WO2015189450A1 - Sistema de almacenamiento térmico y su procedimiento de carga y descarga - Google Patents

Sistema de almacenamiento térmico y su procedimiento de carga y descarga Download PDF

Info

Publication number
WO2015189450A1
WO2015189450A1 PCT/ES2015/070452 ES2015070452W WO2015189450A1 WO 2015189450 A1 WO2015189450 A1 WO 2015189450A1 ES 2015070452 W ES2015070452 W ES 2015070452W WO 2015189450 A1 WO2015189450 A1 WO 2015189450A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage system
capsules
thermal storage
matrix
container
Prior art date
Application number
PCT/ES2015/070452
Other languages
English (en)
French (fr)
Inventor
Aleix JOVÉ LLOVERA
Cristina Prieto Rios
Carlos RUBIO ABUJAS
Sonia FERERES RAPOPORT
Pau GIMÉNEZ GAVARRELL
Original Assignee
Abengoa Solar New Technologies, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abengoa Solar New Technologies, S.A. filed Critical Abengoa Solar New Technologies, S.A.
Publication of WO2015189450A1 publication Critical patent/WO2015189450A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention is part of the thermal storage sector based on phase change materials (PCM).
  • PCM phase change materials
  • it refers to a thermal energy storage system suitable for being loaded and unloaded with a heat transfer fluid.
  • the proposed thermal storage system has application both in solar thermal power plants for steam production, and in production processes where heat storage can be an interesting differentiating factor from an economic point of view.
  • PCM Phase change materials
  • phase change materials and associated exchange systems seek, among other things:
  • phase change material since the most commonly used phase change materials have low thermal conductivity (about 0.5W / mK);
  • phase change materials are generally composed of inorganic salts. These materials have a high energy density at a reduced cost, which makes its use attractive for energy storage. However, this type of materials has the disadvantage of presenting a low conductivity, which makes it difficult to design a storage system.
  • US5687706 discloses a storage system for low temperature (140 ° C) based on phase change materials.
  • Said system is composed of a container with an inlet opening and an outlet opening for the heat transfer fluid to circulate; connecting these openings is a helical shaped heat transfer tube that surrounds a heater (such as an electric resistor) located in the center of the container.
  • a heater such as an electric resistor located in the center of the container.
  • a bed of PCM composed of polymeric pellets, separated from the central heater by means of a mesh. The bed is immersed in a viscous fluid of an organic nature (such as glycol) that thermally communicates the exchange tube with the PCM bed.
  • This solution increases the contact area of the storage material, improving the transmission of energy between the heat transfer fluid and the storage material, however, there is a reduction in the energy density of the phase change material by forming a bed in that the holes are filled with an energy transfer material that does not store energy, in addition to having an area near the heater that is not being used for energy storage.
  • This loss of energy density entails the use of a larger container, which raises the costs of this type of storage.
  • the system is limited to low temperatures.
  • phase change materials composed of inorganic salts
  • those composed of metals or alloys do have a high thermal conductivity.
  • Application WO2011031894 presents an energy storage system based on molten metals for temperatures between 600 ° C and 1400 ° C.
  • the difficulty of working with metal alloys as phase change material is to find a material that has a high energy density with a reduced cost.
  • the present invention proposes a thermal storage system that combines a high energy density PCM with a PCM that has high thermal conductivity, thus achieving an improvement in effective conductivity and a high energy density in the energy storage system .
  • the present invention relates to a thermal storage system and the method for carrying out heat exchange between the phase change material contained in said system (PCM) and a heat transfer fluid (system loading / unloading procedure).
  • the thermal storage system comprises a container in which a set of capsules containing a phase change material (PCM) consisting of inorganic salts is arranged; These capsules make up a porous bed (this bed will be referred to as the PCM bed).
  • PCM phase change material
  • the system also comprises a matrix consisting of a phase change material (PCM) of a metallic nature that is located in the interstices of the capsules, (this matrix will be referred to as the PCM matrix).
  • the PCM matrix serves both to increase the effective thermal conductivity of the whole and thermal energy storage material, thus taking advantage of two characteristics of the material that forms the PCM matrix simultaneously.
  • the matrix completely occupies the interstitial space of the bed, having full contact with each capsule.
  • the shape of the capsule, the relative position between them and the number of capsules are varied to obtain a certain porosity. It also can vary the porosity by varying the diameter of some of the spherical capsules. The higher the proportion of PCM Matrix with respect to the overall set, the greater the conductivity value of the system.
  • the phase change material contained in the capsules has:
  • the advantage presented by this invention lies in its ability to increase the conductivity of a phase change material such as inorganic salts using another phase change material with high conductivity, such as the metal matrix, as heat transfer medium. This achieves an improvement in effective conductivity and a high energy density in the energy storage system.
  • the effective conductivity of the system is greater than 1W / mK. More preferably the effective conductivity of the system (PCM matrix + PCM bed as a whole) is between 10-60 W / mK.
  • the metallic material that forms the PCM matrix preferably has a melting point equal to or similar to that of the encapsulated PCM (inorganic salt) so that both materials melt or solidify at the same time as the system loading or unloading process is performed .
  • the difference between the melting point of the metallic material that forms the PCM matrix and the encapsulated PCM material is not greater than 6 ° C.
  • the system comprises a series of heat exchange or energy transfer tubes arranged to circulate a heat transfer fluid.
  • these tubes are placed vertically and parallel to each other through the container, so that both the PCM bed and the PCM matrix are surrounding and in contact with the tubes.
  • the set of heat exchange tubes crosses the container creating an interior space between container and tubes where the PCM bed is located.
  • the PCM matrix will be located in the interstitial space between the capsules that make up the PCM bed, leaving a free space in the upper part of the container for volume expansion management due to the phase change of the PCM matrix during the loading process of the system.
  • Said free space is filled with an inert gas that prevents degradation of the storage material, said gas being at an equal pressure or higher (slightly higher) than atmospheric pressure.
  • the container must be tightly closed to prevent leakage of inert gas and the entry of environmental gases that may damage or penalize the materials involved in the energy storage process, as well as to reduce thermal losses associated with the thermal energy storage process.
  • the thermal storage system may further comprise an outer insulation layer.
  • the insulation will be placed covering the outer surface of the container to avoid thermal losses that reduce the efficiency of storage by the surface of the container.
  • the anchoring system consists of one or more meshes that do not allow the capsules to pass, but the PCM matrix when it is in a liquid state. These meshes are placed perpendicular to the heat exchange tubes and are pierced by them. The mesh or meshes are secured by welding or fixed supports both to the walls that make up the container and to the heat exchange tubes.
  • capsules that make up the PCM bed they are constructed so that:
  • the capsules comprise a housing, so that, for said capsules to be waterproof, seamless and impermeable materials are used in the housing. These materials can be boron silicates, metallic or ceramic.
  • Thermally resist the temperature conditions associated with the energy exchange and storage process This is achieved using housing materials that are capable of withstanding operating temperatures between 290 ° C and 360 ° C.
  • the operating temperature can be Consider around 10 ° C higher or lower than the PCM melting temperature.
  • the melting temperatures of the PCMs used in this invention generally have values between 300 ° C and 350 ° C.
  • the thickness of the capsule wall is minimized, thus maximizing the density of storage energy.
  • they have a reduced cost, which increases the competitiveness of the thermal storage system.
  • the system is designed to work in two states, liquid and solid, the liquid state being when the system is fully charged and solid state when the system is unloaded.
  • a heat transfer fluid is passed through the heat exchange tubes that pass through the container, so that the heat transfer fluid will transfer or absorb energy as it passes through said tubes, using this energy to a) vary its temperature, modifying its sensible heat and / or b) change phase, modifying its latent heat.
  • the heat transfer fluid is introduced through the upper part of the container through the set of heat exchange tubes and at a temperature higher than the melting temperature of the PCMs in the container.
  • the heat transfer fluid gives energy to the PCM matrix.
  • This matrix will use the energy received in a) increasing its internal energy through an increase in temperature and / or a change from solid phase to liquid phase and b) transmit energy to the PCM bed.
  • the volumetric expansion management of the PCM matrix is ensured with a system load on top of it, thus ensuring that the first zones to change phase are in contact with the volumetric expansion management space.
  • each capsule which receives energy from the PCM matrix, stores thermal energy by increasing its temperature and / or changing from a solid phase to a liquid phase.
  • each capsule is equipped with an empty volume that allows the expansion of the material contained in it. It is this empty volume that prevents pressures that can cause damage or breakage in the capsule inside.
  • the system will be considered fully charged when both the PCM matrix and the PCM bed (specifically the phase change material inside the capsules) are in a liquid state.
  • the condensed heat transfer fluid is extracted from the bottom of the container through the heat transfer tubes.
  • the heat transfer fluid is introduced through the lower part of the container at a temperature below the phase change temperature of the storage materials. During its passage through the exchange zone (area of the container where the PCMs are located), the heat transfer fluid absorbs energy from the PCMs.
  • the PCM matrix gives energy to the tubes through which the heat transfer fluid circulates, reducing its temperature and / or changing from liquid phase to solid phase. During this same process the PCM matrix serves as a means of improving the conductivity of the PCM bed.
  • the PCM bed gives energy to the heat transfer fluid through the PCM matrix, resulting in a decrease in its temperature and / or a phase change from liquid to solid of the PCM contained in the capsules.
  • the discharge will be considered complete when both the PCM matrix and the bed PCM are in solid state.
  • the heat transfer fluid in the vapor state is extracted from the top of the container through the heat exchange tubes.
  • Figure 1 shows a representation of the thermal storage system of the present invention.
  • Figure 2 shows in detail two capsules of which make up the porous bed, each with a different shape.
  • the different references that appear in it have the following meanings:
  • the system comprises a container (1) made of carbon steel properly sealed and externally insulated to avoid thermal losses.
  • a container made of carbon steel properly sealed and externally insulated to avoid thermal losses.
  • Said capsules (3) contain inside a PCM (31) consisting of a mixture of inorganic salts.
  • the PCM bed is located inside the container (1) leaving a free space between 10-40% of the volume occupied by the bed.
  • the interstitial space between capsules (3) is filled with a matrix of a metallic nature (called PCM matrix) (2).
  • the PCM matrix (2) is composed of an alloy of Zinc (Zn) and Magnesium (Mg) in proportions that preferably vary between 55-50% and 45-50% by weight respectively.
  • the PCM (31) found Inside the capsules (3) it is composed of lithium chloride (LiCI), potassium chloride (KCI), lithium carbonate (LiC0 3 ) and lithium fluoride (LiF) in the following proportions of mass%:
  • Lithium Carbonate between 3.2-3.4
  • Lithium fluoride between 2, 1-2.4
  • the effective conductivity of the system as a whole (PCM matrix + PCM bed) is between 30 - 50 W / mK.
  • phase change materials (the one that forms the PCM matrix and the one inside the capsules) have a melting temperature of 340 ° C. This allows the phase change of the encapsulated PCM (31) and the PCM matrix (2) to be simultaneous, whereby the exchange of energy that takes place between said PCMs and a heat transfer fluid during the loading or unloading process will occur at constant temperature
  • the container (1) comprises a volumetric expansion management space (6) that is filled with nitrogen (N 2 ) at a pressure equal to or slightly higher than the atmospheric pressure. This space that is located in the upper part of the container (1) is necessary due to the volume expansion experienced by the PCM matrix during the system loading process.
  • the capsules (3) that make up the PCM bed are spherical, with an outside diameter of between 20 and 50mm and have a borosilicate shell (32) with a thickness of between 0.5 and 3 mm.
  • Each capsule (3) contains a volumetric expansion management volume (33) of between 2-20% of the inner volume of the capsule, more preferably 12%. This volume will be greater than the volumetric expansion that the encapsulated PCM will experience when melted.
  • the PCM bed is confined by a mesh (5) with a pitch between 15 and 45 mm, always considering that the passage of the mesh (5) must be smaller than the diameter of the capsules (3) that make up the PCM bed.
  • This mesh (5) is fixed in a normal plane to the direction of vertical heat exchange tubes (4) that pass through the container (1) and is anchored to the top of the container by welding both the walls of the container ( 1) as to the heat exchange tubes (4) so as not to allow the mobility of the capsules (3).
  • Said mesh (5) is located in the upper part of the container (1), above the PCM matrix and PCM bed, but remaining in the lower part of the volumetric expansion management space (6).
  • the heat transfer fluid that will be circulated through the heat exchange tubes (4) will be a combination of saturated steam and saturated liquid at a pressure between 150 and 140 bar.
  • a mixture of saturated steam and saturated liquid with a low vapor title ( ⁇ 10%) at 150 bar pressure (at 342 ° C) is introduced through the top of the container.
  • the vapor contained in the mixture condenses, withdrawing from the liquid bottom fully saturated or slightly subcooled.
  • the PCM matrix and encapsulated inorganic salts melt, storing heat.
  • saturated water at a pressure of 140 bar (336 ° C) is introduced through the bottom of the container.
  • the saturated water changes phase until a mixture of saturated liquid and saturated steam comes out from the top.
  • This mixture is taken to a separator tank where steam is brought to process and the liquid is re-introduced by the bottom of the storage system.
  • the PCM matrix and the encapsulated inorganic salts solidify when heat is transferred to the heat transfer fluid.

Abstract

Sistema de almacenamiento térmico que comprende un contenedor (1) en cuyo interior se dispone a) un conjunto de cápsulas (3) que conforman un lecho poroso y que contienen un material de cambio de fase alta densidad energética consistente en sales inorgánicas y b) una matriz (2) consistente en un material de cambio de fase de naturaleza metálica con elevada conductividad térmica que se sitúa en los intersticios de las cápsulas (3). Con la combinación de estos dos materiales de cambio de fase se consigue una mejora de la conductividad efectiva y una elevada densidad energética en el sistema de almacenamiento de energía. La invención también se refiere al procedimiento de carga y descarga de dicho sistema mediante el empleo de un fluido caloportador que circula por unos tubos de intercambio de calor (4) que atraviesan el contenedor (1).

Description

SISTEMA DE ALMACENAMIENTO TÉRMICO Y SU PROCEDIMIENTO DE CARGA
Y DESCARGA
Sector técnico de la invención
La presente invención se enmarca en el sector del almacenamiento térmico basado en materiales de cambio de fase (PCM, del inglés phase change material). En particular, se refiere a un sistema de almacenamiento de energía térmica apto para ser cargado y descargado con un fluido caloportador.
El sistema de almacenamiento térmico propuesto tiene aplicación tanto en centrales termosolares para la producción de vapor, como en procesos de producción donde el almacenamiento de calor puede ser un factor diferenciador interesante desde el punto de vista económico.
Antecedentes de la invención
Los materiales de cambio de fase (en adelante, PCM) se presentan como una alternativa muy interesante para un almacenamiento térmico eficiente, de alta densidad energética y sobre todo para aplicaciones a temperatura constante.
Existen infinidad de materiales de cambio de fase y sistemas de intercambio asociados; estos sistemas buscan, entre otras cosas:
- la mejora de la conductividad térmica del material de cambio de fase, ya que los materiales de cambio de fase más comúnmente utilizados tienen baja conductividad térmica (alrededor de 0.5W/mK);
- la obtención de la máxima densidad energética posible;
- la gestión de la expansión de volumen del material de cambio de fase; los materiales normalmente utilizados expanden en su fusión y contraen en su cristalización/solidificación;
- la optimización de la transferencia o intercambio térmico entre material de almacenamiento y el medio de transferencia.
Actualmente los materiales utilizados como materiales de cambio de fase son, generalmente, compuestos de sales inorgánicas. Estos materiales presentan una elevada densidad energética a un reducido coste, lo cual hace atractivo su uso para almacenamiento de energía. Sin embargo, este tipo de materiales tiene la desventaja de presentar una baja conductividad, lo que dificulta el diseño de un sistema de almacenamiento.
El documento US5687706 divulga un sistema de almacenamiento para baja temperatura (140°C) basado en materiales de cambio de fase. Dicho sistema está compuesto por un contenedor con una abertura de entrada y una abertura de salida para que circule el fluido caloportador; conectando estas aberturas se encuentra un tubo de transferencia de calor, con forma helicoidal, que rodea un calentador (cómo pueda ser una resistencia eléctrica) situado en el centro del contenedor. En el lado del contenedor está situado un lecho de PCM compuesto por pellets poliméricos, separados del calentador central mediante una malla. El lecho está inmerso en un fluido viscoso de naturaleza orgánica (como puede ser el glicol) que comunica térmicamente el tubo intercambiador con el lecho de PCM.
Esta solución incrementa el área de contacto del material de almacenamiento, mejorando la transmisión de energía entre el fluido caloportador y el material de almacenamiento, sin embargo, se tiene una reducción de la densidad energética del material de cambio de fase por formación de un lecho en el que los huecos están llenos de un material de transferencia de energía que no almacena energía, además de tener una zona cercana al calentador que no está siendo aprovechada para el almacenamiento de energía. Esta pérdida de densidad energética conlleva el uso de contenedor de mayor tamaño, lo cual eleva los costes de este tipo de almacenamientos. Además, debido a la naturaleza de estos materiales, el sistema queda limitado a bajas temperaturas.
El documento US4512388 trata sobre un sistema de almacenamiento basado en materiales de cambio de fase compactados en gránulos. La solución propuesta en este documento US4512388 para el aumento de la conductividad efectiva se basa en un contacto directo entre el PCM y el fluido caloportador. El sistema está compuesto por un contenedor con una abertura inferior y una abertura superior. En el interior está situado el lecho de gránulos de PCM, cada uno compuesto por una matriz cerámica que contiene el material de cambio de fase en su interior y lo retiene dentro de la matriz por capilaridad. El fluido caloportador circula entre las aberturas del contenedor e intercambia energía directamente con el lecho de PCM.
La problemática asociada a esta solución es que, debido al contacto directo entre el material de almacenamiento y el fluido caloportador, los posibles fluidos de transferencia de energía quedan limitados a aquellos en los que no exista interacción entre ambos medios. Esto excluye casi por completo el uso de agua o vapor como fluido caloportador, limitando la aplicación de este tipo de sistemas de almacenamiento.
Además de los problemas asociados a la compatibilidad de materiales, se tiene un aumento de coste en el almacenamiento cuando se utilizan fluidos caloportadores presurizados. Este aumento de coste es debido principalmente a que, conforme aumenta la presión de trabajo, aumentan los requisitos termomecánicos en el contenedor.
En contraste con los materiales de cambio de fase compuestos por sales inorgánicas, aquellos compuestos por metales o aleaciones sí presentan una elevada conductividad térmica. La solicitud WO2011031894 presenta un sistema de almacenamiento de energía basado en metales fundidos para temperaturas entre 600°C y 1400°C.
La dificultad de trabajar con aleaciones metálicas como material de cambio de fase es encontrar un material que tenga una elevada densidad energética con un coste reducido.
En la presente invención se propone un sistema de almacenamiento térmico que combina un PCM de alta densidad energética con un PCM que presenta elevada conductividad térmica, consiguiendo de esta manera una mejora de la conductividad efectiva y una elevada densidad energética en el sistema de almacenamiento de energía.
Descripción de la invención
La presente invención se refiere a un sistema de almacenamiento térmico y al procedimiento para llevar a cabo el intercambio de calor entre el material de cambio de fase contenido en dicho sistema (PCM) y un fluido caloportador (procedimiento de carga/descarga del sistema).
El sistema de almacenamiento térmico comprende un contenedor en cuyo interior se dispone un conjunto de cápsulas que contienen un material de cambio de fase (PCM) consistente en sales inorgánicas; estas cápsulas conforman un lecho poroso (a este lecho se le denominará en adelante lecho PCM). El sistema comprende además una matriz consistente en un material de cambio de fase (PCM) de naturaleza metálica que se sitúa en los intersticios de las cápsulas, (a esta matriz se la denominará en adelante matriz PCM).
La matriz PCM sirve tanto para incrementar la conductividad térmica efectiva del conjunto como de material de almacenamiento de energía térmica aprovechando así dos características del material que conforma la matriz PCM de manera simultánea. La matriz ocupa totalmente el espacio intersticial del lecho, teniendo un contacto total con cada cápsula. Según los requerimientos de capacidad térmica y de conductividad térmica se varía la forma de la cápsula, la posición relativa entre las mismas y el número de cápsulas para obtener una porosidad determinada. También se puede variar la porosidad variando el diámetro de algunas de las cápsulas esféricas. Cuanto mayor es la proporción de Matriz PCM con respecto al conjunto global mayor es el valor de conductividad del sistema.
El material de cambio de fase contenido en las cápsulas ("encapsulado") presenta:
· Alta densidad energética.
• Bajo coste.
• Bajo coeficiente de expansión en el cambio de fase.
La ventaja que presenta esta invención radica en su capacidad para aumentar la conductividad de un material de cambio de fase como puedan ser sales inorgánicas utilizando como medio de transferencia de calor otro material de cambio de fase con alta conductividad, como es la matriz metálica. Con ello se consigue una mejora de la conductividad efectiva y una elevada densidad energética en el sistema de almacenamiento de energía.
Preferiblemente, la conductividad efectiva del sistema, es decir, para el conjunto formado por la Matriz PCM y el lecho PCM, es mayor de 1W/mK. Más preferiblemente la conductividad efectiva del sistema (Matriz PCM+lecho PCM en conjunto) está entre 10-60 W/mK.
El material metálico que conforma la matriz PCM presenta preferiblemente un punto de fusión igual o similar al del PCM encapsulado (sal inorgánica) con la finalidad de que ambos materiales fundan o se solidifiquen a la vez según se realice el proceso de carga o descarga del sistema. Preferiblemente, la diferencia entre el punto de fusión del material metálico que conforma la matriz PCM y del material PCM encapsulado no es superior a 6°C.
El sistema comprende una serie de tubos de intercambio de calor o transferencia de energía dispuestos para hacer circular un fluido caloportador. Preferiblemente, estos tubos se sitúan verticales y paralelos entre sí atravesando el contenedor, de forma que tanto el lecho PCM como la matriz PCM quedan rodeando a los tubos y en contacto con ellos.
Luego, el conjunto de tubos de intercambio de calor atraviesa el contenedor creando un espacio interior entre contenedor y tubos donde se sitúa el lecho PCM. La matriz PCM se situará en el espacio intersticial entre las cápsulas que conforman el lecho PCM, dejando un espacio libre en la parte superior del contenedor para la gestión de expansión de volumen debido al cambio de fase de la matriz PCM durante el proceso de carga del sistema. Dicho espacio libre está llenado con un gas inerte que evita la degradación del material de almacenamiento, estando dicho gas a una presión igual o superior (ligeramente superior) a la presión atmosférica. El contenedor debe estar cerrado herméticamente para evitar la fuga del gas inerte y la entrada de gases ambientales que puedan dañar o penalizar los materiales implicados en el proceso de almacenamiento de energía, así como para reducir pérdidas térmicas asociadas al proceso de almacenamiento de energía térmica.
El sistema de almacenamiento térmico puede comprender, además, una capa de aislamiento exterior. El aislamiento se colocará recubriendo la superficie exterior del contenedor para evitar pérdidas térmicas que reduzcan la eficiencia del almacenamiento por la superficie del contenedor.
En el caso de que la densidad de la matriz PCM sea mayor que la densidad del lecho PCM, será necesario fijar la movilidad del lecho con un sistema de anclaje, evitando los desplazamientos por flotabilidad. El sistema de anclaje consiste en una o varias mallas tales que no permitan el paso de las cápsulas, pero sí de la matriz PCM cuando ésta se encuentra en estado líquido. Estas mallas se colocan perpendiculares a los tubos de intercambio de calor y son atravesadas por éstos. La malla o mallas están sujetas mediante soldadura o soportes fijos tanto a las paredes que conforman el contenedor como a los tubos de intercambio de calor.
En cuanto a las cápsulas que conforman el lecho PCM, éstas se construyen de forma que:
· Evitan la dispersión del PCM contenido en ellas, tanto cuando éste se encuentra en fase líquida como en fase sólida. Son, por tanto, impermeables tanto al PCM que se encuentra encapsulado (sales inorgánicas), como al que conforma la matriz PCM (material metálico). La cápsulas comprenden una carcasa, por lo que, para que dichas cápsulas sean impermeables, se utilizan materiales sin fisuras e impermeables en la carcasa. Estos materiales pueden ser boro silicatos, metálicos o cerámicos.
• Resisten las presiones interiores producidas por el cambio de volumen del PCM contenido en la cápsula en su transición líquido-sólido y sólido-liquido. Esto se logra incluyendo un volumen de gestión de expansión volumétrica entre 2-20% del volumen en el interior de la cápsula donde se encuentra un gas presurizado o una cámara de vacío.
• Resisten térmicamente las condiciones de temperatura asociadas al proceso de intercambio y almacenamiento de energía. Esto se logra utilizando materiales para la carcasa que sean capaces de resistir las temperaturas de operación entre 290°C y 360°C. La temperatura de operación se puede considerar en torno a 10°C superior o inferior a la temperatura de fusión del PCM. Las temperaturas de fusión de los PCM utilizados en esta invención tienen valores generalmente entre 300°C y 350°C.
• Son estables químicamente ante el material de cambio de fase encapsulado y el material de cambio de fase externo.
• No penaliza la transferencia de calor entre el lecho PCM y la matriz PCM. Esto se consigue optimizando el espesor de la carcasa entre 0.5 y 3 mm y unos materiales para la misma con conductividad térmica superior a la conductividad térmica del material encapsulado (sal inorgánica).
Con estas cápsulas se consigue minimizar el espesor de la pared de la cápsula maximizando así la densidad de energía de almacenamiento. Además, tienen un reducido coste, que aumenta la competitividad del sistema de almacenamiento térmico.
El sistema está diseñado para trabajar en dos estados, líquido y sólido, siendo el estado líquido cuando el sistema está completamente cargado y estado sólido cuando el sistema está descargado.
Para realizar la carga y descarga del sistema, se hace pasar un fluido caloportador por los tubos de intercambio de calor que atraviesan el contenedor, de forma que el fluido caloportador cederá o absorberá energía a su paso por dichos tubos, empleando esta energía para a) variar su temperatura, modificando su calor sensible y/o b) cambiar de fase, modificando su calor latente.
Durante el proceso de carga, el fluido caloportador es introducido por la parte superior del contenedor a través del conjunto de tubos de intercambio de calor y a una temperatura superior a la temperatura de fusión de los PCM que se encuentran en el contenedor. Durante su paso por la zona de intercambio de calor (por la zona del contenedor que incluye los PCM), el fluido caloportador cede energía a la matriz PCM. Esta matriz empleará la energía recibida en a) aumentar su energía interna mediante un incremento de temperatura y/o un cambio de fase sólida a fase líquida y b) transmitir energía al lecho PCM. La gestión de expansión volumétrica de la matriz PCM se asegura con una carga del sistema por la parte superior del mismo, asegurando así que las primeras zonas en cambiar de fase están en contacto con el espacio de gestión de expansión volumétrica. Se evitan de esta manera posibles confinamientos de material durante el cambio de fase que lleven a sobrepresiones que puedan provocar daños en el sistema. El lecho PCM, que recibe energía de la matriz PCM, almacena energía térmica incrementando su temperatura y/o cambiando de fase sólida a fase líquida. Como se ha comentado anteriormente, cada cápsula está dotada de un volumen vacío tal que permite la expansión del material contenido en ella. Este volumen vacío es el que evita que se produzcan en el interior presiones que puedan provocar daños o rotura en la cápsula.
El sistema se considerará totalmente cargado cuando tanto la matriz PCM como el lecho PCM (concretamente el material de cambio de fase del interior de las cápsulas) se encuentren en estado líquido.
En el proceso de carga, el fluido caloportador condensado es extraído por la parte inferior del contenedor a través de los tubos de transferencia de calor.
Durante el proceso de descarga se introduce el fluido caloportador por la parte inferior del contenedor a una temperatura inferior a la temperatura de cambio de fase de los materiales de almacenamiento. Durante su paso por la zona de intercambio (zona del contenedor donde se encuentran los PCM), el fluido caloportador absorbe energía de los PCM.
La matriz PCM cede energía hacia los tubos por los que circula el fluido caloportador reduciendo su temperatura y/o cambiando de fase líquida a fase sólida. Durante este mismo proceso la matriz PCM sirve como medio de mejora de la conductividad del lecho PCM.
EL lecho PCM cede energía al fluido caloportador a través de la matriz PCM, resultando de ello una disminución de su temperatura y/o un cambio de fase de líquido a sólido del PCM contenido en las cápsulas.
Se considerará que la descarga se ha completado cuando tanto la matriz PCM como el PCM del lecho se encuentren en estado sólido.
En el proceso de descarga, el fluido caloportador en estado vapor es extraído por la parte superior del contenedor a través de los tubos de intercambio de calor.
Descripción de las figuras
Para completar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de la invención, se acompañan unas figuras donde con carácter ilustrativo y no limitativo se ha representado lo siguiente:
Figura 1 : muestra una representación del sistema de almacenamiento térmico de la presente invención.
Figura 2: muestra en detalle dos cápsulas de las que conforman el lecho poroso, cada una de ellas con una forma diferente. En dicha figura, las diferentes referencias que en ella aparecen tienen los siguientes significados:
1. - Contenedor
2. - Matriz PCM
3.- Cápsulas que conforman el lecho PCM
31. - PCM contenido en las cápsulas
32. - Carcasa de las cápsulas
33. - Volumen de gestión de expansión volumétrica de las cápsulas
4.- Tubos de intercambio de calor
5.- Malla
6.- Espacio de gestión de expansión volumétrica del contenedor
Descripción detallada de la invención
A continuación se muestra una realización preferida de un sistema de almacenamiento de energía basado en el uso de dos materiales de cambio de fase.
En esta realización preferida, el sistema comprende un contenedor (1) fabricado en acero al carbono debidamente sellado y aislado externamente para evitar pérdidas térmicas. En el interior del contenedor se dispone un conjunto de cápsulas (3) que conforman un lecho poroso (denominado lecho PCM). Dichas cápsulas (3) contienen en su interior un PCM (31) consistente en una mezcla de sales inorgánicas. El lecho PCM se sitúa en el interior del contenedor (1) dejando un espacio libre entre el 10- 40% del volumen ocupado por el lecho. El espacio intersticial entre cápsulas (3) se encuentra relleno con una matriz de naturaleza metálica (denominada matriz PCM) (2). La matriz PCM (2) está compuesta por una aleación de Zinc (Zn) y Magnesio (Mg) en unas proporciones que varían preferiblemente entre 55 - 50% y 45-50% en peso respectivamente.. El PCM (31) que se encuentra en el interior de las cápsulas (3) está compuesto por cloruro de litio (LiCI), cloruro de potasio (KCI), carbonato de litio (LiC03) y fluoruro de litio (LiF) en las siguientes proporciones de % másico:
Carbonato de litio: entre 3,2-3,4
Cloruro de potasio: entre 46,8-48,0
Fluoruro de litio: entre 2, 1-2,4
Cloruro de litio: Resto
La conductividad efectiva del sistema en su conjunto (matriz PCM+Lecho PCM) está entre 30 - 50 W/mK.
Ambos materiales de cambio de fase (el que conforma la matriz PCM y el que se encuentra en el interior de las cápsulas) tienen una temperatura de fusión de 340°C. Esto permite que el cambio de fase del PCM encapsulado (31) y la matriz PCM (2) sean simultáneos, con lo que el intercambio de energía que tiene lugar entre dichos PCM y un fluido caloportador durante el proceso de carga o descarga se producirá a temperatura constante.
El contenedor (1) comprende un espacio de gestión de expansión volumétrica (6) que se encuentra lleno de nitrógeno (N2) a presión igual o ligeramente superior a la presión atmosférica. Este espacio que se encuentra en la parte superior del contenedor (1) es necesario debido a la expansión de volumen que experimenta la matriz PCM durante el proceso de carga del sistema.
Las cápsulas (3) que conforman el lecho PCM son esféricas, con un diámetro exterior de entre 20 y 50mm y presentan una carcasa (32) de borosilicato con un espesor de entre 0.5 y 3 mm. Cada cápsula (3) contiene un volumen de gestión de la expansión volumétrica (33) de entre 2-20% del volumen interior de la cápsula, más preferentemente del 12%. Este volumen será superior a la expansión volumétrica que va a experimentar el PCM encapsulado al fundirse.
El lecho PCM está confinado mediante una malla (5) de paso entre 15 y 45 mm, considerando siempre que el paso de la malla (5) tiene que ser menor que el diámetro de las cápsulas (3) que conforman el lecho PCM. Esta malla (5) se fija en un plano normal a la dirección de unos tubos de intercambio de calor (4) verticales que atraviesan el contenedor (1) y va anclada a la parte superior del contenedor mediante soldadura tanto a las paredes del contenedor (1) como a los tubos de intercambio de calor (4) de forma que no permita la movilidad de las cápsulas (3). Dicha malla (5) se sitúa en la parte superior del contenedor (1), por encima de la matriz PCM y lecho PCM, pero quedando en la parte inferior del espacio de gestión de expansión volumétrica (6).
El fluido caloportador que se hará circular por los tubos de intercambio de calor (4) será una combinación de vapor saturado y líquido saturado a una presión entre 150 y 140 bares.
A continuación se expone el método o procedimiento de carga y descarga del sistema descrito anteriormente.
Durante la carga se introduce por la parte superior del contenedor una mezcla de vapor saturado y líquido saturado con un bajo título de vapor (<10%) a 150 bares de presión (a 342°C). A su paso por los tubos de intercambio de calor (4), el vapor contenido en la mezcla se condensa, extrayéndose por la parte inferior líquido totalmente saturado o ligeramente subenfriado. El matriz PCM y las sales inorgánicas encapsuladas se funden, almacenando el calor.
Durante la descarga se introduce por la parte inferior del contenedor agua saturada a una presión de 140 bares (336°C). A su paso por los tubos de intercambio de calor (4), el agua saturada cambia de fase hasta que por la parte superior sale una mezcla de líquido saturado y vapor saturado. Esta mezcla es llevada a un tanque separador donde el vapor es llevado a proceso y el líquido vuelve a ser introducido por la parte inferior del sistema de almacenamiento. El matriz PCM y las sales inorgánicas encapsuladas se solidifican al ceder el calor al fluido caloportador.

Claims

Reivindicaciones
1. - Sistema de almacenamiento térmico caracterizado por comprender un contenedor (1) en cuyo interior se dispone:
a) un conjunto de cápsulas (3) que contienen un material de cambio de fase consistente en sales inorgánicas, conformando dichas cápsulas (3) un lecho poroso y b) una matriz (2) consistente en un material de cambio de fase de naturaleza metálica que se sitúa en los intersticios de las cápsulas (3).
2. - Sistema de almacenamiento térmico según reivindicación 1 , caracterizado porque la conductividad efectiva del conjunto formado por la matriz (2) y el lecho poroso es mayor de 1W/mK.
3. - Sistema de almacenamiento térmico según reivindicación 2, caracterizado porque la conductividad efectiva del conjunto formado por la matriz (2) y el lecho poroso está entre 10-60 W/mK.
4.- Sistema de almacenamiento térmico según reivindicación 1 , caracterizado porque la diferencia entre el punto de fusión del material metálico de cambio de fase que conforma la matriz (2) y el punto de fusión del material de cambio de fase contenido en las cápsulas (3) no es superior a 6°C.
5. Sistema de almacenamiento térmico según reivindicación 1 , caracterizado porque la temperatura de fusión de la matriz (2), así como del material de cambio de fase contenido en las cápsulas (3) varía entre 300°C y 350°C.
6. Sistema de almacenamiento térmico según reivindicación 1 , caracterizado porque las cápsulas (3) comprenden una carcasa (32) de un material que es impermeable tanto al material de cambio de fase contenido en las cápsulas (3) como a la matriz (2).
7. Sistema de almacenamiento térmico según reivindicación 6, caracterizado porque la carcasa (32) de las cápsulas es de un material metálico, cerámico o un borosilicato.
8. Sistema de almacenamiento térmico según reivindicación 1 , caracterizado porque las cápsulas (3) comprenden en su interior un volumen de gestión de expansión volumétrica (33) de entre el 2-20% del volumen total en el interior de la cápsula en el que se encuentra un gas presurizado o una cámara de vacío.
9. Sistema de almacenamiento térmico según reivindicación 1 , caracterizado porque las cápsulas (3) comprenden una carcasa (32) de espesor de entre 0.5 y 3 mm.
10. Sistema de almacenamiento térmico según reivindicación 1 , caracterizado porque comprende una serie de tubos de intercambio de calor (4) dispuestos para hacer circular un fluido caloportador, situándose dichos tubos (4) de forma vertical y paralelos entre sí atravesando el contenedor, de forma que tanto el lecho poroso como la matriz (2) quedan rodeando a los tubos de intercambio de calor (4) y en contacto con ellos.
1 1. Sistema de almacenamiento térmico según reivindicación 10, caracterizado porque comprende en la parte superior del contenedor (1) un espacio de gestión de expansión volumétrica (6) llenado con un gas inerte a una presión igual o superior a la presión atmosférica.
12. Sistema de almacenamiento térmico según reivindicación 10, caracterizado porque comprende al menos una malla (5) configurada para impedir el paso de las cápsulas (4), estando dicha malla (5) colocada perpendicularmente a los tubos de intercambio de calor (4) los cuales la atraviesan, y estando dicha malla (5) sujeta mediante soldadura o soportes fijos tanto a las paredes del contenedor (1) como a los tubos de intercambio de calor (4).
13. Sistema de almacenamiento térmico según reivindicación 1 , caracterizado porque comprende una capa de aislamiento exterior que recubre la superficie exterior del contenedor (1).
14. Sistema de almacenamiento térmico según reivindicación 1 , caracterizado porque la matriz (2) consiste en una aleación de zinc y magnesio y el material de cambio de fase contenido en las cápsulas (3) es una mezcla de cloruro de litio (LiCI), cloruro de potasio (KCI), carbonato de litio (LiC03) y fluoruro de litio (LiF).
15. Sistema de almacenamiento térmico según reivindicación 14, caracterizado porque la matriz (2) consiste en una aleación de Zinc y Magnesio en las proporciones 55 - 50% y 45-50% en peso respectivamente y el material de cambio de fase encápsulado es una mezcla de cloruro de litio (LiCI), cloruro de potasio (KCI), carbonato de litio (LJCO3) y fluoruro de litio (LiF) en las siguientes proporciones de % másico:
Carbonato de litio: entre 3,2-3,4
Cloruro de potasio: entre 46,8-48,0
Fluoruro de litio: entre 2, 1-2,4
Cloruro de litio: Resto
16. Procedimiento de carga del sistema de almacenamiento térmico descrito en cualquiera de las reivindicaciones anteriores, caracterizado porque
- un fluido caloportador es introducido por la parte superior del contenedor (1) a través del conjunto de tubos de intercambio de calor (4) y a una temperatura superior a la temperatura de fusión de los materiales de cambio de fase que se encuentran en el contenedor (1), produciéndose así la condensación del fluido caloportador a medida que éste cede energía a la matriz (2) y ésta al material de cambio de fase contenido en las cápsulas (3) que conforman el lecho poroso,
- el fluido caloportador condensado es extraído por la parte inferior del contenedor (1) a través de los tubos de transferencia de calor (4).
17. Procedimiento de descarga del sistema de almacenamiento térmico descrito en cualquiera de las reivindicaciones anteriores 1 a 15, caracterizado porque
- se introduce un fluido caloportador por la parte inferior del contenedor (1) a través del conjunto de tubos de intercambio de calor (4) y a una temperatura inferior a la temperatura de fusión de los materiales de cambio de fase que se encuentran en el contenedor (1), produciéndose así la cesión de energía de la matriz (2) al fluido caloportador y, a su vez, del material de cambio de fase contenido en las cápsulas (3) que conforman el lecho poroso a la matriz (2),
- el fluido caloportador es extraído por la parte superior del contenedor (1) a través de los tubos de transferencia de calor (4).
PCT/ES2015/070452 2014-06-10 2015-06-09 Sistema de almacenamiento térmico y su procedimiento de carga y descarga WO2015189450A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201400461 2014-06-10
ES201400461A ES2556143B1 (es) 2014-06-10 2014-06-10 Sistema de almacenamiento térmico y su procedimiento de carga y descarga

Publications (1)

Publication Number Publication Date
WO2015189450A1 true WO2015189450A1 (es) 2015-12-17

Family

ID=54832941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070452 WO2015189450A1 (es) 2014-06-10 2015-06-09 Sistema de almacenamiento térmico y su procedimiento de carga y descarga

Country Status (2)

Country Link
ES (1) ES2556143B1 (es)
WO (1) WO2015189450A1 (es)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3214398A1 (fr) * 2016-03-04 2017-09-06 Commissariat à l'Energie Atomique et aux Energies Alternatives Dispositif de stockage d'énergie par matériau à changement de phase incluant une charge électrique intégrée dans le circuit du fluide caloporteur
WO2017216148A1 (en) 2016-06-17 2017-12-21 Arcelik Anonim Sirketi Portable air-conditioning device
RU2655002C1 (ru) * 2017-05-16 2018-05-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" Теплоаккумулирующий состав
RU2675566C1 (ru) * 2017-12-28 2018-12-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" Теплоаккумулирующий состав
CN110218095A (zh) * 2019-04-02 2019-09-10 武汉理工大学 一种基于等级孔陶瓷的高效储热单元的制备方法
CN110375572A (zh) * 2019-08-06 2019-10-25 中如建筑工程(上海)有限公司 一种基于相变材料的相变储能箱
CN111394067A (zh) * 2020-05-09 2020-07-10 中国科学院化学研究所 一种金属氟化物高温相变储能微胶囊及其制备方法与应用
CN111610173A (zh) * 2020-05-27 2020-09-01 中国水利水电科学研究院 三维流体浓度场标定装置及标定方法
CN111765791A (zh) * 2020-07-01 2020-10-13 南京航空航天大学 基于振动强化传热的相变储热装置及方法
CN111765792A (zh) * 2020-07-01 2020-10-13 南京航空航天大学 基于超声波强化传热的相变储热装置及其运行方法
FR3118149A1 (fr) * 2020-12-23 2022-06-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module de stockage thermique a matériau a changement de phase dont la fabrication est simplifiée
FR3131772A1 (fr) * 2022-01-07 2023-07-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives Ensemble modulaire de stockage thermique a matériau a changement de phase, dont la fabrication est simplifiée

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2086032A (en) * 1980-10-14 1982-05-06 Steinmueller Gmbh L & C Heat storage composition
US4512388A (en) * 1981-06-19 1985-04-23 Institute Of Gas Technology High-temperature direct-contact thermal energy storage using phase-change media
US4807696A (en) * 1987-12-10 1989-02-28 Triangle Research And Development Corp. Thermal energy storage apparatus using encapsulated phase change material
US6183855B1 (en) * 1992-07-14 2001-02-06 Theresa M. Buckley Flexible composite material with phase change thermal storage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2086032A (en) * 1980-10-14 1982-05-06 Steinmueller Gmbh L & C Heat storage composition
US4512388A (en) * 1981-06-19 1985-04-23 Institute Of Gas Technology High-temperature direct-contact thermal energy storage using phase-change media
US4807696A (en) * 1987-12-10 1989-02-28 Triangle Research And Development Corp. Thermal energy storage apparatus using encapsulated phase change material
US6183855B1 (en) * 1992-07-14 2001-02-06 Theresa M. Buckley Flexible composite material with phase change thermal storage

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3214398A1 (fr) * 2016-03-04 2017-09-06 Commissariat à l'Energie Atomique et aux Energies Alternatives Dispositif de stockage d'énergie par matériau à changement de phase incluant une charge électrique intégrée dans le circuit du fluide caloporteur
FR3048494A1 (fr) * 2016-03-04 2017-09-08 Commissariat Energie Atomique Dispositif de stockage d'energie par materiau a changement de phase incluant une charge electrique integree dans le circuit du fluide caloporteur
WO2017216148A1 (en) 2016-06-17 2017-12-21 Arcelik Anonim Sirketi Portable air-conditioning device
RU2655002C1 (ru) * 2017-05-16 2018-05-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" Теплоаккумулирующий состав
RU2675566C1 (ru) * 2017-12-28 2018-12-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" Теплоаккумулирующий состав
CN110218095B (zh) * 2019-04-02 2021-11-16 武汉理工大学 一种基于等级孔陶瓷的高效储热单元的制备方法
CN110218095A (zh) * 2019-04-02 2019-09-10 武汉理工大学 一种基于等级孔陶瓷的高效储热单元的制备方法
CN110375572A (zh) * 2019-08-06 2019-10-25 中如建筑工程(上海)有限公司 一种基于相变材料的相变储能箱
CN111394067A (zh) * 2020-05-09 2020-07-10 中国科学院化学研究所 一种金属氟化物高温相变储能微胶囊及其制备方法与应用
CN111394067B (zh) * 2020-05-09 2021-02-09 中国科学院化学研究所 一种金属氟化物高温相变储能微胶囊及其制备方法与应用
CN111610173A (zh) * 2020-05-27 2020-09-01 中国水利水电科学研究院 三维流体浓度场标定装置及标定方法
CN111765791A (zh) * 2020-07-01 2020-10-13 南京航空航天大学 基于振动强化传热的相变储热装置及方法
CN111765792A (zh) * 2020-07-01 2020-10-13 南京航空航天大学 基于超声波强化传热的相变储热装置及其运行方法
FR3118149A1 (fr) * 2020-12-23 2022-06-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module de stockage thermique a matériau a changement de phase dont la fabrication est simplifiée
EP4019878A1 (fr) * 2020-12-23 2022-06-29 Commissariat à l'énergie atomique et aux énergies alternatives Module de stockage thermique a matériau a changement de phase dont la fabrication est simplifiée
FR3131772A1 (fr) * 2022-01-07 2023-07-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives Ensemble modulaire de stockage thermique a matériau a changement de phase, dont la fabrication est simplifiée
EP4212814A1 (fr) * 2022-01-07 2023-07-19 Commissariat à l'énergie atomique et aux énergies alternatives Ensemble modulaire de stockage thermique a matériau a changement de phase, dont la fabrication est simplifiée

Also Published As

Publication number Publication date
ES2556143A1 (es) 2016-01-13
ES2556143B1 (es) 2016-11-14

Similar Documents

Publication Publication Date Title
ES2556143B1 (es) Sistema de almacenamiento térmico y su procedimiento de carga y descarga
ES2828525T3 (es) Sistema de almacenamiento de energía térmica combinando material sólido de calor sensible y material de cambio de fase
US10088243B2 (en) Thermal energy battery with enhanced heat exchange capability and modularity
CN101738120B (zh) 一种显热-潜热复合储热器
ES2532004T3 (es) Depósito de almacenamiento de hidrógeno con hidruros metálicos
EP2454539B1 (en) Refrigeration apparatus
WO2010000892A2 (es) Tanque de almacenamiento de energía de dos temperaturas
KR20120104182A (ko) 수소 및/또는 열을 저장하고 방출하는 탱크
CN103075906B (zh) 一种高压储热和/或储冷装置
US20110083459A1 (en) Heat exchanger with integral phase change material for heating and cooling applications
WO2009077765A1 (en) Improved latent heat storage device
KR20120139704A (ko) 열 에너지 저장
CN102967162A (zh) 一种内置相变材料的蓄热热管
JP2014508908A (ja) 熱エネルギー貯蔵のための物品および装置ならびにそれらの方法
US20160201996A1 (en) PCSM-Based Energy Storage Devices and Methods
ES2921648T3 (es) Intercambiador de calor con fluido caloportador con conjunto optimizado y un dispositivo de almacenamiento de energía térmica con material de cambio de fase que comprende dicho intercambiador
EP2976588B1 (en) Molten salts insulated storage tank
ES2380514T3 (es) Generador de niebla que tiene un intercambiador de calor mejorado
CN204599382U (zh) 消防降温背心
WO2013153420A1 (es) Calentador solar con bajas perdidas térmicas y métodos de instalación del mismo
ES2599004T3 (es) Depósito de hidrógeno
ES2673858T3 (es) Cuerpo de absorción para cápsula que contiene un material de cambio de fase
ES2552565B1 (es) Dispositivo de mantenimiento de la temperatura en un recipiente de aislamiento térmico
CN218919032U (zh) 保温散热装置
JP5963290B1 (ja) 蓄熱カプセルの単位ユニット、蓄熱カプセル及び蓄熱槽

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15806831

Country of ref document: EP

Kind code of ref document: A1