in vacuum at 1150 ° C. for 1.5 hours to obtain a sintered body.
  • the filling factor of the sintered body was 70.3%.
  • the sintered body was subjected to HIP treatment at 1050 ° C.-70 MPa-2 hours.
  • the filling factor after HIP processing was 80.2%.
  • Cu was infiltrated into this HIP-treated body to obtain an electrode material of Example 19.
  • Example 20 The electrode material of Example 20 is an electrode material manufactured by the same method as Example 18 except that the particle size of Cr mixed with Mo in the mixing step S1 is different. Specifically, the electrode material of Example 20 is an electrode material produced using 180 mesh under (less than 80 ⁇ m) Cr powder.
  • the mixture was press-molded at a press pressure of 4.5 t / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat-treated in vacuum at 1150 ° C. for 1.5 hours to obtain a sintered body.
  • the filling factor of the sintered body was 69.1%.
  • the sintered body was subjected to HIP treatment at 1050 ° C.-70 MPa-2 hours.
  • the filling factor after HIP processing was 75.0%.
  • Cu was infiltrated into this HIP-treated body to obtain an electrode material of Example 20.
  • Example 21 The electrode material of Example 21 is an electrode material produced by the same method as Example 20 except that the mixing ratio of Mo and Cr in the mixing step S1 is different.
  • the mixture was press-molded at a press pressure of 4.5 t / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat-treated in vacuum at 1150 ° C. for 1.5 hours to obtain a sintered body.
  • the filling factor of the sintered body was 71.0%.
  • the sintered body was subjected to HIP treatment at 1050 ° C.-70 MPa-2 hours.
  • the filling factor after HIP processing was 79.1%.
  • Cu was infiltrated into this HIP-treated body to obtain an electrode material of Example 21.
  • the electrode material of Example 22 is an electrode material manufactured by the same method as Example 18 except that the particle size of Cr mixed with Mo in the mixing step S1 is different. Specifically, the electrode material of Example 22 is an electrode material manufactured using Cr powder of 330 mesh under (less than 45 ⁇ m).
  • the mixture was press-molded at a press pressure of 4.5 t / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat-treated in vacuum at 1150 ° C. for 1.5 hours to obtain a sintered body.
  • the filling factor of the sintered body was 66.3%.
  • the sintered body was subjected to HIP treatment at 1050 ° C.-70 MPa-2 hours.
  • the filling factor after HIP processing was 75.9%.
  • Cu was infiltrated into this HIP-treated body to obtain an electrode material of Example 22.
  • Example 23 The electrode material of Example 23 is an electrode material produced by the same method as Example 22 except that the mixing ratio of Mo and Cr in the mixing step S1 is different.
  • the mixture was press-molded at a press pressure of 4.5 t / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat-treated in vacuum at 1150 ° C. for 1.5 hours to obtain a sintered body.
  • the filling factor of the sintered body was 70.0%.
  • the sintered body was subjected to HIP treatment at 1050 ° C.-70 MPa-2 hours.
  • the filling factor after HIP processing was 79.6%.
  • Cu was infiltrated into this HIP-treated body to obtain an electrode material of Example 23.
  • Comparative Examples 18 to 23 As Comparative Examples 18 to 23 corresponding to the electrode materials of Examples 18 to 23, electrode materials were produced in the same manner as in Examples 18 to 23 except that the HIP treatment was not performed.
  • Table 3 shows the electrical conductivity (% IACS), micro Vickers hardness, and impulse withstand voltage measurement results of the electrode materials of Examples 18 to 23 and Comparative Examples 18 to 23. Table 3 also shows the measurement results of the filling rate of the sintered bodies before and after the HIP treatment step of Examples 18 to 23 and the filling rate after the sintering step of Comparative Examples 18 to 23.
  • the HIP processing technology has been used mainly for the purpose of removing internal pores in the powder metallurgy technology.
  • the HIP process is used also in the manufacturing method of the electrode for vacuum interrupters (for example, patent document 4).
  • liquid phase sintering is performed at a temperature not lower than the melting point of Cu, which is a conductive metal, and not higher than the melting point of Cr, and the conductive metal is melted to produce a dense high-density sintered body.
  • HIP processing is performed for the purpose of bringing the relative density of the target material close to 100%.
  • the present invention is not intended to obtain a high-density sintered body having a dense filling rate close to 100%, and aims to control the filling rate (ie, porosity) of the high melting point heat-resistant material. . Specifically, it is excellent in withstand voltage performance without deteriorating the contact resistance characteristics of the electrode by setting it to 65% to 95%, more preferably 70% to 92.5%, and further preferably 75% to 90%. Electrode material can be obtained.
  • the range of the powder packing density is 60 to 75% (for example, Non-Patent Document 2).
  • an electrode material having a high content of heat-resistant elements in a Cu substrate is obtained by improving the filling rate of the electrode material.
  • the required pressing pressure is 1.0 to 22.1 t, and the pressing performance of 25 t is achieved. It can pressurize with the press which has.
  • a press machine having a pressing performance of 15.7 to 353 t is required. That is, in order to obtain a molded body having a large diameter (for example, a diameter of ⁇ 100 mm or more), a large press machine of about 400 t is required.
  • a carbon sheet (member which does not join a sintered compact and a cylindrical container between a sintered compact and a cylindrical container) ) Can be easily obtained by simply removing the carbon sheet.
  • the pressure molding process is not limited to pressure molding using a press, but is performed by a molding method such as cold isostatic pressing (CIP), cast molding, injection molding, or extrusion molding. You can also.
  • CIP cold isostatic pressing
  • a solid solution of a heat-resistant element and Cr may be formed in advance, and a sintered body (or a porous body) may be configured using this heat-resistant element-Cr solid solution powder.
  • the electrode material of the present invention is not limited to those having only heat-resistant elements, Cr and Cu as constituent elements, and an element for improving the characteristics of the electrode material may be added.
  • the welding resistance of the electrode material can be improved by adding Te.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

 耐熱元素を含有する多孔質体にCu等の高導電性金属を溶浸させた電極材料の製造方法である。高導電性金属を溶浸させる溶浸工程の前に、耐熱元素を含有する粉末(若しくは、耐熱元素を含有する粉末を成形した成形体)に対してHIP処理を行う。HIP処理を行うことで、多孔質体の充填率を70%以上、より好ましくは75%以上となるように組成制御する。組成制御された多孔質体に高導電性の金属を溶浸する。

Description

電極材料の製造方法及び電極材料
 本発明は、電極材料の製造方法及び電極材料に関する。
 真空インタラプタ(VI)等の電極に用いられる電極材料には、(1)遮断容量が大きいこと、(2)耐電圧性能が高いこと、(3)接触抵抗が低いこと、(4)耐溶着性が高いこと、(5)接点消耗量が低いこと、(6)裁断電流が低いこと、(7)加工性に優れること、(8)機械強度が高いこと、等の特性を満たすことが求められる。
 銅(Cu)-クロム(Cr)電極は、遮断容量が大きく、耐電圧性能が高く、耐溶着性が高い等の特性を有し、真空インタラプタの接点材料として広く用いられている。Cu-Cr電極では、Cr粒子の粒径が細かい方が遮断電流や接触抵抗の面において良好であるとの報告がある(例えば、非特許文献1)。
 Cu-Cr電極材料の製造方法として、一般に焼結法(固相焼結法)と溶浸法の2通りの方法が良く知られている。焼結法は、導電性の良好なCuと耐アーク性に優れるCrとを一定の割合で混合し、その混合粉末を加圧成形してから、真空中等の非酸化雰囲気で焼結して焼結体を製造する。焼結法は、CuとCrの組成を自由に選ぶことができる長所があるが、溶浸法と比較してガス含有量が高く、機械強度が低くなるおそれがある。
 一方の溶浸法は、Cr粉末を加圧成形して(若しくは、成形せずに)、容器に充填し、真空中等の非酸化雰囲気でCuの融点以上に加熱することによりCr粒子間の空隙にCuを溶浸して電極を製造する。溶浸法は、CuとCrの組成比を自由に選ぶことができないが、焼結法よりもガス・空隙の少ない素材が得られ、機械強度が高いという長所がある。
 近年、真空インタラプタの使用条件が厳しくなるとともにコンデンサ回路への真空インタラプタの適用拡大が進んでいる。コンデンサ回路では、通常の2~3倍の電圧が電極間に印加されるため、電流遮断時や電流開閉時のアークによって接点表面が著しく損傷し再点弧が発生しやすくなると考えられる。例えば、回路電圧を印加した状態で電極を閉じていくと、可動電極と固定電極との間の電界が強くなり、電極が閉じる前に絶縁破壊が生じる。この時にアークが発生し、アークの熱によって電極の接点表面に溶融が生じる。そして、電極が閉じると、溶融した部位は熱拡散により温度が低下し、溶着することとなる。電極が開くときには、この溶融した部位が引き剥がされるので、接点表面に損傷が生じることとなる。そのため、従来のCu-Cr電極より優れた耐電圧性能及び電流遮断性能を有する電極材料が求められている。
 電流遮断性能や耐電圧性能等の電気的特性の良好なCu-Cr系電極材料の製造方法として、基材であるCu粉末に、電気的特性を向上させるCr粉末と、Cr粒子を微細にする耐熱元素(モリブデン(Mo)、タングステン(W)、ニオブ(Nb)、タンタル(Ta)、バナジウム(V)、ジルコニウム(Zr)等)粉末とを混合した後、混合粉末を型に挿入して加圧成形し焼結体とする電極の製造方法がある(例えば、特許文献1,2)。
 具体的には、200~300μmの粒子サイズを有するCrを原料としたCu-Cr系電極材料に耐熱元素を添加し、微細組織技術を通してCrを微細化する。つまり、Crと耐熱元素の合金化を促進させ、Cu基材組織内部に微細なCr-X(Xは耐熱元素)粒子の析出を増加させている。その結果、直径20~60μmのCr粒子が、その内部に耐熱元素を有する形態で、Cu基材組織内に均一に分散されることとなる。
 特許文献2に記載されているように、耐電圧性能や電流遮断性能等を向上させるためにはCu-Cr系電極材料中のCr、Mo等の耐熱元素の含有量を多くして、さらにはCr、Mo等の粒径を微細化して均一に分散させると良い。しかし、Cr、Mo等の含有量を多くすると電極材料の導電性が下がることにより、接触抵抗値が上がりさらには遮断性能が低下するという欠点が生じる。
 したがって、Cu-Cr系電極材料において、遮断性能や耐電圧性能を向上させるためには、電極材料の導電性を極力下げずに(接触抵抗値を極力上げずに)、Cr、Mo等の耐熱元素の含有率を多くすることが望まれる。
特開2012-7203号公報 特開2002-180150号公報 特開2004-211173号公報 特開昭63-62122号公報 特開平9-194906号公報
RIEDER, F. u.a.、"The Influence of Composition and Cr Particle Size of Cu/Cr Contacts on Chopping Current, Contact Resistance, and Breakdown Voltage in Vacuum Interrupters"、IEEE Transactions on Components, Hybrids, and Manufacturing Technology、Vol. 12、1989、273-283 田中紘一,石崎幸三編、「新素材焼結‐HIP焼結の基礎と応用」、内田老鶴圃、1987年、pp.207
 本発明は、従来のCu-Cr電極より優れた耐電圧性能を有する電極材料を提供することを目的とする発明であり、特に、溶浸法により製造される電極材料において、Cuや銀等の高導電性金属を溶浸させる多孔質体の充填率を向上させることを目的とする。
 溶浸法では、例えば、金型成形等の方法により多孔質体の成形が行われているが、多孔質体の充填率を向上させるために成形圧力を向上させると、金型の摩耗が激しくなり、金型の寿命が短くなるおそれがある。
 上記目的を達成する本発明の電極材料の製造方法の一態様は、耐熱元素を含有する粉末または耐熱元素を含有する粉末の成形体を、前記耐熱元素の融点より低い温度で熱間等方圧加圧処理して多孔質体を得る工程と、前記多孔質体に前記耐熱元素の融点より低い融点を有する金属を溶浸する工程と、を有する。
 また、上記目的を達成する本発明の電極材料の製造方法の他の態様は、上記電極材料の製造方法において、前記粉末または前記成形体を焼結し、焼結後の粉末または成形体を熱間等方圧加圧処理に供する。
 また、上記目的を達成する本発明の電極材料の製造方法の他の態様は、上記電極材料の製造方法において、前記多孔質体に溶浸させる金属は高導電性金属である。
 また、上記目的を達成する本発明の電極材料の製造方法の他の態様は、上記電極材料の製造方法において、前記高導電性金属は銅であり、前記耐熱元素はクロム及びモリブデンである。
 また、上記目的を達成する本発明の電極材料の一態様は、耐熱元素を含有し、充填率が70%以上である多孔質体に、前記耐熱元素の融点より低い融点を有する金属を溶浸してなる。
 また、上記目的を達成する本発明の電極材料の他の態様は、上記電極材料において、前記多孔質体に溶浸される金属は高導電性金属である。
 また、上記目的を達成する本発明の電極材料の他の態様は、上記電極材料において、前記高導電性金属は銅であり、前記耐熱元素はクロム及びモリブデンである。
本発明の実施形態に係る電極材料の製造方法(焼結工程を行った後にHIP処理工程を行う場合)のフローチャートである。 本発明の実施形態に係る電極材料の製造方法(焼結工程を行わずにHIP処理工程を行う場合)のフローチャートである。 本発明の実施形態に係る電極材料を有する真空インタラプタの概略断面図である。 比較例に係る電極材料の製造方法のフローチャートである。 プレス圧力と充填率との関係を示す特性図である。
 本発明の実施形態に係る電極材料の製造方法及び電極材料について、図を参照して詳細に説明する。なお、実施形態の説明において、特に断りがない限り、平均粒子径(その他、メディアン径d50や粒径等)は、レーザー回折式粒度分布測定装置(シーラス社:シーラス1090L)により測定された値を示す。
 本発明は、金属(CuまたはAg等)-Cr-耐熱元素(Mo,W,V等)の組成を有する電極材料を溶浸法により製造する技術に関するものである。溶浸法では、Cr粉末やMo粉末等の耐熱元素を含有する混合粉末をプレス成形等により成形し、この成形体にCuやAg等の導電性の高い金属を溶浸して電極材料を製造する。なお、溶浸法では、混合粉末を成形せずにCuやAg等の金属を溶浸させる場合もある。
 発明者らは、電極材料における耐電圧性能の向上について鋭意検討を重ねた結果、耐熱元素を含有する成形体に導電性の高い金属を溶浸する前に、成形体を熱間等方圧加圧処理(以後、HIP処理と称する)に供することにより、電極材料の耐電圧性能が向上することを見出し、本願発明の完成に至ったものである。
 耐熱元素は、例えば、モリブデン(Mo)、タングステン(W)、タンタル(Ta)、ニオブ(Nb)、バナジウム(V)、ジルコニウム(Zr)、ベリリウム(Be)、ハフニウム(Hf)、イリジウム(Ir)、白金(Pt)、チタン(Ti)、ケイ素(Si)、ロジウム(Rh)及びルテニウム(Ru)等の元素から選択される元素を単独若しくは組み合わせて用いることができる。特に、Cr粒子を微細化する効果が顕著であるMo、W、Ta、Nb、V、Zrを用いることが好ましい。また、これら耐熱元素の炭化物を耐熱成分として用いてもよい。耐熱元素を粉末として用いる場合、耐熱元素粉末の平均粒子径を、例えば、2~20μm、より好ましくは2~10μmにすることで、電極材料にCrを含有する粒子(耐熱元素とCrの固溶体を含む)を微細化して均一に分散させることができる。耐熱元素は、電極材料に対して13~94重量%、より好ましくは35~92重量%含有させることで、機械強度や加工性、電流遮断性能を損なうことなく、電極材料の耐電圧性能を向上させることができる。
 Crは、電極材料に対して0.65~76重量%、より好ましくは0.7~46重量%含有させることで、機械強度や加工性、電流遮断性能を損なうことなく、電極材料の耐電圧性能を向上させることができる。Cr粉末を用いる場合、Cr粉末の粒径を、例えば、48メッシュアンダー(粒径300μm未満)、より好ましくは100メッシュアンダー(粒径150μm未満)、さらに好ましくは325メッシュアンダー(粒径45μm未満)とすることで、耐電圧性能及び電流遮断性能に優れた電極材料を得ることができる。Cr粉末の粒径を100メッシュアンダーとすることで、電極材料に溶浸されたCuの粒子径を大きくする要因となる残存Crの量を低減することができる。また、電極材料中に微細化したCrを含有する粒子を分散させる点では、粒径が小さいCr粉末を用いることが好ましいが、Cr粒子を細かくするほど電極材料に含有される酸素含有量が増加して電流遮断性能が低下する。Cr粒子の粒径を小さくすることによる電極材料の酸素含有量の増加は、Crを微細に粉砕する際にCrが酸化することにより生じるものと考えられる。そこで、Crが酸化しない条件、例えば、不活性ガス中でCrを微細な粉末とすることができるのであれば、粒径が325メッシュアンダー未満のCr粉末を用いてもよく、電極材料中に微細化したCrを含有する粒子を分散させる点では、粒径が小さいCr粉末を用いることが好ましい。
 溶浸させる金属としては、銅(Cu)、銀(Ag)またはCuとAgの合金等の高導電性の金属が用いられる。これら金属は、電極材料に対して5~35重量%より好ましくは7.5~30重量%含有させることで、電極材料の電流遮断性能の低下や接触抵抗の増加を伴うことなく、電極材料の耐電圧性能を向上させることができる。なお、電極材料に含有されるCuの含有量は、溶浸工程により定められることとなるので、電極材料に含まれる耐熱元素、Cr及びCuの合計は、100重量%を超えることはない。
 本発明の実施形態に係る電極材料の製造方法について、図1のフローチャートを参照して詳細に説明する。なお、以下の説明では、耐熱元素としてMoを用い、高導電性の金属としてCuを用いた例を示して説明するが、他の耐熱元素の粉末を用いた場合及び他の高導電性の金属を用いた場合も同様である。
 混合工程S1では、耐熱元素粉末(例えば、Mo粉末)とCr粉末を混合する。Mo粉末とCr粉末は、例えば、重量比率でMo1に対しCrが1以下の割合で混合することで、耐電圧性能及び電流遮断性能に優れた電極材料を製造することができる。
 加圧成形工程S2では、例えば、プレス機等を用いて、混合工程S1で得られたMo粉末とCr粉末の混合粉末(以下、混合粉末と称する)を加圧成形する。このときの成形圧力は特に限定するものではないが、例えば、2~4.5t/cm2の圧力で成形される。
 焼結工程S3では、成形された混合粉末を焼結して焼結体を得る。焼結は、例えば、混合粉末の成形体を、1150℃-2時間、真空雰囲気中で焼結することにより行う。焼結工程S3は、Mo粉末とCr粉末の変形と接合によってより緻密なMoCr焼結体を得る工程である。混合粉末の焼結は、後の溶浸工程S5の温度条件、例えば1150℃以上の温度で実施することが望ましい。溶浸温度よりも低い温度で焼結を行うと、溶浸時に焼結体に含有されているガスが新たに発生して溶浸体に残留し、耐電圧性能や電流遮断性能を損なう要因となるからである。よって、焼結温度は、溶浸時の温度よりも高く、且つCrの融点以下の温度、好ましくは1150~1500℃の範囲で行う。その結果、MoCr粒子の緻密化が進み、且つMoCr粒子の脱ガスが十分に進行する。なお、図2に示すように、焼結工程S3を行わずに、直接HIP処理工程S4を行うことで、焼結体(多孔質体)を得ることもできる。
 HIP処理工程S4では、得られた焼結体(若しくは、混合粉末の成形体)のHIP処理を行う。HIP処理の処理温度は、焼結体(若しくは、混合粉末)の融点未満であれば特に限定されるものではない。つまり、HIP処理の処理温度や処理圧力は、電極として要求される性能に応じて適宜決定されることとなる。例えば、処理温度700~1100℃、処理圧力30~100MPa、処理時間1~5時間にてHIP処理を行う。
 Cu溶浸工程S5では、HIP処理後のMoCr焼結体(多孔質体)にCuを溶浸させる。Cuの溶浸は、例えば、焼結体上にCu板材を乗せ、非酸化性雰囲気にて、Cuの融点以上の温度で所定時間(例えば、1150℃-2時間)保持することにより行う。
 なお、本発明の実施形態に係る電極材料を用いて真空インタラプタを構成することができる。図3に示すように、本発明の実施形態に係る電極材料を有する真空インタラプタ1は、真空容器2と、固定電極3と、可動電極4と、主シールド10と、を有する。
 真空容器2は、絶縁筒5の両開口端部が、固定側端板6及び可動側端板7でそれぞれ封止されることで構成される。
 固定電極3は、固定側端板6を貫通した状態で固定される。固定電極3の一端は、真空容器2内で、可動電極4の一端と対向するように固定されており、固定電極3の可動電極4と対向する端部には、本発明の実施形態に係る電極材料である電極接点材8が設けられる。
 可動電極4は、可動側端板7に設けられる。可動電極4は、固定電極3と同軸上に設けられる。可動電極4は、図示省略の開閉手段により軸方向に移動させられ、固定電極3と可動電極4の開閉が行われる。可動電極4の固定電極3と対向する端部には、電極接点材8が設けられる。なお、可動電極4と可動側端板7との間には、ベローズ9が設けられ、真空容器2内を真空に保ったまま可動電極4を上下させ、固定電極3と可動電極4の開閉が行われる。
 主シールド10は、固定電極3の電極接点材8と可動電極4の電極接点材8との接触部を覆うように設けられ、固定電極3と可動電極4との間で発生するアークから絶縁筒5を保護する。
 [実施例1]
 具体的な実施例を挙げて、本発明の実施形態に係る電極材料の製造方法及び電極材料についてさらに詳細に説明する。実施例1の電極材料は、図1に示すフローチャートにしたがって作製された電極材料である。
 Mo粉末とCr粉末をMo:Cr=9:1の重量比率で、V型混合器を用いて均一となるように十分に混合した。
 Mo粉末は、粒度0.8~6.0μmのものを用いた。このMo粉末をレーザー回折式粒度分布測定装置を用いて粒度分布を測定したところメディアン径d50は5.1μm(d10=3.1μm、d90=8.8μm)であった。Cr粉末は、235メッシュアンダー(ふるい目開き63μm)を用いた。
 混合終了後、プレス圧4.5t/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率(HIP処理前の充填率)は、65.4%であった。
 ここで、焼結体の充填率A(%)は、以下の式を用いて求めた。
Figure JPOXMLDOC01-appb-M000001
 この焼結体をステンレス製の円筒容器(円筒内高さ11mm、内径φ62mm、肉厚5mm)内に入れ、真空密封した後、HIP処理装置内で、1050℃-70MPa(0.714t/cm2)-2時間のHIP処理を行った。
 具体的に説明すると、円筒容器の底面にカーボンシート(直径φ62mm、厚さ0.4mm)を敷き、その上に焼結体を載せた。また、焼結体と円筒容器の内側壁との間にもカーボンシートを設けた。さらに、焼結体上にカーボンシートを載せ、円筒容器の上部開口に上蓋(厚さ5mm)を被せた。円筒容器の上部内径部分には、予め段差が形成されており、この段差部に上蓋が緩く嵌設される。焼結体と円筒容器の内壁との間にカーボンシートを挿入することで、HIP処理による焼結体と円筒容器との焼き付きが防止される。
 そして、焼結体が入れられた円筒容器を真空装置内に入れ、1.0×10-3Paまで真空排気を行った。この排気工程により円筒容器の上部開口と上蓋との隙間を通して、円筒容器内部(焼結体が配置されている空間)も1.0×10-3Paまで真空排気した。その後、真空装置中において円筒容器上部開口部と上蓋とを電子ビームで溶接し、円筒容器を真空密封した。
 真空密封した円筒容器をHIP処理(1050℃-70MPa-2時間)に供し、HIP処理後、電子ビームで溶接された箇所を旋盤切削した。カーボンシートは、1050℃の熱処理温度では、円筒容器及び焼結体と接合することがないので、HIP処理体の上下・側面に張り付いたカーボンシートを除去するのみで、HIP処理体を得ることができた。HIP処理体の外径及び厚みを測定することにより、HIP処理体の充填率を測定したところ、充填率は74.0%であった。このHIP処理体をアセトン超音波洗浄した後、HIP処理体上にCu板を載せ、1150℃-2時間真空雰囲気(非酸化性雰囲気)中でCuを溶浸させた。
 [比較例1]
 比較例1の電極材料は、HIP処理を行わないことを除いて実施例1と同じ方法で作製された電極材料である。比較例1の電極材料は、図4に示すフローチャートにしたがって作製された電極材料である。なお、図4のフローチャートでは、実施例1と同じ工程については、同じ符号を付し、詳細な説明は省略する。
 Mo粉末とCr粉末を、Mo:Cr=9:1の重量比率で混合した。混合終了後、プレス圧4.5t/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、65.6%であった。この焼結体にCuを溶浸させ、比較例1の電極材料とした。
 [実施例2]
 実施例2の電極材料は、加圧成形工程S2における圧力が異なることを除いて実施例1と同じ方法で作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=9:1の重量比率で混合した。混合終了後、プレス圧3.8t/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、63.8%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、73.2%であった。このHIP処理体にCuを溶浸させ、実施例2の電極材料とした。
 [実施例3]
 実施例3の電極材料は、加圧成形工程S2における圧力が異なることを除いて実施例1と同じ方法で作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=9:1の重量比率で混合した。混合終了後、プレス圧3.1t/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、60.1%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、72.7%であった。このHIP処理体にCuを溶浸させ、実施例3の電極材料とした。
 [実施例4]
 実施例4の電極材料は、加圧成形工程S2における圧力が異なることを除いて実施例1と同じ方法で作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=9:1の重量比率で混合した。混合終了後、プレス圧2.3t/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、56.4%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、72.0%であった。このHIP処理体にCuを溶浸させ、実施例4の電極材料とした。
 [実施例5]
 実施例5の電極材料は、混合工程S1におけるMoとCrの混合比率が異なることを除いて実施例1と同じ方法で作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=7:1の重量比率で混合した。混合終了後、プレス圧4.5t/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、66.4%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、75.3%であった。このHIP処理体にCuを溶浸させ、実施例5の電極材料とした。
 [実施例6]
 実施例6の電極材料は、混合工程S1におけるMoとCrの混合比率が異なることを除いて実施例1と同じ方法で作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=4:1の重量比率で混合した。混合終了後、プレス圧4.5t/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、68.7%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、79.2%であった。このHIP処理体にCuを溶浸させ、実施例6の電極材料とした。
 [実施例7]
 実施例7の電極材料は、混合工程S1でMoと混合するCrの粒径が異なることを除いて実施例6と同じ方法で作製された電極材料である。具体的には、実施例7の電極材料は、180メッシュアンダー(80μm未満)のCr粉末を用いて作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=4:1の重量比率で混合した。混合終了後、プレス圧4.5t/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、69.0%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、76.9%であった。このHIP処理体にCuを溶浸させ、実施例7の電極材料とした。
 [実施例8]
 実施例8の電極材料は、加圧成形工程S2における圧力が異なることを除いて実施例7と同じ方法で作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=4:1の重量比率で混合した。混合終了後、プレス圧3.8t/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、63.1%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、73.9%であった。このHIP処理体にCuを溶浸させ、実施例8の電極材料とした。
 [実施例9]
 実施例9の電極材料は、混合工程S1におけるMoとCrの混合比率が異なることを除いて実施例7と同じ方法で作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=7:1の重量比率で混合した。混合終了後、プレス圧4.5t/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、68.0%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、74.6%であった。このHIP処理体にCuを溶浸させ、実施例9の電極材料とした。
 [実施例10]
 実施例10の電極材料は、加圧成形工程S2における圧力が異なることを除いて実施例9と同じ方法で作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=7:1の重量比率で混合した。混合終了後、プレス圧3.8t/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、63.0%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、72.7%であった。このHIP処理体にCuを溶浸させ、実施例10の電極材料とした。
 [実施例11]
 実施例11の電極材料は、混合工程S1におけるMoとCrの混合比率が異なることを除いて実施例7と同じ方法で作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=9:1の重量比率で混合した。混合終了後、プレス圧4.5t/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、67.6%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、73.8%であった。このHIP処理体にCuを溶浸させ、実施例11の電極材料とした。
 [実施例12]
 実施例12の電極材料は、加圧成形工程S2における圧力が異なることを除いて実施例11と同じ方法で作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=9:1の重量比率で混合した。混合終了後、プレス圧3.8t/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、62.2%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、72.2%であった。このHIP処理体にCuを溶浸させ、実施例12の電極材料とした。
 [実施例13]
 実施例13の電極材料は、混合工程S1におけるMoとCrの混合比率が異なることを除いて実施例7と同じ方法で作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=3:1の重量比率で混合した。混合終了後、プレス圧4.5t/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、69.3%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、78.1%であった。このHIP処理体にCuを溶浸させ、実施例13の電極材料とした。
 [実施例14]
 実施例14の電極材料は、混合工程S1でMoと混合するCrの粒径が異なることを除いて実施例6と同じ方法で作製された電極材料である。具体的には、実施例14の電極材料は、330メッシュアンダー(45μm未満)のCr粉末を用いて作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=4:1の重量比率で混合した。混合終了後、プレス圧4.5t/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、68.3%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、78.5%であった。このHIP処理体にCuを溶浸させ、実施例14の電極材料とした。
 [実施例15]
 実施例15の電極材料は、混合工程S1におけるMoとCrの混合比率が異なることを除いて実施例14と同じ方法で作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=7:1の重量比率で混合した。混合終了後、プレス圧4.5t/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、66.0%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、75.3%であった。このHIP処理体にCuを溶浸させ、実施例15の電極材料とした。
 [実施例16]
 実施例16の電極材料は、混合工程S1におけるMoとCrの混合比率が異なることを除いて実施例14と同じ方法で作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=9:1の重量比率で混合した。混合終了後、プレス圧4.5t/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、64.6%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、74.6%であった。このHIP処理体にCuを溶浸させ、実施例16の電極材料とした。
 [比較例2乃至16]
 実施例2乃至16の各電極材料と対応する比較例2乃至16として、HIP処理を行わないことを除いて各実施例2乃至16と同じ方法で電極材料を作製した。
 実施例1乃至16及び比較例1乃至16の電極材料の導電率(%IACS)、マイクロビッカース硬度及びインパルス耐電圧測定結果を表1に示す。また、表1には、実施例1乃至16のHIP処理工程前後の焼結体の充填率及び比較例1乃至16の焼結工程後の充填率の測定結果を併せて示す。
 インパルス耐電圧測定は、各電極材料を真空遮断器の電極として直径φ25mmディスク電極に加工して行った(他の実施例及び比較例も同じである)。また、表1において、耐電圧は、HIP処理の有無以外は同じ条件で作製した電極材料との相対値で示している。つまり、耐電圧は、HIP処理を行わなかった電極材料を基準(基準値1.0)とした相対値を示している。
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、HIP処理を施すことにより、Cu溶浸後のビッカース硬度が向上し、導電率(%IACS)の低下もそれほど見られず、HIP処理を行わない電極材料と比較して耐電圧が2乃至15%向上した。
 また、実施例1乃至16のHIP処理工程前後の焼結体の充填率及び比較例1乃至16の焼結工程後の充填率の測定結果によれば、HIP処理を行うことで、従来の加圧成形、焼結、Cu溶浸という一連の製造方法では得ることができなかった75%以上(空孔率25%以下)という耐熱元素の粉末充填率が高い焼結体を得ることができた。
 さらに、実施例1乃至16の電極材料では、焼結工程S3を行った後にHIP処理工程S4を行うことにより、焼結体の脱ガスが促進されるものと考えられる。その結果、HIP処理工程S4に供される円筒容器内において、焼結体の内部から漏出するガス量が低減し、漏出したガスにより焼結体表面が酸化されることが抑制される。その結果、電極材料の耐電圧性能が向上する。
 [実施例17]
 実施例17の電極材料は、焼結工程S3を行わないことを除いて実施例5と同じ方法で作製された電極材料である。
 図2に示すように、Mo粉末とCr粉末を、Mo:Cr=7:1の重量比率で混合した。混合終了後、プレス圧4.5t/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、74.1%であった。このHIP処理体にCuを溶浸させ、実施例17の電極材料とした。
 実施例17の電極材料の導電率(%IACS)、マイクロビッカース硬度及びインパルス耐電圧測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表2に示すように、焼結工程S3を行わない場合においても、HIP処理を行わない比較例(比較例5)と比較して、耐電圧性能が向上した。
 また、実施例17では、焼結工程S3を行っていないので、実施例5と比較して、HIP処理に供される円筒容器内に漏出するガス量は多いものと考えられる。つまり、焼結体内部から漏出したガスにより焼結体表面に酸化物が生成され電極材料の耐電圧性能が低下することが考えられる。しかしながら、実施例5の電極材料と実施例17の電極材料とでは、耐電圧性能に大きな違いが生じなかった。これは、Cu溶浸時にCuが溶融してMoCr粒子の周囲を覆うことにより酸化物除去が行われたことによるもの考えられる。
 [実施例18]
 実施例18の電極材料は、混合工程S1でCrと混合するMoの粒径が異なることを除いて実施例1と同じ方法で作製された電極材料である。具体的には、実施例18の電極材料は、粒度が5.2~18.6μmであり、メディアン径d50=11.5μm(d10=5.2μm、d90=19.6μm)のMo粉末を用いて作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=9:1の重量比率で混合した。混合終了後、プレス圧4.5t/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、67.1%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、75.0%であった。このHIP処理体にCuを溶浸させ、実施例18の電極材料とした。
 [実施例19]
 実施例19の電極材料は、混合工程S1におけるMoとCrの混合比率が異なることを除いて実施例18と同じ方法で作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=4:1の重量比率で混合した。混合終了後、プレス圧4.5t/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、70.3%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、80.2%であった。このHIP処理体にCuを溶浸させ、実施例19の電極材料とした。
 [実施例20]
 実施例20の電極材料は、混合工程S1でMoと混合するCrの粒径が異なることを除いて実施例18と同じ方法で作製された電極材料である。具体的には、実施例20の電極材料は、180メッシュアンダー(80μm未満)のCr粉末を用いて作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=9:1の重量比率で混合した。混合終了後、プレス圧4.5t/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、69.1%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、75.0%であった。このHIP処理体にCuを溶浸させ、実施例20の電極材料とした。
 [実施例21]
 実施例21の電極材料は、混合工程S1におけるMoとCrの混合比率が異なることを除いて実施例20と同じ方法で作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=3:1の重量比率で混合した。混合終了後、プレス圧4.5t/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、71.0%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、79.1%であった。このHIP処理体にCuを溶浸させ、実施例21の電極材料とした。
 [実施例22]
 実施例22の電極材料は、混合工程S1でMoと混合するCrの粒径が異なることを除いて実施例18と同じ方法で作製された電極材料である。具体的には、実施例22の電極材料は、330メッシュアンダー(45μm未満)のCr粉末を用いて作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=9:1の重量比率で混合した。混合終了後、プレス圧4.5t/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、66.3%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、75.9%であった。このHIP処理体にCuを溶浸させ、実施例22の電極材料とした。
 [実施例23]
 実施例23の電極材料は、混合工程S1におけるMoとCrの混合比率が異なることを除いて実施例22と同じ方法で作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=4:1の重量比率で混合した。混合終了後、プレス圧4.5t/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、70.0%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、79.6%であった。このHIP処理体にCuを溶浸させ、実施例23の電極材料とした。
 [比較例18乃至23]
 実施例18乃至23の各電極材料と対応する比較例18乃至23として、HIP処理を行わないことを除いて各実施例18乃至23と同じ方法で電極材料を作製した。
 実施例18乃至23及び比較例18乃至23の電極材料の導電率(%IACS)、マイクロビッカース硬度及びインパルス耐電圧測定結果を表3に示す。なお、表3には、実施例18乃至23のHIP処理工程前後の焼結体の充填率及び比較例18乃至23の焼結工程後の充填率の測定結果を併せて示す。
Figure JPOXMLDOC01-appb-T000004
 表3に示すように、HIP処理を施すことにより、Cu溶浸後の導電率(%IACS)の低下もそれほど見られず、ビッカース硬度が向上し、HIP処理を行わない電極材料と比較して耐電圧性能が向上した。
 また、HIP処理を行うことで、従来の加圧成形、焼結、Cu溶浸という一連の製造方法では得ることができなかった75%以上(空孔率25%以下)という耐熱元素の粉末充填率が高い焼結体を得ることができた。
 以上のような本発明の実施形態に係る電極材料の製造方法によれば、耐熱元素とCrとを含有する焼結体(多孔質体)に高導電性の金属を溶浸して電極材料を製造する方法において、溶浸を行う前にHIP処理を行うことで、焼結体の充填率を向上させることができる。その結果、電極材料の耐電圧性能が向上する。また、溶浸後の電極材料の硬度が向上することで、耐電圧性能が向上する。
 従来、HIP処理技術は、粉末冶金技術において、主として、内部気孔の除去を目的として用いられてきた。例えば、真空インタラプタ用の電極の製造方法においても、HIP処理が用いられている(例えば、特許文献4)。しかしながら、特許文献4のHIP処理工程では、導電性金属であるCuの融点以上Crの融点以下の温度で液相焼結を行い、導電性金属を溶融させて緻密な高密度焼結体を製造するものである。すなわち、対象とする材料の相対密度を100%に近づけることを目的として、HIP処理が行われている。
 これに対して、本発明は、緻密な充填率が100%に近い高密度焼結体を得るものではなく、高融点耐熱材料の充填率(すなわち空孔率)を制御することを目的としている。具体的には、65%~95%、より好ましくは70%~92.5%、さらに好ましくは75%~90%とすることで、電極の接触抵抗特性を低下させることなく耐電圧性能に優れた電極材料を得ることができる。
 また、表4に示すように、金型成形、CIP、鋳込成形、射出成形、押出成形では、粉末充填密度を75%以上に高めることは困難である。例えば、高い粉末充填密度が得られるCIP法においても、粉末充填密度の範囲は60~75%である(例えば、非特許文献2)。
Figure JPOXMLDOC01-appb-T000005
 このように、本発明の実施形態に係る電極材料の製造方法及び電極材料によれば、電極材料の充填率を向上させることでCu基材中の耐熱元素の含有量の多い電極材料を得ることができる。つまり、高温、高圧の雰囲気下でHIP処理を行うことで、圧力と温度の相乗効果でMo-Cr成形体の充填率を向上させることができる。
 図5に示すように、加圧成形の成形圧力が増加すると電極材料の充填率も増加する傾向がある。よって、従来の電極材料の製造方法であっても、成形時のプレス圧力を高めて電極材料における耐熱元素の充填量を向上させることができるとも考えられる。
 図5に示したプロット(実施例1乃至4及び比較例1乃至4から求められる各成形圧力x(t/cm2)における充填率y(%)の測定結果)の近似曲線は、式(1)で表される。
y=4.2x+47   …(1)
 この式から、HIP処理を用いることなく72%の充填率を得るためには、5.9t/cm2の成形圧力が必要となる。つまり、直径φ100mmの電極を得るためには、500t以上の加圧性能を有する大型のプレス機が必要となる。大型のプレス機を導入すると、コストも高く極めて不経済となる。また、プレス圧を高くすればするほど、金型の摩耗が激しくなり、金型の寿命が短くなる。
 また、0.2~4.5t/cm2のプレス圧で加圧して直径φ25mmの成形体を得る場合、必要となるプレス圧は、1.0~22.1tとなり、25tの加圧性能を有するプレス機で加圧することができる。しかしながら、0.2~4.5t/cm2のプレス圧で加圧して直径φ100mmの成形体を得るためには、15.7~353tの加圧性能を有するプレス機が必要となる。すなわち、直径の大きな(例えば、直径φ100mm以上)の成形体を得るためには、約400tの大型プレス機が必要となる。
 これに対して、本発明の電極材料の製造方法では、高導電性の金属を溶浸する前にHIP処理工程を行うことで、焼結体(または成形体)の充填率を向上させることができる。その結果、成形工程における成形圧力を低減することができる。例えば、実施例4では、2.3t/cm2のプレス成形をした後、真空中で1150℃-1.5時間の熱処理を行って、充填率56.4%とした焼結体を、HIP処理を行うことにより、充填率を72%に高めることができる。よって、直径φ=100mmの電極を作成する際、プレス機としては200tの加圧力を有するプレス機があればよいこととなり、大型のプレス機を導入することなく電極材料を製造することができる。
 また、本発明の実施形態に係る電極材料の製造方法及び電極材料によれば、HIP処理工程において、焼結体と円筒容器との間に、カーボンシート(焼結体及び円筒容器と接合しない部材)を挿入することで、カーボンシートを除去するのみで容易にHIP処理体を得ることできる。
 また、耐熱元素を含有する混合粉末を加圧成形した後に焼結し、この焼結体をHIP処理に供すると、HIP処理に供される処理体に残存するガス量が低減され、HIP処理時の焼結体表面の酸化を抑制することができる。その結果、耐電圧性能に優れた電極材料を製造することができる。
 なお、本発明の実施形態に係る電極材料を、例えば、真空インタラプタ(VI)の固定電極及び可動電極の少なくとも一方に設けることで、真空インタラプタの電極接点の耐電圧性能が向上する。電極接点の耐電圧性能が向上すると、従来の真空インタラプタよりも固定電極と可動電極との間のギャップ長を短くでき、且つ固定電極並びに可動電極と主シールドとの間のギャップを狭めることができるため、真空インタラプタの構造を小さくすることが可能となる。その結果、真空インタラプタを小型化することができる。また、真空インタラプタを小型化することで、真空インタラプタの製造コストが低減する。
 また、本発明の実施形態の説明では、特定の望ましい実施例を例として説明したが、本発明は、実施例に限定されるものではなく、発明の特徴を損なわない範囲で、適宜設計変更が可能であり、設計変更された形態も本発明の技術範囲に属する。
 例えば、加圧成形工程はプレス機を用いた加圧成形に限定されるものではなく、冷間等方圧加圧法(CIP)、鋳込成形、射出成形、押出成形等の成形方法により行うこともできる。
 また、予め、耐熱元素とCrとの固溶体を形成し、この耐熱元素-Cr固溶体の粉末を用いて焼結体(または多孔質体)を構成してもよい。
 また、本発明の電極材料は、耐熱元素、Cr、Cuのみを構成要素としたものに限定されるものではなく、電極材料の特性を向上させる元素を添加してもよい。例えば、Teを添加することにより電極材料の耐溶着性を向上することができる。

Claims (7)

  1.  耐熱元素を含有する粉末または耐熱元素を含有する粉末の成形体を、前記耐熱元素の融点より低い温度で熱間等方圧加圧処理して多孔質体を得る工程と、
     前記多孔質体に前記耐熱元素の融点より低い融点を有する金属を溶浸する工程と、
    を有する電極材料の製造方法。
  2.  前記粉末または前記成形体を焼結し、焼結後の粉末または成形体を熱間等方圧加圧処理に供する、請求項1に記載の電極材料の製造方法。
  3.  前記多孔質体に溶浸させる金属は高導電性金属である、請求項1または請求項2に記載の電極材料の製造方法。
  4.  前記高導電性金属は銅であり、前記耐熱元素はクロム及びモリブデンである、請求項3に記載の電極材料の製造方法。
  5.  耐熱元素を含有し、充填率が70%以上である多孔質体に、前記耐熱元素の融点より低い融点を有する金属を溶浸してなる電極材料。
  6.  前記多孔質体に溶浸される金属は高導電性金属である、請求項5に記載の電極材料。
  7.  前記高導電性金属は銅であり、前記耐熱元素はクロム及びモリブデンである、請求項6に記載の電極材料。
PCT/JP2015/065499 2014-06-16 2015-05-29 電極材料の製造方法及び電極材料 WO2015194344A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15809862.4A EP3156154B1 (en) 2014-06-16 2015-05-29 Process for producing electrode material
US15/318,448 US10086433B2 (en) 2014-06-16 2015-05-29 Process for producing electrode material, and electrode material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-122964 2014-06-16
JP2014122964A JP5920408B2 (ja) 2014-06-16 2014-06-16 電極材料の製造方法

Publications (1)

Publication Number Publication Date
WO2015194344A1 true WO2015194344A1 (ja) 2015-12-23

Family

ID=54935336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065499 WO2015194344A1 (ja) 2014-06-16 2015-05-29 電極材料の製造方法及び電極材料

Country Status (4)

Country Link
US (1) US10086433B2 (ja)
EP (1) EP3156154B1 (ja)
JP (1) JP5920408B2 (ja)
WO (1) WO2015194344A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113930636A (zh) * 2021-09-22 2022-01-14 鞍钢集团北京研究院有限公司 泡沫钢材制备装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6015725B2 (ja) * 2014-09-11 2016-10-26 株式会社明電舎 電極材料の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362122A (ja) * 1986-09-03 1988-03-18 株式会社日立製作所 真空遮断器用電極の製造法
JPH04505985A (ja) * 1989-05-31 1992-10-15 シーメンス アクチエンゲゼルシヤフト 真空スイツチ用CuCr接触片の製法並びに付属接触片
JP2002180150A (ja) * 2000-12-06 2002-06-26 Korea Inst Of Science & Technology 真空開閉器用銅−クロム系接点素材の組織制御方法及びその方法により製造された接点素材
JP2012007203A (ja) * 2010-06-24 2012-01-12 Japan Ae Power Systems Corp 真空遮断器用電極材料の製造方法及び真空遮断器用電極材料

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2580100B2 (ja) 1992-04-07 1997-02-12 新日本製鐵株式会社 熱間静水圧プレス方法
JPH09194906A (ja) 1996-01-19 1997-07-29 Kubota Corp 多孔質金属焼結体の製造方法
JP2004211173A (ja) 2003-01-07 2004-07-29 Toshiba Corp 真空バルブ用接点材料の製造方法
JP2006169547A (ja) 2004-12-13 2006-06-29 Hitachi Metals Ltd 加圧焼結用のMo合金粉末の製造方法およびスパッタリング用ターゲット材の製造方法
WO2011162398A1 (ja) 2010-06-24 2011-12-29 株式会社日本Aeパワーシステムズ 真空遮断器用電極材料の製造方法、真空遮断器用電極材料及び真空遮断器用電極
JP5904308B2 (ja) * 2014-03-04 2016-04-13 株式会社明電舎 電極材料の製造方法
US9719155B2 (en) 2014-03-04 2017-08-01 Meidensha Corporation Alloy
EP3106249B1 (en) 2014-03-04 2019-05-01 Meidensha Corporation Method for producing electrode material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362122A (ja) * 1986-09-03 1988-03-18 株式会社日立製作所 真空遮断器用電極の製造法
JPH04505985A (ja) * 1989-05-31 1992-10-15 シーメンス アクチエンゲゼルシヤフト 真空スイツチ用CuCr接触片の製法並びに付属接触片
JP2002180150A (ja) * 2000-12-06 2002-06-26 Korea Inst Of Science & Technology 真空開閉器用銅−クロム系接点素材の組織制御方法及びその方法により製造された接点素材
JP2012007203A (ja) * 2010-06-24 2012-01-12 Japan Ae Power Systems Corp 真空遮断器用電極材料の製造方法及び真空遮断器用電極材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3156154A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113930636A (zh) * 2021-09-22 2022-01-14 鞍钢集团北京研究院有限公司 泡沫钢材制备装置及方法

Also Published As

Publication number Publication date
JP5920408B2 (ja) 2016-05-18
US10086433B2 (en) 2018-10-02
EP3156154A4 (en) 2018-04-11
EP3156154B1 (en) 2019-05-15
JP2016003344A (ja) 2016-01-12
US20170232520A1 (en) 2017-08-17
EP3156154A1 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
JP5904308B2 (ja) 電極材料の製造方法
JP5880789B1 (ja) 固溶体粒子を成形した成形体にCuを溶浸した複合金属
KR20020044751A (ko) 진공개폐기용 구리-크롬계 접점 소재의 조직 제어 방법 및그 방법으로 제조된 접점 소재
JP5861807B1 (ja) 電極材料の製造方法
WO2018142709A1 (ja) 電極材料の製造方法及び電極材料
JP5920408B2 (ja) 電極材料の製造方法
JP6253494B2 (ja) 真空バルブ用接点材料及び真空バルブ
JP6311325B2 (ja) 電極材料及び電極材料の製造方法
JP6015725B2 (ja) 電極材料の製造方法
JP6398415B2 (ja) 電極材料の製造方法
JP5506873B2 (ja) 接点材料およびその製造方法
JP6398530B2 (ja) 電極材料の製造方法
JP4209183B2 (ja) 真空バルブ用接点材料
JP6090388B2 (ja) 電極材料及び電極材料の製造方法
JP6507830B2 (ja) 電極材料の製造方法及び電極材料
JP2009252550A (ja) 接点材料およびその製造方法
JP7062504B2 (ja) 真空バルブ用接点材料および真空バルブ用接点材料の製造方法
JP2017039967A (ja) 電極材料及び電極材料の製造方法
JP2001307602A (ja) 真空バルブ用接点材料およびその製造方法
JP2006236847A (ja) 接点材料および真空バルブ
JPH04137326A (ja) 電極材料の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809862

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15318448

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015809862

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015809862

Country of ref document: EP