WO2015192808A1 - 阀副结构、单向阀、充液阀以及溢流阀 - Google Patents

阀副结构、单向阀、充液阀以及溢流阀 Download PDF

Info

Publication number
WO2015192808A1
WO2015192808A1 PCT/CN2015/081975 CN2015081975W WO2015192808A1 WO 2015192808 A1 WO2015192808 A1 WO 2015192808A1 CN 2015081975 W CN2015081975 W CN 2015081975W WO 2015192808 A1 WO2015192808 A1 WO 2015192808A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
sealing
spherical
valve body
passage
Prior art date
Application number
PCT/CN2015/081975
Other languages
English (en)
French (fr)
Inventor
周路
孙玉岗
葛台代
陈铭斌
陈其永
李敏
Original Assignee
广东华液动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410277429.5A external-priority patent/CN104110413B/zh
Priority claimed from CN201410495399.5A external-priority patent/CN104295750A/zh
Priority claimed from CN201420552505.4U external-priority patent/CN204140969U/zh
Priority claimed from CN201420553711.7U external-priority patent/CN204805193U/zh
Application filed by 广东华液动力科技有限公司 filed Critical 广东华液动力科技有限公司
Publication of WO2015192808A1 publication Critical patent/WO2015192808A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/14Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with ball-shaped valve member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/04Check valves with guided rigid valve members shaped as balls

Definitions

  • valve substructure valve substructure, check valve, filling valve and relief valve
  • the present invention relates to a valve sub-structure, and more particularly to a valve sub-structure of a spherical valve body and a check valve, a liquid filling valve and a relief valve using the valve sub-structure.
  • the valve member is mainly used to control the opening and closing of the fluid medium.
  • the existing valve member adopts a spherical valve core structure, as shown in FIGS. 1 and 2, in the valve sub-structure adopting the spherical valve core, the valve body has a passage for the fluid medium to enter and exit.
  • the channel has a first-stage channel 121 and a second-stage channel 122 having a diameter smaller than that of the first-stage channel 121.
  • the connection between the first-stage channel 121 and the second-stage channel 122 has a connection channel for transition, and the connection channel has an end circle Hole 123a and tapered hole 123b and the like.
  • the ball valve core 11 and the connecting passage are required to be sealingly matched.
  • the ball valve core 11 is sealed with the end surface circular hole 123a and the tapered hole 123b of the valve seat, that is, the spherical shape is utilized.
  • the arc-shaped coincidence line formed between the annular surface of the valve body 11 and the diameter cross-section circle corresponding to the valve-port end surface circular hole 123a and the tapered hole 123b achieves a sealing effect, and the spherical valve body 11 and the valve body constitute a valve sub-structure.
  • valve sub-structure is simple, sensitive, and convenient to use, since the spherical valve body 11 and the valve seat have a linear seal between the end face or the conical hole, the sealing effect in the solenoid valve is limited, and the pressure is limited. Poor capacity, especially in high pressure, ultra high pressure or even ultra high pressure hydraulic systems, the leakage is very serious.
  • valve substructure including:
  • the valve body has a passage for the fluid medium to enter and exit, the passage has a first-stage passage and a second-stage passage having a diameter smaller than that of the first-stage passage, the first-stage passage and the second-stage passage There is a connection channel for the transition between them;
  • the inner wall of the connecting passage has a spherical connecting portion, and the connecting portion can be in contact with the outer surface of the spherical valve body to form a sealing contact.
  • the present application also provides a one-way valve including a valve body, a sealing seat and a sealing ball, the valve body having a valve body cavity
  • the valve body cavity has an oil inlet port and an oil outlet port
  • the sealing seat is fixedly mounted in the valve body cavity
  • the sealing seat has an overflow passage
  • the sealing ball cooperates with the passage wall of the overflow passage to achieve sealing.
  • the passage wall of the flow passage has a groove, the groove is spherical, the sealing ball is placed in the overflow passage, and the outer wall and the spherical groove are fitted to each other.
  • the application also provides a liquid filling valve, comprising:
  • valve body assembly has a valve body cavity, and the first over flow channel and the second over flow channel are disposed on the cavity wall of the valve body cavity, and further includes:
  • a sealing sleeve the sealing sleeve is fixed on the valve body assembly, and the sealing sleeve has a conical hole, and the conical hole communicates with the first overflow passage and the second overflow passage, and the hole wall has a circle spherical surface Shaped groove
  • a sealing body made of a special ceramic material having a spherical outer wall, the spherical outer wall being sealingly conformable to the spherical recess.
  • the present application also provides a relief valve, including:
  • valve body the valve body has a valve body cavity, and a cavity wall of the valve body cavity has an oil inlet port and an overflow port;
  • valve sleeve has a valve sleeve cavity, the valve sleeve is fixed on the valve body, and the valve sleeve cavity is connected to the valve body cavity
  • the elastic component further comprising:
  • a sealing seat the sealing seat is fixed in the valve body cavity, and the sealing seat has an overflow passage, and the overflow passage is connected to the oil inlet and the overflow port;
  • a sealing ball is made of a special ceramic material
  • the overflow passage has a section of a tapered hole
  • the passage wall of the tapered hole has a ring-shaped groove
  • the sealing ball and the sealing ball The spherical groove is sealingly fitted, and the elastic member acts on the sealing ball for resetting the sealing ball.
  • the valve sub-structure provided by the present application utilizes a spherical valve core in sealing contact with a valve body having a spherical connection portion, and the spherical valve core forms a spherical seal with the spherical joint portion, so that the valve core and the valve core
  • the walls of the flow passages are "fitted" together as much as possible to achieve a higher sealing performance.
  • the one-way valve, the liquid filling valve, the liquid filling valve system and the relief valve provided by the present application all adopt the spherical sealing structure in the valve sub-structure, and thus have high sealing performance.
  • FIG. 1 is a cross-sectional view showing the structure of an embodiment in which a spherical valve body is sealed with an end face;
  • FIG. 2 is a cross-sectional view showing the structure of an embodiment in which a spherical valve body is sealed with a tapered hole;
  • FIG. 3 is a cross-sectional view showing the structure of an embodiment of a valve sub-structure according to the present application.
  • Figure 4 is a cross-sectional view showing the structure of the valve body in the valve sub-structure shown in Figure 3;
  • FIG. 5 is a schematic view of the connecting portion shown in part A of Figure 4.
  • FIG. 7 is a graph showing the relationship between the preload force and the sealing area S in the present application.
  • FIG. 8 is a graph showing the relationship between the preload force and the average stress P in the present application.
  • FIG. 9 is a schematic structural view of another embodiment of a valve sub-structure according to the present application.
  • FIG. 10 is a schematic structural view of a valve body in the valve sub-mechanism shown in FIG. 9;
  • FIG. 11 is a schematic structural view of still another embodiment of a valve sub-structure according to the present application.
  • FIG. 12 is a schematic structural view of an embodiment of a one-way valve of the present application.
  • FIG. 13 is a schematic view of a spherical groove in the embodiment shown in FIG. 12;
  • FIG. 14 is a schematic structural view of another embodiment of a check valve of the present application.
  • 15 is a cross-sectional view showing the structure of a sixth embodiment of the liquid filling valve of the present application.
  • FIG. 16 is a schematic view showing a spherical shape of a conical hole inner wall in an embodiment
  • Figure 17 is a cross-sectional view showing the structure of a seventh embodiment of the liquid filling valve of the present application.
  • FIG. 18 is a schematic structural view of a ninth embodiment of the relief valve of the present application.
  • FIG. 19 is a schematic structural view of a tapered hole and a spherical recess in the embodiment shown in FIG. 18.
  • a valve sub-structure provided by the first embodiment includes a spherical valve body 21 and a valve body 22.
  • the valve body 22 has a passage for the fluid medium to enter and exit, and the passage has a first-stage passage 221 and a second-stage passage 222 having a smaller diameter than the first-stage passage 221, and the first-stage passage 221 has a connection with the second-stage passage 222.
  • the connecting passage 223 shown in this embodiment is a tapered hole that allows the first-stage passage 221 to transition into the second-stage passage 2221.
  • the connecting passage 223 is tapered, and the tapered inner wall 2231 has a ring-shaped connecting portion 2232.
  • the spherical valve core 21 is received in the inner wall 2231, and the connecting portion 2232 and the spherical valve core are connected. 21 outer surfaces of each other Fit to form a seal.
  • the radius of curvature of the arc in the longitudinal direction of the joint i.e., the direction in which the fluid medium enters and exits
  • 22 32a in Fig. 5 is the same as the radius of the spherical valve body 21.
  • the width of the connecting portion 2232 is related to the size of the spherical valve core.
  • the cross section of the connecting portion in the longitudinal direction ie, the direction in which the fluid medium enters and exits
  • the spherical valve core is located in an arc of a circle in the connecting portion, which coincides with the center of the spherical valve core, and the maximum concave depth of the corresponding chord 232b corresponding to the central angle ⁇ of the arc ranges from 0.2 to 2 mm.
  • the connecting portion shown can be made by the following method, the method comprising:
  • the connecting portion 2232 is formed by selecting the spherical valve body 21 to press the inner wall of the connecting passage.
  • the spherical valve body 21 is biased to press the spherical valve body 21 against the tapered inner wall 2231 of the connecting passage 223 to form a connecting portion 2232 that fits the outer surface of the spherical valve body 21.
  • the hardness of the material of the spherical valve core 21 is higher than the hardness of the material of the conical surface structure 2231 of the valve body 22, for example, the spherical valve core 21 is made of a special ceramic material (also called special ceramics, fine ceramics).
  • the material can adopt the existing high precision (roundness 10G or more), high hardness and high toughness special ceramic ball, or, in other embodiments, the spherical valve core 21 can also adopt a spherical valve core material such as cemented carbide, the valve body 22 It is made of a material with a lower hardness.
  • a special ceramic material is used, and the valve body 22 is made of alloy steel or special stainless steel.
  • the spherical valve body 21 can also be produced by the following method:
  • a special ceramic material such as alumina, zirconia, silicon nitride or silicon carbide
  • a dry pressing process or also known as compression molding, a metal powder and ceramic powder molding method
  • the green body is filled into a metal mold cavity and subjected to pressure to make it into a dense body or an extrusion process (extrusion in which the mixed ceramic material is placed in an extruder) to obtain a green body.
  • the green body is subjected to a static pressure treatment to enhance the density of the green body and enhance the performance.
  • the hydrostatic treatment can be carried out by isostatic pressing, which is characterized in that the force around the blank is uniform, and the mass can be produced in large quantities as long as the container volume and pressure are allowed.
  • Isostatic pressing comprises: preparing a special ceramic green body by dry pressing or extrusion molding, and inserting the flexible mold into the isostatic high pressure container, the container is filled with a pressure transmitting medium such as water or oil, 1 - Pressurize to 100-200 Mpa in 5 minutes, hold pressure for 2-6 minutes, and release the mold after the pressure relief is completed in 1-3 minutes.
  • the green body is sintered (1350-2000 ° C)
  • this embodiment uses an air box furnace for sintering
  • the blank body is placed in an air box furnace, and the sintering temperature in the air box type furnace is set to 1350.
  • -2000 ° C including 1350 ° C and 2000 ° C
  • the sintering temperature can be selected 1500 ° C
  • using silicon nitride as the principle, the sintering temperature can be selected 1750 ° C.
  • the sintered crucible is set to 36-50 ⁇ (including 36 ⁇ and 50 ⁇ ), for example 46 ⁇ .
  • the air box furnace can also be replaced by other heating furnaces, such as tubular, vertical, annular heating furnaces, electromagnetic induction heating furnaces and the like.
  • the green body is coarsely ground, and the rough grinding is performed after the sintering and the cooled rough blank is coarsely ground in the barrel mill and the rough grinding and polishing machine, that is, the grinding disc abrasive is thicker in the process.
  • the main purpose is to remove the billet burrs and basic grinding to the required size.
  • the pressing machine acts on the spherical valve core, and the high-tonnage super-high unit pressure of the press is converted into a pre-tightening force for clamping the spherical surface and the tapered surface. Under the pre-tightening force, the spherical surface and the inner wall of the tapered hole are attached to each other. Combine, compress each other, and gradually form a contact surface.
  • an arcuate sealing joint 2232 can be formed. Microscopically, the metal surface has many different shapes of peaks and valleys. The initial contact only occurs in a very small part of the apparent area. To achieve close contact with the surface contact, a gradual compression and running-in is required. process. According to the adhesion theory of surface contact, under a simple load, the contact stress at the true contact point is sufficient to cause plastic deformation, forming a facet contact until the contact surface is increased to withstand the full load.
  • the spherical material (special ceramic) of the high-precision, high-hardness special ceramic material spherical valve core 21 used in the present application has a large yield strength and is difficult to yield, and the tapered surface material (alloy, special stainless steel) has a low yield strength and is easy to use. Plastic deformation occurred.
  • the microscopic gap between the spherical surface and the tapered surface should be completely eliminated.
  • the surface of the softer material alloy, special stainless steel
  • the soft plastic material should be fully plastically deformed, so that the convex and concave surfaces of the soft material surface can be fully flattened, and the soft plastic material can be filled by microscopic plastic flow. Microscopic voids on the surface of the full spherical surface.
  • the contact surface formed by the spherical surface and the tapered surface is an axisymmetric inclined ring surface (the longitudinal section of the connecting portion 2232 is actually curved, and here, for the convenience of calculation, the ⁇ is flattened, and is regarded as Simple bevel), the area of the connecting portion 2232 is located at an upper portion of the middle of the tapered surface.
  • the width of the sealing section is gradually widened, and the sealing stress is gradually increased.
  • the contact stress is the same at each point on the same ring, but in the tangential direction of the sphere, the stress at each point changes.
  • the pressure is greatest near the midpoint of the seal section, and the stress in the adjacent zone is only slightly fluctuating, and the change is gentle.
  • the contact stress suddenly drops to a small extent up to the edge portion of the contact area. Therefore, the sealing performance is ensured by the removal of the intermediate portion of the sealing region outside the ends.
  • a corresponding curve of the pre-tightening force F and the sealing width L, the sealing area 8, and the average stress P can be respectively generated (as shown in FIG. 6-8), as can be seen from FIG. 6-8, During the application of the pressure, the sealing width and the sealing area gradually increase from zero. During the change process, the growth rate of the contact area is gradually slowing down, and the curve gradually becomes flat. The wider the width of the sealing section, the better the sealing performance, and the relatively large pre-tightening force will facilitate the sealing.
  • the contact stress is used as the evaluation standard of the sealing performance.
  • the contact stress is gradually increased at the same time as the sealing area is increased.
  • the stress P reaches the yield limit of the cone material.
  • plastic deformation begins.
  • the combination of increased stress and increased area allows the sealing performance to increase rapidly during pressure application.
  • the stress growth rate with the increase of the pre-tightening force gradually slows down, so that the contact surface is in a relatively safe stress range, and the sensitivity of the application of the valve is prevented from being lowered due to excessive stress.
  • the various parts of the spherical sealing structure are subjected to the force during the pressing process and the use process, and the stress concentration occurs at the corner position of the spherical surface.
  • the design and processing of the spherical sealing valve core of the present application The maximum value of the P curve of the pressure curve is unlikely to be close to the yield limit of the spherical material, but much smaller than the strength limit of the spherical material.
  • the entire deformation during the pressing process and the use process is within the elastic deformation range. However, the tapered portion is plastically deformed near the contact position, and the stress is large. , less than the yield limit strength.
  • valve core and the valve body (seat) substrate with different materials and large hardness difference constitute a spherical sealing structure valve pair, which not only has a solid theoretical basis, but also is reliably verified in practical applications. .
  • the present application can select different spherical materials and cone materials according to different functional uses, different diameters, different pressure levels, different processing pressure curves, and apply the technology of the present application to a series of products.
  • the joint portion may be processed on the tapered hole wall by other processes such as machining.
  • valve sub-structure and the manufacturing method thereof according to the embodiment are applicable not only to the electromagnetic reversing valve, but also to other control valves such as a manual valve, a mechanical valve, and an electric valve.
  • the difference between the second embodiment and the first embodiment is that the connecting channel is tapered in the first embodiment, and the connecting channel shown in the second embodiment is circular 223a, that is, connected.
  • the inner wall of the turning portion of the end face circular hole 223a is formed into a ring-shaped connecting portion 2233.
  • the third embodiment differs from the first embodiment in that the third embodiment is used in combination with the valve sub-structure of the first embodiment.
  • the channel further includes a third-stage channel 224, the third-stage channel 224 is smaller in diameter than the second-stage channel 222, and the third-stage channel 224 is connected to the second-stage channel 222, and the spherical valve core is the first spherical core 211 and a second spherical core 212, the first spherical core 211 is placed in the connecting passage between the first stage passage 21 and the second stage passage 222, and the second spherical core 212 is placed in the third stage passage 224 and
  • the connecting channel between the secondary channels 222 achieves multi-stage sealing.
  • the first spherical core 211 may be larger in size than the second spherical core 212.
  • the size of the two spherical spools is the ratio of the diameter (aperture), which determines the differential pressure between the primary seal and the secondary seal. The size is different, the stability and flexibility of the seal will be better.
  • control valve such as an ultra-high pressure electromagnetic control valve, which is high pressure, ultra high pressure or even
  • the application of control valves in the field of ultra-high pressure hydraulic systems has opened up new methods, which will certainly promote the development of high-pressure, ultra-high pressure and even ultra-high pressure hydraulic systems and hydraulic equipment.
  • the combination use is not limited to the two spherical valve bodies shown in the third embodiment, and may be three, four or more. Further, the valve sub-structure shown in the first embodiment and the valve sub-structure shown in the second embodiment can be combined and used in combination.
  • the present application provides a one-way valve which is a general one-way valve.
  • the check valve includes a valve body 311, a seal seat 312, a seal ball 313, a guide piston 314, and a return elastic member 31.
  • the valve body 311 has a valve body cavity 3111, and the sealing seat 312 is fixedly mounted in the valve body cavity 3111, and the fixing manner includes screwing, tight fitting and the like.
  • the sealing seat 312 has an overcurrent passage 3121 communicating with the valve body chamber 3111 for liquid overcurrent.
  • the flow passage 3121 has a section of conical passage 3122 having a groove 3123 on the inner wall of the conical passage 3122.
  • the groove 3123 is spherical.
  • the flow passage 3121 may also have a stepped hole, and a ring-shaped groove is formed at the turning point of the inner wall of the stepped hole to form a sealing surface between the sealing ball 313 and the spherical groove. Cooperate.
  • the conical channel and the stepped hole channel may be further deformed to form other deformation modes.
  • the hardness of the sealing ball 313 can be made larger than the hardness of the sealing seat 312.
  • the sealing seat 312 is an alloy steel sealing seat 312, that is, a sealing seat 312 is made of an alloy steel material.
  • the sealing ball 313 is a special ceramic ball, that is, a sealing ball 313 is made of a special ceramic material (i.e., a special ceramic material).
  • the fourth embodiment provides two examples, namely, a zirconia ceramic ball made of zirconia as a raw material, and a silicon nitride special ceramic ball made of silicon nitride as a raw material.
  • a zirconia ceramic ball made of zirconia as a raw material and a silicon nitride special ceramic ball made of silicon nitride as a raw material.
  • the above two are only examples.
  • the special ceramic ball can also be made by selecting other special ceramic materials.
  • the fourth embodiment provides a method for manufacturing a spherical groove:
  • the hole wall of the tapered hole is pressed to apply a superplastic force, and a spherical surface matching the sealing ball is formed on the hole wall of the tapered hole.
  • a spherical body conforming to the sealing ball for example, a high-precision special ceramic ball of 10 G or more
  • the hole wall of the tapered hole is pressed to apply a superplastic force, and a spherical surface matching the sealing ball is formed on the hole wall of the tapered hole.
  • Shaped groove for example, a high-precision special ceramic ball of 10 G or more
  • the spherical groove can also be made by other mechanical processing methods.
  • a special ceramic ball 13 and an alloy steel sealing seat 312 are used, and there is a huge difference in hardness between the two pieces.
  • the impact toughness of the special ceramic ball 13 in addition to the extremely high hardness is also an essential indicator, plus the special ceramics.
  • the structural dimensional stability characteristic of the high-precision roundness of the ball 13 is almost impossible for the sealing ball 313 to be damaged.
  • the sealing seat 312 can withstand the general extrusion and impact due to the excellent comprehensive mechanical properties of the alloy steel after heat treatment.
  • the inner wall of the conical passage of the sealing seat 312 has a smooth transitional spherical groove 3123 having a relatively high hardness and comprehensive mechanical strength, which is generally inviable for the impurity particles. Further, the surface of the spherical recess 3123 is highly smooth, and foreign matter such as foreign particles cannot be stopped.
  • the elastic force of the return elastic member 315 causes the sealing ball 313 to abut against the passage wall of the flow passage 3121.
  • the return elastic member 315 is a compression spring, one end of which is disposed on the step of the valve body 311 near the B port, and the other end is abutted against the guide piston 314.
  • the pilot piston 314 is disposed in the valve body cavity 3111 or the overflow passage 3121, and one end thereof is engaged with the sealing ball 313.
  • the compression spring pushes the pilot piston 314 and conducts the sealing ball 313 to move toward the conical passage 3122.
  • the sealing ball 313 can also be moved to the conical passage 3122 by other means, such as by relying on the sealing ball 313 itself.
  • the pilot piston 314 may have at least one axial passage 3142 for overcurrent, which may be an axial groove or hole so that liquid can flow from the A port to the B port.
  • the pilot piston 314 may be provided with a recess 3141 at its end, and the recess 3141 and the surface of the sealing ball 313 are fitted to each other.
  • the sealing ball 313 can accurately move along the axis toward the conical hole of the sealing seat 312, so that the pressing and impacting force are not applied to the area other than the spherical recess 3123.
  • the one-way valve is integrally connected with the hydraulic oil pipe by the internal thread of the A port and the external thread of the B port.
  • the pressure of the hydraulic oil of the A port is greater than the resistance of the return spring, the pressure pushes the ball of the special ceramic ball 13 to the B port against the resistance of the spring.
  • the one-way valve is snoring, and the A port is connected with the B port hydraulic oil.
  • the special ceramic ball 13 is driven by the return spring and controlled by the axial direction of the piston and the concave surface of the spherical surface. Precisely seal along the axis
  • the seat 312 has a tapered bore and the check valve is closed.
  • the check valve shown in the fourth embodiment adopts a spherical seal, and the sealing effect is very reliable, and the pressure is huge, and the opening and closing is flexible and quick, and is applicable not only to the hydraulic systems of various pressure levels below 100Mpa, but also to more than 100Mpa. Requirements for hydraulic systems of various pressure levels, for example 1100 MPa.
  • this embodiment 5 also provides a one-way valve which is a plate type two-channel hydraulic control one-way valve.
  • the pilot operated check valve includes a valve body 421, a first seal seat 422, a second seal seat 423, a first seal ball 424, a second seal ball 425, a valve sleeve 426, a control spool 427, and a first guide
  • the valve body 421 has a valve body cavity, and the cavity wall of the valve body cavity has a first oil inlet port, a second oil inlet port ⁇ , a first oil outlet port A1 and a second oil outlet port Bl.
  • valve sleeve 426 is fixedly disposed within the valve body cavity, for example, can be thermally mounted in the valve body cavity.
  • the first seal seat 422 and the second seal seat 423 are fixed to the valve body cavity at one left and right of the valve sleeve 426.
  • first sealing ball 424 is correspondingly disposed on the first sealing seat 422, and the second sealing ball
  • the first valve cover 4212 and the second valve cover 4213 respectively seal the first seal seat 422 and the second seal seat 423.
  • the flow passages of the first seal seat 422 and the second seal seat 423 have a conical passage having a ring groove on the inner wall of the conical passage, the groove being spherical.
  • the shape selection of the overcurrent channel can be referred to the overcurrent channel described in Embodiment 4.
  • the hardness of the sealing ball can be made larger than the hardness of the corresponding sealing seat.
  • the sealing seat is an alloy steel sealing seat, that is, a sealing seat is made of an alloy steel material.
  • the sealing ball is a special ceramic ball, that is, a sealing ball is made of a special ceramic material (ie, a special ceramic material).
  • the special ceramic ball can be made by selecting a zirconia special ceramic ball, a silicon nitride special ceramic ball or other special ceramic materials.
  • the fifth embodiment provides a method for manufacturing a spherical groove:
  • the hole wall of the tapered hole is pressed to apply a superplastic force, and a spherical surface matching the sealing ball is formed on the hole wall of the tapered hole.
  • Shaped groove for example, a high-precision special ceramic ball of 10 G or more
  • the spherical groove can also be made by other mechanical processing methods.
  • the return elastic member and the guide piston are also provided.
  • the first return elastic member 4210 and the second return elastic member 4211 are both compression springs, the first return elastic member 4210 is disposed between the first valve cover 4212 and the first guide piston 428, and the second return elastic member 4211 is disposed at the Between the two valve cover 4213 and the second pilot piston 429.
  • the sealing ball can also be moved toward the conical channel by other means, such as by the weight of the sealing ball itself.
  • the first pilot piston 428 and the second pilot piston 429 may have at least one axial passage for overcurrent, which may be an axial slot or bore so that liquid can pass through the pilot piston.
  • first pilot piston 428 and the second pilot piston 429 may also be provided with pits, and the pits and the corresponding sealing ball surfaces are fitted to each other.
  • the first sealing ball 424 and the second sealing ball 425 can accurately follow the axis to the cones of the first sealing seat 422 and the second sealing seat 423, respectively.
  • the movement of the holes also causes the pressing and impact forces not to be applied to areas other than the spherical grooves.
  • the control spool 427 may be selected as a plunger spool that is disposed within the valve sleeve 426 and that forms a sliding pair with the valve sleeve 426.
  • control spool 427 can also adopt a metal working piece and directly form a sliding pair with the valve body 421, that is, the valve sleeve 426 is omitted, and two sets of seals can be arranged on the control spool 427 in order to improve the sealing property. Pieces.
  • control spool 427 can further improve the control spool 427.
  • the control spool 427 includes a core of a metal rod and is mounted on the core.
  • the core sleeve, the valve sleeve 426 and the core sleeve can be made of a special ceramic material. This method has a higher sealing strength and is more suitable for higher hydraulic systems.
  • the first oil inlet port A and the second oil inlet port B are mutually control oil ports, and in the normal state, the first oil inlet port A and the second oil inlet port B are both oil inlet ports.
  • the reverse ⁇ is the oil outlet.
  • A1 and B1 are the oil outlets in the normal state and the oil inlets in the reverse direction.
  • the A port can control the reverse hydraulic oil flow of the B port, so that the B 1 port hydraulic oil can flow to the B port to realize the two-way oil flow;
  • the B port can control the reverse hydraulic oil flow of the A port, so that the hydraulic oil of the A1 port can be circulated to the A port, thereby realizing the two-way oil flow. That is, the direction of the check valve is controlled by the liquid.
  • the sputum valve is a two-channel common check valve, and the hydraulic oil can only flow through the A port to the A1 port.
  • the B port flows to the B1 port, but cannot flow to the A port through the A1 port, and the B1 port flows to the B port.
  • the B port is cut off, the A port is oily, and the control valve core 427 is moved to the right.
  • the right side of the control valve core 427 overcomes the resistance of the right first return elastic member 4210.
  • the ceramic ball 24 connects the second oil inlet B and the B1 channel, and the hydraulic oil can flow from the B1 port to the B port to realize reverse flow.
  • the oil path of the first oil inlet A is the control oil circuit.
  • the port A is cut off, the port B is oiled, and the control spool 427 is moved to the left.
  • the left head of the control spool 427 overcomes the resistance of the second return elastic member 4211 on the left side.
  • the ceramic ball 25 connects the first oil inlet A to the channel A1, and the hydraulic oil can flow from the A1 port to the A port to realize reverse flow.
  • the oil path of the second oil inlet B is the control oil circuit.
  • the hydraulic control check valve shown in the fifth embodiment also adopts a spherical seal, and the sealing effect is very reliable, and the pressure is huge, and the opening and closing is flexible and quick, and is applicable not only to the hydraulic systems of various pressure levels below 100Mpa, but also Meet the requirements of hydraulic systems with pressure levels greater than 100Mpa, such as 1100Mpa.
  • a sixth embodiment provides a liquid filling valve including a valve body assembly 511, a sealing sleeve 512, a sealing body 513, a control assembly 514, a coupling rod 515, and a flange 516.
  • the valve body assembly 511 includes a first member 5111, a second member 5112, a third member 5113, and a fourth member 5114.
  • the valve body assembly 511 has a valve body chamber 5115, and the chamber wall of the valve body chamber 5115 has a first flow passage 511 6 and a second flow passage 5117.
  • the first flow passage 5116 is located at the side of the valve body assembly 511, and is provided with a flange 516 for communicating with the oil tank, and the second overflow passage 5117 is located at the lower end of the valve body assembly 511, and the rodless chamber of the master cylinder Connected.
  • the sealing sleeve 512 is fixed on the first component 5111, and the sealing sleeve 512 has a third overflow passage 5121, the third overflow passage 5121 and the valve body cavity 5115, the first overflow passage 5116 and the second pass.
  • the flow channel 5117 is in communication.
  • the sealing sleeve 512 is installed in the second overflow passage 5117. In other embodiments, it can of course be installed at other positions of the valve body assembly 511.
  • the sealing body 513 is made of a special ceramic material (special ceramic material) whose outer wall matches the inner wall of the third overflow passage 521.
  • the sealing body 513 and the sealing sleeve 512 form a set of sealing substructures.
  • the sealing body 513 has a spherical outer wall 5131
  • the third overflow passage 5121 has a tapered hole
  • the tapered hole wall 5122 has a spherical surface matching the outer wall of the sealing body 513.
  • the groove 5123, the spherical outer wall 5131 of the sealing body 513 and the spherical groove 5123 on the sealing sleeve 512 are sealingly fitted to form a spherical seal.
  • the sealing body 513 has two parallel end faces, and the side wall 5131 between the two end faces is spherical, that is, equivalent to a spherical sealing body 513.
  • the portion which is cut by two mutually parallel planes and which is located between the two planes is the sealing body 513 shown in the sixth embodiment.
  • the sealing body 513 of the sixth embodiment further extends a circular table behind the spherical side wall.
  • the sealing body 513 is made of a special ceramic material
  • the sealing sleeve 512 can be made of a softer alloy steel material than the special ceramic material, and the two are matched to form a spherical seal, which can meet the hydraulic pressure of 45 MPa or more. The strength requirements of the system.
  • the gland 512 can also be made of other materials that are softer than the special ceramic materials.
  • the sixth embodiment provides a method of manufacturing a spherical groove on the sealing sleeve 512:
  • the spherical body (for example, a high-precision special ceramic ball of 10 G or more) conforming to the spherical outer wall of the sealing body is pressed to press the hole wall of the tapered hole to apply a superplastic force, and the sealing body 513 is formed on the hole wall of the tapered hole.
  • the matching spherical recess 5123 has a plastic deformation of 0.1-3 mm, for example 0.2-0.6 mm.
  • the spherical groove can also be made by other mechanical processing methods.
  • the existing liquid filling valve can slam the filling valve by the vacuum negative pressure formed by the main hydraulic cylinder, and close the filling valve by the pressure increase of the hydraulic master cylinder and the spring restoring force.
  • the liquid filling valve can be controlled by an existing method, and in addition, a control component can be added to facilitate active control.
  • the control assembly 514 includes a control cylinder 5141, a piston rod 5142 disposed in the control cylinder 5141, and an elastic member 5143.
  • the piston rod 5142 divides the control cylinder 5141 into an oiling chamber 5144 and a lower oil chamber 5145.
  • the oiling chamber is for communicating with the reversing valve, for example, through the oil inlet port 51141a.
  • the elastic member 51 43 is installed in the lower oil chamber 5145.
  • the piston rod 5142 is coupled to the sealing body 513, and under the control of the reversing valve and the elastic member, the sealing body 513 is moved to smash or seal the third overflow passage 521.
  • the piston rod 5142 is fixed to the sealing body 513 to drive the sealing body 513 to move.
  • the fastening method adopted in the sixth embodiment is that the piston rod 5142 has a ball joint portion 5146, and a coupling rod 515 is added to the same, the ball joint portion 5146 is coupled with the coupling rod 515, and the coupling rod 515 and the sealing body are coupled. 513 connection
  • the piston rod 5142 is actively controlled by the reversing valve 517 (ie, the position of the sealing body 513 in FIG. 15), and the sealing body 513 and the sealing sleeve 512 are separated, and the niobium seal is smashed, and the second overcurrent passage 5117
  • the snoring (the rodless chamber of the master cylinder of the hydraulic machine is connected to the tank) allows a large amount of oil to pass through the first over-flow passage 5116 and the second over-flow passage 5117, returning from the upper chamber of the master cylinder to the tank or quickly filling the tank from the tank. To the upper chamber of the master cylinder, to meet the functional requirements of the hydraulic machine fast forward / rewind.
  • the reversing valve 517 cooperates with the elastic member 5143 to control the retraction of the piston rod 5142, and the sealing body 513 is at the position shown in FIG. 1a, at which point the sealing body 513 and the sealing sleeve 512 are fitted together, and the second over-circulation
  • the road 5117 is closed, and the upper chamber of the master cylinder is cut off from the fuel tank, and the upper chamber of the master cylinder is pressed up to the working pressure, and the hydraulic machine enters the pressing state.
  • the liquid filling valve shown in the sixth embodiment is processed into a sealing pair by a sealing body made of a special ceramic material and a sealing sleeve made of alloy steel, so that the sealing is reliable, the leakage is zero, and the pressure is high. At the same time, the seals can be used at all, making the entire structure more compact and easier to install.
  • the liquid filling valve of the sixth embodiment is different from the working principle of the prior art liquid filling valve, and does not rely on the vacuum negative pressure formed by the main hydraulic cylinder to smash the filling valve, and does not rely on the hydraulic master cylinder.
  • the control unit actively realizes the snoring and closing of the sealing structure, and actively controls the driving of the filling valve according to the demand.
  • the control component uses the buffer structure, the overall structure is compact, and the installation is convenient, thereby fully compensating for the frequent failure of the prior art liquid filling valve, high maintenance cost, overcoming the pressure relief caused by the reverse sealing, or hitting ⁇
  • the hydraulic shock is too large and the general problems affecting the normal use of the hydraulic system and the main engine.
  • the liquid filling valve of the sixth embodiment has a faster reaction speed, more flexible and quicker closing, higher reliability, more secure operation, and can not only meet the hydraulic system below 45 MPa.
  • Strength requirement also It can meet the strength requirements of hydraulic systems larger than 45MPa, such as hydraulic systems of 70-200MPa.
  • a seventh embodiment provides a liquid filling valve including a valve body assembly 621, a sealing sleeve 622, a sealing body 623, a control assembly 624, a coupling rod 625, and a flange 626.
  • the valve body includes a first member 6211 and a second member 6212, and the valve body has a valve body cavity 6213, and the valve body cavity 62
  • the first overcurrent passage 6214 and the second overcurrent passage 6215 are entangled in the wall of the chamber 13. Wherein the first overcurrent channel 621
  • valve body 4 is located at the upper end of the valve body, and is provided with a flange 626 for communicating with the oil tank, and a second overflow passage 6215 is located at the side of the valve body, which communicates with the rodless chamber of the master cylinder.
  • the sealing sleeve 622 is fixed on the first component 6211, and the sealing sleeve 622 has a third overflow passage 6221, the third overflow passage 6221 and the valve body cavity 6213, the first overflow passage 6214, and the second passage.
  • the flow channel 6215 is in communication.
  • the sealing sleeve 622 is installed in the first overflow passage 6214. In other embodiments, it can of course be installed at other positions of the valve body.
  • the sealing body 623 is made of a special ceramic material (special ceramic material) whose outer wall matches the inner wall of the third overflow passage 6221.
  • the sealing body 623 and the sealing sleeve 622 form a set of sealing substructures.
  • the sealing body 623 has a spherical outer wall 6231, and the inner wall of the third overflow passage 6221 has a spherical groove matching the spherical outer wall 6231, and the sealing body 623 and the sealing sleeve 622 form a spherical seal. .
  • the spherical recess can refer to the structure of the spherical recess shown in Embodiment 6 (FIG. 16).
  • the sealing body 623 has two parallel end faces, and the side wall 6231 between the two end faces is spherical, that is, equivalent to a spherical sealing body 623.
  • the portion which is cut by two mutually parallel planes and which is located between the two planes is the sealing body 623 shown in the seventh embodiment.
  • the sealing body 623 of the seventh embodiment further extends a circular table behind the spherical side wall.
  • the sealing body 623 of the seventh embodiment is made of a special ceramic material, and the sealing sleeve 622 can be made of an alloy steel material which is softer than the special ceramic material, and the two cooperate with each other to form a spherical seal, which can satisfy the hydraulic system of 45 MPa or more. Strength requirements.
  • the gland 622 can also be made of other materials that are softer than the special ceramic materials.
  • the seventh embodiment provides a method of manufacturing a spherical groove on the sealing sleeve 622:
  • the spherical body for example, a high-precision special ceramic ball of 10 G or more
  • conforming to the spherical outer wall of the sealing body is pressed to press the hole wall of the tapered hole to apply a superplastic force, and the sealing body 623 is formed on the hole wall of the tapered hole.
  • Matching spherical grooves having a plastic deformation of 0.1-3 mm, for example 0.2-0.6 mm.
  • the spherical groove can also be made by other mechanical processing methods.
  • the existing liquid filling valve can slam the filling valve by the vacuum negative pressure formed by the main hydraulic cylinder, and close the filling valve by the pressure increase of the hydraulic master cylinder and the spring restoring force.
  • the liquid filling valve can be controlled in an existing manner, and in addition, a control unit can be added for implementing the active control.
  • the control assembly 624 includes a control cylinder 6141 and a piston rod 6142 disposed in the control cylinder 6141.
  • the piston rod 6142 divides the control cylinder 6141 into an oiling chamber 6244 and a lower oil chamber 6245, an oil chamber.
  • the 6244 can be in communication with the reversing valve through the oil inlet 628, and the lower oil chamber 6245 can communicate with the reversing valve through the oil inlet 629.
  • the piston rod 6142 is coupled to the sealing body 623, and the reversing valve is used to realize the oil inlet of different oil ports, thereby pushing the piston rod to move up and down, and smashing or sealing the third overflow passage 6221.
  • the fastening method adopted in the seventh embodiment is that the piston rod 6242 has a ball joint portion, and a coupling rod 625 is added to the same, the ball joint portion is coupled with the coupling rod 625, and the coupling rod 625 is coupled with the sealing body 623. .
  • the piston rod 6242 is actively controlled by the reversing valve 627 (ie, the sealing body is located at 23 in FIG. 17), and the sealing body 623 and the sealing sleeve 622 are separated, and the first sealing passage is smashed, the first overcurrent passage 6214 snoring (the rodless chamber of the hydraulic master cylinder is connected to the tank), allowing a large amount of oil to pass through the first over-flow passage 6214 and the second over-flow passage 6215, returning from the upper chamber of the master cylinder to the tank or quickly charging from the tank The liquid reaches the upper chamber of the master cylinder to meet the functional requirements of the hydraulic press for fast forward/rewind.
  • the reversing valve 627 ie, the sealing body is located at 23 in FIG. 17
  • the sealing body 623 and the sealing sleeve 622 are separated, and the first sealing passage is smashed, the first overcurrent passage 6214 snoring (the rodless chamber of the hydraulic master cylinder is connected to the tank),
  • the piston rod 6242 is actively controlled to be retracted by the reversing valve 627, the sealing body 623 and the sealing sleeve 622 are fitted, and the first over-flow passage 6214 is closed, and the upper chamber of the main cylinder is cut off from the fuel tank, The upper chamber of the cylinder starts to press until the working pressure, and the hydraulic machine enters the pressing state.
  • the liquid filling valve shown in the seventh embodiment is made of a sealing body made of a special ceramic material and a sealing sleeve made of alloy steel, and is processed into a sealing pair, and the sealing property is reliable, and the leakage is high, and the pressure is high. At the same time, the seals can be used at all, making the entire structure more compact and easier to install.
  • the liquid filling valve shown in the seventh embodiment is different from the working principle of the prior art liquid filling valve, and The liquid filling valve is smashed by the vacuum negative pressure formed by the main hydraulic cylinder, and the ultra high pressure liquid filling valve is closed without relying on the pressure increase of the hydraulic master cylinder, and the spring can be completely eliminated, and the control component actively realizes the snoring and closing of the sealing structure. , Actively control the driving of the filling valve according to the demand.
  • the control component uses a buffer structure, has a compact overall structure, and is convenient to install, thereby completely making up for the frequent failure of the prior art liquid filling valve, high maintenance cost, and is not suitable for the shortage of the press above 40 MPa, overcoming such as The reverse sealing is not strict, resulting in pressure relief, or excessive hydraulic shock and other general problems affecting the normal use of the hydraulic system and the host.
  • the liquid filling valve shown in the seventh embodiment has a faster reaction speed, more flexible and quicker closing, higher reliability, more secure operation, and can not only meet the hydraulic system below 45 MPa.
  • the strength requirements can also meet the strength requirements of hydraulic systems greater than 45 MPa, such as 70-200 MPa hydraulic systems.
  • Embodiment 8 provides a liquid filling valve system including a control device and a liquid filling valve.
  • the control device cooperates with a sealing body in the liquid filling valve to control the movement of the sealing body.
  • control device may employ a reversing valve that uses oil to control the movement of the sealing body, and its coupling with the filling valve can be referred to the sixth and seventh embodiments.
  • control device may be other devices that can push the movement of the sealing body, for example, an electromagnetic reversing valve is used to drive the sealing body to actively move to achieve snoring and sealing.
  • the ninth embodiment provides a relief valve, which is specifically a plate type direct acting relief valve.
  • the relief valve includes a valve body 721, a valve sleeve 722, a sealing seat 723, a sealing ball 724, a damping piston 725, a spring holder 726, and a resilient assembly.
  • the valve body 721 has a valve body cavity, and the cavity wall of the valve body cavity has an oil inlet port 7211 and an overflow port 7212.
  • the oil inlet 7211 is used for hydraulic oil to enter, and the overflow port 7212 is connected to the fuel tank, from which the hydraulic oil can flow back to the fuel tank.
  • the valve sleeve 722 is fixed to the valve body 721 and has a valve sleeve chamber that communicates with the valve body cavity.
  • the seal seat 723 is fixed within the valve body cavity, such as by threading.
  • the seal seat 723 has an over flow passage 7231 that communicates the oil inlet port 7211 and the overflow port 7212.
  • the sealing ball 724 is made of a special ceramic material (special ceramic material), such as zirconia or silicon nitride.
  • the sealing seat 723 can be made of alloy steel having a hardness lower than that of the special ceramic material (special ceramic material).
  • the flow passage 7231 has a section of conical holes 7232.
  • the hole wall of the conical hole 7232 has a ring-shaped groove 7233, and the sealing ball 724 is sealingly fitted with the spherical groove 7233.
  • the resilient member acts on the sealing ball 724 for resetting the sealing ball 724.
  • the elastic component includes a spring 727, an adjusting screw 728, a spring seat 729, and a steel ball 7210.
  • the adjusting screw 728 is adjustably disposed on the valve sleeve 722.
  • the adjusting screw 728 can be screwed with the valve sleeve 722.
  • the spring seat 729 is guided, and has a spherical recess on a side of the spring seat 729 facing the adjusting screw 728.
  • the steel ball 7210 is disposed in the recess to transmit the pre-tightening force of the adjusting screw 728 to ensure that the transmitting force is applied to the spring.
  • the center of the seat 729 is guided, and has a spherical recess on a side of the spring seat 729 facing the adjusting screw 728.
  • the damping piston 725 is disposed on the oil inlet side of the sealing ball 724, and lifts the special ceramic ball 724 and ensures that the special ceramic ball moves, floats, and closes smoothly.
  • the oil inlet 7211 of the valve body 721 is oiled, and acts on the sealing ball 724.
  • the pressure of the hydraulic oil is less than the working pressure ⁇ , and the sealing ball 724 is pressed by the spring 727 on the sealing seat 723, the oil inlet 7211 and the overflow.
  • the port 7212 is in a closed state.
  • the sealing seat 723 can be made of alloy steel material with good hardenability. According to the diameter, ball diameter, flow rate and pressure of the different flow passages 7231, a cone of a selected angle is processed at the front end of the sealing passage 723. hole.
  • the spherical recess on the tapered bore is formed by the method of sealing the tapered bore by the sealing ball 724 until the plastic pressure of the sealing seat 723 is reached.
  • it can also be done by other mechanical processing methods.
  • the sealing level is very high, and the sealing effect is reliable, and can be applied not only to a hydraulic system of less than 100 MPa but also to a hydraulic system of more than 100 MPa, such as 250 MPa, 1 lOOMPa, etc. .
  • the sealing sub-structure, the material sealing sub-machining method, and the working principle and The main components and functions are equally applicable to ultra-high pressure pilot operated relief valves, ultra high pressure electromagnetic relief valves and ultra high pressure pilot operated electromagnetic spill valves.
  • the pilot type ultra-high pressure relief valve, the ultra-high pressure electromagnetic relief valve and the ultra-high pressure pilot-operated electromagnetic relief valve mainly adopt two core technologies of spherical sealing pair, the sealing effect is very reliable, the pressure is huge, and the opening and closing is carried out. Flexible and stable. According to the pressure level and the diameter, the pre-energizing of the conical hole of the sealing seat is adjusted by increasing or decreasing, the material of the alloy steel sealing seat is adjusted, the precision of the special ceramic ball is improved, the material of the special ceramic ball is replaced, etc., due to the sealing seat and the sealing ball.
  • the spherical sealing pair is used between the unloading sealing ball and the connecting passage.
  • the sealing level is very high and the sealing effect is reliable. It can be applied not only to hydraulic systems below 100 MPa, but also to hydraulic systems greater than 100 MPa, such as 250 MPa. l lOOMPa and so on.
  • the special ceramic ball and the alloy steel seal seat sealing pair have a good hydraulic fluid movement streamline size, which is not easy to generate turbulence, so the shackle is flexible and smooth, and the special ceramic ball and alloy steel seal seat
  • Flow turbulence, cone valve core, steel ball parts impact wear, sealing surface damage, valve core wear and other causes of noise, vibration and pressure regulation failure.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Check Valves (AREA)

Abstract

一种阀副结构,包括球形阀芯(21)以及阀体(22),所述阀体(22)具有流体介质进出的通道,所述通道具有第一级通道(221)和直径小于所述第一级通道(221)的第二级通道(222),所述第一级通道(221)与所述第二级通道(222)之间具有用于过渡的连接通道(223);所述连接通道(223)的内壁具有球面形连接部(2232),所述球面形连接部(2232)能够与球形阀芯(21)的外表面相互贴合形成密封接触。所述阀副结构的球面密封使得阀芯与过流通道壁尽量"贴合"在一起,实现了较高的密封性能。还公开了利用所述阀副结构的单向阀、充液阀及溢流阀。

Description

说明书 发明名称:阀副结构、 单向阀、 充液阀以及溢流阀 技术领域
[0001] 本发明涉及一种阀副结构, 尤其是涉及一种球形阀芯的阀副结构以及采用这种 阀副结构的单向阀、 充液阀和溢流阀。
[0002] 背景技术
[0003] 阀件主要用于控制流体介质的通断, 现有的阀件采用球形阀芯结构, 如图 1和 2 , 采用球形阀芯的阀副结构中, 阀体具有流体介质进出的通道, 通道具有第一 级通道 121和直径小于第一级通道 121的第二级通道 122, 第一级通道 121与第二 级通道 122的连接处具有用于过渡的连接通道, 连接通道有端面圆孔 123a和锥形 孔 123b等方式。 当阀体内通道处于关闭状态吋, 要求球形阀芯 11与连接通道之 间密封配合, 现有是通过球形阀芯 11与阀座的端面圆孔 123a和锥形孔 123b配合进 行密封, 即利用球形阀芯 11的圆环面与阀座端面圆孔 123a和锥形孔 123b相应的直 径断面圆之间形成的圆弧重合线来达到密封效果的, 球形阀芯 11和阀体组成阀 副结构。
[0004] 这种阀副结构虽简单、 灵敏、 使用方便, 但由于球形阀芯 11与阀座的端面圆或 圆锥孔之间是一个线性密封, 在电磁阀中密封效果是有限的, 抗压能力不佳, 尤其是在高压、 超高压甚至超超高压液压系统中使用吋, 泄漏非常严重。
[0005] 发明内容
[0006] 本申请提供一种阀副结构,包括:
[0007] 球形阀芯;
[0008] 以及阀体, 所述阀体具有流体介质进出的通道, 所述通道具有第一级通道和直 径小于第一级通道的第二级通道, 所述第一级通道与第二级通道之间具有用于 过渡的连接通道;
[0009] 所述连接通道的内壁具有球面形的连接部, 所述连接部能够与球形阀芯的外表 面相互贴合形成密封接触。
[0010] 本申请还提供一种单向阀,包括阀体、 密封座和密封球, 所述阀体具有阀体腔 , 所述阀体腔具有进油口和出油口, 所述密封座固定安装于阀体腔内, 所述密 封座上具有过流通道, 所述密封球与过流通道的通道壁配合实现密封, 所述过 流通道的通道壁具有一圈凹槽, 所述凹槽为球面形, 所述密封球置于过流通道 内, 且其外壁与球面形凹槽相互贴合。
[0011] 本申请还提供一种充液阀,包括:
[0012] 阀体组件, 所述阀体组件具有阀体腔, 所述阀体腔的腔壁上幵设有第一过流通 道和第二过流通道, 还包括:
[0013] 密封套, 所述密封套固接在阀体组件上, 且密封套具有圆锥孔, 所述圆锥孔与 第一过流通道和第二过流通道连通, 其孔壁具有一圈球面形的凹槽;
[0014] 以及密封体, 所述密封体由特陶材料制成, 其具有一圈球面形的外壁, 所述球 面形的外壁与球面形的凹槽可密封贴合。
[0015] 本申请还提供一种溢流阀, 包括:
[0016] 阀体, 所述阀体具有阀体腔, 且阀体腔的腔壁具有进油口和溢流口;
[0017] 阀套, 所述阀套具有阀套腔, 所述阀套固定在阀体上, 且阀套腔与阀体腔连通
[0018] 以及弹性组件; 还包括:
[0019] 密封座, 所述密封座固定在阀体腔内, 且所述密封座具有过流通道, 所述过流 通道与进油口和溢流口连通;
[0020] 密封球, 所述密封球为特陶材料制成, 所述过流通道具有一段圆锥孔, 所述圆 锥孔的通道壁具有一圈球面形的凹槽, 所述密封球与所述球面形的凹槽密封贴 合, 所述弹性组件作用于密封球上, 用于使密封球复位。
[0021] 本申请溢流阀的有益效果是:
[0022] 本申请所提供的阀副结构利用的是球形阀芯与具有球面形连接部的阀体密封接 触来实现密封, 该球形阀芯与该球面形连接部形成球面密封, 使得阀芯与过流 通道壁尽量"贴合"在一起, 从而实现较高的密封性能。
[0023] 进一步地, 本申请所提供的单向阀、 充液阀、 充液阀系统及溢流阀均采用了阀 副结构中这种球面密封结构, 因而具有较高的密封性能。
[0024] 附图说明 [0025] 图 1为球形阀芯与端面圆密封配合一种实施例的结构剖视图;
[0026] 图 2为球形阀芯与锥形孔密封配合一种实施例的结构剖视图;
[0027] 图 3为本申请阀副结构一种实施例的结构剖视图;
[0028] 图 4为图 3所示阀副结构中阀体结构剖视图;
[0029] 图 5为图 4中 A部分所示连接部示意图;
[0030] 图 6为本申请中预紧力与密封宽度 L的关系曲线图;
[0031] 图 7为本申请中预紧力与密封面积 S的关系曲线图;
[0032] 图 8为本申请中预紧力与平均应力 P的关系曲线图;
[0033] 图 9为本申请阀副结构另一种实施例的结构示意图;
[0034] 图 10为图 9所示阀副机构中阀体的结构示意图;
[0035] 图 11为本申请阀副结构再一种实施例的结构示意图;
[0036] 图 12为本申请单向阀一种实施例的结构示意图;
[0037] 图 13为图 12所示实施例中球面形凹槽示意图;
[0038] 图 14为本申请单向阀另一种实施例的结构示意图;
[0039] 图 15为本申请充液阀实施例六的结构剖视图;
[0040] 图 16为实施例中圆锥孔内壁球面形凹槽示意图;
[0041] 图 17为本申请充液阀实施例七的结构剖视图;
[0042] 图 18为本申请溢流阀实施例九结构示意图;
[0043] 图 19为图 18所示实施例中圆锥孔及球面形凹槽的结构示意图。
[0044] 具体实施方式
[0045] 实施例一
[0046] 请参考图 3, 本实施例一所提供的阀副结构, 其包括球形阀芯 21和阀体 22。
[0047] 阀体 22具有流体介质进出的通道, 通道具有第一级通道 221和直径小于第一级 通道 221的第二级通道 222, 第一级通道 221与第二级通道 222之间具有连接通道 2 23。 本实施例所示连接通道 223为锥形孔, 使第一级通道 221过渡到第二级通道 2 22之中。
[0048] 请参考图 3-5, 连接通道 223为锥形, 锥形内壁 2231上具有一圈球面形的连接部 2232, 球形阀芯 21容置于内壁 2231内, 连接部 2232与球形阀芯 21的外表面相互 贴合形成密封。 连接部纵向 (即流体介质进出方向) 截面上的弧线 (即图 5中 22 32a所示的弧线) 的曲率半径与球形阀芯 21的半径相同。
[0049] 连接部 2232宽度与球形阀芯的大小有关, 如图 5所示, 连接部在纵向 (即流体 介质进出方向) 上的截面为一段弧 2232a, 该弧是以 0点为圆心 (当球形阀芯位 于连接部内吋, 该圆心 0与球形阀芯的圆心重合) 的圆上的一段弧, 该弧对应的 圆心角 α所对应弦 232b最大凹陷深度取值范围为 0.2-2mm。
[0050] 所示连接部可由以下方法制成, 方法包括:
[0051] 连接部 2232可选择球形阀芯 21挤压连接通道内壁而制成。
[0052] 具体地, 对球形阀芯 21施以预紧力, 使球形阀芯 21抵压连接通道 223上的锥形 内壁 2231, 形成与球形阀芯 21外表面相贴合的连接部 2232。
[0053] 其中, 球形阀芯 21材料的硬度高于阀体 22锥面结构 2231材料的硬度, 例如球形 阀芯 21采用特陶材料 (又称为特种陶瓷、 精细陶瓷) 制成, 该特陶材料可采用 现有高精度 (圆度 10G以上) , 高硬度和高韧性特陶瓷球, 或者, 在其他实施例 中, 球形阀芯 21也可以采用硬质合金等球形阀芯材料, 阀体 22则相应采用硬度 较低的材料制成。 在球形阀芯 21选用特陶材料吋, 阀体 22采用合金钢或特种不 锈钢制成。
[0054] 球形阀芯 21也可通过以下方法制成:
[0055] 首先, 将特陶原料, 如氧化铝、 氧化锆、 氮化硅或碳化硅等粉料经干压成型工 艺 (或又称为模压成型, 一种金属粉末和陶瓷粉末的成型方法, 将干粉坯料填 充入金属模腔中, 施以压力使其成为致密坯体) 或挤压成型工艺 (将混好的特 陶原料放入挤压机中的挤压成型) 制得坯体。
[0056] 然后, 将坯体进行静压处理, 使坯体密度强度增强, 性能增强。
[0057] 静压处理具体可采用等静压成型, 其特点在于坯件四周受力均匀, 只要容器容 积和压力容许, 可较大批量生产。 等静压成型包括, 以干压成型或挤压成型制 得特陶生坯, 生坯加装柔性套模后一道放入等静压高压容器中, 容器中充满水 、 油等压力传递介质, 1-5分钟内加压到 100-200 Mpa, 保压 2-6分钟, 1-3分钟泄 压完成后出件去套模。
[0058] 当然, 还可采用压注成型、 高压注射成型等方式代替等静压成型。 [0059] 然后, 对坯体进行烧结 (1350-2000°C) , 本实施例采用空气箱式炉进行烧结 , 将坯体放置于空气箱式炉内, 空气箱式炉内烧结温度设置为 1350-2000°C (包 括 1350°C和 2000°C) , 例如采用氧化硅作为原料, 烧结温度可以选用 1500°C; 选 用氮化硅作为原理, 烧结温度可以选用 1750°C。 烧结吋间设置为 36-50小吋 (包 括 36小吋和 50小吋) , 例如 46小吋。 其中, 空气箱式炉也可采用其他加热炉代 替, 如管式、 立式、 环形加热炉, 电磁感应加热炉等。
[0060] 然后, 对坯体进行粗磨, 粗磨即将烧结完成冷却后的粗坯件在滚筒磨机、 粗磨 抛磨机内进行粗磨加工, 也就是该工序磨削盘磨料较粗, 主要目的是除去坯料 坯缝毛刺和基本磨削到要求尺寸。
[0061] 然后, 对粗磨及精加工后的坯体进行抛磨机精磨。
[0062] 最后, 采用精密机械加工的常用工具进行检测, 检测合格为成品。
[0063] 而在制作连接部的过程中, 具体说来, 制作原理如下:
[0064] 将压机作用于球形阀芯, 压机大吨位超高单位压力转化为夹紧球面和锥面的预 紧力, 在预紧力的作用下, 球表面和锥形孔内壁相互贴合、 相互压缩, 逐渐形 成接触面。
[0065] 从宏观上来看, 两个面在初始接触后, 即可形成一弧形的密封连接部 2232。 但 从微观上来看, 金属表面都有许多不同形状的凸峰和凹谷组成, 初始接触只发 生在表观面积的极小部分, 要实现表面接触的紧密接触, 需要一个逐渐压紧和 磨合的过程。 根据表面接触的粘合理论, 在简单载荷作用下, 真正接触点上的 接触应力足以产生塑性变形, 形成小平面接触, 直到接触面增大到承受全部载 荷为止。
[0066] 本申请采用的高精度、 高硬度的特陶材料球形阀芯 21的球面材料 (特陶) 屈服 强度很大, 难以屈服, 锥面材料 (合金、 特种不锈钢)屈服强度较低, 易于发生塑 性变形。
[0067] 对于接触密封而言, 要保证密封的可靠性, 应使球面和锥面之间的微观空隙完 全消失。 要达到这一效果, 就要让较软材料 (合金、 特种不锈钢) 表面整体充 分发生塑性变形, 这样既能让软材料表面的凸凹之处被充分压平, 又能通过软 材料微观塑性流动填满球面表面的微观空隙。 因此, 根据高压、 超高压、 超超 高压不同压力等级, 不同的球阀球面密封阀副, 不同大小的通径, 不同的阀体 材料, 合理设计专机施压的压力和施压工艺曲线, 使锥形孔内壁整体充分发生 塑性变形和强化。
[0068] 经计算, 球面与锥面压合形成的接触面是一条轴对称的斜环面 (该连接部 2232 纵向截面实际为弧形, 这里为了方便计算, 计算吋将其展平, 视为简单斜面) , 连接部 2232区域位于锥面中间偏上部分。 随着预紧力的逐渐增大, 密封段宽 度逐渐变宽, 密封应力逐渐增大。 在环向同一圆环上各点受接触应力大小相同 , 但在球面切向方向, 各点应力有一定的变化。 在密封段中点附近压力最大, 在临近区域应力大小也只是略有波动, 变化平缓。 直到接触区域的边缘部分, 接触应力骤然下降到很小。 因此, 密封性能依靠密封区域的除去两端外的中间 区域来保证。
[0069] 根据对计算结果的统计可以分别生成预紧力 F和密封宽度 L、 密封面积8、 平均 应力 P的对应曲线 (如图 6-8所示) , 从图 6-8可以看出, 在施压的过程中, 密封 宽度和密封面积从零幵始逐渐增大。 在变化过程中, 接触面积的增长速率在逐 渐减缓, 变化曲线逐渐趋于平缓。 密封段宽度越宽, 密封性能相对较好, 相对 较大的预紧力将有利于密封。
[0070] 在很多密封结构设计方法中都将接触应力作为密封性能的评价标准, 接触面压 力越大, 密封连接越紧密, 密封性能越好。 从图 6-8可以看出, 在预紧力施压过 程中, 在密封面积增大的同吋, 接触应力也在逐渐增大, 当预紧力增加, 应力 P 达到锥面材料屈服极限吋, 幵始发生塑性变形。 应力的增长和面积增大联合作 用, 能使密封性能在施压加工中快速增强。 同吋随预紧力增大的应力增长速度 逐渐减缓, 能使接触面处于相对安全的应力范围内, 避免因应力过大导致本申 请阀副幵闭灵敏性降低。
[0071] 对于球面材料来说, 在施压过程和使用过程球面密封结构各部分都在承受力的 作用, 而球面上端面转角位置发生应力集中, 本申请球面密封阀芯的设计研制 及加工施压曲线的 P最大值, 不可能选择接近到球面材料的屈服极限, 而是远小 于球面材料强度极限, 施压过程和使用过程整个变形都是在弹性变形范围内。 而锥面部分除在接触位置附近发生塑性变形、 应力较大外, 其余位置应力很小 , 小于屈服极限强度。
[0072] 综上所述, 采用不同材料、 大硬度差的阀芯和阀体 (阀座) 基材组成球面密封 结构阀副, 不单单在理论上有坚实依据, 在实际应用也得到可靠验证。
[0073] 本申请可根据不同功能用途、 不同通径、 不同压力等级, 选择不同的球面材料 和锥面材料, 不同的加工施压曲线, 将本申请技术应用于系列产品中。
[0074] 除本实施例所示直接利用球形阀芯挤压锥形孔壁形成连接部外, 还可通过其他 工艺, 如机械加工, 在锥形孔壁上加工成连接部。
[0075] 需要指出的是, 本实施例所述的阀副结构及其制作方法不仅可适用于电磁换向 阀, 同样也可适用于手动阀、 机械阀、 电动阀等其他控制阀。
[0076] 实施例二
[0077] 请参考图 9和 10, 本实施例二与实施例一的区别之处在于, 实施例一中连接通 道为锥形, 而本实施例二所示连接通道为圆形 223a, 即连接部在端面圆孔结构中 的一种示例。
[0078] 本实施例二中, 将端面圆孔 223a的转折处的内壁制成一圈球面形的连接部 2233
, 使之与球形阀芯 21密封配合。
[0079] 需要注意的是, 实施例一所示连接部及球形阀芯的制作方法同样也适用于本实 施例二所示结构。
[0080] 实施例三
[0081] 请参考图 11, 本实施例三与实施例一的区别之处在于, 本实施例三是将实施例 一所述阀副结构组合使用。
[0082] 其中, 通道还包括第三级通道 224, 第三级通道 224直径小于第二级通道 222, 第三级通道 224衔接于第二级通道 222之后, 球形阀芯为第一球形球芯 211和第二 球形球芯 212, 第一球形球芯 211置于第一级通道 21与第二级通道 222之间的连接 通道内, 第二球形球芯 212置于第三级通道 224和第二级通道 222之间的连接通道 , 实现多级密封。
[0083] 其中, 第一球形球芯 211大小可大于第二球形球芯 212的大小。 两球形阀芯大小 也就是通径 (孔径) 大小之比例, 决定着一次密封和二次密封的压差。 大小不 一样, 密封的平稳性和灵活性都将更好。 [0084] 在液压系统中, 尤其是在 400Mpa以上液压系统中, 可如本实施例所述组合使 用, 真正意义生产出超超高压多种电磁控制阀等控制阀类, 为高压、 超高压甚 至超超高压液压系统领域控制阀类的应用幵辟了新的方法, 必将推动高压、 超 高压甚至超超高压液压系统和液压装备的大力发展。
[0085] 其中组合使用并不限于本实施例三所示的两个球形阀芯, 也可以是三个、 四个 或者更多。 而且实施例一所示阀副结构和实施例二所示阀副结构也可以合并进 行组合使用。
[0086] 实施例四
[0087] 请参考图 12, 本申请提供一种单向阀, 其为普通单向阀。
[0088] 该单向阀包括阀体 311、 密封座 312、 密封球 313、 导向活塞 314和复位弹性件 31
[0089] 该阀体 311具有阀体腔 3111, 密封座 312固定安装于阀体腔 3111内, 固定方式包 括螺接固定、 紧配合等。
[0090] 该密封座 312上具有过流通道 3121, 该过流通道 3121与阀体腔 3111连通, 用于 液体过流。
[0091] 请参考图 13, 过流通道 3121具有一段圆锥形通道 3122, 该圆锥形通道 3122的内 壁上具有一圈凹槽 3123, 该凹槽 3123为球面形。
[0092] 当然, 其他实施例中, 过流通道 3121也可具有一段阶梯孔, 而在阶梯孔内壁的 转折处设置一圈球面形凹槽, 使密封球 313与该球面形凹槽形成面密封配合。
[0093] 或者, 在此圆锥形通道和阶梯孔通道之上还可进一步变形, 形成其他变形方式
[0094] 为了使球面形凹槽 3123能够紧密包络密封球 313的密封位置, 可使密封球 313的 硬度大于密封座 312的硬度。 例如, 本实施例中密封座 312为合金钢密封座 312, 即以合金钢材料制得密封座 312。 而密封球 313为特陶球, 即以特陶材料 (即特 种陶瓷材料) 制得密封球 313。
对于特陶球, 本实施例四提供两种示例, 即以氧化锆为原料制得的氧化锆特陶 球, 以及以氮化硅为原料制得的氮化硅特陶球。 以上两种仅是示例, 显然, 特 陶球还可选择其他特陶材料制得。 [0096] 同吋, 本实施例四提供一种制造球面形凹槽的方法:
[0097] 采用与密封球一致的球体 (例如 10G以上的高精度特陶球) 挤压圆锥孔的孔壁 以施加超塑变力, 在圆锥孔的孔壁上形成与密封球相匹配的球面形凹槽。
[0098] 当然, 该球面形凹槽也可通过其他机械加工方式制成。
[0099] 本实施例采用特陶球 13和合金钢密封座 312, 两偶件之间有着巨大的硬度差, 特陶球 13除了极高硬度外其冲击韧性也是必备指标, 加上特陶球 13的高精度圆 度特有的结构尺寸稳定性, 密封球 313受损的可能性几乎没有。 密封座 312由于 合金钢经热处理后优异的综合机械性能, 完全可承受一般的挤压和冲击。 关键 是本实施例四中, 密封座 312的圆锥通道的内壁具有一个圆滑过渡的球面形凹槽 3123 , 其表面具有相当高的硬度和综合机械强度, 是一般杂质颗粒无法侵害的 。 而且球面形凹槽 3123表面高度光滑, 杂质颗粒等异物无法停留。
[0100] 该复位弹性件 315的弹力使密封球 313抵接过流通道 3121的通道壁。 在本实施例 中, 该复位弹性件 315为压缩弹簧, 其一端设置在阀体 311靠近 B口的台阶上, 另 一端抵住导向活塞 314。
[0101] 该导向活塞 314设置于阀体腔 3111或过流通道 3121内, 其一端与密封球 313配合 。 该压缩弹簧可推动导向活塞 314并传导密封球 313向圆锥形通道 3122移动。
[0102] 当然, 在其他实施例中, 也可利用其他方式使密封球 313向圆锥形通道 3122移 动, 如依靠密封球 313自身重力。
[0103] 导向活塞 314上可具有至少一条用于过流的轴向通道 3142, 可以为轴向槽或孔 , 从而使液体可从 A口流向 B口方向。
[0104] 导向活塞 314—端可设置凹坑 3141, 而凹坑 3141与密封球 313表面相互贴合。
[0105] 在导向活塞 314的导向下, 密封球 313可精准沿轴线向密封座 312圆锥孔移动, 也使得挤压及冲击力不施加于球面形凹槽 3123以外的区域。
[0106] 本实施例四所示单向阀工作过程如下:
[0107] 单向阀整体以 A口内螺纹和 B口外螺纹与液压油路管相连接, 当 A口液压油有压 力大于复位弹簧阻力吋, 压力克服弹簧阻力推动特陶球 13向 B口移动, 单向阀打 幵, A口与 B口液压油相通, 当 A口液压油压力小于复位弹簧阻力吋, 特陶球 13 在复位弹簧推动下及由活塞轴向导向和圆球面凹凼控制下, 精准沿轴线向密封 座 312圆锥孔移动, 单向阀关闭。
[0108] 本实施例四所示单向阀采用球面密封, 其密封效果非常可靠, 承受压力巨大, 幵启闭合灵活迅捷, 不仅适用于 lOOMpa以下各个压力等级液压系统, 而且还能 够满足大于 lOOMpa各个压力等级液压系统的要求, 例如 1100Mpa。
[0109] 实施例五
[0110] 请参考图 14, 本实施例五也提供一种单向阀, 其为板式双通道液控单向阀。
[0111] 该液控单向阀包括阀体 421、 第一密封座 422、 第二密封座 423、 第一密封球 424 、 第二密封球 425、 阀套 426、 控制阀芯 427、 第一导向活塞 428、 第二导向活塞 4 29、 第一复位弹性件 4210、 第二复位弹性件 4211、 第一阀盖 4212和第二阀盖 421
3。
[0112] 该阀体 421具有阀体腔, 阀体腔的腔壁具有第一进油 ΠΑ、 第二进油口 Β、 第一 出油口 A1和第二出油口 Bl。
[0113] 阀套 426固定设置在阀体腔内, 例如可热镶于阀体腔内。 第一密封座 422和第二 密封座 423在阀套 426的一左一右固定于阀体腔内。 第一密封座 422和第二密封座
423都具有过流孔, 而第一密封球 424对应设置于第一密封座 422上, 第二密封球
425对应设置于第二密封座 423上。
[0114] 第一阀盖 4212和第二阀盖 4213分别对应封住第一密封座 422和第二密封座 423。
[0115] 第一密封座 422和第二密封座 423的过流通道具有一段圆锥形通道, 该圆锥形通 道的内壁上具有一圈凹槽, 该凹槽为球面形。
[0116] 本实施例五中, 过流通道的形状选择可参考实施例四所述的过流通道。
[0117] 同样, 为了使球面形凹槽能够紧密包络密封球的密封位置, 可使密封球的硬度 大于对应密封座的硬度。 例如, 本实施例中密封座为合金钢密封座, 即以合金 钢材料制得密封座。 而密封球为特陶球, 即以特陶材料 (即特种陶瓷材料) 制 得密封球。
[0118] 特陶球可选择氧化锆特陶球、 氮化硅特陶球或者其他特陶材料制得特陶球。
[0119] 同吋, 本实施例五提供一种制造球面形凹槽的方法:
[0120] 采用与密封球一致的球体 (例如 10G以上的高精度特陶球) 挤压圆锥孔的孔壁 以施加超塑变力, 在圆锥孔的孔壁上形成与密封球相匹配的球面形凹槽。 [0121] 当然, 该球面形凹槽也可通过其他机械加工方式制成。
[0122] 本实施例五同样也设置了复位弹性件和导向活塞。 该第一复位弹性件 4210和第 二复位弹性件 4211都为压缩弹簧, 第一复位弹性件 4210设置在第一阀盖 4212和 第一导向活塞 428之间, 第二复位弹性件 4211设置在第二阀盖 4213和第二导向活 塞 429之间。
[0123] 当然, 在其他实施例中, 也可利用其他方式使密封球向圆锥形通道移动, 如依 靠密封球自身重力。
[0124] 第一导向活塞 428和第二导向活塞 429上可具有至少一条用于过流的轴向通道, 可以为轴向槽或孔, 从而使液体可通过导向活塞。
[0125] 同吋, 第一导向活塞 428和第二导向活塞 429—端也可设置凹坑, 而凹坑与对应 密封球表面相互贴合。
[0126] 在第一导向活塞 428和第二导向活塞 429的导向下, 第一密封球 424和第二密封 球 425可精准地沿轴线分别向第一密封座 422和第二密封座 423的圆锥孔移动, 也 使得挤压及冲击力不施加于球面形凹槽以外的区域。
[0127] 该控制阀芯 427可以选择为柱塞式阀芯, 其设置于阀套 426内, 并与阀套 426形 成滑动副。
[0128] 当然, 控制阀芯 427也可采用金属加工件, 并直接与阀体 421形成滑动副, 即省 去阀套 426, 而为了提高密封性, 可在控制阀芯 427上设置两组密封件。
[0129] 控制阀芯 427除以上结构外, 还可对控制阀芯 427做了进一步地改进, 如本实施 例五所示, 控制阀芯 427包括金属杆的芯部和镶在芯部上的芯套, 该阀套 426和 芯套都可采用特陶材料制成。 这种方式密封强度更高, 更适合较高的液压系统
[0130] 请参考图 14, 第一进油口 A和第二进油口 B互为控制油口, 也是平常状态下第 一进油口 A和第二进油口 B均为进油口, 反向吋则为出油口。 同理, A1和 B1平常 状态下为出油口, 反向吋为进油口。
[0131] 而特殊状态下, 通过控制阀芯 427的作用, A口可控制 B口反向液压油流动, 使 B 1口液压油可向 B口流通, 实现双向通油;
B口可控制 A口反向液压油流动, 使 A1口液压油可向 A口流通, 实现双向通油, 即通过液体控制单向阀的方向。
[0132] 本液控单向阀工作过程如下:
[0133] 平常吋, A口、 B口同吋进相同压力液压油, 控制阀芯 4275平衡不动, 此吋本 阀就是一个双通道普通单向阀, 液压油只能通过 A口流向 A1口和 B口流向 B1口, 而不能通过 A1口流向 A口, B1口流向 B口。
[0134] 根据需要, B口断油, A口给油吋, 推动控制阀芯 427向右移动, 控制阀芯 427 右侧顶头克服右侧第一复位弹性件 4210的阻力, 顶幵第一特陶球 24, 将第二进 油口 B与 B1通道接通, 液压油自 B1口可流向 B口, 实现反向流动。 在这种情况下 , 第一进油口 A所在油路即为控制油路。
[0135] 同样, A口断油, B口给油曰寸, 推动控制阀芯 427向左移动, 控制阀芯 427左侧 顶头克服左侧第二复位弹性件 4211的阻力, 顶幵第二特陶球 25, 将第一进油口 A 与通道 A1接通, 液压油自 A1口可流向 A口, 实现反向流动。 在这种情况下, 第 二进油口 B所在油路即为控制油路。
[0136] 本实施例五所示液控单向阀也采用球面密封, 其密封效果非常可靠, 承受压力 巨大, 幵启闭合灵活迅捷, 不仅适用于 lOOMpa以下各个压力等级液压系统, 而 且还能够满足大于 lOOMpa各个压力等级液压系统的要求, 例如 1100Mpa。
[0137] 实施例六:
[0138] 请参考图 15, 本实施例六提供一种充液阀, 其包括阀体组件 511、 密封套 512、 密封体 513、 控制组件 514、 联接杆 515和法兰 516。
[0139] 该阀体组件 511包括第一部件 5111、 第二部件 5112、 第三部件 5113和第四部件 5 114。 阀体组件 511具有阀体腔 5115, 阀体腔 5115的腔壁上幵有第一过流通道 511 6和第二过流通道 5117。 其中第一过流通道 5116位于阀体组件 511的侧面, 其上 装有法兰 516, 用于与油箱连通, 而第二过流通道 5117位于阀体组件 511的下端 , 其与主缸无杆腔连通。
[0140] 该密封套 512固设于第一部件 5111上, 且密封套 512具有第三过流通道 5121, 该 第三过流通道 5121与阀体腔 5115、 第一过流通道 5116以及第二过流通道 5117连 通。 本实施例六中, 密封套 512装在第二过流通道 5117内, 其他实施例中, 当然 也可安装在阀体组件 511的其他位置。 [0141] 该密封体 513由特陶材料 (特种陶瓷材料) 制成, 其外壁与第三过流通道 5121 的内壁相匹配。 密封体 513和密封套 512形成一组密封副结构。
[0142] 具体地, 请参考图 15和 16, 密封体 513具有球面形的外壁 5131, 而第三过流通 道 5121具有圆锥孔, 圆锥孔的孔壁 5122具有与密封体 513外壁相匹配的球面形凹 槽 5123, 密封体 513的球面形外壁 5131与密封套 512上球面形凹槽 5123密封贴合 , 形成球面密封。
[0143] 请参考图 15, 在本实施例六中, 密封体 513具有两个平行的端面, 该两个端面 之间的侧壁 5131为球面形, 即相当于将一个球体状的密封体 513用两个相互平行 的平面切割, 位于两个平面中间的部分即为本实施例六所示的密封体 513。 而为 了增加密封体 513的厚度, 本实施例六所示密封体 513在球面形侧壁后还延伸设 置一段圆台。
[0144] 本实施例六, 密封体 513采用特陶材料制成, 而密封套 512可采用较特陶材料更 软的合金钢材料制成, 两者相互配合形成球面密封, 能够满足 45MPa以上液压系 统的强度要求。
[0145] 除此之外, 密封套 512也可采用其他较特陶材料更软的材料制成。
[0146] 同吋, 本实施例六提供一种制造密封套 512上的球面形凹槽的方法:
[0147] 采用与密封体球面形外壁一致的球体 (例如 10G以上的高精度特陶球) 挤压圆 锥孔的孔壁以施加超塑变力, 在圆锥孔的孔壁上形成与密封体 513相匹配的球面 形凹槽 5123, 该球面形凹槽的塑变量为 0.1-3mm, 例如 0.2-0.6mm。
[0148] 当然, 该球面形凹槽也可通过其他机械加工方式制成。
[0149] 现有充液阀可依靠主液压缸形成的真空负压将充液阀打幵, 依靠液压主缸压力 增大变化以及配合弹簧回复力来关闭充液阀。
[0150] 本充液阀可采用现有方式进行控制, 除此之外, 还可增设控制组件便于实现主 动控制。
[0151] 请继续参考图 15, 控制组件 514包括控制油缸 5141、 置于控制油缸 5141内的活 塞杆 5142以及弹性件 5143, 活塞杆 5142将控制油缸 5141分割为上油腔 5144和下 油腔 5145, 该上油腔用于与换向阀连通, 例如通过进油口 51141a连通。 弹性件 51 43安装在下油腔 5145内。 [0152] 活塞杆 5142与密封体 513联接, 在换向阀及弹性件的控制下, 移动密封体 513, 以打幵或密封第三过流通道 5121。
[0153] 活塞杆 5142与密封体 513固接, 带动密封体 513移动。
[0154] 本实施例六所采用的固接方式是, 活塞杆 5142具有球头联接部 5146, 同吋增设 一联接杆 515, 球头联接部 5146与联接杆 515联接, 联接杆 515与密封体 513联接
[0155] 本实施例六所示充液阀工作过程如下:
[0156] 通过换向阀 517主动控制活塞杆 5142伸出 (即图 15中密封体 513所处位置) , 密 封体 513和密封套 512分离, 此吋密封副打幵, 第二过流通道 5117打幵 (这吋液 压机主缸的无杆腔和油箱连通) , 允许大量油液通过第一过流通道 5116和第二 过流通道 5117, 从主缸上腔回流至油箱或从油箱快速充液到主缸上腔, 满足液 压机快进 /快退的功能需求。
[0157] 当需要切断吋, 换向阀 517配合弹性件 5143控制活塞杆 5142缩回, 密封体 513处 于图 1中 13a所示位置, 此刻密封体 513和密封套 512贴合, 第二过流通道 5117关闭 , 这吋主缸上腔与油箱切断, 主缸上腔幵始起压直至工作压力, 液压机进入压 制状态。
[0158] 本实施例六所示充液阀以特陶材料制成的密封体与合金钢制成的密封套加工成 密封副, 所以密封可靠, 可达零泄漏, 承受压力很高。 同吋, 可完全不使用密 封件, 使得整个结构更加紧凑, 安装更加方便。
[0159] 而且在控制方面, 本实施例六所示充液阀与现有技术充液阀工作原理不同, 不 依靠主液压缸形成的真空负压将充液阀打幵, 不依靠液压主缸压力增大变化而 关闭超高压充液阀, 可完全不用弹簧, 由控制组件主动实现密封结构的打幵和 关闭, 完全按需求主动控制驱动充液阀工作。
[0160] 控制组件使用缓冲结构, 整体结构紧凑, 安装方便等特点, 从而完全弥补了现 有技术充液阀故障频发, 维护成本高, 克服了如反向密封不严造成泄压, 或者 打幵吋液压冲击过大等影响液压系统及主机的正常使用的普遍性问题。
[0161] 本实施例六所示充液阀较现有充液阀来说, 反应速度更快, 幵闭更灵活快捷, 可靠性更高, 动作更有保障, 不仅能够满足 45MPa以下液压系统的强度要求, 也 能够满足大于 45MPa液压系统的强度要求, 例如 70-200MPa的液压系统。
[0162] 实施例七
[0163] 请参考图 17, 本实施例七提供一种充液阀, 其包括阀体组件 621、 密封套 622、 密封体 623、 控制组件 624、 联接杆 625和法兰 626。
[0164] 该阀体包括第一部件 6211和第二部件 6212, 阀体上具有阀体腔 6213, 阀体腔 62
13的腔壁上幵有第一过流通道 6214和第二过流通道 6215。 其中第一过流通道 621
4位于阀体的上端, 其上装有法兰 626, 用于与油箱连通, 而第二过流通道 6215 位于阀体的侧面, 其与主缸无杆腔连通。
[0165] 该密封套 622固设于第一部件 6211上, 且密封套 622具有第三过流通道 6221, 该 第三过流通道 6221与阀体腔 6213、 第一过流通道 6214以及第二过流通道 6215连 通。 本实施例七中, 密封套 622装在第一过流通道 6214内, 其他实施例中, 当然 也可安装在阀体的其他位置。
[0166] 该密封体 623由特陶材料 (特种陶瓷材料) 制成, 其外壁与第三过流通道 6221 的内壁相匹配。 密封体 623和密封套 622形成一组密封副结构。
[0167] 具体地, 密封体 623具有球面形的外壁 6231, 而第三过流通道 6221的内壁上具 有与球面形外壁 6231相匹配的球面形凹槽, 密封体 623与密封套 622形成球面密 封。
[0168] 其中, 该球面形凹槽可参考实施例六所示球面形凹槽的结构 (如图 16) 。
[0169] 请参考图 17, 在本实施例七中, 密封体 623具有两个平行的端面, 该两个端面 之间的侧壁 6231为球面形, 即相当于将一个球体状的密封体 623用两个相互平行 的平面切割, 位于两个平面中间的部分即为本实施例七所示的密封体 623。 而为 了增加密封体 623的厚度, 本实施例七所示密封体 623在球面形侧壁后还延伸设 置一段圆台。
[0170] 本实施例七密封体 623采用特陶材料制成, 而密封套 622可采用较特陶材料更软 的合金钢材料制成, 两者相互配合形成球面密封, 能够满足 45MPa以上液压系统 的强度要求。
[0171] 除此之外, 密封套 622也可采用其他较特陶材料更软的材料制成。
[0172] 同吋, 本实施例七提供一种制造密封套 622上的球面形凹槽的方法: [0173] 采用与密封体球面形外壁一致的球体 (例如 10G以上的高精度特陶球) 挤压圆 锥孔的孔壁以施加超塑变力, 在圆锥孔的孔壁上形成与密封体 623相匹配的球面 形凹槽, 该球面形凹槽的塑变量为 0.1-3mm, 例如 0.2-0.6mm。
[0174] 当然, 该球面形凹槽也可通过其他机械加工方式制成。
[0175] 现有充液阀可依靠主液压缸形成的真空负压将充液阀打幵, 依靠液压主缸压力 增大变化以及配合弹簧回复力来关闭充液阀。
[0176] 本充液阀可采用现有方式进行控制, 除此之外, 还可增设控制组件用于实现主 动控制。
[0177] 请继续参考图 17, 控制组件 624包括控制油缸 6141和置于控制油缸 6141内的活 塞杆 6142, 活塞杆 6142将控制油缸 6141分割为上油腔 6244和下油腔 6245, 上油 腔 6244可通过进油口 628与换向阀连通, 下油腔 6245可通过进油口 629与换向阀 连通。 活塞杆 6142与密封体 623联接, 禾 lj用换向阀实现不同油口的进油, 从而推 动活塞杆上下移动, 打幵或密封第三过流通道 6221。
[0178] 本实施例七所采用的固接方式是, 活塞杆 6242具有球头联接部, 同吋增设一联 接杆 625, 球头联接部与联接杆 625联接, 联接杆 625与密封体 623联接。
[0179] 本实施例七所示充液阀工作过程如下:
[0180] 通过换向阀 627主动控制活塞杆 6242伸出 (即密封体位于图 17中 23所处位置) , 密封体 623和密封套 622分离, 此吋密封副打幵, 第一过流通道 6214打幵 (这 吋液压机主缸的无杆腔和油箱连通) , 允许大量油液通过第一过流通道 6214和 第二过流通道 6215, 从主缸上腔回流至油箱或从油箱快速充液到主缸上腔, 满 足液压机快进 /快退的功能需求。
[0181] 当需要切断吋, 通过换向阀 627主动控制活塞杆 6242缩回, 密封体 623和密封套 622贴合, 第一过流通道 6214关闭, 这吋主缸上腔与油箱切断, 主缸上腔幵始起 压直至工作压力, 液压机进入压制状态。
[0182] 本实施例七所示充液阀以特陶材料制成的密封体与合金钢制成的密封套, 加工 成密封副, 其密封性可靠, 可达零泄漏, 承受压力很高。 同吋, 可完全不使用 密封件, 使得整个结构更加紧凑, 安装更加方便。
[0183] 而且在控制方面, 本实施例七所示充液阀与现有技术充液阀工作原理不同, 不 依靠主液压缸形成的真空负压将充液阀打幵, 不依靠液压主缸压力增大变化而 关闭超高压充液阀, 可完全不用弹簧, 由控制组件主动实现密封结构的打幵和 关闭, 完全按需求主动控制驱动充液阀工作。
[0184] 控制组件使用缓冲结构, 整体结构紧凑, 安装方便等特点, 从而完全弥补了现 有技术充液阀故障频发, 维护成本高, 且不适用于 40MPa以上压机的不足, 克服 了如反向密封不严造成泄压, 或者打幵吋液压冲击过大等影响液压系统及主机 的正常使用的普遍性问题。
[0185] 本实施例七所示充液阀较现有充液阀来说, 反应速度更快, 幵闭更灵活快捷, 可靠性更高, 动作更有保障, 不仅能够满足 45MPa以下液压系统的强度要求, 也 能够满足大于 45MPa液压系统的强度要求, 例如 70-200MPa的液压系统。
[0186] 实施例八
[0187] 本实施例八提供一种充液阀系统, 其包括控制装置以及充液阀。
[0188] 该控制装置与充液阀内的密封体相配合, 用以控制密封体的移动。
[0189] 例如, 控制装置可采用换向阀, 利用油液来控制密封体的移动, 其与充液阀的 联接可参考实施例六和七所示。
[0190] 或者, 控制装置也可以为其他可推动密封体移动的装置, 例如采用电磁换向阀 来驱动密封体主动移动, 实现打幵和密封。
[0191] 实施例九
[0192] 请参考图 18, 本实施例九提供一种溢流阀, 其具体为板式直动溢流阀。
[0193] 该溢流阀包括阀体 721、 阀套 722、 密封座 723、 密封球 724、 阻尼活塞 725、 弹 簧托 726以及弹性组件。
[0194] 该阀体 721具有阀体腔, 且阀体腔的腔壁具有进油口 7211和溢流口 7212。 进油 口 7211用于液压油进入, 溢流口 7212与油箱相通, 液压油可自此流回油箱。
[0195] 该阀套 722固定在阀体 721上, 其具有阀套腔, 该阀套腔与阀体腔相通。
[0196] 密封座 723固定在阀体腔内, 例如螺纹固定。 密封座 723具有过流通道 7231, 该 过流通道 7231将进油口 7211和溢流口 7212连通。
[0197] 密封球 724采用特陶材料 (特种陶瓷材料) 制成, 如可采用氧化锆或氮化硅制 得。 密封座 723则可选择硬度差于特陶材料 (特种陶瓷材料) 的合金钢制成。 [0198] 请参考图 19, 过流通道 7231具有一段圆锥孔 7232, 该圆锥孔 7232的孔壁具有一 圈球面形的凹槽 7233, 密封球 724与该球面形的凹槽 7233密封贴合。
[0199] 弹性组件作用于密封球 724上, 用于使密封球 724复位。
[0200] 本实施例中, 弹性组件包括弹簧 727、 调节螺杆 728、 弹簧座 729和钢球 7210, 该调节螺杆 728可调节地设置于阀套 722上, 例如调节螺杆 728可与阀套 722螺接
[0201] 弹簧座 729起导向作用, 在弹簧座 729面向调节螺杆 728的一面具有球面形凹坑 , 该钢球 7210设置于凹坑内, 传递调节螺杆 728的预紧力, 保证传递力施加于弹 簧座 729的中心。
[0202] 该阻尼活塞 725设置于密封球 724进油一侧, 起托举特陶球 724和保证特陶球运 动、 浮动、 幵闭平顺。
[0203] 本实施例工作原理如下:
[0204] 阀体 721的进油口 7211进油, 作用于密封球 724, 液压油的压力小于工作需要压 力吋, 密封球 724被弹簧 727压在密封座 723上, 进油口 7211与溢流口 7212之间处 于封闭状态。
[0205] 当液压油的压力超过其工作允许压力即大于弹簧 727调定压力吋, 密封球 724被 液压油推离密封座 723, 液压油流入与油箱相接的溢流口 7212, 液压油流回油箱
[0206] 密封座 723可采用淬透性好的合金钢材料制作, 根据不同的过流通道 7231直径 、 球径、 流速、 压力, 在密封座 723过流通道 7231前端加工一个选定角度的圆锥 孔。
[0207] 而圆锥孔上的球面形凹槽利用密封球 724挤压圆锥孔直至达到密封座 723材料塑 变压力的方法形成。 当然, 也可通过其他机械加工方式完成。
[0208] 本实施例由于采用了球面密封副, 密封等级非常高, 密封效果可靠, 不仅可应 用于 lOOMPa以下的液压系统, 也可应用于大于 lOOMPa的液压系统中, 如 250 MPa、 1 lOOMPa等。
[0209] 实施例十
[0210] 如实施例九所述, 其密封副结构、 材料密封副加工成型方法, 以及工作原理和 主要组成功能等同样适用于超高压先导式溢流阀、 超高压电磁溢流阀和超高压 先导式电磁溢流阀。
[0211] 先导型超高压溢流阀、 超高压电磁溢流阀和超高压先导式电磁溢流阀主要是采 用了两组球面密封副核心技术, 密封效果非常可靠, 承受压力巨大, 幵启闭合 灵活平顺稳定。 根据压力等级、 通径, 通过增减给与密封座圆锥孔的预加力、 调整合金钢密封座材质、 提高特陶球精度光洁度、 更换特陶球材质等, 由于在 密封座和密封球之间以及卸荷密封球与连接通道之间采用球面密封副, 密封等 级非常高, 密封效果可靠, 不仅可应用于 lOOMPa以下的液压系统, 也可应用于 大于 lOOMPa的液压系统中, 如 250 MPa、 l lOOMPa等。
[0212] 另外, 特陶球与合金钢密封座密封副具有很好的液压油运动流线型尺寸, 不易 产生紊流, 所以幵闭即灵活同吋又移动平顺, 特陶球与合金钢密封座之间的巨 大硬度差, 特陶球高精度高光洁度的特点, 以及特陶球与密封座组成密封副的 尺寸高度稳定性, 所以避免了现有技术溢流阀因阀芯径向卡紧, 过流口紊流, 锥阀芯、 钢球部件撞击磨损, 密封面损坏, 阀芯磨损等原因引起的噪声、 振动 和调压失灵问题。
[0213] 以上应用了具体个例对本发明进行阐述, 只是用于帮助理解本发明并不用以限 制本发明。 对于本领域的一般技术人员, 依据本发明的思想, 可以对上述具体 实施方式进行变化。
技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
[权利要求 1] 一种阀副结构,包括:
球形阀芯;
以及阀体, 所述阀体具有流体介质进出的通道, 所述通道具有第一级 通道和直径小于第一级通道的第二级通道, 所述第一级通道与第二级 通道之间具有用于过渡的连接通道;
其特征在于,
所述连接通道的内壁具有球面形的连接部, 所述连接部能够与球形阀 芯的外表面相互贴合形成密封接触。
[权利要求 2] 如权利要求 1所述的阀副结构, 其特征在于, 所述球形阀芯采用特陶 材料制成, 所述阀体采用合金钢或特种不锈钢制成。
[权利要求 3] 如权利要求 2所述的阀副结构, 其特征在于, 所述球形阀芯采用以下 方式制成:
将特陶原料经干压成型工艺制得坯体;
对坯体进行成型和烧结, 所述成型包括对坯体进行等静压成型处理、 压注成型处理或高压注射成型处理, 所述烧结温度为 1350-2000°C; 对烧结后的坯体进行粗加工和精加工。
[权利要求 4] 如权利要求 3所述的阀副结构, 其特征在于, 所述连接部由以下方法 制成: 使球形阀芯挤压对应阀体内壁制成球面形的连接部, 所述连接 部与用于挤压的球形阀芯形状相适配。
[权利要求 5] —种单向阀,包括阀体、 密封座和密封球, 所述阀体具有阀体腔, 所 述阀体腔具有进油口和出油口, 所述密封座固定安装于阀体腔内, 所 述密封座上具有过流通道, 所述密封球与过流通道的通道壁配合实现 密封, 其特征在于, 所述过流通道的通道壁具有一圈凹槽, 所述凹槽 为球面形, 所述密封球置于过流通道内, 且其外壁与球面形凹槽相互 贴合。
[权利要求 6] 如权利要求 5所述的单向阀, 其特征在于, 所述单向阀具有阀套、 控 制油路和控制阀芯, 所述阀套固定在阀体腔内, 所述控制阀芯滑动设 置于阀体腔内, 所述控制阀芯包括金属芯部和镶在芯部外面的芯套, 所述阀套和芯套均为特陶材料制成, 所述控制油路与控制阀芯相通, 驱使控制阀芯移动从而打幵密封球和密封座之间的密封结构。
[权利要求 7] 如权利要求 5或 6所述的单向阀, 其特征在于, 所述密封座为合金钢或 特种不锈钢密封座, 所述密封球为特陶球, 所述特陶球为氧化锆特陶 球或氮化硅特陶球。
[权利要求 8] 如权利要求 5或 6所述的单向阀, 其特征在于, 所述单向阀具有复位弹 性件和导向活塞, 所述密封球与过流通道的通道壁配合通过复位弹性 件驱动, 所述复位弹性件设置于密封球一侧, 其弹力使密封球抵接过 流通道的通道壁, 所述导向活塞设置于阀体腔或过流通道内, 其一端 与密封球配合, 另一端与复位弹性件配合, 且所述导向活塞上具有用 于过流的轴向通道和凹坑, 所述凹坑与密封球表面相互贴合。
[权利要求 9] 一种充液阀,包括:
阀体组件, 所述阀体组件具有阀体腔, 所述阀体腔的腔壁上幵设有第 一过流通道和第二过流通道,
其特征在于, 还包括:
密封套, 所述密封套固接在阀体组件上, 且密封套具有圆锥孔, 所述 圆锥孔与第一过流通道和第二过流通道连通, 其孔壁具有一圈球面形 的凹槽;
以及密封体, 所述密封体由特陶材料制成, 其具有一圈球面形的外壁 , 所述球面形的外壁与球面形的凹槽可密封贴合。
[权利要求 10] 如权利要求 9所述的充液阀, 其特征在于, 所述密封套上的球面形凹 槽通过以下方式制成:
采用与所述密封体的球面形外壁一致的球体挤压圆锥孔的孔壁以施加 超塑变力, 在圆锥孔的孔壁上形成与密封体相匹配的球面形凹槽。
[权利要求 11] 如权利要求 9-10任一项所述的充液阀, 其特征在于, 还包括:
控制油缸, 所述控制油缸固定在阀体组件上;
以及活塞杆, 所述活塞杆设置在控制油缸内, 其一端与密封体相连, 所述活塞杆将控制油缸分割为上油腔和下油腔, 所述上油腔与下油腔 均用于与换向阀连通。
如权利要求 9-10任一项所述的充液阀, 其特征在于, 还包括: 控制油缸, 所述控制油缸固定在阀体组件上;
活塞杆, 所述活塞杆设置在控制油缸内, 其一端与密封体相连, 所述 活塞杆将控制油缸分割为上油腔和下油腔, 所述上油腔用于与换向阀 连通;
以及弹性件, 所述弹性件设置于下油腔, 用于使活塞杆复位。
一种溢流阀, 包括:
阀体, 所述阀体具有阀体腔, 且阀体腔的腔壁具有进油口和溢流口; 阀套, 所述阀套具有阀套腔, 所述阀套固定在阀体上, 且阀套腔与阀 体腔连通;
以及弹性组件;
其特征在于, 还包括:
密封座, 所述密封座固定在阀体腔内, 且所述密封座具有过流通道, 所述过流通道与进油口和溢流口连通;
密封球, 所述密封球为特陶材料制成, 所述过流通道具有一段圆锥孔 , 所述圆锥孔的通道壁具有一圈球面形的凹槽, 所述密封球与所述球 面形的凹槽密封贴合, 所述弹性组件作用于密封球上, 用于使密封球 复位。
如权利要求 13所述的溢流阀, 其特征在于, 所述密封座为合金钢或特 种不锈钢材料制成。
PCT/CN2015/081975 2014-06-19 2015-06-19 阀副结构、单向阀、充液阀以及溢流阀 WO2015192808A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201410277429.5 2014-06-19
CN201410277429.5A CN104110413B (zh) 2014-06-19 2014-06-19 一种阀副结构
CN201420552505.4 2014-09-24
CN201410495399.5A CN104295750A (zh) 2014-09-24 2014-09-24 充液阀及充液阀系统
CN201410495399.5 2014-09-24
CN201420553711.7 2014-09-24
CN201420552505.4U CN204140969U (zh) 2014-09-24 2014-09-24 单向阀
CN201420553711.7U CN204805193U (zh) 2014-09-24 2014-09-24 溢流阀

Publications (1)

Publication Number Publication Date
WO2015192808A1 true WO2015192808A1 (zh) 2015-12-23

Family

ID=54934894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081975 WO2015192808A1 (zh) 2014-06-19 2015-06-19 阀副结构、单向阀、充液阀以及溢流阀

Country Status (1)

Country Link
WO (1) WO2015192808A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019030362A1 (en) * 2017-08-11 2019-02-14 Eaton Intelligent Power Limited HYDRAULIC SPINDLE FOR ACTUATING A PRE-FILL VALVE
WO2020069705A1 (en) 2018-10-02 2020-04-09 Hans Jensen Lubricators A/S Deformation of a valve seat for improving a lubricator pump unit and lubrication system of a large slow-running two-stroke engine, and an improved lubricator pump unit

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87200759U (zh) * 1987-01-21 1988-01-27 南京化工学院 一种用于热管的排气阀
CN87201755U (zh) * 1987-02-06 1988-02-03 核工业部第四设计研究院 阀球自动旋转的逆止阀
CN2278119Y (zh) * 1996-06-04 1998-04-08 王枵天 用瓷球密封的截止阀
CN1614271A (zh) * 2003-11-06 2005-05-11 王加新 弹性球结构球阀和纳米结构阀门密封及制造方法
US20050217730A1 (en) * 2004-03-30 2005-10-06 Doutt Michael L Floating ball check valve
CN103148225A (zh) * 2011-12-06 2013-06-12 道尼克斯索芙特隆公司 尤其用于通断处于高压的流体的分配阀
CN104110413A (zh) * 2014-06-19 2014-10-22 广东华液动力科技有限公司 一种阀副结构
CN203939797U (zh) * 2014-06-19 2014-11-12 广东华液动力科技有限公司 一种阀副结构
CN104295750A (zh) * 2014-09-24 2015-01-21 广东华液动力科技有限公司 充液阀及充液阀系统
CN204140969U (zh) * 2014-09-24 2015-02-04 广东华液动力科技有限公司 单向阀
CN204175973U (zh) * 2014-09-24 2015-02-25 广东华液动力科技有限公司 充液阀及充液阀系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87200759U (zh) * 1987-01-21 1988-01-27 南京化工学院 一种用于热管的排气阀
CN87201755U (zh) * 1987-02-06 1988-02-03 核工业部第四设计研究院 阀球自动旋转的逆止阀
CN2278119Y (zh) * 1996-06-04 1998-04-08 王枵天 用瓷球密封的截止阀
CN1614271A (zh) * 2003-11-06 2005-05-11 王加新 弹性球结构球阀和纳米结构阀门密封及制造方法
US20050217730A1 (en) * 2004-03-30 2005-10-06 Doutt Michael L Floating ball check valve
CN103148225A (zh) * 2011-12-06 2013-06-12 道尼克斯索芙特隆公司 尤其用于通断处于高压的流体的分配阀
CN104110413A (zh) * 2014-06-19 2014-10-22 广东华液动力科技有限公司 一种阀副结构
CN203939797U (zh) * 2014-06-19 2014-11-12 广东华液动力科技有限公司 一种阀副结构
CN104295750A (zh) * 2014-09-24 2015-01-21 广东华液动力科技有限公司 充液阀及充液阀系统
CN204140969U (zh) * 2014-09-24 2015-02-04 广东华液动力科技有限公司 单向阀
CN204175973U (zh) * 2014-09-24 2015-02-25 广东华液动力科技有限公司 充液阀及充液阀系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019030362A1 (en) * 2017-08-11 2019-02-14 Eaton Intelligent Power Limited HYDRAULIC SPINDLE FOR ACTUATING A PRE-FILL VALVE
WO2020069705A1 (en) 2018-10-02 2020-04-09 Hans Jensen Lubricators A/S Deformation of a valve seat for improving a lubricator pump unit and lubrication system of a large slow-running two-stroke engine, and an improved lubricator pump unit
CN112955634A (zh) * 2018-10-02 2021-06-11 汉斯延森注油器公司 使阀座变形以改进大型低速二冲程发动机的润滑器泵单元和润滑系统,以及改进的润滑器泵单元
JP2022504200A (ja) * 2018-10-02 2022-01-13 ハンス イェンセン ルブリケイターズ アクティーゼルスカブ 大型低速2ストローク機関のルブリケータポンプユニット及び潤滑系統を改良するためのバルブシートの変形、ならびに改良されたルブリケータポンプユニット
JP7474247B2 (ja) 2018-10-02 2024-04-24 ハンス イェンセン ルブリケイターズ アクティーゼルスカブ 大型低速2ストローク機関のルブリケータポンプユニット及び潤滑系統を改良するためのバルブシートの変形、ならびに改良されたルブリケータポンプユニット

Similar Documents

Publication Publication Date Title
CN205371758U (zh) 电磁球阀
US8517049B2 (en) Pressure relief valve
US20190368619A1 (en) Valve With Hardened Insert
US5873561A (en) Two-port cartridge seat valve
CN104373397A (zh) 双液压系统及液压机
RU2510475C1 (ru) Запорный клапан с невыдвижным шпинделем
CN204805193U (zh) 溢流阀
EP2066907A2 (en) Quiet fluid supply valve
JPH0810032B2 (ja) 逆止弁
CN204140969U (zh) 单向阀
CN103573732B (zh) 一种超高压大流量增压式液控截止阀及其应用
WO2015192808A1 (zh) 阀副结构、单向阀、充液阀以及溢流阀
CN112161090B (zh) 一种轴流式止回阀
CN204458582U (zh) 双液压系统及液压机
CN108412828B (zh) 一种液控配流阀
CN104110413B (zh) 一种阀副结构
CN112253558B (zh) 一种将大流量溢流功能集成于主阀芯的负载控制阀
CN104295750A (zh) 充液阀及充液阀系统
CN215172564U (zh) 一种超高压减压阀
CN113309897B (zh) 一种阀芯缓冲结构
AU2009244156B2 (en) Choke trim assembly
CN208996824U (zh) 超低温带缓冲功能活塞作动式高压阀门
CN214368007U (zh) 一种超高压大流量水溢流阀
CN111306123A (zh) 一种可自调心的阻尼式安全溢流阀
CN108799230A (zh) 一种截止阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15809017

Country of ref document: EP

Kind code of ref document: A1