WO2015189878A1 - Solar cell and method for manufacturing same - Google Patents

Solar cell and method for manufacturing same Download PDF

Info

Publication number
WO2015189878A1
WO2015189878A1 PCT/JP2014/003159 JP2014003159W WO2015189878A1 WO 2015189878 A1 WO2015189878 A1 WO 2015189878A1 JP 2014003159 W JP2014003159 W JP 2014003159W WO 2015189878 A1 WO2015189878 A1 WO 2015189878A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
amorphous semiconductor
electrode
layer
amorphous
Prior art date
Application number
PCT/JP2014/003159
Other languages
French (fr)
Japanese (ja)
Inventor
金子 哲也
宏 野毛
愛子 佐藤
公彦 斉藤
近藤 道雄
Original Assignee
国立大学法人福島大学
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人福島大学, 独立行政法人産業技術総合研究所 filed Critical 国立大学法人福島大学
Priority to JP2016527498A priority Critical patent/JPWO2015189878A1/en
Priority to PCT/JP2014/003159 priority patent/WO2015189878A1/en
Publication of WO2015189878A1 publication Critical patent/WO2015189878A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell and a manufacturing method thereof. More specifically, the present invention relates to a solar cell having a back electrode type heterojunction structure and a manufacturing method thereof.
  • a solar cell having a heterojunction structure In a solar cell having a heterojunction structure, light is received from the main surface side of the n-type single crystal silicon substrate, and power is generated by generating excess carriers in the n-type single crystal silicon substrate. The electric power generated at this time can be taken out by the two electrodes which are electrically paired.
  • Japanese Patent Publication No. 2003-298078 discloses a solar cell having such a structure.
  • the documents ⁇ Meijun Lu, Ujjwal Das, Stuart Bowden, Steven Hegedus and RobertBirkmire, Opt'Optimization of interdigitated back contact silicon heterojunctionsolar cells: tailoring hetero-interface band structures while maintainingsurface passics , 326-338, 2011 discloses another example.
  • Japanese Patent Publication No. 2013-168605 discloses another example.
  • Japanese Patent Publication No. 2013-131586 discloses another example.
  • Japanese Patent Publication 2005-101151 discloses another example.
  • Another example is disclosed in International Patent Publication No. WO2010 / 113750.
  • Another example is disclosed in Japanese Patent Publication No. 2009-200267.
  • another example is disclosed in US Pat. No. US8525018.
  • the invention of the solar cell is disclosed below.
  • the solar cell A semiconductor substrate of one conductivity type having a light receiving surface and a back surface; An intrinsic first amorphous semiconductor layer disposed on the back surface of the semiconductor substrate and having a comb shape; A second amorphous semiconductor layer that is disposed on the first amorphous semiconductor layer and includes an impurity having a conductivity type different from that of the semiconductor substrate; A first electrode disposed on the entire surface of the second amorphous semiconductor layer; An intrinsic third amorphous semiconductor layer which is disposed on the back surface of the semiconductor substrate and has a comb shape which meshes with the first amorphous semiconductor layer and partially overlaps the first electrode in plan view; , A fourth amorphous semiconductor layer including an impurity disposed on the third amorphous semiconductor layer and including an impurity having the same conductivity type as the semiconductor substrate; And a second electrode disposed on the fourth amorphous semiconductor layer.
  • the manufacturing method of the solar cell is as follows: Forming an intrinsic first amorphous semiconductor layer on the back surface of the one-conductivity-type semiconductor substrate having a light-receiving surface; Forming a second amorphous semiconductor layer containing an impurity having a conductivity type different from that of the semiconductor substrate on the first amorphous semiconductor layer; Forming a first electrode on the second amorphous semiconductor layer; Etching the first amorphous semiconductor layer, the second amorphous semiconductor layer, and the first electrode into a comb shape on the back surface of the semiconductor substrate; Forming an intrinsic third amorphous semiconductor layer including the portion of the semiconductor substrate exposed by the etching on the back surface of the semiconductor substrate provided with the first electrode; Forming a fourth amorphous semiconductor layer containing an impurity having the same conductivity type as that of the semiconductor substrate on the third amorphous semiconductor layer; The third amorphous semiconductor layer and the fourth amorphous semiconductor layer are engaged
  • the first electrode is arranged on the entire surface of the second amorphous semiconductor layer, carriers can be efficiently taken out. improves.
  • a solar cell with high power generation efficiency can be easily manufactured with high accuracy.
  • FIG. 5 is composed of FIGS. 5A to 5J.
  • FIG. 5 is a schematic cross-sectional view showing the manufacturing method of the first embodiment of the solar cell.
  • FIG. 5A shows the state after the first electrode is formed.
  • FIG. 5B shows a state after the mask for etching the first electrode is formed.
  • FIG. 5C shows the state after the first electrode has been etched.
  • FIG. 5D shows the situation after the mask has been removed.
  • FIG. 5E shows a state after the fourth amorphous semiconductor layer is formed.
  • FIG. 5F shows a state after the mask for etching the fourth amorphous semiconductor layer is formed.
  • FIG. 5G shows a state after the fourth amorphous semiconductor layer is etched.
  • FIG. 5H shows the situation after the mask is removed.
  • FIG. 5I shows the state after the second electrode and the collector electrode are formed.
  • FIG. 5J shows the state after the antireflection layer is formed.
  • FIG. 6 is configured from FIGS. 6A to 6D.
  • FIG. 6 is a schematic cross-sectional view showing the manufacturing method of the second embodiment of the solar cell.
  • FIG. 6A shows the state after the first electrode has been etched.
  • FIG. 6B shows the state after the insulator layer 9 is formed.
  • FIG. 6C shows a state after the fourth amorphous semiconductor layer is etched.
  • FIG. 6D shows the state after the second electrode and the collector electrode are formed.
  • 1st Embodiment of a solar cell the relationship between the separation distance of an electrode and the conversion efficiency (relative value) of a solar cell when hole mobility (micro
  • Crystalline semiconductors include single crystal semiconductors and polycrystalline semiconductors.
  • Amorphous semiconductors include amorphous semiconductors and microcrystalline semiconductors.
  • An intrinsic amorphous semiconductor is an amorphous semiconductor that is not intentionally doped with impurities.
  • Intrinsic amorphous semiconductors include amorphous semiconductors containing impurities that are inherently contained in semiconductor raw materials or impurities that are naturally mixed in the manufacturing process.
  • the plan view means that the solar cell is viewed from the back side in a direction perpendicular to the surface of the semiconductor substrate unless otherwise specified.
  • FIG. 1 shows a first embodiment of a solar cell.
  • FIG. 2 shows a part of the back surface of the first embodiment of the solar cell. The reason why it is a part of the back surface is that a part of the comb shape is shown. Actually, the comb shape may have a larger number of comb teeth.
  • a direction S perpendicular to the substrate to be viewed in plan is indicated by an arrow.
  • the direction P in which light travels is indicated by a white arrow.
  • This solar cell is a solar cell having a back electrode type heterojunction structure.
  • the solar cell includes a semiconductor substrate 10, a first amorphous semiconductor layer 1, a second amorphous semiconductor layer 2, a first electrode 11, and a third amorphous semiconductor layer. 3, a fourth amorphous semiconductor layer 4, and a second electrode 12.
  • the semiconductor substrate 10 has a light receiving surface 10a and a back surface 10b.
  • the semiconductor substrate 10 is of one conductivity type.
  • the first amorphous semiconductor layer 1 is disposed on the back surface 10 b of the semiconductor substrate 10.
  • the first amorphous semiconductor layer 1 is an intrinsic amorphous semiconductor layer.
  • the first amorphous semiconductor layer 1 has a comb shape.
  • the second amorphous semiconductor layer 2 is disposed on the first amorphous semiconductor layer 1.
  • the second amorphous semiconductor layer 2 exhibits a conductivity type different from that of the semiconductor substrate 10.
  • the second amorphous semiconductor layer 2 is an amorphous semiconductor layer containing impurities.
  • the first electrode 11 is disposed on the entire surface of the second amorphous semiconductor layer 2.
  • the third amorphous semiconductor layer 3 is disposed on the back surface 10 b of the semiconductor substrate 10.
  • the third amorphous semiconductor layer 3 is an intrinsic amorphous semiconductor layer.
  • the third amorphous semiconductor layer 3 has a comb shape that meshes with the first amorphous semiconductor layer 1.
  • the third amorphous semiconductor layer 3 partially overlaps the first electrode 11 in plan view.
  • the fourth amorphous semiconductor layer 4 is disposed on the third amorphous semiconductor layer 3.
  • the fourth amorphous semiconductor layer 4 has the same conductivity type as that of the semiconductor substrate 10.
  • the fourth amorphous semiconductor layer 4 is an amorphous semiconductor layer containing impurities.
  • the second electrode 12 is disposed
  • the first collector electrode 5 is disposed on the first electrode 11.
  • a second collector electrode 6 is disposed on the second electrode 12.
  • the second electrode 12 is separated from the first electrode 11 in plan view.
  • the light receiving surface 10a is a surface that receives light.
  • the light receiving surface 10a is also called a light incident surface.
  • the light receiving surface 10a is defined as a main surface.
  • the back surface 10b is a surface opposite to the light receiving surface 10a.
  • the semiconductor substrate 10 is a thin-plate semiconductor substrate.
  • the semiconductor substrate 10 has a p-type or n-type conductivity type.
  • One conductivity type means either p or n.
  • the semiconductor substrate 10 is preferably n-type.
  • the semiconductor substrate 10 is made of crystalline silicon, a compound semiconductor, or other semiconductor material that can be formed into a plate shape. Examples of crystalline silicon include single crystal silicon and polycrystalline silicon. Examples of the compound semiconductor include GaAs and InP.
  • As the semiconductor substrate 10, an n-type single crystal silicon substrate is preferably used.
  • the thickness of the semiconductor substrate 10 is not particularly limited.
  • the thickness of the semiconductor substrate 10 is preferably 10 to 200 ⁇ m from the viewpoint of member cost and handling.
  • the semiconductor substrate 10 preferably has a texture structure on one or both sides of the semiconductor substrate 10 from the viewpoint of improving efficiency. Since the texture structure can sufficiently confine incident light, an improvement in efficiency can be expected.
  • the texture structure may be a minute uneven structure, for example.
  • the minute uneven structure may have periodicity.
  • the texture structure is not essential.
  • an intrinsic semiconductor corresponds to i-type.
  • the semiconductor containing impurities may be n-type or p-type.
  • n-type semiconductor substrate 10 a p-type semiconductor substrate 10 may be used, and in that case, the structure can be understood if n-type and p-type are interchanged in the following description.
  • the first amorphous semiconductor layer 1 is an i-type amorphous semiconductor layer.
  • the first amorphous semiconductor layer 1 has a comb shape in plan view.
  • the second amorphous semiconductor layer 2 is a p-type amorphous semiconductor layer.
  • the second amorphous semiconductor layer 2 has a comb shape in plan view.
  • the comb shape of the first amorphous semiconductor layer 1 and the comb shape of the second amorphous semiconductor layer 2 may coincide with each other.
  • the first electrode 11 is a p-type electrode.
  • the first electrode 11 constitutes a back electrode.
  • the first electrode 11 has a comb shape in plan view.
  • the comb shape of the second amorphous semiconductor layer 2 and the comb shape of the first electrode 11 may coincide with each other. That is, the first amorphous semiconductor layer 1, the second amorphous semiconductor layer 2, and the first electrode 11 can have the same comb shape.
  • the second amorphous semiconductor layer 2 is disposed on the entire surface of the first amorphous semiconductor layer 1. It can be said that the second amorphous semiconductor layer 2 covers the first amorphous semiconductor layer 1.
  • the first electrode 11 is disposed on the entire surface of the second amorphous semiconductor layer 2. It can be said that the first electrode 11 covers the second amorphous semiconductor layer 2.
  • the first electrode 11, the first amorphous semiconductor layer 1, and the second amorphous semiconductor layer 2 are aligned at the ends.
  • the first amorphous semiconductor layer 1 and the second amorphous semiconductor layer 2 do not protrude from the first electrode 11. Therefore, the contact area between the first electrode 11 and the second amorphous semiconductor layer 2 becomes larger.
  • holes that are minority carriers generated in the semiconductor substrate 10 can be efficiently extracted to the outside. . Thereby, the power generation efficiency is improved.
  • the third amorphous semiconductor layer 3 is an i-type amorphous semiconductor layer.
  • the third amorphous semiconductor layer 3 has a comb shape in plan view.
  • the fourth amorphous semiconductor layer 4 is an n-type amorphous semiconductor layer.
  • the fourth amorphous semiconductor layer 4 has a comb shape in plan view.
  • the comb shape of the third amorphous semiconductor layer 3 and the comb shape of the fourth amorphous semiconductor layer 4 may be the same.
  • the second electrode 12 is an n-type electrode.
  • the second electrode 12 constitutes a back electrode.
  • the second electrode 12 has a comb shape in plan view.
  • the comb shape of the second electrode 12 may be a comb shape having a narrower width than the comb shape of the fourth amorphous semiconductor layer 4. That is, the width of the comb-shaped comb teeth of the second electrode 12 is smaller than the width of the comb-shaped comb teeth of the third amorphous semiconductor layer 3 and the fourth a
  • the fourth amorphous semiconductor layer 4 is disposed on the entire surface of the third amorphous semiconductor layer 3. It can be said that the fourth amorphous semiconductor layer 4 covers the third amorphous semiconductor layer 3.
  • the third amorphous semiconductor layer 3 is placed on the first electrode 11.
  • the third amorphous semiconductor layer 3 and the first electrode 11 are in contact with each other.
  • the third amorphous semiconductor layer 3 is arranged so as to bridge adjacent comb teeth of the first electrode 11.
  • the fourth amorphous semiconductor layer 4 is placed on the first electrode 11 following the shape of the third amorphous semiconductor layer 3.
  • the fourth amorphous semiconductor layer 4 is arranged so as to bridge adjacent comb teeth of the first electrode 11.
  • the ends of the third amorphous semiconductor layer 3 and the fourth amorphous semiconductor layer 4 are aligned.
  • the fourth amorphous semiconductor layer 4 has a flat portion 4a.
  • the flat portion 4 a is a flat portion of the fourth amorphous semiconductor layer 4 that is not placed on the first electrode 11.
  • the flat portion 4 a may be a portion where the surface of the fourth amorphous semiconductor layer 4 is formed in parallel with the surface of the semiconductor substrate 10. In the flat portion 4 a, there is no deformation of the fourth amorphous semiconductor layer 4 to be placed on the first electrode 11.
  • the second electrode 12 is preferably disposed on the flat portion 4a.
  • the second electrode 12 is preferably arranged so as not to protrude from the flat portion 4a.
  • the second electrode 12 does not have to be formed in a portion where the fourth amorphous semiconductor layer 4 is placed on the first electrode 11.
  • the first collector electrode 5 is disposed on the first electrode 11. Thereby, it becomes easy to take out an electric current.
  • the first collector electrode 5 is disposed on a portion of the first electrode 11 that is not covered with the third amorphous semiconductor layer 3 and the fourth amorphous semiconductor layer 4.
  • the edge of the first collector electrode 5 is located inside the edge of the first electrode 11.
  • the first collector electrode 5 is not in contact with the third amorphous semiconductor layer 3 and the fourth amorphous semiconductor layer 4. Thereby, the occurrence of leakage current is suppressed.
  • the first collector electrode 5 may have a comb shape.
  • the first collector electrode 5 can be configured as a p-type collector electrode.
  • the second collector electrode 6 is disposed on the second electrode 12. Thereby, it becomes easy to take out an electric current.
  • the second collector electrode 6 is preferably disposed on the entire surface of the second electrode 12.
  • the second collector electrode 6 may have a comb shape.
  • the comb shape of the second electrode 12 and the comb shape of the second collector electrode 6 may be the same shape.
  • the second collector electrode 6 can be configured as an n-type collector electrode.
  • the first electrode 11 and the first collector electrode 5 on the p-type second amorphous semiconductor layer 2 constitute a positive electrode.
  • the second electrode 12 and the second collector electrode 6 on the n-type fourth amorphous semiconductor layer 4 constitute a negative electrode.
  • the first amorphous semiconductor layer 1 and the third amorphous semiconductor layer 3 have a comb shape that meshes with each other.
  • the second amorphous semiconductor layer 2 and the fourth amorphous semiconductor layer 4 have a comb shape that meshes with each other.
  • the first electrode 11 and the second electrode 12 have a comb shape that meshes with each other.
  • the first collector electrode 5 and the second collector electrode 6 have a comb shape that meshes with each other.
  • a combination of the second amorphous semiconductor layer 2 and the first electrode 11 is defined as a p-type structure
  • the p-type structure and the n-type structure have a comb shape that meshes with each other.
  • the comb shape is a shape having a plurality of comb teeth extending linearly and a base portion connected to the plurality of comb teeth.
  • the interdigitated comb shape is a shape in which two comb-shaped comb teeth are arranged between one comb-shaped comb teeth. This shape may be a shape in which one comb-shaped comb tooth and the other comb-shaped comb tooth are alternately arranged.
  • the two comb-shaped bases can be arranged on opposite sides of each other.
  • a part of the third amorphous semiconductor layer 3 and the fourth amorphous semiconductor layer 4 are part of the first amorphous semiconductor layer when viewed in plan.
  • the first amorphous semiconductor layer 2 and the first electrode 11 are overlapped. Therefore, there is no portion where the back surface 10b of the semiconductor substrate is directly exposed, and the surface recombination of carriers can be suppressed to improve efficiency.
  • FIG. 2 shows the comb shape.
  • FIG. 2 shows a comb shape in which the first collector electrode 5 and the second collector electrode 6 are engaged with each other.
  • the comb shape of the first collector electrode 5 includes a base portion 5B and a plurality of comb teeth 5A.
  • the comb shape of the second collector electrode 6 includes a base portion 6B and a plurality of comb teeth 6A.
  • Other layers of the comb shape will also be understood from this figure.
  • the interdigitated comb shapes partially overlap each other. Since the p-type amorphous semiconductor and the corresponding electrode, and the n-type amorphous semiconductor and the corresponding electrode are in a comb shape, the carriers generated by light reception are efficiently extracted to the outside. be able to.
  • the width of the comb teeth of the second amorphous semiconductor layer 2 is preferably larger than the width of the comb teeth of the fourth amorphous semiconductor layer 4. Thereby, minority carriers can be efficiently taken out over a wide area. Since the second amorphous semiconductor layer 2 has a conductivity type different from that of the semiconductor substrate 10, the efficiency is increased by increasing the area of the second amorphous semiconductor layer 2.
  • the second amorphous semiconductor layer 2 becomes n-type when the n-type semiconductor substrate 10 is used, and becomes p-type when the p-type semiconductor substrate 10 is used.
  • the width of the comb teeth is a length in a direction perpendicular to the direction in which the comb teeth extend. In FIG.
  • the width W5 of the comb teeth 5A of the first collector electrode 5 and the width W6 of the comb teeth 6A of the second collector electrode 6 are shown. 1 and 2, each layer (first electrode 11, second electrode 12, first amorphous semiconductor layer 1, second amorphous semiconductor layer 2, third amorphous system).
  • the width of the comb teeth of the semiconductor layer 3 and the fourth amorphous semiconductor layer 4) will be understood.
  • the width of the comb teeth of the second amorphous semiconductor layer 2 is preferably 1.2 times or more, more preferably 2 times or more than the width of the comb teeth of the fourth amorphous semiconductor layer 4. The above is more preferable.
  • the width of the comb teeth of the first electrode 11 is preferably larger than the width of the comb teeth of the second electrode 12.
  • the width of the comb teeth of the first collector electrode 5 is preferably larger than the width of the comb teeth of the second collector electrode 6.
  • FIG. 2 shows a relationship in which the width W5 of the comb teeth 5A of the first collector electrode 5 is larger than the width W6 of the comb teeth 6A of the second collector electrode 6.
  • the width of the comb teeth of the first electrode 11 is not particularly limited, but may be in the range of 100 to 5000 ⁇ m, for example.
  • the width of the comb teeth of the second electrode 12 is not particularly limited, but may be in the range of 10 to 1000 ⁇ m, for example.
  • the first electrode 11 and the second electrode 12 are separated from each other in plan view. That is, the first electrode 11 and the second electrode 12 do not overlap in plan view. It can be said that the comb teeth of the second electrode 12 are accommodated between the comb teeth of the first electrode 11.
  • the distance at which the first electrode 11 and the second electrode 12 are separated is indicated by a separation distance D.
  • the separation distance D is preferably larger than the total thickness of the third amorphous semiconductor layer 3 and the fourth amorphous semiconductor layer 4. Thereby, the leak current is easily reduced.
  • the separation distance D between the first electrode 11 and the second electrode 12 is preferably 10 ⁇ m or more and 100 ⁇ m or less.
  • the separation distance D is 100 ⁇ m or less, the series resistance with respect to the majority carriers decreases, and thus the efficiency is further improved. Further, when the separation distance D is 10 ⁇ m or more, the leakage current between the electrodes is easily reduced.
  • Each amorphous semiconductor layer (first to fourth amorphous semiconductor layers) is preferably composed of a hydrogenated amorphous semiconductor containing silicon. This is common to all of i-type, p-type and n-type.
  • the amorphous semiconductor include amorphous silicon, amorphous silicon carbide, and amorphous silicon germanium.
  • the amorphous semiconductor layer is not limited to these materials, and may be composed of other amorphous semiconductors.
  • the amorphous semiconductor layer may be composed of other thin film semiconductors.
  • impurities in the p-type amorphous semiconductor layer examples include B (boron), Al, and Ga (gallium). This impurity is preferably a group III element. B (boron) is preferably used as the impurity.
  • impurities in the n-type amorphous semiconductor layer include P (phosphorus), As (arsenic), and Sb (antimony). This impurity is preferably a group V element. P (phosphorus) is preferably used as the impurity.
  • the first electrode 11 may be a transparent electrode.
  • the second electrode 12 may be a transparent electrode. These electrodes can be formed of, for example, a transparent metal oxide.
  • the first electrode 11 and the second electrode 12 can be made of, for example, ITO (indium tin oxide), SnO 2 (tin oxide), or ZnO (zinc oxide).
  • the first electrode 11 and the second electrode 12 may be formed of the same material or may be formed of different materials.
  • the first collector electrode 5 and the second collector electrode 6 may be made of metal.
  • the first collector electrode 5 and the second collector electrode 6 can be made of, for example, Ag (silver), Al (aluminum), Cu (copper), or Au (gold).
  • the first collector electrode 5 and the second collector electrode 6 are preferably made of Ag.
  • the first collector electrode 5 and the second collector electrode 6 may be formed of the same material or different materials.
  • the second electrode 12 may be made of metal. In that case, the second electrode 12 may have the function of a collecting electrode, and the second collecting electrode 6 may be omitted. Thereby, the layer structure becomes easier.
  • each amorphous semiconductor layer (first to fourth amorphous semiconductor layers) is not particularly limited, but may be in the range of 1 to 50 nm, for example.
  • the thickness of these amorphous semiconductor layers is about 10 nm.
  • the thicknesses of the first electrode 11 and the second electrode 12 are not particularly limited, but may be in the range of 10 to 200 nm, for example.
  • the thickness of these electrodes is about 70 nm.
  • the thickness of the first collector electrode 5 and the second collector electrode 6 is not particularly limited, but may be in the range of 100 to 1000 nm, for example.
  • the thickness of these collector electrodes is about 200 nm.
  • an intrinsic amorphous semiconductor layer 7 is preferably disposed on the light receiving surface 10 a (main surface) of the semiconductor substrate 10. Thereby, carrier recombination on the main surface side surface is suppressed, and the efficiency of power generation is improved.
  • the amorphous semiconductor layer 7 may be an i-type amorphous semiconductor layer.
  • the amorphous semiconductor layer 7 is defined as a main surface amorphous semiconductor layer.
  • the amorphous semiconductor layer 7 is preferably disposed on the entire main surface of the semiconductor substrate 10.
  • the amorphous semiconductor layer 7 functions as a passivation film.
  • the amorphous semiconductor layer 7 is preferably composed of a hydrogenated amorphous semiconductor containing silicon.
  • amorphous semiconductor examples include amorphous silicon, amorphous silicon carbide, amorphous silicon oxide, and amorphous silicon nitride.
  • the thickness of the amorphous semiconductor layer 7 is not particularly limited, but may be in the range of 1 to 50 nm, for example.
  • the thickness of the amorphous semiconductor layer 7 is about 10 nm.
  • An antireflection layer 8 is preferably disposed on the amorphous semiconductor layer 7. Thereby, reflection of light is suppressed and light becomes easy to enter.
  • the amorphous semiconductor layer 7 is preferably formed of a material that absorbs little incident light.
  • the antireflection layer 8 can be formed of, for example, silicon nitride.
  • the thickness of the antireflection layer 8 is not particularly limited, but may be, for example, in the range of 30 to 2000 nm. For example, the thickness of the antireflection layer 8 is about 70 nm.
  • a single layer having the functions of the amorphous semiconductor layer 7 and the antireflection layer 8 may be disposed on the light receiving surface 10 a of the semiconductor substrate 10.
  • silicon nitride or aluminum nitride can have such a function.
  • an additional layer may be provided between the amorphous semiconductor layer 7 and the antireflection layer 8.
  • the additional layer may be composed of, for example, an amorphous semiconductor layer doped with impurities forming the surface electric field layer, or a dielectric layer having a fixed charge.
  • the solar cell described above efficiently takes out minority carriers generated in the semiconductor substrate 10 by disposing the first electrode 11 over the entire surface of the second comb-shaped amorphous semiconductor layer 2. be able to.
  • the electrode can be formed with the maximum area allowed by the processing accuracy. Then, the influence of series resistance due to in-plane conduction in the amorphous semiconductor layer is reduced. Therefore, the conversion efficiency of the solar cell is improved.
  • FIG. 3 shows a second embodiment of the solar cell.
  • FIG. 4 shows a part of the back surface of the second embodiment of the solar cell. The reason why it is a part of the back surface is that a part of the comb shape is shown. Actually, the comb shape may have a larger number of comb teeth.
  • a direction S perpendicular to the substrate to be viewed in plan is indicated by an arrow.
  • the direction P in which light travels is indicated by a white arrow.
  • the edge part 11a of the 1st electrode 11 is shown with the dashed-two dotted line.
  • the region where the insulator layer 9 is disposed is indicated by hatching.
  • the edge of the insulator layer 9 closer to the second electrode 12 is indicated by a broken line.
  • the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the second embodiment includes an insulator layer 9 disposed between the first electrode 11 and the third amorphous semiconductor layer 3. This point is different from the first embodiment. Other configurations may be the same as those of the first embodiment.
  • the insulator layer 9 has a function of electrically insulating the layers.
  • the insulator layer 9 suppresses contact between the first electrode 11 and the third amorphous semiconductor layer 3.
  • the insulator layer 9 straddles the edge 11 a of the first electrode 11.
  • the insulator layer 9 is disposed on the back surface 10 b of the semiconductor substrate 10 and is placed on the first electrode 11.
  • the insulator layer 9 is in contact with the semiconductor substrate 10.
  • the insulator layer 9 is in contact with the first electrode 11.
  • the insulator layer 9 covers the end portion of the first electrode 11.
  • the insulator layer 9 covers the side surface of the second amorphous semiconductor layer 2.
  • the insulator layer 9 covers the side surface of the first amorphous semiconductor layer 1.
  • the first amorphous semiconductor layer 1, the second amorphous semiconductor layer 2, and the first electrode 11 are connected to the third amorphous semiconductor layer 3 and the fourth non-crystalline semiconductor layer 3. It is electrically insulated from the crystalline semiconductor layer 4.
  • one edge of the insulator layer 9 is drawn so as to coincide with the edge of the third amorphous semiconductor layer 3 and the edge of the fourth amorphous semiconductor layer 4.
  • the edges do not necessarily coincide with each other, and the edge of the third amorphous semiconductor layer 3 and the edge of the fourth amorphous semiconductor layer 4 exist on the insulator layer 9. If you do.
  • the presence of the insulator layer 9 reduces the leakage current between the electrodes. Insulator layer 9 facilitates electrical separation between the p-side electrode and the n-side electrode, so that the leakage current between the electrodes becomes very small. Therefore, the power generation efficiency is improved, and a solar cell with good characteristics can be obtained.
  • the insulator layer 9 has a meandering shape in plan view. Since the insulator layer 9 is disposed along the shape of the edge of the comb teeth of the first electrode 11, it has a meandering shape.
  • the insulator layer 9 can be formed of an insulating material.
  • the insulating material may be an inorganic material or an organic material. Examples of the material for the insulator layer 9 include silica, silicon nitride, alumina, and polyimide.
  • the insulator layer 9 may be transparent, translucent, or opaque.
  • the thickness of the insulator layer 9 is not particularly limited, but may be in the range of 5 to 200 nm, for example. The thickness of the insulator layer 9 is, for example, about 70 nm.
  • the separation distance D may be less than 10 ⁇ m.
  • the second electrode 12 may be provided at a portion where the fourth amorphous semiconductor layer 4 is raised because the fourth amorphous semiconductor layer 4 is placed on the first electrode 11.
  • the first electrode 11 and the second electrode 12 may overlap with each other in plan view, and the separation distance D may be eliminated.
  • the separation distance D is preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • FIG. 5 is a cross-sectional view showing an example of the method for manufacturing the solar cell of the first embodiment.
  • FIG. 5 is composed of FIGS. 5A to 5J.
  • the method for manufacturing a solar cell includes the following steps: Forming the first amorphous semiconductor layer 1; Forming the second amorphous semiconductor layer 2; Forming the first electrode 11; Etching the first amorphous semiconductor layer 1, the second amorphous semiconductor layer 2 and the first electrode 11 into a comb shape; Forming a third amorphous semiconductor layer 3; Forming a fourth amorphous semiconductor layer 4; Etching the third amorphous semiconductor layer 3 and the fourth amorphous semiconductor layer 4 into a comb shape; Forming the second electrode 12;
  • the semiconductor substrate 10 is prepared.
  • An example of the semiconductor substrate 10 is an n-type single crystal silicon substrate.
  • the semiconductor substrate 10 is cleaned, transported into a vacuum chamber, and heated. As a result, moisture adhering to the surface of the substrate is removed.
  • an n-type semiconductor substrate is used will be described. However, if a p-type semiconductor substrate is used, the n-type and p-type of each material may be interchanged.
  • SiH 4 (silane) gas is introduced into the vacuum chamber, and the first amorphous semiconductor layer 1 is formed on the back surface 10b (surface opposite to the light receiving surface 10a) of the semiconductor substrate 10 by PECVD.
  • This is a step of forming the first amorphous semiconductor layer 1.
  • the first amorphous semiconductor layer 1 can be formed of i-type amorphous silicon.
  • the first amorphous semiconductor layer 1 does not contain impurities.
  • the first amorphous semiconductor layer 1 is intrinsic.
  • SiH 4 gas, H 2 (hydrogen) gas and B 2 H 6 (diborane) gas are introduced into the vacuum chamber, and the second amorphous semiconductor layer 1 is formed on the first amorphous semiconductor layer 1 by PECVD.
  • An amorphous semiconductor layer 2 is formed. This is a step of forming the second amorphous semiconductor layer 2.
  • the second amorphous semiconductor layer 2 can be formed of p-type amorphous silicon.
  • the second amorphous semiconductor layer 2 contains impurities. Impurities are doped.
  • the first electrode 11 is formed by sputtering, MOCVD (metal organic chemical vapor deposition), or printing. This is a step of forming the first electrode 11.
  • the first electrode 11 can be formed of, for example, ITO or ZnO.
  • FIG. 5A shows a state after the first electrode 11 is formed.
  • the first amorphous semiconductor layer 1, the second amorphous semiconductor layer 2 and the first electrode 11 are not patterned on the semiconductor substrate 10, It is provided in layers.
  • an etching resist material is applied in a comb shape on the first electrode 11, and the etching resist material is solidified.
  • an etching resist material a photoresist, pigment ink, polyimide, or the like may be used as long as it is a material that can be printed with high accuracy, has etching resistance, is easily peeled off after etching, and has little contamination.
  • the etching resist material can be applied by a printing method. Examples of the printing method include an inkjet printing method and a screen printing method. An etching resist layer 21 is formed from the etching resist material. Then, as shown in FIG.
  • the semiconductor substrate 10 on which the etching resist layer 21 is formed is immersed in an etching solution, and the first electrode 11, the second amorphous semiconductor layer 2, and the first amorphous semiconductor layer 10 are immersed.
  • the portion of the quality semiconductor layer 1 that is not covered with the etching resist layer 21 is removed.
  • This etching is wet etching.
  • As the etching solution for example, a mixed solution of an NH 4 F (ammonium fluoride) aqueous solution and an H 2 O 2 (hydrogen peroxide) aqueous solution is used. Etching may be performed by dry etching.
  • dry etching examples include reactive ion etching using SF 6 (sulfur hexafluoride), NF 3 (nitrogen trifluoride), CF 4 (carbon tetrafluoride), and the like.
  • the etching resist layer 21 is removed with a resist removing material.
  • the resist removing material for example, acetone is used. Accordingly, the first amorphous semiconductor layer 1, the second amorphous semiconductor layer 2, and the first electrode 11 are patterned into a comb shape. A series of these steps is a step of etching the first amorphous semiconductor layer 1, the second amorphous semiconductor layer 2, and the first electrode 11 into a comb shape.
  • the third amorphous-based semiconductor layer 3 Form.
  • the third amorphous semiconductor layer 3 can be formed of i-type amorphous silicon.
  • the third amorphous semiconductor layer 3 does not contain impurities.
  • the third amorphous semiconductor layer 3 is intrinsic.
  • the third amorphous semiconductor layer 3 is laminated so as to include a portion between the comb teeth from which the first electrode 11 is separated.
  • the fourth amorphous semiconductor layer 4 is formed by PECVD. This is a step of forming the fourth amorphous semiconductor layer 4.
  • the fourth amorphous semiconductor layer 4 can be formed of n-type amorphous silicon.
  • the fourth amorphous semiconductor layer 4 contains impurities. Impurities are doped.
  • the fourth amorphous semiconductor layer 4 is laminated so as to include a portion between the comb teeth from which the first electrode 11 is separated.
  • FIG. 5E shows a state after the fourth amorphous semiconductor layer 4 is formed.
  • the third amorphous semiconductor layer 3 and the fourth amorphous semiconductor layer 4 are provided in layers on the back side of the semiconductor substrate 10 without being patterned. It has been.
  • an etching resist material is applied in a comb shape on the fourth amorphous semiconductor layer 4 to solidify the etching resist material.
  • an etching resist material a photoresist, pigment ink, polyimide, or the like may be used as long as it is a material that can be printed with high accuracy, has etching resistance, is easily peeled off after etching, and has little contamination.
  • the etching resist material can be applied by a printing method. Examples of the printing method include an inkjet printing method and a screen printing method. An etching resist layer 22 is formed from the etching resist material. Then, as shown in FIG.
  • the semiconductor substrate 10 on which the etching resist layer 22 is formed is immersed in an etching solution, and the fourth amorphous semiconductor layer 4 and the third amorphous semiconductor layer 3 are formed. Then, the portion not covered with the etching resist layer 22 is removed.
  • This etching is wet etching.
  • the etching solution for example, a mixed solution of an HF (hydrofluoric acid) aqueous solution and an H 2 O 2 (hydrogen peroxide) aqueous solution is used. Etching may be performed by dry etching.
  • dry etching examples include reactive ion etching using SF 6 (sulfur hexafluoride), NF 3 (nitrogen trifluoride), CF 4 (carbon tetrafluoride), and the like. Etching is performed so as not to etch the first electrode 11 and the layer closer to the semiconductor substrate 10 than the first electrode 11. As a result, the first electrode 11 is exposed. Thereafter, as shown in FIG. 5H, the etching resist layer 22 is removed by a resist removing material. As the resist removing material, for example, acetone is used. As a result, the third amorphous semiconductor layer 3 and the fourth amorphous semiconductor layer 4 are patterned into a comb shape. A series of these steps is a step of etching the third amorphous semiconductor layer 3 and the fourth amorphous semiconductor layer 4 into a comb shape.
  • the second electrode 12 is formed in a pattern on the fourth amorphous semiconductor layer 4. This is a step of forming the second electrode 12.
  • the second electrode 12 is formed in a comb-shaped pattern.
  • the second electrode 12 can be formed by applying an ink containing an electrode material by a printing method and performing a heat treatment. Examples of the printing method include an inkjet printing method and a screen printing method.
  • the second electrode 12 is formed apart from the first electrode 11.
  • the second electrode 12 can be formed on the flat portion 4 a of the fourth amorphous semiconductor layer 4.
  • the distance D between the second electrode 12 and the first electrode 11 is preferably 10 ⁇ m or more in order to suppress a short circuit between the electrodes and a leakage current.
  • the separation distance D is preferably 100 ⁇ m or less in order to reduce the direct resistance of majority carriers to electrons.
  • the first collector electrode 5 and the second collector electrode 6 are formed in a comb shape.
  • the first collector electrode 5 is formed on the first electrode 11.
  • the second collector electrode 6 is formed on the second electrode 12.
  • the first collector electrode 5 and the second collector electrode 6 are formed in a comb-shaped pattern that meshes with each other.
  • the first collector electrode 5 and the second collector electrode 6 can be formed by applying a metal material by a printing method. Examples of the printing method include an inkjet printing method and a screen printing method.
  • the first collector electrode 5 and the second collector electrode 6 are made of, for example, Ag (silver).
  • the first collector electrode 5 and the second collector electrode 6 are preferably formed simultaneously. Thereby, the manufacturing process is simplified.
  • FIG. 5I shows the state after the collector electrode is formed.
  • the second electrode 12, the first collector electrode 5, and the second collector electrode 6 may be formed by patterning other than the printing method. For example, they can be patterned and formed by a sputtering film forming method using a mask. Alternatively, for example, after a layer is formed on one surface, an etching resist material may be formed in a patterned meandering shape, and may be patterned in a comb shape by wet etching.
  • the second electrode 12 is made of the material of the second collector electrode 6 described above. May be formed. In that case, the second electrode 12 can be formed on the fourth amorphous semiconductor layer 4 when the first collector electrode 5 is formed. At this time, the second collector electrode 6 may be omitted.
  • This structure may be a structure in which the second electrode 12 also has the second collector electrode 6.
  • the light receiving surface 10a (main surface) of the semiconductor substrate 10 is cleaned, the semiconductor substrate 10 is placed in a vacuum chamber, SiH 4 gas is introduced into the vacuum chamber, and the light receiving surface is formed by PECVD.
  • An amorphous semiconductor layer 7 is formed on 10a.
  • the amorphous semiconductor layer 7 can be formed of i-type amorphous silicon.
  • the antireflection layer 8 is formed on the amorphous semiconductor layer 7 by sputtering, for example.
  • the amorphous semiconductor layer 7 and the antireflection layer 8 are appropriately formed before the formation of the first amorphous semiconductor layer 1 or after the formation of the second electrode 12 and before the formation of the collector electrode. May be formed.
  • the patterning of the amorphous semiconductor layer is performed by etching. Therefore, impurity contamination from the mask is prevented as in the case of patterning the amorphous semiconductor layer using a mask when forming the amorphous semiconductor layer. Thereby, deterioration of the solar cell characteristics is prevented.
  • the n-type structure and the p-type structure can be arranged with high accuracy so as not to have an excessive gap while maintaining electrical isolation in a comb shape that is engaged with each other.
  • the manufacturing process is simplified and the yield is improved, so that the manufacturing cost can be reduced compared to the photolithography method, for example.
  • FIG. 6 is a cross-sectional view showing an example of a method for manufacturing the solar cell of the second embodiment.
  • FIG. 6 is configured from FIGS. 6A to 6D. The figure common to FIG. 5 and the figure understandable from FIG. 5 are omitted.
  • the method for manufacturing a solar cell according to the second embodiment includes a step of forming the insulator layer 9. Other than that may be the same as the manufacturing method of the solar cell of the first embodiment.
  • the step of forming the insulator layer 9 is performed after the step of etching the first amorphous semiconductor layer 1, the second amorphous semiconductor layer 2, and the first electrode 11.
  • FIG. 6A corresponds to FIG. 5D.
  • the insulator layer 9 is formed at the end portion of the first electrode 11 as shown in FIG. 6B.
  • the insulator layer 9 is formed so as to straddle the boundary between the first electrode 11 and the portion of the semiconductor substrate 10 exposed by etching.
  • the insulator layer 9 has a meandering shape along the comb-teeth edge 11 a of the first electrode 11.
  • the insulator layer 9 can be formed by a printing method.
  • the insulator layer 9 By forming the insulator layer 9 by a printing method, unlike a normal sputtering method or PECVD method, the physical impact can be reduced and formed at a low temperature, so that an amorphous semiconductor layer (amorphous silicon layer) is formed. Damage and modification are suppressed, and the solar cell efficiency is improved.
  • the insulator layer 9 is formed by applying the material of the insulator layer 9 in a pattern by a printing method and heating. The heating is preferably performed at a temperature of 200 ° C. or lower. Firing is performed by heating.
  • the printing method include an inkjet printing method and a screen printing method. Further, a patterning method other than the printing method may be employed.
  • the insulator layer 9 can be formed by patterning by a sputtering film forming method using a mask.
  • the insulating layer 9 may be patterned by wet etching after an etching resist material is formed in a patterned meandering shape after a layer is formed on one surface.
  • the solar cell shown in FIG. 3 is obtained.
  • the semiconductor substrate 10 was an n-type single crystal silicon substrate.
  • the amorphous semiconductor layers (on the first to fourth and main surfaces) were all amorphous silicon layers.
  • the first amorphous semiconductor layer 1 and the third amorphous semiconductor layer 3 (i-type amorphous silicon layer) have a thickness of 5 nm and an electron concentration of 1 ⁇ 10 15 cm ⁇ 3 . .
  • the second amorphous semiconductor layer 2 (p-type amorphous silicon layer) had a thickness of 5 nm, a comb tooth width of 1.5 mm, and a carrier concentration of 5 ⁇ 10 18 cm ⁇ 3 .
  • the fourth amorphous semiconductor layer 4 (n-type amorphous silicon layer) had a thickness of 5 nm and a carrier concentration of 8 ⁇ 10 18 cm ⁇ 3 .
  • the amorphous semiconductor layer 7 (i-type amorphous silicon layer) on the light receiving surface had a thickness of 5 nm and an electron concentration of 1 ⁇ 10 15 cm ⁇ 3 .
  • the width of the portion where the second amorphous semiconductor layer 2 and the fourth amorphous semiconductor layer 4 overlap in a plan view is 20 ⁇ m. This width is equal to the width at which the first electrode 11 and the third amorphous semiconductor layer 3 are in contact.
  • the width of the second electrode 12 was 200 ⁇ m.
  • the mobility of electrons in the n-type amorphous silicon layer was 5 cm 2 / Vs.
  • the hole mobility of the p-type amorphous silicon layer was duplicate of 0.3 cm 2 / Vs and 0.0001 cm 2 / Vs. The reason for the two types is that the mobility of holes cannot be accurately determined.
  • the semiconductor substrate 10 n-type single crystal silicon substrate
  • FIG. 7 shows the distance between the first electrode 11 and the second electrode 12 (electrode separation distance D) and the sun in the hole mobility ( ⁇ p) in two types of p-type amorphous silicon layers. It is a graph which shows the relationship with the relative conversion efficiency of a battery. The graph is normalized with respect to the maximum value.
  • the electrode separation distance is 10 ⁇ m, the conversion efficiency is maximum, and the hole mobility ( ⁇ p) is 0.
  • the electrode separation distance is 20 ⁇ m, and the conversion efficiency is maximum. If the electrode separation distance is smaller than these maximum values, the conversion efficiency is considered to decrease because the leak current between the electrodes increases. Further, if the distance between the electrodes becomes too small, there is a possibility of short circuit. Taking into account variations in the processing accuracy of the electrodes, the electrode separation distance is preferably 10 ⁇ m or more. In the graph, the conversion efficiency gradually decreases as the electrode separation distance increases.
  • the electrode separation distance is preferably 100 ⁇ m or less.
  • Such a tendency is considered to be the same when the width, thickness, carrier concentration and the like of the amorphous silicon layer are changed. That is, when the distance between the electrodes is 10 ⁇ m or more and 100 ⁇ m or less, a solar cell with good characteristics with a small leakage current between the electrodes can be obtained.
  • Example 2 About the solar cell of 2nd Embodiment, the influence which insertion of the insulator layer 9 has on the characteristic of a solar cell was investigated by simulation of the computer. The calculation parameters and method were the same as in Example 1. The surface recombination velocity at the interface between the semiconductor substrate 10 and the insulator layer 9 was 10 cm / s.
  • the leakage current between the electrodes is reduced by inserting the insulator layer 9, the open-circuit voltage and the fill factor are improved, and the conversion efficiency is increased by about 5% compared to the case without the insulator layer 9. It has been shown. Further, when the width of the insulator layer 9 in contact with the semiconductor substrate 10 was changed from 10 ⁇ m to 100 ⁇ m, the conversion efficiency was reduced within 5%. Thus, the arrangement of the insulator layer 9 makes it possible to obtain a solar cell with good characteristics with a small leakage current between the electrodes.
  • the dimension of the insulator layer 9 is within the patterning accuracy that can be handled by the printing method. That is, these dimensions are within the processing accuracy that can be realized by a simple patterning method such as a printing method, and the manufacturing cost and the manufacturing time can be reduced.
  • Japanese Patent Publication No. 2013-168605 discloses a solar cell.
  • the p-type electrode is formed only on a part of the p-type amorphous silicon layer. Therefore, holes that are minority carriers in the semiconductor substrate cannot be efficiently extracted to the outside.
  • Japanese Patent Publication No. 2013-131586 discloses a solar cell.
  • the p-type electrode can be formed on the entire surface of the p-type amorphous semiconductor layer (amorphous silicon layer), holes that are minority carriers in the semiconductor substrate are efficiently used. It can be taken out well and efficiency is improved.
  • Japanese Patent Publication No. 2005-101151 discloses a solar cell.
  • a structure in which a p-type electrode is formed on one surface of a p-type amorphous silicon layer is disclosed as a second embodiment.
  • this solar cell does not have a comb shape in which the p-type silicon layer and the n-type silicon layer are engaged with each other, the p-type electrode is covered with the silicon layer, and the n-type electrode Is formed in a deformed portion of the silicon layer.
  • a leak current is likely to occur.
  • the solar cell of this indication can make it difficult to generate the leak current between electrodes compared with the structure of this literature.
  • Patent Cooperation Treaty International Publication No. WO 2010/113750 discloses solar cells. This solar cell has an insulator layer. However, even in this solar cell, the p-type electrode is formed only on a part of the p-type amorphous silicon layer. Therefore, holes that are minority carriers in the semiconductor substrate cannot be efficiently extracted to the outside. The same applies to Japanese Patent Publication No. 2009-200267.
  • US Patent US8525018 discloses a solar cell.
  • This solar cell has an insulator layer and a p-type electrode formed on one surface of a p-type amorphous silicon layer.
  • the insulator layer is also disposed between the p-type amorphous silicon layer and the semiconductor substrate, holes that are minority carriers cannot be taken out at this portion.
  • the insulator layer can have a structure that is not disposed between the p-type amorphous semiconductor layer (amorphous silicon layer) and the semiconductor substrate. Are efficiently extracted to the outside, and the efficiency is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed is an invention of a solar cell. The solar cell is provided with: a semiconductor substrate (10); an intrinsic first amorphous semiconductor layer (1); a second amorphous semiconductor layer (2) containing an impurity; a first electrode (11) that is disposed on the whole one surface on the second amorphous semiconductor layer (2); an intrinsic third amorphous semiconductor layer (3); a fourth amorphous semiconductor layer (4) containing an impurity; and a second electrode (12) that is disposed on the fourth amorphous semiconductor layer (4). The first amorphous semiconductor layer (1) has a comb shape. The third amorphous semiconductor layer (3) has a comb shape that engages with the first amorphous semiconductor layer (1). A part of the third amorphous semiconductor layer (3) overlaps the first electrode (11) in a plan view.

Description

太陽電池及びその製造方法Solar cell and manufacturing method thereof
 本発明は、太陽電池及びその製造方法に関する。より詳しくは、裏面電極型ヘテロ接合構造の太陽電池及びその製造方法に関する。 The present invention relates to a solar cell and a manufacturing method thereof. More specifically, the present invention relates to a solar cell having a back electrode type heterojunction structure and a manufacturing method thereof.
 近年、ヘテロ接合構造を有する太陽電池が提案されている。例えば、日本国特許公開平4-130671号には、ヘテロ接合構造の太陽電池の一例が開示されている。また、文献「Mikio Taguchi, Akira Terakawa, Eiji Maruyama and Makoto Tanaka, ‘Obtaining a HigherVoc in HIT cells’, Progress in Photovoltaics: Research and Applications, Vol.13,481-488, 2005」には、ヘテロ接合構造の太陽電池の他の一例が開示されている。これらの太陽電池では、n型単結晶シリコン基板の一方の面とそれとは反対の面とにそれぞれ非晶質シリコン層と電極とが配置されている。 In recent years, solar cells having a heterojunction structure have been proposed. For example, Japanese Patent Publication No. 4-130671 discloses an example of a solar cell having a heterojunction structure. Also, the literature `` Mikio Taguchi, Akira Terakawa, Eiji Maruyama and Makoto Tanaka, Obtaining a HigherVoc in HIT cells', Progress in Photovoltaics: Research and Applications, Vol.13,481-488, 2005 '' Another example is disclosed. In these solar cells, an amorphous silicon layer and an electrode are arranged on one surface of the n-type single crystal silicon substrate and the opposite surface, respectively.
 ヘテロ接合構造の太陽電池においては、n型単結晶シリコン基板の主面側から受光し、n型単結晶シリコン基板内で過剰キャリアが生成することにより発電する。このときに発生する電力は、電気的に対となる二つの電極により外部に取り出すことができる。 In a solar cell having a heterojunction structure, light is received from the main surface side of the n-type single crystal silicon substrate, and power is generated by generating excess carriers in the n-type single crystal silicon substrate. The electric power generated at this time can be taken out by the two electrodes which are electrically paired.
 ここで、上記の文献に記載された態様のような、受光面となる主面に電極及び非晶質シリコン層が配置された構造では、これらが光を吸収するため、n型単結晶シリコン基板に入射するフォトン数が減少し、発電効率が低下してしまう。そこで、受光面の反対側の裏面に、型の異なる非晶質シリコン層と、対となる電極とを配置した裏面電極型ヘテロ接合構造の太陽電池が提案されている。 Here, in the structure in which the electrode and the amorphous silicon layer are arranged on the main surface serving as the light receiving surface as in the aspect described in the above-mentioned document, since these absorb light, the n-type single crystal silicon substrate As a result, the number of photons incident on the light source decreases and the power generation efficiency decreases. In view of this, a solar cell having a back electrode type heterojunction structure in which an amorphous silicon layer of a different type and a pair of electrodes are arranged on the back surface opposite to the light receiving surface has been proposed.
 そのような構造の太陽電池として、例えば、日本国特許公開2003-298078号には、その一例が開示されている。また、文献「Meijun Lu, Ujjwal Das, Stuart Bowden, Steven Hegedus and RobertBirkmire, ‘Optimization of interdigitated back contact silicon heterojunctionsolar cells: tailoring hetero-interface band structures while maintainingsurface passivation’, Progress in Photovoltaics: Research and Applications, Vol.19, 326-338,2011」には、他の一例が開示されている。また、日本国特許公開2013-168605号には、他の一例が開示されている。また、日本国特許公開2013-131586号には、他の一例が開示されている。また、日本国特許公開2005-101151には、他の一例が開示されている。また、特許協力条約国際公開WO2010/113750号には、他の一例が開示されている。また、日本国特許公開2009-200267号には、他の一例が開示されている。また、米国特許US8525018号には、他の一例が開示されている。 For example, Japanese Patent Publication No. 2003-298078 discloses a solar cell having such a structure. Also, the documents `` Meijun Lu, Ujjwal Das, Stuart Bowden, Steven Hegedus and RobertBirkmire, Opt'Optimization of interdigitated back contact silicon heterojunctionsolar cells: tailoring hetero-interface band structures while maintainingsurface passics , 326-338, 2011 "discloses another example. Japanese Patent Publication No. 2013-168605 discloses another example. Japanese Patent Publication No. 2013-131586 discloses another example. Japanese Patent Publication 2005-101151 discloses another example. Another example is disclosed in International Patent Publication No. WO2010 / 113750. Another example is disclosed in Japanese Patent Publication No. 2009-200267. In addition, another example is disclosed in US Pat. No. US8525018.
 しかしながら、これらの開示された太陽電池は、n型単結晶シリコン基板内で発生する少数キャリアである正孔を効率よく取り出すことができなかったり、電極間のリーク電流が発生しやすかったりするため、発電効率を十分に向上できない。 However, these disclosed solar cells cannot efficiently extract holes that are minority carriers generated in the n-type single crystal silicon substrate, or leak current between the electrodes is likely to be generated. The power generation efficiency cannot be improved sufficiently.
 太陽電池の発明が以下で開示される。当該太陽電池は、
 受光面および裏面を有する一導電型の半導体基板と、
 前記半導体基板の裏面に配置され、櫛形状を有する真性の第1の非晶質系半導体層と、
 前記第1の非晶質系半導体層上に配置され、前記半導体基板の導電型と異なる導電型を示す不純物を含む第2の非晶質系半導体層と、
 前記第2の非晶質系半導体層上の一面全体に配置された第1の電極と、
 前記半導体基板の裏面に配置され、前記第1の非晶質系半導体層と噛み合う櫛形状となり、一部が平面視において前記第1の電極に重なる真性の第3の非晶質系半導体層と、
 前記第3の非晶質系半導体層上に配置され、前記半導体基板の導電型と同じ導電型を示す不純物を含む第4の非晶質系半導体層と、
 前記第4の非晶質系半導体層上に配置された第2の電極と、を備えている。
The invention of the solar cell is disclosed below. The solar cell
A semiconductor substrate of one conductivity type having a light receiving surface and a back surface;
An intrinsic first amorphous semiconductor layer disposed on the back surface of the semiconductor substrate and having a comb shape;
A second amorphous semiconductor layer that is disposed on the first amorphous semiconductor layer and includes an impurity having a conductivity type different from that of the semiconductor substrate;
A first electrode disposed on the entire surface of the second amorphous semiconductor layer;
An intrinsic third amorphous semiconductor layer which is disposed on the back surface of the semiconductor substrate and has a comb shape which meshes with the first amorphous semiconductor layer and partially overlaps the first electrode in plan view; ,
A fourth amorphous semiconductor layer including an impurity disposed on the third amorphous semiconductor layer and including an impurity having the same conductivity type as the semiconductor substrate;
And a second electrode disposed on the fourth amorphous semiconductor layer.
 太陽電池の製造方法の発明が以下で開示される。当該太陽電池の製造方法は、
 受光面を有する一導電型の半導体基板における裏面に、真性の第1の非晶質系半導体層を形成する工程と、
 前記第1の非晶質系半導体層上に、前記半導体基板の導電型と異なる導電型を示す不純物を含む第2の非晶質系半導体層を形成する工程と、
 前記第2の非晶質系半導体層上に、第1の電極を形成する工程と、
 前記第1の非晶質系半導体層、前記第2の非晶質系半導体層及び前記第1の電極を、前記半導体基板の裏面において櫛形状にエッチングする工程と、
 前記第1の電極が設けられた前記半導体基板の裏面に、前記エッチングにより露出した前記半導体基板の部分を含んで真性の第3の非晶質系半導体層を形成する工程と、
 前記第3の非晶質系半導体層上に前記半導体基板の導電型と同じ導電型を示す不純物を含む第4の非晶質系半導体層を形成する工程と、
 前記第3の非晶質系半導体層及び前記第4の非晶質系半導体層を、前記第1の電極と噛み合い、前記第3の非晶質系半導体層の一部が前記第1の電極に平面視において重なる櫛形状にエッチングする工程と、
 前記第4の非晶質系半導体層上に第2の電極を形成する工程と、を備えている。
An invention of a method for manufacturing a solar cell is disclosed below. The manufacturing method of the solar cell is as follows:
Forming an intrinsic first amorphous semiconductor layer on the back surface of the one-conductivity-type semiconductor substrate having a light-receiving surface;
Forming a second amorphous semiconductor layer containing an impurity having a conductivity type different from that of the semiconductor substrate on the first amorphous semiconductor layer;
Forming a first electrode on the second amorphous semiconductor layer;
Etching the first amorphous semiconductor layer, the second amorphous semiconductor layer, and the first electrode into a comb shape on the back surface of the semiconductor substrate;
Forming an intrinsic third amorphous semiconductor layer including the portion of the semiconductor substrate exposed by the etching on the back surface of the semiconductor substrate provided with the first electrode;
Forming a fourth amorphous semiconductor layer containing an impurity having the same conductivity type as that of the semiconductor substrate on the third amorphous semiconductor layer;
The third amorphous semiconductor layer and the fourth amorphous semiconductor layer are engaged with the first electrode, and a part of the third amorphous semiconductor layer is the first electrode. Etching into a comb shape overlapping in plan view,
Forming a second electrode on the fourth amorphous semiconductor layer.
 上記太陽電池の発明によれば、第2の非晶質系半導体層上の一面全体に第1の電極が配置されることにより、キャリアを効率よく取り出すことができるため、太陽電池の発電効率が向上する。 According to the invention of the solar cell, since the first electrode is arranged on the entire surface of the second amorphous semiconductor layer, carriers can be efficiently taken out. improves.
 上記太陽電池の製造方法の発明によれば、発電効率の高い太陽電池を精度高く簡単に製造することができる。 According to the invention of the solar cell manufacturing method, a solar cell with high power generation efficiency can be easily manufactured with high accuracy.
太陽電池の第1の実施形態を示す模式的断面図である。It is typical sectional drawing which shows 1st Embodiment of a solar cell. 太陽電池の第1の実施形態の裏面の一部を示す模式的平面図である。It is a schematic plan view which shows a part of back surface of 1st Embodiment of a solar cell. 太陽電池の第2の実施形態を示す模式的断面図である。It is typical sectional drawing which shows 2nd Embodiment of a solar cell. 太陽電池の第2の実施形態の裏面の一部を示す模式的平面図である。It is a schematic plan view which shows a part of back surface of 2nd Embodiment of a solar cell. 図5は、図5A~図5Jから構成される。図5は、太陽電池の第1の実施形態の製造方法を示す模式的断面図である。図5Aは、第1の電極が形成された後の様子を示す。図5Bは、第1の電極をエッチングする際のマスクが形成された後の様子を示す。図5Cは、第1の電極がエッチングされた後の様子を示す。図5Dは、マスクが除去された後の様子を示す。図5Eは、第4の非晶質系半導体層が形成された後の様子を示す。図5Fは、第4の非晶質系半導体層をエッチングする際のマスクが形成された後の様子を示す。図5Gは、第4の非晶質系半導体層がエッチングされた後の様子を示す。図5Hは、マスクが除去された後の様子を示す。図5Iは、第2の電極及び集電極が形成された後の様子を示す。図5Jは、反射防止層が形成された後の様子を示す。FIG. 5 is composed of FIGS. 5A to 5J. FIG. 5 is a schematic cross-sectional view showing the manufacturing method of the first embodiment of the solar cell. FIG. 5A shows the state after the first electrode is formed. FIG. 5B shows a state after the mask for etching the first electrode is formed. FIG. 5C shows the state after the first electrode has been etched. FIG. 5D shows the situation after the mask has been removed. FIG. 5E shows a state after the fourth amorphous semiconductor layer is formed. FIG. 5F shows a state after the mask for etching the fourth amorphous semiconductor layer is formed. FIG. 5G shows a state after the fourth amorphous semiconductor layer is etched. FIG. 5H shows the situation after the mask is removed. FIG. 5I shows the state after the second electrode and the collector electrode are formed. FIG. 5J shows the state after the antireflection layer is formed. 図6は、図6A~図6Dから構成される。図6は、太陽電池の第2の実施形態の製造方法を示す模式的断面図である。図6Aは、第1の電極がエッチングされた後の様子を示す。図6Bは、絶縁体層9が形成された後の様子を示す。図6Cは、第4の非晶質系半導体層がエッチングされた後の様子を示す。図6Dは、第2の電極及び集電極が形成された後の様子を示す。FIG. 6 is configured from FIGS. 6A to 6D. FIG. 6 is a schematic cross-sectional view showing the manufacturing method of the second embodiment of the solar cell. FIG. 6A shows the state after the first electrode has been etched. FIG. 6B shows the state after the insulator layer 9 is formed. FIG. 6C shows a state after the fourth amorphous semiconductor layer is etched. FIG. 6D shows the state after the second electrode and the collector electrode are formed. 太陽電池の第1の実施形態において、非晶質シリコン中の正孔移動度(μp)を二通りとしたときの、電極の離間距離と太陽電池の変換効率(相対値)との関係を示すグラフである。In 1st Embodiment of a solar cell, the relationship between the separation distance of an electrode and the conversion efficiency (relative value) of a solar cell when hole mobility (micro | micron | mu) in amorphous silicon is made into 2 types is shown. It is a graph.
 本明細書中において、以下のように用語が規定される。結晶系半導体には単結晶半導体および多結晶半導体が含まれる。非晶質系半導体には非晶質半導体および微結晶半導体が含まれる。真性の非晶質系半導体とは、不純物が意図的にドープされていない非晶質系半導体である。真性の非晶質系半導体には、半導体原料に本来的に含まれる不純物または製造過程において自然に混入する不純物を含む非晶質系半導体も含まれる。平面視とは、特に断りのない限り、半導体基板の表面に垂直な方向で、裏面側から太陽電池を見た様子を意味する。 In this specification, terms are defined as follows. Crystalline semiconductors include single crystal semiconductors and polycrystalline semiconductors. Amorphous semiconductors include amorphous semiconductors and microcrystalline semiconductors. An intrinsic amorphous semiconductor is an amorphous semiconductor that is not intentionally doped with impurities. Intrinsic amorphous semiconductors include amorphous semiconductors containing impurities that are inherently contained in semiconductor raw materials or impurities that are naturally mixed in the manufacturing process. The plan view means that the solar cell is viewed from the back side in a direction perpendicular to the surface of the semiconductor substrate unless otherwise specified.
  [第1の実施形態]
 図1は、太陽電池の第1の実施形態を示している。図2は、太陽電池の第1の実施形態の裏面の一部を示している。裏面の一部としたのは、櫛形状の一部が示されているからである。実際には櫛形状は、櫛歯の数がもっと多くてもよい。図1では、平面視を行う基板に垂直な方向Sを矢印で示している。図1では、光が進行する方向Pを白抜き矢印で示している。この太陽電池は、裏面電極型ヘテロ接合構造を有する太陽電池である。
[First Embodiment]
FIG. 1 shows a first embodiment of a solar cell. FIG. 2 shows a part of the back surface of the first embodiment of the solar cell. The reason why it is a part of the back surface is that a part of the comb shape is shown. Actually, the comb shape may have a larger number of comb teeth. In FIG. 1, a direction S perpendicular to the substrate to be viewed in plan is indicated by an arrow. In FIG. 1, the direction P in which light travels is indicated by a white arrow. This solar cell is a solar cell having a back electrode type heterojunction structure.
 当該太陽電池は、半導体基板10と、第1の非晶質系半導体層1と、第2の非晶質系半導体層2と、第1の電極11と、第3の非晶質系半導体層3と、第4の非晶質系半導体層4と、第2の電極12とを備えている。半導体基板10は、受光面10aおよび裏面10bを有する。半導体基板10は一導電型である。第1の非晶質系半導体層1は、半導体基板10の裏面10bに配置されている。第1の非晶質系半導体層1は、真性の非晶質系半導体の層である。第1の非晶質系半導体層1は、櫛形状を有する。第2の非晶質系半導体層2は、第1の非晶質系半導体層1上に配置されている。第2の非晶質系半導体層2は、半導体基板10の導電型と異なる導電型を示す。第2の非晶質系半導体層2は、不純物を含む非晶質系半導体の層である。第1の電極11は、第2の非晶質系半導体層2上の一面全体に配置されている。第3の非晶質系半導体層3は、半導体基板10の裏面10bに配置されている。第3の非晶質系半導体層3は、真性の非晶質系半導体の層である。第3の非晶質系半導体層3は、第1の非晶質系半導体層1と噛み合う櫛形状となっている。第3の非晶質系半導体層3は、一部が平面視において第1の電極11に重なっている。第4の非晶質系半導体層4は、第3の非晶質系半導体層3上に配置されている。第4の非晶質系半導体層4は、半導体基板10の導電型と同じ導電型を示す。第4の非晶質系半導体層4は、不純物を含む非晶質系半導体の層である。第2の電極12は、第4の非晶質系半導体層4上に配置されている。 The solar cell includes a semiconductor substrate 10, a first amorphous semiconductor layer 1, a second amorphous semiconductor layer 2, a first electrode 11, and a third amorphous semiconductor layer. 3, a fourth amorphous semiconductor layer 4, and a second electrode 12. The semiconductor substrate 10 has a light receiving surface 10a and a back surface 10b. The semiconductor substrate 10 is of one conductivity type. The first amorphous semiconductor layer 1 is disposed on the back surface 10 b of the semiconductor substrate 10. The first amorphous semiconductor layer 1 is an intrinsic amorphous semiconductor layer. The first amorphous semiconductor layer 1 has a comb shape. The second amorphous semiconductor layer 2 is disposed on the first amorphous semiconductor layer 1. The second amorphous semiconductor layer 2 exhibits a conductivity type different from that of the semiconductor substrate 10. The second amorphous semiconductor layer 2 is an amorphous semiconductor layer containing impurities. The first electrode 11 is disposed on the entire surface of the second amorphous semiconductor layer 2. The third amorphous semiconductor layer 3 is disposed on the back surface 10 b of the semiconductor substrate 10. The third amorphous semiconductor layer 3 is an intrinsic amorphous semiconductor layer. The third amorphous semiconductor layer 3 has a comb shape that meshes with the first amorphous semiconductor layer 1. The third amorphous semiconductor layer 3 partially overlaps the first electrode 11 in plan view. The fourth amorphous semiconductor layer 4 is disposed on the third amorphous semiconductor layer 3. The fourth amorphous semiconductor layer 4 has the same conductivity type as that of the semiconductor substrate 10. The fourth amorphous semiconductor layer 4 is an amorphous semiconductor layer containing impurities. The second electrode 12 is disposed on the fourth amorphous semiconductor layer 4.
 本実施形態では、第1の電極11上に第1の集電極5が配置されている。第2の電極12上に第2の集電極6が配置されている。第2の電極12は、第1の電極11と平面視において離間している。 In the present embodiment, the first collector electrode 5 is disposed on the first electrode 11. A second collector electrode 6 is disposed on the second electrode 12. The second electrode 12 is separated from the first electrode 11 in plan view.
 半導体基板10において、受光面10aは、光を受ける面である。受光面10aは光入射面とも呼ばれる。受光面10aは主面と定義される。裏面10bは、受光面10aとは反対側の面である。 In the semiconductor substrate 10, the light receiving surface 10a is a surface that receives light. The light receiving surface 10a is also called a light incident surface. The light receiving surface 10a is defined as a main surface. The back surface 10b is a surface opposite to the light receiving surface 10a.
 半導体基板10は、薄板状の半導体の基板である。半導体基板10は、p型またはn型の導電型を有する。一導電型とは、pまたはnのいずれか一方であることを意味する。半導体基板10はn型であることが好ましい。半導体基板10は、結晶シリコン、化合物半導体、その他板状に形成可能な半導体材料から形成される。結晶シリコンとしては、例えば、単結晶シリコン、多結晶シリコンが挙げられる。化合物半導体は、例えば、GaAs、InPが挙げられる。半導体基板10として、n型の単結晶シリコン基板が好ましく用いられる。 The semiconductor substrate 10 is a thin-plate semiconductor substrate. The semiconductor substrate 10 has a p-type or n-type conductivity type. One conductivity type means either p or n. The semiconductor substrate 10 is preferably n-type. The semiconductor substrate 10 is made of crystalline silicon, a compound semiconductor, or other semiconductor material that can be formed into a plate shape. Examples of crystalline silicon include single crystal silicon and polycrystalline silicon. Examples of the compound semiconductor include GaAs and InP. As the semiconductor substrate 10, an n-type single crystal silicon substrate is preferably used.
 半導体基板10の厚みに特に制限はない。半導体基板10は、部材コストやハンドリングの観点から、その厚みが10~200μmであることが好ましい。 The thickness of the semiconductor substrate 10 is not particularly limited. The thickness of the semiconductor substrate 10 is preferably 10 to 200 μm from the viewpoint of member cost and handling.
 半導体基板10は、効率向上の観点から、半導体基板10の片面もしくは両面にテクスチャ構造を有することが好ましい。テクスチャ構造は入射した光を十分に閉じ込めることができるため、効率の向上が見込める。テクスチャ構造は、例えば、微小凹凸構造であってよい。微小凹凸構造は周期性を有していてよい。もちろん、テクスチャ構造は必須ではない。 The semiconductor substrate 10 preferably has a texture structure on one or both sides of the semiconductor substrate 10 from the viewpoint of improving efficiency. Since the texture structure can sufficiently confine incident light, an improvement in efficiency can be expected. The texture structure may be a minute uneven structure, for example. The minute uneven structure may have periodicity. Of course, the texture structure is not essential.
 半導体の分類において、真性の半導体はi型に相当する。不純物を含む半導体はn型またはp型であってよい。 In the semiconductor classification, an intrinsic semiconductor corresponds to i-type. The semiconductor containing impurities may be n-type or p-type.
 以下では、n型の半導体基板10を用いた例を中心に説明する。もちろん、p型の半導体基板10を用いてもよく、その場合、以下の説明においてn型とp型とを入れ替えれば、構造が理解され得る。 Hereinafter, an example using the n-type semiconductor substrate 10 will be mainly described. Of course, a p-type semiconductor substrate 10 may be used, and in that case, the structure can be understood if n-type and p-type are interchanged in the following description.
 第1の非晶質系半導体層1は、i型の非晶質系半導体の層である。第1の非晶質系半導体層1は、平面視において櫛形状を有する。第2の非晶質系半導体層2は、p型の非晶質系半導体の層である。第2の非晶質系半導体層2は、平面視において櫛形状を有する。第1の非晶質系半導体層1の櫛形状と、第2の非晶質系半導体層2の櫛形状とは形状が一致していてよい。第1の電極11は、p型の電極である。第1の電極11は、裏面電極を構成する。第1の電極11は、平面視において櫛形状を有する。第2の非晶質系半導体層2の櫛形状と、第1の電極11の櫛形状とは形状が一致していてよい。すなわち、第1の非晶質系半導体層1と、第2の非晶質系半導体層2と、第1の電極11とは、同じ櫛形状を有し得る。 The first amorphous semiconductor layer 1 is an i-type amorphous semiconductor layer. The first amorphous semiconductor layer 1 has a comb shape in plan view. The second amorphous semiconductor layer 2 is a p-type amorphous semiconductor layer. The second amorphous semiconductor layer 2 has a comb shape in plan view. The comb shape of the first amorphous semiconductor layer 1 and the comb shape of the second amorphous semiconductor layer 2 may coincide with each other. The first electrode 11 is a p-type electrode. The first electrode 11 constitutes a back electrode. The first electrode 11 has a comb shape in plan view. The comb shape of the second amorphous semiconductor layer 2 and the comb shape of the first electrode 11 may coincide with each other. That is, the first amorphous semiconductor layer 1, the second amorphous semiconductor layer 2, and the first electrode 11 can have the same comb shape.
 図1の例では、第2の非晶質系半導体層2は、第1の非晶質系半導体層1上の一面全体に配置されている。第2の非晶質系半導体層2は、第1の非晶質系半導体層1を覆っているといえる。第1の電極11は、第2の非晶質系半導体層2上の一面全体に配置されている。第1の電極11は、第2の非晶質系半導体層2を覆っているといえる。第1の電極11と、第1の非晶質系半導体層1と、第2の非晶質系半導体層2とは、端部の位置が揃っている。第1の非晶質系半導体層1及び第2の非晶質系半導体層2は、第1の電極11からはみ出していない。そのため、第1の電極11と第2の非晶質系半導体層2との接触面積がより大きくなる。このように、第2の非晶質系半導体層2の一面全体に第1の電極11が設けられると、半導体基板10中で発生する少数キャリアである正孔を効率よく外部に取り出すことができる。それにより、発電効率が向上する。 In the example of FIG. 1, the second amorphous semiconductor layer 2 is disposed on the entire surface of the first amorphous semiconductor layer 1. It can be said that the second amorphous semiconductor layer 2 covers the first amorphous semiconductor layer 1. The first electrode 11 is disposed on the entire surface of the second amorphous semiconductor layer 2. It can be said that the first electrode 11 covers the second amorphous semiconductor layer 2. The first electrode 11, the first amorphous semiconductor layer 1, and the second amorphous semiconductor layer 2 are aligned at the ends. The first amorphous semiconductor layer 1 and the second amorphous semiconductor layer 2 do not protrude from the first electrode 11. Therefore, the contact area between the first electrode 11 and the second amorphous semiconductor layer 2 becomes larger. As described above, when the first electrode 11 is provided on the entire surface of the second amorphous semiconductor layer 2, holes that are minority carriers generated in the semiconductor substrate 10 can be efficiently extracted to the outside. . Thereby, the power generation efficiency is improved.
 第3の非晶質系半導体層3は、i型の非晶質系半導体の層である。第3の非晶質系半導体層3は、平面視において櫛形状を有する。第4の非晶質系半導体層4は、n型の非晶質系半導体の層である。第4の非晶質系半導体層4は、平面視において櫛形状を有する。第3の非晶質系半導体層3の櫛形状と、第4の非晶質系半導体層4の櫛形状とは形状が一致していてよい。第2の電極12は、n型の電極である。第2の電極12は、裏面電極を構成する。第2の電極12は、平面視において櫛形状を有する。第2の電極12の櫛形状は、第4の非晶質系半導体層4の櫛形状よりも細い幅の櫛形状であってよい。すなわち、第2の電極12の櫛形状の櫛歯の幅は、第3の非晶質系半導体層3及び第4の非晶質系半導体層4の櫛形状の櫛歯の幅よりも小さくてよい。 The third amorphous semiconductor layer 3 is an i-type amorphous semiconductor layer. The third amorphous semiconductor layer 3 has a comb shape in plan view. The fourth amorphous semiconductor layer 4 is an n-type amorphous semiconductor layer. The fourth amorphous semiconductor layer 4 has a comb shape in plan view. The comb shape of the third amorphous semiconductor layer 3 and the comb shape of the fourth amorphous semiconductor layer 4 may be the same. The second electrode 12 is an n-type electrode. The second electrode 12 constitutes a back electrode. The second electrode 12 has a comb shape in plan view. The comb shape of the second electrode 12 may be a comb shape having a narrower width than the comb shape of the fourth amorphous semiconductor layer 4. That is, the width of the comb-shaped comb teeth of the second electrode 12 is smaller than the width of the comb-shaped comb teeth of the third amorphous semiconductor layer 3 and the fourth amorphous semiconductor layer 4. Good.
 図1の例では、第4の非晶質系半導体層4は、第3の非晶質系半導体層3上の一面全体に配置されている。第4の非晶質系半導体層4は、第3の非晶質系半導体層3を覆っているといえる。第3の非晶質系半導体層3は、第1の電極11の上に載り上がって配置されている。第3の非晶質系半導体層3と、第1の電極11とは接している。第3の非晶質系半導体層3は、第1の電極11の隣り合う櫛歯を架け渡すように配置されている。第4の非晶質系半導体層4は、第3の非晶質系半導体層3の形状に追随して、第1の電極11の上に載り上がって配置されている。第4の非晶質系半導体層4は、第1の電極11の隣り合う櫛歯を架け渡すように配置されている。第3の非晶質系半導体層3と、第4の非晶質系半導体層4とは、端部の位置が揃っている。 In the example of FIG. 1, the fourth amorphous semiconductor layer 4 is disposed on the entire surface of the third amorphous semiconductor layer 3. It can be said that the fourth amorphous semiconductor layer 4 covers the third amorphous semiconductor layer 3. The third amorphous semiconductor layer 3 is placed on the first electrode 11. The third amorphous semiconductor layer 3 and the first electrode 11 are in contact with each other. The third amorphous semiconductor layer 3 is arranged so as to bridge adjacent comb teeth of the first electrode 11. The fourth amorphous semiconductor layer 4 is placed on the first electrode 11 following the shape of the third amorphous semiconductor layer 3. The fourth amorphous semiconductor layer 4 is arranged so as to bridge adjacent comb teeth of the first electrode 11. The ends of the third amorphous semiconductor layer 3 and the fourth amorphous semiconductor layer 4 are aligned.
 第4の非晶質系半導体層4は、平坦部4aを有する。平坦部4aは、第4の非晶質系半導体層4の、第1の電極11に載り上がっていない平坦な部分である。平坦部4aは、半導体基板10の表面と平行に、第4の非晶質系半導体層4の表面が形成された部分であってよい。平坦部4aでは、第1の電極11に載り上がるための第4の非晶質系半導体層4の変形がない。 The fourth amorphous semiconductor layer 4 has a flat portion 4a. The flat portion 4 a is a flat portion of the fourth amorphous semiconductor layer 4 that is not placed on the first electrode 11. The flat portion 4 a may be a portion where the surface of the fourth amorphous semiconductor layer 4 is formed in parallel with the surface of the semiconductor substrate 10. In the flat portion 4 a, there is no deformation of the fourth amorphous semiconductor layer 4 to be placed on the first electrode 11.
 第2の電極12は、平坦部4aに配置されることが好ましい。第2の電極12は、平坦部4aからはみ出さないように配置されることが好ましい。第2の電極12は、第4の非晶質系半導体層4が第1の電極11に載り上がった部分に形成されていなくてよい。第2の電極12が平坦部4aに配置されることにより、電極間のリーク電流が減少する。 The second electrode 12 is preferably disposed on the flat portion 4a. The second electrode 12 is preferably arranged so as not to protrude from the flat portion 4a. The second electrode 12 does not have to be formed in a portion where the fourth amorphous semiconductor layer 4 is placed on the first electrode 11. By arranging the second electrode 12 on the flat portion 4a, the leakage current between the electrodes is reduced.
 第1の電極11上には、第1の集電極5が配置されることが好ましい。それにより、電流が取り出しやすくなる。第1の集電極5は、第1の電極11の、第3の非晶質系半導体層3及び第4の非晶質系半導体層4に被覆されていない部分に配置されている。第1の集電極5の端縁は、第1の電極11の端縁よりも内側に位置している。第1の集電極5は、第3の非晶質系半導体層3及び第4の非晶質系半導体層4に接していない。それにより、リーク電流の発生が抑制される。第1の集電極5は櫛形状を有していてよい。本実施形態では、第1の集電極5は、p型集電極として構成され得る。 It is preferable that the first collector electrode 5 is disposed on the first electrode 11. Thereby, it becomes easy to take out an electric current. The first collector electrode 5 is disposed on a portion of the first electrode 11 that is not covered with the third amorphous semiconductor layer 3 and the fourth amorphous semiconductor layer 4. The edge of the first collector electrode 5 is located inside the edge of the first electrode 11. The first collector electrode 5 is not in contact with the third amorphous semiconductor layer 3 and the fourth amorphous semiconductor layer 4. Thereby, the occurrence of leakage current is suppressed. The first collector electrode 5 may have a comb shape. In the present embodiment, the first collector electrode 5 can be configured as a p-type collector electrode.
 第2の電極12上には、第2の集電極6が配置されることが好ましい。それにより、電流が取り出しやすくなる。第2の集電極6は、第2の電極12上の一面全体に配置されることが好ましい。第2の集電極6は櫛形状を有していてよい。第2の電極12の櫛形状と第2の集電極6の櫛形状とは同じ形状であってよい。本実施形態では、第2の集電極6は、n型集電極として構成され得る。 It is preferable that the second collector electrode 6 is disposed on the second electrode 12. Thereby, it becomes easy to take out an electric current. The second collector electrode 6 is preferably disposed on the entire surface of the second electrode 12. The second collector electrode 6 may have a comb shape. The comb shape of the second electrode 12 and the comb shape of the second collector electrode 6 may be the same shape. In the present embodiment, the second collector electrode 6 can be configured as an n-type collector electrode.
 本実施形態では、p型である第2の非晶質系半導体層2上の第1の電極11及び第1の集電極5により、正極が構成される。n型である第4の非晶質系半導体層4上の第2の電極12及び第2の集電極6により、負極が構成される。 In the present embodiment, the first electrode 11 and the first collector electrode 5 on the p-type second amorphous semiconductor layer 2 constitute a positive electrode. The second electrode 12 and the second collector electrode 6 on the n-type fourth amorphous semiconductor layer 4 constitute a negative electrode.
 第1の非晶質系半導体層1と第3の非晶質系半導体層3とは、互いに噛み合う櫛形状となっている。第2の非晶質系半導体層2と第4の非晶質系半導体層4とは、互いに噛み合う櫛形状となっている。第1の電極11と第2の電極12とは、互いに噛み合う櫛形状となっている。第1の集電極5と第2の集電極6とは互いに噛み合う櫛形状となっている。ここで、第2の非晶質系半導体層2と第1の電極11とを合わせたものをp型構造体と定義し、第4の非晶質系半導体層4と第2の電極12とを合わせたものをn型構造体と定義すると、p型構造体とn型構造体とは、互いに噛み合う櫛形状になっているといえる。櫛形状とは、直線状に伸びる複数の櫛歯と、複数の櫛歯と連結する基部を有する形状である。噛み合う櫛形状とは、二つの櫛形状において、一方の櫛形状の櫛歯の間に、他方の櫛形状の櫛歯が配置される形状である。この形状は、一方の櫛形状の櫛歯と、他方の櫛形状の櫛歯とが、交互に配置される形状であってよい。二つの櫛形状の基部は、互いに反対側に配置され得る。ただし、図1に示すように、第3の非晶質系半導体層3及び第4の非晶質系半導体層4の一部は、平面視したときに、第1の非晶質系半導体層1、第2の非晶質系半導体層2及び第1の電極11に重なっている。そのため、半導体基板の裏面10bが直接露出する部分がなく、キャリアの表面再結合が抑制されて効率が向上し得る。 The first amorphous semiconductor layer 1 and the third amorphous semiconductor layer 3 have a comb shape that meshes with each other. The second amorphous semiconductor layer 2 and the fourth amorphous semiconductor layer 4 have a comb shape that meshes with each other. The first electrode 11 and the second electrode 12 have a comb shape that meshes with each other. The first collector electrode 5 and the second collector electrode 6 have a comb shape that meshes with each other. Here, a combination of the second amorphous semiconductor layer 2 and the first electrode 11 is defined as a p-type structure, and the fourth amorphous semiconductor layer 4, the second electrode 12, Is defined as an n-type structure, it can be said that the p-type structure and the n-type structure have a comb shape that meshes with each other. The comb shape is a shape having a plurality of comb teeth extending linearly and a base portion connected to the plurality of comb teeth. The interdigitated comb shape is a shape in which two comb-shaped comb teeth are arranged between one comb-shaped comb teeth. This shape may be a shape in which one comb-shaped comb tooth and the other comb-shaped comb tooth are alternately arranged. The two comb-shaped bases can be arranged on opposite sides of each other. However, as shown in FIG. 1, a part of the third amorphous semiconductor layer 3 and the fourth amorphous semiconductor layer 4 are part of the first amorphous semiconductor layer when viewed in plan. The first amorphous semiconductor layer 2 and the first electrode 11 are overlapped. Therefore, there is no portion where the back surface 10b of the semiconductor substrate is directly exposed, and the surface recombination of carriers can be suppressed to improve efficiency.
 図2により、櫛形状が理解される。図2では、第1の集電極5と第2の集電極6とが、互いに噛み合った櫛形状が図示されている。第1の集電極5の櫛形状は、基部5Bと、複数の櫛歯5Aとを備える。第2の集電極6の櫛形状は、基部6Bと、複数の櫛歯6Aとを備える。他の層の櫛形状もこの図から理解されるであろう。ただし、第1~第4の非晶質系半導体層では、噛み合った櫛形状が一部重なる形状となる。p型非晶質系半導体及びそれに対応した電極と、n型非晶質系半導体及びそれに対応した電極とが、互いに噛み合った櫛形状になることで、受光によって発生するキャリアを効率よく外部に取り出すことができる。 Fig. 2 shows the comb shape. FIG. 2 shows a comb shape in which the first collector electrode 5 and the second collector electrode 6 are engaged with each other. The comb shape of the first collector electrode 5 includes a base portion 5B and a plurality of comb teeth 5A. The comb shape of the second collector electrode 6 includes a base portion 6B and a plurality of comb teeth 6A. Other layers of the comb shape will also be understood from this figure. However, in the first to fourth amorphous semiconductor layers, the interdigitated comb shapes partially overlap each other. Since the p-type amorphous semiconductor and the corresponding electrode, and the n-type amorphous semiconductor and the corresponding electrode are in a comb shape, the carriers generated by light reception are efficiently extracted to the outside. be able to.
 第2の非晶質系半導体層2の櫛歯の幅は、第4の非晶質系半導体層4の櫛歯の幅よりも大きいことが好ましい。それにより、少数キャリアを広い面積で効率よく取り出すことができる。第2の非晶質系半導体層2は、半導体基板10とは異なる導電型を示すため、その面積をより大きくすることで、効率が高まるのである。第2の非晶質系半導体層2は、n型の半導体基板10を用いた場合はn型となり、p型の半導体基板10を用いた場合はp型となる。櫛歯の幅とは、櫛歯が延伸する方向に垂直な方向での長さである。図2では、第1の集電極5の櫛歯5Aの幅W5と、第2の集電極6の櫛歯6Aの幅W6とが示されている。図1及び図2から、各層(第1の電極11、第2の電極12、第1の非晶質系半導体層1、第2の非晶質系半導体層2、第3の非晶質系半導体層3及び第4の非晶質系半導体層4)の櫛歯の幅は理解されるであろう。第2の非晶質系半導体層2の櫛歯の幅は、第4の非晶質系半導体層4の櫛歯の幅の1.2倍以上が好ましく、2倍以上がより好ましく、3倍以上がさらに好ましい。同様に、第1の電極11の櫛歯の幅は、第2の電極12の櫛歯の幅よりも大きいことが好ましい。また、第1の集電極5の櫛歯の幅は、第2の集電極6の櫛歯の幅よりも大きいことが好ましい。図2に、第1の集電極5の櫛歯5Aの幅W5が第2の集電極6の櫛歯6Aの幅W6よりも大きい関係が示されている。第1の電極11の櫛歯の幅は、特に限定されるものではないが、例えば、100~5000μmの範囲内であってよい。第2の電極12の櫛歯の幅は、特に限定されるものではないが、例えば、10~1000μmの範囲内であってよい。 The width of the comb teeth of the second amorphous semiconductor layer 2 is preferably larger than the width of the comb teeth of the fourth amorphous semiconductor layer 4. Thereby, minority carriers can be efficiently taken out over a wide area. Since the second amorphous semiconductor layer 2 has a conductivity type different from that of the semiconductor substrate 10, the efficiency is increased by increasing the area of the second amorphous semiconductor layer 2. The second amorphous semiconductor layer 2 becomes n-type when the n-type semiconductor substrate 10 is used, and becomes p-type when the p-type semiconductor substrate 10 is used. The width of the comb teeth is a length in a direction perpendicular to the direction in which the comb teeth extend. In FIG. 2, the width W5 of the comb teeth 5A of the first collector electrode 5 and the width W6 of the comb teeth 6A of the second collector electrode 6 are shown. 1 and 2, each layer (first electrode 11, second electrode 12, first amorphous semiconductor layer 1, second amorphous semiconductor layer 2, third amorphous system). The width of the comb teeth of the semiconductor layer 3 and the fourth amorphous semiconductor layer 4) will be understood. The width of the comb teeth of the second amorphous semiconductor layer 2 is preferably 1.2 times or more, more preferably 2 times or more than the width of the comb teeth of the fourth amorphous semiconductor layer 4. The above is more preferable. Similarly, the width of the comb teeth of the first electrode 11 is preferably larger than the width of the comb teeth of the second electrode 12. The width of the comb teeth of the first collector electrode 5 is preferably larger than the width of the comb teeth of the second collector electrode 6. FIG. 2 shows a relationship in which the width W5 of the comb teeth 5A of the first collector electrode 5 is larger than the width W6 of the comb teeth 6A of the second collector electrode 6. The width of the comb teeth of the first electrode 11 is not particularly limited, but may be in the range of 100 to 5000 μm, for example. The width of the comb teeth of the second electrode 12 is not particularly limited, but may be in the range of 10 to 1000 μm, for example.
 本実施形態では、第1の電極11と第2の電極12とは、平面視において離間している。すなわち、第1の電極11と第2の電極12とは、平面視において重なっていない。第1の電極11の櫛歯の間に、第2の電極12の櫛歯が収まっているといえる。図1では、第1の電極11と第2の電極12とが離間する距離は、離間距離Dで示されている。離間距離Dは、第3の非晶質系半導体層3及び第4の非晶質系半導体層4の厚みの合計よりも大きいことが好ましい。それにより、リーク電流が低減されやすくなる。 In the present embodiment, the first electrode 11 and the second electrode 12 are separated from each other in plan view. That is, the first electrode 11 and the second electrode 12 do not overlap in plan view. It can be said that the comb teeth of the second electrode 12 are accommodated between the comb teeth of the first electrode 11. In FIG. 1, the distance at which the first electrode 11 and the second electrode 12 are separated is indicated by a separation distance D. The separation distance D is preferably larger than the total thickness of the third amorphous semiconductor layer 3 and the fourth amorphous semiconductor layer 4. Thereby, the leak current is easily reduced.
 第1の電極11と第2の電極12との離間距離Dは、10μm以上100μm以下となることが好ましい。離間距離Dが100μm以下になると、多数キャリアに対する直列抵抗が減少するため、効率がより向上する。また、離間距離Dが10μm以上になると、電極間のリーク電流が低減されやすくなる。 The separation distance D between the first electrode 11 and the second electrode 12 is preferably 10 μm or more and 100 μm or less. When the separation distance D is 100 μm or less, the series resistance with respect to the majority carriers decreases, and thus the efficiency is further improved. Further, when the separation distance D is 10 μm or more, the leakage current between the electrodes is easily reduced.
 各非晶質系半導体層(第1~第4の非晶質系半導体層)は、シリコンを含む水素化非晶質系半導体により構成されていることが好ましい。これは、i型、p型及びn型のいずれにも共通する。非晶質系半導体としては、例えば、非晶質シリコン、非晶質シリコンカーバイド、非晶質シリコンゲルマニウムが挙げられる。もちろん、非晶質系半導体層は、これらの材料に限られず、他の非晶質系半導体により構成されていてもよい。また、非晶質系半導体層は、他の薄膜半導体により構成されていてもよい。第1の非晶質系半導体層1と第3の非晶質系半導体層3とが同じ材料で形成されると、これらの境界部分は曖昧になり得る。 Each amorphous semiconductor layer (first to fourth amorphous semiconductor layers) is preferably composed of a hydrogenated amorphous semiconductor containing silicon. This is common to all of i-type, p-type and n-type. Examples of the amorphous semiconductor include amorphous silicon, amorphous silicon carbide, and amorphous silicon germanium. Of course, the amorphous semiconductor layer is not limited to these materials, and may be composed of other amorphous semiconductors. The amorphous semiconductor layer may be composed of other thin film semiconductors. When the first amorphous semiconductor layer 1 and the third amorphous semiconductor layer 3 are formed of the same material, their boundary portions may be ambiguous.
 p型の非晶質系半導体層の不純物としては、例えば、B(ボロン)、Al、Ga(ガリウム)が挙げられる。この不純物は、III族元素が好ましい。不純物として、B(ボロン)が好ましく用いられる。n型の非晶質系半導体層の不純物としては、例えば、P(リン)、As(ヒ素)、Sb(アンチモン)が挙げられる。この不純物は、V族元素が好ましい。不純物として、P(リン)が好ましく用いられる。 Examples of impurities in the p-type amorphous semiconductor layer include B (boron), Al, and Ga (gallium). This impurity is preferably a group III element. B (boron) is preferably used as the impurity. Examples of impurities in the n-type amorphous semiconductor layer include P (phosphorus), As (arsenic), and Sb (antimony). This impurity is preferably a group V element. P (phosphorus) is preferably used as the impurity.
 第1の電極11は、透明電極であってよい。第2の電極12は、透明電極であってよい。これらの電極は、例えば、透明金属酸化物によって形成され得る。第1の電極11及び第2の電極12は、例えば、ITO(酸化インジウム錫)、SnO(酸化錫)、またはZnO(酸化亜鉛)から形成され得る。第1の電極11と第2の電極12とは、同じ材料で形成されてもよいし、違う材料で形成されてもよい。第1の集電極5及び第2の集電極6は、金属で構成されていてよい。第1の集電極5及び第2の集電極6は、例えば、Ag(銀)、Al(アルミニウム)、Cu(銅)、Au(金)から形成され得る。第1の集電極5及び第2の集電極6は、好ましくは、Agで構成される。第1の集電極5と第2の集電極6とは、同じ材料で形成されてもよいし、違う材料で形成されてもよい。なお、第4の非晶質系半導体層4とのオーミックコンタクトが形成可能で、かつ電極材料の拡散が影響しない場合には、第2の電極12は、金属で構成されていてもよい。その場合、第2の電極12が集電極の機能を兼ね備えて、第2の集電極6が省略されていてもよい。それにより、層構成がより簡単になる。 The first electrode 11 may be a transparent electrode. The second electrode 12 may be a transparent electrode. These electrodes can be formed of, for example, a transparent metal oxide. The first electrode 11 and the second electrode 12 can be made of, for example, ITO (indium tin oxide), SnO 2 (tin oxide), or ZnO (zinc oxide). The first electrode 11 and the second electrode 12 may be formed of the same material or may be formed of different materials. The first collector electrode 5 and the second collector electrode 6 may be made of metal. The first collector electrode 5 and the second collector electrode 6 can be made of, for example, Ag (silver), Al (aluminum), Cu (copper), or Au (gold). The first collector electrode 5 and the second collector electrode 6 are preferably made of Ag. The first collector electrode 5 and the second collector electrode 6 may be formed of the same material or different materials. In the case where an ohmic contact with the fourth amorphous semiconductor layer 4 can be formed and the diffusion of the electrode material does not affect, the second electrode 12 may be made of metal. In that case, the second electrode 12 may have the function of a collecting electrode, and the second collecting electrode 6 may be omitted. Thereby, the layer structure becomes easier.
 各非晶質系半導体層(第1~第4の非晶質系半導体層)の厚みは、特に限定されるものではないが、例えば、1~50nmの範囲内であってよい。例えば、これらの非晶質系半導体層の厚みは、10nm程度である。第1の電極11及び第2の電極12の厚みは、特に限定されるものではないが、例えば、10~200nmの範囲内であってよい。例えば、これらの電極の厚みは、70nm程度である。第1の集電極5及び第2の集電極6の厚みは、特に限定されるものではないが、例えば、100~1000nmの範囲内であってよい。例えば、これらの集電極の厚みは、200nm程度である。 The thickness of each amorphous semiconductor layer (first to fourth amorphous semiconductor layers) is not particularly limited, but may be in the range of 1 to 50 nm, for example. For example, the thickness of these amorphous semiconductor layers is about 10 nm. The thicknesses of the first electrode 11 and the second electrode 12 are not particularly limited, but may be in the range of 10 to 200 nm, for example. For example, the thickness of these electrodes is about 70 nm. The thickness of the first collector electrode 5 and the second collector electrode 6 is not particularly limited, but may be in the range of 100 to 1000 nm, for example. For example, the thickness of these collector electrodes is about 200 nm.
 図1に示すように、半導体基板10の受光面10a(主面)上に、真性の非晶質系半導体層7が配置されていることが好ましい。それにより、主面側表面でのキャリア再結合が抑制され、発電の効率が向上する。非晶質系半導体層7は、i型の非晶質系半導体の層であってよい。非晶質系半導体層7は、主面非晶質系半導体層と定義される。非晶質系半導体層7は、好ましくは、半導体基板10の主面全面に配置される。非晶質系半導体層7は、パッシベーション膜として機能する。非晶質系半導体層7は、シリコンを含む水素化非晶質系半導体により構成されていることが好ましい。非晶質系半導体としては、例えば、非晶質シリコン、非晶質シリコンカーバイド、非晶質酸化シリコン、非晶質窒化シリコンが挙げられる。非晶質系半導体層7の厚みは、特に限定されるものではないが、例えば、1~50nmの範囲内であってよい。例えば、非晶質系半導体層7の厚みは、10nm程度である。 As shown in FIG. 1, an intrinsic amorphous semiconductor layer 7 is preferably disposed on the light receiving surface 10 a (main surface) of the semiconductor substrate 10. Thereby, carrier recombination on the main surface side surface is suppressed, and the efficiency of power generation is improved. The amorphous semiconductor layer 7 may be an i-type amorphous semiconductor layer. The amorphous semiconductor layer 7 is defined as a main surface amorphous semiconductor layer. The amorphous semiconductor layer 7 is preferably disposed on the entire main surface of the semiconductor substrate 10. The amorphous semiconductor layer 7 functions as a passivation film. The amorphous semiconductor layer 7 is preferably composed of a hydrogenated amorphous semiconductor containing silicon. Examples of the amorphous semiconductor include amorphous silicon, amorphous silicon carbide, amorphous silicon oxide, and amorphous silicon nitride. The thickness of the amorphous semiconductor layer 7 is not particularly limited, but may be in the range of 1 to 50 nm, for example. For example, the thickness of the amorphous semiconductor layer 7 is about 10 nm.
 非晶質系半導体層7上には、反射防止層8が配置されていることが好ましい。それにより、光の反射が抑制され、光が入射しやすくなる。非晶質系半導体層7は、入射光の吸収が少ない材料で形成されることが好ましい。反射防止層8は、例えば、窒化シリコンから形成され得る。反射防止層8の厚みは、特に限定されるものではないが、例えば、30~2000nmの範囲内であってよい。例えば、反射防止層8の厚みは、70nm程度である。 An antireflection layer 8 is preferably disposed on the amorphous semiconductor layer 7. Thereby, reflection of light is suppressed and light becomes easy to enter. The amorphous semiconductor layer 7 is preferably formed of a material that absorbs little incident light. The antireflection layer 8 can be formed of, for example, silicon nitride. The thickness of the antireflection layer 8 is not particularly limited, but may be, for example, in the range of 30 to 2000 nm. For example, the thickness of the antireflection layer 8 is about 70 nm.
 なお、非晶質系半導体層7及び反射防止層8の機能を兼ね備えた単層の層が、半導体基板10の受光面10aに配置されていてもよい。例えば、窒化シリコンや窒化アルミニウムは、そのような機能を有し得る。あるいは、非晶質系半導体層7と反射防止層8との間に、追加の層が設けられていてもよい。追加の層は、例えば、表面電界層を形成する不純物をドープした非晶質系半導体層、又は、固定電荷を有する誘電体層で構成され得る。 A single layer having the functions of the amorphous semiconductor layer 7 and the antireflection layer 8 may be disposed on the light receiving surface 10 a of the semiconductor substrate 10. For example, silicon nitride or aluminum nitride can have such a function. Alternatively, an additional layer may be provided between the amorphous semiconductor layer 7 and the antireflection layer 8. The additional layer may be composed of, for example, an amorphous semiconductor layer doped with impurities forming the surface electric field layer, or a dielectric layer having a fixed charge.
 以上で説明した太陽電池は、櫛形状の第2の非晶質系半導体層2の一面全体に第1の電極11が配置されることによって、半導体基板10中で発生する少数キャリアを効率よく取り出すことができる。また、加工精度の許容する最大の面積で電極の形成が可能である。そして、非晶質系半導体層中の面内の伝導にともなう直列抵抗の影響が減少する。そのため、太陽電池の変換効率が向上する。 The solar cell described above efficiently takes out minority carriers generated in the semiconductor substrate 10 by disposing the first electrode 11 over the entire surface of the second comb-shaped amorphous semiconductor layer 2. be able to. In addition, the electrode can be formed with the maximum area allowed by the processing accuracy. Then, the influence of series resistance due to in-plane conduction in the amorphous semiconductor layer is reduced. Therefore, the conversion efficiency of the solar cell is improved.
  [第2の実施形態]
 図3は、太陽電池の第2の実施形態を示している。図4は、太陽電池の第2の実施形態の裏面の一部を示している。裏面の一部としたのは、櫛形状の一部が示されているからである。実際には櫛形状は、櫛歯の数がもっと多くてもよい。図3では、平面視を行う基板に垂直な方向Sを矢印で示している。図4では、光が進行する方向Pを白抜き矢印で示している。図4では、第1の電極11の縁部11aが二点鎖線で示されている。図4では、絶縁体層9が配置された領域を斜線で示している。図4では、絶縁体層9の第2の電極12に近い方の縁部を破線で示している。第2の実施形態では、第1の実施形態と同様の構成については同じ符号を付して説明を省略する。
[Second Embodiment]
FIG. 3 shows a second embodiment of the solar cell. FIG. 4 shows a part of the back surface of the second embodiment of the solar cell. The reason why it is a part of the back surface is that a part of the comb shape is shown. Actually, the comb shape may have a larger number of comb teeth. In FIG. 3, a direction S perpendicular to the substrate to be viewed in plan is indicated by an arrow. In FIG. 4, the direction P in which light travels is indicated by a white arrow. In FIG. 4, the edge part 11a of the 1st electrode 11 is shown with the dashed-two dotted line. In FIG. 4, the region where the insulator layer 9 is disposed is indicated by hatching. In FIG. 4, the edge of the insulator layer 9 closer to the second electrode 12 is indicated by a broken line. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 第2の実施形態は、第1の電極11と第3の非晶質系半導体層3との間に配置される絶縁体層9を備えている。この点が、第1の実施形態と相違する。その他の構成は、第1の実施形態と同じであってよい。 The second embodiment includes an insulator layer 9 disposed between the first electrode 11 and the third amorphous semiconductor layer 3. This point is different from the first embodiment. Other configurations may be the same as those of the first embodiment.
 絶縁体層9は、層を電気的に絶縁する機能を有する。絶縁体層9は、第1の電極11と第3の非晶質系半導体層3とが接触するのを抑制している。絶縁体層9は、第1の電極11の縁部11aを跨いでいる。絶縁体層9は、半導体基板10の裏面10b上に配置されるとともに、第1の電極11に載り上がっている。絶縁体層9は半導体基板10に接している。絶縁体層9は第1の電極11に接している。絶縁体層9は、第1の電極11の端部を被覆している。絶縁体層9は、第2の非晶質系半導体層2の側面を被覆している。絶縁体層9は、第1の非晶質系半導体層1の側面を被覆している。絶縁体層9により、第1の非晶質系半導体層1、第2の非晶質系半導体層2及び第1の電極11は、第3の非晶質系半導体層3及び第4の非晶質系半導体層4と、電気的に絶縁されている。なお、図3では絶縁体層9の一方の縁部が第3の非晶質系半導体層3の縁部および第4の非晶質系半導体層4の縁部と一致するように描かれているが、それぞれの縁部は必ずしも一致する必要はなく、第3の非晶質系半導体層3の縁部および第4の非晶質系半導体層4の縁部が絶縁体層9上に存していればよい。絶縁体層9が存在することにより、電極間のリーク電流が低減される。絶縁体層9で、p側電極とn側電極との電気的な分離が促進されるため、電極間のリーク電流が非常に小さくなるのである。そのため、発電効率が向上し、良好な特性の太陽電池が得られる。 The insulator layer 9 has a function of electrically insulating the layers. The insulator layer 9 suppresses contact between the first electrode 11 and the third amorphous semiconductor layer 3. The insulator layer 9 straddles the edge 11 a of the first electrode 11. The insulator layer 9 is disposed on the back surface 10 b of the semiconductor substrate 10 and is placed on the first electrode 11. The insulator layer 9 is in contact with the semiconductor substrate 10. The insulator layer 9 is in contact with the first electrode 11. The insulator layer 9 covers the end portion of the first electrode 11. The insulator layer 9 covers the side surface of the second amorphous semiconductor layer 2. The insulator layer 9 covers the side surface of the first amorphous semiconductor layer 1. By the insulator layer 9, the first amorphous semiconductor layer 1, the second amorphous semiconductor layer 2, and the first electrode 11 are connected to the third amorphous semiconductor layer 3 and the fourth non-crystalline semiconductor layer 3. It is electrically insulated from the crystalline semiconductor layer 4. In FIG. 3, one edge of the insulator layer 9 is drawn so as to coincide with the edge of the third amorphous semiconductor layer 3 and the edge of the fourth amorphous semiconductor layer 4. However, the edges do not necessarily coincide with each other, and the edge of the third amorphous semiconductor layer 3 and the edge of the fourth amorphous semiconductor layer 4 exist on the insulator layer 9. If you do. The presence of the insulator layer 9 reduces the leakage current between the electrodes. Insulator layer 9 facilitates electrical separation between the p-side electrode and the n-side electrode, so that the leakage current between the electrodes becomes very small. Therefore, the power generation efficiency is improved, and a solar cell with good characteristics can be obtained.
 図4に示されるように、絶縁体層9は、平面視において蛇行形状を有している。絶縁体層9は、第1の電極11の櫛歯の縁部の形状に沿って配置されるため、蛇行する形状になる。 As shown in FIG. 4, the insulator layer 9 has a meandering shape in plan view. Since the insulator layer 9 is disposed along the shape of the edge of the comb teeth of the first electrode 11, it has a meandering shape.
 絶縁体層9は、絶縁材料により形成され得る。絶縁材料は、無機の材料であってもよいし、有機の材料であってもよい。絶縁体層9の材料として、例えば、シリカ、窒化ケイ素、アルミナ、ポリイミドが挙げられる。絶縁体層9は、透明であってもよいし、半透明であってもよいし、不透明であってもよい。絶縁体層9の厚みは、特に限定されるものではないが、例えば、5~200nmの範囲内であってよい。絶縁体層9の厚みは、例えば、70nm程度である。 The insulator layer 9 can be formed of an insulating material. The insulating material may be an inorganic material or an organic material. Examples of the material for the insulator layer 9 include silica, silicon nitride, alumina, and polyimide. The insulator layer 9 may be transparent, translucent, or opaque. The thickness of the insulator layer 9 is not particularly limited, but may be in the range of 5 to 200 nm, for example. The thickness of the insulator layer 9 is, for example, about 70 nm.
 本実施形態においては、絶縁体層9が存在するため、第1の電極11と第2の電極12との離間距離Dが10μm未満であっても、リーク電流の発生が抑制され得る。そのため、離間距離Dは10μm未満であってもよい。例えば、第2の電極12は、第4の非晶質系半導体層4が第1の電極11に載り上がるために起き上がった部分に設けられていてもよい。また、第1の電極11と第2の電極12とが平面視で重なって離間距離Dがなくなってもよい。ただし、電極のパターニングの精度を考慮すると、離間距離Dがある方が好ましい。離間距離Dは、1μm以上100μm以下であることが好ましい。 In the present embodiment, since the insulator layer 9 is present, the occurrence of leakage current can be suppressed even if the separation distance D between the first electrode 11 and the second electrode 12 is less than 10 μm. Therefore, the separation distance D may be less than 10 μm. For example, the second electrode 12 may be provided at a portion where the fourth amorphous semiconductor layer 4 is raised because the fourth amorphous semiconductor layer 4 is placed on the first electrode 11. Further, the first electrode 11 and the second electrode 12 may overlap with each other in plan view, and the separation distance D may be eliminated. However, considering the patterning accuracy of the electrodes, it is preferable that there is a separation distance D. The separation distance D is preferably 1 μm or more and 100 μm or less.
  [太陽電池の製造方法]
 以下、太陽電池の製造方法について説明する。
[Method for manufacturing solar cell]
Hereinafter, the manufacturing method of a solar cell is demonstrated.
 図5は、第1の実施形態の太陽電池の製造方法の一例を示す断面図である。図5は、図5A~図5Jから構成される。 FIG. 5 is a cross-sectional view showing an example of the method for manufacturing the solar cell of the first embodiment. FIG. 5 is composed of FIGS. 5A to 5J.
 太陽電池の製造方法は、次の工程を備えている:
 第1の非晶質系半導体層1を形成する工程;
 第2の非晶質系半導体層2を形成する工程;
 第1の電極11を形成する工程;
 第1の非晶質系半導体層1、第2の非晶質系半導体層2及び第1の電極11を櫛形状にエッチングする工程;
 第3の非晶質系半導体層3を形成する工程;
 第4の非晶質系半導体層4を形成する工程;
 第3の非晶質系半導体層3及び第4の非晶質系半導体層4を櫛形状にエッチングする工程;
 第2の電極12を形成する工程。
The method for manufacturing a solar cell includes the following steps:
Forming the first amorphous semiconductor layer 1;
Forming the second amorphous semiconductor layer 2;
Forming the first electrode 11;
Etching the first amorphous semiconductor layer 1, the second amorphous semiconductor layer 2 and the first electrode 11 into a comb shape;
Forming a third amorphous semiconductor layer 3;
Forming a fourth amorphous semiconductor layer 4;
Etching the third amorphous semiconductor layer 3 and the fourth amorphous semiconductor layer 4 into a comb shape;
Forming the second electrode 12;
 以下さらに説明する。 Further explanation will be given below.
 まず、半導体基板10を準備する。半導体基板10としては、n型単結晶シリコン基板が例示される。半導体基板10を洗浄し、真空チャンバー内に搬送して加熱を行う。これにより、基板の表面に付着した水分を除去する。以下では、n型半導体基板を用いた例を説明するが、p型半導体基板を用いた場合は、各材料のn型とp型とを入れ替えればよい。 First, the semiconductor substrate 10 is prepared. An example of the semiconductor substrate 10 is an n-type single crystal silicon substrate. The semiconductor substrate 10 is cleaned, transported into a vacuum chamber, and heated. As a result, moisture adhering to the surface of the substrate is removed. Hereinafter, an example in which an n-type semiconductor substrate is used will be described. However, if a p-type semiconductor substrate is used, the n-type and p-type of each material may be interchanged.
 次に、真空チャンバー内にSiH(シラン)ガスを導入し、PECVD法により半導体基板10の裏面10b(受光面10aとは反対側の面)に、第1の非晶質系半導体層1を形成する。これが、第1の非晶質系半導体層1を形成する工程である。第1の非晶質系半導体層1は、i型非晶質シリコンで形成され得る。第1の非晶質系半導体層1は不純物を含まない。第1の非晶質系半導体層1は真性である。次いで、真空チャンバー内にSiHガス、H(水素)ガスおよびB(ジボラン)ガスを導入し、PECVD法により、第1の非晶質系半導体層1の上に、第2の非晶質系半導体層2を形成する。これが、第2の非晶質系半導体層2を形成する工程である。第2の非晶質系半導体層2は、p型非晶質シリコンで形成され得る。第2の非晶質系半導体層2は不純物を含む。不純物はドープされる。次いで、スパッタ法、MOCVD(有機金属気相成長)法または印刷法により、第1の電極11を形成する。これが、第1の電極11を形成する工程である。第1の電極11は、例えば、ITO、ZnOで形成され得る。 Next, SiH 4 (silane) gas is introduced into the vacuum chamber, and the first amorphous semiconductor layer 1 is formed on the back surface 10b (surface opposite to the light receiving surface 10a) of the semiconductor substrate 10 by PECVD. Form. This is a step of forming the first amorphous semiconductor layer 1. The first amorphous semiconductor layer 1 can be formed of i-type amorphous silicon. The first amorphous semiconductor layer 1 does not contain impurities. The first amorphous semiconductor layer 1 is intrinsic. Next, SiH 4 gas, H 2 (hydrogen) gas and B 2 H 6 (diborane) gas are introduced into the vacuum chamber, and the second amorphous semiconductor layer 1 is formed on the first amorphous semiconductor layer 1 by PECVD. An amorphous semiconductor layer 2 is formed. This is a step of forming the second amorphous semiconductor layer 2. The second amorphous semiconductor layer 2 can be formed of p-type amorphous silicon. The second amorphous semiconductor layer 2 contains impurities. Impurities are doped. Next, the first electrode 11 is formed by sputtering, MOCVD (metal organic chemical vapor deposition), or printing. This is a step of forming the first electrode 11. The first electrode 11 can be formed of, for example, ITO or ZnO.
 図5Aは、第1の電極11が形成された後の様子を示している。ここで、図5Aから分かるように、第1の非晶質系半導体層1、第2の非晶質系半導体層2及び第1の電極11は、半導体基板10に、パターン化されずに、層状に設けられている。 FIG. 5A shows a state after the first electrode 11 is formed. Here, as can be seen from FIG. 5A, the first amorphous semiconductor layer 1, the second amorphous semiconductor layer 2 and the first electrode 11 are not patterned on the semiconductor substrate 10, It is provided in layers.
 続いて、図5Bに示すように、第1の電極11の上に、エッチングレジスト材料を櫛形状に塗布し、エッチングレジスト材料を固化させる。エッチングレジスト材料としては、高精度の印刷が可能でエッチング耐性を有し、エッチング後の剥離が容易で汚染が少ない材料であれば、フォトレジストや顔料インク、ポリイミドなどを用いてよい。エッチングレジスト材料の塗布は、印刷法により行うことができる。印刷法としては、例えば、インクジェット印刷法、スクリーン印刷法が挙げられる。エッチングレジスト材料から、エッチングレジスト層21が形成される。そして、図5Cに示すように、エッチングレジスト層21が形成された半導体基板10をエッチング液に浸漬させて、第1の電極11、第2の非晶質系半導体層2及び第1の非晶質系半導体層1の、エッチングレジスト層21に覆われていない部分を除去する。このエッチングは、ウェットエッチングである。エッチング液としては、例えば、NHF(フッ化アンモニウム)水溶液と、H(過酸化水素)水溶液との混合液が用いられる。また、エッチングはドライエッチングで行われてもよい。ドライエッチングとしては、例えば、SF(六フッ化硫黄)、NF(三フッ化窒素)、CF(四フッ化炭素)などによる反応性イオンエッチングが例示される。その後、図5Dに示すように、レジスト除去材により、エッチングレジスト層21を除去する。レジスト除去材としては、例えば、アセトンが用いられる。これにより、第1の非晶質系半導体層1、第2の非晶質系半導体層2及び第1の電極11は、パターニングされて、櫛形状になる。これらの一連の工程が、第1の非晶質系半導体層1、第2の非晶質系半導体層2及び第1の電極11を櫛形状にエッチングする工程である。 Subsequently, as shown in FIG. 5B, an etching resist material is applied in a comb shape on the first electrode 11, and the etching resist material is solidified. As an etching resist material, a photoresist, pigment ink, polyimide, or the like may be used as long as it is a material that can be printed with high accuracy, has etching resistance, is easily peeled off after etching, and has little contamination. The etching resist material can be applied by a printing method. Examples of the printing method include an inkjet printing method and a screen printing method. An etching resist layer 21 is formed from the etching resist material. Then, as shown in FIG. 5C, the semiconductor substrate 10 on which the etching resist layer 21 is formed is immersed in an etching solution, and the first electrode 11, the second amorphous semiconductor layer 2, and the first amorphous semiconductor layer 10 are immersed. The portion of the quality semiconductor layer 1 that is not covered with the etching resist layer 21 is removed. This etching is wet etching. As the etching solution, for example, a mixed solution of an NH 4 F (ammonium fluoride) aqueous solution and an H 2 O 2 (hydrogen peroxide) aqueous solution is used. Etching may be performed by dry etching. Examples of dry etching include reactive ion etching using SF 6 (sulfur hexafluoride), NF 3 (nitrogen trifluoride), CF 4 (carbon tetrafluoride), and the like. Thereafter, as shown in FIG. 5D, the etching resist layer 21 is removed with a resist removing material. As the resist removing material, for example, acetone is used. Accordingly, the first amorphous semiconductor layer 1, the second amorphous semiconductor layer 2, and the first electrode 11 are patterned into a comb shape. A series of these steps is a step of etching the first amorphous semiconductor layer 1, the second amorphous semiconductor layer 2, and the first electrode 11 into a comb shape.
 次に、真空チャンバー内にSiHガスを導入し、PECVD法により、第1の電極11、及び、エッチングにより露出した半導体基板10の裏面10bの上に、第3の非晶質系半導体層3を形成する。これが、第3の非晶質系半導体層3を形成する工程である。第3の非晶質系半導体層3は、i型非晶質シリコンで形成され得る。第3の非晶質系半導体層3は不純物を含まない。第3の非晶質系半導体層3は真性である。第3の非晶質系半導体層3は、第1の電極11が分離した櫛歯の間の部分を含んで積層される。 Then, by introducing SiH 4 gas into the vacuum chamber, by PECVD, the first electrode 11, and, on the back surface 10b of the semiconductor substrate 10 exposed by the etching, the third amorphous-based semiconductor layer 3 Form. This is a step of forming the third amorphous semiconductor layer 3. The third amorphous semiconductor layer 3 can be formed of i-type amorphous silicon. The third amorphous semiconductor layer 3 does not contain impurities. The third amorphous semiconductor layer 3 is intrinsic. The third amorphous semiconductor layer 3 is laminated so as to include a portion between the comb teeth from which the first electrode 11 is separated.
 次いで、真空チャンバー内にSiHガス、HガスおよびPH(ホスフィン)ガスを導入し、PECVD法により、第4の非晶質系半導体層4を形成する。これが、第4の非晶質系半導体層4を形成する工程である。第4の非晶質系半導体層4は、n型非晶質シリコンで形成され得る。第4の非晶質系半導体層4は不純物を含む。不純物はドープされる。第4の非晶質系半導体層4は、第1の電極11が分離した櫛歯の間の部分を含んで積層される。 Next, SiH 4 gas, H 2 gas and PH 3 (phosphine) gas are introduced into the vacuum chamber, and the fourth amorphous semiconductor layer 4 is formed by PECVD. This is a step of forming the fourth amorphous semiconductor layer 4. The fourth amorphous semiconductor layer 4 can be formed of n-type amorphous silicon. The fourth amorphous semiconductor layer 4 contains impurities. Impurities are doped. The fourth amorphous semiconductor layer 4 is laminated so as to include a portion between the comb teeth from which the first electrode 11 is separated.
 図5Eは、第4の非晶質系半導体層4が形成された後の様子を示している。ここで、図5Eから分かるように、第3の非晶質系半導体層3及び第4の非晶質系半導体層4は、半導体基板10の裏面側において、パターン化されずに、層状に設けられている。 FIG. 5E shows a state after the fourth amorphous semiconductor layer 4 is formed. Here, as can be seen from FIG. 5E, the third amorphous semiconductor layer 3 and the fourth amorphous semiconductor layer 4 are provided in layers on the back side of the semiconductor substrate 10 without being patterned. It has been.
 続いて、図5Fに示すように、第4の非晶質系半導体層4の上に、エッチングレジスト材料を櫛形状に塗布し、エッチングレジスト材料を固化させる。エッチングレジスト材料としては、高精度の印刷が可能でエッチング耐性を有し、エッチング後の剥離が容易で汚染が少ない材料であれば、フォトレジストや顔料インク、ポリイミドなどを用いてよい。エッチングレジスト材料の塗布は、印刷法により行うことができる。印刷法としては、例えば、インクジェット印刷法、スクリーン印刷法が挙げられる。エッチングレジスト材料から、エッチングレジスト層22が形成される。そして、図5Gに示すように、エッチングレジスト層22が形成された半導体基板10をエッチング液に浸漬させて、第4の非晶質系半導体層4及び第3の非晶質系半導体層3の、エッチングレジスト層22に覆われていない部分を除去する。このエッチングは、ウェットエッチングである。エッチング液としては、例えば、HF(フッ化水素酸)水溶液と、H(過酸化水素)水溶液との混合液が用いられる。また、エッチングはドライエッチングで行われてもよい。ドライエッチングとしては、例えば、SF(六フッ化硫黄)、NF(三フッ化窒素)、CF(四フッ化炭素)などによる反応性イオンエッチングが例示される。エッチングは、第1の電極11及びそれより半導体基板10側の層をエッチングしないように行われる。これにより、第1の電極11が露出する。その後、図5Hに示すように、レジスト除去材により、エッチングレジスト層22を除去する。レジスト除去材としては、例えば、アセトンが用いられる。これにより、第3の非晶質系半導体層3及び第4の非晶質系半導体層4は、パターニングされて、櫛形状になる。これらの一連の工程が、第3の非晶質系半導体層3及び第4の非晶質系半導体層4を櫛形状にエッチングする工程である。 Subsequently, as shown in FIG. 5F, an etching resist material is applied in a comb shape on the fourth amorphous semiconductor layer 4 to solidify the etching resist material. As an etching resist material, a photoresist, pigment ink, polyimide, or the like may be used as long as it is a material that can be printed with high accuracy, has etching resistance, is easily peeled off after etching, and has little contamination. The etching resist material can be applied by a printing method. Examples of the printing method include an inkjet printing method and a screen printing method. An etching resist layer 22 is formed from the etching resist material. Then, as shown in FIG. 5G, the semiconductor substrate 10 on which the etching resist layer 22 is formed is immersed in an etching solution, and the fourth amorphous semiconductor layer 4 and the third amorphous semiconductor layer 3 are formed. Then, the portion not covered with the etching resist layer 22 is removed. This etching is wet etching. As the etching solution, for example, a mixed solution of an HF (hydrofluoric acid) aqueous solution and an H 2 O 2 (hydrogen peroxide) aqueous solution is used. Etching may be performed by dry etching. Examples of dry etching include reactive ion etching using SF 6 (sulfur hexafluoride), NF 3 (nitrogen trifluoride), CF 4 (carbon tetrafluoride), and the like. Etching is performed so as not to etch the first electrode 11 and the layer closer to the semiconductor substrate 10 than the first electrode 11. As a result, the first electrode 11 is exposed. Thereafter, as shown in FIG. 5H, the etching resist layer 22 is removed by a resist removing material. As the resist removing material, for example, acetone is used. As a result, the third amorphous semiconductor layer 3 and the fourth amorphous semiconductor layer 4 are patterned into a comb shape. A series of these steps is a step of etching the third amorphous semiconductor layer 3 and the fourth amorphous semiconductor layer 4 into a comb shape.
 次に、第4の非晶質系半導体層4の上にパターン状に第2の電極12を形成する。これが、第2の電極12を形成する工程である。第2の電極12は櫛形状のパターンで形成される。第2の電極12は、電極材料を含むインクを印刷法で塗布し、加熱処理を行うことで形成され得る。印刷法としては、例えば、インクジェット印刷法、スクリーン印刷法が挙げられる。 Next, the second electrode 12 is formed in a pattern on the fourth amorphous semiconductor layer 4. This is a step of forming the second electrode 12. The second electrode 12 is formed in a comb-shaped pattern. The second electrode 12 can be formed by applying an ink containing an electrode material by a printing method and performing a heat treatment. Examples of the printing method include an inkjet printing method and a screen printing method.
 第2の電極12は、第1の電極11に離間して形成される。第2の電極12は、第4の非晶質系半導体層4の平坦部4aに形成され得る。第2の電極12と第1の電極11との離間距離Dは、上述のように、電極間の短絡やリーク電流を抑制するために10μm以上であることが好ましい。また、離間距離Dは、多数キャリアの電子に対する直接抵抗を小さくするために、100μm以下であることが好ましい。 The second electrode 12 is formed apart from the first electrode 11. The second electrode 12 can be formed on the flat portion 4 a of the fourth amorphous semiconductor layer 4. As described above, the distance D between the second electrode 12 and the first electrode 11 is preferably 10 μm or more in order to suppress a short circuit between the electrodes and a leakage current. The separation distance D is preferably 100 μm or less in order to reduce the direct resistance of majority carriers to electrons.
 次いで、第1の集電極5及び第2の集電極6を櫛形状に形成する。第1の集電極5は、第1の電極11の上に形成される。第2の集電極6は、第2の電極12の上に形成される。第1の集電極5と第2の集電極6とは互いに噛み合う櫛形状のパターンで形成される。第1の集電極5及び第2の集電極6は、金属材料の印刷法で塗布することより形成され得る。印刷法としては、例えば、インクジェット印刷法、スクリーン印刷法が挙げられる。第1の集電極5及び第2の集電極6は、例えば、Ag(銀)で形成される。第1の集電極5及び第2の集電極6は同時に形成することが好ましい。それにより、製造工程が簡略化される。図5Iは、集電極が形成された後の様子を示している。 Next, the first collector electrode 5 and the second collector electrode 6 are formed in a comb shape. The first collector electrode 5 is formed on the first electrode 11. The second collector electrode 6 is formed on the second electrode 12. The first collector electrode 5 and the second collector electrode 6 are formed in a comb-shaped pattern that meshes with each other. The first collector electrode 5 and the second collector electrode 6 can be formed by applying a metal material by a printing method. Examples of the printing method include an inkjet printing method and a screen printing method. The first collector electrode 5 and the second collector electrode 6 are made of, for example, Ag (silver). The first collector electrode 5 and the second collector electrode 6 are preferably formed simultaneously. Thereby, the manufacturing process is simplified. FIG. 5I shows the state after the collector electrode is formed.
 なお、第2の電極12、第1の集電極5及び第2の集電極6は、印刷法以外のパターニングにより形成されてもよい。例えば、これらは、マスクを用いたスパッタリング成膜法により、パターン化されて形成され得る。あるいは、例えば、これらは、一面に層が形成された後、パターン化した蛇行形状でエッチングレジスト材料が形成され、ウェットエッチングによって櫛形状にパターン化されてもよい。 Note that the second electrode 12, the first collector electrode 5, and the second collector electrode 6 may be formed by patterning other than the printing method. For example, they can be patterned and formed by a sputtering film forming method using a mask. Alternatively, for example, after a layer is formed on one surface, an etching resist material may be formed in a patterned meandering shape, and may be patterned in a comb shape by wet etching.
 また、第4の非晶質系半導体層4とのオーミックコンタクトが形成可能で、かつ電極材料の拡散が影響しない場合には、第2の電極12は、上記の第2の集電極6の材料で形成されていてもよい。その場合、第1の集電極5の形成の際に、第4の非晶質系半導体層4の上に第2の電極12を形成することができる。このとき、第2の集電極6は省略されてよい。この構造は、第2の電極12が第2の集電極6を兼ね備えた構造であってよい。 When the ohmic contact with the fourth amorphous semiconductor layer 4 can be formed and the diffusion of the electrode material does not affect, the second electrode 12 is made of the material of the second collector electrode 6 described above. May be formed. In that case, the second electrode 12 can be formed on the fourth amorphous semiconductor layer 4 when the first collector electrode 5 is formed. At this time, the second collector electrode 6 may be omitted. This structure may be a structure in which the second electrode 12 also has the second collector electrode 6.
 集電極の形成後、半導体基板10の受光面10a(主面)を洗浄し、半導体基板10を真空チャンバー内に配置し、真空チャンバー内にSiHガスを導入して、PECVD法により、受光面10aの上に、非晶質系半導体層7を形成する。非晶質系半導体層7は、i型非晶質シリコンで形成され得る。次いで、非晶質系半導体層7の上に、例えばスパッタ法により、反射防止層8を形成する。このように、受光面側の非晶質系半導体層7を形成する工程を有することが好ましい。また、反射防止層8を形成する工程を有することが好ましい。なお、非晶質系半導体層7及び反射防止層8は、第1の非晶質系半導体層1の形成前、又は、第2の電極12の形成後で集電極の形成前の適宜の時期に形成されてもよい。 After the collector electrode is formed, the light receiving surface 10a (main surface) of the semiconductor substrate 10 is cleaned, the semiconductor substrate 10 is placed in a vacuum chamber, SiH 4 gas is introduced into the vacuum chamber, and the light receiving surface is formed by PECVD. An amorphous semiconductor layer 7 is formed on 10a. The amorphous semiconductor layer 7 can be formed of i-type amorphous silicon. Next, the antireflection layer 8 is formed on the amorphous semiconductor layer 7 by sputtering, for example. Thus, it is preferable to have a step of forming the amorphous semiconductor layer 7 on the light receiving surface side. Further, it is preferable to have a step of forming the antireflection layer 8. It should be noted that the amorphous semiconductor layer 7 and the antireflection layer 8 are appropriately formed before the formation of the first amorphous semiconductor layer 1 or after the formation of the second electrode 12 and before the formation of the collector electrode. May be formed.
 このようにして、図5Jに示す第1の実施形態の太陽電池が得られる。 Thus, the solar cell of the first embodiment shown in FIG. 5J is obtained.
 上記の製造方法では、非晶質系半導体層のパターニングがエッチングで行われる。そのため、非晶質系半導体層の形成時にマスクを用いて非晶質系半導体層をパターニングする場合のような、マスクからの不純物汚染が防止される。それにより、太陽電池特性の劣化が防止される。また、互いに噛み合う櫛形状で、n型の構造とp型の構造とを電気的分離を保ちながら過剰な隙間がないよう精度よく配置することができる。また、印刷法を用いてエッチングマスクの形成を行った場合には、製造工程を簡便化し、かつ歩留まりも向上するので、例えばフォトリソグラフィー法に対して製造コストの低減を図ることができる。 In the above manufacturing method, the patterning of the amorphous semiconductor layer is performed by etching. Therefore, impurity contamination from the mask is prevented as in the case of patterning the amorphous semiconductor layer using a mask when forming the amorphous semiconductor layer. Thereby, deterioration of the solar cell characteristics is prevented. In addition, the n-type structure and the p-type structure can be arranged with high accuracy so as not to have an excessive gap while maintaining electrical isolation in a comb shape that is engaged with each other. In addition, when the etching mask is formed by using the printing method, the manufacturing process is simplified and the yield is improved, so that the manufacturing cost can be reduced compared to the photolithography method, for example.
 以下、第2の実施形態の太陽電池の製造方法について説明する。 Hereinafter, a method for manufacturing the solar cell of the second embodiment will be described.
 図6は、第2の実施形態の太陽電池の製造方法の一例を示す断面図である。図6は、図6A~図6Dから構成される。図5と共通する図、及び図5から理解できる図は省略している。 FIG. 6 is a cross-sectional view showing an example of a method for manufacturing the solar cell of the second embodiment. FIG. 6 is configured from FIGS. 6A to 6D. The figure common to FIG. 5 and the figure understandable from FIG. 5 are omitted.
 第2の実施形態の太陽電池の製造方法は、絶縁体層9を形成する工程を備えている。それ以外は、第1の実施形態の太陽電池の製造方法と同じであってよい。 The method for manufacturing a solar cell according to the second embodiment includes a step of forming the insulator layer 9. Other than that may be the same as the manufacturing method of the solar cell of the first embodiment.
 絶縁体層9を形成する工程は、第1の非晶質系半導体層1、第2の非晶質系半導体層2及び第1の電極11をエッチングする工程の後に行われる。図6Aは、図5Dに対応する。図6Aの後、絶縁体層9を形成する工程を行うことにより、図6Bに示すように、絶縁体層9が、第1の電極11の端部に形成される。絶縁体層9は、第1の電極11と、エッチングにより露出した半導体基板10の部分との境界部を跨ぐように形成される。絶縁体層9は、第1の電極11の櫛歯の縁部11aに沿って蛇行した形状になる。絶縁体層9は、印刷法で形成され得る。絶縁体層9を印刷法で形成することにより、通常のスパッタリング法やPECVD法とは異なり、物理衝撃を小さくして低温で形成できるため、非晶質系半導体層(非晶質シリコン層)のダメージや変性が抑制され、太陽電池の効率が向上する効果がある。例えば、絶縁体層9の材料が印刷法によってパターン状に塗布され、加熱されることで、絶縁体層9が形成される。加熱は、200℃以下の温度が好ましい。加熱により、焼成が行われる。印刷法としては、例えば、インクジェット印刷法、スクリーン印刷法が挙げられる。また、印刷法以外のパターン化形成方法が採用されてもよい。例えば、絶縁体層9は、マスクを用いたスパッタリング成膜法により、パターン化されて形成され得る。あるいは、例えば、絶縁体層9は、一面に層が形成された後、パターン化した蛇行形状でエッチングレジスト材料が形成され、ウェットエッチングによってパターン化されてもよい。 The step of forming the insulator layer 9 is performed after the step of etching the first amorphous semiconductor layer 1, the second amorphous semiconductor layer 2, and the first electrode 11. FIG. 6A corresponds to FIG. 5D. After performing the step of forming the insulator layer 9 after FIG. 6A, the insulator layer 9 is formed at the end portion of the first electrode 11 as shown in FIG. 6B. The insulator layer 9 is formed so as to straddle the boundary between the first electrode 11 and the portion of the semiconductor substrate 10 exposed by etching. The insulator layer 9 has a meandering shape along the comb-teeth edge 11 a of the first electrode 11. The insulator layer 9 can be formed by a printing method. By forming the insulator layer 9 by a printing method, unlike a normal sputtering method or PECVD method, the physical impact can be reduced and formed at a low temperature, so that an amorphous semiconductor layer (amorphous silicon layer) is formed. Damage and modification are suppressed, and the solar cell efficiency is improved. For example, the insulator layer 9 is formed by applying the material of the insulator layer 9 in a pattern by a printing method and heating. The heating is preferably performed at a temperature of 200 ° C. or lower. Firing is performed by heating. Examples of the printing method include an inkjet printing method and a screen printing method. Further, a patterning method other than the printing method may be employed. For example, the insulator layer 9 can be formed by patterning by a sputtering film forming method using a mask. Alternatively, for example, the insulating layer 9 may be patterned by wet etching after an etching resist material is formed in a patterned meandering shape after a layer is formed on one surface.
 絶縁体層9の形成の後、図6Cに示すように、第3の非晶質系半導体層3及び第4の非晶質系半導体層4の形成及びパターニングを行う。その後、図6Dに示すように、第1の集電極5及び第2の集電極6を形成する。最後に、非晶質系半導体層7及び反射防止層8を形成することで、図3に示す太陽電池が得られる。 After the formation of the insulator layer 9, as shown in FIG. 6C, the third amorphous semiconductor layer 3 and the fourth amorphous semiconductor layer 4 are formed and patterned. Thereafter, as shown in FIG. 6D, the first collector electrode 5 and the second collector electrode 6 are formed. Finally, by forming the amorphous semiconductor layer 7 and the antireflection layer 8, the solar cell shown in FIG. 3 is obtained.
 このように、絶縁体層9を形成した場合、n型の電極とp型の電極との電気的な分離を高めることができるため、リーク電流の抑制された効率の高い太陽電池を製造することができる。 Thus, when the insulator layer 9 is formed, electrical separation between the n-type electrode and the p-type electrode can be increased, and therefore, a highly efficient solar cell in which leakage current is suppressed is manufactured. Can do.
  [実施例1]
 第1の実施形態の太陽電池について、第1の電極11と第2の電極12との間の距離が太陽電池の特性に及ぼす影響を計算機のシミュレーションにより調べた。半導体基板10は、n型単結晶シリコン基板とした。非晶質系半導体層(第1~第4及び主面上)は、全て非晶質シリコン層とした。第1の非晶質系半導体層1及び第3の非晶質系半導体層3(i型非晶質シリコン層)は、その厚みを5nmとし、電子濃度を1×1015cm-3とした。第2の非晶質系半導体層2(p型非晶質シリコン層)は、その厚みを5nmとし、櫛歯の幅を1.5mmとし、キャリア濃度を5×1018cm-3とした。第4の非晶質系半導体層4(n型非晶質シリコン層)は、その厚みを5nmとし、キャリア濃度を8×1018cm-3とした。受光面の非晶質系半導体層7(i型非晶質シリコン層)は、その厚みを5nmとし、電子濃度を1×1015cm-3とした。
[Example 1]
Regarding the solar cell of the first embodiment, the influence of the distance between the first electrode 11 and the second electrode 12 on the characteristics of the solar cell was examined by computer simulation. The semiconductor substrate 10 was an n-type single crystal silicon substrate. The amorphous semiconductor layers (on the first to fourth and main surfaces) were all amorphous silicon layers. The first amorphous semiconductor layer 1 and the third amorphous semiconductor layer 3 (i-type amorphous silicon layer) have a thickness of 5 nm and an electron concentration of 1 × 10 15 cm −3 . . The second amorphous semiconductor layer 2 (p-type amorphous silicon layer) had a thickness of 5 nm, a comb tooth width of 1.5 mm, and a carrier concentration of 5 × 10 18 cm −3 . The fourth amorphous semiconductor layer 4 (n-type amorphous silicon layer) had a thickness of 5 nm and a carrier concentration of 8 × 10 18 cm −3 . The amorphous semiconductor layer 7 (i-type amorphous silicon layer) on the light receiving surface had a thickness of 5 nm and an electron concentration of 1 × 10 15 cm −3 .
 ここで、第2の非晶質系半導体層2と第4の非晶質系半導体層4とが平面視において重なる部分の幅を20μmとした。この幅は、第1の電極11と第3の非晶質系半導体層3とが接する幅に等しい。第2の電極12の幅は200μmとした。 Here, the width of the portion where the second amorphous semiconductor layer 2 and the fourth amorphous semiconductor layer 4 overlap in a plan view is 20 μm. This width is equal to the width at which the first electrode 11 and the third amorphous semiconductor layer 3 are in contact. The width of the second electrode 12 was 200 μm.
 また、n型非晶質シリコン層中の電子の移動度は5cm/Vsとした。p型非晶質シリコン層中の正孔の移動度(μp)は0.3cm/Vs及び0.0001cm/Vsの二通りとした。二通りとしたのは、正孔の移動度が正確に分からないためである。半導体基板10(n型単結晶シリコン基板)は、キャリア濃度を5×1016cm-3とし、キャリア寿命を5msとした。その他の物性パラメータは、Djicknoum Diouf, Jean-Paul Kleider, and Christophe Longeau, ” Two-DimensionalSimulations of Interdigitated Back Contact Silicon Heterojunctions Solar Cells”, Wilfred G.J.H.M.van Sark, Lars Korte, and Francesco Roca (Eds.), “Physics and Technology ofAmorphous-Crystalline Heterostructure Silicon Solar Cells” (Springer, Berlin,2012), Chapter 15.に従った。シミュレーションにはSILVACO社のATLASを用いた。 The mobility of electrons in the n-type amorphous silicon layer was 5 cm 2 / Vs. the hole mobility of the p-type amorphous silicon layer (.mu.p) was duplicate of 0.3 cm 2 / Vs and 0.0001 cm 2 / Vs. The reason for the two types is that the mobility of holes cannot be accurately determined. The semiconductor substrate 10 (n-type single crystal silicon substrate) had a carrier concentration of 5 × 10 16 cm −3 and a carrier lifetime of 5 ms. Other physical parameters are Djicknoum Diouf, Jean-Paul Kleider, and Christophe Longeau, `` Two-Dimensional Simulations of Interdigitated Back Contact Silicon Heterojunctions Solar Cells '', Wilfred GJHMvan Sark, Lars Korte, and Francesco Roca (Eds.), “Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells ”(Springer, Berlin, 2012), Chapter 15. ATLAS manufactured by SILVACO was used for the simulation.
 図7は、二通りのp型非晶質シリコン層中の正孔移動度(μp)における、第1の電極11と第2の電極12との間の距離(電極の離間距離D)と太陽電池の相対的変換効率との関係を示すグラフである。グラフは、最大値を基準にして正規化されている。 FIG. 7 shows the distance between the first electrode 11 and the second electrode 12 (electrode separation distance D) and the sun in the hole mobility (μp) in two types of p-type amorphous silicon layers. It is a graph which shows the relationship with the relative conversion efficiency of a battery. The graph is normalized with respect to the maximum value.
 図7のグラフでは、正孔の移度度(μp)が0.3cm/Vsのときは電極の離間距離が10μmで変換効率が最大となり、正孔の移度度(μp)が0.0001cm/Vsのときは電極の離間距離が20μmで変換効率が最大となっている。これら最大値より電極の離間距離が小さくなると、変換効率が低下するのは、電極間のリーク電流が大きくなるためと考えられる。また、電極の離間距離が小さくなりすぎると、短絡のおそれもある。電極の加工精度のばらつきも考慮に入れると、電極の離間距離は好ましくは10μm以上である。また、グラフでは、電極の離間距離が大きくなると、変換効率は徐々に低下している。これは、半導体基板10(n型単結晶シリコン基板)中の多数キャリアである電子に対する直列抵抗が増加するためと考えられる。グラフから、離間距離Dが100μmを超えると、変換効率が相対値で2%以上低下することが分かる。そのため、電極の離間距離は好ましくは100μm以下である。このような傾向は、非晶質シリコン層の幅、厚さ及びキャリア濃度などを変化させた場合も同様であると考えられる。すなわち、電極の離間距離が10μm以上100μm以下になることにより、電極間のリーク電流の小さい、良好な特性の太陽電池を得ることができる。そして、これらの寸法は、印刷法などの簡便なパターニング方法によっても実現可能な加工精度内であり、製造コストおよび製造時間を低減することができる。 In the graph of FIG. 7, when the hole mobility (μp) is 0.3 cm 2 / Vs, the electrode separation distance is 10 μm, the conversion efficiency is maximum, and the hole mobility (μp) is 0. At 0001 cm 2 / Vs, the electrode separation distance is 20 μm, and the conversion efficiency is maximum. If the electrode separation distance is smaller than these maximum values, the conversion efficiency is considered to decrease because the leak current between the electrodes increases. Further, if the distance between the electrodes becomes too small, there is a possibility of short circuit. Taking into account variations in the processing accuracy of the electrodes, the electrode separation distance is preferably 10 μm or more. In the graph, the conversion efficiency gradually decreases as the electrode separation distance increases. This is presumably because the series resistance to electrons which are majority carriers in the semiconductor substrate 10 (n-type single crystal silicon substrate) increases. From the graph, it can be seen that when the separation distance D exceeds 100 μm, the conversion efficiency decreases by 2% or more in relative value. Therefore, the electrode separation distance is preferably 100 μm or less. Such a tendency is considered to be the same when the width, thickness, carrier concentration and the like of the amorphous silicon layer are changed. That is, when the distance between the electrodes is 10 μm or more and 100 μm or less, a solar cell with good characteristics with a small leakage current between the electrodes can be obtained. These dimensions are within the processing accuracy that can be realized by a simple patterning method such as a printing method, and the manufacturing cost and the manufacturing time can be reduced.
  [実施例2]
 第2の実施形態の太陽電池について、絶縁体層9の挿入が太陽電池の特性に及ぼす影響を計算機のシミュレーションにより調べた。計算のパラメータと手法は実施例1と同様とした。半導体基板10と絶縁体層9との界面の表面再結合速度は10cm/sとした。
[Example 2]
About the solar cell of 2nd Embodiment, the influence which insertion of the insulator layer 9 has on the characteristic of a solar cell was investigated by simulation of the computer. The calculation parameters and method were the same as in Example 1. The surface recombination velocity at the interface between the semiconductor substrate 10 and the insulator layer 9 was 10 cm / s.
 その結果、絶縁体層9を挿入することで電極間のリーク電流が減少し、開放電圧およびフィルファクターが向上して、変換効率は絶縁体層9がない場合に比べて約5%増加することが示された。また、半導体基板10と接する絶縁体層9の幅を10μmから100μmまで変化させたとき、変換効率の低下は5%以内であった。このように、絶縁体層9の配置により、電極間のリーク電流の小さい、良好な特性の太陽電池を得ることができる。また、絶縁体層9の寸法は、印刷法で対応可能なパターニング精度内である。すなわち、これらの寸法は、印刷法などの簡便なパターニング方法によっても実現可能な加工精度内であり、製造コストおよび製造時間を低減することができる。 As a result, the leakage current between the electrodes is reduced by inserting the insulator layer 9, the open-circuit voltage and the fill factor are improved, and the conversion efficiency is increased by about 5% compared to the case without the insulator layer 9. It has been shown. Further, when the width of the insulator layer 9 in contact with the semiconductor substrate 10 was changed from 10 μm to 100 μm, the conversion efficiency was reduced within 5%. Thus, the arrangement of the insulator layer 9 makes it possible to obtain a solar cell with good characteristics with a small leakage current between the electrodes. The dimension of the insulator layer 9 is within the patterning accuracy that can be handled by the printing method. That is, these dimensions are within the processing accuracy that can be realized by a simple patterning method such as a printing method, and the manufacturing cost and the manufacturing time can be reduced.
  [従来例との比較]
 日本国特許公開2013-168605号は太陽電池を開示する。しかし、この太陽電池では、p型電極はp型の非晶質シリコン層の一部にしか形成されていない。そのため、半導体基板中の少数キャリアである正孔を効率よく外部に取り出すことができない。日本国特許公開2013-131586号も同様である。一方、本開示の太陽電池では、p型電極がp型の非晶質系半導体層(非晶質シリコン層)の一面全体に形成され得るため、半導体基板中の少数キャリアである正孔を効率よく外部に取り出すことができ、効率が向上する。
[Comparison with conventional example]
Japanese Patent Publication No. 2013-168605 discloses a solar cell. However, in this solar cell, the p-type electrode is formed only on a part of the p-type amorphous silicon layer. Therefore, holes that are minority carriers in the semiconductor substrate cannot be efficiently extracted to the outside. The same applies to Japanese Patent Publication No. 2013-131586. On the other hand, in the solar cell of the present disclosure, since the p-type electrode can be formed on the entire surface of the p-type amorphous semiconductor layer (amorphous silicon layer), holes that are minority carriers in the semiconductor substrate are efficiently used. It can be taken out well and efficiency is improved.
 日本国特許公開2005-101151は太陽電池を開示する。この文献には、p型電極がp型の非晶質シリコン層の一面に形成された構造が第2の実施形態として開示されている。しかしながら、この太陽電池は、p型のシリコン層とn型のシリコン層とが互いに噛み合う櫛形状にはなっておらず、p型の電極がシリコン層に覆われており、さらに、n型の電極はシリコン層の変形した部分に形成されている。この構造では、リーク電流が発生しやすくなる。一方、本開示の太陽電池は、この文献の構造に比べて、電極間のリーク電流を発生しにくくすることができる。 Japanese Patent Publication No. 2005-101151 discloses a solar cell. In this document, a structure in which a p-type electrode is formed on one surface of a p-type amorphous silicon layer is disclosed as a second embodiment. However, this solar cell does not have a comb shape in which the p-type silicon layer and the n-type silicon layer are engaged with each other, the p-type electrode is covered with the silicon layer, and the n-type electrode Is formed in a deformed portion of the silicon layer. With this structure, a leak current is likely to occur. On the other hand, the solar cell of this indication can make it difficult to generate the leak current between electrodes compared with the structure of this literature.
 特許協力条約国際公開WO2010/113750号は太陽電池を開示する。この太陽電池は、絶縁体の層を有する。しかし、この太陽電池でも、p型電極はp型の非晶質シリコン層の一部にしか形成されていない。そのため、半導体基板中の少数キャリアである正孔を効率よく外部に取り出すことができない。日本国特許公開2009-200267号も同様である。 Patent Cooperation Treaty International Publication No. WO 2010/113750 discloses solar cells. This solar cell has an insulator layer. However, even in this solar cell, the p-type electrode is formed only on a part of the p-type amorphous silicon layer. Therefore, holes that are minority carriers in the semiconductor substrate cannot be efficiently extracted to the outside. The same applies to Japanese Patent Publication No. 2009-200267.
 米国特許US8525018号は太陽電池を開示する。この太陽電池は、絶縁体の層を有し、p型電極がp型の非晶質シリコン層の一面に形成された構造を有する。しかし、絶縁体の層が、p型の非晶質シリコン層と半導体基板との間にも配置されているため、この部分で少数キャリアである正孔を取り出せない。一方、本開示の太陽電池では、絶縁体層は、p型の非晶質系半導体層(非晶質シリコン層)と半導体基板との間に配置されない構造となり得るため、半導体基板中の少数キャリアである正孔を効率よく外部に取り出すことができ、効率が向上する。 US Patent US8525018 discloses a solar cell. This solar cell has an insulator layer and a p-type electrode formed on one surface of a p-type amorphous silicon layer. However, since the insulator layer is also disposed between the p-type amorphous silicon layer and the semiconductor substrate, holes that are minority carriers cannot be taken out at this portion. On the other hand, in the solar cell of the present disclosure, the insulator layer can have a structure that is not disposed between the p-type amorphous semiconductor layer (amorphous silicon layer) and the semiconductor substrate. Are efficiently extracted to the outside, and the efficiency is improved.

Claims (6)

  1.  受光面および裏面を有する一導電型の半導体基板と、
     前記半導体基板の裏面に配置され、櫛形状を有する真性の第1の非晶質系半導体層と、
     前記第1の非晶質系半導体層上に配置され、前記半導体基板の導電型と異なる導電型を示す不純物を含む第2の非晶質系半導体層と、
     前記第2の非晶質系半導体層上の一面全体に配置された第1の電極と、
     前記半導体基板の裏面に配置され、前記第1の非晶質系半導体層と噛み合う櫛形状となり、一部が平面視において前記第1の電極に重なる真性の第3の非晶質系半導体層と、
     前記第3の非晶質系半導体層上に配置され、前記半導体基板の導電型と同じ導電型を示す不純物を含む第4の非晶質系半導体層と、
     前記第4の非晶質系半導体層上に配置された第2の電極と、を備えた、太陽電池。
    A semiconductor substrate of one conductivity type having a light receiving surface and a back surface;
    An intrinsic first amorphous semiconductor layer disposed on the back surface of the semiconductor substrate and having a comb shape;
    A second amorphous semiconductor layer that is disposed on the first amorphous semiconductor layer and includes an impurity having a conductivity type different from that of the semiconductor substrate;
    A first electrode disposed on the entire surface of the second amorphous semiconductor layer;
    An intrinsic third amorphous semiconductor layer which is disposed on the back surface of the semiconductor substrate and has a comb shape which meshes with the first amorphous semiconductor layer and partially overlaps the first electrode in plan view; ,
    A fourth amorphous semiconductor layer including an impurity disposed on the third amorphous semiconductor layer and including an impurity having the same conductivity type as the semiconductor substrate;
    And a second electrode disposed on the fourth amorphous semiconductor layer.
  2.  前記第1の電極と前記第2の電極とは、平面視において離間し、
     前記第1の電極と前記第2の電極との間の距離は、10μm以上100μm以下である、請求項1に記載の太陽電池。
    The first electrode and the second electrode are separated in a plan view,
    The solar cell according to claim 1, wherein a distance between the first electrode and the second electrode is 10 μm or more and 100 μm or less.
  3.  前記第1の電極と前記第3の非晶質系半導体層との間に配置された絶縁体層をさらに備えた、請求項1に記載の太陽電池。 The solar cell according to claim 1, further comprising an insulator layer disposed between the first electrode and the third amorphous semiconductor layer.
  4.  受光面を有する一導電型の半導体基板における裏面に、真性の第1の非晶質系半導体層を形成する工程と、
     前記第1の非晶質系半導体層上に、前記半導体基板の導電型と異なる導電型を示す不純物を含む第2の非晶質系半導体層を形成する工程と、
     前記第2の非晶質系半導体層上に、第1の電極を形成する工程と、
     前記第1の非晶質系半導体層、前記第2の非晶質系半導体層及び前記第1の電極を、前記半導体基板の裏面において櫛形状にエッチングする工程と、
     前記第1の電極が設けられた前記半導体基板の裏面に、前記エッチングにより露出した前記半導体基板の部分を含んで真性の第3の非晶質系半導体層を形成する工程と、
     前記第3の非晶質系半導体層上に前記半導体基板の導電型と同じ導電型を示す不純物を含む第4の非晶質系半導体層を形成する工程と、
     前記第3の非晶質系半導体層及び前記第4の非晶質系半導体層を、前記第1の電極と噛み合い、前記第3の非晶質系半導体層の一部が前記第1の電極に平面視において重なる櫛形状にエッチングする工程と、
     前記第4の非晶質系半導体層上に第2の電極を形成する工程と、を備えた、太陽電池の製造方法。
    Forming an intrinsic first amorphous semiconductor layer on the back surface of the one-conductivity-type semiconductor substrate having a light-receiving surface;
    Forming a second amorphous semiconductor layer containing an impurity having a conductivity type different from that of the semiconductor substrate on the first amorphous semiconductor layer;
    Forming a first electrode on the second amorphous semiconductor layer;
    Etching the first amorphous semiconductor layer, the second amorphous semiconductor layer, and the first electrode into a comb shape on the back surface of the semiconductor substrate;
    Forming an intrinsic third amorphous semiconductor layer including the portion of the semiconductor substrate exposed by the etching on the back surface of the semiconductor substrate provided with the first electrode;
    Forming a fourth amorphous semiconductor layer containing an impurity having the same conductivity type as that of the semiconductor substrate on the third amorphous semiconductor layer;
    The third amorphous semiconductor layer and the fourth amorphous semiconductor layer are engaged with the first electrode, and a part of the third amorphous semiconductor layer is the first electrode. Etching into a comb shape overlapping in plan view,
    And a step of forming a second electrode on the fourth amorphous semiconductor layer.
  5.  櫛形状にエッチングされた前記第1の電極と、前記第1の電極がエッチングされて露出した前記半導体基板の裏面との境界部を跨ぐように絶縁体層を形成する工程をさらに備えた、請求項4に記載の太陽電池の製造方法。 The method further comprises a step of forming an insulator layer so as to straddle a boundary portion between the first electrode etched into a comb shape and the back surface of the semiconductor substrate exposed by etching the first electrode. Item 5. A method for producing a solar cell according to Item 4.
  6.  前記第1の非晶質系半導体層、前記第2の非晶質系半導体層及び前記第1の電極をエッチングする工程は、エッチングマスクを印刷法で形成することを含む、請求項4又は5に記載の太陽電池の製造方法。 6. The step of etching the first amorphous semiconductor layer, the second amorphous semiconductor layer, and the first electrode includes forming an etching mask by a printing method. The manufacturing method of the solar cell of description.
PCT/JP2014/003159 2014-06-13 2014-06-13 Solar cell and method for manufacturing same WO2015189878A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016527498A JPWO2015189878A1 (en) 2014-06-13 2014-06-13 Solar cell and manufacturing method thereof
PCT/JP2014/003159 WO2015189878A1 (en) 2014-06-13 2014-06-13 Solar cell and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/003159 WO2015189878A1 (en) 2014-06-13 2014-06-13 Solar cell and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2015189878A1 true WO2015189878A1 (en) 2015-12-17

Family

ID=54833012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003159 WO2015189878A1 (en) 2014-06-13 2014-06-13 Solar cell and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2015189878A1 (en)
WO (1) WO2015189878A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168180A1 (en) * 2017-03-17 2018-09-20 株式会社カネカ Solar cell and method for manufacturing same
JP2019079916A (en) * 2017-10-24 2019-05-23 株式会社カネカ Back-contact type solar battery module
JPWO2021124991A1 (en) * 2019-12-19 2021-06-24
WO2024098920A1 (en) * 2022-11-07 2024-05-16 隆基绿能科技股份有限公司 Back contact solar cell, manufacturing method therefor, and photovoltaic module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096539A1 (en) * 2008-01-30 2009-08-06 Kyocera Corporation Solar battery element and solar battery element manufacturing method
WO2010113750A1 (en) * 2009-03-30 2010-10-07 三洋電機株式会社 Solar cell
US20110056545A1 (en) * 2009-09-07 2011-03-10 Kwangsun Ji Solar cell
WO2012132835A1 (en) * 2011-03-25 2012-10-04 三洋電機株式会社 Solar cell
WO2013046376A1 (en) * 2011-09-28 2013-04-04 三洋電機株式会社 Solar cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3998619B2 (en) * 2003-09-24 2007-10-31 三洋電機株式会社 Photovoltaic element and manufacturing method thereof
FR2906406B1 (en) * 2006-09-26 2008-12-19 Commissariat Energie Atomique PROCESS FOR PRODUCING A PHOTOVOLTAIC CELL WITH REAR-SIDE HETEROJUNCTION
WO2012132614A1 (en) * 2011-03-25 2012-10-04 三洋電機株式会社 Photoelectric converter
EP2693488A4 (en) * 2011-03-28 2014-10-15 Sanyo Electric Co Photoelectric conversion device and method for producing same
JP6104037B2 (en) * 2013-05-02 2017-03-29 三菱電機株式会社 Photovoltaic device, manufacturing method thereof, and photovoltaic module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096539A1 (en) * 2008-01-30 2009-08-06 Kyocera Corporation Solar battery element and solar battery element manufacturing method
WO2010113750A1 (en) * 2009-03-30 2010-10-07 三洋電機株式会社 Solar cell
US20110056545A1 (en) * 2009-09-07 2011-03-10 Kwangsun Ji Solar cell
WO2012132835A1 (en) * 2011-03-25 2012-10-04 三洋電機株式会社 Solar cell
WO2013046376A1 (en) * 2011-09-28 2013-04-04 三洋電機株式会社 Solar cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168180A1 (en) * 2017-03-17 2018-09-20 株式会社カネカ Solar cell and method for manufacturing same
JP2019079916A (en) * 2017-10-24 2019-05-23 株式会社カネカ Back-contact type solar battery module
JPWO2021124991A1 (en) * 2019-12-19 2021-06-24
WO2021124991A1 (en) * 2019-12-19 2021-06-24 株式会社カネカ Solar cell manufacturing method
CN114830357A (en) * 2019-12-19 2022-07-29 株式会社钟化 Method for manufacturing solar cell
JP7365430B2 (en) 2019-12-19 2023-10-19 株式会社カネカ How to manufacture solar cells
CN114830357B (en) * 2019-12-19 2024-03-15 株式会社钟化 Method for manufacturing solar cell
WO2024098920A1 (en) * 2022-11-07 2024-05-16 隆基绿能科技股份有限公司 Back contact solar cell, manufacturing method therefor, and photovoltaic module

Also Published As

Publication number Publication date
JPWO2015189878A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
US10680122B2 (en) Solar cell and method for manufacturing the same
EP2530729B1 (en) Solar cell and method for producing same
JP5230222B2 (en) Solar cell
TWI489641B (en) Solar cell and fabrication method thereof
EP2293351B1 (en) Solar cell
US9006564B2 (en) Method of manufacturing solar cell and solar cell
US20110139226A1 (en) Selective emitter solar cell
EP2680313B1 (en) Solar cell
US9761749B2 (en) Photoelectric conversion device
US9997647B2 (en) Solar cells and manufacturing method thereof
WO2015189878A1 (en) Solar cell and method for manufacturing same
KR101676368B1 (en) Solar Cell and method of manufacturing the same
WO2014157521A1 (en) Photoelectric conversion element
KR101714779B1 (en) Solar cell and manufacturing method thereof
JP2018163999A (en) Solar battery and production method thereof
JP2018164057A (en) Production method of solar battery
US20220140162A1 (en) Solar cell and method for manufacturing solar cell
KR20140022507A (en) Back contact type hetero-junction solar cell and method of fabricating the same
WO2018180227A1 (en) Solar cell
JP7202456B2 (en) SOLAR CELL AND SOLAR CELL MANUFACTURING METHOD
JP6476015B2 (en) Photoelectric conversion element and manufacturing method thereof
WO2012132595A1 (en) Solar cell
KR101661364B1 (en) Method for manufacturing solar cell
WO2012132834A1 (en) Solar cell and method for producing solar cell
US20230074032A1 (en) Solar cell and method for manufacturing solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894583

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016527498

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14894583

Country of ref document: EP

Kind code of ref document: A1