WO2015192616A1 - 辐射探测、测量、识别、成像系统的定时装置及方法 - Google Patents

辐射探测、测量、识别、成像系统的定时装置及方法 Download PDF

Info

Publication number
WO2015192616A1
WO2015192616A1 PCT/CN2014/093363 CN2014093363W WO2015192616A1 WO 2015192616 A1 WO2015192616 A1 WO 2015192616A1 CN 2014093363 W CN2014093363 W CN 2014093363W WO 2015192616 A1 WO2015192616 A1 WO 2015192616A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical pulse
pulse signal
energy photon
photoelectric conversion
timing
Prior art date
Application number
PCT/CN2014/093363
Other languages
English (en)
French (fr)
Inventor
王卫东
谢庆国
沈轶
Original Assignee
苏州瑞派宁科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州瑞派宁科技有限公司 filed Critical 苏州瑞派宁科技有限公司
Priority to EP14894881.3A priority Critical patent/EP3159716A4/en
Priority to US15/319,472 priority patent/US10197682B2/en
Priority to JP2016573556A priority patent/JP6854648B2/ja
Publication of WO2015192616A1 publication Critical patent/WO2015192616A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1648Ancillary equipment for scintillation cameras, e.g. reference markers, devices for removing motion artifacts, calibration devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • G01T1/172Circuit arrangements not adapted to a particular type of detector with coincidence circuit arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/208Circuits specially adapted for scintillation detectors, e.g. for the photo-multiplier section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation
    • G01T3/06Measuring neutron radiation with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • G01T7/005Details of radiation-measuring instruments calibration techniques

Definitions

  • the invention relates to the field of radiation detection, and in particular to a timing device and method for radiation detection, measurement, identification and imaging system.
  • the PET system in the prior art has a global clock, and the time command information is sent to each high-energy photon detector by an overall clock.
  • This method destroys the decoupling and independence of each high-energy photon detector.
  • the device or the reduction of the detector requires re-arrangement of the system and other settings, the program is complex, and lacks convenience.
  • the present invention provides a timing apparatus for a radiation detecting, measuring, identifying, and imaging system including a plurality of high energy photon detectors including a scintillation crystal, a photoelectric conversion multiplying device And an electronic circuit, the timing device further comprising an optical pulse generator for emitting an optical pulse signal and a light guide for transmitting the optical pulse signal, each high energy photon detector being provided with light transmission for receiving the optical pulse signal
  • the hole and the optical pulse signal propagate through the light transmission hole to the scintillation crystal, and then propagate through the scintillation crystal to the surface of the photoelectric conversion multiplying device, which is multiplied by the photoelectric conversion multiplying device, processed and read by the electronic circuit, and independent of each other.
  • the photon detector takes the absolute time from the optical pulse signal generated by the optical pulse generator and performs timing and calibration between the individual photon detectors.
  • the timing device of the radiation detecting, measuring, identifying, and imaging system is such that the position of the light transmitting hole is on either side of the scintillation crystal uncoupled photoelectric conversion multiplying device or the scintillation crystal is not coupled to the photoelectric conversion multiplying device. Side of either side.
  • the high-energy photon detector comprises a housing, the scintillation crystal is disposed in the housing, and the transparent aperture is disposed on the housing. .
  • the light guide is an optical fiber or a glass or crystal or a scintillation crystal.
  • the present invention also provides a timing device for a radiation detecting, measuring, identifying, and imaging system, including a plurality of high-energy photon detectors, each of which includes a scintillation crystal and a photoelectric conversion multiplication a device and an electronic circuit, the timing device further comprising an optical pulse generator for emitting an optical pulse signal, a light guide for transmitting the optical pulse signal, and converting the optical pulse signal emitted by the optical pulse signal generator into an electrical signal
  • the converted electrical signal is processed and read by the electronic circuit, and the independent high-energy photon detector obtains the absolute time from the optical pulse signal generated by the optical pulse generator, and is in each independent photon photon detector. Timing and calibration are performed.
  • the photoelectric conversion device is directly connected to the electronic circuit, and the converted electrical signal is directly transmitted to the electronic circuit for processing.
  • the photoelectric conversion device is connected to the photoelectric conversion multiplying device, and then the electrical signal is transmitted to the electronic circuit for processing via the photoelectric conversion multiplying device.
  • the timing device of the radiation detecting, measuring, identifying, and imaging system is disposed on the side of either side of the scintillation crystal uncoupled photoelectric conversion multiplying device, or is disposed in the photoelectric conversion multiplying device. Couple the side of either side of the scintillation crystal.
  • Another object of the present invention is to provide a timing method for performing radiation detection, measurement, identification, and imaging systems using the timing device of the radiation detecting, measuring, identifying, and imaging system described above, including the steps of: S1: an optical pulse signal generation The device emits a light pulse signal, and the light pulse signal passes through the light The guide is transmitted to a plurality of high-energy photon detectors, each high-energy photon detector is provided with a light-transmitting hole for receiving the optical pulse signal, and the optical pulse signal is transmitted through the light-transmitting hole to the scintillation crystal in the high-energy photon detector; S2: light The pulse signal is transmitted to the photoelectric conversion multiplying device in the high-energy photon detector via the scintillation crystal and processed and read by the electronic circuit; S3: the independent high-energy photon detector obtains the absolute time from the optical pulse signal generated by the optical pulse generator And timing and calibration between individual photon photodetectors.
  • the position of the light-transmitting hole is on either side of the scintillation crystal uncoupled photoelectric conversion multiplying device or the scintillation crystal is not The side of either side of the coupled photoelectric conversion multiplying device.
  • the high-energy photon detector includes a casing, and the scintillation crystal is disposed in the casing, and the light transmission is performed.
  • the hole is disposed on the housing.
  • the light conductor is an optical fiber or a glass or a crystal or a scintillating crystal.
  • the optical pulse signal acquisition and processing method adopts a multi-voltage threshold acquisition processing method or a constant ratio discriminator or a single method in the above-mentioned step of the radiation detection, measurement, identification, and imaging system.
  • the voltage threshold triggers the comparison method or directly samples the analog/digital converter directly.
  • Another object of the present invention is to provide a timing method for performing radiation detection, measurement, identification, and imaging systems using the timing device of the radiation detecting, measuring, identifying, and imaging system described above, including the steps of: S1: an optical pulse signal generation The device emits an optical pulse signal, and the optical pulse signal is transmitted to a photoelectric conversion device through the optical conductor, and the photoelectric conversion device converts the optical pulse signal emitted by the optical pulse signal generator into an electrical signal; S2: the converted electrical signal is directly transmitted to the electronic device The circuit is processed and read, or transmitted to the electronic circuit for processing and reading through the photoelectric conversion multiplying device in the high-energy photon detector; S3: the independent high-energy photon detector generates the optical pulse signal from the optical pulse generator. Obtain absolute time and time and calibrate between individual photon detectors.
  • the light conductor is an optical fiber or a glass or a crystal or a scintillating crystal.
  • the optical pulse signal acquisition and processing method adopts a multi-voltage threshold acquisition processing method or a constant ratio discriminator or a single method in the above-mentioned step of the radiation detection, measurement, identification, and imaging system.
  • the voltage threshold triggers the comparison method or directly samples the analog/digital converter directly.
  • a timing device for a radiation detection, measurement, identification, imaging system of the present invention comprising a plurality of high energy photon detectors, each of said high energy photon detectors comprising a scintillation crystal, a photoelectric conversion multiplying device and an electronic circuit, said timing device
  • the invention also includes an optical pulse generator for transmitting an optical pulse signal and a light guide for transmitting the optical pulse signal.
  • Each high-energy photon detector is provided with a light-transmitting hole for receiving the optical pulse signal, and the optical pulse signal is transmitted through the light.
  • the hole propagates to the scintillation crystal and then propagates through the scintillation crystal to the surface of the photoelectric conversion multiplying device, which is multiplied by the photoelectric conversion multiplying device, and processed and read by the electronic circuit, and the independent high-energy photon detector from the optical pulse generator
  • the resulting optical pulse signal acquires absolute time and is timed and calibrated between individual photonic photodetectors.
  • the technical solution cancels the global clock, realizes timing by using a direct optical signal, and is connected to each high-energy photon detector by using a separate component (including a light guide and an optical pulse generator) that can be customized for different systems, and is received by each photomultiplier device.
  • the time of completion of the optical pulse signal can realize the decoupling between the high-energy photon detectors, ensuring the independence of the high-energy photon detector, making it more convenient for the system to use or increase or decrease the high-energy photon detector, and the structure and high-energy photons are more convenient.
  • the actual position of the detector is not related, that is, the position of the high-energy photon detector can be arbitrarily changed, and the use is more flexible.
  • the position of the light-transmissive aperture is on either side of the scintillation crystal uncoupled photoelectric conversion multiplying device or on the side of either side of the scintillation crystal uncoupled photoelectric conversion multiplying device.
  • the technical solution defines the positional relationship between the light-transmitting hole and the scintillation crystal, thereby ensuring that the optical signal can directly reach the scintillation crystal directly, thereby reducing the loss of the optical signal.
  • the high-energy photon detector comprises a housing, the scintillation crystal is disposed in the housing, and the transparent aperture is disposed on the housing.
  • the technical solution avoids direct drilling on the scintillation crystal, ensures the integrity of the scintillation crystal structure, and reduces the processing process of the scintillation crystal, and only needs to set one
  • the outer casing can also transmit the optical signal to the scintillation crystal in a concentrated manner through the light transmission hole on the casing, and the structure is simple.
  • the light conductor is an optical fiber or a glass or crystal or a scintillation crystal.
  • a timing device for a radiation detection, measurement, identification, imaging system of the present invention comprising a plurality of high energy photon detectors, each of said high energy photon detectors comprising a scintillation crystal, a photoelectric conversion multiplying device and an electronic circuit, said timing device
  • the invention also includes an optical pulse generator for emitting an optical pulse signal, a light guide for transmitting the optical pulse signal, and a photoelectric conversion device for converting the optical pulse signal emitted by the optical pulse signal generator into an electrical signal, and the converted electrical signal
  • the high-energy photon detector which is processed and read by the electronic circuit, is independent of the optical pulse signal generated by the optical pulse generator, and is timed and calibrated between the individual photon detectors.
  • the technical solution cancels the global clock, realizes timing by converting the optical signal into an electrical signal, converts the optical pulse signal into an electrical signal by using a photoelectric conversion device, and then transmits the signal to the subsequent electronic circuit for processing to complete the timing, thereby realizing high-energy photons.
  • the decoupling between the detectors ensures the independence of the high-energy photon detector, making it more convenient for the system to use or increase or decrease the high-energy photon detector, and this structure is not related to the actual position of the high-energy photon detector, ie it can be freely Change the position of the high-energy photon detector for more flexibility.
  • the photoelectric conversion device is directly connected to the electronic circuit, and the converted electrical signal is directly transmitted to the electronic circuit for processing.
  • the photoelectric conversion device of the technical solution is directly connected with the electronic circuit, which can ensure the independence of the operation of the photoelectric conversion multiplying device, fully avoid unnecessary interference of the timing device itself on the system components, and realize the decoupling between the high-energy photon detectors. Decoupling between timing devices and system components is achieved.
  • the photoelectric conversion device is connected to the photoelectric conversion multiplying device, and then the electrical signal is transmitted to the electronic circuit for processing via the photoelectric conversion multiplying device.
  • the photoelectric conversion device of the technical solution is connected with the photoelectric conversion multiplying device, and the photoelectric conversion device can share a path with the photoelectric conversion multiplying device, thereby saving unnecessary line connection, simplifying the structure, and saving cost.
  • the photoelectric conversion device is disposed on a side of either side of the scintillation crystal uncoupled photoelectric conversion multiplying device, or disposed on a side of either side of the photoelectric conversion multiplying device that is not coupled to the scintillation crystal.
  • the technical solution limits the arrangement position of the photoelectric conversion device, on the one hand, makes the photoelectric conversion device relatively close to the electronic circuit, and on the other hand, through a reasonable layout, the structure after the connection between the timing device and the system is relatively compact, and the temporary use is avoided. Space.
  • the method for timing detection of a radiation detecting, measuring, identifying, and imaging system using the timing device of the radiation detecting, measuring, identifying, and imaging system of the present invention comprising the steps of: S1: an optical pulse signal generator emits a light pulse The signal and the optical pulse signal are transmitted to the plurality of high-energy photon detectors through the light guide, and each of the high-energy photon detectors is provided with a light-transmitting hole for receiving the optical pulse signal, and the optical pulse signal propagates through the light-transmitting hole to the high-energy photon detector.
  • Scintillation crystal S2: the optical pulse signal is transmitted to the photoelectric conversion multiplying device in the high-energy photon detector via the scintillation crystal, and processed and read by the electronic circuit; S3: mutually independent high-energy photon detector is generated from the optical pulse generator The optical pulse signal acquires absolute time and is timed and calibrated between individual light energy photon detectors.
  • the technical solution cancels the global clock, realizes timing by using a direct optical signal, and is connected to each high-energy photon detector by using a separate component (including a light guide and an optical pulse generator) that can be customized for different systems, and is received by each photomultiplier device.
  • the time of completion of the optical pulse signal can realize the decoupling between the high-energy photon detectors, ensuring the independence of the high-energy photon detector, making it more convenient for the system to use or increase or decrease the high-energy photon detector, and the structure and high-energy photons are more convenient.
  • the actual position of the detector is not related, that is, the position of the high-energy photon detector can be arbitrarily changed, and the use is more flexible.
  • the position of the light-transmitting hole is on either side of the scintillation crystal uncoupled photoelectric conversion multiplying device or on the side of either side of the scintillation crystal uncoupled photoelectric conversion multiplying device.
  • the technical solution defines the positional relationship between the light-transmitting hole and the scintillation crystal, thereby ensuring that the optical signal can directly reach the scintillation crystal directly, thereby reducing the loss of the optical signal.
  • the optical pulse signal acquisition and processing method adopts a multi-voltage threshold acquisition processing method or a constant ratio discriminator or a single voltage threshold trigger comparison method or directly samples the analog/digital converter directly.
  • a timing method for detecting, measuring, identifying, and imaging a timing of a radiation detecting, measuring, identifying, and imaging system using the timing device of the radiation detecting, measuring, identifying, and imaging system of the present invention comprising the steps of: S1: transmitting an optical pulse signal generator Optical pulse signal, the optical pulse signal is transmitted to the optical transmitter to a photoelectric conversion device that converts an optical pulse signal emitted by an optical pulse signal generator into an electrical signal; S2: the converted electrical signal is directly transmitted to an electronic circuit for processing and reading, or is passed through a high-energy photon detector The photoelectric conversion multiplying device is transmitted to the electronic circuit for processing and reading; S3: the independent high-energy photon detector generates the absolute time from the optical pulse signal generated by the optical pulse generator, and is in each independent photon photon detector Timing and calibration are performed.
  • the technical solution cancels the global clock, realizes timing by converting the optical signal into an electrical signal, converts the optical pulse signal into an electrical signal by using a photoelectric conversion device, and then transmits the signal to the subsequent electronic circuit for processing to complete the timing, thereby realizing high-energy photons.
  • the decoupling between the detectors ensures the independence of the high-energy photon detector, making it more convenient for the system to use or increase or decrease the high-energy photon detector, and this structure is not related to the actual position of the high-energy photon detector, ie it can be freely Change the position of the high-energy photon detector for more flexibility.
  • FIG. 1 is a schematic diagram of an embodiment of an optical fiber used in a timing device for a radiation detecting, measuring, identifying, and imaging system of the present invention.
  • the invention discloses a timing device for radiation detection, measurement, identification and imaging system.
  • the timing device cancels the global clock and realizes the timing directly or indirectly through the optical signal, thereby ensuring the independence of the high-energy photon detector and making the system use. It is more convenient to increase or decrease the high-energy photon detector.
  • the timing device disclosed includes two embodiments, which will be described in detail below.
  • a timing device for a radiation detection, measurement, identification, imaging system includes a plurality of high energy photon detectors, each of which includes a scintillation crystal, a photoelectric conversion multiplying device, and an electronic circuit.
  • the timing device further includes an optical pulse generator for emitting an optical pulse signal and a light guide for transmitting the optical pulse signal, each high energy photon detector being provided with a light transmission hole for receiving the optical pulse signal, and the optical pulse
  • the signal propagates through the light transmission hole to the scintillation crystal and then passes
  • the scintillation crystal propagates to the surface of the photoelectric conversion multiplying device, and is converted and multiplied by the photoelectric conversion multiplying device, and processed and read by the electronic circuit, like the photon generated by the reaction of the high-energy photon and the scintillation crystal in the receiving spectrum of the photoelectric conversion multiplying device.
  • the independent high-energy photon detectors take absolute time from the optical pulse signal generated by the optical pulse generator and perform timing and calibration between the individual photon detectors. Used in a radiation detection, measurement, identification, imaging system that requires absolute time timing, calibration, and time alignment between individual high-energy photon detectors.
  • the timing device of the radiation detecting, measuring, identifying and imaging system disclosed in the first embodiment cancels the global clock, realizes timing by using the direct optical signal, and adopts a separate component (including the light conductor and the light pulse) which can be customized for different systems.
  • the generator is connected to each high-energy photon detector, and the time-completed timing of receiving the optical pulse signal by each photomultiplier device can realize decoupling between the high-energy photon detectors, ensuring the independence of the high-energy photon detector, and making the system It is more convenient to use or increase or decrease the high-energy photon detector, and the structure is not related to the actual position of the high-energy photon detector, that is, the position of the high-energy photon detector can be arbitrarily changed, and the use is more flexible.
  • the light transmission hole can be covered with opaque light.
  • the position of the light-transmitting hole is on either side of the scintillation crystal uncoupled photoelectric conversion multiplying device or on the side of either side of the scintillation crystal uncoupled photoelectric conversion multiplying device. That is, the light-transmitting hole may be directly disposed on the scintillation crystal or may be disposed outside the scintillation crystal.
  • the high-energy photon detector includes a housing, and the scintillation crystal is disposed in the housing, and the transparent hole may be It is placed on the housing.
  • the light transmission hole can also be directly disposed on the scintillation crystal.
  • the position of the light transmission hole needs to ensure that the optical signal can directly reach the scintillation crystal directly, thereby reducing the loss of the optical signal.
  • an optical pulse signal amplifier can be provided.
  • the optical pulse signal amplifier can amplify the weak optical pulse signal and then sufficiently ensure that the photomultiplier can receive the optical pulse signal.
  • the optical pulse signal amplifier is disposed at a position where the optical waveguide is connected to the high-energy photon detector, that is, disposed near the outside of the light-transmitting hole, and directly amplifies the optical pulse signal after receiving the optical pulse signal transmitted by the optical fiber. Then the amplified optical pulse signal is passed again The light transmission hole is transmitted to the scintillation crystal, and then the optical pulse signal is transmitted to the photomultiplier through the scintillation crystal.
  • the optical pulse signal amplifier may be disposed near the inner side of the light transmission hole, the optical pulse signal is first incident on the light transmission hole, and then the optical pulse signal is amplified by the optical pulse signal amplifier, and then the amplified optical pulse signal is passed through the flashing.
  • the crystal is transmitted to the photomultiplier; of course, the optical pulse signal amplifier can be placed between the scintillation crystal and the photomultiplier, and the optical pulse signal is amplified by the scintillation crystal and then transmitted to the photomultiplier.
  • a timing device for a radiation detecting, measuring, identifying, and imaging system disclosed in the present invention includes a plurality of high energy photon detectors 100 and a plurality of photomultipliers (not shown).
  • the timing device for the radiation detecting, measuring, identifying, and imaging system includes an optical fiber 200 surrounding the plurality of high-energy photon detectors 100 according to a system design, and an optical pulse signal generator 300 for supplying an optical pulse signal to the optical fiber 200, each of A high-energy photon detector 100 is provided with a light-transmitting hole 400 for receiving an optical pulse signal, and the optical pulse signal is directly transmitted to the photomultiplier through the light-transmitting hole 400.
  • the invention also discloses a timing device for a radiation detecting, measuring, identifying and imaging system, comprising a plurality of high-energy photon detectors, the high-energy photon detector comprising a scintillation crystal, a photoelectric conversion multiplying device and an electronic circuit,
  • the timing device further includes an optical pulse generator for emitting an optical pulse signal, a light guide for transmitting the optical pulse signal, and a photoelectric conversion device for converting the optical pulse signal emitted by the optical pulse signal generator into an electrical signal, and the converted
  • the electrical signals are processed and read by the electronic circuitry, and the independent high-energy photon detectors take absolute time from the optical pulse signals generated by the optical pulse generators and are timed and calibrated between the individual optical photon detectors.
  • the technical solution cancels the global clock, realizes timing by converting the optical signal into an electrical signal, converts the optical pulse signal into an electrical signal by using a photoelectric conversion device, and then transmits the signal to the subsequent electronic circuit for processing to complete the timing, thereby realizing high-energy photons.
  • the decoupling between the detectors ensures the independence of the high-energy photon detector, making it more convenient for the system to use or increase or decrease the high-energy photon detector, and this structure is not related to the actual position of the high-energy photon detector, ie it can be freely Change the position of the high-energy photon detector for more flexibility.
  • the timing device of the radiation detecting, measuring, identifying and imaging system disclosed in the second embodiment cancels the global clock, and adopts a method of converting the optical signal into an electrical signal to realize timing, and adopting a
  • the photoelectric conversion device converts the optical pulse signal into an electrical signal, and then transmits it to the subsequent electronic circuit for processing to complete the timing, thereby realizing decoupling between the high-energy photon detectors, ensuring the independence of the high-energy photon detector, and making the system use or It is more convenient to increase or decrease the high-energy photon detector, and the structure is not related to the actual position of the high-energy photon detector, that is, the position of the high-energy photon detector can be arbitrarily changed, and the use is more flexible.
  • the photoelectric conversion device is directly connected to the electronic circuit, and the converted electrical signal is directly transmitted to the electronic circuit for processing.
  • the photoelectric conversion device of the technical solution is directly connected with the electronic circuit, which can ensure the independence of the operation of the photoelectric conversion multiplying device, fully avoid unnecessary interference of the timing device itself on the system components, and realize the decoupling between the high-energy photon detectors. Decoupling between timing devices and system components is achieved.
  • the photoelectric conversion device is connected to the photoelectric conversion multiplying device, and then the electrical signal is transmitted to the electronic circuit for processing via the photoelectric conversion multiplying device.
  • the photoelectric conversion device of the technical solution is connected with the photoelectric conversion multiplying device, and the photoelectric conversion device can share a path with the photoelectric conversion multiplying device, thereby saving unnecessary line connection, simplifying the structure, and saving cost.
  • the photoelectric conversion device is disposed on the side of either side of the scintillation crystal uncoupled photoelectric conversion multiplying device, or is disposed on the side of either side of the photoelectric conversion multiplying device that is not coupled to the scintillation crystal, specifically
  • the setting position of the photoelectric conversion device is determined according to the layout of the PET system. The technical solution limits the arrangement position of the photoelectric conversion device, on the one hand, makes the photoelectric conversion device relatively close to the electronic circuit, and on the other hand, through a reasonable layout, the structure after the connection between the timing device and the system is relatively compact, and the temporary use is avoided. Space.
  • the timing device of the second embodiment of the present invention may further comprise an optical pulse signal amplifier disposed at the light receiving end of the photoelectric conversion device, and first amplifying the optical pulse signal emitted by the optical pulse signal generator. , and then transmitted to the photoelectric conversion device to be converted into an electrical signal, a strong optical signal can ensure the quality of the converted electrical signal, thereby ensuring the timing effect.
  • an optical pulse signal amplifier disposed at the light receiving end of the photoelectric conversion device, and first amplifying the optical pulse signal emitted by the optical pulse signal generator. , and then transmitted to the photoelectric conversion device to be converted into an electrical signal, a strong optical signal can ensure the quality of the converted electrical signal, thereby ensuring the timing effect.
  • the optical pulse signal amplifier can amplify the weak optical pulse signal and then sufficiently ensure that the photomultiplier can receive the optical pulse signal.
  • the optical pulse signal amplifier is disposed at a position where the light guide is connected to the high-energy photon detector, that is, disposed near the outside of the light-transmitting hole, and receives the light. After the optical pulse signal transmitted by the fiber, the optical pulse signal is directly amplified, and then the amplified optical pulse signal is transmitted to the scintillation crystal through the transparent hole, and then the optical pulse signal is transmitted to the photomultiplier through the scintillation crystal.
  • the optical pulse signal amplifier may be disposed near the inner side of the light transmission hole, the optical pulse signal is first incident on the light transmission hole, and then the optical pulse signal is amplified by the optical pulse signal amplifier, and then the amplified optical pulse signal is passed through the flashing.
  • the crystal is transmitted to the photomultiplier; of course, the optical pulse signal amplifier can be placed between the scintillation crystal and the photomultiplier, and the optical pulse signal is amplified by the scintillation crystal and then transmitted to the photomultiplier.
  • the light guide may be a material with good conduction effect such as an optical fiber or a glass or a crystal or a scintillation crystal, thereby ensuring the efficiency of optical signal transmission.
  • a material with good conduction effect such as an optical fiber or a glass or a crystal or a scintillation crystal, thereby ensuring the efficiency of optical signal transmission.
  • one end of the light guide is connected to the optical pulse generator, and the other end of the light guide has a plurality of branches, each of which is connected to a high-energy photon detector, and the light pulse A primary light pulse from the generator can be received by the plurality of branches and passed to a high energy photon detector coupled to each branch.
  • the plurality of branches may be a branch formed by the same light conductor itself, or may be an external branch component. Regardless of the branch design form, it is intended to function as a light pulse signal.
  • the arrangement of the light guides is determined according to the actual situation of the device, and the purpose is to be beautiful and convenient to connect.
  • Embodiment 2 is not illustrated.
  • Each of the high-energy photon detectors of Embodiment 2 is provided with a photoelectric conversion device for converting an optical pulse signal emitted by an optical pulse signal generator into an electrical signal.
  • the photoelectric conversion device is directly connected to the electronic circuit, and the converted electrical signal is directly transmitted to the electronic circuit for processing.
  • the photoelectric conversion device can also be connected to the photoelectric conversion multiplying device, and then the electrical signal is transmitted to the electronic circuit for processing via the photoelectric conversion multiplying device.
  • Embodiment 2 The difference between Embodiment 2 and Embodiment 1 is that a photoelectric conversion device is provided, and no optical transmission hole is provided, and the optical pulse signal is converted into an electrical signal and then transmitted to the photomultiplier, and the latter is directly transmitted to the electronic circuit for processing.
  • the invention also discloses a timing method for radiation detection, measurement, identification and imaging system, which cancels the global clock and ensures the timing directly or indirectly by using the optical signal.
  • the independence of the high-energy photon detector makes it more convenient for the system to use or increase or decrease the high-energy photon detector.
  • the timing method disclosed includes two embodiments, which will be explained in detail below.
  • the invention also discloses a timing method for radiation detection, measurement, identification and imaging system, which comprises the steps of:
  • an optical pulse signal generator emits a light pulse, and the optical pulse signal is transmitted to the high-energy photon detector through the light guide, and each high-energy photon detector is provided with a light-transmitting hole for receiving the optical pulse signal, and the optical pulse signal passes through The light hole propagates to the scintillation crystal in the high energy photon detector;
  • the optical pulse signal is transmitted to the photoelectric conversion multiplying device in the high-energy photon detector via the scintillation crystal, and processed and read by the electronic circuit;
  • the technical solution of the method in the first embodiment cancels the global clock, realizes timing by using a direct optical signal, and connects with each high-energy photon detector through a separate component (including a light guide and an optical pulse generator) that can be customized for different systems.
  • Each photomultiplier device receives the time completion timing of the optical pulse signal, which can realize decoupling between the high-energy photon detectors, ensures the independence of the high-energy photon detector, and makes it more convenient for the system to use or increase or decrease the high-energy photon detector, and This structure is not related to the actual position of the high-energy photon detector, that is, the position of the high-energy photon detector can be arbitrarily changed, and the use is more flexible.
  • the position of the light-transmitting hole is on either side of the scintillation crystal uncoupled photoelectric conversion multiplying device, or the flashing crystal is not coupled to the side of either side of the photoelectric conversion multiplying device.
  • the high-energy photon detector includes a casing, the scintillation crystal is disposed in the casing, and the light-transmitting hole is disposed on the casing.
  • the light guide is an optical fiber or a glass or a crystal or a scintillation crystal.
  • a material with good conduction effect ensures the efficiency of optical signal transmission.
  • the optical pulse signal acquisition and processing method is a multi-voltage threshold acquisition processing method or a constant ratio discriminator or a single voltage threshold trigger comparison method or directly using a high speed analog/digital converter.
  • the wavelength of the optical pulse signal ranges from 300 nm to 1550 nm, and the wavelength of the commonly used optical pulse signal is concentrated near certain wavelength ranges. These wavelength ranges are conventionally referred to as windows. Currently, 850 nm is commonly used. Three low-loss windows centered at 1310 nm and 1550 nm, and the optical pulse width of the optical pulse signal ranges from 10 ps to 100 ns.
  • an optical pulse signal amplifier can also be used.
  • the optical pulse signal amplifier can amplify the weak optical pulse signal and then sufficiently ensure that the photomultiplier can receive the optical pulse signal.
  • the optical pulse signal amplifier is disposed at a position where the optical waveguide is connected to the high-energy photon detector, that is, disposed near the outside of the light-transmitting hole, and directly amplifies the optical pulse signal after receiving the optical pulse signal transmitted by the optical fiber. Then, the amplified optical pulse signal is transmitted to the scintillation crystal through the light transmission hole, and then the optical pulse signal is transmitted to the photomultiplier through the scintillation crystal.
  • the optical pulse signal amplifier may be disposed near the inner side of the light transmission hole, the optical pulse signal is first incident on the light transmission hole, and then the optical pulse signal is amplified by the optical pulse signal amplifier, and then the amplified optical pulse signal is passed through the flashing.
  • the crystal is transmitted to the photomultiplier; of course, the optical pulse signal amplifier can be placed between the scintillation crystal and the photomultiplier, and the optical pulse signal is amplified by the scintillation crystal and then transmitted to the photomultiplier.
  • the invention further discloses another timing method for radiation detection, measurement, identification, and imaging system, including the steps of:
  • an optical pulse signal generator emits an optical pulse signal, and the optical pulse signal is transmitted to a photoelectric conversion device through the optical transmitter, and the photoelectric conversion device converts the optical pulse signal emitted by the optical pulse signal generator into an electrical signal;
  • the converted electrical signal is directly transmitted to the electronic circuit for processing and reading, or is transmitted to the electronic circuit for processing and reading through the photoelectric conversion multiplying device in the high-energy photon detector;
  • optical pulse signals generated by the optical pulse generator finally acquire absolute time and are timed and calibrated between the individual photon detectors.
  • the light guide is an optical fiber or a glass or a crystal or a scintillation crystal.
  • the technical solution of the second embodiment cancels the global clock, realizes timing by converting the optical signal into an electrical signal, converts the optical pulse signal into an electrical signal by using a photoelectric conversion device, and then transmits the signal to the subsequent electronic circuit for processing completion timing.
  • the decoupling between high-energy photon detectors can be achieved, ensuring the independence of the high-energy photon detector, making it more convenient for the system to use or increase or decrease the high-energy photon detector, and this structure is not related to the actual position of the high-energy photon detector. That is, the position of the high-energy photon detector can be changed at will, and the use is more flexible.
  • the optical pulse signal acquisition and processing method adopts a multi-voltage threshold acquisition processing method or a constant ratio discriminator or a single voltage threshold trigger comparison method or directly samples the analog/digital converter directly.
  • an optical pulse signal amplifier may be further disposed.
  • the optical pulse signal amplifier is disposed at a light receiving end of the photoelectric conversion device, and the optical pulse signal emitted by the optical pulse signal generator is amplified first. , and then transmitted to the photoelectric conversion device to be converted into an electrical signal, a strong optical signal can ensure the quality of the converted electrical signal, thereby ensuring the timing effect.
  • the pulse signal employs an optical pulse signal that does not react with a high energy photon detector that is passed directly through the high energy photon detector to the photomultiplier.
  • the optical pulse signal in order to ensure accurate transmission of the optical pulse signal to the photomultiplier, has a wavelength in the range of 300 nm to 1550 nm.
  • the light pulse The wavelength of the punch signal may be selected from 300 nm, 400 nm, 450 nm, 500 nm, 550 nm, 600 nm, 650 nm, 700 nm, 850 nm, 1310 nm, and 1550 nm.
  • the optical pulse width of the optical pulse signal ranges from 10 ps to 100 ns.
  • the optical pulse width may be selected from 10 ns, 20 ns, 30 ns, 40 ns, 50 ns, 60 ns, 70 ns, 80 ns, 90 ns, 100 ns.
  • the length of the optical fiber is not limited.
  • the length of the optical fiber to be used needs to be properly set according to the arrangement of the high-energy photon detector.
  • the length of the optical fiber is set to consider the optical pulse received by the photomultiplier. The accuracy of the time information of the signal.
  • the present invention has no specific limitation on the arrangement of the optical fibers, and the actual arrangement of the optical fibers is determined according to the arrangement of the high-energy photon detectors in the system.
  • the optical fibers may also be arranged in a ring shape around a plurality of high-energy photon detectors.
  • the embodiment of the drawing of the present invention uses an optical fiber.
  • the optical fiber inside can also be replaced by glass or crystal or a scintillation crystal or the like.
  • the invention eliminates the global clock, and the other is to use a separate component (including a light guide and a light pulse generator) that can be customized for different systems to connect with each high-energy photon detector, and receive the optical pulse signal through each photomultiplier device.
  • a separate component including a light guide and a light pulse generator
  • the decoupling between the high-energy photon detectors can be realized, and the other is to convert the optical pulse signals into electrical signals by using a photoelectric conversion device, and then transmit them to the subsequent electronic circuits for processing.
  • the independence of the photon detector makes it more convenient for the system to use or increase or decrease the high-energy photon detector, and this structure is not related to the actual position of the high-energy photon detector, that is, the position of the high-energy photon detector can be arbitrarily changed, and the use is more flexible.
  • the timing device components are commonly used parts in the prior art, and the purchase is convenient.

Abstract

一种辐射探测、测量、识别、成像系统的定时装置及定时方法,该装置包括高能光子探测器(100),光脉冲信号发生器(300)和光纤(200),高能光子探测器(100)包括闪烁晶体和光电转换倍增器件,高能光子探测器(100)都设有透光孔,光脉冲信号经过透光孔(400)传播到闪烁晶体,然后通过闪烁晶体传播到光电转换倍增器件的表面,被光电转换倍增器件所转换倍增,并被电子电路处理和读取,互相独立的高能光子探测器(100)从光脉冲发生器(300)产生的光脉冲信号获取绝对时间,并在各个独立的高能光子探测器(100)之间进行定时和校准。通过各个光电倍增器件接收到光脉冲信号的时间完成定时,可实现高能光子探测器(100)之间的解耦,保证了高能光子探测器(100)的独立性,使得系统使用或增减高能光子探测器(100)更加方便。

Description

辐射探测、测量、识别、成像系统的定时装置及方法 技术领域
本发明涉及辐射探测领域,尤其涉及一种辐射探测、测量、识别、成像系统的定时装置及方法。
背景技术
现有技术中的PET系统有一个全局时钟,由一个总体的时钟向各个高能光子探测器发送时间指令信息,此种方式,破坏了各个高能光子探测器的解耦和独立性,一旦需要增加探测器或者减少探测器,需要对系统重新进行电路布置及其他设置,程序复杂,且缺乏便利性。
因此,有必要提供一种新的辐射探测、测量、识别、成像系统的定时装置及方法,以便解决高能光子探测器的解耦和独立性问题。
发明内容
有鉴于此,本发明的目的在于提供一种辐射探测、测量、识别、成像系统的定时装置,该装置能保证高能光子探测器的解耦与独立性。
为实现本发明上述目的,本发明提供:一种辐射探测、测量、识别、成像系统的定时装置,其包括若干高能光子探测器,所述每一高能光子探测器包括闪烁晶体、光电转换倍增器件和电子电路,所述定时装置还包括用以发射光脉冲信号的光脉冲发生器和用以传递光脉冲信号的光传导器,每一高能光子探测器都设有用以接收光脉冲信号的透光孔,光脉冲信号经过透光孔传播到闪烁晶体,然后通过闪烁晶体传播到光电转换倍增器件的表面,被光电转换倍增器件所转换倍增,并被电子电路所处理和读取,互相独立的高能光子探测器从光脉冲发生器产生的光脉冲信号获取绝对时间,并在各个独立的光能光子探测器之间进行定时和校准。
上述的一种辐射探测、测量、识别、成像系统的定时装置,优选地,所述透光孔的位置在闪烁晶体不耦合光电转换倍增器件的任何一面上或闪烁晶体不耦合光电转换倍增器件的任何一面的旁侧。
上述的一种辐射探测、测量、识别、成像系统的定时装置,优选地,所述高能光子探测器包括壳体,所述闪烁晶体设于壳体中,所述透光孔设置于壳体上。
上述的一种辐射探测、测量、识别、成像系统的定时装置,优选地,所述光传导器为光纤或玻璃或水晶或闪烁晶体。
为实现本发明上述目的,本发明还提供:一种辐射探测、测量、识别、成像系统的定时装置,其包括若干高能光子探测器,所述每一高能光子探测器包括闪烁晶体、光电转换倍增器件和电子电路,所述定时装置还包括用以发射光脉冲信号的光脉冲发生器、用以传递光脉冲信号的光传导器以及将光脉冲信号发生器发出的光脉冲信号转换为电信号的光电转换装置,转换后的电信号被电子电路所处理和读取,互相独立的高能光子探测器从光脉冲发生器产生的光脉冲信号获取绝对时间,并在各个独立的光能光子探测器之间进行定时和校准。
上述的一种辐射探测、测量、识别、成像系统的定时装置,优选地,所述光电转换装置直接与电子电路连接,转换后的电信号直接传输给电子电路进行处理。
上述的一种辐射探测、测量、识别、成像系统的定时装置,优选地,所述光电转换装置与光电转换倍增器件连接,然后电信号经由光电转换倍增器件传输给电子电路进行处理。
上述的一种辐射探测、测量、识别、成像系统的定时装置,优选地,所述光电转换装置设置在闪烁晶体不耦合光电转换倍增器件的任何一面的旁侧,或者设置在光电转换倍增器件不耦合闪烁晶体的任何一面的旁侧。
本发明另一个目的在于提供一种利用上述的辐射探测、测量、识别、成像系统的定时装置进行定时的辐射探测、测量、识别、成像系统的定时方法,包括步骤:S1:一光脉冲信号发生器发射光脉冲信号,光脉冲信号通过光传 导器传递到若干高能光子探测器,每一高能光子探测器都设有用以接收光脉冲信号的透光孔,光脉冲信号经过透光孔传播到高能光子探测器中的闪烁晶体;S2:光脉冲信号经由闪烁晶体传递给高能光子探测器中的光电转换倍增器件,并被电子电路所处理和读取;S3:互相独立的高能光子探测器从此光脉冲发生器产生的光脉冲信号获取绝对时间,并在各个独立的光能光子探测器之间进行定时和校准。
上述的一种辐射探测、测量、识别、成像系统的定时方法,优选地,所述步骤S1中,所述透光孔的位置在闪烁晶体不耦合光电转换倍增器件的任何一面上或闪烁晶体不耦合光电转换倍增器件的任何一面的旁侧。
上述的一种辐射探测、测量、识别、成像系统的定时方法,优选地,所述步骤S1中,所述高能光子探测器包括壳体,所述闪烁晶体设于壳体中,所述透光孔设置于壳体上。
上述的一种辐射探测、测量、识别、成像系统的定时方法,优选地,所述步骤S1中,所述光传导器为光纤或玻璃或水晶或闪烁晶体。
上述的一种辐射探测、测量、识别、成像系统的定时方法,优选地,所述步骤S3中,所述光脉冲信号获取及处理方法为采用多电压阈值获取处理方法或恒比甄别器或单电压阈值触发比较方法或者直接采用模拟/数字转换器直接采样。
本发明另一个目的在于提供一种利用上述的辐射探测、测量、识别、成像系统的定时装置进行定时的辐射探测、测量、识别、成像系统的定时方法,包括步骤:S1:一光脉冲信号发生器发射光脉冲信号,光脉冲信号通过光传导器传递到一光电转换装置,光电转换装置将光脉冲信号发生器发射的光脉冲信号转换为电信号;S2:转换后的电信号直接传输给电子电路进行处理和读取,或者是经过高能光子探测器中的光电转换倍增器件传输给电子电路进行处理和读取;S3:互相独立的高能光子探测器从此光脉冲发生器产生的光脉冲信号最终获取绝对时间,并在各个独立的光能光子探测器之间进行定时和校准。
上述的一种辐射探测、测量、识别、成像系统的定时方法,优选地,所述步骤S1中,所述光传导器为光纤或玻璃或水晶或闪烁晶体。
上述的一种辐射探测、测量、识别、成像系统的定时方法,优选地,所述步骤S3中,所述光脉冲信号获取及处理方法为采用多电压阈值获取处理方法或恒比甄别器或单电压阈值触发比较方法或者直接采用模拟/数字转换器直接采样。
以上技术方案相对于现有技术具有如下优点:
1、本发明的辐射探测、测量、识别、成像系统的定时装置,其包括若干高能光子探测器,所述每一高能光子探测器包括闪烁晶体、光电转换倍增器件和电子电路,所述定时装置还包括用以发射光脉冲信号的光脉冲发生器和用以传递光脉冲信号的光传导器,每一高能光子探测器都设有用以接收光脉冲信号的透光孔,光脉冲信号经过透光孔传播到闪烁晶体,然后通过闪烁晶体传播到光电转换倍增器件的表面,被光电转换倍增器件所转换倍增,并被电子电路所处理和读取,互相独立的高能光子探测器从光脉冲发生器产生的光脉冲信号获取绝对时间,并在各个独立的光能光子探测器之间进行定时和校准。本技术方案取消了全局时钟,采用直接光信号实现定时,采用一个可为不同系统定制的独立部件(含光传导器和光脉冲发生器)与各个高能光子探测器连接,通过各个光电倍增器件接收到光脉冲信号的时间完成定时,可实现高能光子探测器之间的解耦,保证了高能光子探测器的独立性,使得系统使用或增减高能光子探测器更加方便,且此种结构与高能光子探测器的实际位置没有关联,即可以随意的变动高能光子探测器的位置,使用更加灵活。
2、所述透光孔的位置在闪烁晶体不耦合光电转换倍增器件的任何一面上或闪烁晶体不耦合光电转换倍增器件的任何一面的旁侧。本技术方案通过限定透光孔与闪烁晶体的位置关系,以此保证光信号能够有效的直接到达闪烁晶体上,减少了光信号的损失。
3、所述高能光子探测器包括壳体,所述闪烁晶体设于壳体中,所述透光孔设置于壳体上。本技术方案通过设置壳体,避免了在闪烁晶体上直接打孔,保证了闪烁晶体结构的完整性,减少了闪烁晶体的加工工序,只需要设置一 个外在的壳体,通过壳体上的透光孔,同样能集中的将光信号传输到闪烁晶体上,结构简单。
4.所述光传导器为光纤或玻璃或水晶或闪烁晶体。该技术方案中指出的几个材料为传导效果较好的材质,保证光信号传输的效率。
5.本发明的辐射探测、测量、识别、成像系统的定时装置,其包括若干高能光子探测器,所述每一高能光子探测器包括闪烁晶体、光电转换倍增器件和电子电路,所述定时装置还包括用以发射光脉冲信号的光脉冲发生器、用以传递光脉冲信号的光传导器以及将光脉冲信号发生器发出的光脉冲信号转换为电信号的光电转换装置,转换后的电信号被电子电路所处理和读取,互相独立的高能光子探测器从光脉冲发生器产生的光脉冲信号获取绝对时间,并在各个独立的光能光子探测器之间进行定时和校准。本技术方案取消了全局时钟,采用将光信号转化为电信号后实现定时,采用一个光电转换装置将光脉冲信号转换为电信号,然后再传输给后面电子电路进行处理完成定时,可实现高能光子探测器之间的解耦,保证了高能光子探测器的独立性,使得系统使用或增减高能光子探测器更加方便,且此种结构与高能光子探测器的实际位置没有关联,即可以随意的变动高能光子探测器的位置,使用更加灵活。
6.所述光电转换装置直接与电子电路连接,转换后的电信号直接传输给电子电路进行处理。该技术方案光电转换装置直接与电子电路连接,可以保证光电转换倍增器件工作的独立性,充分避免定时装置本身对系统元器件的不必要干扰,不但实现高能光子探测器之间的解耦,也实现定时装置与系统元器件之间的解耦。
7.所述光电转换装置与光电转换倍增器件连接,然后电信号经由光电转换倍增器件传输给电子电路进行处理。该技术方案光电转换装置与光电转换倍增器件连接,光电转换装置可以和光电转换倍增器件公用一个路径,节约了不必要的线路连接,简化了结构,节约了成本。
8.所述光电转换装置设置在闪烁晶体不耦合光电转换倍增器件的任何一面的旁侧,或者设置在光电转换倍增器件不耦合闪烁晶体的任何一面的旁侧。 该技术方案通过限制光电转换装置的设置位置,一方面使得光电转换装置比较靠近电子电路,另一方面通过合理的布局,保证定时装置与系统之间连接后的结构比较紧凑,避免暂用过多的空间。
9.本发明的利用上述的辐射探测、测量、识别、成像系统的定时装置进行定时的辐射探测、测量、识别、成像系统的定时方法,包括步骤:S1:一光脉冲信号发生器发射光脉冲信号,光脉冲信号通过光传导器传递到若干高能光子探测器,每一高能光子探测器都设有用以接收光脉冲信号的透光孔,光脉冲信号经过透光孔传播到高能光子探测器中的闪烁晶体;S2:光脉冲信号经由闪烁晶体传递给高能光子探测器中的光电转换倍增器件,并被电子电路所处理和读取;S3:互相独立的高能光子探测器从此光脉冲发生器产生的光脉冲信号获取绝对时间,并在各个独立的光能光子探测器之间进行定时和校准。本技术方案取消了全局时钟,采用直接光信号实现定时,采用一个可为不同系统定制的独立部件(含光传导器和光脉冲发生器)与各个高能光子探测器连接,通过各个光电倍增器件接收到光脉冲信号的时间完成定时,可实现高能光子探测器之间的解耦,保证了高能光子探测器的独立性,使得系统使用或增减高能光子探测器更加方便,且此种结构与高能光子探测器的实际位置没有关联,即可以随意的变动高能光子探测器的位置,使用更加灵活。
10.所述步骤S1中,所述透光孔的位置在闪烁晶体不耦合光电转换倍增器件的任何一面上或闪烁晶体不耦合光电转换倍增器件的任何一面的旁侧。本技术方案通过限定透光孔与闪烁晶体的位置关系,以此保证光信号能够有效的直接到达闪烁晶体上,减少了光信号的损失。
11.所述步骤S3中,所述光脉冲信号获取及处理方法为采用多电压阈值获取处理方法或恒比甄别器或单电压阈值触发比较方法或者直接采用模拟/数字转换器直接采样。这几种方法相较于现有技术中的其他方法,具有可靠、高效的优点。
12.本发明的一种利用上述的辐射探测、测量、识别、成像系统的定时装置进行定时的辐射探测、测量、识别、成像系统的定时方法,包括步骤:S1:一光脉冲信号发生器发射光脉冲信号,光脉冲信号通过光传导器传递到 一光电转换装置,光电转换装置将光脉冲信号发生器发射的光脉冲信号转换为电信号;S2:转换后的电信号直接传输给电子电路进行处理和读取,或者是经过高能光子探测器中的光电转换倍增器件传输给电子电路进行处理和读取;S3:互相独立的高能光子探测器从此光脉冲发生器产生的光脉冲信号最终获取绝对时间,并在各个独立的光能光子探测器之间进行定时和校准。本技术方案取消了全局时钟,采用将光信号转化为电信号后实现定时,采用一个光电转换装置将光脉冲信号转换为电信号,然后再传输给后面电子电路进行处理完成定时,可实现高能光子探测器之间的解耦,保证了高能光子探测器的独立性,使得系统使用或增减高能光子探测器更加方便,且此种结构与高能光子探测器的实际位置没有关联,即可以随意的变动高能光子探测器的位置,使用更加灵活。
附图说明
图1为本发明辐射探测、测量、识别、成像系统的定时装置中采用光纤实施例的示意图。
具体实施方式
本发明公开了一种辐射探测、测量、识别、成像系统的定时装置,该定时装置取消了全局时钟,通过光信号直接或间接的实现定时,保证了高能光子探测器的独立性,使得系统使用或增减高能光子探测器更加方便。公开的所述定时装置包括两个实施例,下面将对该两个实施例进行详细的阐述。
实施例1
本发明公开了一种辐射探测、测量、识别、成像系统的定时装置,其包括若干高能光子探测器,所述每一高能光子探测器包括闪烁晶体、光电转换倍增器件和电子电路。所述定时装置还包括用以发射光脉冲信号的光脉冲发生器和用以传递光脉冲信号的光传导器,每一高能光子探测器都设有用以接收光脉冲信号的透光孔,光脉冲信号经过透光孔传播到闪烁晶体,然后通过 闪烁晶体传播到光电转换倍增器件的表面,跟高能光子与闪烁晶体反应产生的在光电转换倍增器件的接收频谱内的光子一样,被光电转换倍增器件所转换倍增,并被电子电路所处理和读取,互相独立的高能光子探测器从光脉冲发生器产生的光脉冲信号获取绝对时间,并在各个独立的光能光子探测器之间进行定时和校准。用于一个辐射探测、测量、识别、成像系统需要进行绝对时间定时、校准和各个独立高能光子探测器之间需要进行时间符合等场合。本实施例1中公开的所述辐射探测、测量、识别、成像系统的定时装置取消了全局时钟,采用直接光信号实现定时,采用一个可为不同系统定制的独立部件(含光传导器和光脉冲发生器)与各个高能光子探测器连接,通过各个光电倍增器件接收到光脉冲信号的时间完成定时,可实现高能光子探测器之间的解耦,保证了高能光子探测器的独立性,使得系统使用或增减高能光子探测器更加方便,且此种结构与高能光子探测器的实际位置没有关联,即可以随意的变动高能光子探测器的位置,使用更加灵活。
本实施例1的定时装置中,如果不使用本发明的定时方式的时候,或者部分用本发明的定时方式的时候,透光孔可以被盖住不透光。
本实施例1的定时装置中,所述透光孔的位置在闪烁晶体不耦合光电转换倍增器件的任何一面上或闪烁晶体不耦合光电转换倍增器件的任何一面的旁侧。即透光孔可以直接设置在闪烁晶体上,也可以设置在闪烁晶体外,比如,一般情况下,高能光子探测器包括壳体,所述闪烁晶体设于壳体中,所述透光孔可以设置于壳体上。当然,正如上面所说,为了进一步保证闪烁晶体接收到的光信号的强度,也可以将透光孔直接设置在闪烁晶体上。透光孔的设置位置需要保证光信号能够有效的直接到达闪烁晶体上,减少了光信号的损失。
本发明实施例1的定时装置中,可以设置一个光脉冲信号放大器。该光脉冲信号放大器可以将微弱的光脉冲信号放大,然后充分保证光电倍增器能够接收到该光脉冲信号。所述光脉冲信号放大器最好是设置于光传导器与高能光子探测器衔接的地方,即设置在透光孔的外部附近,接收到光纤传输过来的光脉冲信号后直接将光脉冲信号放大,然后放大后的光脉冲信号再通过 透光孔传输给闪烁晶体,然后光脉冲信号经过闪烁晶体传递给光电倍增器。也可以是将光脉冲信号放大器设置于透光孔的内侧附近,光脉冲信号先是入射到透光孔,然后再由光脉冲信号放大器将光脉冲信号放大,然后放大后的光脉冲信号再通过闪烁晶体传输给光电倍增器;当然也可以将光脉冲信号放大器设置于闪烁晶体和光电倍增器之间,光脉冲信号经过闪烁晶体后被放大,然后再传递给光电倍增器。
可以结合附图对本发明的该实施例进行说明。如图1所示,本发明公开的辐射探测、测量、识别、成像系统的定时装置,其包括若干高能光子探测器100及若干光电倍增器(未图示)。所述辐射探测、测量、识别、成像系统的定时装置包括根据系统设计的围绕该若干高能光子探测器100的光纤200及给该光纤200提供光脉冲信号的光脉冲信号发生器300,所述每一高能光子探测器100上设有用以接收光脉冲信号的透光孔400,所述光脉冲信号直接经过透光孔400传递到光电倍增器。
实施例2
本发明还公开了一种辐射探测、测量、识别、成像系统的定时装置,其包括若干高能光子探测器,所述每一高能光子探测器包括闪烁晶体、光电转换倍增器件和电子电路,所述定时装置还包括用以发射光脉冲信号的光脉冲发生器、用以传递光脉冲信号的光传导器以及将光脉冲信号发生器发出的光脉冲信号转换为电信号的光电转换装置,转换后的电信号被电子电路所处理和读取,互相独立的高能光子探测器从光脉冲发生器产生的光脉冲信号获取绝对时间,并在各个独立的光能光子探测器之间进行定时和校准。本技术方案取消了全局时钟,采用将光信号转化为电信号后实现定时,采用一个光电转换装置将光脉冲信号转换为电信号,然后再传输给后面电子电路进行处理完成定时,可实现高能光子探测器之间的解耦,保证了高能光子探测器的独立性,使得系统使用或增减高能光子探测器更加方便,且此种结构与高能光子探测器的实际位置没有关联,即可以随意的变动高能光子探测器的位置,使用更加灵活。本实施例2中公开的辐射探测、测量、识别、成像系统的定时装置取消了全局时钟,采用将光信号转化为电信号后实现定时,采用一个 光电转换装置将光脉冲信号转换为电信号,然后再传输给后面电子电路进行处理完成定时,可实现高能光子探测器之间的解耦,保证了高能光子探测器的独立性,使得系统使用或增减高能光子探测器更加方便,且此种结构与高能光子探测器的实际位置没有关联,即可以随意的变动高能光子探测器的位置,使用更加灵活。
本实施例2的定时装置中,一种情况下,所述光电转换装置直接与电子电路连接,转换后的电信号直接传输给电子电路进行处理。该技术方案光电转换装置直接与电子电路连接,可以保证光电转换倍增器件工作的独立性,充分避免定时装置本身对系统元器件的不必要干扰,不但实现高能光子探测器之间的解耦,也实现定时装置与系统元器件之间的解耦。
本实施例2的定时装置中,另一种情况下,所述光电转换装置与光电转换倍增器件连接,然后电信号经由光电转换倍增器件传输给电子电路进行处理。该技术方案光电转换装置与光电转换倍增器件连接,光电转换装置可以和光电转换倍增器件公用一个路径,节约了不必要的线路连接,简化了结构,节约了成本。
本实施例2的定时装置中,所述光电转换装置设置在闪烁晶体不耦合光电转换倍增器件的任何一面的旁侧,或者设置在光电转换倍增器件不耦合闪烁晶体的任何一面的旁侧,具体光电转换装置的设置位置根据PET系统的布局情况来定。该技术方案通过限制光电转换装置的设置位置,一方面使得光电转换装置比较靠近电子电路,另一方面通过合理的布局,保证定时装置与系统之间连接后的结构比较紧凑,避免暂用过多的空间。
本发明实施例2的定时装置,还可以采用一个光脉冲信号放大器,所述光脉冲信号放大器设置于光电转换装置的光接收端处,先将光脉冲信号发生器发出的光脉冲信号进行放大后,再传输给光电转换装置转换为电信号,较强的光信号,可以保证转化后的电信号质量,进而保证定时效果。
该光脉冲信号放大器可以将微弱的光脉冲信号放大,然后充分保证光电倍增器能够接收到该光脉冲信号。所述光脉冲信号放大器最好是设置于光传导器与高能光子探测器衔接的地方,即设置在透光孔的外部附近,接收到光 纤传输过来的光脉冲信号后直接将光脉冲信号放大,然后放大后的光脉冲信号再通过透光孔传输给闪烁晶体,然后光脉冲信号经过闪烁晶体传递给光电倍增器。也可以是将光脉冲信号放大器设置于透光孔的内侧附近,光脉冲信号先是入射到透光孔,然后再由光脉冲信号放大器将光脉冲信号放大,然后放大后的光脉冲信号再通过闪烁晶体传输给光电倍增器;当然也可以将光脉冲信号放大器设置于闪烁晶体和光电倍增器之间,光脉冲信号经过闪烁晶体后被放大,然后再传递给光电倍增器。
本发明上述实施例1及实施例2的定时装置中,光传导器可以为光纤或玻璃或水晶或闪烁晶体等等传导效果较好的材质,以此保证光信号传输的效率。其他未指出的材质,即使传导效果一般,但是只要是能够传递光信号的材料均属于本发明光传导器的保护范围。
本发明上述实施例1及实施例2的定时装置中,光传导器的一端连接光脉冲发生器,光传导器的另一端具有多个分支,每个分支与一个高能光子探测器连接,光脉冲发生器发出的一次光脉冲能够被该多个分支接收并传递给与各个分支连接的高能光子探测器。该多个分支可以为同一个光传导器自身设计形成的一个分支,也可以是外接的一个分支元件。不管是哪种分支设计形式,旨在起到传递光脉冲信号的作用。光传导器的排布设置根据装置的实际情况确定,以美观且连接方便为宗旨。
实施例2未图示出来,实施例2的所述每一高能光子探测器配套设有一将光脉冲信号发生器发出的光脉冲信号转换为电信号的光电转换装置,作为一种优选实施例,所述光电转换装置优选为直接与电子电路连接,转换后的电信号直接传输给电子电路进行处理。当然,作为另一种优选实施例光电转换装置也可以与光电转换倍增器件连接,然后电信号经由光电转换倍增器件传输给电子电路进行处理。实施例2与实施例1的区别是设置一个光电转换装置,不设置透光孔,将光脉冲信号转换成电信号后再传递给光电倍增器后者直接传递给电子电路处理。
本发明还公开了一种辐射探测、测量、识别、成像系统的定时方法,该定时方法取消了全局时钟,通过采用光信号直接或间接的实现定时,保证了 高能光子探测器的独立性,使得系统使用或增减高能光子探测器更加方便。公开的所述定时方法包括两个实施例,下面将对该两个实施例进行详细的阐述。
实施例1
本发明还公开了一种辐射探测、测量、识别、成像系统的定时方法,其包括步骤:
S1:一光脉冲信号发生器发射光脉冲,光脉冲信号通过光传导器传递到高能光子探测器,每一高能光子探测器都设有用以接收光脉冲信号的透光孔,光脉冲信号经过透光孔传播到高能光子探测器中的闪烁晶体;
S2:光脉冲信号经由闪烁晶体传递给高能光子探测器中的光电转换倍增器件,并被电子电路所处理和读取;
S3:互相独立的高能光子探测器从此光脉冲发生器产生的光脉冲信号获取精确的绝对时间,并在各个独立的光能光子探测器之间进行定时和校准。
本实施例1中的方法技术方案取消了全局时钟,采用直接光信号实现定时,采用一个可为不同系统定制的独立部件(含光传导器和光脉冲发生器)与各个高能光子探测器连接,通过各个光电倍增器件接收到光脉冲信号的时间完成定时,可实现高能光子探测器之间的解耦,保证了高能光子探测器的独立性,使得系统使用或增减高能光子探测器更加方便,且此种结构与高能光子探测器的实际位置没有关联,即可以随意的变动高能光子探测器的位置,使用更加灵活。
所述步骤S1中,所述透光孔的位置在闪烁晶体不耦合光电转换倍增器件的任何一面,或闪烁晶体不耦合光电转换倍增器件的任何一面的旁侧。通过限定透光孔与闪烁晶体的位置关系,以此保证光信号能够有效的直接到达闪烁晶体上,减少了光信号的损失。
所述步骤S1中,所述高能光子探测器包括壳体,所述闪烁晶体设于壳体中,所述透光孔设置于壳体上。通过采用壳体,避免了在闪烁晶体上直接打孔,保证了闪烁晶体结构的完整性,减少了闪烁晶体的加工工序,只需要设 置一个外在的壳体,通过壳体上的透光孔,同样能集中的将光信号传输到闪烁晶体上,结构简单。
所述步骤S1中,所述光传导器为光纤或玻璃或水晶或闪烁晶体。传导效果较好的材质,保证光信号传输的效率。
所述步骤S3中,所述光脉冲信号获取及处理方法为采用多电压阈值获取处理方法或恒比甄别器或单电压阈值触发比较方法或者直接采用高速模拟/数字转换器直接采样。这几种方法相较于现有技术中的其他方法,具有可靠、高效的优点。
所述步骤S1中,所述光脉冲信号的波长范围为300nm~1550nm,通常采用的光脉冲信号的波长集中在某些波长范围附近,这些波长范围习惯上又称为窗口,目前常用的有850nm、1310nm和1550nm为中心的三个低损耗窗口,所述光脉冲信号的光脉冲宽度范围为10ps~100ns。
本发明实施例1的辐射探测、测量、识别、成像系统的定时方法,还可以采用一个光脉冲信号放大器。该光脉冲信号放大器可以将微弱的光脉冲信号放大,然后充分保证光电倍增器能够接收到该光脉冲信号。所述光脉冲信号放大器最好是设置于光传导器与高能光子探测器衔接的地方,即设置在透光孔的外部附近,接收到光纤传输过来的光脉冲信号后直接将光脉冲信号放大,然后放大后的光脉冲信号再通过透光孔传输给闪烁晶体,然后光脉冲信号经过闪烁晶体传递给光电倍增器。也可以是将光脉冲信号放大器设置于透光孔的内侧附近,光脉冲信号先是入射到透光孔,然后再由光脉冲信号放大器将光脉冲信号放大,然后放大后的光脉冲信号再通过闪烁晶体传输给光电倍增器;当然也可以将光脉冲信号放大器设置于闪烁晶体和光电倍增器之间,光脉冲信号经过闪烁晶体后被放大,然后再传递给光电倍增器。
实施例2
发明又公开了另一种辐射探测、测量、识别、成像系统的定时方法,包括步骤:
S1:一光脉冲信号发生器发射光脉冲信号,光脉冲信号通过光传导器传递到一光电转换装置,光电转换装置将光脉冲信号发生器发射的光脉冲信号转换为电信号;
S2:转换后的电信号直接传输给电子电路进行处理和读取,或者是经过高能光子探测器中的光电转换倍增器件传输给电子电路进行处理和读取;
S3:互相独立的高能光子探测器从此光脉冲发生器产生的光脉冲信号最终获取绝对时间,并在各个独立的光能光子探测器之间进行定时和校准。
所述步骤S1中,所述光传导器为光纤或玻璃或水晶或闪烁晶体。该技术方案中指出的几个材料为传导效果较好的材质,保证光信号传输的效率。
本实施例2的技术方案取消了全局时钟,采用将光信号转化为电信号后实现定时,采用一个光电转换装置将光脉冲信号转换为电信号,然后再传输给后面电子电路进行处理完成定时,可实现高能光子探测器之间的解耦,保证了高能光子探测器的独立性,使得系统使用或增减高能光子探测器更加方便,且此种结构与高能光子探测器的实际位置没有关联,即可以随意的变动高能光子探测器的位置,使用更加灵活。
所述步骤S3中,所述光脉冲信号获取及处理方法为采用多电压阈值获取处理方法或恒比甄别器或单电压阈值触发比较方法或者直接采用模拟/数字转换器直接采样。
本发明实施例2的定时方法,还可以采用一个光脉冲信号放大器,所述光脉冲信号放大器设置于光电转换装置的光接收端处,先将光脉冲信号发生器发出的光脉冲信号进行放大后,再传输给光电转换装置转换为电信号,较强的光信号,可以保证转化后的电信号质量,进而保证定时效果。
本发明上述所有装置及方法的实施例中,为了保证定时的准确度,且光脉冲信号不影响PET系统本身γ光子在高能光子探测器中的沉积时的位置、时间、能量信息,所述光脉冲信号采用不与高能光子探测器发生反应的光脉冲信号,所述光脉冲信号是直接穿过高能光子探测器传递到光电倍增器。
本发明上述所有装置及方法的实施例中,为了保证光脉冲信号能够准确传递到光电倍增器,所述光脉冲信号的波长范围为300nm~1550nm。所述光脉 冲信号的波长可以选择300nm、400nm、450nm、500nm、550nm、600nm、650nm、700nm、850nm、1310nm和1550nm。
本发明上述所有装置及方法的实施例中,为了保证光脉冲信号能够准确传递到光电倍增器,所述光脉冲信号的光脉冲宽度范围为10ps~100ns。所述光脉冲宽度可以选择10ns、20ns、30ns、40ns、50ns、60ns、70ns、80ns、90ns、100ns。
上述陈述的装置及方法实施例中,对光纤的长度不进行限定,具体采用的光纤长度需要根据高能光子探测器的排布进行合理设置,光纤的长度设置同时要考虑光电倍增器接收到光脉冲信号的时间信息的准确性。
本发明对光纤的排布方式没有具体的限定,光纤的实际排布根据系统中高能光子探测器的排布来定。比如,当所述若干高能光子探测器呈环形布局时,所述光纤可以绕着若干高能光子探测器也成环形布置。
本发明附图中的实施例采用的是光纤,当然,里面的光纤还可以替换为玻璃或水晶或闪烁晶体等等。
本发明取消了全局时钟,一种是采用一个可为不同系统定制的独立部件(含光传导器和光脉冲发生器)与各个高能光子探测器连接,通过各个光电倍增器件接收到光脉冲信号的时间完成定时,可实现高能光子探测器之间的解耦,另一种是采用一个光电转换装置将光脉冲信号转换为电信号,然后再传输给后面电子电路进行处理,此两种方案保证了高能光子探测器的独立性,使得系统使用或增减高能光子探测器更加方便,且此种结构与高能光子探测器的实际位置没有关联,即可以随意的变动高能光子探测器的位置,使用更加灵活。另外,定时装置零部件为现有技术中常用的零件,购买比较方便。

Claims (16)

  1. 一种辐射探测、测量、识别、成像系统的定时装置,其包括若干高能光子探测器,所述每一高能光子探测器包括闪烁晶体、光电转换倍增器件和电子电路,其特征在于:所述定时装置还包括用以发射光脉冲信号的光脉冲发生器和用以传递光脉冲信号的光传导器,每一高能光子探测器都设有用以接收光脉冲信号的透光孔,光脉冲信号经过透光孔传播到闪烁晶体,然后通过闪烁晶体传播到光电转换倍增器件的表面,被光电转换倍增器件所转换倍增,并被电子电路所处理和读取,互相独立的高能光子探测器从光脉冲发生器产生的光脉冲信号获取绝对时间,并在各个独立的光能光子探测器之间进行定时和校准。
  2. 根据权利要求1所述的辐射探测、测量、识别、成像系统的定时装置,其特征在于:所述透光孔的位置在闪烁晶体不耦合光电转换倍增器件的任何一面上或闪烁晶体不耦合光电转换倍增器件的任何一面的旁侧。
  3. 根据权利要求1所述的辐射探测、测量、识别、成像系统的定时装置,其特征在于:所述高能光子探测器包括壳体,所述闪烁晶体设于壳体中,所述透光孔设置于壳体上。
  4. 根据权利要求1所述的辐射探测、测量、识别、成像系统的定时装置,其特征在于:所述光传导器为光纤或玻璃或水晶或闪烁晶体。
  5. 一种辐射探测、测量、识别、成像系统的定时装置,其包括若干高能光子探测器,所述每一高能光子探测器包括闪烁晶体、光电转换倍增器件和电子电路,其特征在于:所述定时装置还包括用以发射光脉冲信号的光脉冲发生器、用以传递光脉冲信号的光传导器以及将光脉冲信号发生器发出的光脉冲信号转换为电信号的光电转换装置,转换后的电信号被电子电路所处理和读取,互相独立的高能光子探测器从光脉冲发生器产生的光脉冲信号获取绝对时间,并在各个独立的光能光子探测器之间进行定时和校准。
  6. 根据权利要求5所述的辐射探测、测量、识别、成像系统的定时装置,其特征在于:所述光电转换装置直接与电子电路连接,转换后的电信号直接传输给电子电路进行处理。
  7. 根据权利要求5所述的辐射探测、测量、识别、成像系统的定时装置,其特征在于:所述光电转换装置与光电转换倍增器件连接,然后电信号经由光电转换倍增器件传输给电子电路进行处理。
  8. 根据权利要求5所述的辐射探测、测量、识别、成像系统的定时装置,其特征在于:所述光电转换装置设置在闪烁晶体不耦合光电转换倍增器件的任何一面的旁侧,或者设置在光电转换倍增器件不耦合闪烁晶体的任何一面的旁侧。
  9. 一种辐射探测、测量、识别、成像系统的定时方法,其特征在于,包括步骤:
    S1:一光脉冲信号发生器发射光脉冲信号,光脉冲信号通过光传导器传递到若干高能光子探测器,每一高能光子探测器都设有用以接收光脉冲信号的透光孔,光脉冲信号经过透光孔传播到高能光子探测器中的闪烁晶体;
    S2:光脉冲信号经由闪烁晶体传递给高能光子探测器中的光电转换倍增器件,并被电子电路所处理和读取;
    S3:互相独立的高能光子探测器从此光脉冲发生器产生的光脉冲信号获取绝对时间,并在各个独立的光能光子探测器之间进行定时和校准。
  10. 根据权利要求9所述的辐射探测、测量、识别、成像系统的定时方法,其特征在于:所述步骤S1中,所述透光孔的位置在闪烁晶体不耦合光电转换倍增器件的任何一面上或闪烁晶体不耦合光电转换倍增器件的任何一面的旁侧。
  11. 根据权利要求9所述的辐射探测、测量、识别、成像系统的定时方法,其特征在于:所述步骤S1中,所述高能光子探测器包括壳体,所述闪烁晶体设于壳体中,所述透光孔设置于壳体上。
  12. 根据权利要求9所述的辐射探测、测量、识别、成像系统的定时方法,其特征在于:所述步骤S1中,所述光传导器为光纤或玻璃或水晶或闪烁晶体。
  13. 根据权利要求9所述的辐射探测、测量、识别、成像系统的定时方法,其特征在于:所述步骤S3中,所述光脉冲信号获取及处理方法为采用多 电压阈值获取处理方法或恒比甄别器或单电压阈值触发比较方法或者直接采用模拟/数字转换器直接采样。
  14. 一种辐射探测、测量、识别、成像系统的定时方法,其特征在于,包括步骤:
    S1:一光脉冲信号发生器发射光脉冲信号,光脉冲信号通过光传导器传递到一光电转换装置,光电转换装置将光脉冲信号发生器发射的光脉冲信号转换为电信号;
    S2:转换后的电信号直接传输给电子电路进行处理和读取,或者是经过高能光子探测器中的光电转换倍增器件传输给电子电路进行处理和读取;
    S3:互相独立的高能光子探测器从此光脉冲发生器产生的光脉冲信号最终获取绝对时间,并在各个独立的光能光子探测器之间进行定时和校准。
  15. 根据权利要求14所述的辐射探测、测量、识别、成像系统的定时方法,其特征在于:所述步骤S1中,所述光传导器为光纤或玻璃或水晶或闪烁晶体。
  16. 根据权利要求14所述的辐射探测、测量、识别、成像系统的定时方法,其特征在于:所述步骤S3中,所述光脉冲信号获取及处理方法为采用多电压阈值获取处理方法或恒比甄别器或单电压阈值触发比较方法或者直接采用模拟/数字转换器直接采样。
PCT/CN2014/093363 2014-06-19 2014-12-09 辐射探测、测量、识别、成像系统的定时装置及方法 WO2015192616A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14894881.3A EP3159716A4 (en) 2014-06-19 2014-12-09 Timing apparatus and method for radiation detection, measurement, identification and imaging system
US15/319,472 US10197682B2 (en) 2014-06-19 2014-12-09 Timing apparatus and method for radiation detection, measurement, identification and imaging system
JP2016573556A JP6854648B2 (ja) 2014-06-19 2014-12-09 放射線検出、測定、認識、画像化システムの時刻設定装置及び方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410277442.0 2014-06-19
CN201410277442.0A CN105204060B (zh) 2014-06-19 2014-06-19 辐射探测、测量、识别、成像系统的定时装置及方法

Publications (1)

Publication Number Publication Date
WO2015192616A1 true WO2015192616A1 (zh) 2015-12-23

Family

ID=54934822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093363 WO2015192616A1 (zh) 2014-06-19 2014-12-09 辐射探测、测量、识别、成像系统的定时装置及方法

Country Status (5)

Country Link
US (1) US10197682B2 (zh)
EP (1) EP3159716A4 (zh)
JP (1) JP6854648B2 (zh)
CN (1) CN105204060B (zh)
WO (1) WO2015192616A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107260197B (zh) * 2017-07-10 2020-11-10 东软医疗系统股份有限公司 时间校正方法、装置及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459094A (en) * 1987-08-31 1989-03-06 Toshiba Corp Radiation detector
CN101267506A (zh) * 2007-03-13 2008-09-17 佳能株式会社 辐射成像装置和用于控制辐射成像装置的方法和程序
CN102113881A (zh) * 2010-01-05 2011-07-06 株式会社东芝 核医学诊断装置
US8274056B2 (en) * 2010-01-07 2012-09-25 Battelle Energy Alliance, Llc Method, apparatus and system for low-energy beta particle detection
CN103399221A (zh) * 2013-07-10 2013-11-20 中国科学技术大学 一种闪烁晶体荧光模拟器及其测试系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132888A (ja) 1984-11-30 1986-06-20 Shimadzu Corp ポジトロンct装置
EP1779142B1 (en) * 2004-08-13 2016-07-27 Koninklijke Philips N.V. Timing calibration for a tof-pet scanner
CN102262238B (zh) * 2011-04-19 2014-07-23 苏州瑞派宁科技有限公司 一种提取闪烁脉冲信息的方法及装置
CN202870004U (zh) * 2012-06-07 2013-04-10 中国科学院高能物理研究所 正电子湮没多参数符合测量系统
JP6459094B2 (ja) 2012-12-27 2019-01-30 日立金属株式会社 電線及びケーブル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459094A (en) * 1987-08-31 1989-03-06 Toshiba Corp Radiation detector
CN101267506A (zh) * 2007-03-13 2008-09-17 佳能株式会社 辐射成像装置和用于控制辐射成像装置的方法和程序
CN102113881A (zh) * 2010-01-05 2011-07-06 株式会社东芝 核医学诊断装置
US8274056B2 (en) * 2010-01-07 2012-09-25 Battelle Energy Alliance, Llc Method, apparatus and system for low-energy beta particle detection
CN103399221A (zh) * 2013-07-10 2013-11-20 中国科学技术大学 一种闪烁晶体荧光模拟器及其测试系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3159716A4 *

Also Published As

Publication number Publication date
EP3159716A4 (en) 2017-08-30
US20170322318A1 (en) 2017-11-09
US10197682B2 (en) 2019-02-05
CN105204060A (zh) 2015-12-30
CN105204060B (zh) 2018-06-08
JP2017526902A (ja) 2017-09-14
EP3159716A1 (en) 2017-04-26
JP6854648B2 (ja) 2021-04-07

Similar Documents

Publication Publication Date Title
CN101937094B (zh) 双能x射线阵列探测器
US20140091226A1 (en) Photosensor testing apparatus, a radiation detection apparatus including a photosensor and a method of selecting the photosensor for the radiation detection apparatus
CN105509926A (zh) 光路耦合装置及荧光温度传感光学系统
CN201583666U (zh) 双能x射线阵列探测器
CN105607072A (zh) 一种非扫描激光成像系统
CN102494764B (zh) 一种覆盖可见光宽波段的微光探测方法
WO2015192616A1 (zh) 辐射探测、测量、识别、成像系统的定时装置及方法
CN102053009B (zh) 光电测量仪器响应时间的测量方法
CN107843356A (zh) 一种基于分布式光纤的温度场系统
CN104535498B (zh) 有机磷检测仪
CN105157830A (zh) 基于红外辐射测量的激光功率计
CN204788657U (zh) 基于红外辐射测量的激光功率计
KR101265006B1 (ko) 광섬유 부재를 구비한 방사선 검출장치
JP2021500559A (ja) ハウジング内に分析器を有する放射線検出装置
Wang et al. Design of the readout electronics for the TRIDENT pathfinder experiment
CN104301035B (zh) 用于测试sfp的检测装置
CN204116404U (zh) 一种速检测仪的微弱电信号放大测量电路
JP2001141830A (ja) 温度補償型光伝送式放射線計測装置及びその計測システム
CN204206117U (zh) 一种快速检测仪的生物电信号放大电路
US20120145904A1 (en) Wireless radiation sensor
CN205483325U (zh) 光路耦合装置及荧光温度传感光学系统
KR102018177B1 (ko) 다중 실리콘광증배소자 기반 방사능 모니터링 시스템
CN218470030U (zh) 一种基于超快光纤激光器的温度传感器
CN217605118U (zh) 一种基于pcb板的光电测试装置
CN211824724U (zh) 一种手持式激光测试装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894881

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573556

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15319472

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014894881

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014894881

Country of ref document: EP