WO2015188751A1 - 干扰控制方法和设备、基站 - Google Patents

干扰控制方法和设备、基站 Download PDF

Info

Publication number
WO2015188751A1
WO2015188751A1 PCT/CN2015/081165 CN2015081165W WO2015188751A1 WO 2015188751 A1 WO2015188751 A1 WO 2015188751A1 CN 2015081165 W CN2015081165 W CN 2015081165W WO 2015188751 A1 WO2015188751 A1 WO 2015188751A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
downlink
power
uplink
sinr
Prior art date
Application number
PCT/CN2015/081165
Other languages
English (en)
French (fr)
Inventor
陈卫华
陈卫民
刘云
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2015188751A1 publication Critical patent/WO2015188751A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to an interference control method and device, and a base station.
  • LTE Long Time Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the TDD mode that China participates in is called For the TD-LTE system.
  • TD-LTE allocates uplink and downlink links to the same spectrum and occupies different time segments respectively. It can flexibly allocate the proportion of uplink and downlink resources, and then allocate resources according to the ratio of uplink services and downlink services to maximize the utilization. Time slot resources to improve system throughput.
  • the problem that arises is that if two neighboring base stations adopt different slot ratio schemes, it will bring TD-LTE-specific interference, mainly the interference of the base station to the base station. This interference is called crossover. Gap interference.
  • the first base station and the second base station are configured with different uplink and downlink subframe configurations.
  • the second base station uses the time slot to receive the uplink signal, and the time slot may be called
  • the cross-slot will have interference between the base station and the base station on the cross-slot, mainly the interference of the downlink base station to the uplink base station.
  • the second base station can directly receive the downlink signal of the first base station, which will seriously affect the quality of the uplink signal received by the second base station in the user equipment (User Equipment, UE for short) in its own cell.
  • User Equipment User Equipment
  • Embodiments of the present invention provide an interference control method and device, and a base station, to reduce cross-slot interference.
  • an interference control method including:
  • the interference control device acquires a first uplink signal and an interference plus noise ratio SINR and a first downlink SINR, where the first uplink SINR is obtained by the interfered uplink base station in the cross slot, and the first downlink SINR is an interference station.
  • the downlink base station of the uplink base station is measured in the cross slot, and the interference control device further acquires the transmit power of the downlink base station in the cross slot;
  • the interference control device obtains, according to the first uplink SINR, the first downlink SINR, and the transmit power, a power adjustment parameter used to indicate that the downlink base station decreases the transmit power, and the power adjustment parameter is used by The sum of the throughputs of the uplink base station and the downlink base station after the downlink base station decreases the transmit power is greater than the current throughput sum;
  • the interference control device instructs the downlink base station to reduce the transmission power according to the power adjustment parameter.
  • the interference control device obtains, according to the first uplink SINR, the first downlink SINR, and the transmit power, Power adjustment parameters for transmit power, including:
  • the interference control device obtains, according to the first uplink SINR and the first downlink SINR, a first throughput for indicating the current throughput sum of the uplink base station and the downlink base station;
  • the interference control device Obtaining, by the interference control device, a first hypothetical transmit power lower than the transmit power, and calculating, when the downlink base station adopts the first hypothetical transmit power, the uplink base station is in a second uplink of the cross slot SINR and a second downlink SINR of the downlink base station in the cross slot, and a second throughput for indicating a sum of throughputs of the uplink base station and the downlink base station according to the second uplink SINR and the second downlink SINR the amount;
  • the second throughput is greater than the first throughput, proceed to acquire a second hypothetical transmit power lower than the first assumed transmit power, until the second throughput is the downlink base station
  • the maximum throughput sum of the uplink base station and the downlink base station determines the power adjustment parameter corresponding to the second throughput.
  • the interference control device obtains, by using, the first sum of the current throughputs of the uplink base station and the downlink base station The throughput, the method further includes: obtaining, by the interference control device, a first uplink modulation and coding policy MCS according to the first uplink SINR, obtaining a first downlink MCS according to the first downlink SINR, and calculating the second Before obtaining the second throughput according to the second uplink SINR and the second downlink SINR, the method further includes: the interference control device obtaining the second uplink MCS according to the second uplink SINR, and Obtaining a second downlink MCS according to the second downlink SINR; and, the second uplink MCS changes with respect to the first uplink MCS, and the second downlink MCS changes with respect to the first downlink MCS.
  • the method before the determining the power adjustment parameter corresponding to the second throughput, the method further includes: the interference control device Obtaining a power impact parameter of the downlink base station, where the power impact parameter includes: a transmit power level or a service priority; and the interference control device acquires a hypothetical power lower than the transmit power according to the power influence parameter, The hypothetical power includes the first hypothetical power or the second hypothetical power until the second throughput that satisfies the power impact parameter requirement is obtained.
  • the interference control device acquires lower than The first hypothetical transmit power of the transmit power, and the second downlink SINR of the downlink base station in the cross-slot, including: the interference control device separately acquiring, according to the power influence parameter, corresponding to each Determining a first assumed transmit power of the downlink base station, and calculating a second downlink SINR of each of the downlink base stations in the cross slot; the determining a power adjustment parameter corresponding to the second throughput, including: respectively Determining a correspondence with the second throughput A power adjustment parameter corresponding to each of the downlink base stations.
  • the interference control device acquires lower than The first hypothetical transmit power of the transmit power, and the second downlink SINR of the downlink base station in the cross-slot, including: the interference control device as a whole by at least two of the downlink base stations Determining, by the downlink base station, a first assumed transmit power lower than the transmit power, and calculating a second downlink SINR of the downlink base station in the cross slot; determining the power corresponding to the second throughput Adjusting the parameters, including: determining an overall power adjustment parameter corresponding to the entire downlink base station corresponding to the second throughput, and determining the overall power adjustment parameter in the at least two downlink base stations according to the power impact parameter Allocating, obtaining power adjustment parameters corresponding to each of the downlink base stations.
  • the interference control device instructs the downlink base station to reduce the transmit power according to the power adjustment parameter, including The interference control device instructs the downlink base station to reduce the transmit power according to the power adjustment parameter determined by the at least two power split adjustment parameters and the power selection principle, and each of the at least two power split adjustment parameters corresponds to one The uplink base station is described.
  • the interference control device instructs the downlink base station to reduce the transmit power according to the power adjustment parameter
  • the method includes: the interference control device sends the power adjustment parameter to the downlink base station, so that the downlink base station reduces the transmit power according to the power adjustment parameter; the interference control device is the uplink base station or a third-party device.
  • the interference control device instructs the downlink base station to reduce the transmit power according to the power adjustment parameter
  • the method includes: the interference control device is the downlink base station, and the downlink base station itself reduces the transmit power according to the power adjustment parameter.
  • an interference control method including:
  • the downlink base station receives the power adjustment parameter sent by the interference control device, where the power adjustment parameter corresponds to the second throughput of the interfered uplink base station and the downlink base station that interferes with the uplink base station, where the second throughput is greater than The current throughput sum of the uplink base station and the downlink base station, and the second throughput is an uplink signal to interference plus noise ratio SINR of the uplink base station, a downlink SINR of the downlink base station, and the downlink
  • the base station determines the transmit power of the cross slot; the downlink base station reduces the transmit power according to the power adjustment parameter.
  • the downlink base station receives a power adjustment parameter that is sent by the interference control device, where the downlink base station receives at least two power split adjustment parameters sent by the interference control device Each of the at least two power-dividing adjustment parameters corresponds to one of the uplink base stations; and the downlink base station reduces transmit power according to the power adjustment parameter, including: the downlink base station according to a power selection principle and the at least two The power adjustment parameters determine the power adjustment parameters, and reduce the transmission power according to the power adjustment parameters.
  • an interference control device including:
  • a parameter obtaining unit configured to obtain a first uplink signal and an interference plus noise ratio SINR and a first downlink SINR, where the first uplink SINR is obtained by the interfered uplink base station in the cross slot, the first downlink SINR A downlink base station that interferes with the uplink base station is measured in the cross-slot, and the interference control device further acquires a transmit power of the downlink base station in the cross-slot;
  • a parameter processing unit configured to obtain, according to the first uplink SINR, the first downlink SINR, and the transmit power, a power adjustment parameter used to indicate that the downlink base station decreases the transmit power, and the power adjustment parameter is used by The sum of the throughputs of the uplink base station and the downlink base station after the downlink base station decreases the transmit power is greater than the current throughput sum;
  • a power control unit configured to instruct the downlink base station to reduce the transmit power according to the power adjustment parameter.
  • the parameter processing unit includes: an initial calculation subunit, configured to indicate, according to the first uplink SINR and the first downlink SINR, First throughput of the current throughput sum of the uplink base station and the downlink base station And an adjustment calculation subunit, configured to acquire a first hypothetical transmission power lower than the transmit power, and calculate, when the downlink base station adopts the first hypothetical transmit power, the uplink base station is in the cross slot a second uplink SINR and a second downlink SINR of the downlink base station in the cross slot, and a sum of throughputs for indicating the uplink base station and the downlink base station according to the second uplink SINR and the second downlink SINR a second throughput; a parameter determining subunit, configured to: when the second throughput is greater than the first throughput, instructing the adjustment calculation subunit to continue to acquire a lower than the first assumed transmit power The second assumed transmission power, until the second throughput of the parameter determining subunit is the sum of the maximum throughput
  • the adjusting calculation subunit is further configured to obtain a first uplink modulation and coding policy MCS according to the first uplink SINR, Obtaining a first downlink MCS according to the first downlink SINR; obtaining a second uplink MCS according to the second uplink SINR, and obtaining a second downlink MCS according to the second downlink SINR; and, in the second uplink MCS, And when the first uplink MCS changes and the second downlink MCS changes with respect to the first downlink MCS, obtaining a second throughput according to the second uplink SINR and the second downlink SINR.
  • the parameter determining subunit is further configured to: before determining the power adjustment parameter corresponding to the second throughput Obtaining a power impact parameter of the downlink base station, where the power impact parameter includes: a transmit power level or a service priority; and instructing the adjustment calculation subunit to acquire a lower than the transmit power according to the power influence parameter Assuming power, the hypothetical power includes the first hypothetical power or the second hypothetical power until the second throughput that satisfies the power impact parameter requirement is obtained.
  • a fourth possible implementation when the number of the downlink base stations that interfere with the uplink base station is at least two; And obtaining, by the subunit, a first hypothetical transmit power that is lower than the transmit power, and calculating a second downlink SINR of the downlink base station in the cross slot, specifically, according to the power impact parameter, respectively Obtaining a first hypothetical transmit power corresponding to each of the downlink base stations, and calculating a second downlink SINR of each of the downlink base stations in the cross slot; the parameter determining subunit, determining and the When the power adjustment parameter corresponding to the second throughput is used, the power adjustment parameter corresponding to each of the downlink base stations corresponding to the second throughput is determined.
  • the adjustment calculation subunit is Obtaining a first hypothetical transmit power that is lower than the transmit power, and calculating a second downlink SINR of the downlink base station, where the downlink base station is configured to obtain at least two downlink base stations as a whole a first hypothetical transmit power of the downlink base station lower than the transmit power, and calculating a second downlink SINR of the downlink base station in the cross slot; the parameter determining subunit, in determining and Specifically, when determining the power adjustment parameter corresponding to the second throughput, specifically determining an overall power adjustment parameter corresponding to the entire downlink base station corresponding to the second throughput, and determining the overall power according to the power impact parameter
  • the adjustment parameters are allocated in the at least two downlink base stations, and the power adjustment parameters corresponding to each of the downlink base stations are obtained.
  • the power control unit when the number of the interfered uplink base stations is at least two, is specifically configured to indicate the downlink base station, according to at least two The power adjustment parameters determined by the power split adjustment parameter and the power selection principle reduce the transmit power, and each of the at least two power split adjustment parameters corresponds to one of the uplink base stations.
  • the interference control device is the uplink base station or a third-party device
  • the power control unit is specifically configured to send the power adjustment parameter to the downlink base station, so that the downlink base station reduces the transmit power according to the power adjustment parameter.
  • the power control unit when the interference control device is the downlink base station, the power control unit is specifically configured to reduce the transmit power of the downlink base station according to the power adjustment parameter.
  • a base station including:
  • a parameter receiving unit configured to receive a power adjustment parameter sent by the interference control device, where the power adjustment parameter corresponds to a second throughput of the downlink base station that interferes with the uplink base station, and the second The throughput is greater than the current throughput sum of the uplink base station and the downlink base station, and the second throughput is an uplink signal to interference plus noise ratio SINR of the interference base station according to the uplink base station, and a downlink SINR of the downlink base station.
  • the parameter receiving unit when receiving the power adjustment parameter sent by the interference control device, is specifically configured to receive at least two powers transmitted by the interference control device. Adjusting a parameter, each of the at least two power-dividing adjustment parameters corresponding to one of the uplink base stations; the power adjusting unit is specifically configured to determine the power according to a power selection principle and the at least two partial power adjustment parameters The parameters are adjusted and the transmit power is reduced according to the power adjustment parameters.
  • the interference control method and device and the base station provided by the embodiment of the present invention calculate the throughput according to the SINR of the uplink base station and the downlink base station where the interference exists, and not only indicate that the downlink base station reduces the transmission power according to the power adjustment parameter, but also the reduced transmit power.
  • the sum of the throughputs of the lower uplink base station and the downlink base station is larger than the current total throughput, so that not only the cross-slot interference is reduced by reducing the transmission power, but also the overall system throughput performance of the uplink base station and the downlink base station is improved.
  • FIG. 1 is a schematic diagram of an application scenario of an interference control method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of an interference control method according to an embodiment of the present invention.
  • FIG. 3 is a schematic signaling diagram of another interference control method according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of another system for performing interference control according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of signaling of another interference control method according to an embodiment of the present invention.
  • FIG. 6 is a schematic signaling diagram of still another interference control method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an application scenario of another interference control method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart diagram of still another interference control method according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an application scenario of another interference control method according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of an application scenario of another interference control method according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic flowchart diagram of still another interference control method according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of an application scenario of another interference control method according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of an application scenario of another interference control method according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic flowchart diagram of still another interference control method according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of an interference control device according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of another interference control device according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an application scenario of an interference control method according to an embodiment of the present invention. As shown in FIG. 1 , it is assumed that there are two neighboring cells, where the cell where the cell 1 (cell 1) is located and the cell 2 (cell 2) are located. For the cell, the slot ratio schemes used by the two cells are different.
  • the cell 1 is uplink (U), that is, Cell 1 is receiving on terminal 1 (UE1) in its cell
  • the line signal, and at the time slot s1, cell 2 is downlink (D), ie cell 2 is transmitting a downlink signal to terminal 2 (UE2) within its cell.
  • Such time slots in which the uplink and downlink directions are inconsistent may be referred to as cross slots; for example, the time slots s2 are also cross slots.
  • the cell 2 will interfere with the cell 1, that is, the cell 1 may also receive the downlink signal of the cell 2 while receiving the uplink signal of the UE1, and this will affect the uplink signal of the cell 1 to the UE1.
  • the interference control method in the embodiment of the present invention is to solve the cross-slot interference problem shown in FIG. 1. The specific solution can be seen in the following embodiments.
  • the interference control device may be, for example, an interfered uplink base station or a downlink base station that interferes with an uplink base station. Or any other base station, or other device, such as a radio network controller (Radio Network Controller, RNC), etc., that is, the embodiment does not strictly limit the execution body of the method, and may have multiple possibilities.
  • RNC Radio Network Controller
  • the method may include:
  • the interference control device acquires a first uplink SINR and a first downlink SINR, and a transmit power of the downlink base station in the cross slot.
  • the first uplink signal and the interference plus noise ratio (SINR) are obtained by the interfered uplink base station in the cross slot, and the first downlink SINR is the downlink base station that interferes with the uplink base station. Obtained in the cross-slot measurement.
  • the cross-slot refers to, for example, the time slot s1 or the time slot s2 in FIG. 1, that is, the SINR measurement is performed at the position of the cross-slot.
  • the TD-LTE system defines a re-matching period for each base station, and the slot ratio scheme of the base station remains unchanged during the re-matching period, and the interference at each cross-slot in the re-matching period It is also approximately constant, so the SINR can be measured at the cross-slot at the beginning of each re-matching period and the method of the present embodiment is performed, preferably the first cross of the first frame of the re-matching period
  • the SINR is measured at the slot subframe, for example, the slot s1 position in FIG.
  • each base station can interact through a base station or He knows whether the rematch ratio period changes, and then knows whether it is necessary to restart measuring the SINR in the new period.
  • the uplink base station and the downlink base station refer to an uplink or downlink base station that has an interference relationship at a cross-slot position.
  • cell 1 in combination with the slot ratio scheme of cell 1, at time slot s3, cell 1 is a downlink base station (represented by D), that is, used to transmit a downlink signal, and at time slot s1, cell 1 is an uplink.
  • the base station in the uplink direction; similarly, the downlink base station is a base station in the downlink direction at the position of the cross-slot.
  • the cell 2 interferes with the cell 1.
  • the cell 1 measures the SINR in the cell in the time slot s1, which is called the first uplink SINR; the cell 2 is in the time slot.
  • S1 measures the SINR in its cell, which is called the first downlink SINR.
  • the “first” is only used to distinguish the same names as those appearing in other embodiments of the present invention, and does not have a special limitation.
  • the “second” and the like appearing in the subsequent embodiments of the present invention are only used. To differentiate.
  • the location of the cross-slot can be determined by using the alternate slot ratio information between the base stations; wherein the slot ratio information is TD - There are seven different time slot matching schemes defined by the LTE system.
  • each base station can know the respective uplink or downlink directions of each other at the same slot position, thereby determining which cross-slot interference will occur between the base stations, thereby corresponding to the intersecting slot positions.
  • the SINR of the own cell is measured.
  • the interference control device acquires the first uplink SINR and the first downlink SINR.
  • the interference control device may have multiple conditions, such as an uplink base station, a downlink base station, other devices, etc., so the interference control device in this step Obtaining the first uplink SINR and the first downlink SINR also corresponds to a plurality of different manners.
  • the uplink base station may measure the first uplink SINR by itself and receive the first downlink SINR sent by the downlink base station to the uplink base station.
  • the downlink base station may measure the first downlink SINR by itself and receive the first uplink SINR sent by the uplink base station to the downlink base station.
  • the uplink base station may send the first uplink SINR measured by itself to the third-party device, and the downlink base station also sends the first downlink SINR measured by itself to the first downlink SINR.
  • the third-party device for example, an RNC
  • the downlink base station also sends the first downlink SINR measured by itself to the first downlink SINR.
  • the interference control device acquires the transmit power of the downlink base station in the cross-slot.
  • the uplink base station sends its own transmit power to the uplink base station.
  • the transmission power of the downlink base station obtained in this embodiment may be represented by multiple indications, such as a value of the transmission power, or a level identifier of the transmission power.
  • the interference control device obtains, according to the first uplink SINR, the first downlink SINR, and the transmit power, a power adjustment parameter used to indicate that the downlink base station decreases the transmit power.
  • the power adjustment parameter obtained by the interference control device may be used to improve the total throughput of the uplink base station and the downlink base station after the downlink base station decreases the transmit power, which is greater than the current (that is, when the transmit power is not reduced). sum.
  • the specific process of obtaining the power adjustment parameter by the interference control device is not limited in the embodiment of the present invention, and the device may use various calculation manners to obtain the power adjustment parameter, and the following is listed in this embodiment.
  • An optional parameter acquisition process :
  • the interference control device obtains a first throughput for indicating the current throughput sum of the uplink base station and the downlink base station according to the first uplink SINR and the first downlink SINR.
  • each SINR value has a corresponding Modulation and Coding Scheme (MCS), so the SINR is first mapped to its corresponding MCS. Then, according to the MCS, the size of the transport block TB size corresponding thereto is obtained; finally, the throughput can be calculated by the size of the TB size and the MCS.
  • MCS Modulation and Coding Scheme
  • the uplink base station can calculate the throughput of the uplink base station according to the first uplink SINR, and the downlink base station can calculate the throughput of the downlink base station according to the first downlink SINR, and the sum of the throughputs of the two can be referred to as the first throughput.
  • This is also the initial system throughput before the transmit power of the downlink base station is unadjusted.
  • the system includes an uplink base station and a downlink base station with cross-slot interference relationships.
  • this embodiment does not limit the number of uplink base stations and downlink base stations that have cross-slot interference relationships.
  • it may be an uplink base station and a downlink base station; or, it may be an uplink base station and three downlink base stations (in this case, all three downlink base stations cause interference to the uplink base station); or, it may be a downlink.
  • the base station and the three uplink base stations causes interference to the three uplink base stations; or, alternatively, there may be two uplink base stations and two downlink base stations (in this case, the two downlink base stations may be respectively
  • Each uplink base station interferes, etc., in any way, the whole of the uplink base station and the downlink base station having the cross-slot interference relationship can be regarded as a system, and the throughput of the system is maximized as a target to calculate how to reduce The transmit power of the downlink base station.
  • an example of how to reduce the downlink base station transmission power in the scenario of several multi-cells is also listed.
  • Second acquiring a first hypothetical transmit power lower than the transmit power, and calculating a second uplink SINR of the uplink base station in the cross slot when the downlink base station adopts the first hypothetical transmit power The second downlink SINR of the downlink base station in the cross slot.
  • the reducing the transmit power of the downlink base station may be a level of reducing the transmit power.
  • the transmit power of the downlink base station is mainly controlled by two parameters P A and P B , where P A is a UE-level parameter configured by high-level signaling, and the parameter is downlink work.
  • the output value of the control is set to [-6, -4.77, -3, -1.77, 0, 1, 2, 3] dB.
  • P B represents an index of ⁇ B / ⁇ A , where ⁇ A represents the ratio of the PDSCH RE power on the OFDM symbol without the reference signal to the power of the reference signal RE (linear value); ⁇ B represents the OFDM symbol with the reference signal The ratio of the PDSCH RE power to the reference signal RE power (linear value).
  • P B is also given in the form of RRC signaling, which is a cell-level parameter, and its value is [0, 1, 2, 3], and its value corresponds to ⁇ B / ⁇ A , and the specific process can refer to the corresponding The agreement is not elaborated here.
  • obtaining the first hypothetical transmit power lower than the transmit power in this embodiment does not really reduce the transmit power of the downlink base station, but assumes that the transmit power is reduced, and predicts the SINR after the power is reduced. And throughput, etc., so this embodiment refers to it as the first hypothetical transmit power (of course, it can also adopt other names in the specific implementation), and finds better power adjustment parameters by evaluating the impact on the system performance after reducing the power. Then, it is sent to the downlink base station to perform real power reduction according to the power adjustment parameter.
  • the transmit power of the downlink base station may be reduced step by step, and the corresponding SINR may be calculated, for example, the transmit power is gradually decreased from “3" - "2" - “1", or may be randomly selected. For example, from “3” directly to "1" and so on.
  • the difference in the reduction in transmission power is not arbitrary, but has a specific power level value, such as each parameter in the PA described above.
  • the second uplink SINR corresponding to the uplink base station and the second downlink SINR corresponding to the downlink base station after the transmission power is reduced may be calculated as follows:
  • SINR (dB) S up (dB) - (I up (dB) + N up (dB)); wherein S up is the uplink base station a useful signal, I up is the cross-slot interference received by the uplink base station, and N up is the interference (including normal interference and white noise) of the uplink base station except the cross-slot interference;
  • I up is the cross-slot interference of the downlink base station to the local cell.
  • the cross-slot interference also decreases by ⁇ dB, namely: Therefore, the downlink base station adjusts the power after the uplink base station It can be calculated by the above method.
  • the downlink base station When the downlink base station reduces the ⁇ dB transmit power, the useful signal of the downlink base station will be correspondingly reduced by ⁇ dB, and the interference signal remains unchanged, so the SINR of the downlink base station will also decrease by ⁇ dB, namely:
  • the interference control device obtains, according to the second uplink SINR and the second downlink SINR, a second throughput for indicating a sum of throughputs of the uplink base station and the downlink base station;
  • the process of calculating the second throughput by the interference control device according to the second uplink SINR and the second downlink SINR is similar to the process of calculating the first throughput, and is not described again; this step is to predict to reduce the downlink base station transmission at 1 The new throughput of the system after power.
  • the interference control device may determine whether the reduced transmit power is sufficiently large before obtaining the second throughput according to the second uplink SINR and the second downlink SINR. Specifically, the interference control device may obtain the second uplink MCS according to the second uplink SINR, and obtain the second downlink MCS according to the second downlink SINR; and determine that the second uplink MCS and the second downlink MCS obtained this time are compared to before the power adjustment. Whether the MCS has changed.
  • the MCS obtained according to the first uplink SINR is referred to as a first uplink MCS
  • the MCS obtained according to the first downlink SINR is referred to as a first downlink MCS
  • the second uplink MCS occurs with respect to the first uplink MCS If the second downlink MCS changes with respect to the first downlink MCS, it can be determined that the adjustment amount of the transmission power is sufficient, and then the second throughput can be continuously calculated, and the throughput is compared. Otherwise, if the MCS does not change before and after the power adjustment, the transmission power can be continuously reduced, that is, the reduction of the transmission power is increased.
  • the interference control device determines whether the second throughput is greater than the first throughput
  • the pursuit is not only to reduce the transmit power to reduce the interference, but also to improve the overall system throughput of the uplink base station and the downlink base station, that is, the power. After the decline, the overall throughput of the system will increase.
  • the maximum throughput is the maximum throughput in the range in which the transmission power of the downlink base station is lower than the current power.
  • the specific implementation is not limited to this, and may not be the maximum throughput.
  • the interference control device determines that the second throughput is greater than the first throughput, continuing to acquire the second hypothetical transmit power lower than the first assumed transmit power; otherwise, indicating that the second throughput is uplink
  • the sum of the maximum throughput of the base station and the downlink base station has reached the maximum throughput performance of the system, and continues to determine the power adjustment parameter corresponding to the second throughput to reduce the transmit power of the downlink base station.
  • the power adjustment parameter is determined as follows: the foregoing second throughput corresponding to the maximum throughput performance of the system is determined, and then the reduction of the transmission power of the downlink base station when the second throughput is reached may be determined, and may be represented by a power adjustment parameter.
  • Related parameters for reduced transmit power may be the above-mentioned ⁇ , for example, reducing the transmission power from “3” to “1”, then ⁇ is “2”; or, the power adjustment parameter may directly be a certain level.
  • the value of the transmit power is, for example, "-4.77” (indicated by the value of the PA); or it may be an index of a value of the PA, such as the index "a2" corresponding to "-4.77".
  • the interference control device may further determine the power adjustment parameter in combination with other factors. specific:
  • the interference control device may acquire a power impact parameter of the downlink base station, where the power impact parameter includes but is not limited to: a transmit power level, or a service priority.
  • the transmit power level is, for example, a PA or a PB as described above, and the service priority is, for example, "0".
  • the base station may have a pre-interaction with a service priority. For example, the service priority indicated by “0” is lower than the service priority indicated by “1”.
  • the acquisition mode for example, if the interference control device is an uplink base station, the downlink base station can transmit its own transmit power.
  • the level, or service priority is sent to the uplink base station.
  • the interference control device may reduce the transmit power of the downlink base station according to the power influence parameter until the second throughput that meets the power impact parameter requirement is obtained.
  • the interference control device may actually combine the power influence parameter when the transmit power is reduced, so that the transmit power is reduced less; the satisfying power impact parameter requirement refers to, for example, when the downlink base station is in the crossover
  • the service priority of the downlink signal of the slot is relatively high, which is equivalent to requiring the power of the downlink base station to meet the service requirements as much as possible, so that the transmission power can be reduced less.
  • the transmit power of the downlink base station can be more accurately adjusted by using information such as the transmit power level and the service priority. For example, if the transmit power level of the downlink base station is determined to be the lowest level according to the transmit power level information, the To reduce power, you can use the lowest transmit power level or stop sending data. Alternatively, different power adjustment policies may be adopted according to different service priorities; for example, if the service priority is higher, the power should not be reduced too much, and if the service priority is not high, the power reduction rate may be appropriately increased. Even prohibiting sending data to reduce interference.
  • the interference control device instructs the downlink base station to reduce the transmit power according to the power adjustment parameter.
  • the indication of reducing the transmission power may be to lower the level of transmission power.
  • the transmission power of the downlink base station before adjustment is "3" (indicated by the value of PA), and the transmission power may be reduced to "1" or "-4.77".
  • the transmission power may be reduced to "1" or "-4.77".
  • how to reduce the level to which it is lowered for example, from “3” to "1” or to "-4.77", there may be multiple indication manners.
  • each value of the PA may be set to a corresponding index, " A1" is the index of "-6", “a2” is the index of "-4.77”, “a6” is the index of "1", etc.
  • the index is actually the identifier of the value, assuming that the transmission power needs to be reduced to " 1", “a6” can be used to identify the value, or ⁇ can be used to indicate the specific value reduction, and the transmission power is reduced from "3" to "1", then ⁇ is "2".
  • the interference control device is an uplink base station or a third-party device
  • the uplink base station or the third-party device may send the power adjustment parameter to the adjacent downlink base station, for example, through the X2 interface and the S1 interface, or the airborne wireless interface; and the downlink base station reduces the transmit power according to the power adjustment parameter.
  • the interference control device is a downlink base station
  • the downlink base station itself may reduce the transmission power according to the power adjustment parameter calculated by itself.
  • the interference control method provided in this embodiment calculates the throughput according to the SINR of the uplink base station and the downlink base station where the interference exists, and obtains the power adjustment parameter of the downlink base station corresponding to the maximum throughput, and the downlink base station reduces the transmission power according to the power adjustment parameter. This not only reduces the cross-slot interference by reducing the transmission power, but also maximizes the overall system throughput performance of the uplink base station and the downlink base station. In addition, the target of the overall system throughput performance of the power adjustment is greatly improved compared with the single-cell performance improvement in the prior art, and the method in this embodiment only needs to perform some between the base stations. The interaction of basic information such as SINR or service priority is easy to implement.
  • this embodiment also avoids the threshold factors frequently used in power control research in the prior art, and avoids the difficulty in determining the characteristics in the threshold determination.
  • the limitation of this embodiment is that the method of this embodiment is a simple and feasible solution for reducing cross-slot interference.
  • the interference control method of the embodiment of the present invention will be described in detail from various angles, such as a single cell or a multi-cell, and different execution entities, such as an uplink base station or a third-party device, through various embodiments.
  • the downlink base station in the downlink cell generates signal interference to the uplink base station in the uplink cell, and the scenario is similar to the cell 1 shown in FIG. 1 and the downlink cell in the uplink cell.
  • FIG. 3 is a schematic diagram of signaling of another interference control method according to an embodiment of the present invention. As shown in FIG. 3, the method may include:
  • the uplink base station measures a first uplink SINR
  • the downlink base station measures a first downlink SINR
  • the uplink and downlink base stations measure the SINR of each of the overlapping time slots respectively.
  • the cell 1 is used as the uplink base station to measure the SINR of the local cell, which is called the first uplink SINR; and the cell 2 is used as the downlink base station to measure the SINR of the local cell, which is called the first Line SINR.
  • the downlink base station sends the first downlink SINR to the uplink base station.
  • the downlink base station may send the first downlink SINR to the adjacent uplink base station with the cross-slot interference relationship through the X2 interface and the S1 interface, or the air-to-air interface.
  • a centralized transmission mode or a distributed transmission mode may be adopted.
  • a centralized controller may be set for all cells, and a certain base station may be designated to perform this role, and each cell is collected by the centralized controller.
  • the SINR information is unified and the SINR of the neighboring downlink cell of each uplink cell is uniformly notified, so that the first downlink SINR measured by the downlink base station is sent to the uplink base station.
  • the base station can directly exchange the SINR information measured by the base station through the inter-base station interface, that is, the downlink base station directly sends the first downlink SINR measured by itself to the adjacent uplink base station.
  • the uplink base station calculates a first throughput according to the first uplink SINR and the first downlink SINR.
  • the process of calculating the first throughput is described in the first embodiment, and is not described here.
  • the first throughput calculated by the uplink base station in this step is the initial throughput before the power adjustment is assumed.
  • the uplink base station predicts a second throughput corresponding to the system after the downlink base station reduces the transmit power.
  • the uplink base station will reduce the transmit power of the downlink base station, for example, reduce one transmit power level, and calculate a second uplink SINR of the corresponding uplink cell and a second downlink SINR of the downlink cell after the power is reduced.
  • the second uplink SINR of the uplink cell will increase by ⁇ dB with respect to the first uplink SINR
  • the second downlink SINR of the downlink cell will decrease by ⁇ dB with respect to the first downlink SINR.
  • the uplink base station calculates a second throughput according to the second uplink SINR and the second downlink SINR, and the calculation of the second throughput is similar to the calculation process of the first throughput.
  • the transmit power of the downlink base station at this time is not actually decreased, but is on the uplink base station side.
  • the assumption and prediction of the reduction of the transmission power are performed, assuming that the transmission power of the downlink base station is reduced, and the impact on the system after the power reduction is predicted, such as the estimation of the change in the overall throughput of the system.
  • the uplink base station obtains a power adjustment parameter corresponding to the maximum throughput by comparing the first throughput and the second throughput.
  • the second throughput is greater than the first throughput, the downlink power of the downlink base station is continuously decreased; otherwise, the second throughput is the sum of the maximum throughput of the uplink base station and the downlink base station, and the maximum throughput performance of the system has been achieved.
  • the second throughput is the maximum throughput of the system consisting of the uplink cell and the downlink cell, and then the amount of decrease of the transmit power of the downlink base station when the second throughput is reached can be determined, and the power adjustment parameter can be used to indicate the correlation of the decrease of the transmit power. parameter.
  • the power adjustment parameter may be ⁇ mentioned in 103, for example, reducing the transmission power from "3" to "1", then ⁇ is "2".
  • the embodiment is described by taking the maximum throughput of the system as an example.
  • the second throughput may not be the maximum throughput, but only greater than the first throughput.
  • the uplink base station sends the power adjustment parameter to the downlink base station.
  • the manner in which the parameters are sent may be in a similar manner to that in 302.
  • the downlink base station reduces the transmit power according to the power adjustment parameter.
  • the downlink base station after receiving the ⁇ transmitted by the uplink base station, the downlink base station reduces the transmission power by ⁇ .
  • FIG. 4 is a schematic diagram of another system for performing interference control according to an embodiment of the present invention. As shown in FIG.
  • a third-party device can perform information interaction with an uplink base station and a downlink base station, and more specifically, for example, the third-party device also Can be any first base station, For example, another base station cell 5 other than cell 1 and cell 2, or other devices.
  • FIG. 5 is a schematic diagram of signaling of another interference control method according to an embodiment of the present invention.
  • the method may include the following steps, which are described in the foregoing embodiments. The steps in this embodiment and the subsequent embodiments will not be described in detail. For details, refer to the foregoing embodiments.
  • the uplink base station measures a first uplink SINR
  • the downlink base station measures a first downlink SINR
  • the uplink base station sends the first uplink SINR to the third-party device, and the downlink base station sends the first downlink SINR to the third-party device.
  • the third-party device calculates the first throughput according to the first uplink SINR and the first downlink SINR.
  • the third-party device predicts a second throughput corresponding to the downlink base station reducing the transmit power.
  • the third-party device obtains a power adjustment parameter corresponding to the maximum throughput by comparing the first throughput and the second throughput.
  • the third-party device sends the power adjustment parameter to the downlink base station.
  • the downlink base station reduces the transmit power according to the power adjustment parameter.
  • the downlink base station may also send information such as the service priority and the transmit power level to the third-party device, and the third-party device performs more accurate transmit power adjustment according to the information, and the specific adjustment manner is also implemented. It has already been explained in the first example.
  • FIG. 6 is a schematic diagram of signaling of another interference control method according to an embodiment of the present invention. As shown in Figure 6, the method may include:
  • the uplink base station measures a first uplink SINR
  • the downlink base station measures a first downlink SINR
  • the uplink base station sends the first uplink SINR to the downlink base station.
  • the downlink base station calculates a first throughput according to the first uplink SINR and the first downlink SINR.
  • the downlink base station predicts a second throughput corresponding to the downlink base station reducing the transmit power.
  • the downlink base station obtains a power adjustment parameter corresponding to the maximum throughput by comparing the first throughput and the second throughput.
  • the downlink base station reduces the transmit power according to the power adjustment parameter.
  • the downlink base station since the downlink base station performs the calculation of the throughput and the estimation of the power adjustment parameters, the downlink base station can adjust the transmission power according to the power adjustment parameter calculated by itself, instead of receiving the uplink base station or the third-party device. Power adjustment parameters.
  • the system includes a single uplink cell and a single downlink cell, and the uplink base station, the third-party device, and the downlink base station are respectively the execution entities, and the interference control method according to the embodiment of the present invention is described.
  • the number of cells having a cross-slot interference relationship is extended, for example, including multiple uplink cells or multiple downlink cells, and the description is performed in combination with different execution entities.
  • FIG. 7 is a schematic diagram of an application scenario of another interference control method according to an embodiment of the present invention.
  • the number of adjacent downlink base stations that generate cross-slot interference for an uplink base station (U) in this embodiment is Three, of course, there may be two, five, etc. in the specific implementation, and there may be multiple possible situations for the number, at least two.
  • the downlink base stations D1, D2, and D3 that interfere with the uplink base station U in FIG. 7 are all required to perform transmission power control.
  • FIG. 8 is a schematic flowchart of still another interference control method according to an embodiment of the present invention.
  • the execution body of the method is the uplink base station U in FIG. 7.
  • the uplink base station acquires a first downlink SINR of each downlink base station, and obtains a first uplink SINR by itself.
  • the uplink base station U and each of the downlink base stations D1, D2, and D3 need to measure the SINR of the own cell, and the downlink base station measurement is referred to as the first downlink SINR, and the uplink base station measurement is referred to as the first uplink SINR.
  • the first downlink SINR measured by each downlink base station is sent to the uplink base station.
  • the uplink base station calculates a first throughput according to the first uplink SINR and the first downlink SINR.
  • the uplink base station reduces the transmit power of each downlink base station, and calculates a second downlink SINR of each downlink base station in the cross slot after reducing the transmit power, and predicts a second uplink SINR.
  • the uplink base station in this step is also assumed to reduce the transmit power of the downlink base station, and predict the second downlink SINR and the second uplink SINR after the transmit power is reduced. There are several ways to reduce the transmit power of each downlink base station, as listed below:
  • the downlink base stations D1, D2, and D3 have the same interference to the uplink base station, so it is assumed that the downlink base stations have the same reduced transmit power, for example, both decrease ⁇ , then the D1, D2, and D3
  • the two downlink SINRs also decrease by ⁇ with respect to the respective first downlink SINRs, and the second uplink SINR of the uplink base station is increased by 3 ⁇ with respect to the first uplink SINR.
  • the assumed transmit power reduction amount of each downlink base station is also related to the power influence parameter.
  • the downlink base stations D1, D2, and D3 may send information such as respective transmit power levels or service priorities to the uplink base station U.
  • the uplink base station can determine the power reduction amount according to the power influence parameter. For example, if the traffic priority of D1 is higher than D2, the transmit power of D1 can be reduced by ⁇ and the transmit power of D2 by 1.5 ⁇ when the predicted transmit power is reduced.
  • the uplink base station calculates a second throughput according to the second uplink SINR and the second downlink SINR.
  • the uplink base station U and the three downlink base stations D1, D2, and D3 jointly form a system with cross-slot interference, and the transmission power adjustment of the downlink base station is calculated with the goal of maximizing the overall throughput performance of the system.
  • the uplink base station determines, by comparing the first throughput and the second throughput, a power adjustment parameter corresponding to the second throughput that reaches the maximum throughput of the system.
  • the uplink base station still needs to compare the first throughput and the second throughput, and if the second throughput is greater than the first throughput, continue to reduce the transmit power of the downlink base station; otherwise, the second throughput is already the maximum throughput of the system.
  • the quantity determines the power adjustment parameters of each downlink base station when the second throughput is reached. For example, if the second throughput is already the maximum throughput of the system, and the second throughput is calculated, the power adjustment parameter of the corresponding downlink base station D1 is c1, and the power adjustment parameter of the downlink base station D2 is c2, the downlink base station.
  • the power adjustment parameter of D3 is c3, then it can be determined that the power adjustment parameters corresponding to each downlink base station are D1 - c1, D2 - c2, D3 - c3.
  • the uplink base station sends corresponding power adjustment parameters of each downlink base station to each downlink base station.
  • the uplink base station U transmits the power adjustment parameter c1 to the downlink base station D1, the power adjustment parameter c2 to the downlink base station D2, and the power adjustment parameter c3 to the downlink base station D3.
  • Each downlink base station reduces the transmit power according to the respective power adjustment parameters.
  • FIG. 9 is a schematic diagram of an application scenario of another interference control method according to an embodiment of the present invention
  • FIG. 10 is a schematic diagram of an application scenario of another interference control method according to an embodiment of the present invention.
  • the two figures are similar to those in FIG. 8.
  • the uplink base station U has at least two adjacent downlink base stations D that generate cross-slot interference. Therefore, the calculation method of the power adjustment parameters corresponding to the downlink base station by the uplink base station U is similar, and will not be described again. .
  • the scenario in which the number of the adjacent downlink base stations that generate the cross-slot interference to the uplink base station is at least two is taken as an example, but the difference from the fifth embodiment is that the uplink base station determines the power adjustment parameters of each downlink base station.
  • the downlink base stations D1, D2, and D3 in FIG. 7 as a whole, the overall power adjustment parameters corresponding to the whole are determined first, and then allocated to each downlink base station to obtain corresponding downlink base stations. Power adjustment parameters.
  • FIG. 7 is taken as an example to describe the interference control method according to the embodiment of the present invention.
  • FIG. 11 is a schematic flowchart of another interference control method according to an embodiment of the present invention, including:
  • the uplink base station acquires a first downlink SINR of each downlink base station, and obtains a first uplink SINR by itself;
  • the uplink base station calculates a first throughput according to the first uplink SINR and the first downlink SINR.
  • the base station of the uplink base station is integrated as a whole, reducing the transmit power of the entire downlink base station, and calculating a second downlink SINR of the entire downlink base station in the cross slot after reducing the transmit power, and predicting a second uplink SINR;
  • the downlink base stations D1, D2, and D3 as a whole may use "Z" to indicate the whole of the three downlink base stations; the uplink base station U may assume that Z reduces the transmission power by ⁇ dB, then the uplink base station The two uplink SINRs may increase ⁇ , and the second downlink SINR corresponding to Z decreases by ⁇ .
  • the uplink base station calculates a second throughput according to the second uplink SINR and the second downlink SINR corresponding to the downlink base station as a whole;
  • the uplink base station determines, by comparing the first throughput and the second throughput, a power adjustment parameter corresponding to the second throughput that reaches the maximum throughput of the system.
  • the power adjustment parameter corresponding to the second throughput determined by the uplink base station is an overall power adjustment parameter corresponding to the entire downlink base station.
  • the overall power adjustment parameter corresponding to the system including D1, D2, and D3 is ⁇ , which is required.
  • the transmission power of the entire downlink base station is decreased by a certain delta value.
  • the uplink base station allocates the overall power adjustment parameter to the at least two downlink base stations according to the power influence parameter, and obtains a power adjustment parameter corresponding to each downlink base station.
  • more precise power adjustment may be performed according to the service priority, the transmit power level, and the like sent by the downlink base station. For example, suppose D1, D2, and D3 have different service priorities, and D1 takes precedence. Level>D2 priority, then when the overall power adjustment parameter ⁇ is allocated between D1, D2 and D3, the signal-to-noise ratio environment of the cell with high service priority should be prioritized. For example, the transmit power of D1 is higher than D2 due to service priority. Therefore, when implemented, the transmit power of D1 can be reduced, and the transmit power of D2 can be reduced.
  • each downlink is reduced by ⁇ dB, otherwise the service priority is high and the power is reduced or not decreased.
  • Power, low priority power or low transmission priority but when the cell with low service priority has not met the uplink cell's demand for SNR environment, the uplink cell does not meet the requirements of the uplink cell to the SNR environment. More severe power control needs to be implemented for another downlink cell.
  • the uplink base station sends corresponding power adjustment parameters of each downlink base station to each downlink base station.
  • Each downlink base station reduces the transmit power according to the respective power adjustment parameters.
  • FIG. 12 is a schematic diagram of an application scenario of an interference control method according to an embodiment of the present invention.
  • the difference between the embodiment and the fifth embodiment and the sixth embodiment is that the uplink base station in the fifth embodiment has at least two adjacent downlinks.
  • the base station in this embodiment, is a downlink base station having at least two uplink base stations.
  • each downlink base station may receive multiple power split adjustment parameters respectively corresponding to each uplink base station.
  • the three uplink base stations U1, U2, and U3 adjacent to the downlink base station D may generate cross-slot interference for U1, U2, and U3, so Each of the three uplink base stations performs power adjustment parameter calculation.
  • U1 calculates the power adjustment parameter t1 that needs D to reduce the transmit power with the target of "U1+D" system maximum throughput.
  • U2 will be "U2+D”.
  • the maximum throughput of the system is calculated for the target.
  • the power adjustment parameter t2 that needs to reduce the transmit power of D, U3 will calculate the power adjustment parameter t3 that needs D to reduce the transmit power with the target of "U3+D" system maximum throughput.
  • the power adjustment parameters calculated by the three uplink base stations are the same, and the downlink base station D reduces the transmit power of ⁇ dB. After the rate, the SINRs of U1, U2 and U3 are both increased by ⁇ dB. Therefore, the downlink base station D is equivalent to receiving only one power adjustment parameter, and the downlink base station can adjust the power accordingly.
  • the embodiment provides the following manner:
  • the interference control device instructs the downlink base station to reduce the transmission power according to the power adjustment parameter determined by the at least two partial power adjustment parameters and the power selection principle.
  • the power selection principle includes: principle 1: ensuring downlink performance, selecting downlink power adjustment of the minimum power control level among the N levels; principle 2: ensuring uplink performance, selecting the largest power control level among the N levels to implement downlink power Adjustment; principle 3: guarantee fairness, select the average of N levels to implement downlink power adjustment.
  • the power selection principle may also be preset on the interference control device.
  • the method for reducing the transmit power may be selected as follows:
  • the interference control device is an uplink base station or a third-party device
  • each of the uplink base stations or the third-party device may use each uplink base station as the interfered entity to calculate a power split adjustment parameter corresponding to each uplink base station
  • at least two power adjustment parameters obtained from the calculation determine a certain parameter as a final power adjustment parameter, and send the power adjustment parameter to the downlink base station, and the downlink base station can reduce the transmission power accordingly.
  • Another method is: if the interference control device is an uplink base station or a third-party device, at least two power adjustment parameters may be sent by the uplink base station or the third-party device to the downlink base station, where The downlink base station determines a certain parameter as the final power adjustment parameter from the at least two power split adjustment parameters according to the power selection principle, and reduces the transmit power accordingly.
  • the downlink base station may also perform calculation and selection of power adjustment parameters by itself.
  • some of the methods are described by using an uplink base station as an execution subject, but in a specific implementation, the method may also be performed by other devices, such as the downlink.
  • Base stations or third-party devices, etc. are not listed one by one, and the methods are similar.
  • FIG. 13 is a schematic diagram of an application scenario of an interference control method according to an embodiment of the present invention.
  • the cell scenario in this embodiment is a hybrid scenario, such as a system including “single uplink and multiple downlink” and a single uplink Downstream system.
  • the uplink base station U1 therein it has cross-slot interference with both the downlink base stations D1 and D2; and the uplink base station U2 has only cross-slot interference with the downlink base station D2.
  • the method for calculating the power adjustment parameters corresponding to the D1 and D2 respectively according to the maximum throughput of the system "U1+D1+D2”, refer to the description of the fifth embodiment or the sixth embodiment; for the uplink base station U2 according to the system "U2"
  • the method for calculating the power adjustment parameter corresponding to the D2 is described in the second embodiment, and details are not described herein again.
  • D2 may be determined according to the power selection principle.
  • the service priority of the uplink cell where U1 is located is higher than the service priority of the uplink cell where U2 is located, and then may be adjusted according to q1 sent by U1, or Comprehensive q1 and q2 adjustments but more biased towards q1.
  • the power selection principle according to the downlink base station may also be the service priority of the uplink cell where the uplink base station is located, and other principles may also be adopted in the specific implementation.
  • This embodiment is still based on FIG. 13 and is different from the eighth embodiment in that, in the eighth embodiment, U1 and U2 respectively aim at the respective interference systems, calculate corresponding power adjustment parameters q1 and q2, and send the parameters to D2, and D2 comprehensively determines the power adjustment parameters.
  • U1 calculates q1
  • U2 determines the power adjustment parameter according to the power selection principle, and then sends it to D2, and D2 directly adjusts the transmit power according to the power transmission parameter.
  • U2 may send the calculated q2 to U1, and U1 determines the power adjustment parameter according to the power selection principle and sends it to D2, and D2 directly adjusts the transmission power accordingly.
  • each of the U1, U2, D1, and D2 sends the measured SINR to the third-party device.
  • the third-party device also has two optional modes at this time.
  • q1 and q2 are respectively calculated, and the power adjustment parameter is determined according to the power selection principle, and then sent to D2; or the third-party device may also be “D1+D2+U1+U2”.
  • the whole system is the target of the maximum throughput of the system, and the power adjustment parameters corresponding to D1 and the power adjustment parameters corresponding to D2 are directly calculated.
  • the execution body of the method is not strictly limited, as long as the power adjustment parameter corresponding to the downlink base station is calculated with the goal of “maximizing the overall throughput performance of the system”.
  • FIG. 14 is a schematic flowchart of still another method for performing interference control according to an embodiment of the present invention.
  • the main body of the method is a downlink base station, and the present embodiment is only described briefly.
  • the method may include:
  • the downlink base station receives a power adjustment parameter sent by the interference control device.
  • the power adjustment parameter corresponds to the second throughput of the interfered uplink base station and the downlink base station that interferes with the uplink base station, where the second throughput is greater than the current throughput of the uplink base station and the downlink base station.
  • a sum of the quantities, and the second throughput is an uplink signal to interference plus noise ratio SINR of the uplink base station and a downlink SINR of the downlink base station, and the downlink base station transmits in the cross slot according to the uplink base station Power determination.
  • the downlink base station reduces the transmit power according to the power adjustment parameter.
  • the downlink base station receives the power adjustment parameter sent by the interference control device, where the downlink base station receives at least two power split adjustment parameters sent by the interference control device, where the at least two power split adjustment parameters are Each of them corresponds to one of the uplink base stations.
  • the downlink base station reduces the transmit power according to the power adjustment parameter, and the method includes: determining, by the downlink base station, the power adjustment parameter according to a power selection principle and the at least two power split adjustment parameters, and reducing the launch according to the power adjustment parameter. power.
  • FIG. 15 is a schematic structural diagram of an interference control device according to an embodiment of the present invention.
  • the device may perform the method according to any embodiment of the present invention. This embodiment only briefly describes the structure of the device, and the specific workflow may be combined. Aspects 1 to 9 are.
  • the interference control device may include: a parameter obtaining unit 1501, a parameter processing unit 1502, and a power control unit 1503;
  • the parameter obtaining unit 1501 is configured to obtain a first uplink signal and an interference plus noise ratio SINR and a first downlink SINR, where the first uplink SINR is obtained by the interfered uplink base station in the cross slot, the first downlink The SINR is obtained by the downlink base station that interferes with the uplink base station, and the interference control device further acquires the transmit power of the downlink base station in the cross slot;
  • the parameter processing unit 1502 is configured to obtain, according to the first uplink SINR, the first downlink SINR, and the transmit power, a power adjustment parameter used to indicate that the downlink base station decreases the transmit power, and the power adjustment parameter And a method for making a sum of throughputs of the uplink base station and a downlink base station greater than a current throughput sum after the downlink base station decreases transmit power;
  • the power control unit 1503 is configured to instruct the downlink base station to reduce the transmit power according to the power adjustment parameter.
  • FIG. 16 is a schematic structural diagram of another interference control device according to an embodiment of the present invention.
  • the parameter processing unit 1502 in the device may include: an initial calculation subunit 1504, and an adjustment calculation subunit. 1505 and a parameter determining subunit 1506; wherein
  • An initial calculation subunit 1504 configured to obtain, according to the first uplink SINR and the first downlink SINR, a first throughput that is used to indicate the current throughput sum of the uplink base station and the downlink base station;
  • An adjustment calculation subunit 1505 configured to acquire a first hypothetical transmission power lower than the transmit power, and calculate, when the downlink base station adopts the first hypothetical transmit power, the uplink base station is in the cross slot a second uplink SINR and a second downlink SINR of the downlink base station in the cross slot, and a sum of throughputs for indicating the uplink base station and the downlink base station according to the second uplink SINR and the second downlink SINR Second throughput;
  • a parameter determining subunit 1506 configured to: when the second throughput is greater than the first throughput, instruct the adjustment calculation subunit to continue to acquire a second hypothetical transmit power lower than the first hypothetical transmit power, And the second throughput of the parameter determining subunit is the sum of the maximum throughput of the uplink base station and the downlink base station when the downlink base station uses power lower than the transmit power, and determining the second throughput The quantity corresponds to the power adjustment parameter.
  • the adjustment calculation sub-unit 1505 is further configured to obtain a first uplink modulation and coding policy MCS according to the first uplink SINR, and obtain a first downlink MCS according to the first downlink SINR; And obtaining, by the second uplink MCS, a second downlink MCS, and obtaining, according to the second downlink SINR, a second downlink MCS; and, where the second uplink MCS changes with respect to the first uplink MCS, and the second downlink MCS is opposite to the When the first downlink MCS changes, the second throughput is obtained according to the second uplink SINR and the second downlink SINR.
  • the parameter determining subunit 1506 is further configured to acquire a power impact parameter of the downlink base station, where the power impact parameter includes: transmitting, before determining the power adjustment parameter corresponding to the second throughput. a power level, or a service priority; and instructing the adjustment calculation subunit to acquire a hypothesis power lower than the transmit power according to the power influence parameter, where the hypothesis power includes the first hypothesis power or the second hypothesis power Until the second throughput that meets the power impact parameter requirements is obtained.
  • the number of the downlink base stations that interfere with the uplink base station is at least two;
  • the adjustment calculation sub-unit 1505 when acquiring the first hypothetical transmit power that is lower than the transmit power, and calculating the second downlink SINR of the downlink base station in the cross-slot, is specifically configured to: a power impact parameter, respectively acquiring a first assumed transmit power corresponding to each of the downlink base stations, and calculating a second downlink SINR of each of the downlink base stations in the cross slot;
  • the parameter determining sub-unit 1506 is configured to determine, respectively, a power adjustment parameter corresponding to each of the downlink base stations corresponding to the second throughput, when determining a power adjustment parameter corresponding to the second throughput.
  • the number of the downlink base stations that interfere with the uplink base station is at least two;
  • the adjustment calculation sub-unit 1505 when acquiring the first hypothetical transmit power lower than the transmit power, and calculating the second downlink SINR of the downlink base station in the cross slot, specifically for: at least two The downlink base station as a whole, obtains a first hypothetical transmit power of the downlink base station that is lower than the transmit power, and calculates a second downlink SINR of the downlink base station in the cross slot;
  • the parameter determining subunit 1506 is specifically configured to determine an overall power adjustment parameter corresponding to the entire downlink base station corresponding to the second throughput, when determining a power adjustment parameter corresponding to the second throughput, and And performing, according to the power impact parameter, the overall power adjustment parameter on the at least two downlink base stations, to obtain a power adjustment parameter corresponding to each of the downlink base stations.
  • the power control unit 1503 is specifically configured to indicate that the downlink base station is determined according to at least two power split adjustment parameters and power selection principles.
  • the power adjustment parameter reduces the transmit power, and each of the at least two split power adjustment parameters corresponds to one of the uplink base stations.
  • the power control unit 1503 is specifically configured to send the power adjustment parameter to the downlink base station, so that the downlink base station is configured according to the The power adjustment parameter reduces the transmit power.
  • the power control unit 1503 is specifically configured to reduce the transmit power of the downlink base station according to the power adjustment parameter.
  • FIG. 17 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station can perform the method of any embodiment of the present invention. This embodiment only briefly describes the structure of the base station, and the specific working process can be combined with the first embodiment to Example IX.
  • the base station may include: a parameter receiving unit 1701 and a power adjusting unit 1702;
  • the parameter receiving unit 1701 is configured to receive a power adjustment parameter sent by the interference control device, where the power adjustment parameter corresponds to a second throughput of the downlink base station that interferes with the uplink base station, where The second throughput is greater than the current throughput sum of the uplink base station and the downlink base station, and the second throughput is the uplink signal and interference plus noise ratio SINR of the interference control device according to the uplink base station, and the downlink of the downlink base station.
  • the SINR and the transmit power of the downlink base station in the cross slot are determined; the power adjustment unit 1702 is configured to reduce the transmit power according to the power adjustment parameter.
  • the parameter receiving unit 1701 is configured to receive, according to the power adjustment parameter sent by the interference control device, at least two power split adjustment parameters sent by the interference control device, where the at least two power splits are Each of the adjustment parameters corresponds to one of the uplink base stations; the power adjustment unit 1702 is specifically configured to determine the power adjustment parameter according to a power selection principle and the at least two partial power adjustment parameters, and adjust according to the power The parameter reduces the transmit power.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种干扰控制方法和设备、基站,其中方法包括:干扰控制设备获取第一上行SINR和第一下行SINR,第一上行SINR是被干扰的上行基站在交叉时隙测量得到,第一下行SINR是干扰上行基站的下行基站在交叉时隙测量得到,干扰控制设备还获取下行基站在交叉时隙的发射功率;干扰控制设备根据第一上行SINR、第一下行SINR以及发射功率,得到用于指示下行基站降低发射功率的功率调整参数,并且所述功率调整参数用于使得在下行基站降低发射功率之后上行基站和下行基站的吞吐量总和大于当前的吞吐量总和;干扰控制设备指示下行基站,根据功率调整参数降低发射功率。本发明降低了交叉时隙干扰。

Description

干扰控制方法和设备、基站
本申请要求2014年06月12日提交中国专利局、申请号为201410260494.7,发明名称为《干扰控制方法和设备、基站》的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术,尤其涉及一种干扰控制方法和设备、基站。
背景技术
长期演进(Long Time Evolution,简称:LTE)系统分为频分双工(Frequency Division Duplex,简称:FDD)模式和时分双工(Time Division Duplex,简称:TDD)模式,中国参与制定的TDD模式称为TD-LTE系统。TD-LTE通过将上下行链路分配到同一个频谱上,分别占用不同的时间段,可以灵活分配上行和下行资源的比例,进而根据上行业务和下行业务的比例来配置资源,最大限度地利用时隙资源,提升系统吞吐量。但由此产生的问题是,如果两个相邻基站采用不同的时隙配比方案,将带来TD-LTE所特有的干扰,主要是基站对基站的干扰,这种干扰被称作交叉时隙干扰。
比如,第一基站和第二基站设置了不同的上下行子帧配置,在第一基站发送下行信号的时隙上,第二基站将该时隙用于接收上行信号,该时隙可以称为交叉时隙,在该交叉时隙上将出现基站与基站之间的干扰,主要是下行基站对上行基站的干扰。例如,第二基站可以直接接收到第一基站的下行信号,将严重影响第二基站接收其本小区内用户设备(User Equipment,简称:UE)的上行信号的质量。
发明内容
本发明实施例提供一种干扰控制方法和设备、基站,以降低交叉时隙干扰。
第一方面,提供一种干扰控制方法,包括:
干扰控制设备获取第一上行信号与干扰加噪声比SINR和第一下行SINR,所述第一上行SINR是被干扰的上行基站在交叉时隙测量得到,所述第一下行SINR是干扰所述上行基站的下行基站在所述交叉时隙测量得到,所述干扰控制设备还获取所述下行基站在所述交叉时隙的发射功率;
所述干扰控制设备根据所述第一上行SINR、第一下行SINR以及所述发射功率,得到用于指示所述下行基站降低所述发射功率的功率调整参数,并且所述功率调整参数用于使得在所述下行基站降低发射功率之后所述上行基站和下行基站的吞吐量总和大于当前的吞吐量总和;
所述干扰控制设备指示所述下行基站,根据所述功率调整参数降低发射功率。
结合第一方面,在第一种可能的实现方式中,所述干扰控制设备根据所述第一上行SINR、第一下行SINR以及所述发射功率,得到用于指示所述下行基站降低所述发射功率的功率调整参数,包括:
所述干扰控制设备根据所述第一上行SINR和第一下行SINR,得到用于表示所述上行基站和下行基站的所述当前的吞吐量总和的第一吞吐量;
所述干扰控制设备获取低于所述发射功率的第一假设发射功率,并计算在所述下行基站采用所述第一假设发射功率时,所述上行基站在所述交叉时隙的第二上行SINR以及所述下行基站在所述交叉时隙的第二下行SINR,以及根据所述第二上行SINR和第二下行SINR得到用于表示所述上行基站和下行基站的吞吐量总和的第二吞吐量;
若所述第二吞吐量大于所述第一吞吐量,则继续获取低于所述第一假设发射功率的第二假设发射功率,直至所述第二吞吐量是所述下行基站在 采用低于所述发射功率的功率时,所述上行基站和下行基站的最大吞吐量总和,确定与所述第二吞吐量对应的所述功率调整参数。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述干扰控制设备得到用于表示所述上行基站和下行基站的所述当前的吞吐量总和的第一吞吐量,之前还包括:所述干扰控制设备根据所述第一上行SINR得到第一上行调制与编码策略MCS,根据所述第一下行SINR得到第一下行MCS;在计算所述第二上行SINR以及第二下行SINR之后,根据所述第二上行SINR和第二下行SINR得到第二吞吐量之前,还包括:所述干扰控制设备根据所述第二上行SINR得到第二上行MCS,并根据所述第二下行SINR得到第二下行MCS;并且,所述第二上行MCS相对于所述第一上行MCS发生变化,所述第二下行MCS相对于所述第一下行MCS发生变化。
结合第一方面的第一种可能的实现方式,在第三种可能的实现方式中,所述确定与所述第二吞吐量对应的所述功率调整参数之前,还包括:所述干扰控制设备获取所述下行基站的功率影响参数,所述功率影响参数包括:发射功率等级、或者业务优先级;所述干扰控制设备根据所述功率影响参数,获取低于所述发射功率的假设功率,所述假设功率包括所述第一假设功率或第二假设功率,直至得到满足所述功率影响参数要求的所述第二吞吐量。
结合第一方面的第三种可能的实现方式,在第四种可能的实现方式中,当干扰所述上行基站的所述下行基站的数量是至少两个时;所述干扰控制设备获取低于所述发射功率的第一假设发射功率,并计算所述下行基站在所述交叉时隙的第二下行SINR,包括:所述干扰控制设备根据所述功率影响参数,分别获取对应于每个所述下行基站的第一假设发射功率,并分别计算每个所述下行基站在所述交叉时隙的第二下行SINR;所述确定与所述第二吞吐量对应的功率调整参数,包括:分别确定与所述第二吞吐量对应 的每个所述下行基站对应的功率调整参数。
结合第一方面的第三种可能的实现方式,在第五种可能的实现方式中,当干扰所述上行基站的所述下行基站的数量是至少两个时;所述干扰控制设备获取低于所述发射功率的第一假设发射功率,并计算所述下行基站在所述交叉时隙的第二下行SINR,包括:所述干扰控制设备以至少两个所述下行基站为整体,获取整体所述下行基站的低于所述发射功率的第一假设发射功率,并计算整体所述下行基站的在所述交叉时隙的第二下行SINR;所述确定与所述第二吞吐量对应的功率调整参数,包括:确定与所述第二吞吐量对应的整体所述下行基站对应的整体功率调整参数,并根据所述功率影响参数,将所述整体功率调整参数在所述至少两个下行基站分配,得到每个所述下行基站对应的功率调整参数。
结合第一方面,在第六种可能的实现方式中,当所述被干扰的上行基站的数量是至少两个时;所述干扰控制设备指示所述下行基站根据功率调整参数降低发射功率,包括:所述干扰控制设备指示所述下行基站,根据由至少两个分功率调整参数和功率选择原则确定的功率调整参数降低发射功率,所述至少两个分功率调整参数中的每一个对应一个所述上行基站。
结合第一方面至第一方面的第六种可能的实现方式中的任一种,在第七种可能的实现方式中,所述干扰控制设备指示所述下行基站根据功率调整参数降低发射功率,包括:所述干扰控制设备向所述下行基站发送所述功率调整参数,以使得所述下行基站根据所述功率调整参数降低发射功率;所述干扰控制设备是所述上行基站或者第三方设备。
结合第一方面至第一方面的第六种可能的实现方式中的任一种,在第八种可能的实现方式中,所述干扰控制设备指示所述下行基站根据功率调整参数降低发射功率,包括:所述干扰控制设备是所述下行基站,所述下行基站自身根据所述功率调整参数降低发射功率。
第二方面,提供一种干扰控制方法,包括:
下行基站接收干扰控制设备发送的功率调整参数,所述功率调整参数与被干扰的上行基站的和干扰所述上行基站的所述下行基站的第二吞吐量对应,所述第二吞吐量大于所述上行基站和下行基站的当前的吞吐量总和,并且所述第二吞吐量是所述干扰控制设备根据所述上行基站的上行信号与干扰加噪声比SINR、下行基站的下行SINR以及所述下行基站在所述交叉时隙的发射功率确定;所述下行基站根据所述功率调整参数降低发射功率。
结合第二方面,在第一种可能的实现方式中,所述下行基站接收干扰控制设备发送的功率调整参数,包括:所述下行基站接收所述干扰控制设备发送的至少两个分功率调整参数,所述至少两个分功率调整参数中的每一个对应一个所述上行基站;所述下行基站根据所述功率调整参数降低发射功率,包括:所述下行基站根据功率选择原则和所述至少两个分功率调整参数确定所述功率调整参数,并根据所述功率调整参数降低发射功率。
第三方面,提供一种干扰控制设备,包括:
参数获取单元,用于获取第一上行信号与干扰加噪声比SINR和第一下行SINR,所述第一上行SINR是被干扰的上行基站在交叉时隙测量得到,所述第一下行SINR是干扰所述上行基站的下行基站在所述交叉时隙测量得到,所述干扰控制设备还获取所述下行基站在所述交叉时隙的发射功率;
参数处理单元,用于根据所述第一上行SINR、第一下行SINR以及所述发射功率,得到用于指示所述下行基站降低所述发射功率的功率调整参数,并且所述功率调整参数用于使得在所述下行基站降低发射功率之后所述上行基站和下行基站的吞吐量总和大于当前的吞吐量总和;
功率控制单元,用于指示所述下行基站根据所述功率调整参数降低发射功率。
结合第三方面,在第一种可能的实现方式中,所述参数处理单元,包括:初始计算子单元,用于根据所述第一上行SINR和第一下行SINR,得到用于表示所述上行基站和下行基站的所述当前的吞吐量总和的第一吞吐 量;调整计算子单元,用于获取低于所述发射功率的第一假设发射功率,并计算在所述下行基站采用所述第一假设发射功率时,所述上行基站在所述交叉时隙的第二上行SINR以及所述下行基站在所述交叉时隙的第二下行SINR,以及根据所述第二上行SINR和第二下行SINR得到用于表示所述上行基站和下行基站的吞吐量总和的第二吞吐量;参数确定子单元,用于在所述第二吞吐量大于所述第一吞吐量时,则指示所述调整计算子单元继续获取低于所述第一假设发射功率的第二假设发射功率,直至所述参数确定子单元所述第二吞吐量是所述下行基站在采用低于所述发射功率的功率时,所述上行基站和下行基站的最大吞吐量总和,确定与所述第二吞吐量对应的所述功率调整参数。
结合第三方面的第一种可能的实现方式,在第二种可能的实现方式中,所述调整计算子单元,还用于根据所述第一上行SINR得到第一上行调制与编码策略MCS,根据所述第一下行SINR得到第一下行MCS;根据所述第二上行SINR得到第二上行MCS,并根据所述第二下行SINR得到第二下行MCS;并且,在第二上行MCS相对于所述第一上行MCS发生变化且所述第二下行MCS相对于所述第一下行MCS发生变化时,根据所述第二上行SINR和第二下行SINR得到第二吞吐量。
结合第三方面的第一种可能的实现方式,在第三种可能的实现方式中,所述参数确定子单元,还用于在确定与所述第二吞吐量对应的所述功率调整参数之前,获取所述下行基站的功率影响参数,所述功率影响参数包括:发射功率等级、或者业务优先级;并指示所述调整计算子单元根据所述功率影响参数,获取低于所述发射功率的假设功率,所述假设功率包括所述第一假设功率或第二假设功率,直至得到满足所述功率影响参数要求的所述第二吞吐量。
结合第三方面的第三种可能的实现方式,在第四种可能的实现方式中,当干扰所述上行基站的所述下行基站的数量是至少两个时;所述调整计算 子单元,在获取低于所述发射功率的第一假设发射功率,并计算所述下行基站在所述交叉时隙的第二下行SINR时,具体是用于:根据所述功率影响参数,分别获取对应于每个所述下行基站的第一假设发射功率,并分别计算每个所述下行基站在所述交叉时隙的第二下行SINR;所述参数确定子单元,在确定与所述第二吞吐量对应的功率调整参数时,具体用于分别确定与所述第二吞吐量对应的每个所述下行基站对应的功率调整参数。
结合第三方面的第三种可能的实现方式,在第五种可能的实现方式中,当干扰所述上行基站的所述下行基站的数量是至少两个时;所述调整计算子单元,在获取低于所述发射功率的第一假设发射功率,并计算所述下行基站在所述交叉时隙的第二下行SINR时,具体是用于:以至少两个所述下行基站为整体,获取整体所述下行基站的低于所述发射功率的第一假设发射功率,并计算整体所述下行基站的在所述交叉时隙的第二下行SINR;所述参数确定子单元,在确定与所述第二吞吐量对应的功率调整参数时,具体用于确定与所述第二吞吐量对应的整体所述下行基站对应的整体功率调整参数,并根据所述功率影响参数,将所述整体功率调整参数在所述至少两个下行基站分配,得到每个所述下行基站对应的功率调整参数。
结合第三方面,在第六种可能的实现方式中,当所述被干扰的上行基站的数量是至少两个时;所述功率控制单元,具体用于指示所述下行基站,根据由至少两个分功率调整参数和功率选择原则确定的功率调整参数降低发射功率,所述至少两个分功率调整参数中的每一个对应一个所述上行基站。
结合第三方面至第三方面的第六种可能的实现方式中的任一种,在第七种可能的实现方式中,当所述干扰控制设备是所述上行基站或者第三方设备时,所述功率控制单元,具体用于向所述下行基站发送所述功率调整参数,以使得所述下行基站根据所述功率调整参数降低发射功率。
结合第三方面至第三方面的第六种可能的实现方式中的任一种,在第 八种可能的实现方式中,当所述干扰控制设备是所述下行基站时,所述功率控制单元,具体用于根据所述功率调整参数降低所述下行基站自身的发射功率。
第四方面,提供一种基站,包括:
参数接收单元,用于接收干扰控制设备发送的功率调整参数,所述功率调整参数与被干扰的上行基站的和干扰所述上行基站的所述下行基站的第二吞吐量对应,所述第二吞吐量大于所述上行基站和下行基站的当前的吞吐量总和,并且所述第二吞吐量是所述干扰控制设备根据所述上行基站的上行信号与干扰加噪声比SINR、下行基站的下行SINR以及所述下行基站在所述交叉时隙的发射功率确定;功率调整单元,用于根据所述功率调整参数降低发射功率。
结合第四方面,在第一种可能的实现方式中,所述参数接收单元,在接收干扰控制设备发送的功率调整参数时,具体是用于接收所述干扰控制设备发送的至少两个分功率调整参数,所述至少两个分功率调整参数中的每一个对应一个所述上行基站;所述功率调整单元,具体用于根据功率选择原则和所述至少两个分功率调整参数确定所述功率调整参数,并根据所述功率调整参数降低发射功率。
本发明实施例提供的干扰控制方法和设备、基站,根据存在干扰的上行基站和下行基站的SINR计算吞吐量,并且不仅指示下行基站根据功率调整参数降低发射功率,而且在该降低后的发射功率下上行基站和下行基站的吞吐量总和比当前的吞吐量总和要大,这样不仅通过降低发射功率降低了交叉时隙干扰,并且还实现了上行基站和下行基站的整体系统吞吐性能的提升。
附图说明
图1为本发明实施例提供的干扰控制方法的应用场景示意图;
图2为本发明实施例提供的一种干扰控制方法的流程示意图;
图3为本发明实施例提供的另一种干扰控制方法的信令示意图;
图4为本发明实施例提供的又一种干扰控制方法的系统示意图;
图5为本发明实施例提供的又一种干扰控制方法的信令示意图;
图6为本发明实施例提供的又一种干扰控制方法的信令示意图;
图7为本发明实施例提供的又一种干扰控制方法的应用场景示意图;
图8为本发明实施例提供的又一种干扰控制方法的流程示意图;
图9为本发明实施例提供的又一种干扰控制方法的应用场景示意图;
图10为本发明实施例提供的又一种干扰控制方法的应用场景示意图;
图11为本发明实施例提供的又一种干扰控制方法的流程示意图;
图12为本发明实施例提供的又一种干扰控制方法的应用场景示意图;
图13为本发明实施例提供的又一种干扰控制方法的应用场景示意图;
图14为本发明实施例提供的又一种干扰控制方法的流程示意图;
图15为本发明实施例提供的一种干扰控制设备的结构示意图;
图16为本发明实施例提供的另一种干扰控制设备的结构示意图;
图17为本发明实施例提供的基站的结构示意图。
具体实施方式
本发明实施例提供的干扰控制方法,主要是用于解决TD-LTE系统中的交叉时隙干扰问题。图1为本发明实施例提供的干扰控制方法的应用场景示意图,如图1所示,假设存在两个相邻小区,分别是基站1(cell 1)所在的小区和基站2(cell 2)所在的小区,这两个小区采用的时隙配比方案不同,可以参见图1中的上方所示的两个小区的配比图,在时隙s1处,cell 1是上行(U表示),即cell 1正在接收其小区内的终端1(UE1)的上 行信号,而在该时隙s1处,cell 2是下行(D表示),即cell 2正在向其小区内的终端2(UE2)发送下行信号。这种上下行方向不一致的时隙可以称为交叉时隙;比如,时隙s2也是交叉时隙。在这种交叉时隙的位置,cell 2对cell 1会产生干扰,即cell 1在接收UE1的上行信号的同时可能也接收到cell 2的下行信号,那么这将影响cell 1对UE1的上行信号的接收质量,这就是交叉时隙干扰。本发明实施例的干扰控制方法就是要解决图1所示的交叉时隙干扰问题,具体方案可以详见下面的多个实施例。
实施例一
图2为本发明实施例提供的一种干扰控制方法的流程示意图,该方法是由干扰控制设备执行,所述的干扰控制设备例如可以是被干扰的上行基站、或者是干扰上行基站的下行基站、或者是任意一个其他的基站、或者也可以是其他设备比如无线网络控制器(Radio Network Controller,简称:RNC)等,即本实施例不对该方法的执行主体做严格限制,可以有多种可能的实施情况,不再列举。如图2所示,该方法可以包括:
101、干扰控制设备获取第一上行SINR和第一下行SINR、以及下行基站在所述交叉时隙的发射功率;
其中,第一上行信号与干扰加噪声比(Signal to Interference plus Noise Ratio,简称:SINR)是被干扰的上行基站在交叉时隙测量得到,第一下行SINR是干扰所述上行基站的下行基站在交叉时隙测量得到。
本实施例中,所述的交叉时隙,指的是例如图1中的时隙s1或者时隙s2等,即是在这种交叉时隙的位置进行SINR的测量。TD-LTE系统为每个基站定义了重配比周期,在重配比周期内该基站的时隙配比方案是保持不变的,并且在重配比周期内的各交叉时隙处的干扰也是近似不变,所以可以在每个重配比周期开始时的交叉时隙处测量SINR并执行本实施例的方法,较优的是在该重配比周期的第一帧的第一个交叉时隙子帧处例如图1中的时隙s1位置测量SINR。具体实施中,各基站可以通过基站交互或其 他方式来获知重配比周期是否变化,进而得知是否需要重新开始测量新周期内的SINR。
本实施例中,所述的上行基站和下行基站,指的是在交叉时隙位置上具有干扰关系的上行或者下行基站。比如,参见图1,结合cell 1的时隙配比方案,在时隙s3处,cell 1是下行基站(D表示),即用于发送下行信号,而在时隙s1处,cell 1是上行基站(U表示),即用于接收上行信号,即不同的时隙基站的上行或下行方向是不同的,而本实施例中所述的上行基站测量上行SINR指的是在交叉时隙位置处于上行方向的基站;同理,下行基站是在交叉时隙位置处于下行方向的基站。
以图1为例,在时隙s1处,cell 2对cell 1产生干扰,那么本步骤中,cell 1在时隙s1测量其小区内的SINR,称为第一上行SINR;cell 2在时隙s1测量其小区内的SINR,称为第一下行SINR。当然所述的“第一”只是为了与本发明其他实施例中出现的相同名称加以区分,并不具有特殊的限制意义;同理,后续本发明实施例出现的“第二”等也仅起到区分作用。
此外,关于各基站如何确定与自身具有交叉干扰关系的基站,具体实施中,可以是各基站之间通过交互时隙配比信息来确定交叉时隙的位置;其中,时隙配比信息是TD-LTE系统定义的,有七种不同的时隙配比方案。通过交互时隙配比信息,各基站可以知道相互之间在同一时隙位置的各自上行或者下行的方向,从而可以确定哪些基站之间将发生交叉时隙干扰,从而在对应的交叉时隙位置测量本小区的SINR。
本实施例中,干扰控制设备获取第一上行SINR和第一下行SINR,由于该干扰控制设备可以有多种情况,比如上行基站、下行基站、其他设备等,所以该步骤中的干扰控制设备获取第一上行SINR和第一下行SINR也就对应着多种不同的方式。
例如,如果干扰控制设备是上行基站,那么可以是上行基站自己测量第一上行SINR,并接收下行基站发送给上行基站的第一下行SINR。
又例如,如果干扰控制设备是下行基站,可以是下行基站自己测量第一下行SINR,并接收上行基站发送给下行基站的第一上行SINR。
再例如,如果干扰控制设备是第三方设备(例如RNC),那么可以是上行基站将自己测量的第一上行SINR发送到第三方设备,下行基站也将自己测量的第一下行SINR发送到第三方设备。
本步骤中,干扰控制设备获取下行基站在所述交叉时隙的发射功率,以上行基站为例,可以是下行基站将自己的发射功率发送给上行基站。并且,需要说明的是,本实施例中获取的下行基站的发射功率,可以有多种表示方式,比如可以直接是发射功率的数值,或者也可以是发射功率的等级标识等。
102、干扰控制设备根据所述第一上行SINR、第一下行SINR以及所述发射功率,得到用于指示所述下行基站降低所述发射功率的功率调整参数;
本步骤中,干扰控制设备得到的功率调整参数可以用于使得在所述下行基站降低发射功率之后上行基站和下行基站的吞吐量总和得到提升,大于当前(即未降低发射功率时)的吞吐量总和。
可选的,干扰控制设备得到所述的功率调整参数的具体过程本发明实施例不做限制,该设备可以采用各种计算方式来得到所述的功率调整参数,本实施例中列举了如下的一种可选的参数获取过程:
首先,干扰控制设备根据所述第一上行SINR、第一下行SINR,得到用于表示所述上行基站和下行基站的所述当前的吞吐量总和的第一吞吐量。
具体的,从SINR到吞吐量的计算过程具体可以如下:每一个SINR值都有一个对应的调制与编码策略(Modulation and Coding Scheme,简称:MCS),所以先将SINR映射到其对应的MCS。然后,根据MCS得到与其对应的传输块TB size的大小;最后由TB size的大小和MCS就可以计算得到吞吐量。
按照该方法,上行基站可以根据第一上行SINR计算得到上行基站的吞吐量,下行基站可以根据第一下行SINR计算得到下行基站的吞吐量,两者的吞吐量总和可以称为第一吞吐量,这也是下行基站的发射功率未调整前的初始系统吞吐量,该系统包括具有交叉时隙干扰关系的上行基站和下行基站。
可选的,本实施例并不限制所述的具有交叉时隙干扰关系的上行基站和下行基站的数量。例如,可以是一个上行基站和一个下行基站;或者,也可以是一个上行基站和三个下行基站(此时是这三个下行基站都对该上行基站造成干扰);或者,还可以是一个下行基站和三个上行基站(此时是该下行基站对三个上行基站都造成干扰);又或者,还可以是两个上行基站和两个下行基站(此时可以是这两个下行基站分别对每个上行基站干扰)等,不论是何种方式,可以将这些具有交叉时隙干扰关系的上行基站和下行基站的整体作为一个系统,以该系统的吞吐量最大化为目标来计算如何降低其中的下行基站的发射功率。在本发明的后面的几个实施例中,也列举了几个多小区的场景下如何降低下行基站发射功率的例子。
其次,获取低于所述发射功率的第一假设发射功率,并计算在所述下行基站采用所述第一假设发射功率时,所述上行基站在所述交叉时隙的第二上行SINR以及所述下行基站在所述交叉时隙的第二下行SINR。
具体的,所述的降低下行基站的发射功率,可以是降低发射功率的等级。
发射功率的表示方式,按照目前的协议标准,下行基站的发射功率主要由两个参数PA和PB来进行控制,其中PA是由高层信令配置的UE级参数,该参数是下行功控的输出值,其取值集合为:[-6,-4.77,-3,-1.77,0,1,2,3]dB。而PB表示ρBA的索引,其中ρA表示无参考信号的OFDM符号上的PDSCH RE功率相对于参考信号RE功率的比值(线性值);ρB表示有 参考信号的OFDM符号上的PDSCH RE功率相对于参考信号RE功率的比值(线性值)。PB也是以RRC信令的方式给出,为小区级参数,其取值为[0,1,2,3],其取值与ρBA一一对应,具体的过程可参考相应的协议,这里不再做详细阐述。
需要说明的是,本实施例中的获取低于所述发射功率的第一假设发射功率,并不是真正的降低下行基站的发射功率,而是假设将发射功率降低,并预测降低功率之后的SINR和吞吐量等,所以本实施例将其称为第一假设发射功率(当然具体实施中也可以将其采用其他名称),通过评价降低功率之后对系统性能的影响来寻找较优的功率调整参数,然后再发送给下行基站执行真正的按照功率调整参数的降低功率。本实施例中,可以逐级降低下行基站的发射功率,并计算对应的SINR,比如将发射功率从“3”——“2”——“1”逐级降低,也可以是随意选取的降低,比如从“3”直接降低为“1”等。但是发射功率的降低差值不是任意的,而是有特定的功率等级值,比如上述的PA中的各个参数。
本实施例中,降低发射功率后的上行基站对应的第二上行SINR以及下行基站对应的第二下行SINR的计算方式可以如下:
对于上行基站,由于上行基站在交叉时隙处的SINR可以表示为:SINR(dB)=Sup(dB)-(Iup(dB)+Nup(dB));其中Sup为上行基站的有用信号,Iup为上行基站受到的交叉时隙干扰,Nup为上行基站除交叉时隙干扰外的其他干扰(包括普通干扰和白噪声);
其中,交叉时隙的Nup可以用前一个非交叉时隙处的Nnorm_up代替,而Nnorm_up可由上行基站在非交叉时隙处的SINR公式SINRnorm_uo(dB)=Sup(dB)-Nnorm_up(dB)得到。Iup是下行基站对本小区的交叉时隙干扰,当下行基站降低ΔdB发射功率时,交叉时隙干扰也会降低ΔdB, 即:
Figure PCTCN2015081165-appb-000001
因此,下行基站在调整功率后上行基站的
Figure PCTCN2015081165-appb-000002
可由上述方法计算得出。
对于下行基站,下行基站的SINR为:SINRdown(dB)=Sdown(dB)-Ndown(dB),其中,Sdown为下行基站的有用信号,Ndown为下行基站的干扰信号和白噪声之和。
当下行基站降低ΔdB发射功率,下行基站的有用信号将对应降低ΔdB,而干扰信号仍然不变,故下行基站的SINR也将下降ΔdB,即:
Figure PCTCN2015081165-appb-000003
接着,干扰控制设备根据所述第二上行SINR和第二下行SINR得到用于表示所述上行基站和下行基站的吞吐量总和的第二吞吐量;
本步骤中,干扰控制设备根据第二上行SINR和第二下行SINR计算第二吞吐量的过程与计算第一吞吐量的过程类似,不再赘述;这一步骤是预测在1降低下行基站的发射功率之后系统新的吞吐量。
可选的,干扰控制设备在计算第二上行SINR以及第二下行SINR之后,根据所述第二上行SINR和第二下行SINR得到第二吞吐量之前,还可以判断降低的发射功率是否足够大。具体的,干扰控制设备可以根据第二上行SINR得到第二上行MCS,根据第二下行SINR得到第二下行MCS;并且判断这次得到的第二上行MCS和第二下行MCS相比于功率调整前的MCS是否发生变化。如果将根据第一上行SINR得到的MCS称为第一上行MCS,将根据第一下行SINR得到的MCS称为第一下行MCS,那么如果第二上行MCS相对于所述第一上行MCS发生变化,所述第二下行MCS相对于所述第一下行MCS发生变化,就可以确定发射功率的调整量足够,则可以继续计算第二吞吐量,进行吞吐量的比较。否则,如果MCS在功率调整前后未发生变化,则可以继续降低发射功率,即加大发射功率的降低量。
然后,干扰控制设备判断第二吞吐量是否大于所述第一吞吐量;
本实施例中,干扰控制设备在寻找降低下行基站的发射功率的功率调整参数时,追求的不仅是发射功率降低来降低干扰,而且要使得上行基站和下行基站的整体系统吞吐量提升,即功率下降后系统整体吞吐量要增加。在如下的描述中以及后面的本发明多个实施例中,是以追求最大吞吐量(该最大吞吐量是下行基站的发射功率低于当前功率的范围内的吞吐量最大)为例来说明的,但是具体实施中并不局限于此,也可以不是最大吞吐量。
具体的,如果干扰控制设备判断的结果是,第二吞吐量大于第一吞吐量,则继续获取低于所述第一假设发射功率的第二假设发射功率;否则,表明第二吞吐量是上行基站和下行基站的最大吞吐量总和,已经达到了系统最大吞吐性能,继续确定与第二吞吐量对应的降低下行基站发射功率的功率调整参数。
该功率调整参数的确定如下:上述已经确定了系统最大吞吐性能对应的第二吞吐量,则进而可以确定达到该第二吞吐量时下行基站的发射功率的降低量,可以用功率调整参数来表示发射功率降低的相关参数。例如,该功率调整参数可以是上面提到的Δ,比如,将发射功率从“3”降低到“1”,那么Δ就是“2”;或者,该功率调整参数也可以直接就是某个等级的发射功率取值,例如,是“-4.77”(以PA取值表示);又或者,还可以是某个PA取值的索引,比如与“-4.77”对应的索引“a2”。
可选的,在确定上述功率调整参数之前,干扰控制设备还可以结合其他因素来综合确定功率调整参数。具体的:
干扰控制设备可以获取下行基站的功率影响参数,该功率影响参数包括但不限于:发射功率等级、或者业务优先级等。具体的,所述的发射功率等级,例如是上面已经说明过的PA或者PB,而业务优先级例如是“0”,具体实施时可以是基站之间已经预先交互过业务优先级的表示方式,比如“0”表示的业务优先级要低于“1”表示的业务优先级等。对于获取方式,比如,如果干扰控制设备是上行基站,则下行基站可以将自己的发射功率 等级、或者业务优先级发送给上行基站。
干扰控制设备可以根据功率影响参数,降低所述下行基站的发射功率,直至得到满足功率影响参数要求的所述第二吞吐量。在具体实施时,干扰控制设备其实可以在假设降低发射功率时,就可以结合该功率影响参数,使得发射功率少降低一些;所述的满足功率影响参数要求指的是,比如下行基站在交叉时隙的下行信号对应的业务优先级比较高,那就相当于要求尽量保证下行基站的满足业务要求的功率,那么就可以少降低其发射功率。
举例如下:可以利用发射功率等级以及业务优先级等信息对下行基站的发射功率进行更精确的调整;比如,如果此时根据发射功率等级信息确定下行基站的发射功率已经是最低的等级,无法再次降低功率,则可以采用最低的发射功率等级或停止发送数据。或者,也可以根据不同的业务优先级,采取不同的功率调整策略;比如,业务优先级较高的,其功率不宜降低过多,而业务优先级不高的可以适当加大其功率降低的幅度,甚至禁止发送数据,以降低干扰。
103、干扰控制设备指示所述下行基站,根据所述功率调整参数降低发射功率。
例如,降低发射功率的指示方式,可以是降低发射功率的等级。比如以PA为例,假设调整前下行基站的发射功率是“3”(以PA取值表示),降低发射功率后可以是“1”或者“-4.77”等。具体如何指示降低到哪个等级,比如是从“3”降低到“1”还是降低到“-4.77”,可以有多种指示方式,例如,可以将PA的各个取值均设置对应的索引,“a1”是“-6”的索引,“a2”是“-4.77”的索引,“a6”是“1”的索引等等,索引其实就是该取值的标识,假设需要将发射功率降低到“1”,可以用“a6”来标识该取值,或者也可以用Δ来表示具体取值的降低量,将发射功率从“3”降低到“1”,那么Δ就是“2”。
此外,本步骤中,如果干扰控制设备是上行基站或者第三方设备,则 上行基站或者第三方设备可以将功率调整参数发送给相邻的下行基站,比如通过X2接口与S1接口,或空中无线接口发送;下行基站根据该功率调整参数降低发射功率。又例如,如果干扰控制设备是下行基站,则下行基站自身根据自己计算得到的功率调整参数降低发射功率即可。
本实施例提供的干扰控制方法,根据存在干扰的上行基站和下行基站的SINR计算吞吐量,并得到与最大吞吐量对应的下行基站的功率调整参数,下行基站根据该功率调整参数降低发射功率,这样不仅通过降低发射功率降低了交叉时隙干扰,并且还实现了上行基站和下行基站的整体系统吞吐性能的最大化。此外,本实施例的以系统整体吞吐性能最大为功率调整的目标,相对于现有技术中单独考虑单一小区性能提升有很大的进步,而且,本实施例的方法只需要基站之间进行一些SINR或业务优先级等基本信息的交互,很容易实现,再次,本实施例也规避了现有技术在功率控制研究中经常采用的门限的因素,避免了门限确定中的难以确定特性对功率控制的限制,所以本实施例的方法是一种简单可行的减少交叉时隙干扰的方案。
下面将分别通过多个实施例,从不同的小区场景,例如单小区或者多小区,以及不同的执行主体例如上行基站或者第三方设备等,各种角度详细描述本发明实施例的干扰控制方法。
实施例二
本实施例以交叉干扰区域内只有一个上行小区和一个下行小区为例,下行小区内的下行基站对上行小区内的上行基站产生了信号干扰,该场景类似于图1中所示的cell 1和cell 2组成的系统;并且,本实施例以上行基站为执行主体,来执行本实施例的干扰控制方法。图3为本发明实施例提供的另一种干扰控制方法的信令示意图,如图3所示,该方法可以包括:
301、上行基站测量第一上行SINR,下行基站测量第一下行SINR;
在本步骤中,上下行基站是分别测量各自在交叉时隙位置的SINR,比 如以图1为例,在时隙s1的位置,cell 1作为上行基站测量其本小区的SINR,称为第一上行SINR;cell 2作为下行基站测量其本小区的SINR,称为第一下行SINR。
302、下行基站将第一下行SINR发送至上行基站;
其中,下行基站可以通过X2接口与S1接口,或者空中无线接口将第一下行SINR发送给具有交叉时隙干扰关系的相邻的上行基站。具体的,可以采用集中式发送方式或者分布式发送方式,例如,对于集中式发送,可以对所有小区设置集中控制器,可以是指定某个基站担任此角色,由该集中控制器收集每个小区的SINR信息,再统一告知每个上行小区其相邻下行小区的SINR,这样就把下行基站测量的第一下行SINR发送给上行基站。或者,对于分布式,可以是各基站通过基站间接口直接交互自己测量的SINR信息,也就是下行基站通过接口直接将自己测量的第一下行SINR发送给相邻的上行基站。
303、上行基站根据第一上行SINR和第一下行SINR计算第一吞吐量;
具体的计算第一吞吐量的过程在实施例一中已经说明过,在此不再赘述;上行基站在本步骤中计算的第一吞吐量是假设功率调整前的初始吞吐量。
304、上行基站预测下行基站降低发射功率后系统对应的第二吞吐量;
其中,上行基站将假设下行基站的发射功率降低,比如降低一个发射功率等级,并计算降低功率后对应的上行小区的第二上行SINR、以及下行小区的第二下行SINR。通常来讲,假设下行基站的发射功率降低ΔdB,那么上行小区的第二上行SINR相对于第一上行SINR将提升ΔdB,而下行小区的第二下行SINR相对于第一下行SINR将降低ΔdB。
然后,上行基站根据第二上行SINR和第二下行SINR计算第二吞吐量,该第二吞吐量的计算与第一吞吐量的计算过程类似。需要说明的是,本步骤中,此时的下行基站的发射功率并没有实际的降低,而是在上行基站侧 进行发射功率降低的假设和预测,假设下行基站的发射功率降低,并预测功率降低后对系统的影响,比如系统整体吞吐量的变化估计。
305、上行基站通过比较第一吞吐量和第二吞吐量得到最大吞吐量对应的功率调整参数;
其中,如果第二吞吐量大于第一吞吐量,则继续降低下行基站的发射功率;否则,表明第二吞吐量是上行基站和下行基站的最大吞吐量总和,已经达到了系统最大吞吐性能,该第二吞吐量是上行小区和下行小区组成的系统的最大吞吐量,则进而可以确定达到该第二吞吐量时下行基站的发射功率的降低量,可以用功率调整参数来表示发射功率降低的相关参数。例如,该功率调整参数可以是103中提到的Δ,比如,将发射功率从“3”降低到“1”,那么Δ就是“2”。
当然,本实施例是以达到系统的最大吞吐量为例来进行说明的,具体实施中,第二吞吐量也可以不是最大的吞吐量,而只是大于第一吞吐量即可。
306、上行基站将功率调整参数发送至下行基站;
其中,参数发送的方式可以采用与302中类似的方式。
307、下行基站根据功率调整参数降低发射功率。
例如,下行基站在接收到上行基站发送的Δ后,将发射功率降低Δ。
实施例三
本实施例的场景仍然是以交叉干扰区域内只有一个上行小区和一个下行小区为例,下行小区内的下行基站对上行小区内的上行基站产生了信号干扰;本实施例与实施例二的区别在于,执行主体是除上行基站和下行基站之外的第三设备例如RNC,即第三方设备在具有交叉时隙干扰关系的所述上行基站和下行基站之外。图4为本发明实施例提供的又一种干扰控制方法的系统示意图,如图4所示,第三方设备与上行基站和下行基站都可以进行信息交互,更具体的,例如该第三方设备也可以是任意第一基站, 比如是cell 1和cell 2之外的另外一个基站cell 5,或者也可以是其他的设备。
图5为本发明实施例提供的又一种干扰控制方法的信令示意图,结合图4和图5,该方法可以包括如下步骤,需要说明的是,对于在前面的实施例中已经描述过的步骤,在本实施例以及后续实施例将不再详细说明,具体可以参见前面实施例即可。
501、上行基站测量第一上行SINR,下行基站测量第一下行SINR;
502、上行基站将第一上行SINR发送给第三方设备,下行基站将第一下行SINR发送至第三方设备;
503、第三方设备根据第一上行SINR和第一下行SINR计算第一吞吐量;
具体的计算第一吞吐量的过程前面已经说明过,在此不再赘述。
504、第三方设备预测下行基站降低发射功率后对应的第二吞吐量;
505、第三方设备通过比较第一吞吐量和第二吞吐量得到最大吞吐量对应的功率调整参数;
506、第三方设备将功率调整参数发送至下行基站;
507、下行基站根据功率调整参数降低发射功率。
其中,在本实施例中,下行基站也可以将业务优先级、发射功率等级等信息发送给第三方设备,由第三方设备根据该信息进行更精确的发射功率调整,具体的调整方式也在实施例一中已经说明过。
实施例四
本实施例的场景仍然是以交叉干扰区域内只有一个上行小区和一个下行小区为例,下行小区内的下行基站对上行小区内的上行基站产生了信号干扰;本实施例与实施例二和实施例三的区别在于,执行主体是下行基站。图6为本发明实施例提供的又一种干扰控制方法的信令示意图,如图6所示,该方法可以包括:
601、上行基站测量第一上行SINR,下行基站测量第一下行SINR;
602、上行基站将第一上行SINR发送给下行基站;
603、下行基站根据第一上行SINR和第一下行SINR计算第一吞吐量;
604、下行基站预测下行基站降低发射功率后对应的第二吞吐量;
605、下行基站通过比较第一吞吐量和第二吞吐量得到最大吞吐量对应的功率调整参数;
606、下行基站根据功率调整参数降低发射功率。
本实施例中,由于是下行基站自己进行吞吐量的计算以及功率调整参数的估计,所以下行基站可以根据自己计算得到的功率调整参数进行发射功率的调整,而不是接收上行基站或者第三方设备发送的功率调整参数。
在实施例二至实施例四中,均是以包括单个上行小区和单个下行小区的系统为例,分别以上行基站、第三方设备和下行基站为执行主体,描述本发明实施例的干扰控制方法。在下面的实施例五至实施例八中,将对具有交叉时隙干扰关系的小区数量进行扩展,比如包括多个上行小区或者多个下行小区等,并结合不同的执行主体进行说明。
实施例五
图7为本发明实施例提供的又一种干扰控制方法的应用场景示意图,如图7所示,本实施例中对上行基站(U表示)产生交叉时隙干扰的相邻下行基站的数量是三个,当然,具体实施中也可以是两个、五个等,对该数量可以有多种可能的情况,至少两个。图7中的对上行基站U产生干扰的下行基站D1、D2和D3都要进行发射功率的控制,
本实施例中,对于D1、D2和D3的功率控制,采用分布式的思想,即分别估计每个下行基站的功率调整参数。具体的,可以按照图8所示的步骤执行,图8为本发明实施例提供的又一种干扰控制方法的流程示意图,该方法的执行主体是图7中的上行基站U。
801、上行基站获取各下行基站的第一下行SINR,并且自己测量得到第一上行SINR;
其中,上行基站U以及各下行基站D1、D2和D3均需要各自测量自己小区的SINR,仍然将下行基站测量的称为第一下行SINR,将上行基站测量的称为第一上行SINR。各下行基站测量的第一下行SINR均发送至上行基站。
802、上行基站根据第一上行SINR和第一下行SINR计算第一吞吐量;
803、上行基站分别降低每个下行基站的发射功率,并计算降低发射功率后每个下行基站在交叉时隙的第二下行SINR,并预测第二上行SINR;
其中,本步骤上行基站也是假设降低下行基站的发射功率,并预测降低发射功率后的第二下行SINR以及第二上行SINR。对于如何降低各下行基站的发射功率,可以有多种方式,如下列举几种:
例如,从图7可以看到,下行基站D1、D2和D3对上行基站的干扰是相同的,所以假设各下行基站降低的发射功率也相同,比如均下降Δ,那么D1、D2和D3的第二下行SINR相对于各自的第一下行SINR也均下降Δ,而上行基站的第二上行SINR相对于第一上行SINR提升3Δ。
又例如,假设各下行基站的假设发射功率降低量还与功率影响参数有关,这种情况下,下行基站D1、D2和D3可以将各自的发射功率等级或者业务优先级等信息发送给上行基站U,上行基站在假设下行基站的发射功率降低时,可以根据功率影响参数来确定其功率的降低量。比如,假设D1的业务优先级高于D2,可以在预测发射功率降低时,将D1的发射功率降低Δ,将D2的发射功率降低1.5Δ。
804、上行基站根据第二上行SINR和第二下行SINR计算第二吞吐量;
本实施例中,上行基站U和三个下行基站D1、D2和D3共同组成了一个具有交叉时隙干扰的系统,以该系统的整体吞吐性能最大化为目标来计算下行基站的发射功率的调整值,所以该步骤中计算的是所述的包括U、D1、D2和D3的系统的第二吞吐量,该第二吞吐量=U的吞吐量+D1的吞吐量+D2的吞吐量+D3的吞吐量。
805、上行基站通过比较第一吞吐量和第二吞吐量,确定达到系统最大吞吐量的第二吞吐量对应的功率调整参数;
其中,上行基站仍然要比较第一吞吐量和第二吞吐量,如果第二吞吐量大于第一吞吐量,则继续降低下行基站的发射功率;否则,表明第二吞吐量已经是系统的最大吞吐量,则确定达到该第二吞吐量时各下行基站的功率调整参数。比如,假设第二吞吐量已经是系统的最大吞吐量,并且计算得到该第二吞吐量时,对应使用的下行基站D1的功率调整参数是c1,下行基站D2的功率调整参数是c2,下行基站D3的功率调整参数是c3,那么就可以确定各下行基站分别对应的功率调整参数是D1——c1,D2——c2,D3——c3。
806、上行基站将各下行基站的功率调整参数分别对应发送至各下行基站;
比如,上行基站U向下行基站D1发送功率调整参数c1,向下行基站D2发送功率调整参数c2,向下行基站D3发送功率调整参数c3。
807、各下行基站根据各自的功率调整参数降低发射功率。
此外,参见图9和图10,图9为本发明实施例提供的又一种干扰控制方法的应用场景示意图,图10为本发明实施例提供的又一种干扰控制方法的应用场景示意图,这两个图与图8类似,上行基站U都具有至少两个产生交叉时隙干扰的相邻的下行基站D,所以上行基站U对下行基站对应的功率调整参数的计算方法类似,不再赘述。
实施例六
本实施例仍然是以对上行基站产生交叉时隙干扰的相邻下行基站的数量是至少两个的场景为例,只是与实施例五的区别在于,上行基站在确定各下行基站的功率调整参数时,采用的是集中式的思想,即将图7中的下行基站D1、D2和D3作为一个整体,先确定该整体对应的整体功率调整参数,再在各下行基站进行分配得到各下行基站对应的功率调整参数。仍以 图7的场景为例,以图11来描述本发明实施例的干扰控制方法,图11为本发明实施例提供的又一种干扰控制方法的流程示意图,包括:
1101、上行基站获取各下行基站的第一下行SINR,并且自己测量得到第一上行SINR;
1102、上行基站根据第一上行SINR和第一下行SINR计算第一吞吐量;
1103、上行基站以下行基站为整体,降低整体下行基站的发射功率,并计算降低发射功率后整体下行基站的在交叉时隙的第二下行SINR,并预测第二上行SINR;
例如,以图7为例,下行基站D1、D2和D3作为一个整体,可以用“Z”来表示该三个下行基站的整体;上行基站U可以假设Z降低发射功率ΔdB,那么上行基站的第二上行SINR可以提升Δ,Z对应的第二下行SINR降低Δ。
1104、上行基站根据第二上行SINR、以及下行基站整体对应的第二下行SINR计算第二吞吐量;
其中,该第二吞吐量仍然是包括U、D1、D2和D3的系统对应的吞吐量,只是在计算方式上,该第二吞吐量=U的吞吐量+Z的吞吐量。
1105、上行基站通过比较第一吞吐量和第二吞吐量,确定达到系统最大吞吐量的第二吞吐量对应的功率调整参数;
本步骤中,上行基站确定的与第二吞吐量对应的功率调整参数,是下行基站整体对应的整体功率调整参数,比如包括D1、D2和D3的系统整体对应的整体功率调整参数是Δ,需要将下行基站整体的发射功率下降某个Δ值。
1106、上行基站根据功率影响参数,将整体功率调整参数在至少两个下行基站分配,得到每个下行基站对应的功率调整参数;
可选的,可以根据下行基站发送的业务优先级、发射功率等级等进行更精确的功率调整。例如假设D1、D2和D3的业务优先级不同,D1优先 级>D2优先级,那么将整体功率调整参数Δ在D1、D2和D3间分配时,要优先保证业务优先级高的小区的信噪比环境,比如D1的发射功率由于业务优先级高于D2,所以具体实施时,D1的发射功率可以少降,D2的发射功率可以多降一些。更具体的,按照两个下行小区的业务优先级来分配降功率需求时,如果两个下行小区业务优先级相同,则每个下行都降低ΔdB,否则业务优先级高的少降功率或不降功率,业务优先级低的多降功率或暂不发送信号,但是当业务优先级低的小区已经在最低档甚至禁止发送信号的情况下,仍然不满足上行小区对信噪比环境的需求,则需要对另外一个下行小区实施更严厉的功控。
1107、上行基站将各下行基站的功率调整参数分别对应发送至各下行基站;
1108、各下行基站根据各自的功率调整参数降低发射功率。
实施例七
图12为本发明实施例提供的又一种干扰控制方法的应用场景示意图,本实施例与实施例五和实施例六的区别在于,实施例五中的上行基站附近有至少两个相邻下行基站,而本实施例是一个下行基站周边有至少两个上行基站,这种情况下,每个下行基站就有可能接收到分别与每个上行基站对应的多个分功率调整参数。
以图12为例,这是一种较为简单的规则组网场景,下行基站D相邻的三个上行基站U1、U2和U3,D会对U1、U2和U3均产生交叉时隙干扰,所以这三个上行基站各自都会进行功率调整参数的计算,比如,U1会以“U1+D”的系统最大吞吐为目标计算需要D降低发射功率的功率调整参数t1,U2会以“U2+D”的系统最大吞吐为目标计算需要D降低发射功率的功率调整参数t2,U3会以“U3+D”的系统最大吞吐为目标计算需要D降低发射功率的功率调整参数t3。但是由于是规则组网,这三个上行基站计算得到的功率调整参数是相同的,并且,在下行基站D降低ΔdB的发射功 率后,U1、U2和U3的SINR均提升ΔdB。所以下行基站D相当于只接收到一种功率调整参数,下行基站据此调整功率即可。
但是,还有密集组网的多小区场景,此时每个下行基站周围可能有多个相邻的上行基站,并且下行基站接收到的各上行基站发送的功控要求可能不同。如果将各上行基站发送的功率调整参数称为分功率调整参数,那么有可能下行基站会接收到至少两个分功率调整参数,并且这些参数不完全相同。例如,假设下行基站周围有M个上行基站,交叉时隙处下行基站接收到M个功率控制的请求即M个功率调整参数,其中有N种不同的发射功率等级,即有N种值,N小于等于M。那么这种情况下,到底根据哪个功率调整参数进行功率调整,本实施例提供如下方式:
干扰控制设备指示下行基站,根据由至少两个分功率调整参数和功率选择原则确定的功率调整参数降低发射功率。所述的功率选择原则包括:原则1:保证下行性能,选择N种等级中最小功控等级的实施下行功率调整;原则2:保证上行性能,选择N种等级中最大的功控等级实施下行功率调整;原则3:保证公平性,选择N种等级的均值实施下行功率调整。该功率选择原则也可以是预先设置在干扰控制设备上。
对于干扰控制设备指示下行基站,根据由至少两个分功率调整参数和功率选择原则确定的功率调整参数降低发射功率的方式,有可选的如下方式:
一种方式是,假设干扰控制设备是上行基站或第三方设备,可以由上行基站或第三方设备分别以每个上行基站为被干扰主体,计算与每个上行基站对应的分功率调整参数,并且根据功率选择原则从计算得到的至少两个分功率调整参数确定某个参数为最终的功率调整参数,并将该功率调整参数发送给下行基站,下行基站据此降低发射功率即可。
另一种方式是,假设干扰控制设备是上行基站或第三方设备,可以由上行基站或第三方设备将至少两个分功率调整参数均发送至下行基站,由 下行基站根据功率选择原则从至少两个分功率调整参数确定某个参数为最终的功率调整参数,并据此降低发射功率即可。
当然,也可以是下行基站自己进行功率调整参数的计算和选择。同理,对于实施例五、实施例六以及本实施例七中所描述的方法,有些是以上行基站为执行主体来描述的,但是在具体实施中,也可以由其他设备来执行,比如下行基站或者第三方设备等,不再一一列举描述,方法类似。
实施例八
图13为本发明实施例提供的又一种干扰控制方法的应用场景示意图,本实施例的小区场景是一种混合场景,比如既包括“单上行多下行”的系统,也包括“单上行单下行”的系统。如图13所示,对于其中的上行基站U1来说,其与下行基站D1和D2均具有交叉时隙干扰;而上行基站U2仅与下行基站D2具有交叉时隙干扰。上行基站U1根据系统“U1+D1+D2”的最大吞吐量来计算D1和D2分别对应的功率调整参数的方法,可以参见实施例五或实施例六的描述;对于上行基站U2根据系统“U2+D2”的最大吞吐量来计算D2对应的功率调整参数的方法,可以参见实施例二的描述,不再赘述。
本实施例中,对于下行基站D2,其接收到U1计算并发送的功率调整参数q1,也接收到了U2计算并发送的功率调整参数q2,那么D2如何确定依据哪个参数来调整发射功率,可以参见实施例七中的描述,D2可以根据功率选择原则来确定,比如,U1所在的上行小区的业务优先级高于U2所在的上行小区的业务优先级,那么可以根据U1发送的q1来调整,或者综合q1和q2调整但是更偏向于q1。即下行基站所依据的功率选择原则也可以是上行基站所在的上行小区的业务优先级,具体实施中也可以采用其他原则。
实施例九
本实施例仍然是以图13为例,与实施例八的区别在于,在实施例八中, U1和U2分别以各自所在的干扰系统为目标,计算得到对应的功率调整参数q1和q2,并将参数发送给D2,由D2来综合确定功率调整参数。
可选的,本实施例中,也可以是U1计算得到q1后,发送给U2,由U2根据功率选择原则确定功率调整参数后发送给D2,D2直接据此调整发射功率即可。或者,也可以是U2将计算得到的q2发送给U1,由U1根据功率选择原则确定功率调整参数后发送给D2,D2直接据此调整发射功率。
可选的,还可以是由另外的第三方设备来执行,U1、U2、D1、D2均将各自测量的SINR发送给该第三方设备,第三方设备此时也有两种可选的方式,其可以按照实施例八中所述的那样,分别计算得到q1和q2,并根据功率选择原则确定功率调整参数后发送给D2;或者,第三方设备还可以以“D1+D2+U1+U2”的整体为系统,以该系统的最大吞吐量为目标,直接计算得到D1对应的功率调整参数和D2对应的功率调整参数。
需要说明的是,本发明的各实施例中,对方法的执行主体并不做严格限制,只要是以“系统整体吞吐性能最大化”为目标来计算下行基站对应的功率调整参数即可。
实施例十
图14为本发明实施例提供的又一种干扰控制方法的流程示意图,该方法的执行主体是下行基站,本实施例仅简单描述,具体的流程可以参见实施例一至实施例九。如图14所示,该方法可以包括:
1401、下行基站接收干扰控制设备发送的功率调整参数;
其中,所述功率调整参数与被干扰的上行基站的和干扰所述上行基站的所述下行基站的第二吞吐量对应,所述第二吞吐量大于所述上行基站和下行基站的当前的吞吐量总和,并且所述第二吞吐量是所述干扰控制设备根据所述上行基站的上行信号与干扰加噪声比SINR和下行基站的下行SINR、以及所述下行基站在所述交叉时隙的发射功率确定。
1402、下行基站根据所述功率调整参数降低发射功率。
可选的,所述下行基站接收干扰控制设备发送的功率调整参数,包括:所述下行基站接收所述干扰控制设备发送的至少两个分功率调整参数,所述至少两个分功率调整参数中的每一个对应一个所述上行基站。
所述下行基站根据所述功率调整参数降低发射功率,包括:所述下行基站根据功率选择原则和所述至少两个分功率调整参数确定所述功率调整参数,并根据所述功率调整参数降低发射功率。
实施例十一
图15为本发明实施例提供的一种干扰控制设备的结构示意图,该设备可以执行本发明任意实施例的方法,本实施例仅对该设备的结构做简单描述,其具体工作流程可以结合参见方面实施例一至实施例九。如图15所示,该干扰控制设备可以包括:参数获取单元1501、参数处理单元1502和功率控制单元1503;其中,
参数获取单元1501,用于获取第一上行信号与干扰加噪声比SINR和第一下行SINR,所述第一上行SINR是被干扰的上行基站在交叉时隙测量得到,所述第一下行SINR是干扰所述上行基站的下行基站在所述交叉时隙测量得到,所述干扰控制设备还获取所述下行基站在所述交叉时隙的发射功率;
参数处理单元1502,用于根据所述第一上行SINR、第一下行SINR以及所述发射功率,得到用于指示所述下行基站降低所述发射功率的功率调整参数,并且所述功率调整参数用于使得在所述下行基站降低发射功率之后所述上行基站和下行基站的吞吐量总和大于当前的吞吐量总和;
功率控制单元1503,用于指示所述下行基站根据所述功率调整参数降低发射功率。
图16为本发明实施例提供的另一种干扰控制设备的结构示意图,在图15所示结构的基础上,该设备中的参数处理单元1502可以包括:初始计算子单元1504、调整计算子单元1505和参数确定子单元1506;其中,
初始计算子单元1504,用于根据所述第一上行SINR和第一下行SINR,得到用于表示上行基站和下行基站的所述当前的吞吐量总和的第一吞吐量;
调整计算子单元1505,用于获取低于所述发射功率的第一假设发射功率,并计算在所述下行基站采用所述第一假设发射功率时,所述上行基站在所述交叉时隙的第二上行SINR以及所述下行基站在所述交叉时隙的第二下行SINR,以及根据所述第二上行SINR和第二下行SINR得到用于表示所述上行基站和下行基站的吞吐量总和的第二吞吐量;
参数确定子单元1506,用于在所述第二吞吐量大于所述第一吞吐量时,则指示所述调整计算子单元继续获取低于所述第一假设发射功率的第二假设发射功率,直至所述参数确定子单元所述第二吞吐量是所述下行基站在采用低于所述发射功率的功率时,所述上行基站和下行基站的最大吞吐量总和,确定与所述第二吞吐量对应的所述功率调整参数。
进一步的,所述调整计算子单元1505,还用于根据所述第一上行SINR得到第一上行调制与编码策略MCS,根据所述第一下行SINR得到第一下行MCS;根据所述第二上行SINR得到第二上行MCS,并根据所述第二下行SINR得到第二下行MCS;并且,在第二上行MCS相对于所述第一上行MCS发生变化且所述第二下行MCS相对于所述第一下行MCS发生变化时,根据所述第二上行SINR和第二下行SINR得到第二吞吐量。
进一步的,所述参数确定子单元1506,还用于在确定与所述第二吞吐量对应的所述功率调整参数之前,获取所述下行基站的功率影响参数,所述功率影响参数包括:发射功率等级、或者业务优先级;并指示所述调整计算子单元根据所述功率影响参数,获取低于所述发射功率的假设功率,所述假设功率包括所述第一假设功率或第二假设功率,直至得到满足所述功率影响参数要求的所述第二吞吐量。
进一步的,当干扰所述上行基站的所述下行基站的数量是至少两个时;
所述调整计算子单元1505,在获取低于所述发射功率的第一假设发射功率,并计算所述下行基站在所述交叉时隙的第二下行SINR时,具体是用于:根据所述功率影响参数,分别获取对应于每个所述下行基站的第一假设发射功率,并分别计算每个所述下行基站在所述交叉时隙的第二下行SINR;
所述参数确定子单元1506,在确定与所述第二吞吐量对应的功率调整参数时,具体用于分别确定与所述第二吞吐量对应的每个所述下行基站对应的功率调整参数。
进一步的,当干扰所述上行基站的所述下行基站的数量是至少两个时;
所述调整计算子单元1505,在获取低于所述发射功率的第一假设发射功率,并计算所述下行基站在所述交叉时隙的第二下行SINR时,具体是用于:以至少两个所述下行基站为整体,获取整体所述下行基站的低于所述发射功率的第一假设发射功率,并计算整体所述下行基站的在所述交叉时隙的第二下行SINR;
所述参数确定子单元1506,在确定与所述第二吞吐量对应的功率调整参数时,具体用于确定与所述第二吞吐量对应的整体所述下行基站对应的整体功率调整参数,并根据所述功率影响参数,将所述整体功率调整参数在所述至少两个下行基站分配,得到每个所述下行基站对应的功率调整参数。
进一步的,当所述被干扰的上行基站的数量是至少两个时;所述功率控制单元1503,具体用于指示所述下行基站,根据由至少两个分功率调整参数和功率选择原则确定的功率调整参数降低发射功率,所述至少两个分功率调整参数中的每一个对应一个所述上行基站。
进一步的,当所述干扰控制设备是所述上行基站或者第三方设备时,所述功率控制单元1503,具体用于向所述下行基站发送所述功率调整参数,以使得所述下行基站根据所述功率调整参数降低发射功率。
进一步的,当所述干扰控制设备是所述下行基站时,所述功率控制单元1503,具体用于根据所述功率调整参数降低所述下行基站自身的发射功率。
实施例十二
图17为本发明实施例提供的基站的结构示意图,该基站可以执行本发明任意实施例的方法,本实施例仅对该基站的结构做简单描述,其具体工作流程可以结合参见方面实施例一至实施例九。如图17所示,该基站可以包括:参数接收单元1701和功率调整单元1702;其中,
参数接收单元1701,用于接收干扰控制设备发送的功率调整参数,所述功率调整参数与被干扰的上行基站的和干扰所述上行基站的所述下行基站的第二吞吐量对应,所述第二吞吐量大于所述上行基站和下行基站的当前的吞吐量总和,并且所述第二吞吐量是所述干扰控制设备根据所述上行基站的上行信号与干扰加噪声比SINR、下行基站的下行SINR以及所述下行基站在所述交叉时隙的发射功率确定;功率调整单元1702,用于根据所述功率调整参数降低发射功率。
可选的,所述参数接收单元1701,在接收干扰控制设备发送的功率调整参数时,具体是用于接收所述干扰控制设备发送的至少两个分功率调整参数,所述至少两个分功率调整参数中的每一个对应一个所述上行基站;所述功率调整单元1702,具体用于根据功率选择原则和所述至少两个分功率调整参数确定所述功率调整参数,并根据所述功率调整参数降低发射功率。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (22)

  1. 一种干扰控制方法,其特征在于,包括:
    干扰控制设备获取第一上行信号与干扰加噪声比SINR和第一下行SINR,所述第一上行SINR是被干扰的上行基站在交叉时隙测量得到,所述第一下行SINR是干扰所述上行基站的下行基站在所述交叉时隙测量得到,所述干扰控制设备还获取所述下行基站在所述交叉时隙的发射功率;
    所述干扰控制设备根据所述第一上行SINR、第一下行SINR以及所述发射功率,得到用于指示所述下行基站降低所述发射功率的功率调整参数,并且所述功率调整参数用于使得在所述下行基站降低发射功率之后所述上行基站和下行基站的吞吐量总和大于当前的吞吐量总和;
    所述干扰控制设备指示所述下行基站,根据所述功率调整参数降低发射功率。
  2. 根据权利要求1所述的方法,其特征在于,所述干扰控制设备根据所述第一上行SINR、第一下行SINR以及所述发射功率,得到用于指示所述下行基站降低所述发射功率的功率调整参数,包括:
    所述干扰控制设备根据所述第一上行SINR和第一下行SINR,得到用于表示所述上行基站和下行基站的所述当前的吞吐量总和的第一吞吐量;
    所述干扰控制设备获取低于所述发射功率的第一假设发射功率,并计算在所述下行基站采用所述第一假设发射功率时,所述上行基站在所述交叉时隙的第二上行SINR以及所述下行基站在所述交叉时隙的第二下行SINR,以及根据所述第二上行SINR和第二下行SINR得到用于表示所述上行基站和下行基站的吞吐量总和的第二吞吐量;
    若所述第二吞吐量大于所述第一吞吐量,则继续获取低于所述第一假设发射功率的第二假设发射功率,直至所述第二吞吐量是所述下行基站在采用低于所述发射功率的功率时,所述上行基站和下行基站的最大吞吐量 总和,确定与所述第二吞吐量对应的所述功率调整参数。
  3. 根据权利要求2所述的方法,其特征在于,
    所述干扰控制设备得到用于表示所述上行基站和下行基站的所述当前的吞吐量总和的第一吞吐量,之前还包括:所述干扰控制设备根据所述第一上行SINR得到第一上行调制与编码策略MCS,根据所述第一下行SINR得到第一下行MCS;
    在计算所述第二上行SINR以及第二下行SINR之后,根据所述第二上行SINR和第二下行SINR得到第二吞吐量之前,还包括:所述干扰控制设备根据所述第二上行SINR得到第二上行MCS,并根据所述第二下行SINR得到第二下行MCS;并且,所述第二上行MCS相对于所述第一上行MCS发生变化,所述第二下行MCS相对于所述第一下行MCS发生变化。
  4. 根据权利要求2所述的方法,其特征在于,所述确定与所述第二吞吐量对应的所述功率调整参数之前,还包括:
    所述干扰控制设备获取所述下行基站的功率影响参数,所述功率影响参数包括:发射功率等级、或者业务优先级;
    所述干扰控制设备根据所述功率影响参数,获取低于所述发射功率的假设功率,所述假设功率包括所述第一假设功率或第二假设功率,直至得到满足所述功率影响参数要求的所述第二吞吐量。
  5. 根据权利要求4所述的方法,其特征在于,当干扰所述上行基站的所述下行基站的数量是至少两个时;
    所述干扰控制设备获取低于所述发射功率的第一假设发射功率,并计算所述下行基站在所述交叉时隙的第二下行SINR,包括:
    所述干扰控制设备根据所述功率影响参数,分别获取对应于每个所述下行基站的第一假设发射功率,并分别计算每个所述下行基站在所述交叉时隙的第二下行SINR;
    所述确定与所述第二吞吐量对应的功率调整参数,包括:分别确定与 所述第二吞吐量对应的每个所述下行基站对应的功率调整参数。
  6. 根据权利要求4所述的方法,其特征在于,当干扰所述上行基站的所述下行基站的数量是至少两个时;
    所述干扰控制设备获取低于所述发射功率的第一假设发射功率,并计算所述下行基站在所述交叉时隙的第二下行SINR,包括:
    所述干扰控制设备以至少两个所述下行基站为整体,获取整体所述下行基站的低于所述发射功率的第一假设发射功率,并计算整体所述下行基站的在所述交叉时隙的第二下行SINR;
    所述确定与所述第二吞吐量对应的功率调整参数,包括:确定与所述第二吞吐量对应的整体所述下行基站对应的整体功率调整参数,并根据所述功率影响参数,将所述整体功率调整参数在所述至少两个下行基站分配,得到每个所述下行基站对应的功率调整参数。
  7. 根据权利要求1所述的方法,其特征在于,当所述被干扰的上行基站的数量是至少两个时;
    所述干扰控制设备指示所述下行基站根据功率调整参数降低发射功率,包括:所述干扰控制设备指示所述下行基站,根据由至少两个分功率调整参数和功率选择原则确定的功率调整参数降低发射功率,所述至少两个分功率调整参数中的每一个对应一个所述上行基站。
  8. 根据权利要求1-7任一所述的方法,其特征在于,所述干扰控制设备指示所述下行基站根据功率调整参数降低发射功率,包括:
    所述干扰控制设备向所述下行基站发送所述功率调整参数,以使得所述下行基站根据所述功率调整参数降低发射功率;
    所述干扰控制设备是所述上行基站或者第三方设备。
  9. 根据权利要求1-7任一所述的方法,其特征在于,所述干扰控制设备指示所述下行基站根据功率调整参数降低发射功率,包括:
    所述干扰控制设备是所述下行基站,所述下行基站自身根据所述功率 调整参数降低发射功率。
  10. 一种干扰控制方法,其特征在于,包括:
    下行基站接收干扰控制设备发送的功率调整参数,所述功率调整参数与被干扰的上行基站的和干扰所述上行基站的所述下行基站的第二吞吐量对应,所述第二吞吐量大于所述上行基站和下行基站的当前的吞吐量总和,并且所述第二吞吐量是所述干扰控制设备根据所述上行基站的上行信号与干扰加噪声比SINR、下行基站的下行SINR以及所述下行基站在所述交叉时隙的发射功率确定;
    所述下行基站根据所述功率调整参数降低发射功率。
  11. 根据权利要求10所述的方法,其特征在于,
    所述下行基站接收干扰控制设备发送的功率调整参数,包括:所述下行基站接收所述干扰控制设备发送的至少两个分功率调整参数,所述至少两个分功率调整参数中的每一个对应一个所述上行基站;
    所述下行基站根据所述功率调整参数降低发射功率,包括:所述下行基站根据功率选择原则和所述至少两个分功率调整参数确定所述功率调整参数,并根据所述功率调整参数降低发射功率。
  12. 一种干扰控制设备,其特征在于,包括:
    参数获取单元,用于获取第一上行信号与干扰加噪声比SINR和第一下行SINR,所述第一上行SINR是被干扰的上行基站在交叉时隙测量得到,所述第一下行SINR是干扰所述上行基站的下行基站在所述交叉时隙测量得到,所述干扰控制设备还获取所述下行基站在所述交叉时隙的发射功率;
    参数处理单元,用于根据所述第一上行SINR、第一下行SINR以及所述发射功率,得到用于指示所述下行基站降低所述发射功率的功率调整参数,并且所述功率调整参数用于使得在所述下行基站降低发射功率之后所述上行基站和下行基站的吞吐量总和大于当前的吞吐量总和;
    功率控制单元,用于指示所述下行基站根据所述功率调整参数降低发 射功率。
  13. 根据权利要求12所述的设备,其特征在于,所述参数处理单元,包括:
    初始计算子单元,用于根据所述第一上行SINR和第一下行SINR,得到用于表示所述上行基站和下行基站的所述当前的吞吐量总和的第一吞吐量;
    调整计算子单元,用于获取低于所述发射功率的第一假设发射功率,并计算在所述下行基站采用所述第一假设发射功率时,所述上行基站在所述交叉时隙的第二上行SINR以及所述下行基站在所述交叉时隙的第二下行SINR,以及根据所述第二上行SINR和第二下行SINR得到用于表示所述上行基站和下行基站的吞吐量总和的第二吞吐量;
    参数确定子单元,用于在所述第二吞吐量大于所述第一吞吐量时,则指示所述调整计算子单元继续获取低于所述第一假设发射功率的第二假设发射功率,直至所述参数确定子单元所述第二吞吐量是所述下行基站在采用低于所述发射功率的功率时,所述上行基站和下行基站的最大吞吐量总和,确定与所述第二吞吐量对应的所述功率调整参数。
  14. 根据权利要求13所述的设备,其特征在于,
    所述调整计算子单元,还用于根据所述第一上行SINR得到第一上行调制与编码策略MCS,根据所述第一下行SINR得到第一下行MCS;根据所述第二上行SINR得到第二上行MCS,并根据所述第二下行SINR得到第二下行MCS;并且,在第二上行MCS相对于所述第一上行MCS发生变化且所述第二下行MCS相对于所述第一下行MCS发生变化时,根据所述第二上行SINR和第二下行SINR得到第二吞吐量。
  15. 根据权利要求13所述的设备,其特征在于,
    所述参数确定子单元,还用于在确定与所述第二吞吐量对应的所述功率调整参数之前,获取所述下行基站的功率影响参数,所述功率影响参数 包括:发射功率等级、或者业务优先级;并指示所述调整计算子单元根据所述功率影响参数,获取低于所述发射功率的假设功率,所述假设功率包括所述第一假设功率或第二假设功率,直至得到满足所述功率影响参数要求的所述第二吞吐量。
  16. 根据权利要求15所述的设备,其特征在于,当干扰所述上行基站的所述下行基站的数量是至少两个时;
    所述调整计算子单元,在获取低于所述发射功率的第一假设发射功率,并计算所述下行基站在所述交叉时隙的第二下行SINR时,具体是用于:根据所述功率影响参数,分别获取对应于每个所述下行基站的第一假设发射功率,并分别计算每个所述下行基站在所述交叉时隙的第二下行SINR;
    所述参数确定子单元,在确定与所述第二吞吐量对应的功率调整参数时,具体用于分别确定与所述第二吞吐量对应的每个所述下行基站对应的功率调整参数。
  17. 根据权利要求15所述的设备,其特征在于,当干扰所述上行基站的所述下行基站的数量是至少两个时;
    所述调整计算子单元,在获取低于所述发射功率的第一假设发射功率,并计算所述下行基站在所述交叉时隙的第二下行SINR时,具体是用于:以至少两个所述下行基站为整体,获取整体所述下行基站的低于所述发射功率的第一假设发射功率,并计算整体所述下行基站的在所述交叉时隙的第二下行SINR;
    所述参数确定子单元,在确定与所述第二吞吐量对应的功率调整参数时,具体用于确定与所述第二吞吐量对应的整体所述下行基站对应的整体功率调整参数,并根据所述功率影响参数,将所述整体功率调整参数在所述至少两个下行基站分配,得到每个所述下行基站对应的功率调整参数。
  18. 根据权利要求12所述的设备,其特征在于,当所述被干扰的上行基站的数量是至少两个时;
    所述功率控制单元,具体用于指示所述下行基站,根据由至少两个分功率调整参数和功率选择原则确定的功率调整参数降低发射功率,所述至少两个分功率调整参数中的每一个对应一个所述上行基站。
  19. 根据权利要求12-18任一所述的设备,其特征在于,当所述干扰控制设备是所述上行基站或者第三方设备时,
    所述功率控制单元,具体用于向所述下行基站发送所述功率调整参数,以使得所述下行基站根据所述功率调整参数降低发射功率。
  20. 根据权利要求12-18任一所述的设备,其特征在于,当所述干扰控制设备是所述下行基站时,
    所述功率控制单元,具体用于根据所述功率调整参数降低所述下行基站自身的发射功率。
  21. 一种基站,其特征在于,包括:
    参数接收单元,用于接收干扰控制设备发送的功率调整参数,所述功率调整参数与被干扰的上行基站的和干扰所述上行基站的所述下行基站的第二吞吐量对应,所述第二吞吐量大于所述上行基站和下行基站的当前的吞吐量总和,并且所述第二吞吐量是所述干扰控制设备根据所述上行基站的上行信号与干扰加噪声比SINR、下行基站的下行SINR以及所述下行基站在所述交叉时隙的发射功率确定;
    功率调整单元,用于根据所述功率调整参数降低发射功率。
  22. 根据权利要求21所述的基站,其特征在于,
    所述参数接收单元,在接收干扰控制设备发送的功率调整参数时,具体是用于接收所述干扰控制设备发送的至少两个分功率调整参数,所述至少两个分功率调整参数中的每一个对应一个所述上行基站;
    所述功率调整单元,具体用于根据功率选择原则和所述至少两个分功率调整参数确定所述功率调整参数,并根据所述功率调整参数降低发射功率。
PCT/CN2015/081165 2014-06-12 2015-06-10 干扰控制方法和设备、基站 WO2015188751A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410260494.7 2014-06-12
CN201410260494.7A CN105228234B (zh) 2014-06-12 2014-06-12 干扰控制方法和设备、基站

Publications (1)

Publication Number Publication Date
WO2015188751A1 true WO2015188751A1 (zh) 2015-12-17

Family

ID=54832913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081165 WO2015188751A1 (zh) 2014-06-12 2015-06-10 干扰控制方法和设备、基站

Country Status (2)

Country Link
CN (1) CN105228234B (zh)
WO (1) WO2015188751A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170273069A1 (en) * 2016-03-16 2017-09-21 Futurewei Technologies, Inc. System and Method for Managing Connections in a Wireless Communications System
CN107889205B (zh) 2016-09-30 2021-08-20 华为技术有限公司 上行功率控制方法及装置
CN110024462A (zh) * 2017-01-06 2019-07-16 富士通株式会社 基于动态时分双工的传输装置、方法以及通信系统
CN108632968B (zh) * 2017-03-24 2021-01-29 华为技术有限公司 用于上行功率控制的方法和装置
WO2020034096A1 (zh) * 2018-08-14 2020-02-20 Oppo广东移动通信有限公司 一种终端功率等级控制方法及装置、终端
CN114696945A (zh) * 2020-12-28 2022-07-01 中国移动通信有限公司研究院 一种自适应调制编码调整方法、装置和设备
CN112601276A (zh) * 2021-03-03 2021-04-02 新华三技术有限公司 一种时隙干扰的解决方法、终端设备和基站设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070097981A1 (en) * 2005-11-02 2007-05-03 Aris Papasakellariou Methods for Determining the Location of Control Channels in the Uplink of Communication Systems
CN102572927A (zh) * 2010-12-30 2012-07-11 中国移动通信集团设计院有限公司 一种基站功率分配的方法、装置及系统
US20130077571A1 (en) * 2011-09-27 2013-03-28 Samsung Electronics Co., Ltd. Method and apparatus for transmission power control for a sounding reference signal
CN103391168A (zh) * 2012-05-11 2013-11-13 电信科学技术研究院 一种进行干扰控制的方法及装置
CN103458421A (zh) * 2012-06-04 2013-12-18 北京邮电大学 应用于下行CoMP OFDMA场景下使吞吐量最大的方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662775B (zh) * 2008-08-27 2013-08-28 上海华为技术有限公司 一种减少基站干扰的方法、装置及系统
CN102158910B (zh) * 2011-04-14 2013-11-20 电信科学技术研究院 一种进行干扰协调的方法、系统和设备
CN102137499B (zh) * 2011-04-14 2014-08-06 电信科学技术研究院 一种进行干扰协调的方法、系统和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070097981A1 (en) * 2005-11-02 2007-05-03 Aris Papasakellariou Methods for Determining the Location of Control Channels in the Uplink of Communication Systems
CN102572927A (zh) * 2010-12-30 2012-07-11 中国移动通信集团设计院有限公司 一种基站功率分配的方法、装置及系统
US20130077571A1 (en) * 2011-09-27 2013-03-28 Samsung Electronics Co., Ltd. Method and apparatus for transmission power control for a sounding reference signal
CN103391168A (zh) * 2012-05-11 2013-11-13 电信科学技术研究院 一种进行干扰控制的方法及装置
CN103458421A (zh) * 2012-06-04 2013-12-18 北京邮电大学 应用于下行CoMP OFDMA场景下使吞吐量最大的方法和装置

Also Published As

Publication number Publication date
CN105228234B (zh) 2019-05-28
CN105228234A (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
US9723571B2 (en) Method and apparatus for reporting maximum transmission power in wireless communication
US11304150B2 (en) Method and apparatus for reporting maximum transmission power in wireless communication
WO2015188751A1 (zh) 干扰控制方法和设备、基站
TWI524797B (zh) 減輕小單元間干擾的方法及系統
CN107005885B (zh) 使用站点间载波聚合平衡流量负载的设备和方法
US8797983B2 (en) Apparatuses and methods for allocating spectrum resources in a wireless communication network
KR101607097B1 (ko) 무선 패킷 데이터 송신들의 페이로드 세분화를 위한 장치, 방법 및 컴퓨터 판독 가능 매체
RU2539329C2 (ru) Поддержка планирования в восходящей линии связи в системах беспроводной связи с множеством несущих
KR20100138723A (ko) 이동통신 시스템에서 업링크 전송 출력을 제어하는 방법 및 장치
EP3314794B1 (en) Method and base station for selecting a transport format
JP2011166743A (ja) 無線移動通信システムにおけるアップリンクの干渉制御及びその装置
US10652830B2 (en) Method and apparatus for establishing and signaling maximum transmission power in wireless communication system
US9271301B2 (en) Method and arrangement for interference variance reduction in a wireless communication system
US9072097B2 (en) Method for selecting allocable wireless resources, device for selecting allocable wireless resources, and communication device
US8908551B2 (en) Self adaptive multi-level downlink power control for noise-limited wireless cellular networks
US9386543B2 (en) Methods and devices for calculation of uplink transmission power
JP5630906B2 (ja) 無線通信システムにおける送信電力制御装置及び方法
CN109417814B (zh) 一种调度方法、功率控制方法及基站
US10075255B2 (en) Physical downlink control channel (PDCCH) inter-cell-interference coordination
WO2014108028A1 (zh) 无线通信方法和无线通信设备
CN109246810B (zh) 一种基于lte系统的上行调度修正方法和系统
JP2015523009A (ja) 公称パケットサイズに基づく電力コントロールの実行
JP2012216968A (ja) 移動局及び無線通信システムに使用される方法
WO2017088835A1 (zh) 功率分配方法及装置
KR101080303B1 (ko) 서빙 eNB와 이를 이용한 동적 자원 할당 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15806018

Country of ref document: EP

Kind code of ref document: A1