WO2015192320A1 - 射频功率放大系统、射频功率放大方法、发射机及基站 - Google Patents

射频功率放大系统、射频功率放大方法、发射机及基站 Download PDF

Info

Publication number
WO2015192320A1
WO2015192320A1 PCT/CN2014/080102 CN2014080102W WO2015192320A1 WO 2015192320 A1 WO2015192320 A1 WO 2015192320A1 CN 2014080102 W CN2014080102 W CN 2014080102W WO 2015192320 A1 WO2015192320 A1 WO 2015192320A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
radio frequency
processed
envelope
baseband digital
Prior art date
Application number
PCT/CN2014/080102
Other languages
English (en)
French (fr)
Inventor
李兴文
黄伟
叶四清
汪金铭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480030180.6A priority Critical patent/CN105900333B/zh
Priority to PCT/CN2014/080102 priority patent/WO2015192320A1/zh
Priority to EP14895163.5A priority patent/EP3145080B1/en
Publication of WO2015192320A1 publication Critical patent/WO2015192320A1/zh
Priority to US15/382,030 priority patent/US9853664B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/102A non-specified detector of a signal envelope being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/20Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F2203/21Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F2203/211Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • H03F2203/21142Output signals of a plurality of power amplifiers are parallel combined to a common output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0425Circuits with power amplifiers with linearisation using predistortion

Definitions

  • the present invention relates to the field of wireless technologies, and in particular, to a radio frequency power amplifying system, a radio frequency power amplifying method, a transmitter, and a base station. Background technique
  • the RF power amplification system is an important part of the wireless communication transmitter and directly determines the performance of the transmitter.
  • one of the main structures of the RF power amplification system is the Outphasmg (out-of-phase) architecture, and the structure of the RF power amplification system using the Outphasing architecture is shown in Figure 1.
  • the SCS Signal Control System
  • the input baseband digital signal is divided into two digital signal outputs.
  • DAC Digital to Analog Converter
  • AQM Analog Quadrature Modulation
  • analog quadrature modulation module quadrature modulates the analog signal, outputs the RF signal to the PA (Power Amplifier) for power amplification; combines the two RF signals in the Combiner.
  • the RF power amplification system using the Outphasing architecture performs signal splitting in the digital signal portion. Therefore, each digital signal obtained by the split requires a complete amplifying link composed of modules such as a DAC, AQM, and PA. In the RF power amplification system using the Outphasing architecture, two complete amplification links are required. The number of modules used in the system is large, which leads to more nonlinear distortion factors, which is not conducive to linear correction. Summary of the invention
  • Embodiments of the present invention provide a radio frequency power amplification system, a radio frequency power amplification method, a transmitter, and a base station to reduce signal nonlinear distortion factors.
  • an RF power amplification system including:
  • An RF signal generating circuit for processing the baseband digital signal to obtain an original RF signal; a radio frequency signal decomposing circuit, configured to process the original radio frequency signal to obtain an N-channel processed radio frequency signal; wherein, N is greater than or equal to 2; the power amplifier is configured to separately perform power amplification on the N-channel processed radio frequency signal, Obtaining an N-channel amplified RF signal; a combiner for combining the N-channel amplified RF signals.
  • the equivalent combining signal of the i channel signal in the N processed RF signal and the N channel processed radio frequency signal except the i channel signal The amplitudes of the equivalent combined signals of the remaining j-channel signals are equal and constant, and the phase yaw angle formed by the equivalent combining signal of the i-channel signal with respect to the original RF signal and the j-channel signal
  • the phase combination angle formed by the equivalent combining signal with respect to the original radio frequency signal is the same and opposite directions, i is greater than or equal to 1, and j is greater than or equal to 1.
  • the radio frequency signal is a first signal component, and s 2 is a second signal component, and k nl and k discipline2 are amplitude phase adjustment coefficients corresponding to the nth processed RF signal at the current time.
  • the radio frequency signal processing circuit is further configured to determine an amplitude phase adjustment coefficient corresponding to the nth processed RF signal at the current time. , including,
  • the radio frequency signal processing circuit is further configured to obtain an envelope of the baseband digital signal at a current time, including,
  • the radio frequency signal processing circuit is further configured to determine the pre- The nth group correspondence between the envelope of the baseband digital signal and the amplitude phase adjustment coefficient, including
  • a transmitter including the above-described RF power amplification system.
  • a base station including the above transmitter.
  • a radio frequency power amplification method including:
  • the equivalent combining signal of the i channel signal in the N processed RF signal and the i channel signal in the N processed RF signal The amplitudes of the equivalent combined signals of the remaining j-channel signals are equal and constant, and the phase yaw angle formed by the equivalent combining signal of the i-channel signal with respect to the original RF signal and the j-channel signal
  • the phase combination angle formed by the equivalent combining signal with respect to the original radio frequency signal is the same and opposite directions, i is greater than or equal to 1, and j is greater than or equal to 1.
  • the original radio frequency signal is processed to obtain the N-channel processed radio frequency signal, which specifically includes:
  • the method further includes: determining an amplitude phase adjustment coefficient corresponding to the nth processed RF signal at the current moment, including, based on the preset baseband The nth group correspondence between the envelope of the digital signal and the amplitude phase adjustment coefficient determines that the amplitude phase adjustment coefficient corresponding to the envelope of the baseband digital signal at the current time is corresponding to the RF signal after the nth process at the current time Amplitude phase adjustment factor.
  • the method further includes acquiring an envelope of the baseband digital signal at the current moment, including,
  • the method further includes determining an envelope of the preset baseband digital signal The nth group correspondence with the amplitude phase adjustment coefficient, including,
  • a radio frequency power amplifying device including: a processor, a memory, and a communication bus, where:
  • the communication bus is used for a communication connection between the processor and the memory; the processor is configured to execute an application stored in the memory;
  • the memory is configured to store an application, where the application includes a baseband digital signal Processing, obtaining an original radio frequency signal; processing the original radio frequency signal to obtain an N-channel processed radio frequency signal; wherein, N is greater than or equal to 2; respectively performing power amplification on the N-process processed radio frequency signal to obtain N-channel amplification a post-RF signal; combining the N-channel amplified RF signals.
  • the application includes a baseband digital signal Processing, obtaining an original radio frequency signal; processing the original radio frequency signal to obtain an N-channel processed radio frequency signal; wherein, N is greater than or equal to 2; respectively performing power amplification on the N-process processed radio frequency signal to obtain N-channel amplification a post-RF signal; combining the N-channel amplified RF signals.
  • an equivalent combining signal of the i channel signal in the N processed RF signal and the i channel signal in the N processed RF signal The amplitudes of the equivalent combined signals of the remaining j-channel signals are equal and constant, and the phase yaw angle formed by the equivalent combining signal of the i-channel signal with respect to the original RF signal and the j-channel signal
  • the phase combination angle formed by the equivalent combining signal with respect to the original radio frequency signal is the same and opposite directions, i is greater than or equal to 1, and j is greater than or equal to 1.
  • the application further includes determining an amplitude phase adjustment coefficient corresponding to the radio signal after the nth process at the current time, including,
  • the application further includes acquiring an envelope of the baseband digital signal at a current moment, including,
  • the application further includes determining the preset baseband number The nth group correspondence between the envelope of the signal and the amplitude phase adjustment coefficient, comprising: determining the preset by using a recursive least square method according to the baseband digital signal and the preset nth processed RF signal The nth group correspondence between the envelope of the baseband digital signal and the amplitude phase adjustment coefficient;
  • the radio frequency power amplifying system according to the first aspect, the transmitter provided by the second aspect, the base station provided by the third aspect, the radio frequency power amplifying method provided by the fourth aspect, and the radio frequency power amplifying device provided by the fifth aspect, based on the current baseband
  • the digital signal obtains the original radio frequency signal, and the original radio frequency signal is processed to obtain the multi-processed radio frequency signal, and the power is amplified for each processed radio frequency signal, and then the multi-channel amplified radio frequency signal is combined, that is, the present invention
  • the solution provided is to split the signal in the RF signal part, which reduces the number of modules in the system, thus reducing the signal nonlinear distortion factor and facilitating linear correction.
  • FIG. 1 is a schematic structural diagram of a radio frequency power amplification system in the prior art
  • FIG. 2 is a schematic structural diagram of a radio frequency power amplification system according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a radio frequency power amplifying system according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic structural diagram of an implementation of a radio frequency power amplifying system according to Embodiment 1 of the present invention
  • FIG. 6 is a schematic structural diagram of an implementation of a radio frequency power amplification system according to Embodiment 1 of the present invention
  • FIG. 7 is a schematic flowchart of a radio frequency power amplification method according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a radio frequency power amplifying device according to an embodiment of the present invention.
  • the embodiments of the present invention provide a radio frequency power amplifying system, a radio frequency power amplifying method, a transmitter, and a base station.
  • a radio frequency power amplifying system a radio frequency power amplifying method
  • a transmitter a radio frequency power amplifying method
  • a base station a radio frequency power amplifying method
  • the radio frequency power amplifying system and the radio frequency power amplifying method provided by the embodiments of the present invention can be applied to various scenarios in the field of radio technologies, including but not limited to mobile communication systems, fixed wireless access systems, wireless data transmission systems, radar systems, and the like. This embodiment of the present invention does not specifically limit this.
  • the embodiment of the present invention provides a radio frequency power amplification system, as shown in FIG. 2, including: a radio frequency signal generating circuit 201, configured to process a baseband digital signal to obtain an original radio frequency signal;
  • the radio frequency signal processing circuit 202 is configured to process the original radio frequency signal to obtain an N-channel processed radio frequency signal; wherein, N is greater than or equal to 2;
  • the power amplifier 203 is configured to separately perform power amplification on the N-channel processed radio frequency signal to obtain an N-channel amplified radio frequency signal;
  • the combiner 204 is configured to combine the amplified RF signals of the N channels.
  • the specific form of the N-channel processed radio frequency signal output by the radio frequency signal processing circuit 202 is not limited in the embodiment of the present invention.
  • the equivalent combining signal of one of the N-channel processed radio frequency signals may be The amplitude of the equivalent combination signal of the remaining j signals except the i channel signal in the N-channel processed RF signal is equal and constant, and the equivalent combination signal of the i-channel signal is relative to the original RF signal
  • the formed phase declination and the equivalent combining signal of the j-channel signal are the same in phase and opposite directions with respect to the original radio frequency signal, i is greater than or equal to 1, and j is greater than or equal to 1.
  • the equivalent combining signal of the i-channel signal is a signal obtained by assuming that the i-way signal is combined
  • the equivalent combining signal of the j-channel signal is a signal obtained by assuming that the j-way signal is combined, that is, The amplitude phase relationship between the equivalent combined signal of the above 1-way signal and the equivalent combined signal of the j-channel signal
  • the quality is the condition that the N-channel processed RF signal processed by the RF signal processing circuit 202 should satisfy, and the actual combined operation is not performed on the i-channel signal and the j-channel signal.
  • the RF signal processing circuit 202 can specifically process the original RF signal to obtain two processed RF signals.
  • the two processed RF signals should meet the following conditions:
  • the amplitudes of the RF signals after the two processes are equal and are constant values, wherein the phase deviation angle formed by the RF signal with respect to the original RF signal after one processing and the phase deviation of the RF signal processed by the other processing with respect to the original RF signal
  • the angles are the same and opposite directions. For example, when one of the processed RF signals forms a phase declination of +15° with respect to the original RF signal, the phase deviation angle of the other processed RF signal with respect to the original RF signal It is -15°.
  • Signal, the RF signal itself after processing is equivalent to the equivalent combination signal of the j-channel signal.
  • the radio frequency signal processing circuit 202 can specifically process the original radio frequency signal to obtain three-way processing, and the radio frequency signal after three-way processing should satisfy the following conditions:
  • the equivalent combined signal of the RF signal after any two processes is equal to the amplitude of the other processed RF signal except the two processed RF signals, and both are fixed values.
  • the phase declination angle of the equivalent combining signal of the radio frequency signal after the road processing is opposite to the original radio frequency signal and the phase declination angle of the other processed radio frequency signal with respect to the original radio frequency signal are the same and opposite directions.
  • the two-way processed radio frequency signal in the three-way processed radio frequency signal is the i-channel signal in the above-mentioned N-process processed radio frequency signal
  • the equivalent combined signal of the signal is the equivalent combined signal of the i-way signal
  • the other processed RF signal other than the two processed RF signals in the three-way processed RF signal is equivalent to the above-mentioned N-way processing RF signal
  • the radio-frequency signal itself is equivalent to the equivalent combination signal of the j-channel signal.
  • the radio frequency signal processing circuit 202 can specifically process the original radio frequency signal to obtain three or more processed radio frequency signals, which are not exemplified herein.
  • the RF signal processing circuit 202 is specifically configured to decompose the original RF signal to obtain a first signal component and a second signal component; and obtain the nth processed RF signal based on the following formula:
  • RF n k nl xs 1 + k n2 xs 2 ;
  • RF n is the nth processed RF signal
  • S l is a first signal component
  • 3 ⁇ 4 is the second signal component
  • k n i and k palette2 are the amplitude phase adjustment coefficients corresponding to the RF signal after the nth process at the current time.
  • the multiplier can be used to implement the above formula calculation.
  • the radio frequency signal processing circuit 202 is specifically configured to orthogonally decompose the original radio frequency signal to obtain a first signal component and a second signal component.
  • QPS Quadadature Phase Splitter
  • the specific calculation method of the radio frequency signal processed by the radio frequency signal processing circuit 202 to obtain the nth channel is only an example, and is not intended to limit the present invention.
  • the RF signal processing circuit 202 is further configured to determine an amplitude phase adjustment coefficient corresponding to the nth channel processed radio frequency signal at the current time, including,
  • the amplitude phase adjustment coefficient corresponding to the RF signal after the nth process may be used to store an nth group correspondence between an envelope of the preset baseband digital signal and an amplitude phase adjustment coefficient, and the baseband digital signal packet according to the current time.
  • the network determines the amplitude phase adjustment coefficient corresponding to the RF signal after the nth process at the current time.
  • the RF signal processing circuit 202 is further configured to acquire an envelope of the baseband digital signal at a current time, including,
  • the baseband digital signal is subjected to envelope detection to obtain an envelope of the baseband digital signal at the current time; or the original radio frequency signal processed by the radio frequency signal generating circuit 201 is subjected to envelope detection to obtain an envelope of the baseband digital signal at the current time.
  • the envelope of the baseband digital signal at the current time is directly determined according to the baseband digital signal, and the result is more accurate.
  • an ABS envelope Detector
  • an ABS envelope Detector
  • the envelope of the baseband digital signal at the current time can also be determined by the SCS.
  • the RF signal processing circuit 202 does not need to pass the baseband digital signal.
  • the signal or the original RF signal is subjected to envelope detection to obtain an envelope of the baseband digital signal at the current time, and the RF signal processing circuit 202 can directly acquire the envelope of the baseband digital signal at the current time from the SCS.
  • the RF signal processing circuit 202 is further configured to determine an nth group correspondence between an envelope of the preset baseband digital signal and an amplitude phase adjustment coefficient, including,
  • determining, according to the baseband digital signal and the preset nth processed radio frequency signal, the nth group between the envelope and the amplitude phase adjustment coefficient of the preset baseband digital signal including but not limited to by using a recursive least squares method Corresponding relationship; or determining, according to the original RF signal and the preset nth processed RF signal, including but not limited to using a recursive least squares method to determine an envelope between the preset baseband digital signal and an amplitude phase adjustment coefficient The nth group correspondence.
  • the preset n-th processed RF signal is the expected n-th processed RF signal, which can be specifically set according to the actual application scenario.
  • the N PAs may be used to implement power amplification on the N-processed RF signals, and each PA corresponds to one processed RF signal.
  • FIG. 3 is a schematic diagram of a radio frequency power amplification system according to Embodiment 1 of the present invention, including:
  • the RF signal generating circuit 301 is configured to process the baseband digital signal to obtain an original RF signal;
  • the RF signal processing circuit 302 is configured to process the original RF signal to obtain a first processed RF signal and a second processed RF signal;
  • the power amplifier 303 is configured to separately perform power amplification on the first processed RF signal and the second processed RF signal to obtain a first amplified RF signal and a second amplified RF signal;
  • the combiner 304 is configured to combine the first amplified RF signal and the second amplified RF signal.
  • the RF signal generating circuit 301 is specifically configured to perform digital-to-analog conversion on the baseband digital signal to obtain an analog signal; and orthogonally modulate the analog signal to obtain an original RF signal.
  • the first processed RF signal obtained by the RF signal processing circuit 302 and the second processed RF signal may have the same amplitude and are constant values, and the RF signal is relatively processed after the first processing.
  • the phase declination formed by the original RF signal is the same as the phase declination formed by the second processed RF signal with respect to the original RF signal, and the direction is opposite.
  • the RF signal processing circuit 302 may be specifically configured to perform orthogonal decomposition on the original RF signal to obtain a first signal component and a second signal component; and obtain the first processed RF signal based on the following formula:
  • RFi is the first processed RF signal
  • RF 2 is the second processed RF signal
  • S1 is a first signal component
  • 3 ⁇ 4 is the second signal component
  • Kn and k 12 are the amplitude phase adjustment coefficients corresponding to the first processed RF signal at the current time
  • the RF signal processing circuit 302 may perform non-orthogonal decomposition on the original RF signal to obtain a first signal component and a second signal component.
  • the specific decomposition manner is not limited in the present invention.
  • the RF signal processing circuit 302 may also use other calculation methods to obtain the first processed RF signal and the second processed RF signal.
  • the present invention does not limit the specific calculation method.
  • the RF signal processing circuit 302 can be specifically configured to determine the amplitude phase adjustment coefficient corresponding to the RF signal after the first processing at the current time in the following manner:
  • the RF signal processing circuit 302 can be specifically configured to determine the amplitude phase adjustment coefficient corresponding to the RF signal after the second processing in the current mode as follows:
  • the implementation structure of the above RF power amplification system can be as shown in FIG. 4:
  • the RF signal generation circuit 301 can be implemented by using a DAC and an AQM module, and the DAC converts the baseband digital signal into an analog signal, and then the AQM module The analog signal is orthogonally modulated to obtain an original RF signal, and the connection relationship between the DAC and the AQM is as shown in FIG. 4;
  • the RF signal processing circuit 302 can be implemented by using QPS, ABS, LUT1, LUT2 and a multiplier, and the connection relationship of each module is as shown in FIG.
  • the QPS orthogonally decomposes the original RF signal to obtain a first signal component ⁇ 1 and a second signal component s 2 ; ABS performs envelope detection on the original RF signal to obtain an envelope e of the baseband digital signal at the current time; LUT1 The first set of correspondence between the envelope of the preset baseband digital signal and the amplitude phase adjustment coefficient is stored, and the amplitude corresponding to the first processed RF signal is determined according to the envelope e of the baseband digital signal at the current time.
  • the power amplifier 303 can be implemented by using two PAs. One PA performs power amplification on the first processed RF signal RFi, and the other PA performs power on the second processed RF signal RF 2 . amplification;
  • the combiner 304 combines the first amplified RF signal and the second amplified RF signal and outputs the combined signal.
  • the implementation structure of the RF power amplification system may also be as shown in FIG. 5.
  • the SCS is set at the input end for forwarding the baseband digital signal, and the RF signal processing circuit 302 is provided.
  • the envelope e of the baseband digital signal at the current time can be obtained directly from the SCS, which is more accurate.
  • the RF power amplifier system usually sets the QMC (Quadature Modulation Compensator) module at the forefront to achieve unbalanced compensation for the back-end AQM;
  • the module is equipped with a VGA (Variable Gain Adjust) module and an AMP (Amplifier) to achieve gain adjustment and signal amplification of the original RF signal.
  • VGA Very Gain Adjust
  • AMP Anamplifier
  • the RF signal processing circuit 302 is further configured to determine a first set correspondence between an envelope of the preset baseband digital signal and an amplitude phase adjustment coefficient, and an envelope and amplitude phase adjustment of the preset baseband digital signal. A second set of correspondences between coefficients.
  • the RF signal processing circuit 302 can, but is not limited to, determine the first set of correspondence between the envelope of the preset baseband digital signal and the amplitude phase adjustment coefficient in the following manner:
  • RLS algorithm recursive least squares method
  • the RF signal processing circuit 302 can, but is not limited to, determine a second set of correspondence between the envelope of the preset baseband digital signal and the amplitude phase adjustment coefficient in the following manner:
  • the first reciprocal recursive least squares method is used to determine the first correspondence relationship and the second correspondence relationship is only an example. In other embodiments of the present invention, other algorithms of the prior art may also be used to determine the first correspondence relationship and the second correspondence.
  • the relationship between the embodiments of the present invention is not limited in particular, such as the least-average method (LMS algorithm).
  • F envelope of the baseband digital signal
  • F can be represented by a polynomial or by other forms.
  • the correspondence between the envelope of the baseband digital signal and the amplitude phase adjustment coefficient can be updated according to the working state of the power amplifier.
  • the RF power amplification system performs signal splitting in the RF signal portion, does not require multiple complete amplification links, and reduces the system structure, thereby reducing the number of modules in the system, and not only reducing the system. Cost, which reduces the signal nonlinear distortion factor, facilitates linear correction, and has lower bandwidth requirements for modules such as DAC and AQM.
  • the original radio frequency signal is processed to obtain two processed radio frequency signals.
  • the original radio frequency signal may also be used. After processing, two or more processed RF signals are obtained, and details are not described herein again.
  • Embodiment 2 of the present invention also provides a transmitter, including the RF power amplification system shown in any of Figures 2-6.
  • the transmitter may further comprise a filter and an antenna; the filter may be used to filter the combined signal processed by the RF power amplification system to obtain a signal to be transmitted; and the antenna may be used to transmit the signal to be transmitted.
  • Embodiment 3 of the present invention further provides a base station, including the transmitter provided in Embodiment 2 above.
  • the base station may further include a baseband unit for generating a baseband digital signal, and the transmitter provided in Embodiment 2 may perform power amplification, filtering, and transmission processing on the baseband digital signal.
  • an embodiment of the present invention further provides a radio frequency power amplification method, as shown in FIG. 7 . As shown, including:
  • Step 701 Processing a baseband digital signal to obtain an original radio frequency signal
  • Step 702 Processing the original radio frequency signal to obtain an N-channel processed radio frequency signal; wherein, N is greater than or equal to 2;
  • Step 703 Perform power amplification on the radio signal of the N-channel processing to obtain an N-channel amplified radio frequency signal;
  • Step 704 Combine the amplified RF signals of the N channels.
  • the specific form of the radio frequency signal after the N-channel processing is not particularly limited.
  • the equivalent combining signal of the i-channel signal in the N-process processed radio frequency signal may be compared with the N-process processed radio frequency signal.
  • the amplitude of the equivalent combination signal of the remaining j signals except the one signal is equal and constant, and the phase angle of the equivalent combination signal of the one signal relative to the original RF signal is equal and constant, and the phase combination angle of the j-channel signal is the same as the phase deviation angle formed by the original RF signal, and the direction is opposite.
  • i is greater than or equal to 1
  • j is greater than or equal to 1.
  • step 701 may specifically include:
  • Digital-to-analog conversion of the baseband digital signal to obtain an analog signal orthogonally modulating the analog signal to obtain an original RF signal.
  • step 702 may specifically include:
  • n l, 2 N
  • RF n is the nth processed RF signal
  • Sl is the first signal component
  • 3 ⁇ 4 is the second signal component
  • k nl and k tribe2 are the nth processed RF signal at the current time.
  • the specific calculation method for obtaining the radio frequency signal after the nth process is only an example, and is not intended to limit the present invention.
  • the original radio frequency signal is decomposed in step 702 to obtain the first signal component and the second signal component, which may include: performing orthogonal decomposition on the original radio frequency signal to obtain a first signal component and a second signal component.
  • the method for amplifying the radio frequency power may further include determining an amplitude phase adjustment coefficient corresponding to the radio signal after the nth process at the current time, including,
  • determining the amplitude phase adjustment coefficient corresponding to the envelope of the baseband digital signal at the current time is the current time after the nth process
  • the amplitude phase adjustment factor corresponding to the RF signal is the current time after the nth process
  • the method for amplifying the radio frequency power may further include acquiring an envelope of the baseband digital signal at the current time, including,
  • Envelope detection is performed on the baseband digital signal to obtain an envelope of the baseband digital signal at the current time; or an envelope detection is performed on the original RF signal to obtain an envelope of the baseband digital signal at the current time.
  • the method for amplifying the radio frequency power may further include determining an nth group correspondence between an envelope of the preset baseband digital signal and an amplitude phase adjustment coefficient, where
  • the first correspondence and the second correspondence are determined by using the recursive least squares method as an example.
  • other algorithms of the prior art may also be used to determine the first correspondence and the second correspondence.
  • the minimum averaging method (LMS algorithm) and the like are not particularly limited in the embodiment of the present invention.
  • the above steps may correspond to the functions of the various parts of the system in FIG. 2 to FIG. 6, and are not described herein again.
  • the RF power amplification method provided by the embodiment of the present invention performs signal splitting in the RF signal portion, and does not require multiple complete amplification links, and the RF power amplification system structure is reduced, thereby reducing the number of modules in the system, not only The system cost is reduced, the signal nonlinear distortion factor is further reduced, the linear correction is facilitated, and the bandwidth requirements of the DAC, AQM and other modules are low.
  • Embodiment 5 of the present invention provides a radio frequency power amplifying device, and a schematic structural diagram thereof is shown in FIG.
  • the processor 801, the memory 802, and the communication bus wherein: the communication bus is used for connection communication between the processor 801 and the memory 802; the processor 801 is configured to execute the application 8021 stored in the memory 802; the memory 802 may Including high-speed random access memory (RAM: Random Access Memory), and may also include non-volatile, non-volatile memory, such as disk storage, the storage device 802 stores the application 8021 including:
  • the digital signal is processed to obtain the original RF signal; the original RF signal is processed to obtain the N-processed RF signal; wherein, N is greater than or equal to 2; the N-process processed RF signal is separately amplified by power, and N-channel amplification is obtained. After the RF signal; the N-channel amplified RF signal is combined.
  • the equivalent combining signal of the i-channel signal in the N-processed radio frequency signal may be equivalent to the other j-channel signals except the i-way signal in the N-processed radio frequency signal.
  • the amplitudes of the signals are equal and constant, and the phase angle formed by the equivalent combining signal of the one channel signal with respect to the original radio frequency signal and the equivalent combining signal of the j channel signal are formed with respect to the original radio frequency signal.
  • the phase declination is the same in magnitude and opposite in direction, 1 is greater than or equal to 1, and j is greater than or equal to 1.
  • the application 8021 may specifically include: performing digital-to-analog conversion on the baseband digital signal to obtain an analog signal; and orthogonally modulating the analog signal to obtain an original radio frequency signal.
  • the application 8021 may specifically include: orthogonally decomposing the original radio frequency signal to obtain a first signal component and a second signal component.
  • the application 8021 may further include: determining an amplitude phase adjustment coefficient corresponding to the radio signal after the nth process at the current time, including,
  • the application 8021 may further include: acquiring an envelope of the baseband digital signal at a current time, including,
  • Envelope detection is performed on the baseband digital signal to obtain an envelope of the baseband digital signal at the current time; or an envelope detection is performed on the original RF signal to obtain an envelope of the baseband digital signal at the current time.
  • the application 8021 may further include: determining an nth group correspondence between an envelope of the preset baseband digital signal and an amplitude phase adjustment coefficient, including,
  • a reciprocal least squares method to determine an nth group correspondence between an envelope of the preset baseband digital signal and an amplitude phase adjustment coefficient; or And according to the original RF signal and the preset nth processed RF signal, the nth group correspondence between the envelope of the preset baseband digital signal and the amplitude phase adjustment coefficient is determined by a recursive least squares method.
  • the RF power amplifying device provided by the embodiment of the present invention does not require multiple complete amplification links, thereby reducing signal nonlinear distortion factors, facilitating linear correction, and reducing system cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Abstract

一种能够减少信号非线性失真因素的射频功率放大系统、射频功率放大方发射机及基站,该射频功率放大系统包括:射频信号生成电路,用于对基带数字信号进行处理,得到原始射频信号;射频信号分解电路,用于对该原始射频信号进行处理,得到N路处理后射频信号;其中,N大于等于2;功率放大器,用于对该N路处理后射频信号分别进行功率放大,得到N路放大后射频信号;合路器,用于对该N路放大后射频信号进行合路。

Description

射频功率放大系统、 射频功率放大方法、 发射机及基站 技术领域
本发明涉及无线技术领域, 特别涉及一种射频功率放大系统、 射频功率 放大方法、 发射机及基站。 背景技术
射频功率放大系统是无线通信发射机的一个重要组成部分, 直接决定了 发射机的性能。现有技术中,射频功率放大系统的主要架构之一为 Outphasmg (异相)架构, 采用 Outphasing架构的射频功率放大系统的结构示意图如图 1 所示, SCS ( Signal Control System, 信号控制系统)将输入的一路基带数字信 号分路为两路数字信号输出,针对 SCS输出的每路数字信号,由 DAC( Digital to Analog Converter, 数模转换器)将其转换为模拟信号, 再由 AQM ( Analog Quadrature Modulation, 模拟正交调制)模块对该模拟信号进行正交调制, 输 出射频信号至 PA ( Power Amplifier, 功率放大器)进行功率放大; 在 Combiner (合路器)将两路射频信号进行合路。
然而, 采用 Outphasing架构的射频功率放大系统是在数字信号部分进行 信号分路, 所以针对分路得到的每路数字信号均需要一路由 DAC、 AQM、 PA 等模块构成的完整的放大链路, 即采用 Outphasing架构的射频功率放大系统 中需要两路完整的放大链路, 系统中使用的模块数量较多, 导致信号非线性 失真因素较多, 不利于线性校正。 发明内容
本发明实施例提供一种射频功率放大系统、 射频功率放大方法、 发射机 及基站, 以减少信号非线性失真因素。
第一方面, 提供一种射频功率放大系统, 包括:
射频信号生成电路, 用于对基带数字信号进行处理, 得到原始射频信号; 射频信号分解电路, 用于对所述原始射频信号进行处理, 得到 N路处理后射 频信号; 其中, N大于等于 2; 功率放大器, 用于对所述 N路处理后射频信 号分别进行功率放大, 得到 N路放大后射频信号; 合路器, 用于对所述 N路 放大后射频信号进行合路。
结合第一方面, 在第一种可能的实现方式中, 所述 N路处理后射频信号 中的 i路信号的等效合路信号与所述 N路处理后射频信号中除所述 i路信号外 的其余 j路信号的等效合路信号幅值相等且均为定值, 所述 i路信号的等效合 路信号相对于所述原始射频信号形成的相位偏角与所述 j 路信号的等效合路 信号相对于所述原始射频信号形成的相位偏角大小相同且方向相反, i大于等 于 1 , j大于等于 1。
结合第一方面, 或者第一方面的第一种可能的实现方式, 在第二种可能 的实现方式中, 所述射频信号处理电路, 具体用于对所述原始射频信号进行 分解, 得到第一信号分量和第二信号分量; 基于公式 RFn=knlxSl+ 1^><¾, 得 到第 n路处理后射频信号; 其中, n=l、 2 N, RFn为第 n路处理后射频 信号, 为第一信号分量, s2为第二信号分量, knl和 k„2为当前时刻第 n路处 理后射频信号对应的幅值相位调整系数。
结合第一方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述射频信号处理电路, 还用于确定当前时刻第 n路处理后射频信号对应的 幅值相位调整系数, 包括,
基于预设的基带数字信号的包络与幅值相位调整系数之间的第 n组对应 关系, 确定当前时刻所述基带数字信号的包络对应的幅值相位调整系数为当 前时刻第 n路处理后射频信号对应的幅值相位调整系数。
结合第一方面的第三种可能的实现方式, 在第四种可能的实现方式中, 所述射频信号处理电路, 还用于获取当前时刻所述基带数字信号的包络, 包 括,
对所述基带数字信号进行包络检波, 得到当前时刻所述基带数字信号的 包络; 或者对所述原始射频信号进行包络检波, 得到当前时刻所述基带数字 信号的包络。
结合第一方面的第三种可能的实现方式, 或者第一方面的第四种可能的 实现方式, 在第五种可能的实现方式中, 所述射频信号处理电路, 还用于确 定所述预设的基带数字信号的包络与幅值相位调整系数之间的第 n组对应关 系, 包括,
根据所述基带数字信号和预设的第 n路处理后射频信号, 采用递推最小 二乘法确定所述预设的基带数字信号的包络与幅值相位调整系数之间的第 n 组对应关系; 或者才艮据所述原始射频信号和预设的第 n路处理后射频信号, 釆用递推最小二乘法确定所述预设的基带数字信号的包络与幅值相位调整系 数之间的第 n组对应关系。
第二方面, 提供一种发射机, 包括上述射频功率放大系统。
第三方面, 提供一种基站, 包括上述发射机。
第四方面, 提供一种射频功率放大方法, 包括:
对基带数字信号进行处理, 得到原始射频信号; 对所述原始射频信号进 行处理, 得到 N路处理后射频信号; 其中, N大于等于 2; 对所述 N路处理 后射频信号分别进行功率放大, 得到 N路放大后射频信号; 对所述 N路放大 后射频信号进行合路。
结合第四方面, 在第一种可能的实现方式中, 所述 N路处理后射频信号 中的 i路信号的等效合路信号与所述 N路处理后射频信号中除所述 i路信号外 的其余 j路信号的等效合路信号幅值相等且均为定值, 所述 i路信号的等效合 路信号相对于所述原始射频信号形成的相位偏角与所述 j 路信号的等效合路 信号相对于所述原始射频信号形成的相位偏角大小相同且方向相反, i大于等 于 1, j大于等于 1。
结合第四方面, 或者第四方面的第一种可能的实现方式, 在第二种可能 的实现方式中, 对所述原始射频信号进行处理, 得到 N路处理后射频信号, 具体包括:
对所述原始射频信号进行分解, 得到第一信号分量和第二信号分量; 基于公式 RFn=knl xSl+ 1¾^¾, 得到第 n路处理后射频信号; 其中, n=l、 2 N, RFn为第 n路处理后射频信号, Sl为第一信号分 量, ¾为第二信号分量 , knl和 k„2为当前时刻第 n路处理后射频信号对应的幅 值相位调整系数。
结合第四方面的第二种可能的实现方式, 在第三种可能的实现方式中, 还包括确定当前时刻第 n路处理后射频信号对应的幅值相位调整系数, 包括, 基于预设的基带数字信号的包络与幅值相位调整系数之间的第 n组对应 关系, 确定当前时刻所述基带数字信号的包络对应的幅值相位调整系数为当 前时刻第 n路处理后射频信号对应的幅值相位调整系数。
结合第四方面的第三种可能的实现方式, 在第四种可能的实现方式中, 还包括获取当前时刻所述基带数字信号的包络, 包括,
对所述基带数字信号进行包络检波, 得到当前时刻所述基带数字信号的 包络; 或者对所述原始射频信号进行包络检波, 得到当前时刻所述基带数字 信号的包络。
结合第四方面的第三种可能的实现方式, 或者第四方面的第四种可能的 实现方式, 在第五种可能的实现方式中, 还包括确定所述预设的基带数字信 号的包络与幅值相位调整系数之间的第 n组对应关系, 包括,
根据所述基带数字信号和预设的第 n路处理后射频信号, 采用递推最小 二乘法确定所述预设的基带数字信号的包絡与幅值相位调整系数之间的第 n 组对应关系; 或者才艮据所述原始射频信号和预设的第 n路处理后射频信号, 采用递推最小二乘法确定所述预设的基带数字信号的包络与幅值相位调整系 数之间的第 n组对应关系。
第五方面, 提供一种射频功率放大设备, 包括: 处理器、 存储器和通信 总线, 其中:
所述通信总线, 用于所述处理器和所述存储器之间的通信连接; 所述处理器, 用于执行所述存储器中存储的应用程序;
所述存储器, 用于存储应用程序, 所述应用程序包括对基带数字信号进 行处理, 得到原始射频信号; 对所述原始射频信号进行处理, 得到 N路处理 后射频信号; 其中, N大于等于 2; 对所述 N路处理后射频信号分别进行功 率放大, 得到 N路放大后射频信号; 对所述 N路放大后射频信号进行合路。
结合第五方面, 在第一种可能的实现方式中, 所述 N路处理后射频信号 中的 i路信号的等效合路信号与所述 N路处理后射频信号中除所述 i路信号外 的其余 j路信号的等效合路信号幅值相等且均为定值, 所述 i路信号的等效合 路信号相对于所述原始射频信号形成的相位偏角与所述 j 路信号的等效合路 信号相对于所述原始射频信号形成的相位偏角大小相同且方向相反, i大于等 于 1, j大于等于 1。
结合第五方面, 或者第五方面的第一种可能的实现方式, 在第二种可能 的实现方式中, 所述应用程序具体包括: 对所述原始射频信号进行分解, 得 到第一信号分量和第二信号分量; 基于公式 RFn=knlxSl+ 得到第 n路 处理后射频信号; 其中, n=l、 2 N, RFn为第 n路处理后射频信号, Sl 为第一信号分量, s2为第二信号分量, knl和 k„2为当前时刻第 n路处理后射频 信号对应的幅值相位调整系数。
结合第五方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述应用程序还包括确定当前时刻第 n路处理后射频信号对应的幅值相位调 整系数, 包括,
基于预设的基带数字信号的包络与幅值相位调整系数之间的第 n组对应 关系, 确定当前时刻所述基带数字信号的包络对应的幅值相位调整系数为当 前时刻第 n路处理后射频信号对应的幅值相位调整系数。
结合第五方面的第三种可能的实现方式, 在第四种可能的实现方式中, 所述应用程序还包括获取当前时刻所述基带数字信号的包络, 包括,
对所述基带数字信号进行包络检波, 得到当前时刻所述基带数字信号的 包络;
或者对所述原始射频信号进行包络检波, 得到当前时刻所述基带数字信 号的包络。 结合第五方面的第三种可能的实现方式, 或者第五方面的第四种可能的 实现方式, 在第五种可能的实现方式中, 所述应用程序还包括确定所述预设 的基带数字信号的包络与幅值相位调整系数之间的第 n组对应关系, 包括, 根据所述基带数字信号和预设的第 n路处理后射频信号, 采用递推最小 二乘法确定所述预设的基带数字信号的包络与幅值相位调整系数之间的第 n 组对应关系;
或者根据所述原始射频信号和预设的第 n路处理后射频信号, 采用递推 最小二乘法确定所述预设的基带数字信号的包络与幅值相位调整系数之间的 第 n组对应关系。
根据第一方面提供的射频功率放大系统、 第二方面提供的发射机、 第三 方面提供的基站、 第四方面提供的射频功率放大方法和第五方面提供的射频 功率放大设备, 基于当前的基带数字信号得到原始射频信号, 对该原始射频 信号进行处理, 得到多路处理后射频信号, 针对每路处理后射频信号分别进 行功率放大, 再将多路放大后射频信号进行合路, 即本发明提供的方案是在 射频信号部分进行信号分路, 减少了系统中模块的数量, 因此减少了信号非 线性失真因素, 有利于线性校正。 附图说明
附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本 发明实施例一起用于解释本发明, 并不构成对本发明的限制。 在附图中: 图 1为现有技术中射频功率放大系统的结构示意图;
图 2为本发明实施例提供的射频功率放大系统的结构示意图;
图 3为本发明实施例 1提供的射频功率放大系统的结构示意图; 图 4为本发明实施例 1提供的射频功率放大系统的实现结构示意图之一; 图 5为本发明实施例 1提供的射频功率放大系统的实现结构示意图之二; 图 6为本发明实施例 1提供的射频功率放大系统的实现结构示意图之三; 图 7为本发明实施例提供的射频功率放大方法的流程示意图; 图 8为本发明实施例提供的射频功率放大设备的结构示意图。 具体实施方式
本发明实施例提供了一种射频功率放大系统、 射频功率放大方法、 发射 机及基站, 以下结合说明书附图对本发明的优选实施例进行说明, 应当理解, 此处所描述的优选实施例仅用于说明和解释本发明, 并不用于限定本发明。 并且在不沖突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。
本发明实施例提供的射频功率放大系统及射频功率放大方法可以应用于 无线技术领域中的各个场景, 包括但不局限于移动通信系统、 固定无线接入 系统、 无线数据传输系统、 雷达系统等, 本发明实施例对此不做特别限定。
本发明实施例提供了一种射频功率放大系统, 如图 2所示, 包括: 射频信号生成电路 201 , 用于对基带数字信号进行处理, 得到原始射频信 号;
射频信号处理电路 202, 用于对该原始射频信号进行处理, 得到 N路处 理后射频信号; 其中, N大于等于 2;
功率放大器 203 , 用于对该 N路处理后射频信号分别进行功率放大, 得 到 N路放大后射频信号;
合路器 204, 用于对该 N路放大后射频信号进行合路。
其中, 本发明实施例对射频信号处理电路 202输出的 N路处理后射频信 号的具体形式不做特别限定, 比如, 该 N路处理后射频信号中的 1路信号的 等效合路信号可以与该 N路处理后射频信号中除该 i路信号外的其余 j路信号 的等效合路信号幅值相等且均为定值,该 i路信号的等效合路信号相对于该原 始射频信号形成的相位偏角与该 j 路信号的等效合路信号相对于该原始射频 信号形成的相位偏角大小相同且方向相反, i大于等于 1 , j大于等于 1。
上述 i路信号的等效合路信号为假设该 i路信号进行了合路操作得到的信 号, j路信号的等效合路信号为假设该 j路信号进行了合路操作得到的信号, 即上述 1路信号的等效合路信号与 j路信号的等效合路信号的幅值相位关系实 质为射频信号处理电路 202处理得到的 N路处理后射频信号应满足的条件, 而并非是对 i路信号和 j路信号进行了真实的合路操作。
例如, 在本发明一个具体实施例中, 射频信号处理电路 202, 具体可以对 原始射频信号进行处理得到两路处理后射频信号, 两路处理后射频信号应满 足下述条件:
该两路处理后射频信号幅值相等且均为定值, 其中一路处理后射频信号 相对于该原始射频信号形成的相位偏角与另一路处理后射频信号相对于该原 始射频信号形成的相位偏角大小相同且方向相反, 例如, 当其中一路处理后 射频信号相对于该原始射频信号形成的相位偏角为 +15°时, 另一路处理后射 频信号相对于该原始射频信号形成的相位偏角为 -15°。
即此时 N=2, i=l , j=l , 两路处理后射频信号中的一路处理后射频信号即 相当于上述 N路处理后射频信号中的 i路信号, 该路处理后射频信号本身即 相当于该 i路信号的等效合路信号;两路处理后射频信号中的另一路处理后射 频信号即相当于上述 N路处理后射频信号中除该 1路信号外的其余 j路信号, 该路处理后射频信号本身即相当于该 j路信号的等效合路信号。
又例如, 在本发明另一个具体实施例中, 射频信号处理电路 202, 具体可 以对原始射频信号进行处理得到三路处理后射频信号三路处理后射频信号应 满足下述条件:
该三路处理后射频信号中, 其中任意两路处理后射频信号的等效合路信 号与该两路处理后射频信号以外的另一路处理后射频信号幅值相等且均为定 值, 该两路处理后射频信号的等效合路信号相对于该原始射频信号形成的相 位偏角与该另一路处理后射频信号相对于该原始射频信号形成的相位偏角大 小相同且方向相反。
即此时 N=3 , i=2, j=l , 三路处理后射频信号中的两路处理后射频信号即 为上述 N路处理后射频信号中的 i路信号, 该两路处理后射频信号的等效合 路信号即为该 i路信号的等效合路信号;三路处理后射频信号中该两路处理后 射频信号以外的另一路处理后射频信号即相当于上述 N路处理后射频信号中 除该 i路信号外的其余 j路信号, 该路处理后射频信号本身即相当于该 j路信 号的等效合路信号。
在本发明其它具体实施例中, 射频信号处理电路 202 , 具体可以对原始射 频信号进行处理得到三路以上处理后射频信号, 在此不再举例。
进一步的,射频信号处理电路 202,具体用于对该原始射频信号进行分解, 得到第一信号分量和第二信号分量; 并基于下述公式得到第 n路处理后射频 信号:
RFn=knlxs1+ kn2xs2;
其中, n=l、 2 N;
RFn为第 n路处理后射频信号;
Sl为第一信号分量;
¾为第二信号分量;
kni和 k„2为当前时刻第 n路处理后射频信号对应的幅值相位调整系 数。
实际实施时, 可以采用乘法器实现上述公式计算。
可选地, 射频信号处理电路 202, 具体用于对该原始射频信号进行正交分 解, 得到第一信号分量和第二信号分量。
实际实施时, 可以采用 QPS ( Quadrature Phase Splitter, 正交分相器) 实 现对该原始射频信号进行正交分解。
上述射频信号处理电路 202得到第 n路处理后射频信号的具体计算方法 仅为一个示例, 并不用于限定本发明。
进一步的, 射频信号处理电路 202, 还用于确定当前时刻第 n路处理后射 频信号对应的幅值相位调整系数, 包括,
基于预设的基带数字信号的包络与幅值相位调整系数之间的第 n组对应 关系, 确定当前时刻射频信号生成电路 201 输入的基带数字信号的包络对应 的幅值相位调整系数为当前时刻第 n路处理后射频信号对应的幅值相位调整 系数。 实际实施时, 可以采用 LUT ( Look Up Table, 查找表)存储该预设的基 带数字信号的包络与幅值相位调整系数之间的第 n组对应关系, 根据当前时 刻该基带数字信号的包络, 确定当前时刻第 n路处理后射频信号对应的幅值 相位调整系数。
进一步的, 射频信号处理电路 202, 还用于获取当前时刻该基带数字信号 的包络, 包括,
对该基带数字信号进行包络检波, 得到当前时刻该基带数字信号的包络; 或者对射频信号生成电路 201 处理得到的原始射频信号进行包络检波, 得到 当前时刻该基带数字信号的包络。
其中, 直接根据该基带数字信号确定当前时刻该基带数字信号的包络, 结果更为精确。
实际实施时, 可以釆用 ABS (包络检波器) 实现对该基带数字信号或该 原始射频信号的包絡检波。
若射频功率放大系统的输入端设置有 SCS,由于 SCS具有包络检波功能, 也可以由 SCS确定当前时刻该基带数字信号的包络, 此时, 射频信号处理电 路 202 无需再通过对该基带数字信号或该原始射频信号进行包络检波获取当 前时刻该基带数字信号的包络, 射频信号处理电路 202可以直接从 SCS获取 当前时刻该基带数字信号的包络。
进一步的, 射频信号处理电路 202, 还用于确定该预设的基带数字信号的 包络与幅值相位调整系数之间的第 n组对应关系 , 包括,
根据该基带数字信号和预设的第 n路处理后射频信号, 包括但不限于采 用递推最小二乘法确定该预设的基带数字信号的包络与幅值相位调整系数之 间的第 n组对应关系; 或者根据该原始射频信号和预设的第 n路处理后射频 信号, 包括但不限于采用递推最小二乘法确定该预设的基带数字信号的包络 与幅值相位调整系数之间的第 n组对应关系。
其中, 预设的第 n路处理后射频信号即为期望得到的第 n路处理后射频 信号, 可以根据实际的应用场景进行具体设定。 可选的, 具体可以采用 N个 PA来实现对该 N路处理后射频信号分别进 行功率放大, 每一个 PA对应一路处理后射频信号。
下面用具体实施例对上述射频功率放大系统进行举例说明。
实施例 1 :
图 3所示为本发明实施例 1提供的射频功率放大系统, 包括:
射频信号生成电路 301 , 用于对基带数字信号进行处理, 得到原始射频信 号;
射频信号处理电路 302, 用于对该原始射频信号进行处理, 得到第一路处 理后射频信号和第二路处理后射频信号;
功率放大器 303 ,用于对该第一路处理后射频信号和该第二路处理后射频 信号分别进行功率放大, 得到第一路放大后射频信号和第二路放大后射频信 号;
合路器 304,用于对该第一路放大后射频信号和该第二路放大后射频信号 进行合路。
进一步的, 射频信号生成电路 301 , 具体用于对基带数字信号进行数模转 换, 得到模拟信号; 对该模拟信号进行正交调制, 得到原始射频信号。
在本发明实施例 1 中, 射频信号处理电路 302得到的第一路处理后射频 信号和第二路处理后射频信号可以幅值相等且均为定值, 并且, 第一路处理 后射频信号相对于该原始射频信号形成的相位偏角与第二路处理后射频信号 相对于该原始射频信号形成的相位偏角大小相同且方向相反。
进一步的, 射频信号处理电路 302, 具体可以用于对该原始射频信号进行 正交分解, 得到第一信号分量和第二信号分量; 并基于下述公式得到第一路 处理后射频信号:
Figure imgf000013_0001
以及基于下述公式得到第二路处理后射频信号:
Figure imgf000013_0002
其中, RFi为第一路处理后射频信号; RF2为第二路处理后射频信号;
S1为第一信号分量;
¾为第二信号分量;
kn和 k12为当前时刻第一路处理后射频信号对应的幅值相位调整 系数;
k21和 k22为当前时刻第二路处理后射频信号对应的幅值相位调整 系数。
在本发明其它实施例中, 射频信号处理电路 302, 也可以对该原始射频信 号进行非正交分解, 得到第一信号分量和第二信号分量, 本发明对具体分解 方式不作限定。
在本发明其它实施例中, 射频信号处理电路 302, 也可以采用其他计算方 法得到第一路处理后射频信号和第二路处理后射频信号, 本发明对具体计算 方法不作限定。
进一步的, 射频信号处理电路 302, 具体可以用于采用如下方式确定当前 时刻第一路处理后射频信号对应的幅值相位调整系数:
基于预设的基带数字信号的包絡与幅值相位调整系数之间的第一组对应 关系, 确定当前时刻该基带数字信号的包络对应的幅值相位调整系数为当前 时刻第一路处理后射频信号对应的幅值相位调整系数;
相应的, 射频信号处理电路 302, 具体可以用于釆用如下方式确定当前时 刻第二路处理后射频信号对应的幅值相位调整系数:
基于预设的基带数字信号的包络与幅值相位调整系数之间的第二组对应 关系, 确定当前时刻该基带数字信号的包络对应的幅值相位调整系数为当前 时刻第二路处理后射频信号对应的幅值相位调整系数。
在实际实施时, 上述射频功率放大系统的实现结构可以如图 4所示: 射频信号生成电路 301 , 可以采用 DAC和 AQM模块实现, 由 DAC将基 带数字信号转换为模拟信号,再由 AQM模块对该模拟信号进行正交调制,得 到原始射频信号, DAC与 AQM的连接关系如图 4所示; 射频信号处理电路 302 , 可以采用 QPS、 ABS、 LUT1、 LUT2和乘法器 实现, 各模块的连接关系如图 4中所示。 其中, QPS对原始射频信号进行正 交分解得到第一信号分量 §1和第二信号分量 s2; ABS对该原始射频信号进行 包络检波, 得到当前时刻该基带数字信号的包络 e; LUT1中存储预设的基带 数字信号的包络与幅值相位调整系数之间的第一组对应关系, 根据当前时刻 该基带数字信号的包络 e,确定第一路处理后射频信号对应的幅值相位调整系 数 ]^和1^2; LUT2中存储预设的基带数字信号的包络与幅值相位调整系数之 间的第二组对应关系, 根据当前时刻该基带数字信号的包络 e, 确定第二路处 理后射频信号对应的幅值相位调整系数 k21和 k22; 最终根据第一信号分量 Sl、 第二信号分量 ¾和第一路处理后射频信号对应的幅值相位调整系数 k„和 k12 可以计算得到第一路处理后射频信号 RFl , 根据第一信号分量 Sl、 第二信号分 量 s2和第二路处理后射频信号对应的幅值相位调整系数 k21 和 k22可以计算得 到第二路处理后射频信号 RF2;
功率放大器 303 , 在本发明实施例 1中, 具体可以采用两个 PA实现, 一 个 PA对第一路处理后射频信号 RFi进行功率放大, 另一个 PA对第二路处理 后射频信号 RF2进行功率放大;
合路器 304,将第一路放大后射频信号和第二路放大后射频信号合路后输 出。
可选地, 射频功率放大系统的实现结构还可以如图 5 所示, 相比于图 4 所示的射频功率放大系统, 在输入端设置了 SCS进行基带数字信号的转发, 射频信号处理电路 302可以直接从 SCS获取当前时刻该基带数字信号的包络 e, 更为准确。
在实际的应用场景中, 为更好的保证系统性能, 射频功率放大系统在最 前端通常还会设置 QMC ( Quadrature Modulation Compensator,正交调制补偿) 模块实现对后端 AQM的非平衡补偿;在 AQM模块后设置 VGA( Variable Gain Adjust, 可变增益调整)模块和 AMP ( Amplifier, 放大器), 分别实现对原始 射频信号的增益调整及信号放大, 此时, 射频功率放大系统的实现结构如图 6 所示。
进一步的, 射频信号处理电路 302还用于确定预设的基带数字信号的包 络与幅值相位调整系数之间的第一组对应关系和预设的基带数字信号的包络 与幅值相位调整系数之间的第二组对应关系。
例如, 射频信号处理电路 302, 可以但不限于采用如下方式确定预设的基 带数字信号的包络与幅值相位调整系数之间的第一组对应关系:
根据该基带数字信号和预设的第一路处理后射频信号, 采用递推最小二 乘法 (RLS 算法)确定该预设的基带数字信号的包络与幅值相位调整系数之 间的第一组对应关系; 或者根据该原始射频信号和预设的第一路处理后射频 信号, 采用递推最小二乘法确定该预设的基带数字信号的包络与幅值相位调 整系数之间的第一组对应关系;
相应的, 射频信号处理电路 302, 可以但不限于釆用如下方式确定预设的 基带数字信号的包絡与幅值相位调整系数之间的第二组对应关系:
根据该基带数字信号和预设的第二路处理后射频信号, 采用递推最小二 乘法确定该预设的基带数字信号的包络与幅值相位调整系数之间的第二组对 应关系; 或者根据该原始射频信号和预设的第二路处理后射频信号, 釆用递 推最小二乘法确定该预设的基带数字信号的包络与幅值相位调整系数之间的 第二组对应关系。
上述釆用递推最小二乘法确定第一对应关系以及第二对应关系仅为一个 示例, 在本发明的其它实施例中, 也可以采用现有技术的其它算法确定第一 对应关系和第二对应关系, 例如最小均方法 ( LMS算法) 等, 本发明实施例 对此不做特别限定。
在射频功率放大系统中, 在两路功放的工作状态不变时, 基带数字信号 分别和预设的两路处理后射频信号的对应关系在具体的某一时刻是静态的, 这种对应关系能够通过基带数字信号的包络与幅值相位调整系数之间的对应 关系来呈现, 用函数表示为: F (基带数字信号的包络) =幅值相位调整系数。 其中, F可以用多项式来表示, 也可以用其他形式来表示。 当采用递推最小二 乘法确定基带数字信号的包络与幅值相位调整系数之间的对应关系时, F便可 以用多项式来表示。
在两路功放的工作状态发生变化时, 基带数字信号的包络与幅值相位调 整系数之间的对应关系可以根据功放的工作状态进行更新。
釆用本发明实施例提供的射频功率放大系统, 在射频信号部分进行信号 分路, 不需要多路完整的放大链路, 筒化了系统结构, 减少了系统中模块的 数量, 不但降低了系统成本, 更减少了信号非线性失真因素, 有利于线性校 正, 并且对 DAC、 AQM等模块的带宽要求较低。
需要说明的是上述图 4-图 6所示的射频功率放大系统的具体实现方式仅 为示例, 并不用于限定本发明。
在本发明上述实施例 1 提供的射频功率放大系统中, 对原始射频信号进 行处理得到两路处理后射频信号, 在本发明的其它实施例提供的射频功率放 大系统中, 也可以对原始射频信号进行处理得到两路以上处理后射频信号, 在此不再赘述。
实施例 2:
本发明实施例 2还提供了一种发射机, 包括图 2-图 6任一所示的射频功 率放大系统。
该发射机还可以包括滤波器和天线; 滤波器可以用于对射频功率放大系 统处理得到的合路后信号进行滤波, 得到待发射信号; 天线可以用于发射该 待发射信号。
实施例 3:
本发明实施例 3还提供了一种基站, 包括上述实施例 2中提供的发射机。 该基站还可以包括基带处理单元 (base band unit ),用于生成基带数字信 号, 实施例 2提供的发射机可以对该基带数字信号进行功率放大、 滤波及发 射处理。
实施例 4:
基于同一发明构思, 本发明实施例还提供一种射频功率放大方法, 如图 7 所示, 包括:
步骤 701、 对基带数字信号进行处理, 得到原始射频信号;
步骤 702、 对该原始射频信号进行处理, 得到 N路处理后射频信号; 其 中, N大于等于 2;
步骤 703、 对该 N路处理后射频信号分别进行功率放大, 得到 N路放大 后射频信号;
步骤 704、 对该 N路放大后射频信号进行合路。
其中, 本发明实施例对 N路处理后射频信号的具体形式不做特别限定, 比如, 该 N路处理后射频信号中的 i路信号的等效合路信号可以与该 N路处 理后射频信号中除该 1路信号外的其余 j路信号的等效合路信号幅值相等且均 为定值,该 1路信号的等效合路信号相对于该原始射频信号形成的相位偏角与 该 j 路信号的等效合路信号相对于该原始射频信号形成的相位偏角大小相同 且方向相反, i大于等于 1 , j大于等于 1。
进一步的, 步骤 701具体可以包括:
对基带数字信号进行数模转换, 得到模拟信号; 对该模拟信号进行正交 调制, 得到原始射频信号。
进一步的, 步骤 702具体可以包括:
对该原始射频信号进行分解, 得到第一信号分量和第二信号分量; 基于公式
Figure imgf000018_0001
kn2x s2 , 得到第 n路处理后射频信号;
其中, n=l、 2 N, RFn为第 n路处理后射频信号, Sl为第一信号分 量, ¾为第二信号分量, knl和 k„2为当前时刻第 n路处理后射频信号对应的幅 值相位调整系数。
上述得到第 n路处理后射频信号的具体计算方法仅为一个示例, 并不用 于限定本发明。
可选的, 步骤 702 中对该原始射频信号进行分解, 得到第一信号分量和 第二信号分量, 具体可以包括: 对该原始射频信号进行正交分解, 得到第一 信号分量和第二信号分量。 进一步的, 该射频功率放大方法还可以包括确定当前时刻第 n路处理后 射频信号对应的幅值相位调整系数, 包括,
基于预设的基带数字信号的包络与幅值相位调整系数之间的第 n组对应 关系, 确定当前时刻该基带数字信号的包络对应的幅值相位调整系数为当前 时刻第 n路处理后射频信号对应的幅值相位调整系数。
进一步的, 该射频功率放大方法还可以包括获取当前时刻该基带数字信 号的包络, 包括,
对该基带数字信号进行包络检波, 得到当前时刻该基带数字信号的包络; 或者对该原始射频信号进行包络检波, 得到当前时刻该基带数字信号的包络。
进一步的, 该射频功率放大方法还可以包括确定该预设的基带数字信号 的包络与幅值相位调整系数之间的第 n组对应关系, 包括,
根据该基带数字信号和预设的第 n路处理后射频信号, 釆用递推最小二 乘法确定该预设的基带数字信号的包络与幅值相位调整系数之间的第 n组对 应关系; 或者根据该原始射频信号和预设的第 n路处理后射频信号, 采用递 推最小二乘法确定该预设的基带数字信号的包络与幅值相位调整系数之间的 第 n组对应关系。
上述采用递推最小二乘法确定第一对应关系以及第二对应关系仅为一个 示例, 在本发明的其它实施例中, 也可以采用现有技术的其它算法确定第一 对应关系和第二对应关系, 例如最小均方法 ( LMS算法) 等, 本发明实施例 对此不做特别限定。
上述各步骤可对应于图 2-图 6中系统各部分的功能, 在此不再赘述。 釆用本发明实施例提供的射频功率放大方法, 在射频信号部分进行信号 分路, 不需要多路完整的放大链路, 筒化了射频功率放大系统结构, 减少了 系统中模块的数量, 不但降低了系统成本, 更减少了信号非线性失真因素, 有利于线性校正, 并且对 DAC、 AQM等模块的带宽要求较低。
实施例 5:
本发明实施例 5提供了一种射频功率放大设备, 其结构示意图如图 8所 示, 包括处理器 801 , 存储器 802, 和通信总线, 其中: 通信总线用于处理器 801和存储器 802之间的连接通信;处理器 801用于执行存储器 802中存储的 应用程序 8021 ; 存储器 802可能包含高速随机存取存储器 (RAM: Random Access Memory ), 也可能还包括非不稳、定的存 4诸器 (non-volatile memory ), 例如磁盘存储器, 存储器 802存储的应用程序 8021包括: 对基带数字信号进 行处理, 得到原始射频信号; 对该原始射频信号进行处理, 得到 N路处理后 射频信号; 其中, N大于等于 2; 对该 N路处理后射频信号分别进行功率放 大, 得到 N路放大后射频信号; 对该 N路放大后射频信号进行合路。
在一些实施方式中, 该 N路处理后射频信号中的 i路信号的等效合路信 号可以与该 N路处理后射频信号中除该 i路信号外的其余 j路信号的等效合路 信号幅值相等且均为定值,该 1路信号的等效合路信号相对于该原始射频信号 形成的相位偏角与该 j 路信号的等效合路信号相对于该原始射频信号形成的 相位偏角大小相同且方向相反, 1大于等于 1 , j大于等于 1。
在一些实施方式中, 应用程序 8021具体可以包括: 对基带数字信号进行 数模转换, 得到模拟信号; 对该模拟信号进行正交调制, 得到原始射频信号。
在一些实施方式中, 应用程序 8021具体可以包括: 对该原始射频信号进 行分解, 得到第一信号分量和第二信号分量; 基于公式 RFn=knlxSl+ kn2xs2, 得到第 n路处理后射频信号; 其中, n=l、 2 N, RFn为第 n路处理后射 频信号, Sl为第一信号分量, s2为第二信号分量, knl和 kn2为当前时刻第 n路 处理后射频信号对应的幅值相位调整系数。
在一些实施方式中, 应用程序 8021具体可以包括: 对该原始射频信号进 行正交分解, 得到第一信号分量和第二信号分量。
在一些实施方式中, 应用程序 8021还可以包括: 确定当前时刻第 n路处 理后射频信号对应的幅值相位调整系数, 包括,
基于预设的基带数字信号的包络与幅值相位调整系数之间的第 n组对应 关系, 确定当前时刻该基带数字信号的包絡对应的幅值相位调整系数为当前 时刻第 n路处理后射频信号对应的幅值相位调整系数。 在一些实施方式中, 应用程序 8021还可以包括: 获取当前时刻该基带数 字信号的包络, 包括,
对该基带数字信号进行包络检波, 得到当前时刻该基带数字信号的包络; 或者对该原始射频信号进行包络检波, 得到当前时刻该基带数字信号的包絡。
在一些实施方式中, 应用程序 8021还可以包括: 确定该预设的基带数字 信号的包络与幅值相位调整系数之间的第 n组对应关系, 包括,
根据该基带数字信号和预设的第 n路处理后射频信号, 采用递推最小二 乘法确定该预设的基带数字信号的包络与幅值相位调整系数之间的第 n组对 应关系; 或者根据该原始射频信号和预设的第 n路处理后射频信号, 釆用递 推最小二乘法确定该预设的基带数字信号的包络与幅值相位调整系数之间的 第 n组对应关系。
釆用本发明实施例提供的射频功率放大设备不需要多路完整的放大链 路, 因此能够减少信号非线性失真因素, 有利于线性校正, 并且降低了系统 成本。
本领域内的技术人员应明白, 尽管已描述了本发明的优选实施例, 但本 领域内的技术人员一旦得知了基本创造性概念, 则可对这些实施例作出另外 的变更和修改。 所以, 所附权利要求意欲解释为包括优选实施例以及落入本 发明范围的所有变更和修改。
显然, 本领域的技术人员可以对本发明实施例进行各种改动和变型而不 脱离本发明实施例的精神和范围。 这样, 倘若本发明实施例的这些修改和变 型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些 改动和变型在内。

Claims

权 利 要 求
1、 一种射频功率放大系统, 其特征在于, 包括:
射频信号生成电路, 用于对基带数字信号进行处理, 得到原始射频信号; 射频信号处理电路, 用于对所述原始射频信号进行处理, 得到 N路处理 后射频信号; 其中, N大于等于 2;
功率放大器, 用于对所述 N路处理后射频信号分别进行功率放大, 得到 N路放大后射频信号;
合路器, 用于对所述 N路放大后射频信号进行合路。
2、 如权利要求 1所述的系统, 其特征在于, 所述 N路处理后射频信号中 的 i路信号的等效合路信号与所述 N路处理后射频信号中除所述 i路信号外的 其余 j路信号的等效合路信号幅值相等且均为定值, 所述 i路信号的等效合路 信号相对于所述原始射频信号形成的相位偏角与所述 j 路信号的等效合路信 号相对于所述原始射频信号形成的相位偏角大小相同且方向相反, 1大于等于 1, j大于等于 1。
3、如权利要求 1或 2所述的系统, 其特征在于, 所述射频信号处理电路, 具体用于对所述原始射频信号进行分解, 得到第一信号分量和第二信号分量; 基于公式
Figure imgf000022_0001
kn^s^得到第 n路处理后射频信号; 其中, n=l、 2
N, RFn为第 n路处理后射频信号, Sl为第一信号分量, s2为第二信号分量, knl和 为当前时刻第 n路处理后射频信号对应的幅值相位调整系数。
4、 如权利要求 3所述的系统, 其特征在于, 所述射频信号处理电路, 还 用于确定当前时刻第 n路处理后射频信号对应的幅值相位调整系数, 包括, 基于预设的基带数字信号的包络与幅值相位调整系数之间的第 n组对应 关系, 确定当前时刻所述基带数字信号的包络对应的幅值相位调整系数为当 前时刻第 n路处理后射频信号对应的幅值相位调整系数。
5、 如权利要求 4所述的系统, 其特征在于, 所述射频信号处理电路, 还 用于获取当前时刻所述基带数字信号的包络, 包括, 对所述基带数字信号进行包络检波, 得到当前时刻所述基带数字信号的 包络; 或者对所述原始射频信号进行包絡检波, 得到当前时刻所述基带数字 信号的包络。
6、如权利要求 4或 5所述的系统, 其特征在于, 所述射频信号处理电路, 还用于确定所述预设的基带数字信号的包络与幅值相位调整系数之间的第 n 组对应关系, 包括,
根据所述基带数字信号和预设的第 n路处理后射频信号, 采用递推最小 二乘法确定所述预设的基带数字信号的包络与幅值相位调整系数之间的第 n 组对应关系; 或者才艮据所述原始射频信号和预设的第 n路处理后射频信号, 采用递推最小二乘法确定所述预设的基带数字信号的包络与幅值相位调整系 数之间的第 n组对应关系。
7、 一种发射机, 其特征在于, 包括如权利要求 1-6任一所述的射频功率 放大系统。
8、 一种基站, 其特征在于, 包括如权利要求 7所述的发射机。
9、 一种射频功率放大方法, 其特征在于, 包括:
对基带数字信号进行处理, 得到原始射频信号;
对所述原始射频信号进行处理, 得到 N路处理后射频信号; 其中, N大 于等于 2;
对所述 N路处理后射频信号分别进行功率放大, 得到 N路放大后射频信 号;
对所述 N路放大后射频信号进行合路。
10、 如权利要求 9所述的方法, 其特征在于, 所述 N路处理后射频信号 中的 i路信号的等效合路信号与所述 N路处理后射频信号中除所述 i路信号外 的其余 j路信号的等效合路信号幅值相等且均为定值, 所述 i路信号的等效合 路信号相对于所述原始射频信号形成的相位偏角与所述 j 路信号的等效合路 信号相对于所述原始射频信号形成的相位偏角大小相同且方向相反, i大于等 于 1 , j大于等于 1。
11、 如权利要求 9或 10所述的方法, 其特征在于, 对所述原始射频信号 进行处理, 得到 N路处理后射频信号, 具体包括:
对所述原始射频信号进行分解, 得到第一信号分量和第二信号分量; 基于公式 RFn=knl xSl+ kn2x s2 , 得到第 n路处理后射频信号;
其中, n=l、 2 N, RFn为第 n路处理后射频信号, Sl为第一信号分 量, ¾为第二信号分量, knl和 1¾为当前时刻第 n路处理后射频信号对应的幅 值相位调整系数。
12、 如权利要求 11所述的方法, 其特征在于, 还包括确定当前时刻第 n 路处理后射频信号对应的幅值相位调整系数, 包括,
基于预设的基带数字信号的包络与幅值相位调整系数之间的第 n组对应 关系, 确定当前时刻所述基带数字信号的包络对应的幅值相位调整系数为当 前时刻第 n路处理后射频信号对应的幅值相位调整系数。
13、 如权利要求 12所述的方法, 其特征在于, 还包括获取当前时刻所述 基带数字信号的包絡, 包括,
对所述基带数字信号进行包络检波, 得到当前时刻所述基带数字信号的 包络; 或者
对所述原始射频信号进行包络检波, 得到当前时刻所述基带数字信号的 包络。
14、 如权利要求 12或 13所述的方法, 其特征在于, 还包括确定所述预 设的基带数字信号的包络与幅值相位调整系数之间的第 n组对应关系, 包括, 根据所述基带数字信号和预设的第 n路处理后射频信号, 采用递推最小 二乘法确定所述预设的基带数字信号的包络与幅值相位调整系数之间的第 n 组对应关系; 或者
根据所述原始射频信号和预设的第 n路处理后射频信号, 采用递推最小 二乘法确定所述预设的基带数字信号的包络与幅值相位调整系数之间的第 n 组对应关系。
PCT/CN2014/080102 2014-06-17 2014-06-17 射频功率放大系统、射频功率放大方法、发射机及基站 WO2015192320A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480030180.6A CN105900333B (zh) 2014-06-17 2014-06-17 射频功率放大系统、射频功率放大方法、发射机及基站
PCT/CN2014/080102 WO2015192320A1 (zh) 2014-06-17 2014-06-17 射频功率放大系统、射频功率放大方法、发射机及基站
EP14895163.5A EP3145080B1 (en) 2014-06-17 2014-06-17 Radio frequency power amplification system, radio frequency power amplification method, transmitter, and base station
US15/382,030 US9853664B2 (en) 2014-06-17 2016-12-16 Radio frequency power amplification system, radio frequency power amplification method, transmitter, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/080102 WO2015192320A1 (zh) 2014-06-17 2014-06-17 射频功率放大系统、射频功率放大方法、发射机及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/382,030 Continuation US9853664B2 (en) 2014-06-17 2016-12-16 Radio frequency power amplification system, radio frequency power amplification method, transmitter, and base station

Publications (1)

Publication Number Publication Date
WO2015192320A1 true WO2015192320A1 (zh) 2015-12-23

Family

ID=54934675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080102 WO2015192320A1 (zh) 2014-06-17 2014-06-17 射频功率放大系统、射频功率放大方法、发射机及基站

Country Status (4)

Country Link
US (1) US9853664B2 (zh)
EP (1) EP3145080B1 (zh)
CN (1) CN105900333B (zh)
WO (1) WO2015192320A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021129662A1 (zh) * 2019-12-23 2021-07-01 京信网络系统股份有限公司 Das合路系统
US20230139755A1 (en) * 2018-04-20 2023-05-04 Advanced Energy Industries, Inc. Generator with controllable source impedance

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018137184A1 (zh) 2017-01-25 2018-08-02 华为技术有限公司 一种信号处理方法及设备
US20180234275A1 (en) * 2017-02-14 2018-08-16 Avago Technologies General Ip (Singapore) Pte. Ltd. Modulator-demodulator (modem) architecture for full duplex communciations
US10171115B1 (en) * 2017-12-19 2019-01-01 Movandi Corporation Outphasing calibration in a radio frequency (RF) transmitter device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712592A (en) * 1995-03-06 1998-01-27 Applied Materials, Inc. RF plasma power supply combining technique for increased stability
CN2514548Y (zh) * 2001-12-14 2002-10-02 深圳市中兴通讯股份有限公司上海第二研究所 一种宽带大功率线性功率放大装置
US6731172B2 (en) * 2001-01-16 2004-05-04 Skyworks Solutions, Inc. Doherty power amplifier with integrated quarter wave transformer/combiner circuit
CN101091322A (zh) * 2004-12-24 2007-12-19 华为技术有限公司 巴特勒-多赫尔蒂功率放大器
CN201869167U (zh) * 2010-10-29 2011-06-15 北京握奇数据系统有限公司 一种射频功率放大模块及设备
CN102386852A (zh) * 2011-07-19 2012-03-21 芯通科技(成都)有限公司 数字多载波功率放大的方法及实现该方法的功率放大器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5365187A (en) * 1993-10-29 1994-11-15 Hewlett-Packard Company Power amplifier utilizing the vector addition of two constant envelope carriers
US6825719B1 (en) * 2000-05-26 2004-11-30 Intel Corporation RF power amplifier and methods for improving the efficiency thereof
SE521673C2 (sv) * 2001-11-29 2003-11-25 Ericsson Telefon Ab L M Sammansatt förstärkare
US7266159B2 (en) * 2002-03-08 2007-09-04 Andrew Corporation Frequency-dependent magnitude pre-distortion on non-baseband input signals for reducing spurious emissions in communication networks
US7142831B2 (en) * 2003-12-18 2006-11-28 Kiomars Anvari Crest factor reduction and amplitude pre-distortion for multi-carrier signals
US8019015B2 (en) * 2007-02-26 2011-09-13 Harris Corporation Linearization of RF power amplifiers using an adaptive subband predistorter
EP2132872B1 (en) * 2007-03-30 2018-11-28 Apple Inc. Amplifier pre-distortion systems and methods
US7702301B2 (en) * 2007-05-30 2010-04-20 Sige Semiconductor Inc. Method and apparatus for distortion correction of RF amplifiers
ES2381533T3 (es) * 2009-05-12 2012-05-29 St-Ericsson Sa Amplificador de RF con filtro digital para transmisor polar
FR2947411B1 (fr) * 2009-06-30 2015-02-13 Thales Sa Generateur d'un signal radiofrequence module de forte puissance, procede de calibration du generateur et systeme d'imagerie par resonance magnetique
CN102025327B (zh) * 2009-09-18 2013-01-02 富士通株式会社 放大器装置和预失真控制方法
JP2012034134A (ja) * 2010-07-29 2012-02-16 Sumitomo Electric Device Innovations Inc 増幅器
KR101128487B1 (ko) * 2010-10-12 2012-06-21 포항공과대학교 산학협력단 전력 증폭기 선형화 방법 및 장치
JP5556643B2 (ja) * 2010-12-17 2014-07-23 富士通株式会社 増幅装置および歪み補償方法
JPWO2012086830A1 (ja) * 2010-12-20 2014-06-05 日本電気株式会社 増幅装置およびその制御方法
US8604881B2 (en) * 2011-05-24 2013-12-10 Samsung Electronics Co., Ltd. Efficiency improvement of doherty power amplifier using supply switching and digitally controlled gate bias modulation of peaking amplifier
JP5906967B2 (ja) * 2012-06-29 2016-04-20 富士通株式会社 歪補償装置および歪補償方法
JP5933471B2 (ja) * 2013-03-14 2016-06-08 パナソニック株式会社 フェーズドアレイ送信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712592A (en) * 1995-03-06 1998-01-27 Applied Materials, Inc. RF plasma power supply combining technique for increased stability
US6731172B2 (en) * 2001-01-16 2004-05-04 Skyworks Solutions, Inc. Doherty power amplifier with integrated quarter wave transformer/combiner circuit
CN2514548Y (zh) * 2001-12-14 2002-10-02 深圳市中兴通讯股份有限公司上海第二研究所 一种宽带大功率线性功率放大装置
CN101091322A (zh) * 2004-12-24 2007-12-19 华为技术有限公司 巴特勒-多赫尔蒂功率放大器
CN201869167U (zh) * 2010-10-29 2011-06-15 北京握奇数据系统有限公司 一种射频功率放大模块及设备
CN102386852A (zh) * 2011-07-19 2012-03-21 芯通科技(成都)有限公司 数字多载波功率放大的方法及实现该方法的功率放大器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230139755A1 (en) * 2018-04-20 2023-05-04 Advanced Energy Industries, Inc. Generator with controllable source impedance
WO2021129662A1 (zh) * 2019-12-23 2021-07-01 京信网络系统股份有限公司 Das合路系统

Also Published As

Publication number Publication date
US20170149460A1 (en) 2017-05-25
EP3145080B1 (en) 2018-08-08
EP3145080A1 (en) 2017-03-22
EP3145080A4 (en) 2017-05-24
US9853664B2 (en) 2017-12-26
CN105900333A (zh) 2016-08-24
CN105900333B (zh) 2018-10-30

Similar Documents

Publication Publication Date Title
US10727896B2 (en) Tower top device and passive intermodulation cancellation method
JP5432374B2 (ja) 無線通信のための高効率送信機
US9762268B2 (en) Wireless transceiver
JP2008028509A (ja) 送信電力増幅器とその制御方法及び無線通信装置
US9853664B2 (en) Radio frequency power amplification system, radio frequency power amplification method, transmitter, and base station
WO2012113292A1 (zh) 一种实现数字基带预失真的方法及装置
CN106170918B (zh) 为非线性损伤数字预失真误差信号减去线性损伤
US20120098596A1 (en) Power amplifier apparatus, distortion compensation coefficient updating method, and transmission apparatus
US10917051B2 (en) Wireless architectures and digital pre-distortion (DPD) techniques using closed loop feedback for phased array transmitters
WO2013170623A1 (zh) 一种射频信号的控制方法和设备
US20200321673A1 (en) Signal processing circuit, radio frequency signal transmitter, and communications device
WO2015165087A1 (zh) 一种预失真系统和方法
WO2017185750A1 (zh) 模拟预失真系统、收发信机和通信设备
US20140300418A1 (en) Auto gain adjusting device and method thereof
JPWO2018199233A1 (ja) 送信機、通信システム、送信機の制御方法及びプログラム
US20110221524A1 (en) Radio apparatus, distortion correction device, and distortion correction method
US20210314204A1 (en) Polar Transmitter with FeedThrough Compensation
WO2014172849A1 (zh) 发射机和用于信号发射的方法
WO2022000529A1 (zh) 幅度偏移的校准方法、设备以及存储介质
WO2015188578A1 (zh) 非线性系统失真校正装置及方法
CN102833198A (zh) 针对零中频架构的iq不平衡校正系统及方法
JP2015146529A (ja) 増幅装置、及び増幅方法
JP5772557B2 (ja) 増幅器
WO2018137184A1 (zh) 一种信号处理方法及设备
US20170149458A1 (en) Distortion compensation device and distortion compensation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895163

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014895163

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014895163

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE