WO2015188549A1 - Al-Mg-Si合金轮毂的制造方法 - Google Patents

Al-Mg-Si合金轮毂的制造方法 Download PDF

Info

Publication number
WO2015188549A1
WO2015188549A1 PCT/CN2014/088483 CN2014088483W WO2015188549A1 WO 2015188549 A1 WO2015188549 A1 WO 2015188549A1 CN 2014088483 W CN2014088483 W CN 2014088483W WO 2015188549 A1 WO2015188549 A1 WO 2015188549A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
hot
manufacturing
forging
blank
Prior art date
Application number
PCT/CN2014/088483
Other languages
English (en)
French (fr)
Inventor
朱其柱
王新春
丁荣辉
李书通
濮近发
茅海波
林枭雄
Original Assignee
浙江巨科实业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江巨科实业股份有限公司 filed Critical 浙江巨科实业股份有限公司
Publication of WO2015188549A1 publication Critical patent/WO2015188549A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass

Definitions

  • the present invention relates to a method of manufacturing a hub, and more particularly to a method of manufacturing an Al-Mg-Si alloy hub
  • the existing forged aluminum alloy wheel hubs are usually made of Al-Mg-Si alloy cast rods, which are complicated in process, such as upsetting, initial stage, precision forging, punching, solid solution, and enthalpy effect. High cost and other shortcomings.
  • the technical problem to be solved by the present invention is to provide a method for manufacturing an Al-Mg-Si alloy wheel hub, which can solve the problems of complicated technology, low production efficiency and high energy consumption in the prior art, thereby reducing energy consumption and improving The purpose of production efficiency.
  • the first step preparing materials
  • the Al-Mg-Si alloy hot-rolled sheet is formed by hot-rolling an Al-Mg-Si alloy ingot; the hot rolling treatment method is: the rolling temperature is 440 ° C to 500 ° C, and finally The rolling temperature is from 300 ° C to 350 ° C.
  • the Al-Mg-Si alloy is 6061, 6082 deformed aluminum alloy.
  • the Al-Mg-Si alloy hot rolled sheet has a thickness of 50 mm to 150 mm.
  • the wafer-shaped blank is preheated to 450 ° C ⁇ 500 ° C;
  • the third step hot forging
  • the wafer-shaped blank is hot forged by a forging press at a temperature of 450 ° C to 500 ° C to form a disk-shaped blank, and the hub is initially formed; the number of hot forging is 1 to 2 times.
  • the forging die Before hot forging, the forging die is preheated to above 450 ° C, the upper die is separated from the lower die, the lubricant is sprayed on the working surface of the forging die, and the preheated disk-shaped blank is placed into the forging In the mold. Among them, the forging speed is ⁇ 10mm/s. The final forging temperature is ⁇ 500°.
  • quenching the hot forged disc-shaped blank quenching is performed immediately after the hot forging is completed;
  • the fifth step spin forming
  • the quenched disc-shaped blank is strongly spun by a powerful spinning machine to form a hollow rotating body hub blank
  • the spin-formed hollow rotating body hub blank is placed in a furnace to be heated to 120 ° C to 220 ° C, and insulated
  • the galvanized heat treated hub blank is machined and surface treated to obtain an aluminum alloy wheel finished product.
  • the invention improves the raw materials used for the aluminum alloy wheel hub, and does not use the as-cast Al-Mg-Si aluminum alloy bar material as a raw material, so as to simplify the process, so that no need for upsetting before spin forming Precast blank process.
  • the aluminum alloy hot-rolled sheet selected by the invention is formed by hot rolling of the ingot; after the ingot is hot-rolled, the crystal grains are refined and extended, so that the crystal orientation tends to be uniform, and the shrinkage hole and the looseness are compacted. Because hot rolling is above the recrystallization temperature Processing, in the plastic deformation of the metal, recovery, recrystallization and other annealing effects; through the hot rolling can break the coarse grains in the cast state, microcrack healing, reduce or eliminate casting defects, the as-cast microstructure It is a dense and uniform fibrous deformation structure, thereby achieving the effect of improving the microstructure of the alloy. More importantly, the invention adopts aluminum alloy hot-rolled sheet as raw material, and does not need to be used for the process of roughing the preform in the process, and can simplify the process and reduce the energy consumption, and still can ensure the performance of the product is higher.
  • the invention controls the billet temperature, the forging speed, the mold temperature, the final forging temperature, and directly uses hot forging and quenching, so that the alloy not only has a good solid solution effect, but also retains the hot forged deformation structure, thereby improving the final The mechanical properties of the product.
  • FIG. 1 is a schematic flow chart of a method for manufacturing an Al-Mg-Si alloy wheel hub of the present invention
  • FIG. 2 is a schematic view of hot forging of a wafer-shaped blank using a forging press
  • FIG. 3a and 3b are schematic views of a disk-shaped blank obtained by hot forging; wherein FIG. 3a is a cross-sectional view of FIG. 3b [0033] FIG. 4 is a schematic view of strong spinning of a disk-shaped blank by a spinning machine. ;
  • FIG. 5a and 5b are schematic views of a hollow rotating body hub blank obtained by strong spinning; wherein FIG. 5a is a cross-sectional view of FIG. 5b.
  • the manufacturing method of the Al-Mg-Si alloy hub of the present invention comprises the following steps:
  • the Al-Mg-Si alloy hot-rolled sheet is formed by hot-rolling an Al-Mg-Si alloy ingot; the hot rolling treatment method is ' ⁇ rolling temperature is 440 ° C to 500 ° C, finishing rolling The temperature is from 300 ° C to 350 ° C.
  • the Al—Mg—Si alloy is preferably a deformed aluminum alloy such as 6061 or 6082;
  • the thickness of the Al-Mg-Si alloy hot-rolled sheet according to the requirements of the size of the hub, preferably 50mm ⁇ 150mm; [0041] The second step, preheating;
  • the wafer-shaped blank is heated to 450 ° C ⁇ 500 ° C for pre-heat treatment;
  • the purpose of preheating is to improve the plasticity of the aluminum alloy, reduce the deformation resistance of the aluminum alloy during the forging process, and thereby facilitate the plastic deformation of the aluminum alloy;
  • the forging die Before forging, the forging die is preheated to 450 ° C or higher, the upper die is separated from the lower die, the lubricant is sprayed on the working surface of the forging die, and the preheated wafer-shaped blank 11 is placed into the forging.
  • the mold as shown in Figure 2;
  • the wafer-shaped blank 11 placed in the forging die is rapidly hot forged by a forging press at a temperature of 450 ° C to 500 ° C to form a disk-shaped blank as shown in FIGS. 3 a and 3 b to make the hub Preliminary forming; hot forging times is
  • the present invention uses a pellet-shaped billet made of a hot-rolled sheet as a raw material, which does not require a plurality of pre-forging treatments (equivalent to upsetting) before forging forming, and the forging forming crucible also reduces the number of forgings correspondingly. It greatly simplifies the production process and improves production efficiency.
  • the present invention also controls the billet temperature, the mold temperature, and the forging speed to cause an extrusion heat effect in the forging process of the aluminum alloy, so that the final forging temperature is ⁇ 500 ° C, thereby ensuring that the MgSi phase in the Al-Mg-Si alloy is sufficient.
  • quenching the hot forged disc-shaped blank, and quenching is performed immediately after the hot forging is completed;
  • Quenching can fully dissolve the MgSi phase in the Al-Mg-Si alloy, and it can also inhibit the static recrystallization of the aluminum alloy after high temperature thermal deformation, prevent the crystal grains from growing, retain some of the hot deformation structure, and improve the final product. Mechanical properties.
  • the fifth step spin forming
  • the quenched disc-shaped blank is strongly spun by a strong spinning machine at a temperature not higher than 200 ° C to form a hollow rotating body hub blank as shown in FIG. 5a and FIG. 5b. ;
  • the spin-formed hollow rotating body hub blank is placed in a heat treatment furnace to be heated to 120 ° C to 220 ° C, and kept warm
  • the strengthening phase in the aluminum alloy can be precipitated, thereby improving the strength of the aluminum alloy.
  • the galvanized heat treatment of the hub blank is machined and surface treated to obtain an aluminum alloy wheel finished product; [0059]
  • the machining and surface treatment methods are: edge removal, grinding, polishing and painting.
  • the 6061 aluminum alloy hot-rolled sheet is punched into a disk-shaped blank having a size of ⁇ 350 ⁇ 65 ⁇ ;
  • the forging die Before the forging work, the forging die is preheated to 480 ° C, the upper die is separated from the lower die, the lubricant is sprayed on the working surface of the forging die, and the preheated wafer blank is placed in the forging die. , forging with a forging press at a speed of 20 mm / s, to make a disc-shaped blank, so that the hub is initially formed into a disk shape; immediately after forging, put into water for quenching;
  • the quenched disc-shaped blank is placed on a spinning machine and strongly spun into a hollow rotating body hub blank; then the hub blank is placed in a heat-effect furnace and heated to 175 ° C for 8 hours; finally, the hub blank is subjected to Machining and subsequent surface treatment, to obtain automotive aluminum alloy wheel products.
  • the 6061 aluminum alloy hot-rolled sheet is punched into a disk-shaped blank having a size of ⁇ 350 ⁇ 65 ⁇ ;
  • the disc-shaped blank is placed on a spinning machine to be strongly spun into a hollow rotating body hub blank; then the spinning blank is heated to 520 ° C in a solid solution furnace, and after quenching for 2.5 h, quenching is performed, and quenching is performed. After that, the aluminum wheel hub is placed in a aging furnace and heated to 175 ° C for 8 hours. Finally, the hub blank is machined and subsequently surface treated to obtain automotive aluminum alloy wheel products.
  • the forged blank is spun into a hollow rotating body hub on the machine; the spinning blank is heated to 520 ° C in a solid solution furnace, quenched after heat preservation for 2.5 h, and the aluminum wheel hub is placed in a furnace after quenching. To 175 ° C, heat preservation 8h; After heat treatment, the hub is machined and subsequently surface treated to obtain automotive aluminum alloy wheel products.
  • the aluminum alloy wheel hub products obtained in the above embodiments and the comparative example 1 and the comparative example 2 were selected to perform corresponding mechanical property tests, and samples were respectively taken in different parts of the hub, and the rim and the spoke portion were subjected to a round bar tensile degree sample. D6x30 is used ; the rim part is made of sheet-like tensile specimen, the width ⁇ 0 is selected, and the thickness is the original thickness of the rim.
  • the tensile test is carried out according to the test standard of GB/T228-2002. Table 1 is the preparation method of the examples and comparative examples. The test results of the aluminum alloy wheel hub are shown in Table 1.
  • the aluminum alloy wheel hub produced by the present invention is mainly applied to the automotive field.
  • the wheel hub of the present invention is not limited to the wheel hub of the automobile field, and can be used as a hub in the related art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Abstract

一种Al-Mg-Si合金轮毂的制造方法,包括以下步骤:第一步,将Al-Mg-Si合金热轧板制成圆片状坯料;第二步,将圆片状坯料预热至450ºC-500ºC;第三步,在450ºC-500ºC温度下对圆片状坯料进行热锻,形成盘状坯料;第四步,将经过热锻的盘状坯料进行淬火处理;第五步,将经过淬火的盘状坯料通过旋压机强力旋压成形,形成空心旋转体轮毂坯料;第六步,将经过旋压成形的轮毂坯料加热到500ºC-580ºC,保温1-4小时后淬火,然后放入时效炉加热到120ºC-220ºC,保温2-8小时;第七步,机加工及表面处理。该制造方法可以提高铝轮毂强度,保持其良好的塑性,并达到降低能耗,提高生产效率的目的。

Description

Al-Mg-Si合金轮毂的制造方法 技术领域
[0001] 本发明涉及一种轮毂的制造方法, 具体涉及一种 Al-Mg-Si合金轮毂的制造方法
背景技术
[0002] 目前, 汽车工业正朝着轻量、 高速、 安全、 节能、 舒适与环境污染轻的方向发 展, 因此铝合金零部件在汽车中的用量日益增多。 轮毂作为汽车行驶系统中的 重要部件之一, 也是一种要求较高的保安件, 它不仅承载汽车的重量, 同吋也 体现着汽车的外观造型。 在过去的十年中, 全球铝合金汽车轮毂产量的年平均 增长率达 7.6%。 由此可见, 随着汽车轻量化的需求日益扩大, 铝合金轮毂在现 代汽车制造中正逐步取代传统的钢制轮毂而被广泛地推广应用。
[0003] 但是, 现有的锻造铝合金轮毂通常以 Al-Mg-Si合金铸棒为原材料, 经镦粗、 初段、 精锻、 冲孔、 固溶、 吋效等工序, 具有工艺复杂, 能耗高等缺点。
技术问题
[0004] 本发明所要解决的技术问题是提供一种 Al-Mg-Si合金轮毂的制造方法, 它可以 解决现有技术工艺复杂, 生产效率低和能耗高的问题, 达到降低能耗, 提高生 产效率的目的。 问题的解决方案
技术解决方案
[0005] 为解决上述技术问题, 本发明 Al-Mg-Si合金轮毂的制造方法的技术解决方案为
, 包括以下步骤:
[0006] 第一步, 备料;
[0007] 将 Al-Mg-Si合金热轧板制成圆片状坯料;
[0008] 所述 Al-Mg-Si合金热轧板采用 Al-Mg-Si合金铸锭经过热轧处理制成; 热轧处理 的方法为: 幵轧温度为 440°C〜500°C, 终轧温度为 300°C〜350°C。
[0009] 所述 Al-Mg-Si合金为 6061、 6082变形铝合金。 [0010] 所述 Al-Mg-Si合金热轧板的厚度为 50mm〜150mm。
[0011] 第二步, 预热;
[0012] 将圆片状坯料预热至 450°C〜500°C;
[0013] 第三步, 热锻;
[0014] 在 450°C〜500°C温度下, 通过锻压机对圆片状坯料进行热锻, 形成盘状坯料, 使轮毂初步成形; 热锻次数为 1〜2次。
[0015] 热锻之前, 先将锻压模具预热至 450°C以上, 将上模与下模分离, 在锻压模具 的工作面上喷洒润滑剂, 将经过预热的圆片状坯料放入锻压模具中。 其中, 锻 造速度≥10mm/s。 终锻温度≥500° 。
[0016] 第四步, 淬火;
[0017] 将经过热锻的盘状坯料进行淬火处理; 淬火在热锻完成后立即进行;
[0018] 第五步, 旋压成形;
[0019] 将经过淬火的盘状坯料通过强力旋压机强力旋压成形, 形成空心旋转体轮毂坯 料;
[0020] 旋压温度≤200^。
[0021] 第六步, 吋效热处理;
[0022] 将经过旋压成形的空心旋转体轮毂坯料放入吋效炉加热到 120°C〜220°C, 保温
2〜8小吋;
[0023] 第七步, 机加工及表面处理;
[0024] 将经过吋效热处理的轮毂坯料进行机加工及表面处理, 得到铝合金轮毂成品。
发明的有益效果
有益效果
[0025] 本发明可以达到的技术效果是:
[0026] 本发明通过对铝合金轮毂所用的原料进行改进, 不采用铸态的 Al-Mg-Si铝合金 棒料为原料, 以达到简化工艺的目的, 使在旋压成形前实现无需镦粗预制坯料 过程。
[0027] 本发明选用的铝合金热轧板是由铸锭经热轧而成; 铸锭经热轧后, 晶粒被细化 延伸, 使晶向趋于一致, 缩孔和疏松被压实; 由于热轧是在再结晶温度以上的 加工, 在金属发生塑性变形的同吋, 会发生恢复、 再结晶等退火作用; 通过热 轧能将铸造状态的粗大晶粒破碎, 显微裂纹愈合, 减少或消除铸造缺陷, 将铸 态组织转变为致密均匀的纤维状变形组织, 从而达到了改善合金组织结构的效 果。 更重要的是, 本发明采用铝合金热轧板为原料, 加工过程中无需镦粗预制 坯料步骤, 在简化工艺, 降低能耗的同吋, 仍然能够保证产品的性能更高。
[0028] 本发明通过控制坯料温度、 锻压速度、 模具温度、 终锻温度, 直接采用热锻后 淬火, 使合金不仅具有良好的固溶效果, 同吋保留了热锻变形组织, 从而能够 提高最终产品的力学性能。
对附图的简要说明
附图说明
[0029] 下面结合附图和具体实施方式对本发明作进一步详细的说明:
[0030] 图 1是本发明 Al-Mg-Si合金轮毂的制造方法的流程示意图;
[0031] 图 2是采用锻压机对圆片状坯料进行热锻的示意图;
[0032] 图 3a、 图 3b是经过热锻所得到的盘状坯料的示意图; 其中图 3a是图 3b的剖面图 [0033] 图 4是采用旋压机对盘状坯料进行强力旋压的示意图;
[0034] 图 5a、 图 5b是经过强力旋压所得到的空心旋转体轮毂坯料的示意图; 其中图 5a 是图 5b的剖面图。
本发明的实施方式
[0035] 如图 1所示, 本发明 Al-Mg-Si合金轮毂的制造方法, 包括以下步骤:
[0036] 第一步, 备料;
[0037] 根据轮毂的大小计算所需坯料的体积, 将 Al-Mg-Si合金热轧板制成圆片状坯料
[0038] Al-Mg-Si合金热轧板采用 Al-Mg-Si合金铸锭经过热轧处理制成; 热轧处理的方 法为 '· 幵轧温度为 440°C〜500°C, 终轧温度为 300°C〜350°C。
[0039] Al-Mg-Si合金优选 6061、 6082等变形铝合金;
[0040] Al-Mg-Si合金热轧板的厚度, 根据轮毂尺寸的要求, 优选为 50mm〜 150mm; [0041] 第二步, 预热;
[0042] 将圆片状坯料加热到 450°C〜500°C进行预热处理;
[0043] 预热的目的是为了提高铝合金的塑性, 降低锻造过程中铝合金的变形抗力, 从 而有利于铝合金的塑性变形;
[0044] 第三步, 热锻;
[0045] 锻压之前, 先将锻压模具预热至 450°C以上, 将上模与下模分离, 在锻压模具 的工作面上喷洒润滑剂, 将经过预热的圆片状坯料 11放入锻压模具中, 如图 2所 示;
[0046] 在 450°C〜500°C温度下, 通过锻压机对放置于锻压模具中的圆片状坯料 11进 行快速热锻, 形成如图 3a、 图 3b所示的盘状坯料, 使轮毂初步成形; 热锻次数为
1〜2次; 锻造速度≥1001111/8, 终锻温度≥500° ;
[0047] 本发明采用热轧板制成的圆片状坯料作为原料, 在锻压成形前无需经过多次预 锻处理 (相当于镦粗) , 并且锻压成形吋也相应的减少了锻压的次数, 大大简 化了生产工艺, 提高了生产效率。
[0048] 本发明还通过控制坯料温度、 模具温度、 锻造速度, 使铝合金在锻压过程中产 生挤压热效应, 使终锻温度≥500°C, 从而保证 Al-Mg-Si合金中 MgSi相充分固溶
[0049] 第四步, 淬火;
[0050] 将经过热锻的盘状坯料进行淬火处理, 淬火在热锻完成后立即进行;
[0051] 淬火可以使 Al-Mg-Si合金中 MgSi相充分固溶, 同吋还可以抑制铝合金高温热变 形后静态再结晶, 防止晶粒继续长大, 保留部分热变形组织, 提高最终产品的 力学性能。
[0052] 第五步, 旋压成形;
[0053] 如图 4所示, 将经过淬火的盘状坯料在不高于 200°C温度下通过强力旋压机强力 旋压成形, 形成如图 5a、 图 5b所示的空心旋转体轮毂坯料;
[0054] 第六步, 吋效热处理;
[0055] 将经过旋压成形的空心旋转体轮毂坯料放入吋效炉加热到 120°C〜220°C, 保温
2〜8h; [0056] 本发明通过吋效热处理, 能够使铝合金中的强化相析出, 从而提高铝合金的强 度。
[0057] 第七步, 机加工及表面处理;
[0058] 将经过吋效热处理的轮毂坯料进行机加工及表面处理, 得到铝合金轮毂成品; [0059] 机加工及表面处理方法为: 去边、 打磨、 抛光和涂装。
实施例
[0060] 将 6061铝合金热轧板冲裁成尺寸为 Φ350χ65ιηιη的圆片状坯料;
[0061] 将圆片状坯料预热到 490°C;
[0062] 锻压工作前, 将锻压模具预热至 480°C, 将上模与下模分离, 在锻压模具的工 作面上喷洒润滑剂, 将预热好的圆片状坯料放入锻压模具中, 用锻压机以 20mm/ s的速度锻压 1次, 制成盘状坯料, 使轮毂初步成形为盘状; 锻压完后立即放入水 中进行淬火处理;
[0063] 将经过淬火的盘状坯料放入旋压机上强力旋压成空心旋转体轮毂坯料; 再将轮 毂坯料放入吋效炉中加热至 175°C, 保温 8h; 最后对轮毂毛坯进行机加工及后续 表面处理, 得到汽车铝合金轮毂产品。
[0064] 比较例 1
[0065] 将 6061铝合金热轧板冲裁成尺寸为 Φ350χ65ιηιη的圆片状坯料;
[0066] 将圆片状坯料预热到 480°C;
[0067] 锻压工作前, 将锻压模具预热至 300°C, 将上模与下模分离, 在锻压模具的工 作面上喷洒润滑剂, 将预热好的圆片状坯料放入锻压模具中, 用锻压机以 8mm/s 的速度进行 1次锻压, 制成盘状坯料, 使轮毂初步成形为盘状;
[0068] 然后将盘状坯料放入旋压机上强力旋压成空心旋转体轮毂坯料; 再将旋压毛坯 料在固溶炉中加热至 520°C, 保温 2.5h后进行淬火处理, 淬火后将铝轮毂放入吋 效炉中加热至 175°C, 保温 8h; 最后对轮毂毛坯进行机加工及后续表面处理, 得 到汽车铝合金轮毂产品。
[0069] 比较例 2
[0070] 根据轮毂的大小计算所需坯料的体积, 将 Φ250ιηιη的铸态的 6061铝合金棒料切 割成圆柱状坯料; 清洗坯料, 除去油污用 35分钟吋间将坯料加热到 460°C, 保温 7 0分钟, 在锻压力机下锻打镦粗到D350mm, 得到圆片状坯料; 将上述得到的圆 片状坯料再次放入到加热炉中加热至 480°C进行预热处理 35分钟;
[0071] 在锻压成形前, 用 20分钟吋间将锻压模具预热至 420°C, 然后将上模与下模分 离, 在锻压模具的工作面上喷洒润滑剂, 将经过高温预热的圆片状坯料放入锻 压模具中, 用锻压机进行锻压 2次, 制成盘形锻压毛坯; 将盘形锻压毛坯进行冲 孔; 将冲孔后的锻压毛坯料加热至 350°C, 在旋压机上将锻造毛坯旋压成空心旋 转体轮毂; 再将旋压毛坯料在固溶炉中加热至 520°C, 保温 2.5h后进行淬火处理 , 淬火后将铝轮毂放入吋效炉中加热至 175°C, 保温 8h; 热处理后对轮毂进行机 加工及后续表面处理, 得到汽车铝合金轮毂产品。
[0072] 选取上述实施例和比较例 1、 比较例 2所得到的铝合金轮毂产品进行相应的力学 性能测试, 分别在轮毂不同部分进行取样, 轮缘和轮辐部位采用圆棒拉伸度样 , 选用 d6x30; 轮辋部位采用片状拉伸试样, 选用宽度 Μ0, 厚度为轮辋原始厚 度, 具体按照 GB/T228-2002检测标准进行拉伸试验, 表 1是实施例及比较例的制 备方法得到的铝合金轮毂的测试结果, 具体试验结果如表 1所示。
[XXXX [0073] 表 1
[0074] 本发明所制得的铝合金轮毂主要应用于汽车领域, 当然本发明的轮毂并不仅限 于汽车领域的轮毂, 作为相关领域的轮毂均可。
[0075] 本发明中所描述的具体实施例仅是对本发明精神作举例说明。 本发明所属技术 领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类 似的方式替代, 但并不会偏离本发明的精神或者超越所附权利要求书所定义的 范围。

Claims

权利要求书
[权利要求 1] 一种 Al-Mg-Si合金轮毂的制造方法, 其特征在于, 包括以下步骤 第一步, 备料;
将 Al-Mg-Si合金热轧板制成圆片状坯料;
第二步, 预热;
将圆片状坯料预热至 450°C〜500°C;
第三步, 热锻;
在 450°C〜500°C温度下, 通过锻压机对圆片状坯料进行热锻, 形 成盘状坯料, 使轮毂初步成形;
第四步, 淬火;
将经过热锻的盘状坯料进行淬火处理;
第五步, 旋压成形;
将经过淬火的盘状坯料通过旋压机强力旋压成形, 形成空心旋转 体轮毂坯料;
第六步, 吋效热处理;
将经过旋压成形的空心旋转体轮毂坯料放入吋效炉加热到 120°C〜 220°C, 保温 2〜8小吋;
第七步, 机加工及表面处理;
将经过吋效热处理的轮毂坯料进行机加工及表面处理, 得到铝合 金轮毂成品。
[权利要求 2] 根据权利要求 1所述的 Al-Mg-Si合金轮毂的制造方法, 其特征在于
, 所述第一步中的 Al-Mg-Si合金热轧板采用 Al-Mg-Si合金铸锭经过 热轧处理制成; 所述热轧处理的方法为: 幵轧温度为 440°C〜500 °C, 终轧温度为 300°C〜350°C。
[权利要求 3] 根据权利要求 1所述的 Al-Mg-Si合金轮毂的制造方法, 其特征在于
, 所述第一步中的 Al-Mg-Si合金为 6061、 6082变形铝合金。
[权利要求 4] 根据权利要求 1所述的 Al-Mg-Si合金轮毂的制造方法, 其特征在于 , 所述第一步中的 Al-Mg-Si合金热轧板的厚度为 50mm〜150mm。
[权利要求 5] 根据权利要求 1所述的 Al-Mg-Si合金轮毂的制造方法, 其特征在于
, 所述第三步中的热锻次数为 1〜2次。
[权利要求 6] 根据权利要求 1所述的 Al-Mg-Si合金轮毂的制造方法, 其特征在于
, 所述第三步中的热锻之前, 先将锻压模具预热至 450°C以上。
[权利要求 7] 根据权利要求 1所述的 Al-Mg-Si合金轮毂的制造方法, 其特征在于
, 所述第三步中的锻造速度≥10mm/s。
[权利要求 8] 根据权利要求 1所述的 Al-Mg-Si合金轮毂的制造方法, 其特征在于
, 所述第三步中的终锻温度≥500°C。
[权利要求 9] 根据权利要求 1所述的 Al-Mg-Si合金轮毂的制造方法, 其特征在于
, 所述第四步淬火在热锻完成后立即进行, 淬火转移吋间≤30s。
[权利要求 10] 根据权利要求 1所述的 Al-Mg-Si合金轮毂的制造方法, 其特征在于
, 所述第五步中的旋压温度≤200°C。
PCT/CN2014/088483 2014-06-13 2014-10-13 Al-Mg-Si合金轮毂的制造方法 WO2015188549A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410266096.6A CN104015012A (zh) 2014-06-13 2014-06-13 Al-Mg-Si合金轮毂的制造方法
CN201410266096.6 2014-06-13

Publications (1)

Publication Number Publication Date
WO2015188549A1 true WO2015188549A1 (zh) 2015-12-17

Family

ID=51432166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088483 WO2015188549A1 (zh) 2014-06-13 2014-10-13 Al-Mg-Si合金轮毂的制造方法

Country Status (2)

Country Link
CN (1) CN104015012A (zh)
WO (1) WO2015188549A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230203633A1 (en) * 2021-12-24 2023-06-29 Dalian University Of Technology Hot forming method and device for large-size aircraft thin-walled part of high-strength aluminum alloy

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104015012A (zh) * 2014-06-13 2014-09-03 浙江巨科实业有限公司 Al-Mg-Si合金轮毂的制造方法
CN106086733A (zh) * 2016-07-27 2016-11-09 武汉理工大学 汽车铝合金底盘类零件锻造工艺
CN112067473B (zh) * 2020-09-08 2022-03-22 东北大学 一种模具钢控锻控冷过程的实验方法
CN113618340B (zh) * 2021-08-20 2022-06-07 浙江同兴金属锻件股份有限公司 一种高强度摩托车脚蹬支架的加工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274135A (ja) * 2008-04-16 2009-11-26 Washi Kosan Co Ltd 軽合金製鍛造ホイールとその製造方法
CN102814621A (zh) * 2011-06-07 2012-12-12 韦光东 汽车轮毂等温锻造及旋压成形工艺
CN103203602A (zh) * 2013-04-15 2013-07-17 中国兵器工业第五二研究所 一种镁合金轮毂的制备方法
CN103481029A (zh) * 2013-09-16 2014-01-01 浙江巨科铝业有限公司 一种锻旋铝合金轮毂的制备方法
CN103817495A (zh) * 2014-03-05 2014-05-28 浙江巨科实业有限公司 铝合金轮毂的制造方法
CN104015012A (zh) * 2014-06-13 2014-09-03 浙江巨科实业有限公司 Al-Mg-Si合金轮毂的制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101653901B (zh) * 2009-09-15 2011-01-26 丁松伟 轻质铝合金轮辋的锻旋制造方法
JP5640399B2 (ja) * 2010-03-03 2014-12-17 日本軽金属株式会社 陽極酸化皮膜を備えたアルミニウム合金板およびその製造方法
CN103381479A (zh) * 2012-05-03 2013-11-06 韦光东 一种大型客车铝轮毂制造方法
CN103056611B (zh) * 2012-12-20 2014-10-29 河北立中有色金属集团有限公司 一种镁合金汽车轮毂铸造旋压复合成形方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274135A (ja) * 2008-04-16 2009-11-26 Washi Kosan Co Ltd 軽合金製鍛造ホイールとその製造方法
CN102814621A (zh) * 2011-06-07 2012-12-12 韦光东 汽车轮毂等温锻造及旋压成形工艺
CN103203602A (zh) * 2013-04-15 2013-07-17 中国兵器工业第五二研究所 一种镁合金轮毂的制备方法
CN103481029A (zh) * 2013-09-16 2014-01-01 浙江巨科铝业有限公司 一种锻旋铝合金轮毂的制备方法
CN103817495A (zh) * 2014-03-05 2014-05-28 浙江巨科实业有限公司 铝合金轮毂的制造方法
CN104015012A (zh) * 2014-06-13 2014-09-03 浙江巨科实业有限公司 Al-Mg-Si合金轮毂的制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230203633A1 (en) * 2021-12-24 2023-06-29 Dalian University Of Technology Hot forming method and device for large-size aircraft thin-walled part of high-strength aluminum alloy

Also Published As

Publication number Publication date
CN104015012A (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
WO2015188550A1 (zh) Al-Mg-Si合金轮毂的制造方法
WO2015188546A1 (zh) 铝合金轮毂的制造方法
WO2015188545A1 (zh) 铝合金轮毂的制造方法
WO2015131522A1 (zh) 铝合金轮毂的制造方法
WO2015188544A1 (zh) Al-Mg合金轮毂的制造方法
CN103481029B (zh) 一种锻旋铝合金轮毂的制备方法
CN106868436B (zh) 一种快径锻联合生产高温合金gh4169细晶棒材制造方法
WO2015188549A1 (zh) Al-Mg-Si合金轮毂的制造方法
CN103045974B (zh) 提高变形铝合金强度并保持其塑性的热加工方法
CN104493031B (zh) 一种卡车铝合金轮毂锻造方法
CN104439909B (zh) 一种铝合金轮毂锻造方法
CN103361586B (zh) 一种提高tc4-dt钛合金板材强韧性的加工方法
CN103990946A (zh) H型铝合金轮毂的制造方法
WO2015188548A1 (zh) 高镁铝合金商用车轮毂的制造方法
CN106734205B (zh) 一种短流程轧制制备超塑性镁合金的方法
CN104388859A (zh) 一种同时提高铜铝合金强度和塑性的方法
CN110918845A (zh) 一种提高钛合金棒材成材率的锻造方法
CN102712985A (zh) 从板材形成复杂形状的部件的方法
CN105316546A (zh) 旋压轮毂用Al-Mg-Si系铝合金材料及制备旋压轮毂的方法
CN105268903A (zh) 铝合金轮毂的锻造成形方法
CN107866660A (zh) 一种模具钢材加工工艺
JPH03236452A (ja) マグネシウム合金鍛造ホイールの製造方法
CN103464977B (zh) 一种异形臂的制造方法
CN104259789A (zh) 铝合金二片式轮辋的制备方法
CN110216146B (zh) 一种低成本镁合金板材控边裂轧制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14894731

Country of ref document: EP

Kind code of ref document: A1