WO2015188474A1 - 显示基板、显示面板及显示装置 - Google Patents

显示基板、显示面板及显示装置 Download PDF

Info

Publication number
WO2015188474A1
WO2015188474A1 PCT/CN2014/086076 CN2014086076W WO2015188474A1 WO 2015188474 A1 WO2015188474 A1 WO 2015188474A1 CN 2014086076 W CN2014086076 W CN 2014086076W WO 2015188474 A1 WO2015188474 A1 WO 2015188474A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
filter
layer
display
display panel
Prior art date
Application number
PCT/CN2014/086076
Other languages
English (en)
French (fr)
Inventor
焦志强
孙力
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP14861113.0A priority Critical patent/EP3156841A4/en
Priority to US14/646,131 priority patent/US9568764B2/en
Publication of WO2015188474A1 publication Critical patent/WO2015188474A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/16Materials and properties conductive
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/02Function characteristic reflective
    • G02F2203/026Function characteristic reflective attenuated or frustrated internal reflection
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • Embodiments of the present invention relate to a display substrate, a display panel, and a display device.
  • OLEDs organic electroluminescent display devices
  • LCDs liquid crystal display devices
  • the electrode and the common electrode are generally prepared by using Indium Tin Oxides having a refractive index of 1.8, and a large refractive index difference exists between the ITO film and the glass substrate having a refractive index of 1.5, after the incident light passes through the ITO film.
  • ITO film Indium Tin Oxides having a refractive index of 1.8
  • refractive index difference exists between the ITO film and the glass substrate having a refractive index of 1.5, after the incident light passes through the ITO film.
  • part of the incident light will be totally reflected.
  • the light emitted from the glass substrate may be lost, thereby directly affecting the display brightness of the OLED and the LCD.
  • a display substrate, a substrate substrate, and a color film structure and a transparent conductive oxide film layer which are sequentially stacked on the substrate substrate are provided;
  • the color film structure includes a matrix a plurality of filter units arranged in different colors; wherein the filter unit of at least one color of the color filter structure comprises at least two layers of filter films disposed in a stack, and the refractive index of each layer of the filter film is from the a direction in which the base substrate is directed toward the transparent conductive oxide film layer is gradually increased, and a refractive index of the layer of the filter film adjacent to the substrate substrate is greater than a refractive index of the substrate substrate, The refractive index of the filter film adjacent to the transparent conductive oxide film layer is smaller than the refractive index of the transparent conductive oxide film layer.
  • the thickness of each of the filter films is less than or equal to 0.45 [mu]m.
  • the thickness of each of the filter films is less than a minimum of visible light wavelength.
  • the color film structure includes a blue filter unit including at least two layers of filter films disposed in a stack.
  • the blue filter unit comprises a four-layer filter film disposed in a stack.
  • the filter units of all colors in the color film structure are stacked At least two layers of filter film.
  • the filter units of all colors in the color film structure comprise four layers of filter films disposed in a stack.
  • the color film structure further includes a red filter unit and a green filter unit, and the red filter unit and the green filter unit are disposed in a single layer structure.
  • the display substrate further includes a planar layer disposed between the color film structure and the transparent conductive oxide film layer.
  • the display substrate further includes a black matrix disposed between adjacent filter units.
  • a display panel comprising the above display substrate.
  • the display panel is a liquid crystal display panel or an organic electroluminescent display panel.
  • the display panel is a liquid crystal display panel including the display substrate as a color filter substrate, an array substrate, and a liquid crystal layer sandwiched between the color filter substrate and the array substrate.
  • the display panel is an organic electroluminescent display panel, wherein the transparent conductive oxide film layer functions as an anode, and the organic electroluminescent display panel further includes a light emitting layer, a cathode, a pixel defining layer, and an encapsulation layer.
  • a display device comprising the above display panel.
  • FIG. 1a and 1b are schematic structural views of a display substrate according to an embodiment of the present invention.
  • FIGS. 2a-2d are schematic structural views of a display panel as a liquid crystal display panel according to an embodiment of the present invention.
  • 3a and 3b are schematic structural views of an organic electroluminescent display panel according to an embodiment of the present invention.
  • a display substrate includes: a substrate substrate 1, and a color film structure 2 and a transparent conductive oxide film layer 3 which are sequentially stacked on the substrate substrate 1.
  • the color film structure 2 includes a plurality of filter units arranged in a matrix and having different colors (as shown in FIGS. 1a and 1b, respectively, red (R), green (G), and blue (B) filter units);
  • the filter unit of at least one color in the color filter structure 2 includes at least two layers of filter films disposed in a stack;
  • the refractive index of each layer of the filter film gradually increases from the direction in which the base substrate 1 is directed to the transparent conductive oxide film layer 3, and is adjacent to the base substrate 1.
  • the refractive index of one layer of the filter film is larger than the refractive index of the base substrate 1, and the refractive index of the filter film adjacent to the transparent conductive oxide film layer 3 is smaller than that of the transparent conductive oxide film layer 3.
  • the direction of the arrow shown in FIG. 1a and FIG. 1b is incident on the light from the transparent conductive oxide film layer 3, and after passing through the color filter structure 2, is emitted from the substrate substrate 1.
  • the total reflection phenomenon caused by the large refractive index difference between the transparent conductive oxide film layer 3 and the base substrate 1 can be reduced, thereby reducing the loss of light in the transmission process of the display panel, thereby improving The display brightness of the display device.
  • the transparent conductive oxide film layer 3 may be made of indium tin oxide (ITO) or indium zinc oxide (IZO, Idium Zinc Oxides) or indium gallium zinc oxide (IGZO, Indium Gallium Zinc Oxides). , not limited here.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • IGZO indium gallium zinc oxide
  • the refractive index of ITO is 1.92
  • the refractive index of IZO and IGZO is 2.05
  • the base substrate 1 is generally a glass substrate having a refractive index of 1.5. Therefore, the refractive index of a layer of the filter film adjacent to the substrate 1 is greater than the refractive index of the glass substrate, for example, greater than 1.5, and the refractive index of the filter film adjacent to the transparent conductive oxide film layer 3 is transparently conductive.
  • the refractive index of the oxide film layer 3 is, for example, less than 1.9.
  • the effect of total reflection in the filter film is better.
  • the direction of the oxide film layer 3 is gradually increased, and a refractive index of the filter film adjacent to the substrate 1 is larger than that of the substrate 1 and adjacent to the transparent conductive oxide film layer 3. Since the refractive index of the layer filter film is smaller than the refractive index of the transparent conductive oxide film layer 3, it is necessary to actually set the number of layers of the filter film according to the material of the conventional filter film.
  • the transparent conductive oxide film layer 3 may be disposed in a whole layer; or, according to the function of the transparent conductive oxide film layer 3 in the display substrate, a patterning process may be used to form transparent conductive oxide.
  • the pattern of the film layer 3 is not limited herein.
  • a color filter structure 2 as a filter unit of three colors of red (R), green (G), and blue (B); or, in order to improve display brightness of the display device
  • the color filter structure 2 may also include filter elements of four colors of red (R), green (G), blue (B), and white (W); or, in order to increase the color gamut of the display screen of the display device, the color film
  • the structure 2 may further include filter units of four colors of red (R), green (G), blue (B), and yellow (Y); or, the color filter structure 2 may further include filter units of other colors, This is not limited.
  • At least one color filter unit in the color film structure 2 may be disposed to include at least two layers of filter films disposed in a stacked manner.
  • only one of the color filter elements of the color filter structure 2 such as red (R), green (G), blue (B), white (W), and yellow (Y) may be selected.
  • the filter unit is configured to include at least two layers of filter films disposed in a stack. As shown in FIG.
  • the filter unit of only the blue color in the color filter structure 2 is composed of four layers of filter films disposed in a stacked manner; or, the filter unit of any two colors in the color filter structure 2 may be a filter unit of any two colors such as red (R), green (G), blue (B), white (W), and yellow (Y) is disposed to include at least two layers of filter films disposed in a stacked manner; Alternatively, it is also possible to arrange the filter units of all colors in the color filter structure 2 to include at least two layers of filter films disposed in a stack. As shown in FIG. 1b, the filter elements of the three colors of red (R), green (G) and blue (B) in the color film structure 2 are composed of four layers of filter films arranged in a stack, which is not limited herein. .
  • the blue (B) filter unit Compared with the red (R) filter unit and the green (G) filter unit, the blue (B) filter unit has low luminous efficiency, and therefore, in order to achieve a better white balance for the entire display screen, the present invention
  • only the filter unit of the color film structure 2 having a color of blue (B) may be disposed to include at least two layers of filter films disposed in a stacked manner, and filter units of other colors ( For example, red (R), green (G), white (W), and yellow (Y) are set to a single layer structure.
  • the filter unit of the color film structure 2 having a color of blue (B) is composed of four layers stacked.
  • the filter film is composed, and the filter units of red (R) and green (G) are single-layer structures.
  • a red (R) resin-based material having a refractive index of 1.65 can be spin-coated on the base substrate 1, and subjected to exposure, development, and curing treatment to form a layer of red (R).
  • a red (R) filter unit of the filter film a green (G) resin material having a refractive index of 1.68 is spin-coated on the base substrate 1, and is exposed, developed, and cured to form a layer of green (G) a green (G) filter unit of the filter film; a blue (B) resin material having a refractive index of 1.57, 1.62, 1.67, and 1.72 is spin-coated four times on the base substrate 1, respectively, and exposed, developed, and cured.
  • the treatment forms a blue (B) filter unit having four layers of blue (B) filter films.
  • the filter units of all colors in the color film structure 2 may be disposed to include at least two layers of filter films disposed in a stacked manner. As shown in FIG. 1b, the filter elements of the three colors of red (R), green (G) and blue (B) in the color film structure 2 are composed of four layers of filter films arranged in a stack.
  • red (R) resin materials having refractive indices of 1.55, 1.6, 1.65, and 1.75 can be spin-coated four times on the base substrate 1, respectively, and exposed, developed, and The curing process forms a red (R) filter unit having four red (R) filter films; and the green (G) resin having refractive indices of 1.55, 1.59, 1.71, and 1.75 is spin-coated four times on the base substrate 1, respectively.
  • G green
  • G green
  • B blue
  • the thickness of each layer of the filter film is set to be less than or equal to 0.45 ⁇ m. Since the emission wavelengths of the red (R), green (G) and blue (B) colors of the three primary colors are in the range of about 0.45 ⁇ m to 0.54 ⁇ m, each layer of the filter can be ensured when the thickness of each filter film is less than or equal to 0.45 ⁇ m.
  • the thickness of the light film is smaller than the emission wavelengths of the three primary colors of red (R), green (G), and blue (B), so that light of three primary colors of red (R), green (G), and blue (B) can be realized.
  • Each layer of the filter film is transmitted by electromagnetic waves without occurrence of total reflection in geometrical optics, thereby further reducing the loss of light during transmission of the display panel, thereby further improving the display device. Display brightness.
  • the thickness of each layer of the filter film is set to be smaller than the visible light wave
  • the minimum value of the length is set to be less than 0.38 ⁇ m for each layer of the filter film. This ensures that the total visible light band does not cause total reflection in each layer of the filter film, thereby avoiding the light transmission process on the display panel. The loss in the display, in turn, significantly increases the display brightness of the display device.
  • the thickness of one or several layers of the filter film can be appropriately adjusted, and the half of the light passing through the filter films of each layer can be made by the microcavity effect.
  • the width and width are narrowed, so that the purity of the pixel color can be improved.
  • a flat layer 4 is provided between the color film structure 2 and the transparent conductive oxide film layer 3, and the flat layer 4 is generally made by spin coating acrylic.
  • the thickness of the flat layer 4 is, for example, about 4 ⁇ m, obtained by curing the material and curing it.
  • a black matrix 5 may be further disposed between the respective filter units, and the black matrix 5 is generally obtained by spin coating a resin-based material and subjected to exposure, development, and curing treatment, and the thickness of the black matrix 5 is, for example, 1.5 ⁇ m.
  • the thickness of each of the filter units in the color filter structure 2 is set to be 1.5 ⁇ m to 3 ⁇ m, that is, the thickness of each filter unit in the color filter structure 2 is greater than the thickness of the black matrix 5.
  • an embodiment of the present invention further provides a display panel, including the above display substrate provided by the embodiment of the present invention.
  • a display panel including the above display substrate provided by the embodiment of the present invention.
  • the display panel refer to the embodiment of the above display substrate, and the repeated description is omitted.
  • the display panel may be a liquid crystal display panel (LCD); or may be an organic electroluminescent display panel (OLED), which is not limited herein.
  • LCD liquid crystal display panel
  • OLED organic electroluminescent display panel
  • FIG. 2a and 2b are schematic views of the display substrate shown in Figs. 1a and 1b when applied to an LCD, in which the transparent conductive oxide layer 3 serves as a common electrode.
  • the base substrate 1 serves as a color filter substrate of the LCD, and the transparent conductive oxide film layer 3 serves as a common electrode.
  • the LCD further includes: an array substrate 6 disposed opposite to the color filter substrate, and a liquid crystal between the color filter substrate and the array substrate 6.
  • the layer 7 and the backlight module 8 and the like located on the side of the array substrate 6 facing away from the color filter substrate. As shown in FIG. 2a and FIG.
  • the transparent conductive oxide film layer 3 as a common electrode may be located on the side of the color filter substrate close to the liquid crystal layer, that is, a TN (Twisted Nematic) type LCD.
  • the transparent conductive oxide film layer 3 may be disposed as a common electrode on the side of the array substrate 6 adjacent to the liquid crystal layer, that is, an Advanced Super Dimension Switch (ADS) type LCD, which is not limited herein.
  • ADS Advanced Super Dimension Switch
  • the light emitted by the backlight module 8 passes through the transparent conductive oxide film layer 3, that is, the common electrode and the color film structure 2, and then exits from the substrate substrate 1, that is, the color filter substrate, due to at least one color in the color film structure 2.
  • the filter unit comprises at least two layers of filter films arranged in a layer, and the refractive index of each layer of the filter film The direction from the base substrate 1 , that is, the color filter substrate, to the transparent conductive oxide film layer 3 , that is, the common electrode, is gradually increased, and the refractive index of the filter film adjacent to the base substrate 1 , that is, the color filter substrate, is larger than that of the substrate.
  • the refractive index of the substrate 1 that is, the color filter substrate, and the filter film adjacent to the transparent conductive oxide film layer 3 , that is, the common electrode, are smaller than the refractive index of the transparent conductive oxide film layer 3 , that is, the common electrode, so that Reducing the total reflection phenomenon caused by the large refractive index difference between the transparent conductive oxide film layer 3, that is, the common electrode and the substrate substrate 1, that is, the color filter substrate, thereby reducing the transmission of light in the LCD (as shown in FIG. 2a and FIG.
  • the direction of the arrow shown in 2b is the loss in the process of light transmission, which in turn can increase the display brightness of the LCD.
  • FIGS. 2c and 2d are schematic views of the display substrate shown in Figs. 1a and 1b when applied to an LCD in which a transparent conductive oxide layer 3 is used as a pixel electrode.
  • the transparent conductive oxide film layer 3 is located on the side of the array substrate 6 close to the liquid crystal layer, and the liquid crystal layer 7 is located between the transparent conductive oxide film layer 3 and the color filter structure 2.
  • the other layers of Figures 2c and 2d are similar to those shown in Figures 2a and 2b and will not be described here.
  • the LCD further includes a thin film transistor (TFT), and the TFT may be, for example, a low temperature polysilicon TFT or an oxide TFT or a single crystal silicon TFT, which will not be described herein.
  • TFT thin film transistor
  • FIGS. 1a and 3b are schematic views of the display substrate shown in FIGS. 1a and 1b when applied to an OLED.
  • the base substrate 1 serves as a base substrate having a TFT
  • the transparent conductive oxide film layer 3 serves as an anode in the organic electroluminescent structure
  • the TFT passes through the via hole in the flat layer 4 and the transparent conductive oxide film layer 3, that is, the anode electrical property.
  • the OLED may further include: a light-emitting layer 9 and a cathode 10 which are sequentially stacked on the transparent conductive oxide film layer 3, that is, an anode, and a pixel defining layer 11 provided on the flat layer 4 and in a region corresponding to the black matrix 5.
  • an encapsulation layer 12 bonded to the cathode 10.
  • the light emitted from the light-emitting layer 9 sequentially passes through the transparent conductive oxide film layer 3, that is, the anode and the color film structure 2, and then exits from the base substrate 1, since the filter unit of at least one color in the color filter structure 2 includes a stacked arrangement.
  • the refractive index of the adjacent one of the filter films is larger than the refractive index of the base substrate 1, and the refractive index of the filter film adjacent to the transparent conductive oxide film layer 3, that is, the anode, is smaller than that of the transparent conductive oxide film layer 3.
  • the refractive index of the anode in this way, can reduce the total reflection phenomenon caused by the large refractive index difference between the transparent conductive oxide film layer 3, that is, the anode and the substrate substrate 1, thereby reducing the transmission of light in the OLED (as shown in the figure).
  • 3a and the direction of the arrow shown in Figure 3b is the transmission direction of the light), and thus To improve the display brightness of the OLED.
  • a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer are further included between the anode and the cathode 10 in the OLED, and are not described herein.
  • the luminescence of the OLED may be, for example, full-fluorescence luminescence or full-phosphorescence luminescence or phosphorescence-fluorescent composite luminescence, which is not limited herein.
  • an embodiment of the present invention further provides a display device, which is provided by the embodiment of the present invention.
  • the display device may be: a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, Any product or part that has a display function, such as a navigator.
  • a display function such as a navigator.
  • the display substrate, the display panel and the display device are provided by the embodiment of the present invention.
  • the filter unit of at least one color in the color film structure of the display substrate is composed of at least two layers of filter films disposed in a stack, and is filtered by at least two layers.
  • the refractive index of each layer of the filter film gradually increases from the direction in which the base substrate is directed to the transparent conductive oxide film layer, and the refractive index of the filter film adjacent to the substrate substrate substrate.
  • the refractive index of the layer of the filter film adjacent to the transparent conductive oxide film layer is smaller than the refractive index of the transparent conductive oxide film layer, so that the light is incident from the transparent conductive oxide film layer.
  • the total reflection phenomenon caused by the large refractive index difference between the transparent conductive oxide film layer and the substrate can be reduced, thereby reducing the light display.
  • the loss of the panel during transmission can further increase the display brightness of the display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Filters (AREA)

Abstract

一种显示基板、显示面板及显示装置。该显示基板包括:衬底基板(1),以及在衬底基板(1)上依次层叠设置的彩膜结构(2)和透明导电氧化物膜层(3)。彩膜结构(2)包括呈矩阵排列且颜色不同的多个滤光单元;其中彩膜结构(2)中至少一种颜色的滤光单元包括层叠设置的至少两层滤光膜,各层滤光膜的折射率从衬底基板(1)指向透明导电氧化物膜层(3)的方向逐渐增大,且与衬底基板(1)相邻的一层滤光膜的折射率大于衬底基板(1)的折射率,与透明导电氧化物膜层(3)相邻的一层滤光膜的折射率小于透明导电氧化物膜层(3)的折射率。该显示基板减少了光在显示面板的传输过程中的损失,进而提高了显示装置的显示亮度。

Description

显示基板、显示面板及显示装置 技术领域
本发明实施例涉及一种显示基板、显示面板及显示装置。
背景技术
现有的有机电致发光显示器件(OLED,Organic Light Emitting Diode)和液晶显示器件(LCD,Liquid Crystal Display)都普遍存在显示亮度不高的问题,这是由于OLED中的阳极以及LCD中的像素电极和公共电极一般采用折射率为1.8的氧化铟锡(ITO,Indium Tin Oxides)制备,ITO薄膜与折射率为1.5的玻璃基板之间存在较大的折射率差,在入射光经过ITO薄膜后射向玻璃基板的过程中,部分入射光会发生全反射的现象,这样,从玻璃基板出射的光会存在损失的问题,从而直接影响OLED和LCD的显示亮度。
发明内容
根据本发明的第一方面,提供了一种显示基板,衬底基板,以及在所述衬底基板上依次层叠设置的彩膜结构和透明导电氧化物膜层;所述彩膜结构包括呈矩阵排列且颜色不同的多个滤光单元;其中所述彩膜结构中至少一种颜色的滤光单元包括层叠设置的至少两层滤光膜,各层所述滤光膜的折射率从所述衬底基板指向所述透明导电氧化物膜层的方向逐渐增大,且与所述衬底基板相邻的一层所述滤光膜的折射率大于所述衬底基板的折射率,与所述透明导电氧化物膜层相邻的一层所述滤光膜的折射率小于所述透明导电氧化物膜层的折射率。
在一个示例中,每层所述滤光膜的厚度均小于或等于0.45μm。
在一个示例中,每层所述滤光膜的厚度均小于可见光波长的最小值。
在一个示例中,所述彩膜结构包括蓝色的滤光单元,该蓝色的滤光单元包括层叠设置的至少两层滤光膜。
在一个示例中,所述蓝色的滤光单元包括层叠设置的四层滤光膜。
在一个示例中,所述彩膜结构中所有颜色的滤光单元均包括层叠设置的 至少两层滤光膜。
在一个示例中,所述彩膜结构中所有颜色的滤光单元均包括层叠设置的四层滤光膜。
在一个示例中,所述彩膜结构还包括红色滤光单元和绿色滤光单元,所述红色滤光单元和所述绿色滤光单元设置为单层结构。
在一个示例中,显示基板还包括平坦层,设置在彩膜结构与透明导电氧化物膜层之间。
在一个示例中,显示基板还包括黑矩阵,设置在相邻的滤光单元之间。
根据本发明的第二方面,提供了一种显示面板,包括上述的显示基板。
在一个示例中,所述显示面板为液晶显示面板或有机电致发光显示面板。
在一个示例中,所述显示面板为液晶显示面板,包括作为彩膜基板的所述显示基板、阵列基板、以及夹在彩膜基板和阵列基板之间的液晶层。
在一个示例中,所述显示面板为有机电致发光显示面板,其中所述透明导电氧化物膜层作为阳极,该有机电致发光显示面板还包括发光层、阴极、像素限定层以及封装层。
根据本发明的第三方面,提供了一种显示装置,包括上述的显示面板。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1a和图1b分别为本发明实施例提供的显示基板的结构示意图;
图2a-图2d分别为本发明实施例提供的显示面板为液晶显示面板的结构示意图;
图3a和图3b分别为本发明实施例提供的显示面板为有机电致发光显示面板的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然, 所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
附图中各膜层的形状和厚度不反映其真实比例,目的只是示意说明本发明的内容。
本发明实施例提供的一种显示基板,如图1a和图1b所示,包括:衬底基板1,以及在衬底基板1上依次层叠设置的彩膜结构2和透明导电氧化物膜层3;彩膜结构2包括呈矩阵排列且颜色不同的多个滤光单元(如图1a和图1b所示的分别为红色(R)、绿色(G)和蓝色(B)滤光单元);
彩膜结构2中至少一种颜色的滤光单元包括层叠设置的至少两层滤光膜;
在包括至少两层滤光膜的滤光单元中,各层滤光膜的折射率从衬底基板1指向透明导电氧化物膜层3的方向逐渐增大,且与衬底基板1相邻的一层滤光膜的折射率大于衬底基板1的折射率,与透明导电氧化物膜层3相邻的一层滤光膜的折射率小于透明导电氧化物膜层3的折射率。
本发明实施例提供的上述显示基板中,如图1a和图1b所示的箭头方向,在光从透明导电氧化物膜层3处入射,经过彩膜结构2后从衬底基板1处出射的过程中,可以减少由于透明导电氧化物膜层3与衬底基板1之间较大的折射率差所导致的全反射现象,从而可以减少光在显示面板的传输过程中的损失,进而可以提高显示装置的显示亮度。
在一个示例中,透明导电氧化物膜层3可以采用氧化铟锡(ITO,Indium Tin Oxides)或氧化铟锌(IZO,Idium Zinc Oxides)或氧化铟镓锌(IGZO,Indium Gallium Zinc Oxides)等制作,在此不做限定。ITO的折射率为1.92,IZO和IGZO的折射率为2.05,衬底基板1一般为折射率为1.5的玻璃基板。因此,与衬底基板1相邻的一层滤光膜的折射率大于玻璃基板的折射率,例如大于1.5,与透明导电氧化物膜层3相邻的一层滤光膜的折射率透明导电氧化物膜层3的折射率,例如小于1.9。
在一个示例中,包括至少两层滤光膜的滤光单元中,滤光膜的层数越多,相邻两个滤光膜之间的折射率差越小,可以使减少光在各层滤光膜中全反射的效果越佳。当然,需要满足各层滤光膜的折射率从衬底基板1指向透明导 电氧化物膜层3的方向逐渐增大,且与衬底基板1相邻的一层滤光膜的折射率大于衬底基板1的折射率,与透明导电氧化物膜层3相邻的一层滤光膜的折射率小于透明导电氧化物膜层3的折射率,因此,需要根据现有的制作滤光膜的材料实际设置滤光膜的层数。
如图1a和图1b所示,透明导电氧化物膜层3可以为整层设置;或者,根据透明导电氧化物膜层3在显示基板中所起的作用,还可以采用构图工艺形成透明导电氧化物膜层3的图形,在此不做限定。
图1a和图1b均是以彩膜结构2包括红色(R)、绿色(G)和蓝色(B)三种颜色的滤光单元为例进行说明的;或者,为了提高显示装置的显示亮度,彩膜结构2也可以包括红色(R)、绿色(G)、蓝色(B)和白色(W)四种颜色的滤光单元;或者,为了增加显示装置显示画面的色域,彩膜结构2还可以包括红色(R)、绿色(G)、蓝色(B)和黄色(Y)四种颜色的滤光单元;或者,彩膜结构2还可以包括其他颜色的滤光单元,在此不做限定。
本发明实施例提供的上述显示基板中,可以将彩膜结构2中至少一种颜色的滤光单元设置为包括层叠设置的至少两层滤光膜。例如,可以仅将彩膜结构2中一种颜色的滤光单元(如红色(R)、绿色(G)、蓝色(B)、白色(W)和黄色(Y)中的任意一种颜色的滤光单元)设置为包括层叠设置的至少两层滤光膜。如图1a所示,彩膜结构2中仅颜色为蓝色的滤光单元由层叠设置的四层滤光膜组成;或者,也可以将彩膜结构2中任意两种颜色的滤光单元(如红色(R)、绿色(G)、蓝色(B)、白色(W)和黄色(Y)中的任意两种颜色的滤光单元)设置为包括层叠设置的至少两层滤光膜;或者,还可以将彩膜结构2中所有颜色的滤光单元均设置为包括层叠设置的至少两层滤光膜。如图1b所示,彩膜结构2中红色(R)、绿色(G)和蓝色(B)三种颜色的滤光单元均由层叠设置的四层滤光膜组成,在此不做限定。
与红色(R)滤光单元和绿色(G)滤光单元相比,蓝色(B)滤光单元的发光效率较低,因此,为了使整个显示画面能够达到较好的白平衡,本发明实施例提供的上述显示基板中,可以仅将彩膜结构2中颜色为蓝色(B)的滤光单元设置为包括层叠设置的至少两层滤光膜,而将其他颜色的滤光单元(如红色(R)、绿色(G)、白色(W)和黄色(Y)等)设置为单层结构。如图1a所示,彩膜结构2中颜色为蓝色(B)的滤光单元由层叠设置的四层 滤光膜组成,颜色为红色(R)和绿色(G)的滤光单元均为单层结构。
在制作如图1a所示的显示基板时,例如可以在衬底基板1上旋涂折射率为1.65的红色(R)树脂类材料,并经过曝光、显影和固化处理形成具有一层红色(R)滤光膜的红色(R)滤光单元;在衬底基板1上旋涂折射率为1.68的绿色(G)树脂类材料,并经过曝光、显影和固化处理形成具有一层绿色(G)滤光膜的绿色(G)滤光单元;在衬底基板1上分别四次旋涂折射率为1.57、1.62、1.67和1.72的蓝色(B)树脂类材料,并经过曝光、显影和固化处理形成具有四层蓝色(B)滤光膜的蓝色(B)滤光单元。
为了提高整个显示画面的显示亮度,在本发明实施例提供的上述显示基板中,可以将彩膜结构2中所有颜色的滤光单元均设置为包括层叠设置的至少两层滤光膜。如图1b所示,彩膜结构2中红色(R)、绿色(G)和蓝色(B)三种颜色的滤光单元均由层叠设置的四层滤光膜组成。
在制作如图1b所示的显示基板时,例如可以在衬底基板1上分别四次旋涂折射率为1.55、1.6、1.65和1.75的红色(R)树脂类材料,并经过曝光、显影和固化处理形成具有四层红色(R)滤光膜的红色(R)滤光单元;在衬底基板1上分别四次旋涂折射率为1.55、1.59、1.71和1.75的绿色(G)树脂类材料,并经过曝光、显影和固化处理形成具有四层绿色(G)滤光膜的绿色(G)滤光单元;在衬底基板1上分别四次旋涂折射率为1.52、1.55、1.58和1.74的蓝色(B)树脂类材料,并经过曝光、显影和固化处理形成具有四层蓝色(B)滤光膜的蓝色(B)滤光单元。
为了进一步地减少光在显示基板的传输过程中的全反射现象,在一个示例中,将每层滤光膜的厚度均设置为小于或等于0.45μm。由于三原色红色(R)、绿色(G)和蓝色(B)的发光波长约为0.45μm-0.54μm范围,在每层滤光膜的厚度均小于或等于0.45μm时,可以保证每层滤光膜的厚度均小于三原色红色(R)、绿色(G)和蓝色(B)的发光波长,这样,可以实现发三原色红色(R)、绿色(G)和蓝色(B)的光在每层滤光膜中是以电磁波的方式进行传输的,而不会发生几何光学中的全反射现象,从而可以进一步地减少光在显示面板的传输过程中的损失,进而可以进一步地提高显示装置的显示亮度。
进一步地,在一个示例中,将每层滤光膜的厚度均设置为小于可见光波 长的最小值,即将每层滤光膜的厚度均设置为小于0.38μm,这样,可以保证全部可见光波段在每层滤光膜中不会发生全反射现象,从而避免光在显示面板的传输过程中的损失,进而显著提高显示装置的显示亮度。
本发明实施例提供的上述显示基板中,根据不同颜色的像素的显示需求,可以适当调整一层或几层滤光膜的厚度,利用微腔效应使经过各层滤光膜后的光的半高宽变窄,从而可以提高像素颜色的纯度。
为了保证透明导电氧化物膜层3的平坦性,在一个示例中,在彩膜结构2与透明导电氧化物膜层3之间设置一平坦层4,平坦层4一般是通过旋涂压克力系材料并对其进行固化处理制得的,平坦层4的厚度例如约为4μm。并且,在各滤光单元之间还可以设置有黑矩阵5,黑矩阵5一般是通过旋涂树脂类材料并经过曝光、显影和固化处理制得的,黑矩阵5的厚度例如为1.5μm。在一个示例中,将彩膜结构2中的各滤光单元的厚度设置为1.5μm至3μm,即彩膜结构2中各滤光单元的厚度大于黑矩阵5的厚度。
基于同一发明构思,本发明实施例还提供了一种显示面板,包括本发明实施例提供的上述显示基板。该显示面板的具体实施可以参见上述显示基板的实施例,重复之处不再赘述。
该显示面板可以为液晶显示面板(LCD);或者,也可以为有机电致发光显示面板(OLED),在此不做限定。
图2a和图2b为如图1a和图1b所示的显示基板在应用于LCD时的示意图,其中透明导电氧化物层3作为公共电极。衬底基板1作为LCD的彩膜基板,透明导电氧化物膜层3作为公共电极,LCD还包括:与彩膜基板相对而置的阵列基板6,位于彩膜基板和阵列基板6之间的液晶层7,以及位于阵列基板6背离彩膜基板一侧的背光模组8等。如图2a和图2b所示,透明导电氧化物膜层3作为公共电极可以位于彩膜基板的靠近液晶层的一侧,即扭转向列(TN,Twisted Nematic)型LCD。或者,透明导电氧化物膜层3作为公共电极也可以位于阵列基板6的靠近液晶层的一侧,即高级超维场开关(ADS,Advanced Super Dimension Switch)型LCD,在此不做限定。
背光模组8发出的光依次经过透明导电氧化物膜层3即公共电极、彩膜结构2后,从衬底基板1即彩膜基板处出射,由于彩膜结构2中的至少一种颜色的滤光单元包括层叠设置的至少两层滤光膜,并且各层滤光膜的折射率 从衬底基板1即彩膜基板指向透明导电氧化物膜层3即公共电极的方向逐渐增大,且与衬底基板1即彩膜基板相邻的一层滤光膜的折射率大于衬底基板1即彩膜基板的折射率,与透明导电氧化物膜层3即公共电极相邻的一层滤光膜的折射率小于透明导电氧化物膜层3即公共电极的折射率,这样,可以减少由于透明导电氧化物膜层3即公共电极与衬底基板1即彩膜基板之间较大的折射率差所导致的全反射现象,从而可以减少光在LCD的传输(如图2a和图2b所示的箭头方向为光的传输方向)过程中的损失,进而可以提高LCD的显示亮度。
图2c和图2d为如图1a和图1b所示的显示基板在应用于LCD时的示意图,其中透明导电氧化物层3作为像素电极。透明导电氧化物膜层3位于阵列基板6的靠近液晶层的一侧,液晶层7位于透明导电氧化物膜层3与彩膜结构2之间。图2c和图2d的其他膜层与图2a和图2b所示类似,在此不做赘述。
在一个示例中,LCD还包括薄膜晶体管(TFT,Thin Film Transistor),TFT例如可以为低温多晶硅TFT或氧化物TFT或单晶硅TFT,在此不做赘述。
图3a和图3b为如图1a和图1b所示的显示基板在应用于OLED时的示意图。衬底基板1作为具有TFT的衬底基板,透明导电氧化物膜层3作为有机电致发光结构中的阳极,TFT通过平坦层4中的过孔与透明导电氧化物膜层3即阳极电性连接,OLED还可以包括:在透明导电氧化物膜层3即阳极上依次层叠设置的发光层9和阴极10,在平坦层4上且与黑矩阵5对应的区域内设置的像素限定层11,以及在阴极10上贴合的封装层12。
发光层9发出的光依次经过透明导电氧化物膜层3即阳极、彩膜结构2后,从衬底基板1处出射,由于彩膜结构2中的至少一种颜色的滤光单元包括层叠设置的至少两层滤光膜,在该滤光单元中,各层滤光膜的折射率从衬底基板1指向透明导电氧化物膜层3即阳极的方向逐渐增大,且与衬底基板1相邻的一层滤光膜的折射率大于衬底基板1的折射率,与透明导电氧化物膜层3即阳极相邻的一层滤光膜的折射率小于透明导电氧化物膜层3即阳极的折射率,这样,可以减少由于透明导电氧化物膜层3即阳极与衬底基板1之间较大的折射率差所导致的全反射现象,从而可以减少光在OLED的传输(如图3a和图3b所示的箭头方向为光的传输方向)过程中的损失,进而可 以提高OLED的显示亮度。
在一个示例中,在OLED中的阳极和阴极10之间还包括空穴注入层、空穴传输层、发光层、电子传输层和电子注入层,在此不做赘述。OLED的发光例如可以为全荧光发光或全磷光发光或磷光荧光复合发光,在此不做限定。
基于同一发明构思,本发明实施例还提供了一种显示装置,包括本发明实施例提供的上述显示面板,该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。该显示装置的具体实施可以参见上述显示面板的实施例,重复之处不再赘述。
本发明实施例提供的一种显示基板、显示面板及显示装置,由于显示基板的彩膜结构中至少一种颜色的滤光单元由层叠设置的至少两层滤光膜组成,由至少两层滤光膜组成的滤光单元中,各层滤光膜的折射率从衬底基板指向透明导电氧化物膜层的方向逐渐增大,且与衬底基板相邻的一层滤光膜的折射率大于衬底基板的折射率,与透明导电氧化物膜层相邻的一层滤光膜的折射率小于透明导电氧化物膜层的折射率,这样,在光从透明导电氧化物膜层处入射,经过彩膜结构后从衬底基板处出射的过程中,可以减少由于透明导电氧化物膜层与衬底基板之间较大的折射率差所导致的全反射现象,从而可以减少光在显示面板的传输过程中的损失,进而可以提高显示装置的显示亮度。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请基于并且要求于2014年6月12日递交的中国专利申请第201410262118.1号的优先权,在此全文引用上述中国专利申请公开的内容。

Claims (15)

  1. 一种显示基板,包括:衬底基板,以及在所述衬底基板上依次层叠设置的彩膜结构和透明导电氧化物膜层;所述彩膜结构包括呈矩阵排列且颜色不同的多个滤光单元;
    其中所述彩膜结构中至少一种颜色的滤光单元包括层叠设置的至少两层滤光膜,各层所述滤光膜的折射率从所述衬底基板指向所述透明导电氧化物膜层的方向逐渐增大,且与所述衬底基板相邻的一层所述滤光膜的折射率大于所述衬底基板的折射率,与所述透明导电氧化物膜层相邻的一层所述滤光膜的折射率小于所述透明导电氧化物膜层的折射率。
  2. 如权利要求1所述的显示基板,其中每层所述滤光膜的厚度均小于或等于0.45μm。
  3. 如权利要求2所述的显示基板,其中每层所述滤光膜的厚度均小于可见光波长的最小值。
  4. 如权利要求1-3任一项所述的显示基板,其中所述彩膜结构包括蓝色的滤光单元,该蓝色的滤光单元包括层叠设置的至少两层滤光膜。
  5. 如权利要求4所述的显示基板,其中所述蓝色的滤光单元包括层叠设置的四层滤光膜。
  6. 如权利要求1-3任一项所述的显示基板,其中所述彩膜结构中所有颜色的滤光单元均包括层叠设置的至少两层滤光膜。
  7. 如权利要求6所述的显示基板,其中所述彩膜结构中所有颜色的滤光单元均包括层叠设置的四层滤光膜。
  8. 如权利要求4或5所述的显示基板,其中所述彩膜结构还包括红色滤光单元和绿色滤光单元,所述红色滤光单元和所述绿色滤光单元设置为单层结构。
  9. 如权利要求1-8任一项所述的显示基板,还包括平坦层,设置在彩膜结构与透明导电氧化物膜层之间。
  10. 如权利要求1-9任一项所述的显示基板,还包括黑矩阵,设置在相邻的滤光单元之间。
  11. 一种显示面板,包括:如权利要求1-10任一项所述的显示基板。
  12. 如权利要求11所述的显示面板,其中所述显示面板为液晶显示面板或有机电致发光显示面板。
  13. 如权利要求11所述的显示面板,所述显示面板为液晶显示面板,包括作为彩膜基板的所述显示基板、阵列基板、以及夹在彩膜基板和阵列基板之间的液晶层。
  14. 如权利要求11所述的显示面板,所述显示面板为有机电致发光显示面板,其中所述透明导电氧化物膜层作为阳极,该有机电致发光显示面板还包括发光层、阴极、像素限定层以及封装层。
  15. 一种显示装置,包括:如权利要求11-14任一项所述的显示面板。
PCT/CN2014/086076 2014-06-12 2014-09-05 显示基板、显示面板及显示装置 WO2015188474A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14861113.0A EP3156841A4 (en) 2014-06-12 2014-09-05 Display base plate, display panel and display device
US14/646,131 US9568764B2 (en) 2014-06-12 2014-09-05 Display substrate, display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410262118.1A CN104062800B (zh) 2014-06-12 2014-06-12 一种显示基板、显示面板及显示装置
CN201410262118.1 2014-06-12

Publications (1)

Publication Number Publication Date
WO2015188474A1 true WO2015188474A1 (zh) 2015-12-17

Family

ID=51550585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086076 WO2015188474A1 (zh) 2014-06-12 2014-09-05 显示基板、显示面板及显示装置

Country Status (4)

Country Link
US (1) US9568764B2 (zh)
EP (1) EP3156841A4 (zh)
CN (1) CN104062800B (zh)
WO (1) WO2015188474A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430444A (zh) * 2020-04-30 2020-07-17 武汉华星光电半导体显示技术有限公司 量子点显示面板及其制备方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102295584B1 (ko) * 2014-10-31 2021-08-27 엘지디스플레이 주식회사 터치 패널 내장형 유기 발광 표시 장치
CN106558597B (zh) * 2015-09-30 2020-03-06 三星电子株式会社 发光器件封装件
CN105467669A (zh) * 2016-02-03 2016-04-06 京东方科技集团股份有限公司 显示基板及其制备方法、显示面板、显示装置
CN105789258B (zh) * 2016-03-24 2019-06-11 深圳市华星光电技术有限公司 一种oled显示面板及3d立体显示装置
CN106932950A (zh) * 2017-03-28 2017-07-07 青岛海信电器股份有限公司 量子点彩色滤光片及制备方法、液晶面板、液晶显示设备
CN107085337B (zh) * 2017-06-14 2020-07-10 厦门天马微电子有限公司 阵列基板、显示面板和显示装置
CN107589584A (zh) * 2017-09-21 2018-01-16 深圳市华星光电半导体显示技术有限公司 彩色滤光片基板、液晶面板和液晶显示器
CN108196390B (zh) * 2018-01-02 2021-10-15 京东方科技集团股份有限公司 彩膜基板和显示装置
CN107918225B (zh) * 2018-01-05 2020-06-30 京东方科技集团股份有限公司 一种彩膜基板及其制作方法、液晶显示面板及显示装置
TWI673544B (zh) * 2018-05-09 2019-10-01 友達光電股份有限公司 顯示面板與含其的電子裝置
CN109659346B (zh) * 2018-12-19 2021-02-26 武汉华星光电半导体显示技术有限公司 Oled显示面板及oled显示装置
CN109698223B (zh) * 2018-12-26 2020-11-24 上海天马微电子有限公司 一种显示面板及显示装置
CN110297353B (zh) * 2019-05-06 2021-05-25 惠科股份有限公司 彩膜基板及其制作方法、显示装置
CN111381411B (zh) 2020-04-30 2021-07-20 厦门天马微电子有限公司 阵列基板、显示面板和显示装置
CN112038498B (zh) * 2020-08-20 2023-02-03 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
US20220107449A1 (en) * 2020-10-06 2022-04-07 Viavi Solutions Inc. Composite optical filter
CN112366281B (zh) * 2020-11-09 2023-04-07 合肥京东方卓印科技有限公司 一种封装盖板及其制造方法、显示板面、显示装置
CN112612373B (zh) * 2020-12-22 2023-04-28 湖北长江新型显示产业创新中心有限公司 一种显示面板和显示装置
KR20220097772A (ko) * 2020-12-31 2022-07-08 삼성디스플레이 주식회사 표시 패널, 이를 구비한 표시 장치, 및 표시 패널의 제조방법
CN112968114B (zh) * 2021-02-01 2022-07-12 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法
CN113193014A (zh) * 2021-04-16 2021-07-30 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法
CN113113443B (zh) * 2021-04-19 2022-12-16 武汉天马微电子有限公司 一种显示面板及显示装置
CN113253528A (zh) * 2021-05-14 2021-08-13 绵阳惠科光电科技有限公司 阵列基板、反射式显示面板和反射式显示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1336566A (zh) * 2000-07-14 2002-02-20 精工爱普生株式会社 液晶装置、滤色片基板、液晶装置的制造方法以及滤色片基板制造方法
CN1441629A (zh) * 2002-02-27 2003-09-10 三星Sdi株式会社 有机电致发光显示装置及其制造方法
CN101515084A (zh) * 2009-03-03 2009-08-26 华映光电股份有限公司 光学浆料组合物及其制备方法与彩色滤光基板的制作方法
CN101807633A (zh) * 2009-02-18 2010-08-18 大连美明外延片科技有限公司 一种发光二极管芯片及其制造方法
US7969085B2 (en) * 2006-08-18 2011-06-28 Global Oled Technology Llc Color-change material layer
US20120119239A1 (en) * 2010-11-17 2012-05-17 Samsung Mobile Display Co., Ltd. Organic light-emitting display device and foldable display device including the same
CN102879948A (zh) * 2012-09-29 2013-01-16 京东方科技集团股份有限公司 彩膜基板、液晶显示装置及制作方法
CN103235356A (zh) * 2013-04-16 2013-08-07 京东方科技集团股份有限公司 滤光片及其制备方法、彩膜基板和显示装置
CN203882058U (zh) * 2014-06-12 2014-10-15 京东方科技集团股份有限公司 一种显示基板、显示面板及显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045726A (ja) * 2002-07-11 2004-02-12 Citizen Watch Co Ltd カラー液晶装置
TWI231382B (en) * 2003-04-09 2005-04-21 Innolux Display Corp Method for manufacturing color filter and method for manufacturing liquid crystal display device using the same
US20100013741A1 (en) * 2007-09-06 2010-01-21 Sony Corporation Light extraction device, manufacturing method of a light extraction device, and display apparatus
US8013963B2 (en) * 2008-04-11 2011-09-06 Himax Display, Inc. Color filter, method of fabricating the same and liquid crystal display panel including the same
JP5427528B2 (ja) * 2009-09-28 2014-02-26 ユー・ディー・シー アイルランド リミテッド 光学部材
US8755010B2 (en) * 2011-11-17 2014-06-17 Apple Inc. Displays with multilayer masks and color filters

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1336566A (zh) * 2000-07-14 2002-02-20 精工爱普生株式会社 液晶装置、滤色片基板、液晶装置的制造方法以及滤色片基板制造方法
CN1441629A (zh) * 2002-02-27 2003-09-10 三星Sdi株式会社 有机电致发光显示装置及其制造方法
US7969085B2 (en) * 2006-08-18 2011-06-28 Global Oled Technology Llc Color-change material layer
CN101807633A (zh) * 2009-02-18 2010-08-18 大连美明外延片科技有限公司 一种发光二极管芯片及其制造方法
CN101515084A (zh) * 2009-03-03 2009-08-26 华映光电股份有限公司 光学浆料组合物及其制备方法与彩色滤光基板的制作方法
US20120119239A1 (en) * 2010-11-17 2012-05-17 Samsung Mobile Display Co., Ltd. Organic light-emitting display device and foldable display device including the same
CN102879948A (zh) * 2012-09-29 2013-01-16 京东方科技集团股份有限公司 彩膜基板、液晶显示装置及制作方法
CN103235356A (zh) * 2013-04-16 2013-08-07 京东方科技集团股份有限公司 滤光片及其制备方法、彩膜基板和显示装置
CN203882058U (zh) * 2014-06-12 2014-10-15 京东方科技集团股份有限公司 一种显示基板、显示面板及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3156841A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430444A (zh) * 2020-04-30 2020-07-17 武汉华星光电半导体显示技术有限公司 量子点显示面板及其制备方法
CN111430444B (zh) * 2020-04-30 2023-06-02 武汉华星光电半导体显示技术有限公司 量子点显示面板及其制备方法

Also Published As

Publication number Publication date
EP3156841A1 (en) 2017-04-19
EP3156841A4 (en) 2018-04-18
US20160266436A1 (en) 2016-09-15
US9568764B2 (en) 2017-02-14
CN104062800A (zh) 2014-09-24
CN104062800B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2015188474A1 (zh) 显示基板、显示面板及显示装置
CN109119453B (zh) 显示面板及其制作方法和显示装置
US20230095257A1 (en) Display panel and preparation method thereof
US10522602B1 (en) Organic light-emitting display panel and display device
US9608236B2 (en) Display panel
TWI670549B (zh) 顯示單元結構及使用量子棒之顯示元件
EP3242342B1 (en) Oled device having optical resonance layer and preparation method therefor, and display device
KR102390450B1 (ko) 색변환 기판의 제조 방법
US10203545B2 (en) Display panels and polarizers thereof
US10388705B2 (en) Display panel and method for manufacturing thereof
KR20160063232A (ko) 유기 발광 다이오드 어레이 기판 및 그 제조 방법과 디스플레이 디바이스
US20200266387A1 (en) Display Panel and Manufacturing Method Therefor, and Display Device
CN103515539B (zh) 有机发光装置及包含其的影像显示系统
US11251238B2 (en) Display device and manufacturing method therefor
KR20150129551A (ko) 디스플레이 장치 및 이의 제조 방법
WO2019227669A1 (zh) 显示面板及显示装置
US20200411800A1 (en) Oled display panel and preparation method thereof
WO2020024765A1 (zh) 显示面板及其制造方法、显示装置
KR20100029885A (ko) 유기 발광 표시 장치
WO2020224141A1 (zh) 显示面板及其制作方法
KR20170051839A (ko) 광학필터 기판과 그 제조 방법 및 이를 구비한 액정 표시 장치
US20240215403A1 (en) Top emitting display panels and display devices
US20220093700A1 (en) Display panels and maufacturing methods thereof, and display apparatuses
KR102313367B1 (ko) 유기 발광 표시 장치
CN203882058U (zh) 一种显示基板、显示面板及显示装置

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014861113

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014861113

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14646131

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE