WO2015188427A1 - 一种埋弧焊丝及焊接方法 - Google Patents

一种埋弧焊丝及焊接方法 Download PDF

Info

Publication number
WO2015188427A1
WO2015188427A1 PCT/CN2014/083305 CN2014083305W WO2015188427A1 WO 2015188427 A1 WO2015188427 A1 WO 2015188427A1 CN 2014083305 W CN2014083305 W CN 2014083305W WO 2015188427 A1 WO2015188427 A1 WO 2015188427A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
weld metal
submerged arc
wire
mass percentage
Prior art date
Application number
PCT/CN2014/083305
Other languages
English (en)
French (fr)
Inventor
张宇
潘鑫
王银柏
Original Assignee
江苏省沙钢钢铁研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏省沙钢钢铁研究院有限公司 filed Critical 江苏省沙钢钢铁研究院有限公司
Priority to JP2016572531A priority Critical patent/JP6392376B2/ja
Priority to EP14894509.0A priority patent/EP3156168B1/en
Priority to KR1020177000486A priority patent/KR101923948B1/ko
Priority to US15/315,157 priority patent/US20170197273A1/en
Publication of WO2015188427A1 publication Critical patent/WO2015188427A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3066Fe as the principal constituent with Ni as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • B23K9/186Submerged-arc welding making use of a consumable electrodes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/10Pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the invention relates to the technical field of welding, in particular to a submerged arc welding wire and a welding method. Background technique
  • Welding technology is a method of joining two or more base metals (workpieces to be welded) into one unit using a welding material (solder or wire) under high temperature or high pressure conditions.
  • a welding material solder or wire
  • Welding technology is a method of joining two or more base metals (workpieces to be welded) into one unit using a welding material (solder or wire) under high temperature or high pressure conditions.
  • high-strength pipelines such as X90, X100 and X120 high-strength steel pipes, which can reduce the material consumption by thinning the pipeline. It can also increase the pipe diameter and conveying pressure, improve the oil transmission efficiency and save operating costs. Therefore, high-strength grade steel pipes are the main trend and direction of future oil and gas pipeline construction, and natural-related pipeline welding has gradually become a hot spot for researchers.
  • Pipeline welding is mainly used for submerged arc welding. Due to the increasing size of the structure and the gradual tightening of safety levels, the requirements for the application of ultra-high-grade pipelines such as X100 and X120 are also increasing, especially for pipeline welding processes. The requirements are also getting higher and higher. For example, high strength, high toughness, excellent molding and high welding efficiency (high heat input, high welding speed) of submerged arc welding wire for pipeline, tensile strength of welded metal after welding, low-temperature impact resistance and There are strict requirements for the process of pipe welding.
  • the welding materials of the above-mentioned ultra-high-grade pipelines such as X100 and X120 are reported.
  • the patents CN201110176764.2 and CN201310025309.1 both disclose a submerged arc welding wire for X100 steel grade pipeline, and with SJ101 alkaline welding, the tensile strength of the weld metal of the obtained steel pipe is above 760MPa, weld metal
  • the impact energy of -40 °C is greater than 150J, but the above welding materials can meet the welding pipe requirements of X80 and X100 pipelines, and can not meet the welding pipe requirements of X120 pipeline.
  • the technical problem to be solved by the present invention is to provide a submerged arc welding wire and a welding method thereof.
  • the submerged arc welding wire provided by the invention is a submerged arc welding wire for an X120 steel grade pipeline, and the submerged arc welding wire provided by the invention is used for the submerged arc welding wire.
  • the welding process and the welded joints after welding can meet the welding pipe requirements of X120 pipeline.
  • the invention discloses a submerged arc welding wire, characterized in that the composition according to the mass percentage comprises:
  • C greater than zero and less than or equal to 0.06%; Si greater than zero and less than or equal to 0.10%; P less than or equal to 0.008%; S less than or equal to 0.006%; Fe of balance.
  • 0.65 1.45% Cr is further included.
  • the present invention discloses a welding method, characterized by comprising the steps of: any one of the above-described technical solution of the submerged arc welding wire and M g O-Si0 2 -CaF 2 -Al 2 0 3 based weakly basic After the sintered flux is welded, the weld metal is obtained.
  • the welding speed of the welding is 1.8 to 2.4 m/min.
  • the heat input amount of the welding is 15 to 150 kJ/cm.
  • the method further comprises the following steps:
  • the preheating temperature is 300 400 ° C, and the preheating time is 1 to 3 hours.
  • the invention also discloses a weld metal, characterized in that the composition by mass percentage comprises: 0.85 ⁇ 1.60% Mo;
  • C greater than zero and less than or equal to 0.06%; Si greater than zero and less than or equal to 0.20%; P less than or equal to 0.008%; S less than or equal to 0.006%; Fe of the balance.
  • 0.65 1.45% Cr is further included.
  • the invention discloses a submerged arc welding wire, characterized in that the composition by mass percentage comprises: 0.85 1.60% Mo; 2.50 4.50% Ni; 0.10 ⁇ 0.30% Ti; 0.005 ⁇ 0.02% B; 0.005 ⁇ 0.02% REM; 1.60 ⁇ 2.00% Mn; greater than zero and less than or equal to 0.06% of C; greater than zero and less than or equal to 0.10% of Si; greater than zero and less than or equal to 0.008% of P; greater than zero and less than or equal to 0.006% of S; The balance of Fe.
  • the present invention provides a submerged arc solid wire for ultra-high strength pipeline steel X120 welding, which can meet the performance requirements after welding with MgO-Si02-CaF2-A1203 weakly alkaline sintered flux.
  • the ultra-high strength X120 welded joint has high tensile strength and good low temperature toughness, and the welding process has a high welding speed.
  • the experimental results show that after the submerged arc welding wire provided by the invention is used for welding, the tensile strength of the weld metal of the submerged arc welded joint is >920 MPa, the impact energy of -40 °C is ⁇ 100 J, the elongation is ⁇ 18%, and the welding is performed. The speed can reach up to 2.4m/min
  • the invention discloses a submerged arc welding wire, characterized in that the composition according to the mass percentage comprises:
  • C greater than zero and less than or equal to 0.06%; Si greater than zero and less than or equal to 0.10%; P greater than zero and less than or equal to 0.008%; S greater than zero and less than or equal to 0.006%; Fe of balance.
  • the raw material used in the present invention is not particularly limited in its source, and may be purchased on the market.
  • the purity of all the raw materials in the present invention is not particularly limited, and may be purely known to those skilled in the art, and the present invention is preferably analytically pure.
  • the mass percentage content of the Mo is preferably determined based on the target weld metal strength and the other alloy contents such as Ni and Ti.
  • the present invention is composed of a mass percentage, and the mass percentage of Mo in the welding wire is preferably 0.85 1.60%, more preferably 1.0-1.5%, and most preferably 1.1-1.3%; the source of Mo in the present invention is not particularly limited, The method well known to those skilled in the art can be prepared or commercially available; the purity of Mo in the present invention is not particularly limited, and the purity of the submerged arc welding wire is well known to those skilled in the art.
  • the invention adds Mo as a trace element into the submerged arc welding wire, can improve the weld metal strength and low temperature impact toughness; at the same time, adding a certain amount of Mo can effectively reduce the phase transition temperature of the weld metal during the cooling process after welding, Refine the weld metal structure and simultaneously expand the formation temperature range of the needle-like voxel and bainite.
  • the refinement of the submerged arc welding wire structure improves the strength of the weld metal, while the promotion of acicular ferrite improves the low temperature impact toughness.
  • the present invention is composed by mass percentage, and the mass percentage content of Mn in the welding wire is preferably 1.60-2.00%, more preferably 1.70 to 1.90%, and most preferably 1.1 to 1.3%;
  • the source of Mn is not particularly limited in the present invention,
  • the method is well known to those skilled in the art to prepare or commercially available;
  • the purity of Mn in the present invention is not particularly limited, and is well known to those skilled in the art for preparation of burial.
  • the purity of the arc welding wire can be.
  • the invention adds Mn as a trace element to the submerged arc welding wire, and Mn is one of the main deoxidizing elements in the weld metal, and is also one of the most effective elements for improving the strength of the steel plate and the weld metal, and the content thereof is above 1.60%.
  • Mn content exceeding 2.0% can significantly reduce the low temperature impact toughness of the weld metal.
  • the Ni/Mn ratio has a direct influence on the low-temperature impact toughness of the weld metal, it is determined based on the performance requirements of the target weld metal and the mass percentage content of Mn.
  • the present invention is composed of a mass percentage, and the mass percentage of Ni in the welding wire is preferably 2.5 to 4.5%, more preferably 3.0 to 4.0%, and most preferably 3.3 to 4.7%.
  • the source of Ni is not particularly limited in the present invention.
  • the method is well known to those skilled in the art to prepare or commercially available; the purity of Ni in the present invention is not particularly limited, and the purity of the submerged arc welding wire is well known to those skilled in the art.
  • Ni is added as a trace element to the submerged arc welding wire, and the main function is to improve the low temperature toughness of the weld metal, and at the same time, the solid solution strengthening effect is used to improve the weld metal strength.
  • the mechanism by which Ni improves the low temperature toughness is achieved by toughening the ferrite matrix.
  • Both Ni and Mn are austenite stabilizing elements, which can reduce the austenite phase transition temperature by a certain amount of addition, thereby increasing the strength, but the effects of the two on the impact toughness are not completely the same, and thus are added at the same time.
  • the content of the mass percentage of Ti according to the present invention is preferably added in accordance with the influence of the flux and the welding process.
  • the present invention is composed of a mass percentage, and the mass percentage of Ti in the welding wire is preferably 0.10 0.30%, more preferably 0.15 0.25%, and most preferably 0.18 0.22%; the source of Ti in the present invention is not particularly limited, and is technically known in the art.
  • the method well known to those skilled in the art may be prepared or commercially available; the purity of Ti in the present invention is not particularly limited, and the purity of the submerged arc welding wire is well known to those skilled in the art.
  • Ti is added as a trace element to the submerged arc welding wire, and the size of the oxide formed can be refined and the volume content thereof is remarkably increased, thereby significantly promoting the formation of acicular ferrite in the weld metal.
  • the present invention is composed of a mass percentage, and the mass percentage of B in the welding wire is preferably 0.005 to 0.02%, more preferably 0.008 to 0.015%, and most preferably 0.01 to 0.013%.
  • the source of B in the present invention is not particularly limited, Prepared or commercially available by methods well known to those skilled in the art
  • the purity of B in the present invention is not particularly limited, and the purity of the submerged arc welding wire which is well known to those skilled in the art can be used.
  • the invention adds B as a trace element into the submerged arc welding wire, can effectively improve the hardenability and strength of the weld metal, and utilizes the characteristics of being easy to segregate the grain boundary to promote the shape of the intragranular structure in the weld metal, and at the same time The bainite and martensite structure formed by the nucleation of the grain boundary are suppressed, thereby improving the low temperature toughness of the weld metal.
  • the present invention is composed of mass percentage, and the content of the mass percentage of REM in the welding wire is preferably 0.005 to 0.2%, more preferably 0.01 to 0.15%, and most preferably 0.05 to 0.10%; and the REM of the present invention is a rare earth element, the present invention
  • the composition of the REM is not particularly limited, and may be a composition of REM well known to those skilled in the art.
  • the present invention preferably consists of a mass percentage, and the REM contains 50% or more of La, 50% or more of Ce, or contains The mixture of La and Ce is 50% or more;
  • the source of the REM is not particularly limited, and may be prepared by a method well known to those skilled in the art or commercially available; the purity of the REM is not particularly limited in the art. The purity of the submerged arc welding wire known to the skilled person is sufficient.
  • the invention adds REM as a key trace element to the submerged arc welding wire, and on the one hand, can deoxidize to reduce the oxygen content in the weld metal, thereby improving the low temperature impact of the weld metal, and also improving the segregation of P and S. , thereby improving the crack resistance of the weld metal; on the other hand, using the oxides formed by the oxides to be easily dispersed and not easy to aggregate and grow, to promote the formation of intra-crystalline needle-like structures, and to refine the microstructure of the weld metal , thereby improving the low temperature toughness of the weld metal.
  • the present invention is composed by mass percentage, and the mass percentage content of C in the welding wire is preferably 0.06% or less, more preferably 0.05% or less, and most preferably 0.03% or less. Since the high C content is unfavorable to the low temperature impact toughness and the weldability of the iron-based material, the present invention controls the C content, and lowering the C content reduces the hardenability of the weld metal, thereby lowering the martensite transformation tendency, even When martensite is formed, the lower C content can also reduce the hardness of martensite, thereby improving the low temperature impact toughness; in addition, lowering the C content can also reduce the sensitivity of welding cold cracks, improve the welding quality, and improve the low temperature toughness of the weld metal. Improve cold crack sensitivity.
  • the present invention is composed by mass percentage, and the mass percentage of Si in the wire is preferably 0.10% or less, more preferably 0.07% or less, and most preferably 0.04% or less.
  • the high Si content increases the tendency of the weld metal to thermally crack, which is disadvantageous for welding;
  • it promotes the formation tendency of grain boundary ferrite and side slab ferrite in the weld metal, thereby damaging the low temperature impact toughness.
  • the present invention is composed of a mass percentage, and the welding wire further contains an impurity element P, and the mass percentage content of P in the welding wire is preferably controlled to be 0.008% or less, more preferably controlled to 0.005% or less, and most preferably controlled to 0.003 or less. %;
  • the present invention is composed of a mass percentage, and the welding wire further contains an impurity element S, and the mass percentage content of S in the welding wire is preferably controlled to be 0.006% or less, more preferably controlled to be 0.004% or less, and most preferably controlled to be less than Equal to 0.002%.
  • the submerged arc welding wire preferably further comprises Cr; the present invention is composed by mass percentage, and the mass percentage of Cr in the welding wire is preferably 0.65 1.45%, more preferably 0.85-1.25%, and most preferably 0.95. ⁇ 1.15%;
  • the source of Cr in the present invention is not particularly limited, and may be prepared by a method well known to those skilled in the art or commercially available; the purity of Cr in the present invention is not particularly limited, and is well known to those skilled in the art for preparation. The purity of the submerged arc welding wire is sufficient.
  • the invention adds Cr as a trace element into the submerged arc welding wire, and can effectively improve one of the elements of the weld metal hardenability and strength.
  • the content is less than 0.65, the strengthening effect is not obvious; when the content exceeds 1.45% , is not good for low temperature impact toughness of weld metal.
  • the submerged arc welding wire preferably further comprises Cu;
  • the present invention is composed by mass percentage, and the mass percentage of Cu in the welding wire is preferably 0.10 0.50%, more preferably 0.20-0.40%, and most preferably 0.25. 0.35%;
  • the source of Cu in the present invention is not particularly limited, and may be prepared by a method well known to those skilled in the art or commercially available; the purity of Cu in the present invention is not particularly limited, and is well known to those skilled in the art for preparation of burial. The purity of the arc welding wire can be.
  • Cu is added as a trace element to the submerged arc welding wire, and on the one hand, the strength of the weld metal can be improved by solid solution strengthening, and on the other hand, the corrosion resistance of the weld metal can be improved.
  • the content is ⁇ 0.10%, its effect on strength and corrosion resistance is not obvious; when its content is ⁇ 0.50%, it will bring difficulties to the smelting and surface quality control of the steel wire rod for welding wire; meanwhile, in multi-pass welding
  • the subsequent bead in the seam will temper the front bead, which can induce the precipitation of the Cu particle phase, thereby greatly improving the strength of the weld metal without impairing the impact toughness of the weld metal. .
  • the invention provides a submerged arc welding wire for ultra high strength pipeline, which can be used for ultra high strength Submerged arc welded pipe of X120 steel grade pipeline.
  • the alloy design of submerged arc welding wire with high Mo, high Ti, high B and REM ensures that the welded metal after welding can obtain the welded structure mainly composed of pinned ferrite under the condition of large heat input welding.
  • low ⁇ , low Si and high Ni alloy design ensures low carbon equivalent, cold crack sensitivity and brittle phase formation of the weld metal, which is beneficial to
  • the low temperature toughness of the weld, and the high Ni design improve the low temperature toughness stability zone of the weld metal through the toughened ferrite matrix, and also provide the basis for the weld metal to adapt to the high heat input welding and high welding speed welding.
  • the present invention provides a soldering method, comprising the steps of: submerging arc welding wire according to any one of the above aspects and M g O-Si0 2 -CaF 2 -Al 2 0 3 being weakly alkaline After the sintered flux is welded, a weld metal is obtained; the welding speed of the welding is preferably 1.8 to 2.4 m/min, more preferably 1.9 to 2.3 m/min, and most preferably 2.0 to 2.2 m/min; The heat input amount is preferably 15 150 kJ/cm, more preferably 30 120 kJ/cm, and most preferably 50 100 kJ/cm.
  • the present invention is the M g O-Si0 2 -CaF 2 -Al 2 0 3 based sintered weakly basic flux is not particularly limited, and are well known to the skilled person for the submerged arc welding M g O-Si0 2 -CaF 2 -Al 2 0 3 is a weakly alkaline sintered flux; in order to ensure the welding effect, it is preferred to carry out the MgO-Si0 2 -CaF 2 -Al 2 0 3 weakly alkaline sintering flux before the welding.
  • the preheating temperature is preferably 300 to 400 ° C, more preferably 330 to 370 ° C; the preheating time is preferably 1 to 3 hours, more preferably 1.5 to 2.5 hours;
  • Other conditions for preheating are not particularly limited, and may be a preheating condition of a weakly alkaline sintered flux well known to those skilled in the art.
  • the welding process is not particularly limited, and may be a submerged arc welding process well known to those skilled in the art; the other conditions of the welding are not particularly limited, and the welding conditions well known to those skilled in the art may be used;
  • the welding apparatus of the present invention is not particularly limited, and may be a submerged arc welding apparatus well known to those skilled in the art.
  • the present invention provides a method of welding, the welding wire and preclude the use of the present invention provides supporting the M g O-Si0 2 -CaF 2 -Al 2 0 3 based weakly basic flux, can achieve a high welding speed of the welding, to meet the needs of efficient welding .
  • the invention also discloses a weld metal, characterized in that the composition by mass percentage comprises:
  • C greater than zero and less than or equal to 0.06%; Si greater than zero and less than or equal to 0.20%; P less than or equal to 0.008%; S less than or equal to 0.006%; Fe of the balance.
  • the weld metal according to the present invention is obtained by welding the submerged arc welding wire according to any one of the above aspects by the welding method described in any one of the above aspects.
  • the present invention in view of the combined effects of the flux and the welding process, is composed by mass percentage, and the mass percentage of Ti in the weld metal is preferably 0.05 to 0.30%, more preferably 0.10 to 0.25%, most preferably 0.15 ⁇ 0.20%;
  • the content of Ti in the weld metal of the invention is within this content range, and the size of the oxide formed can be refined, and the volume content thereof is obviously increased, thereby being able to significantly promote the needle in the weld metal. Formation of ferrite.
  • the present invention is composed by mass percentage, and the mass percentage content of B in the weld metal is preferably 0.002-0.02%, more preferably 0.005-0.017%, and most preferably 0.01-0.014%; Ti in the weld metal of the present invention within the above content range, it is easy to segregate the grain boundary to promote the formation of intragranular microstructure in the weld metal and simultaneously suppress the bainite and martensite structure formed by the nucleation of the grain boundary, thereby improving Low temperature toughness of weld metal.
  • the present invention is composed of mass percentage, and the mass percentage of REM in the weld metal is preferably 0.002 to 0.02%, more preferably 0.006 to 0.017%, and most preferably 0.01 to 0.014%; and the REM of the present invention and the aforementioned REM are both Consistent, no longer here - repeat.
  • the present invention is composed by mass percentage, and the content by mass of the Si is preferably 0.20% or less, more preferably 0.15% or less, and most preferably 0.10% or less.
  • the high Si content increases the tendency of hot cracking of the weld metal, which is unfavorable for welding; on the other hand, it promotes the formation tendency of grain boundary ferrite and side slab ferrite in the weld metal, thereby damaging the low temperature impact. Toughness, but due to the need to add a certain amount of Si0 2 in the submerged arc flux to maintain the welding process performance, the Si content in the weld metal will increase, but it should be controlled at ⁇ 0.20%. When the content is more than 0.20%, the brittle phase MA component in the weld metal, especially in the multi-pass weld Increase, damage to low temperature toughness.
  • the other components included in the weld metal of the present invention are identical to the element composition, the preferred principle and the principle in the foregoing welding wire, and are not described here again.
  • the invention performs the performance test on the weld metal obtained by the above welding method, and the experimental results show that the weld metal provided by the invention has a tensile strength ⁇ 920 MPa, an elongation ⁇ 18%, and an impact energy at -40 ° C ⁇ 100;
  • the maximum welding speed of the welding process of the present invention is 2.4 m/min, and the maximum heat input amount is 150 kJ/cm.
  • the welded test panels are made of X120 pipeline steel plates with a thickness of 16.3 mm and a section size of 350 x 800 mm. ⁇ Using single wire submerged arc welding method, the welding speed is 2.0m/min, the welding heat input is 32 kJ/cm, and the groove is single. For the solid wire with a diameter of 3.2 mm, the chemical composition (mass percentage) is shown in Table 1. Table 1 shows the chemical composition of the submerged arc solid wire used in Examples 1 to 18. Selection of the flux basicity of 1.35 M g O-Si02-CaF2- A1203 weakly basic agglomerated flux, the flux is heated before welding to 350 ° C and held for 2 hours.
  • Table 2 shows the chemical composition of the weld metal of the welded joints obtained in Examples 1 to 18.
  • Table 3 For the test results of the mechanical properties of the weld metal, see Table 3, Table 3 for the mechanical properties of the weld metal of the welded joints obtained in Examples 1 to 18.
  • Example 2 The same steel plate and flux as in Example 1 were used.
  • the composition of the welding wire was the same as in Example 1, and the diameter was 4 mm.
  • the welding heat input is 65 kJ/cm
  • the welding speed is 1.8m/min
  • the groove is double V
  • the front and back sides are used once.
  • Table 2 shows the weld metal chemical composition of the welded joints obtained in Examples 1 to 18.
  • Table 3 shows the mechanical properties of the weld metal of the welded joints obtained in Examples 1 to 18.
  • Example 2 The same welding wire as in Example 1 was used, but the diameter was 4 mm.
  • the welding test plate composition and thickness specifications were the same as in Example 1, but the cross-sectional dimensions were 450 x 120 mm.
  • the flux is selected from M g O-Si0 2 -CaF 2 -Al 2 0 3 weakly alkaline sintered flux with a basicity of 1.32.
  • the groove is single V, one welding pass on the front and back sides; the welding heat input is 75 kJ/cm, and the welding speed is 2.1m/min.
  • Table 2 shows the chemical composition of the weld metal of the welded joints obtained in Examples 1 to 18.
  • Table 3 For the test results of the mechanical properties of the weld metal, see Table 3, Table 3 for the mechanical properties of the weld metal of the welded joints obtained in Examples 1 to 18.
  • the welding test plate is made of a 17.2mm thick pipeline steel plate X120 with a section size of 450x l000mm.
  • the solid wire with a diameter of 4 mm is selected.
  • the chemical composition (mass percentage) is shown in Table 1.
  • Table 1 shows the chemical composition of the submerged arc solid wire used in Examples 1 to 18.
  • the submerged arc flux was selected from M g O-Si0 2 -CaF 2 -Al 2 0 3 alkaline sintered flux with a basicity of 1.38. The flux was heated to 350 ° C and held for 2 hours before welding.
  • the groove is single V
  • the welding heat input is 48 kJ/cm
  • the welding speed is 1.95m/min.
  • Table 2 shows the chemical composition of the weld metal of the welded joints obtained in Examples 1 to 18.
  • Table 3 For the test results of the mechanical properties of the weld metal, see Table 3, Table 3 for the mechanical properties of the weld metal of the welded joints obtained in Examples 1 to 18.
  • the groove is single V
  • the welding heat input is 78 kJ/cm
  • the welding speed is 2.05m/min.
  • the groove is double V
  • the heat input amount is 65 kJ/cm
  • the welding speed is 2.2m/min.
  • Table 2 shows the chemical composition of the weld metal of the welded joints obtained in Examples 1 to 18.
  • Table 3 For the test results of the mechanical properties of the weld metal, see Table 3, Table 3 for the mechanical properties of the weld metal of the welded joints obtained in Examples 1 to 18.
  • Solid wires with different compositions and diameters of 4 mm were used.
  • the flux was selected from M g O-Si0 2 -CaF 2 -Al 2 0 3 weakly alkaline sintered flux with a basicity of 1.28.
  • the flux was heated to 350 ° C and held for 2 hours before welding.
  • the welding test plate is made of 14.3mm pipeline steel plate X120. Internal welding and external welding are carried out on the outer diameter 1219 steel pipe production line by using the above welding wire and flux. ⁇ Four-wire submerged arc welding, the groove is double V, one inside and the other; the heat input of internal and external welding is 65 and 68kJ/cm, respectively, and the welding speed is 2.25m/min.
  • Table 2 shows the chemical composition of the weld metal of the welded joints obtained in Examples 1 to 18.
  • Table 3 For the test results of the mechanical properties of the weld metal, see Table 3, Table 3 for the mechanical properties of the weld metal of the welded joints obtained in Examples 1 to 18.
  • the welding test plate is made of 26mm thick high-strength steel plate with tensile strength of 925MPa.
  • Table 1 shows the chemical composition of the submerged arc solid wire used in Examples 1 to 18.
  • the flux was selected from M g O-Si0 2 -CaF 2 -Al 2 0 3 weakly alkaline sintered flux with a basicity of 1.34.
  • the flux was heated to 350 ° C and held for 2 hours before welding. ⁇ Using single-sided three-wire submerged arc welding method, the groove is single V, single-sided welding is double-sided forming, the welding heat input is 136kJ/cm, and the welding speed is 2.21m/min.
  • Table 2 shows the weld metal chemical composition of the welded joints obtained in Examples 1 to 18.
  • Table 3 is the mechanical properties of the weld metal of the welded joints obtained in Examples 1 to 18.
  • the welding test plate is made of 20mm thick high-strength steel plate with a yield of 845MPa and tensile strength of 967Mpa.
  • Table 1 shows the chemical composition of the submerged arc solid wire used in Examples 1 to 18.
  • the flux was selected from M g O-Si0 2 -CaF 2 -Al 2 0 3 weakly alkaline sintered flux with a basic degree of 1.27.
  • the flux was heated to 350 ° C and held for 2 hours before welding. ⁇ Using single-sided three-wire submerged arc welding method, the groove is single V, single-sided welding is double-sided forming, the welding heat input is 124kJ/cm, and the welding speed is 2.15m/min.
  • Table 2 shows the chemical composition of the weld metal of the welded joints obtained in Examples 1 to 18.
  • Table 3 For the test results of the mechanical properties of the weld metal, see Table 3, Table 3 for the mechanical properties of the weld metal of the welded joints obtained in Examples 1 to 18.
  • the welding test plate is made of 20mm thick high-strength steel plate, which has a slight yield of 835MPa and tensile strength of 945MPa.
  • Table 1 shows the chemical composition of the submerged arc solid wire used in Examples 1 to 18.
  • Selection basicity flux of 1.30 M g O-Si0 2 -CaF 2 -Al 2 0 3 based weakly basic agglomerated flux, the flux is heated before welding to 350 ° C and held for 2 hours.
  • the groove is double V, one pass on the front and back sides, the welding heat input is 105kJ/cm, and the welding speed is 1.9m/min.
  • Table 2 shows the weld metal chemical composition of the welded joints obtained in Examples 1 to 18.
  • Table 3 is the mechanical properties of the weld metal of the welded joints obtained in Examples 1 to 18.
  • the submerged arc welded joint of the pipeline can be obtained without defects, and the tensile strength of the weld metal is ⁇ 980, the elongation after fracture is ⁇ 18%, and the impact absorption power of -40 ° C is ⁇ 100.
  • the present invention also provides a mix of M g O Si0-2 -CaF 2 -Al 2 0 / min , and a high heat input welding method 3 based sintered weakly basic flux, can achieve high welding speed 1.8 ⁇ 2.4m 15 to 150kJ/cm welding process.

Abstract

一种埋弧焊丝,按质量百分比组成包括:0.85~1.60%的Mo;2.50~4.50%的Ni;0.10~0.30%的Ti;0.005~0.02%的B;0.005~0.02%的REM;1.60~2.00%的Mn;大于零且小于等于0.06%的C;大于零且小于等于0.10%的Si;小于等于0.008%的P;小于等于0.006%的S;余量的Fe。还公开了一种焊接方法和焊缝金属。采用该埋弧焊丝和焊接方法进行的焊接过程和焊后的焊接接头,具有较高的抗拉强度和较好的低温韧性,并且焊接过程具有较高的焊接速度,能够满足X120管线焊接制管需求。

Description

一种埋弧焊丝及悍接方法
技术领域
本发明涉及焊接技术领域, 尤其涉及一种埋弧焊丝及焊接方法。 背景技术
焊接技术就是高温或高压条件下, 使用焊接材料 (焊条或焊丝)将两 块或两块以上的母材 (待焊接的工件)连接成一个整体的操作方法。 随着 工业技术的不断发展,焊接已从单一的加工工艺发展成为现代科技多学科 互相交融的新学科, 成为一种综合的工程技术, 涉及到材料、 焊接材料、 焊丝生产过程控制及机械化自动化、焊接质量控制、焊后热处理等诸多技 术领域,广泛地应用于工业生产的各个部门,在推动工业的发展和产品的 技术进步以及促进国民经济的发展都发挥着重要作用。
在焊接技术的众多应用领域中,管线焊接一直是业内广泛关注的焦点 之一,尤其近些年经济社会的高速发展拉动了能源需求的持续增长,并带 动了输油气管线建设的快速发展。 目前, X80及以下级别管线的焊接工艺 和材料技术比较成熟, 并成功应用于我国西气东输 "二线"和在建的 "三 线" 工程的管道建造中。
但随着能源需求的持续增长,业内迫切需要提高输送效率, 而釆用更 多高强度级别管线如 X90、 X100和 X120等高强度钢管, 既可以通过减 薄管道薄厚达到降低材料消耗的目的,又可以增大管径和输送压力,提高 输油效率, 节省运行费用。 因此, 高强度等级钢管是未来输油气管道建设 的主要趋势和方向,自然相关的管线焊接也逐渐成为了研发人员关注的热 点。
管线焊接主要釆用埋弧焊的焊接方法,由于结构日趋大型化以及安全 等级逐渐严格化, 业内对 X100和 X120等超高等级管线在应用上的要求 也曰益提高, 尤其是对管线焊接工艺的要求也越来越高。如, 管线用埋弧 焊丝的高强度、 高韧性、 成型优良和高焊接效率(大热输入量、 高焊接速 度)等, 焊接后的焊缝金属的抗拉强度、低温性的抗冲击性以及管道焊接 的过程等都有着严格的要求。
而现有技术中对上述 X100和 X120等超高等级管线的焊接材料报道 不多, 专利 CN201110176764.2和 CN201310025309.1均公开了一种 X100 钢级管线专用埋弧焊丝,并搭配 SJ101碱性焊接,制得钢管的焊缝金属的 抗拉强度在 760MPa以上, 焊缝金属 -40°C冲击功大于 150J, 但是上述焊 接材料可以满足 X80和 X100管线焊接制管需求, 还不能满足 X120管线 焊接制管需求。
因而,如何找到一种针对 X120钢级管线用埋弧焊丝以及相应的焊接 方法,能够同时满足强度、低温韧性和高焊接速度方面的要求的焊接材料 和方法, 一直是业内亟待解决的问题。
发明内容
本发明要解决的技术问题在于提供一种埋弧焊丝及其焊接方法,本发 明提供的埋弧焊丝, 是一种针对 X120钢级管线用埋弧焊丝, 釆用本发明 提供的埋弧焊丝进行的焊接过程和焊后的焊接接头, 能够满足 X120管线 焊接制管需求。
本发明公开了一种埋弧焊丝, 其特征在于, 按质量百分比组成包括:
0.85~1.60%的 Mo;
2.50~4.50%的 Ni;
0.10~0.30%的 Ti;
0.005~0.02%的 B;
0.005~0.02%的 REM;
1.60~2.00%的 Mn;
大于零且小于等于 0.06%的 C; 大于零且小于等于 0.10%的 Si; 小于 等于 0.008%的 P; 小于等于 0.006%的 S; 余量的 Fe。
优选的, 还包括 0.65 1.45%的 Cr。
优选的, 还包括 0.10 0.50%的 Cu。
本发明公开了一种焊接方法, 其特征在于, 包括以下步骤: 将上述任意一项技术方案中所述的埋弧焊丝与 MgO-Si02-CaF2-Al203 系弱碱性烧结焊剂进行焊接后 , 得到焊缝金属。
优选的, 所述焊接的焊接速度为 1.8~2.4m/min。
优选的, 所述焊接的热输入量为 15~150kJ/cm。 优选的, 还包括以下步骤:
在所述焊接前,先将 MgO-Si02-CaF2-Al203系弱碱性烧结焊剂进行预 热;
所述预热的温度为 300 400 °C , 所述预热的时间为 1~3小时。
本发明还公开了一种焊缝金属,其特征在于,按质量百分比组成包括: 0.85~1.60%的 Mo;
2.50~4.50%的 Ni;
0.005~0.30%的 Ti;
0.002~0.02%的 B;
0.002~0.02%的 REM;
1.60~2.00%的 Mn;
大于零且小于等于 0.06%的 C; 大于零且小于等于 0.20%的 Si; 小于 等于 0.008%的 P; 小于等于 0.006%的 S; 余量的 Fe。
优选的, 还包括 0.65 1.45%的 Cr。
优选的, 还包括 0.10 0.50%的 Cu。
本发明公开了一种埋弧焊丝, 其特征在于, 按质量百分比组成包括: 0.85 1.60%的 Mo; 2.50 4.50%的 Ni; 0.10~0.30%的 Ti; 0.005~0.02%的 B; 0.005~0.02%的 REM; 1.60~2.00%的 Mn; 大于零且小于等于 0.06%的 C; 大于零且小于等于 0.10%的 Si; 大于零且小于等于 0.008%的 P; 大于零 且小于等于 0.006%的 S; 余量的 Fe。 与现有技术相比, 本发明提供了用 于超高强度管线钢 X120 焊接的埋弧实芯焊丝 , 在搭配 MgO-Si02-CaF2-A1203 弱碱性烧结焊剂进行焊接后, 可得到满足性能要 求的超高强度 X120焊接接头, 具有较高的抗拉强度和较好的低温韧性, 并且焊接过程具有较高的焊接速度。 实验结果表明,釆用本发明提供的埋 弧焊丝进行焊接后, 得到的埋弧焊接接头的焊缝金属的抗拉强度 >920MPa, -40 °C冲击功≥100J, 延伸率≥18% , 焊接速度最高能够达到 2.4m/min„
具体实施方式
为了进一步了解本发明,下面结合实施例对本发明的优选实施方案进 行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点 而不是对本发明专利要求的限制。
本发明公开了一种埋弧焊丝, 其特征在于, 按质量百分比组成包括:
0.85~1.60%的 Mo;
2.50~4.50%的 Ni;
0.10~0.30%的 Ti;
0.005~0.02%的 B;
0.005~0.02%的 REM;
1.60~2.00%的 Mn;
大于零且小于等于 0.06%的 C; 大于零且小于等于 0.10%的 Si; 大于 零且小于等于 0.008%的 P; 大于零且小于等于 0.006%的 S; 余量的 Fe。
本发明所用原料, 对其来源没有特别限制, 在市场上购买的即可。 本发明对所有原料的纯度没有特别限制,以本领域技术人员熟知的纯 度即可, 本发明优选为分析纯。
在本发明中, 所述 Mo 的质量百分比含量优选根据目标焊缝金属强 度、 以及 Ni和 Ti等其它合金含量综合判定而定。 本发明按质量百分比组 成, 所述焊丝中 Mo 的质量百分比含量优选为 0.85 1.60%, 更优选为 1.0-1.5%, 最优选为 1.1~1.3%; 本发明对 Mo的来源没有特别限定, 以本 领域技术人员熟知的方法制备或市售的即可;本发明对 Mo的纯度没有特 别限制, 以本领域技术人员熟知的用于制备埋弧焊丝的纯度即可。
本发明将 Mo作为微量元素加入到埋弧焊丝中,能够提高焊缝金属强 度和低温冲击韧性;同时添加一定量的 Mo可有效降低焊缝金属在焊后的 冷却过程中的相转变温度,来细化焊缝金属组织,并同时扩大针状体素体 和贝氏体的形成温度区间。埋弧焊丝组织的细化,提高了焊缝金属的强度, 而针状铁素体的促进则提高了低温冲击韧性。
本发明按质量百分比组成,所述焊丝中 Mn的质量百分比含量优选为 1.60-2.00%, 更优选为 1.70~1.90%, 最优选为 1.1~1.3%; 本发明对 Mn 的来源没有特别限定, 以本领域技术人员熟知的方法制备或市售的即可; 本发明对 Mn的纯度没有特别限制,以本领域技术人员熟知的用于制备埋 弧焊丝的纯度即可。
本发明将 Mn作为微量元素加入到埋弧焊丝中, Mn作为焊缝金属 中的主要脱氧元素之一,同时也是提高钢板和焊缝金属强度最有效的元素 之一, 其含量在 1.60%以上, 提高强度效果明显; 但超过 2.0%的 Mn含 量会显著降低焊缝金属低温冲击韧性。
在本发明中, 鉴于 Ni/Mn比对焊缝金属的低温冲击韧性有直接影响, 因而根据目标焊缝金属的性能要求以及 Mn 的质量百分比含量综合判定 而定。 本发明按质量百分比组成, 所述焊丝中 Ni的质量百分比含量优选 为 2.5~4.5%, 更优选为 3.0~4.0%, 最优选为 3.3~4.7%; 本发明对 Ni的来 源没有特别限定, 以本领域技术人员熟知的方法制备或市售的即可; 本发 明对 Ni的纯度没有特别限制, 以本领域技术人员熟知的用于制备埋弧焊 丝的纯度即可。
本发明将 Ni作为微量元素加入到埋弧焊丝中, 主要作用是提高焊缝 金属低温韧性, 同时也利用其固溶强化作用来提高焊缝金属强度。 Ni提 高低温韧性的机理是通过韧化铁素体基体来实现的。 Ni和 Mn都是奥氏 体稳定元素,都能通过一定量的添加来降低奥氏体相转变温度,从而提高 强度, 但两者对冲击韧性的影响并不完全相同, 因而同时加入。
本发明所述 Ti的质量百分比含量, 优选根据焊剂以及焊接过程的影 响进行添加。 本发明按质量百分比组成, 所述焊丝中 Ti的质量百分比含 量优选为 0.10 0.30%, 更优选为 0.15 0.25%, 最优选为 0.18 0.22%; 本 发明对 Ti的来源没有特别限定, 以本领域技术人员熟知的方法制备或市 售的即可; 本发明对 Ti的纯度没有特别限制, 以本领域技术人员熟知的 用于制备埋弧焊丝的纯度即可。
本发明将 Ti作为微量元素加入到埋弧焊丝中, 其形成的氧化物的尺 寸能够得到细化、且其体积含量明显增加,从而能够显著促进焊缝金属中 针状铁素体的生成。
本发明按质量百分比组成, 所述焊丝中 B的质量百分比含量优选为 0.005-0.02%, 更优选为 0.008~0.015%, 最优选为 0.01~0.013%; 本发明 对 B 的来源没有特别限定, 以本领域技术人员熟知的方法制备或市售的 即可; 本发明对 B 的纯度没有特别限制, 以本领域技术人员熟知的用于 制备埋弧焊丝的纯度即可。
本发明将 B作为微量元素加入到埋弧焊丝中, 能够有效的提高焊缝 金属淬透性和强度,并利用其易于偏聚晶界的特点来促进焊缝金属中晶内 组织的形, 同时抑制晶界形核生成的贝氏体和马氏体类组织,从而提高焊 缝金属的低温韧性。
本发明按质量百分比组成, 所述焊丝中 REM的质量百分比含量优选 为 0.005~0.2%, 更优选为 0.01~0.15%, 最优选为 0.05~0.10%; 本发明所 述 REM为稀土元素, 本发明对 REM的组成没有特别限定, 以本领域技 术人员熟知的 REM的组成即可, 本发明优选为按质量百分比组成, REM 中含有大于等于 50%的 La、含有大于等于 50%的 Ce、 或者含有大于等于 50%的 La和 Ce的混合物; 本发明对 REM的来源没有特别限定, 以本领 域技术人员熟知的方法制备或市售的即可; 本发明对 REM的纯度没有特 别限制, 以本领域技术人员熟知的用于制备埋弧焊丝的纯度即可。
本发明将 REM作为关键的微量元素加入到埋弧焊丝中, 一方面能够 脱氧来降低焊缝金属中的氧含量,从而提高焊缝金属低温冲击韦刃性, 同时 还可以改善 P和 S的偏析, 从而提高焊缝金属抗裂性能; 另一方面, 利 用其生成的氧化物易于分散且不易聚集长大的特点 ,来促进晶内针状类组 织的生成, 细化了焊缝金属显微组织, 从而提高焊缝金属的低温韧性。
本发明按质量百分比组成, 所述焊丝中 C的质量百分比含量优选为 小于等于 0.06%, 更优选为小于等于 0.05%, 最优选为小于等于 0.03%。 由于高的 C含量对铁基材料的低温冲击韧性和焊接性能不利, 本发明对 所述 C含量进行控制, 降低 C含量可降低焊缝金属的淬透性, 从而降低 马氏体转变倾向, 即使生成马氏体时, 较低的 C含量也可降低马氏体的 硬度, 从而改善低温冲击韧性; 此外降低 C含量还能降低焊接冷裂纹敏 感性, 提高焊接质量, 从提高焊接金属低温韧性和改善冷裂紋敏感性。
本发明按质量百分比组成, 所述焊丝中 Si的质量百分比含量优选为 小于等于 0.10%, 更优选为小于等于 0.07%, 最优选为小于等于 0.04%。 由于高的 Si含量一方面增加了焊缝金属的热裂紋倾向, 对焊接不利; 另 一方面促进了焊缝金属中晶界铁素体和侧板条铁素体的生成倾向,从而损 坏低温冲击韧性。
本发明按质量百分比组成, 所述焊丝中还含有杂质元素 P, 所述焊丝 中 P的质量百分比含量优选控制为小于等于 0.008%, 更优选控制为小于 等于 0.005%,最优选控制为小于等于 0.003%;本发明按质量百分比组成, 所述焊丝中还含有杂质元素 S ,所述焊丝中 S的质量百分比含量优选控制 为小于等于 0.006%, 更优选控制为小于等于 0.004%, 最优选控制为小于 等于 0.002%。
在本发明中, 所述埋弧焊丝中优选还包括 Cr; 本发明按质量百分比 组成, 所述焊丝中 Cr 的质量百分比含量优选为 0.65 1.45%, 更优选为 0.85-1.25%, 最优选为 0.95~1.15%; 本发明对 Cr的来源没有特别限定, 以本领域技术人员熟知的方法制备或市售的即可; 本发明对 Cr的纯度没 有特别限制, 以本领域技术人员熟知的用于制备埋弧焊丝的纯度即可。
本发明将 Cr作为微量元素加入到埋弧焊丝中, 能够有效提高焊缝金 属淬透性和强度的元素之一, 当其含量低于 0.65时, 强化效果不明显; 当其含量超过 1.45%时, 对焊缝金属低温冲击韧性不利。
在本发明中, 所述埋弧焊丝中优选还包括 Cu; 本发明按质量百分比 组成, 所述焊丝中 Cu 的质量百分比含量优选为 0.10 0.50%, 更优选为 0.20-0.40%, 最优选为 0.25 0.35%; 本发明对 Cu的来源没有特别限定, 以本领域技术人员熟知的方法制备或市售的即可; 本发明对 Cu的纯度没 有特别限制, 以本领域技术人员熟知的用于制备埋弧焊丝的纯度即可。
本发明将 Cu作为微量元素加入到埋弧焊丝中, 一方面可通过固溶强 化来提高焊缝金属强度,另一方面也可以提高焊缝金属的抗腐蚀能力。 当 其含量≤0.10%时, 其对强度和抗腐蚀能力效果不明显; 当其含量≥0.50% 时, 会给焊丝用钢盘条的冶炼和表面质量控制带来困难; 同时, 在多道焊 缝中后续焊道会对前面的焊道产生回火作用, 这样可以诱导 Cu粒子相的 析出,从而起到了在不损害焊缝金属冲击韧性的前提下,可以大幅提高焊 缝金属的强度的作用。
本发明提供了一种用于超高强度管线的埋弧焊丝, 可用于超高强度 X120钢级管线的埋弧焊接制管。埋弧焊丝高 Mo、 高 Ti、 高 B和 REM的 合金设计,确保了焊接后的焊缝金属能够在较大的热输入量焊接条件下获 得以针扎铁素体为主的焊缝组织,从而兼顾强度和韧性,从而满足了大输 入量的焊接需求; 低〇、 低 Si以及高 Ni的合金设计确保了焊缝金属较低 的碳当量、 冷裂紋敏感性以及脆性相的生成, 有利于焊缝的低温韧性, 同 时高 Ni设计通过韧化铁素体基体提高了焊缝金属的低温韧性稳定区间, 也为焊缝金属适应大热输入量焊接、 高焊接速度焊接提供了基础。
本发明提供了一种焊接方法, 其特征在于, 包括以下步骤: 将上述任 意一项技术方案中所述的埋弧焊丝与 MgO-Si02-CaF2-Al203系弱碱性烧 结焊剂进行焊接后, 得到焊缝金属; 所述焊接的焊接速度优选为 1.8~2.4 m/min, 更优选为 1.9~2.3 m/min, 最优选为 2.0〜2.2 m/min; 所述焊接的热 输入量优选为 15 150 kJ/cm, 更优选为 30 120 kJ/cm, 最优选为 50 100 kJ/cm。
本发明对所述 MgO-Si02-CaF2-Al203系弱碱性烧结焊剂没有特别限 制,以本领域技术人员熟知的用于埋弧焊的 MgO-Si02-CaF2-Al203系弱碱 性烧结焊剂即可; 本发明为保证焊接效果, 优选在所述焊接前, 先将 MgO-Si02-CaF2-Al203系弱碱性烧结焊剂进行预热, 所述预热的温度优选 为 300~400 °C , 更优选为 330~370 °C; 所述预热的时间优选为 1~3小时, 更优选为 1.5 2.5小时; 本发明对上述预热的其他条件没有特别限制, 以 本领域技术人员熟知的弱碱性烧结焊剂的预热条件即可。本发明对所述焊 接工艺没有特别限制, 以本领域技术人员熟知的埋弧焊工艺即可;本发明 对所述焊接的其他条件没有特别限制,以本领域技术人员熟知的焊接条件 即可;本发明对所述焊接的设备没有特别限制,以本领域技术人员熟知的 埋弧焊设备即可。
本发明提供的焊接方法, 釆用本发明提供的焊丝及配套的 MgO-Si02-CaF2-Al203系弱碱性焊剂, 能够实现高焊接速度焊接, 从而满 足高效焊接的需求。
本发明还公开了一种焊缝金属,其特征在于,按质量百分比组成包括:
0.85~1.60%的 Mo; 2.50~4.50%的 Ni;
0.005~0.30%的 Ti;
0.002~0.02%的 B;
0.002~0.02%的 REM;
1.60~2.00%的 Mn;
大于零且小于等于 0.06%的 C; 大于零且小于等于 0.20%的 Si; 小于 等于 0.008%的 P; 小于等于 0.006%的 S; 余量的 Fe。
本发明所述焊缝金属由上述任意一项技术方案所述的埋弧焊丝经过 上述任意一项技术方案所述的焊接方法, 进行焊接后得到。
在本发明中,鉴于焊剂以及焊接过程的综合影响,本发明按质量百分 比组成, 所述焊缝金属中 Ti的质量百分比含量优选为 0.05~0.30%, 更优 选为 0.10~0.25%, 最优选为 0.15~0.20%; 本发明所述焊缝金属中 Ti的含 量在此含量范围内,其形成的氧化物的尺寸能够得到细化、且其体积含量 明显增加, 从而能够显著促进焊缝金属中针状铁素体的生成。
本发明按质量百分比组成, 所述焊缝金属中 B 的质量百分比含量优 选为 0.002-0.02%, 更优选为 0.005-0.017%, 最优选为 0.01-0.014%; 本 发明所述焊缝金属中 Ti的含量在上述含量范围内, 利用其易于偏聚晶界 的特点来促进焊缝金属中晶内组织的形成、并同时抑制晶界形核生成的贝 氏体和马氏体类组织, 从而提高焊缝金属的低温韧性。
本发明按质量百分比组成, 所述焊缝金属中 REM的质量百分比含量 优选为 0.002~0.02%, 更优选为 0.006~0.017%, 最优选为 0.01~0.014%; 本发明所述 REM与前述 REM均一致, 在此不再——赘述。
本发明按质量百分比组成, 所述 Si的质量百分比含量优选为小于等 于 0.20%, 更优选为小于等于 0.15%, 最优选为小于等于 0.10%。 由于高 的 Si含量一方面增加了焊缝金属的热裂纹倾向, 对焊接不利; 另一方面 促进了焊缝金属中晶界铁素体和侧板条铁素体的生成倾向,从而损坏低温 冲击韧性, 但由于埋弧焊剂中需要加入一定量的 Si02来保持焊接工艺性 能, 因此焊缝金属中的 Si含量会增加, 但应将其控制在≤0.20%。 当其含 量大于 0.20%时, 焊缝金属中, 尤其是多道焊缝中脆性相 M-A组元会显 著增加, 损坏低温韧性。
本发明所述焊缝金属中包括的其他组分, 与前述焊丝中的元素组成、 优选原则以及原理均一致, 在此不再——赘述。
本发明对上述焊接方法焊接得到的焊缝金属进行性能检测 ,实验结果 表明, 本发明提供的焊缝金属抗拉强度≥920MPa, 延伸率≥18%, -40°C下 的冲击功≥100; 本发明焊接过程的最大焊接速度为 2.4m/min, 最大热输 入量达到 150kJ/cm。
为了进一步说明本发明 ,以下结合实施例对本发明提供的一种埋弧焊 丝及其焊接方法进行详细描述, 本发明的保护范围不受以下实施例的限 制。
实施例 1
焊接试板釆用厚度规格 16.3mm 的 X120 管线钢板, 截面尺寸为 350x800mm。 釆用单丝埋弧焊接方法, 焊接速度 2.0m/min, 焊接热输入 量为 32 kJ/cm, 坡口为单 。 选用直径为 3.2mm的实芯焊丝, 化学成分 (质量百分比)参见表 1 , 表 1为实施例 1~18釆用的埋弧实芯焊丝的化 学成分。焊剂选用碱度为 1.35的 MgO-Si02-CaF2-A1203弱碱性烧结焊剂, 焊前将焊剂加热到 350 °C并保温 2小时。
焊后釆用 X射线和超声波对焊接接头进行探伤, 未发现缺陷。 焊接 接头焊缝金属成分(质量百分比)参见表 2, 表 2为实施例 1~18制得的 焊接接头的焊缝金属化学成分。焊缝金属的力学性能检测结果,参见表 3 , 表 3为实施例 1~18制得的焊接接头的焊缝金属的力学性能。
实施例 2:
釆用与实施例 1中相同的钢板和焊剂。焊丝成分与实施例 1相同,直 径为 4mm。
釆用双丝埋弧焊接方法, 焊接热输入量为 65 kJ/cm , 焊接速度为 1.8m/min, 坡口为双 V, 正反面各一道次。
焊后釆用 X射线和超声波对焊接接头进行探伤, 未发现缺陷。 焊接 接头焊缝金属成分(质量百分比)参见表 2, 表 2为实施例 1~18制得的 焊接接头的焊缝金属化学成分。焊缝金属的力学性能检测结果,参见表 3 , 表 3为实施例 1~18制得的焊接接头的焊缝金属的力学性能。
实施例 3:
釆用与实施例 1成分相同的焊丝, 但直径为 4mm。 焊接试板成分和 厚度规格与实施例 1相同,但截面尺寸为 450xl200mm。 焊剂选用碱度为 1.32的 MgO-Si02-CaF2-Al203弱碱性烧结焊剂,
釆用双面四丝埋弧焊接方法, 坡口为单 V, 正反面各一个焊接道次; 焊接热输入量为 75 kJ/cm, 焊接速度 2.1m/min。
焊后釆用 X射线和超声波对焊接接头进行探伤, 未发现缺陷。 焊接 接头焊缝金属成分(质量百分比)参见表 2, 表 2为实施例 1~18制得的 焊接接头的焊缝金属化学成分。焊缝金属的力学性能检测结果,参见表 3 , 表 3为实施例 1~18制得的焊接接头的焊缝金属的力学性能。
实施例 4:
焊接试板釆用厚度 17.2mm 管线钢板 X120 , 截面尺寸为 450x l000mm。 选用直径为 4mm的实芯焊丝, 化学成分(质量百分比) 参见表 1 , 表 1为实施例 1~18釆用的埋弧实芯焊丝的化学成分。 埋弧焊 剂选用碱度 1.38的 MgO-Si02-CaF2-Al203系碱性烧结焊剂, 焊前将焊剂 加热到 350 °C并保温 2小时。
釆用单丝埋弧焊接方法, 坡口为单 V, 焊接热输入量为 48 kJ/cm, 焊 接速度为 1.95m/min。
焊后釆用 X射线和超声波对焊接接头进行探伤, 未发现缺陷。 焊接 接头焊缝金属成分(质量百分比)参见表 2, 表 2为实施例 1~18制得的 焊接接头的焊缝金属化学成分。焊缝金属的力学性能检测结果,参见表 3 , 表 3为实施例 1~18制得的焊接接头的焊缝金属的力学性能。
实施例 5:
选用与实施例 4相同的焊接试板、 焊丝和焊剂。
釆用双丝埋弧焊接方法, 坡口为单 V, 焊接热输入量为 78 kJ/cm, 焊 接速度为 2.05m/min。
焊后釆用 X射线和超声波对焊接接头进行探伤, 未发现缺陷。 焊接 接头焊缝金属成分(质量百分比)参见表 2, 表 2为实施例 1~18制得的 焊接接头的焊缝金属化学成分。焊缝金属的力学性能检测结果,参见表 3 , 表 3为实施例 1~18制得的焊接接头的焊缝金属的力学性能。
实施例 6:
选用与实施例 4相同的焊接试板、 焊丝和焊剂。
釆用双面四丝埋弧焊接方法,坡口为双 V,悍接热输入量为 65 kJ/cm, 焊接速度为 2.2m/min。
焊后釆用 X射线和超声波对焊接接头进行探伤, 未发现缺陷。 焊接 接头焊缝金属成分(质量百分比)参见表 2, 表 2为实施例 1~18制得的 焊接接头的焊缝金属化学成分。焊缝金属的力学性能检测结果,参见表 3 , 表 3为实施例 1~18制得的焊接接头的焊缝金属的力学性能。
实施例 7-15:
分别选用不同成分、 直径为 4mm的实芯焊丝。 焊剂选用碱度 1.28的 MgO-Si02-CaF2-Al203系弱碱性烧结焊剂, 焊前将焊剂加热到 350°C并保 温 2小时。
焊接试板选用 14.3mm的管线钢板 X120。 利用上述焊丝和焊剂在外 径 1219钢管生产线上进行内焊和外焊。釆用四丝埋弧焊接,坡口为双 V, 内外面各一道次; 内外焊接的热输入量分别为 65和 68kJ/cm, 焊接速度 为 2.25m/min„
焊后釆用 X射线和超声波对焊接接头进行探伤, 未发现缺陷。 焊接 接头焊缝金属成分(质量百分比)参见表 2, 表 2为实施例 1~18制得的 焊接接头的焊缝金属化学成分。焊缝金属的力学性能检测结果,参见表 3 , 表 3为实施例 1~18制得的焊接接头的焊缝金属的力学性能。
实施例 16:
焊接试板釆用 26mm厚高强钢板, 抗拉强度 925MPa。
选用直径为 4mm的实芯焊丝, 其成分(盾量百分比)参见表 1 , 表 1为实施例 1~18釆用的埋弧实芯焊丝的化学成分。 焊剂选用碱度 1.34的 MgO-Si02-CaF2-Al203系弱碱性烧结焊剂, 焊前将焊剂加热到 350°C并保 温 2小时。釆用单面三丝埋弧焊接方法,坡口为单 V,单面焊接双面成型, 焊接热输入量 136kJ/cm, 焊接速度为 2.21m/min。 焊后釆用 X射线和超声波对焊接接头进行探伤, 未发现缺陷。 焊接 接头焊缝金属成分(质量百分比)参见表 2, 表 2为实施例 1~18制得的 焊接接头的焊缝金属化学成分。焊缝金属的力学性能检测结果,参见表 3 , 表 3为实施例 1~18制得的焊接接头的焊缝金属的力学性能。
实施例 17:
焊接试板釆用 20mm厚级高强钢板, 其屈服轻度 845MPa,抗拉强度 967Mpa„
选用直径为 4mm的实芯焊丝, 其成分(质量百分比)参见表 1 , 表 1为实施例 1~18釆用的埋弧实芯焊丝的化学成分。 焊剂选用碱度 1.27的 MgO-Si02-CaF2-Al203系弱碱性烧结焊剂, 焊前将焊剂加热到 350°C并保 温 2小时。釆用单面三丝埋弧焊接方法,坡口为单 V,单面焊接双面成型, 焊接热输入量 124kJ/cm, 焊接速度为 2.15m/min。
焊后釆用 X射线和超声波对焊接接头进行探伤, 未发现缺陷。 焊接 接头焊缝金属成分(质量百分比)参见表 2, 表 2为实施例 1~18制得的 焊接接头的焊缝金属化学成分。焊缝金属的力学性能检测结果,参见表 3 , 表 3为实施例 1~18制得的焊接接头的焊缝金属的力学性能。
实施例 18:
焊接试板釆用 20mm厚级高强钢板, 其屈服轻度 835MPa,抗拉强度 945MPa„
选用直径为 4mm的实芯焊丝, 其成分(质量百分比)参见表 1 , 表 1为实施例 1~18釆用的埋弧实芯焊丝的化学成分。 焊剂选用碱度 1.30的 MgO-Si02-CaF2-Al203系弱碱性烧结焊剂, 焊前将焊剂加热到 350°C并保 温 2小时。釆用双面双丝埋弧焊接方法,坡口为双 V,正反面各一个道次, 焊接热输入量 105kJ/cm, 焊接速度 1.9m/min。
焊后釆用 X射线和超声波对焊接接头进行探伤, 未发现缺陷。 焊接 接头焊缝金属成分(质量百分比)参见表 2, 表 2为实施例 1~18制得的 焊接接头的焊缝金属化学成分。焊缝金属的力学性能检测结果,参见表 3 , 表 3为实施例 1~18制得的焊接接头的焊缝金属的力学性能。 实施例 1~18釆用的埋弧实芯焊丝的化学成分(wt% )
C Si Mn P S Mo Ni Cr Ti Cu B REM-3# 0.02 0.07 1.67 0.0067 0.0040 1.24 2.85 0.95 0.22 - 0.0118 0.0060-6# 0.05 0.06 1.72 0.0052 0.0046 1.45 2.78 1.12 0.24 - 0.0133 0.0120
7# 0.06 0.09 1.95 0.0068 0.0035 1.33 3.83 - 0.21 0.19 0.0151 0.0080
8# 0.04 0.05 1.81 0.0074 0.0035 1.15 4.16 - 0.26 0.25 0.0178 0.0089
9# 0.05 0.08 1.87 0.0063 0.0032 1.14 4.42 - 0.13 0.18 0.0158 0.01000# 0.06 0.09 1.83 0.0058 0.0046 0.95 2.65 1.40 0.24 - 0.0144 0.0070 1# 0.04 0.07 1.72 0.0072 0.0050 0.90 2.76 1.27 0.28 - 0.0162 0.00802# 0.04 0.07 1.64 0.0064 0.0050 1.26 3.76 0.87 0.17 - 0.0154 0.00923# 0.03 0.08 1.96 0.0072 0.0053 1.55 3.86 - 0.24 0.28 0.0124 0.01264# 0.03 0.08 1.83 0.0063 0.0042 1.48 4.12 - 0.27 0.26 0.0137 0.01075# 0.04 0.06 1.98 0.0053 0.0038 1.58 4.32 - 0.25 0.16 0.0128 0.00876# 0.05 0.06 1.62 0.0072 0.0038 0.88 2.68 0.75 0.22 0.18 0.0066 0.00757# 0.05 0.08 1.75 0.0068 0.0045 1.23 2.98 0.85 0.18 0.21 0.0076 0.00958# 0.04 0.07 1.82 0.0065 0.0042 1.44 3.15 0.75 0.15 0.24 0.0085 0.0090
表 2 实施例 1~18制得的焊接接头的焊缝金属化学成分(wt% )
C Si Mn P S Mo Ni Cr Ti Cu B REM
1# 0.06 0.17 1.73 0.0072 0.0035 1.05 2.54 0.76 0.11 - 0.0042 0.0015
2# 0.06 0.16 1.72 0.0073 0.0034 1.02 2.52 0.75 0.10 - 0.0040 0.0017
3# 0.06 0.19 1.70 0.0071 0.0036 0.98 2.43 0.72 0.09 - 0.0038 0.0016
4# 0.04 0.17 1.63 0.0057 0.0042 1.26 3.12 1.23 0.12 - 0.0043 0.0042
5# 0.05 0.18 1.67 0.0058 0.0041 1.22 3.05 1.13 0.09 - 0.0037 0.0038
6# 0.05 0.18 1.71 0.0061 0.0036 1.19 2.95 1.08 0.08 - 0.0034 0.0039
7# 0.05 0.16 1.86 0.0071 0.0042 1.12 3.32 - 0.08 0.21 0.0042 0.0021
8# 0.04 0.14 1.89 0.0078 0.0043 0.92 3.48 - 0.09 0.24 0.0049 0.0024
9# 0.05 0.15 1.86 0.0068 0.0038 0.91 3.69 - 0.06 0.23 0.0043 0.0028
10# 0.06 0.16 1.88 0.0074 0.0045 0.74 2.22 1.08 0.14 - 0.0038 0.0014
11# 0.05 0.15 1.84 0.0071 0.0047 0.68 2.32 0.88 0.16 - 0.0045 0.0016
12# 0.05 0.16 1.74 0.0067 0.0051 1.02 3.12 0.62 0.12 - 0.0041 0.0017
13# 0.04 0.17 1.93 0.0073 0.0047 1.32 3.26 - 0.15 0.28 0.0036 0.0028
14# 0.05 0.15 1.85 0.0063 0.0038 1.35 3.54 - 0.18 0.28 0.0041 0.0024 # 0.05 0.14 1.88 0.0064 0.0042 1.38 3.72 - 0.16 0.22 0.0037 0.0016 # 0.06 0.15 1.74 0.0065 0.0043 0.89 2.52 0.68 0.12 0.23 0.0014 0.0022 # 0.06 0.15 1.84 0.0054 0.0052 0.86 2.18 0.65 0.11 0.16 0.0024 0.0026 # 0.05 0.14 1.87 0.0063 0.0045 0.96. 2.58 0.67 0.09 0.26 0.0023 0.0025 表 3 实施例 1~18制得的焊接接头的焊缝金属的力学性能
Figure imgf000016_0001
通过上述实施例数据可知 ,采用本发明技术可得到无缺陷的管线埋弧 焊接接头, 且焊缝金属的抗拉强度≥980 , 断后延伸率≥18%, -40°C冲 击吸收功≥100 适用于超高强度 X120钢级管线的焊接制管。
同时,本发明还提供了一种搭配 MgO-Si02-CaF2-Al203系弱碱性烧结 焊剂的焊接方法, 可实现高焊接速度 1.8~2.4m/min 以及高热输入量 15〜 150kJ/cm的焊接加工。
以上对本发明提供的一种埋弧焊丝及其焊接方法进行了详细的介绍, 例的说明只是用于帮助理解本发明的方法及其核心思想,应当指出,对于 本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以 对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的 保护范围内。

Claims

权 利 要 求
1、 一种埋弧焊丝, 其特征在于, 按质量百分比组成包括:
0.85~1.60%的 Mo;
2.50~4.50%的 Ni;
0.10~0.30%的 Ti;
0.005~0.02%的 B;
0.005~0.02%的 REM;
3、根据权利要求 1所述的埋弧焊丝,其特征在于,还包括 0.10 0.50% 的 Cu。
4、 一种焊接方法, 其特征在于, 包括以下步骤:
将权利要求 1~3所述的埋弧焊丝与 MgO-Si02-CaF2-Al203系弱碱性烧 结焊剂进行焊接后, 得到焊缝金属。
5、 根据权利要求 4所述的焊接方法, 其特征在于, 所述焊接的焊接 速度为 1.8~2.4m/min。
6、 根据权利要求 4所述的焊接方法, 其特征在于, 所述焊接的热输 入量为 15~150kJ/cm。
7、根据权利要求 4所述的焊接方法, 其特征在于, 还包括以下步骤: 在所述焊接前,先将 MgO-Si02-CaF2-Al203系弱碱性烧结焊剂进行预 热;
所述预热的温度为 300 400 °C , 所述预热的时间为 1~3小时。
8、 一种焊缝金属, 其特征在于, 按质量百分比组成包括:
0.85~1.60%的 Mo;
9、根据权利要求 8所述的焊缝金属,其特征在于,还包括 0.65~1.45% 的 Cr。
10、根据权利要求 8所述的焊缝金属,其特征在于,还包括 0.10~0.50% 的 Cu。
PCT/CN2014/083305 2014-06-11 2014-07-30 一种埋弧焊丝及焊接方法 WO2015188427A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016572531A JP6392376B2 (ja) 2014-06-11 2014-07-30 サブマージアーク溶接ワイヤ
EP14894509.0A EP3156168B1 (en) 2014-06-11 2014-07-30 Submerged arc welding wire and welding method
KR1020177000486A KR101923948B1 (ko) 2014-06-11 2014-07-30 서브머지드 아크 용접 와이어 및 용접 방법
US15/315,157 US20170197273A1 (en) 2014-06-11 2014-07-30 Submerged arc welding wire and welding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410258769.3A CN104002059B (zh) 2014-06-11 2014-06-11 一种埋弧焊丝及焊接方法
CN201410258769.3 2014-06-11

Publications (1)

Publication Number Publication Date
WO2015188427A1 true WO2015188427A1 (zh) 2015-12-17

Family

ID=51363121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083305 WO2015188427A1 (zh) 2014-06-11 2014-07-30 一种埋弧焊丝及焊接方法

Country Status (6)

Country Link
US (1) US20170197273A1 (zh)
EP (1) EP3156168B1 (zh)
JP (1) JP6392376B2 (zh)
KR (1) KR101923948B1 (zh)
CN (1) CN104002059B (zh)
WO (1) WO2015188427A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108705223A (zh) * 2018-05-16 2018-10-26 武汉钢铁有限公司 一种抗拉强度为810MPa级高韧耐蚀埋弧自动焊接用焊丝
CN110181195B (zh) * 2019-05-28 2021-07-30 阳江职业技术学院 一种x100管线钢用埋弧焊接用材料
CN110385546A (zh) * 2019-07-24 2019-10-29 西安理工大学 一种优异低温性能的x80管线钢埋弧焊药芯焊丝及制备方法
CN110788457A (zh) * 2019-12-03 2020-02-14 四川西冶新材料股份有限公司 一种埋弧焊丝及其熔敷金属

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023569A (ja) * 2006-07-24 2008-02-07 Jfe Steel Kk 引張強度800MPaを超える超高強度溶接鋼管の製造方法
CN101559544A (zh) * 2008-04-16 2009-10-21 株式会社神户制钢所 纯Ar气体保护焊用MIG药芯焊丝及MIG弧焊方法
CN102049599A (zh) * 2011-01-07 2011-05-11 南京钢铁股份有限公司 一种超高强海洋结构用钢板f460z埋弧焊接方法
JP2011206828A (ja) * 2010-03-30 2011-10-20 Jfe Steel Corp 細径多電極サブマージアーク溶接用フラックス入り溶接ワイヤ
CN103317257A (zh) * 2013-06-20 2013-09-25 西安理工大学 一种贝氏体钢用高强高韧埋弧焊丝
CN103350289A (zh) * 2013-06-21 2013-10-16 江苏省沙钢钢铁研究院有限公司 一种低温韧性优异的高强度埋弧焊丝熔敷金属
CN103464926A (zh) * 2013-09-25 2013-12-25 张盘 一种高性能埋弧焊丝、焊缝金属及其应用

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844770A (en) * 1971-09-17 1974-10-29 I Nixon Manufacture of steel and ferrous alloys
JP3339403B2 (ja) * 1998-03-19 2002-10-28 住友金属工業株式会社 溶接鋼構造物の製造方法および溶接鋼構造物
CN1176780C (zh) * 2001-03-28 2004-11-24 中国科学院金属研究所 一种高强度管线钢埋弧焊用焊丝
JP2003138340A (ja) * 2001-10-31 2003-05-14 Nippon Steel Corp 溶接部靱性に優れた超高強度鋼管及びその製造方法
JP4427416B2 (ja) * 2004-08-10 2010-03-10 新日本製鐵株式会社 溶接金属の靱性に優れた大入熱サブマージアーク溶接方法。
JP5251089B2 (ja) * 2006-12-04 2013-07-31 新日鐵住金株式会社 低温靱性に優れた高強度厚肉ラインパイプ用溶接鋼管及びその製造方法
JP5181639B2 (ja) * 2006-12-04 2013-04-10 新日鐵住金株式会社 低温靱性に優れた高強度厚肉ラインパイプ用溶接鋼管及びその製造方法
JP5202862B2 (ja) * 2007-03-28 2013-06-05 Jfeスチール株式会社 耐低温割れ性に優れた溶接金属を有する高強度溶接鋼管およびその製造方法
KR101175420B1 (ko) * 2007-05-16 2012-08-20 수미도모 메탈 인더스트리즈, 리미티드 벤드관 및 그 제조 방법
CN101733584B (zh) * 2010-02-13 2012-02-01 宝鸡石油钢管有限责任公司 管线钢用高强度埋弧焊丝
CN102233492B (zh) * 2010-04-27 2013-07-31 昆山京群焊材科技有限公司 耐热钢埋弧焊丝
CN102069320B (zh) * 2010-12-27 2012-11-28 武汉科技大学 一种超高强度管线钢用埋弧焊焊丝及其制备方法
CN103192198B (zh) * 2013-04-26 2016-09-21 宝鸡石油钢管有限责任公司 一种超高强度x90/x100钢级热煨弯管用埋弧焊丝
CN103418934A (zh) * 2013-07-26 2013-12-04 宝鸡石油钢管有限责任公司 一种低温韧性优良的高强度埋弧焊丝
JP6054286B2 (ja) 2013-12-20 2016-12-27 日鐵住金溶接工業株式会社 780MPa級高張力鋼のサブマージアーク溶接方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023569A (ja) * 2006-07-24 2008-02-07 Jfe Steel Kk 引張強度800MPaを超える超高強度溶接鋼管の製造方法
CN101559544A (zh) * 2008-04-16 2009-10-21 株式会社神户制钢所 纯Ar气体保护焊用MIG药芯焊丝及MIG弧焊方法
JP2011206828A (ja) * 2010-03-30 2011-10-20 Jfe Steel Corp 細径多電極サブマージアーク溶接用フラックス入り溶接ワイヤ
CN102049599A (zh) * 2011-01-07 2011-05-11 南京钢铁股份有限公司 一种超高强海洋结构用钢板f460z埋弧焊接方法
CN103317257A (zh) * 2013-06-20 2013-09-25 西安理工大学 一种贝氏体钢用高强高韧埋弧焊丝
CN103350289A (zh) * 2013-06-21 2013-10-16 江苏省沙钢钢铁研究院有限公司 一种低温韧性优异的高强度埋弧焊丝熔敷金属
CN103464926A (zh) * 2013-09-25 2013-12-25 张盘 一种高性能埋弧焊丝、焊缝金属及其应用

Also Published As

Publication number Publication date
JP2017523046A (ja) 2017-08-17
US20170197273A1 (en) 2017-07-13
EP3156168A4 (en) 2017-11-22
CN104002059B (zh) 2016-09-28
EP3156168A1 (en) 2017-04-19
KR101923948B1 (ko) 2018-11-30
JP6392376B2 (ja) 2018-09-19
CN104002059A (zh) 2014-08-27
EP3156168B1 (en) 2019-12-25
KR20170015494A (ko) 2017-02-08

Similar Documents

Publication Publication Date Title
JP5200932B2 (ja) ベンド管及びその製造方法
JP5251089B2 (ja) 低温靱性に優れた高強度厚肉ラインパイプ用溶接鋼管及びその製造方法
JP4837807B2 (ja) 高強度溶接鋼管及びその製造方法
JP2008156754A (ja) 低温靱性に優れた高強度ラインパイプ用溶接鋼管及びその製造方法
JP2009149917A (ja) 低温靱性に優れた高強度ラインパイプ用溶接鋼管及びその製造方法
CN104089109B (zh) 一种625MPa级UOE焊管及其制造方法
WO2018185851A1 (ja) 縦シーム溶接鋼管
CN102653844A (zh) 耐酸性环境腐蚀电阻焊钢管及其制备方法
JP2008163455A (ja) 低温靱性に優れた高強度厚肉ラインパイプ用溶接鋼管及びその製造方法
JPWO2010052927A1 (ja) 超高強度ラインパイプ用鋼板および鋼管の製造方法
JP5445723B1 (ja) 溶接用超高張力鋼板
WO2015188427A1 (zh) 一种埋弧焊丝及焊接方法
JP2006233263A (ja) 低降伏比且つ溶接部靭性に優れた高強度溶接鋼管の製造方法
CN101845586A (zh) 一种石油套管用钢、电阻焊石油套管及其制造方法
JP3582461B2 (ja) 高強度溶接鋼管
CN102057070A (zh) 抗硫性优异的钢板和管线管用钢管
JP4116817B2 (ja) 低温靭性と変形能に優れた高強度鋼管および鋼管用鋼板の製造法
CN107755980B (zh) 一种2205/x65双金属冶金复合弯管的制造方法
JP2022552857A (ja) 焼ならしuoe溶接管およびその製造方法
JP2004043911A (ja) 低温靭性に優れた高強度ラインパイプ
JP2002285283A (ja) 高速延性破壊特性に優れた超高強度鋼管
CN104785952A (zh) 一种高纯净度焊条用钢
CN104607821A (zh) A387 Gr11 CL2钢焊接材料及其使用方法
CN117467902B (zh) 一种焊缝金属粉末及低温弯管的焊接和热处理方法
CN110629109A (zh) 一种特大口径厚壁uoe直缝埋弧焊管用钢板及其焊管和制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894509

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014894509

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014894509

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15315157

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016572531

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177000486

Country of ref document: KR

Kind code of ref document: A