WO2015186707A1 - ポリウレタン変性エポキシ樹脂、その製造方法、エポキシ樹脂組成物および硬化物 - Google Patents

ポリウレタン変性エポキシ樹脂、その製造方法、エポキシ樹脂組成物および硬化物 Download PDF

Info

Publication number
WO2015186707A1
WO2015186707A1 PCT/JP2015/065920 JP2015065920W WO2015186707A1 WO 2015186707 A1 WO2015186707 A1 WO 2015186707A1 JP 2015065920 W JP2015065920 W JP 2015065920W WO 2015186707 A1 WO2015186707 A1 WO 2015186707A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
polyurethane
molecular weight
here
polyol compound
Prior art date
Application number
PCT/JP2015/065920
Other languages
English (en)
French (fr)
Inventor
英介 山田
横山 直樹
徹 國武
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to US15/315,215 priority Critical patent/US10266637B2/en
Priority to CN201580029348.6A priority patent/CN106414542B/zh
Priority to EP15802555.1A priority patent/EP3153535B1/en
Priority to KR1020167036955A priority patent/KR102320440B1/ko
Publication of WO2015186707A1 publication Critical patent/WO2015186707A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4081Mixtures of compounds of group C08G18/64 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/58Epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6407Reaction products of epoxy resins with at least equivalent amounts of compounds containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4028Isocyanates; Thioisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4238Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1477Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing nitrogen

Definitions

  • the present invention relates to a novel polyurethane-modified epoxy resin, a polyurethane-modified epoxy resin composition in which a polyurethane unmodified epoxy resin for adjusting the polyurethane concentration, a curing agent and a curing accelerator are blended with the polyurethane-modified epoxy resin, and a cured product thereof. .
  • Epoxy resin is excellent in processability and brings out various cured properties such as high heat resistance, high insulation reliability, high rigidity, high adhesion, and high corrosion resistance.
  • the cured epoxy resin has low breaking elongation, low fracture toughness, and low peel strength, so it is suitable for use in matrix resins and structural adhesives for composite materials that require these properties.
  • the above properties have been improved by various modifications such as polyurethane modification.
  • Patent Document 1 and Patent Document 2 in a bisphenol A type epoxy resin containing a hydroxyl group, polypropylene diol and isophorone diisocyanate, and the total OH group moles of NCO group, bisphenol A type epoxy resin and polypropylene diol in isophorone diisocyanate are disclosed.
  • the polyurethane-modified epoxy resin is not described to control the resin properties and the cured product properties by specifying the concentration of the epoxy resin containing a hydroxyl group at the time of synthesis.
  • data on the viscosity of the composition, the breaking elongation of the cured product, the fracture toughness, and the glass transition temperature is not disclosed.
  • Patent Document 3 a urethane prepolymer is obtained by adding and reacting a specific diol compound and diphenylmethane diisocyanate in a bisphenol A type epoxy resin, and then adding 1,4-butanediol as a chain extender to make a polyurethane. It has been disclosed that the resin composition containing the urethane-modified epoxy resin is a cured product having a high fracture toughness value useful for electrical and electronic applications and building material applications.
  • the urethane-modified epoxy resin also has no description for regulating the resin properties and the cured product properties by defining the concentration of the epoxy resin containing a hydroxyl group at the time of synthesis.
  • cured material are not disclosed. Data on fracture toughness and glass transition temperature are described, and a remarkable improvement effect is recognized in the former. However, the latter is low in temperature as a cured epoxy resin and has insufficient heat resistance.
  • the viscosity of the epoxy resin composition according to the present invention is such that the mold casting in the casting material, the fiber impregnation in the composite material, and the coating on the adherend in the structural adhesive can be performed at 25 Pa. ⁇ It can be within the range of s or less, and in order to improve the fatigue resistance and peel strength of casting materials, composite materials, and structural adhesives, the cured product has a breaking elongation of 5% or more and fracture toughness. It is intended to provide a novel polyurethane-modified epoxy resin with a glass transition temperature of 110 ° C. or higher in order to maintain heat resistance at 1.1 MPa ⁇ m 0.5 or higher, and its resin composition and cured product. is there.
  • the present invention relates to a bisphenol-based epoxy resin (a) represented by the following formula (1) having an epoxy equivalent of 150 to 200 g / eq and a hydroxyl equivalent of 2000 to 2600 g / eq, and a medium high molecular weight polyol compound having a number average molecular weight of 200 or more.
  • a bisphenol-based epoxy resin represented by the following formula (1) having an epoxy equivalent of 150 to 200 g / eq and a hydroxyl equivalent of 2000 to 2600 g / eq, and a medium high molecular weight polyol compound having a number average molecular weight of 200 or more.
  • the epoxy resin (a) is converted into components (a), ( 20) to 60% by weight based on the total amount of b), (c) and (d), and the medium high molecular weight polyol compound (b) and the polyisocyanate compound (c) are combined with the OH group and component of component (b).
  • a urethane prepolymer (P) is formed.
  • the molar ratio of NCO group of urethane prepolymer (P) and OH group of low molecular weight polyol compound (d) is in the range of 0.9: 1 to 1: 0.9.
  • a polyurethane-modified epoxy resin containing a polyurethane having an epoxy resin (a) added to both ends and / or one end obtained by adding a low molecular weight polyol compound (d) to cause a polyurethane reaction is H or a methyl group, and a is a number from 0 to 10.
  • the present invention also relates to a bisphenol-based epoxy resin (a) having an epoxy equivalent of 150 to 200 g / eq and a hydroxyl equivalent of 2000 to 2600 g / eq, the epoxy resin (a), a medium high molecular weight polyol having a number average molecular weight of 200 or more.
  • the polyisocyanate compound (c) and the low molecular weight polyol compound (d) having a number average molecular weight of less than 200 as a chain extender, and a medium high molecular weight polyol Compound (b) and polyisocyanate compound (c) can be used in an epoxy resin (Mole ratio of OH group of component (b) and NCO group of component (c) in the range of 1: 1.5 to 1: 3.
  • the NCO group of the urethane prepolymer (P) is in the range of 0.9: 1 to 1: 0.9.
  • the present invention also provides an epoxy resin composition
  • an epoxy resin composition comprising the polyurethane-modified epoxy resin described above and a polyurethane-unmodified epoxy resin (e), a curing agent (f), and a curing accelerator (g).
  • An epoxy resin composition in which the weight concentration (hereinafter referred to as polyurethane component concentration) of the components (the total of the polyol compound (b), polyisocyanate compound (c) and low molecular weight polyol compound (d)) is 10 to 30% by weight It is.
  • the present invention is a cured epoxy resin obtained by curing the above epoxy resin composition.
  • the polyurethane-modified epoxy resin of the present invention can suppress the viscosity of the resin composition before curing using the same to a range that does not impair the workability, and can improve both the breaking elongation and fracture toughness of the cured product, and further has a glass transition temperature. Therefore, the resin composition and the cured product are suitable for a matrix for a composite material, an adhesive, a coating material, an electric / electronic material, and the like.
  • the polyurethane-modified epoxy resin of the present invention can be produced by reacting the above-mentioned epoxy resin (a) with a medium high molecular weight polyol compound (b), a polyisocyanate compound (c) and a low molecular weight polyol compound (d).
  • a medium high molecular weight polyol compound (b) a compound represented by any one of the following formulas (2) to (11) can be used, and as the polyisocyanate compound (c), a compound represented by the following formula (12) can be used.
  • the low molecular weight polyol compound (d) a compound represented by the following formula (13) can be used.
  • each component (b) (c) (d) can be used alone or in combination of two or more.
  • b1, b2, and b3 are independently numbers from 1 to 50, and c is a number of 0 or 1.
  • R 2 is H or a methyl group
  • d1, d2, e1, and e2 are independently a number of 1 to 20.
  • f is independently a number from 1 to 20, and g is a number from 1 to 50.
  • h1 and h2 are independently numbers from 1 to 20, and i is a number from 1 to 50.
  • j1, j2, and j3 are independently numbers from 1 to 20, and k1 and k2 are independently numbers from 1 to 50.
  • l1, l2, l3, l4, and l5 are independently numbers from 1 to 20, and m1 and m2 are independently numbers from 1 to 50.
  • o1, o2, o3, and o4 are numbers of 1 to 20 independently.
  • R 3 is H or a methyl group
  • p1, p2, p3, and p4 are independently a number of 1 to 20.
  • q1, q2, q3 and q4 are independently numbers of 1 to 20.
  • r, s, and t are independently numbers from 1 to 20, and n is a number from 1 to 50.
  • R 4 is a divalent group selected from Formulas 12a to 12f.
  • R 5 is an alkylene group represented by Formula 13a
  • g is a number from 1 to 10.
  • the epoxy resin (a) is a bisphenol A type epoxy resin represented by the following formula (14) or a bisphenol F type epoxy resin represented by the following formula (15), and the medium high molecular weight polyol compound (b) is represented by the following formula:
  • low molecular weight polyol compound (d) is 1,4-butanediol represented by the following formula (17)
  • polyisocyanate compound (c) is represented by the following formula (18) 4,4′-diphenylmethane diisocyanate represented by
  • a1 is a number from 0 to 10.
  • a2 is a number from 0 to 10.
  • b1 and b2 are independently numbers from 1 to 50.
  • the epoxy resin (a) is a secondary hydroxyl group-containing bisphenol-based epoxy resin represented by the above formula (1) and having an epoxy equivalent of 150 to 200 g / eq and a hydroxyl equivalent of 2000 to 2600 g / eq.
  • R 1 is a hydrogen atom or a methyl group.
  • a preferred epoxy resin (a) is a bisphenol A type epoxy resin represented by the above formula (14) or a bisphenol F type epoxy resin represented by the above formula (15).
  • a is a number from 0 to 10, but when it has a molecular weight distribution, it is preferable that the average value (number average value) satisfies the above range. This a is determined so as to satisfy the epoxy equivalent and the hydroxyl equivalent.
  • the medium high molecular weight polyol compound (b) has a number average molecular weight of 200 or more and a molecular structure of any one of the above formulas (2) to (11).
  • a preferred polyol compound (b) is polypropylene glycol represented by the above formula (16).
  • the polyisocyanate compound (c) is represented by the above formula (12).
  • R 2 is a divalent group selected from the above formulas (12a) to (12f).
  • a preferred polyisocyanate compound is represented by the above formula (17).
  • the low molecular weight polyol compound (d) is a polyol compound represented by the above formula (13) and having a number average molecular weight of less than 200. This is used as a chain extender.
  • R 3 is an alkylene group represented by the formula (13a), and c is a number (integer) from 1 to 10.
  • an epoxy resin having a degree of polymerization of 2 or more referred to as n> 1
  • the OH group of the polyol compound (b) is a primary OH group
  • the epoxy resin (a) the polyol compound (b) and the polyisocyanate compound (c) are charged and reacted
  • the polyol compound (b) The primary OH group of the polyisocyanate compound (c) and the NCO group react preferentially.
  • the epoxy resin (a) is preferably liquid at room temperature, and from this viewpoint, the epoxy equivalent is preferably 200 g / eq or less.
  • the reaction ratio of the polyol compound (b) and the polyisocyanate compound (c) is set such that the molar ratio (b) :( c) of each OH group or NCO group is in the range of 1: 1.5 to 1: 3. If the polyol compound (b) and the polyisocyanate compound (c) are both bifunctional, the molar ratio is the same as the molar ratio of the polyol compound (b) and the polyisocyanate compound (c). By making the charged molar ratio of (b) and (c) rich as described above (c), a urethane prepolymer having both terminal isocyanate groups can be obtained.
  • the molar ratio When the molar ratio is lower than 1.5, the closer to 1.0, the more the molecular weight of the urethane prepolymer to be generated increases and the viscosity becomes too high. On the other hand, if the molar ratio is higher than 3, the molecular weight of the urethane prepolymer produced becomes too small, and there is a possibility that the modification effect such as plastic deformability in the cured product characteristics may not be sufficiently exhibited.
  • a low molecular weight urethane prepolymer can be obtained by shifting the molar ratio of functional groups from 1 as described above.
  • polyol compound (b) those having a number average molecular weight of 1500 to 5000 and excellent compatibility with the epoxy resin (a) are preferable.
  • polyethylene glycols and polypropylene glycols obtained by ring-opening polyaddition of ethylene oxide and propylene oxide to polyhydric alcohols such as ethylene glycol and glycerin can be exemplified, but polypropylene glycol represented by the above formula (6) is available. It is preferable in terms of ease and good balance between price and characteristics.
  • the number of OH groups in the polyol compound (b) may be 2 or more, but 2 is preferable.
  • polypropylene glycol having a number average molecular weight of 1500 to 5000, preferably 2000 to 3000, does not thicken or semi-solidify the polyurethane-modified epoxy resin composition. This is preferable from the viewpoint of ensuring good impregnation into fibers and glass fibers.
  • R 3 is a divalent group selected from the formulas (2a) to (2f). And what is excellent in compatibility with an epoxy resin (a) is preferable. Examples thereof include toluene diisocyanate (TDI), 4,4′-diphenylmethane diisocyanate (MDI), xylylene diisocyanate (XDI), hydrogenated xylylene diisocyanate (HXDI), isophorone diisocyanate (IPDI), naphthalene diisocyanate, and the like.
  • TDI toluene diisocyanate
  • MDI 4,4′-diphenylmethane diisocyanate
  • XDI xylylene diisocyanate
  • HXDI hydrogenated xylylene diisocyanate
  • IPDI isophorone diisocyanate
  • naphthalene diisocyanate and the like.
  • MDI represented by the above formula (6) is preferable.
  • the number of NCO groups in the polyisocyanate compound (c) may be 2 or more, but 2 is preferable.
  • the low molecular weight polyol compound (d) is mixed with the NCO group in the urethane prepolymer (P) and the OH group in the low molecular weight polyol compound (d).
  • the polyurethane-modified epoxy resin of the present invention can be obtained by charging the polyurethane so that the molar ratio (P) :( d) is in the range of 0.9: 1 to 1: 0.9.
  • the low molecular weight polyol compound (d) has a number average molecular weight of less than 200, and specific examples thereof include polyhydric alcohols such as 1,4-butanediol and 1,6-pentanediol. A diol having two OH groups is preferable, and 1,4-butanediol is more preferable from the viewpoint of availability and a good balance between price and characteristics.
  • the low molecular weight polyol compound (d) is represented by the above formula (3).
  • R 3 is an alkylene group represented by the formula (3a)
  • c is a number from 1 to 10.
  • the low molecular weight polyol compound (d) is preferably used in such an amount that the NCO group at the terminal of the urethane prepolymer (P) and the OH group of the low molecular weight polyol compound (d) are approximately equimolar. That is, since the polyol compound (b) and the low molecular weight polyol compound (d) have an OH group and the polyisocyanate compound (c) has an NCO group, the number of moles of OH groups (B) + (d) And (c) the number of moles of NCO groups (C) is preferably substantially the same. Preferably, it is in the range of 0.9: 1 to 1: 0.9. The closer the ratio of moles of OH groups to moles of NCO groups is, the higher the molecular weight of the polyurethane produced.
  • the epoxy resin (a), the epoxy resin (a), a polyol compound (b) having a number average molecular weight of 200 or more, a polyisocyanate compound (c), and a number average molecular weight as a chain extender Is used in an amount of 20 to 60% by weight based on the total amount of the low-molecular-weight polyol compound (d) having a molecular weight of less than 200, and the polyol compound (b)) and the polyisocyanate compound (c)
  • the ratio (b) :( c) is reacted in the presence of the epoxy resin (a) at an amount used ranging from 1: 1.5 to 1: 3 (reaction 1).
  • reaction 1 the reaction between the polyol compound (b)) and the polyisocyanate compound (c) occurs preferentially to produce a urethane prepolymer (P1), and then a part of the urethane prepolymer (P1) and an epoxy resin ( Reaction with a) occurs, and a urethane prepolymer (P2) having both ends or one end epoxidized is formed, and a mixture with the urethane prepolymer (P1) with both ends being NCO remains.
  • low molecular weight so that the molar ratio (P) :( d) of NCO group in urethane prepolymer (P) to OH group in low molecular weight polyol compound (d) is in the range of 0.9: 1 to 1: 0.9.
  • a polyol compound (d) is added to cause a polyurethane reaction (reaction 2).
  • a catalyst can be used as necessary.
  • This catalyst is used for the purpose of sufficiently completing the formation of urethane bonds, and can be exemplified by amine compounds such as ethylenediamine.
  • the urethane prepolymer (P1) having NCO at both ends or one end reacts with the low molecular weight polyol compound (d) to extend the chain length to become a polyurethane, and both ends are in the epoxy resin (a).
  • N 1 or more in the epoxy resin (a) is added to the other, a resin component having an NCO group at the other end, a resin component having both NCO groups at the both ends of the urethane prepolymer (P) and an epoxy resin (
  • the following formula 19 schematically illustrates the urethane prepolymer process as the reaction 1 described above.
  • the medium high molecular weight polyol compound (b) and the polyisocyanate compound (c) are reacted, a urethane prepolymer (P) is produced.
  • urethane prepolymer (B ′) added and urethane prepolymer (A ′) added with n 1 epoxy resin having secondary hydroxyl groups at both ends are formed.
  • n 0 epoxy resin having no secondary hydroxyl group does not participate in the reaction.
  • a polyurethane-unmodified epoxy resin (e), a curing agent (f) and a curing accelerator (g) as a polyurethane concentration adjusting agent are blended with the above-mentioned polyurethane-modified epoxy resin.
  • an inorganic filler such as calcium carbonate, talc, titanium dioxide or the like can be blended as an extender or a reinforcement as required.
  • polyurethane non-modified epoxy resin e
  • bisphenol A type epoxy resin or bisphenol F type epoxy resin which is liquid at normal temperature is preferable from the viewpoint of easy availability and good balance between price and characteristics.
  • the polyurethane concentration in the polyurethane-modified epoxy resin composition cured product can be increased or decreased by increasing or decreasing the blending amount of the polyurethane unmodified epoxy resin (e).
  • (a) to (g) are used weights of the corresponding components.
  • the cured product properties such as elongation at break, fracture toughness, and glass transition temperature change.
  • the breaking elongation of the cured product tends to increase, the fracture toughness tends to increase, and the glass transition temperature tends to decrease.
  • liquid bisphenol A type epoxy resin is used as the polyurethane unmodified epoxy resin (e)
  • the compounding ratio of the epoxy resin in the composition is preferably 5 to 40 wt%, so that the breaking elongation of the cured product is 5% or more, the fracture toughness is 1.1 MPa ⁇ m 0.5 or more, and the glass transition temperature is Each exhibits a temperature of 120 ° C. or higher, and can achieve both excellent flexibility, toughness, and heat resistance.
  • liquid bisphenol F type epoxy resin When liquid bisphenol F type epoxy resin is used as polyurethane non-modified epoxy resin (e), the composition of bisphenol F type epoxy resin so that the polyurethane modification rate in the cured product is in the range of 20-30 wt%.
  • the medium content is preferably 1 to 30 wt%, so that the fracture elongation of the cured product is 5% or more, the fracture toughness is 1.1 MPa ⁇ m 0.5 or more, and the glass transition temperature is 120 ° C or more. It is possible to achieve both excellent flexibility, toughness and heat resistance.
  • various liquid carboxylic acid anhydrides such as methyltetrahydrophthalic anhydride and various liquid amine compounds are similarly preferable from the viewpoint of easy availability and good balance between price and characteristics.
  • the curing agent (f) a known curing agent for epoxy resins can be used, but a liquid curing agent is preferable.
  • the carboxylic acid anhydride curing agent include phthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl hymic acid and the like.
  • amino curing agents include polyalkylene polyamines, aminoethylpiperazines, metaxylene diamines, isophorone diamines, polyoxyalkylene diamines, reaction products of these amines with monomer acids and dimer acids, modified polyamines, and the like. Can do.
  • the compounding amount of the curing agent (f) is the number of moles of epoxy groups of all epoxy resins including polyurethane-modified epoxy resin and polyurethane-unmodified epoxy resin (e), and the acid anhydride of the curing agent.
  • the ratio of the number of moles calculated by the number of moles of groups ⁇ 2 is in the range of 1: 1 to 1.2.
  • the ratio is preferably set in the range of 1: 1 to 1.2 from the viewpoint of cured product characteristics.
  • an imidazole compound such as 1-benzyl-2-methylimidazole can be used.
  • the blending amount of the curing accelerator (g) is preferably in the range of 0.1 to 5 wt% with respect to the total of all the epoxy resins including the polyurethane-modified epoxy resin and the polyurethane-unmodified liquid epoxy resin (e) and the curing agent (f). .
  • the polyurethane-modified epoxy resin composition of the present invention obtained as described above does not hinder the workability such as the casting property into a mold and the impregnation property into carbon fiber or glass fiber and their woven fabric.
  • the cured product of the polyurethane-modified epoxy resin composition of the present invention is obtained by casting the above-mentioned polyurethane-modified epoxy resin composition or after impregnating carbon fibers or glass fibers and their fabrics, or as an adhesive. After being applied to an adherend and pasted, or after being applied as a paint to an object, it can be obtained by heating to a temperature of 80 ° C. to 200 ° C. and holding for several hours.
  • the cured product of the polyurethane-modified epoxy resin composition of the present invention obtained in this way has a high fracture strength with a fracture elongation of 5.0% or higher and a fracture toughness value of 1.1 MPa ⁇ m 0.5 or higher in a tensile test. It has toughness and a glass transition temperature as high as 120 ° C. or higher.
  • Examples 1 to 5 and Reference Examples 1 to 4 relate to polyurethane-modified epoxy resins, and Examples 6 to 10 and Comparative Examples 1 to 4 relate to their compositions and cured products. Is.
  • the present invention is not limited to this specific example, and various modifications and changes can be made without departing from the gist of the present invention.
  • the evaluation method of the characteristics shown in the examples is as follows.
  • Viscosity The viscosity at 120 ° C. of each polyurethane-modified epoxy resin shown in the following examples and comparative examples was measured with an ICI viscometer. The viscosity at 25 ° C. of each pre-curing resin composition was measured with an E-type viscometer.
  • the raw materials used are as follows.
  • -Epoxy resin (a1) Nippon Steel & Sumikin Chemical Co., Ltd.
  • Example 1 Synthesis of polyurethane-modified bisphenol A type epoxy resin I
  • epoxy resin (a1) bisphenol A type epoxy resin “Epototo YD-128” 80.0 g and as polyol
  • polypropylene glycol “Adeka Polyether P-2000” 249.4 g Each was charged into a 500 ml four-necked separable flask equipped with a nitrogen inlet tube, a stirrer, and a temperature controller, and stirred and mixed at room temperature for 15 minutes.
  • polyisocyanate (c) 4,4′-diphenylmethane diisocyanate “Cosmonate PH” 61.1 g was charged into the same separable flask and reacted at 120 ° C.
  • reaction 1 urethane prepolymer step
  • 9 g of 1,4-butanediol as a chain extender low molecular weight polyol (d) was charged into the separable flask and reacted at 120 ° C. for 2 h
  • reaction 2 polyurethane process
  • polyurethane-modified bisphenol A 400 g of epoxy resin I was obtained.
  • the epoxy resin (a1) was charged so as to be 20% by weight with respect to 100% by weight of the reaction 2 product.
  • the completion of the reaction was confirmed by the disappearance of the NCO group absorption spectrum by IR measurement.
  • the obtained polyurethane-modified bisphenol A type epoxy resin I had an epoxy equivalent of 936 g / eq and a viscosity at 120 ° C. of 11.5 Pa ⁇ s.
  • Example 2 Synthesis of polyurethane-modified bisphenol A type epoxy resin II Except that the raw material charging composition was as described in Table 1, the reaction was carried out in the same procedure as in Example 1 to obtain 400 g of polyurethane modified bisphenol A type epoxy resin II. Here, the epoxy resin (a1) was charged so as to be 40% by weight with respect to 100% by weight of the product of the reaction 2. The completion of the reaction was confirmed by the disappearance of the NCO group absorption spectrum by IR measurement. The obtained polyurethane-modified bisphenol A type epoxy resin II had an epoxy equivalent of 464 g / eq and a viscosity at 120 ° C. of 2.64 Pa ⁇ s.
  • Example 3 Synthesis of polyurethane-modified bisphenol A-type epoxy resin III Except that the raw material charging composition was as described in Table 1, the reaction was carried out in the same procedure as in Example 1 to obtain 400 g of polyurethane-modified bisphenol A-type epoxy resin III.
  • the epoxy resin (a1) was charged so as to be 60% by weight with respect to 100% by weight of the product of the reaction 2.
  • the completion of the reaction was confirmed by the disappearance of the NCO group absorption spectrum by IR measurement.
  • the resulting polyurethane-modified bisphenol A type epoxy resin III had an epoxy equivalent of 312 g / eq and a viscosity at 120 ° C. of 0.45 Pa ⁇ s.
  • Example 4 Synthesis of polyurethane-modified bisphenol F-type epoxy resin I Except that the raw material composition was as described in Table 1, the reaction was carried out in the same procedure as in Example 1 to obtain 400 g of polyurethane-modified bisphenol F-type epoxy resin I. Here, the epoxy resin (a2) was charged so as to be 40% by weight with respect to 100% by weight of the product of the reaction 2. The completion of the reaction was confirmed by the disappearance of the NCO group absorption spectrum by IR measurement. The obtained polyurethane-modified bisphenol F type epoxy resin I had an epoxy equivalent of 416 g / eq, and a viscosity at 120 ° C. of 1.44 Pa ⁇ s.
  • Example 5 Synthesis of polyurethane-modified bisphenol F-type epoxy resin II Except that the raw material charging composition was as described in Table 1, the reaction was carried out in the same procedure as in Example 1 to obtain 400 g of polyurethane-modified bisphenol F-type epoxy resin II. Here, the epoxy resin (a2) was charged so as to be 60% by weight with respect to 100% by weight of the product of the reaction 2. The completion of the reaction was confirmed by the disappearance of the NCO group absorption spectrum by IR measurement. The obtained polyurethane-modified bisphenol F type epoxy resin II had an epoxy equivalent of 378 g / eq and a viscosity at 120 ° C. of 0.30 Pa ⁇ s.
  • Reference example 2 Synthesis of polyurethane-modified bisphenol A-type epoxy resin V Except for changing the raw material composition as shown in Table 1, the reaction was carried out in the same procedure as in Example 1, and polyurethane-modified bisphenol A-type epoxy having an epoxy resin concentration of 64 wt.% 400 g of resin V was obtained.
  • the epoxy resin (a1) was charged to 64 wt% with respect to 100 wt% of the reaction 2 product.
  • the completion of the reaction was confirmed by the disappearance of the NCO group absorption spectrum by IR measurement.
  • the obtained polyurethane-modified bisphenol A type epoxy resin V had an epoxy equivalent of 290 g / eq and a viscosity at 120 ° C. of 0.21 Pa ⁇ s.
  • Example 6 As the polyurethane-modified epoxy resin, 26.0 g of the polyurethane-modified bisphenol A-type epoxy resin I obtained in Example 1 is used, 52.3 g of Epototo YD-128 is used as the polyurethane-unmodified epoxy resin (e), and HN-2200R is used as the curing agent (f). 51.0 g and 0.7 g of 1B2MZ as a curing accelerator (g) were charged into a 500 ml disposable cup, and mixed well with a stainless steel spatula to obtain a liquid resin composition.
  • the molar ratio of the epoxy group to the carboxylic anhydride group was 1: 1, and 130 g of a polyurethane-modified bisphenol A type epoxy resin composition having a polyurethane concentration of 10 wt% in the cured product was prepared.
  • the composition thus prepared and then prepared was heated in a hot air oven at 80 ° C. for 15 minutes in order to improve foam removal, and then placed in a vacuum desiccator and subjected to vacuum defoaming for 1.5 h.
  • the obtained defoamed liquid resin composition had a viscosity at 25 ° C. of 34 Pa ⁇ s.
  • this defoamed liquid resin composition was used for a mold having five groove shapes with a test piece size for tensile test of JIS K 6911, for fracture toughness test, and for DMA test.
  • Each mold was cast into a mold having six groove shapes of 100 mm x 4 mm x 5 mm. The castability at this time was a level at which casting was possible with a sufficient margin.
  • the mold into which the resin was cast was placed in a hot air oven and cured by heating at 80 ° C. for 2 hours and further at 100 ° C. for 3 hours to prepare a cured epoxy resin test piece.
  • the elongation at break was 7.0%
  • the fracture toughness was 1.80 MPa ⁇ s 0.5
  • the cured product was a resin for advanced composite materials that required high fatigue resistance.
  • the glass transition temperature of the cured product by DMA measurement is 126 ° C, achieving both high fracture elongation of 5% or higher, high fracture toughness of 1.1 MPa ⁇ m 0.5 or higher, and high heat resistance of glass transition temperature of 110 ° C or higher. It was a thing.
  • Example 7 As the polyurethane-modified epoxy resin, the polyurethane-modified bisphenol A type epoxy resin II obtained in Example 2, the polyurethane unmodified epoxy resin (e), the curing agent (f), and the curing accelerator (g) are listed in Table 2. Except for the above, 130 g of a polyurethane-modified bisphenol A type epoxy resin composition having a polyurethane concentration of 20 wt% in the cured product was prepared in the same procedure as in Example 6. Next, a defoaming operation was performed in the same procedure as in Example 6 to obtain a defoamed liquid resin composition. This defoamed liquid resin composition had a viscosity of 54 Pa ⁇ s at 25 ° C.
  • the defoamed liquid resin composition was cast by a mold in the same procedure as in Example 6 and thermoset to prepare a test piece for property evaluation.
  • a tensile test, a DMA measurement, and a fracture toughness test were performed under the same conditions as in Example 6.
  • the elongation at break was 11.2% and the fracture toughness was 1.62 MPa ⁇ s 0.5 .
  • the cured product was very useful as a resin for advanced composite materials that require high fatigue resistance.
  • the glass transition temperature of the cured product by DMA measurement is 123 ° C, which achieves both high fracture elongation of 5% or higher, high fracture toughness of 1.1 MPa ⁇ m 0.5 or higher, and high heat resistance of glass transition temperature of 110 ° C or higher. It was a thing.
  • Example 8 As the polyurethane-modified epoxy resin, the polyurethane-modified bisphenol A type epoxy resin III obtained in Example 3, the polyurethane unmodified epoxy resin (e), the curing agent (f) and the curing accelerator (g) are listed in Table 2. Except for the above, 130 g of a polyurethane-modified bisphenol A type epoxy resin composition having a polyurethane concentration of 30 wt% in the cured product was prepared in the same procedure as in Example 6. Next, a defoaming operation was performed in the same procedure as in Example 6 to obtain a defoamed liquid resin composition. This defoamed liquid resin composition had a viscosity of 54 Pa ⁇ s at 25 ° C.
  • the defoamed liquid resin composition was cast by a mold in the same procedure as in Example 6 and thermoset to prepare a test piece for property evaluation.
  • a tensile test, a DMA measurement, and a fracture toughness test were performed under the same conditions as in Example 6.
  • the elongation at break was 6.5% and the fracture toughness was 1.26 MPa ⁇ s 0.5 .
  • the cured product was very useful as a resin for advanced composite materials that require high fatigue resistance.
  • the glass transition temperature of the cured product by DMA measurement is 120 ° C, achieving both high fracture elongation of 5% or higher, high fracture toughness of 1.1 MPa ⁇ m 0.5 or higher, and high heat resistance of glass transition temperature of 110 ° C or higher. It was a thing.
  • Example 9 As the polyurethane-modified epoxy resin, the polyurethane-modified bisphenol F type epoxy resin I obtained in Example 4, epoxy resin (for dilution), acid anhydride (curing agent) and imidazole (curing accelerator) are listed in Table 2. Except for the above, 130 g of a polyurethane-modified bisphenol F type epoxy resin composition having a polyurethane concentration of 20 wt% in the cured product was prepared in the same procedure as in Example 6. Next, a defoaming operation was performed in the same procedure as in Example 6 to obtain a defoamed liquid resin composition. This defoamed liquid resin composition had a viscosity at 25 ° C. of 18 Pa ⁇ s.
  • the defoamed liquid resin composition was cast by a mold in the same procedure as in Example 6 and thermoset to prepare a test piece for property evaluation.
  • a tensile test, a DMA measurement, and a fracture toughness test were performed under the same conditions as in Example 6.
  • the elongation at break was 8.9% and the fracture toughness was 1.39 MPa ⁇ m 0.5 .
  • the cured product was very useful as a resin for advanced composite materials that required high fatigue resistance.
  • the glass transition temperature of the cured product by DMA measurement is 120 ° C, achieving both high fracture elongation of 5% or higher, high fracture toughness of 1.1 MPa ⁇ m 0.5 or higher, and high heat resistance of glass transition temperature of 110 ° C or higher. It was a thing.
  • Example 10 As the polyurethane-modified epoxy resin, the polyurethane-modified bisphenol F type epoxy resin II obtained in Example 5, epoxy resin (for dilution), acid anhydride (curing agent) and imidazole (curing accelerator) are listed in Table 2. Except for the above, 130 g of a polyurethane-modified bisphenol F type epoxy resin composition having a polyurethane concentration of 30 wt% in the cured product was prepared in the same procedure as in Example 6. Next, a defoaming operation was performed in the same procedure as in Example 6 to obtain a defoamed liquid resin composition. This defoamed liquid resin composition had a viscosity at 25 ° C. of 12 Pa ⁇ s.
  • the defoamed liquid resin composition was cast by a mold in the same procedure as in Example 6 and thermoset to prepare a test piece for property evaluation.
  • a tensile test, a DMA measurement, and a fracture toughness test were performed under the same conditions as in Example 6.
  • the elongation at break was 5.2% and the fracture toughness was 1.20 MPa ⁇ m 0.5 .
  • the cured product was very useful as a resin for advanced composite materials that require high fatigue resistance.
  • the glass transition temperature of the cured product by DMA measurement is 120 ° C, achieving both high fracture elongation of 5% or higher, high fracture toughness of 1.1 MPa ⁇ m 0.5 or higher, and high heat resistance of glass transition temperature of 110 ° C or higher. It was a thing.
  • Comparative Example 1 As the polyurethane-modified epoxy resin, the polyurethane-modified bisphenol A type epoxy resin IV obtained in Reference Example 1, epoxy resin (for dilution), acid anhydride (curing agent) and imidazole (curing accelerator) are listed in Table 2. Except for the above, 130 g of a polyurethane-modified bisphenol A type epoxy resin composition having a polyurethane concentration of 5 wt% in the cured product was prepared in the same procedure as in Example 6. Next, a defoaming operation was performed in the same procedure as in Example 6 to obtain a defoamed liquid resin composition. This defoamed liquid resin composition had a viscosity at 25 ° C. of 12 Pa ⁇ s.
  • the defoamed liquid resin composition was cast by a mold in the same procedure as in Example 6 and thermoset to prepare a test piece for property evaluation.
  • a tensile test, a DMA measurement, and a fracture toughness test were performed under the same conditions as in Example 6.
  • the breaking elongation was 2.4%
  • the fracture toughness was 1.20 MPa ⁇ s 0.5
  • the glass transition temperature was 129 ° C.
  • high fracture toughness of 1.1 MPa ⁇ m 0.5 or higher and high heat resistance of glass transition temperature of 110 ° C or higher were shown, the elongation at break was 5% or less, and the three were not compatible.
  • Comparative Example 2 As the polyurethane-modified epoxy resin, the polyurethane-modified bisphenol A type epoxy resin V obtained in Reference Example 2, epoxy resin (for dilution), acid anhydride (curing agent) and imidazole (curing accelerator) are listed in Table 2. Except for the above, 130 g of a polyurethane-modified bisphenol A type epoxy resin composition having a polyurethane concentration of 32 wt% in the cured product was prepared in the same procedure as in Example 6. Next, a defoaming operation was performed in the same procedure as in Example 6 to obtain a defoamed liquid resin composition. The viscosity of the defoamed liquid resin composition at 25 ° C. was 21 Pa ⁇ s.
  • the defoamed liquid resin composition was cast by a mold in the same procedure as in Example 6 and thermoset to prepare a test piece for property evaluation.
  • a tensile test, a DMA measurement, and a fracture toughness test were performed under the same conditions as in Example 6.
  • the breaking elongation was 4.3%
  • the fracture toughness was 1.10 MPa ⁇ s 0.5
  • the glass transition temperature was 111 ° C.
  • high fracture toughness of 1.1 MPa ⁇ m 0.5 or higher and high heat resistance of glass transition temperature of 110 ° C or higher were shown, the elongation at break was 5% or less, and the three were not compatible.
  • Comparative Example 3 As polyurethane-modified epoxy resin, the polyurethane-modified bisphenol F-type epoxy resin III obtained in Reference Example 3, epoxy resin (for dilution), acid anhydride (curing agent) and imidazole (curing accelerator) are listed in Table 2. Except for the above, 130 g of a polyurethane-modified bisphenol F type epoxy resin composition having a polyurethane concentration of 5 wt% in the cured product was prepared in the same procedure as in Example 6. Next, a defoaming operation was performed in the same procedure as in Example 6 to obtain a defoamed liquid resin composition. The viscosity of this liquid resin composition after defoaming at 25 ° C. was 3 Pa ⁇ s.
  • the defoamed liquid resin composition was cast by a mold in the same procedure as in Example 6 and thermoset to prepare a test piece for property evaluation.
  • a tensile test, a DMA measurement, and a fracture toughness test were performed under the same conditions as in Example 6.
  • the elongation at break was 1.1%
  • the fracture toughness was 0.52 MPa ⁇ s 0.5
  • the glass transition temperature was 125 ° C.
  • it exhibited high heat resistance at a glass transition temperature of 110 ° C. or higher, it did not exhibit high fracture toughness of 1.1 MPa ⁇ m 0.5 or higher and a fracture elongation of 5% or higher.
  • Comparative Example 4 As the polyurethane-modified epoxy resin, the polyurethane-modified bisphenol F-type epoxy resin IV obtained in Reference Example 4, the epoxy resin (for dilution), the acid anhydride (curing agent) and the imidazole (curing accelerator) are listed in Table 2. Except for the above, 130 g of a polyurethane-modified bisphenol F type epoxy resin composition having a polyurethane concentration of 5 wt% in the cured product was prepared in the same procedure as in Example 6. Next, a defoaming operation was performed in the same procedure as in Example 6 to obtain a defoamed liquid resin composition. This defoamed liquid resin composition had a viscosity at 25 ° C. of 7 Pa ⁇ s.
  • Example 6 the defoamed liquid resin composition was cast by a mold in the same procedure as in Example 6 and thermoset to prepare a test piece for property evaluation.
  • a tensile test, a DMA measurement, and a fracture toughness test were performed under the same conditions as in Example 6.
  • the breaking elongation was 4.6%
  • the fracture toughness was 1.11 MPa ⁇ s 0.5
  • the glass transition temperature was 106 ° C.
  • high fracture toughness of 1.1 MPa ⁇ m 0.5 or higher was shown, it failed to show a fracture elongation of 5% or higher and a glass transition temperature of 110 ° C. or higher.
  • the polyurethane-modified epoxy resin of the present invention can be suitably used for various uses such as a matrix for composite materials, an adhesive, a coating material, and an electric / electronic material.

Abstract

 組成物状態での注型や含浸等の加工操作性の良好なポリウレタン変性エポキシ樹脂、その製造方法およびその組成物を提供する。 エポキシ当量150~200 g/eq、かつ水酸基当量2000~2600 g/eqの2級水酸基含有ビスフェノール系エポキシ樹脂(a)を、Mnが200以上の中高分子量ポリオール化合物(b)、ポリイソシアネート化合物(c)および鎖長延長剤としてのMnが200未満の低分子量ポリオール化合物(d)によって変性してなり、エポキシ樹脂(a)を、各成分(a)(b)(c)(d)の合計量に対して20~60重量%使用し、両末端及び/又は片末端にエポキシ樹脂(a)が付加したポリウレタンを含むポリウレタン変性エポキシ樹脂である。

Description

ポリウレタン変性エポキシ樹脂、その製造方法、エポキシ樹脂組成物および硬化物
 本発明は、新規なポリウレタン変性エポキシ樹脂、そのポリウレタン変性エポキシ樹脂にポリウレタン濃度調整用のポリウレタン未変性のエポキシ樹脂と硬化剤および硬化促進剤を配合したポリウレタン変性エポキシ樹脂組成物、およびその硬化物に関する。
 エポキシ樹脂は、加工性に優れかつ高耐熱性、高絶縁信頼性、高剛性、高接着性、高耐蝕性等の多様な硬化物特性が引き出させるので、電気絶縁材料(注型、含浸、積層板、封止材)、CFRPのような複合材料のマトリックスレジン、構造用接着剤、重防蝕塗料等各種の用途で多量に使用されている。
 反面、エポキシ樹脂硬化物は、低破断伸度性、低破壊靭性、低剥離強度性であるため、これらの特性が要求される複合材料のマトリックスレジン用途や構造用接着剤用途では、ゴム変性、ポリウレタン変性などの各種変性によって上記特性の改良が行われてきた。
 特許文献1および特許文献2には、水酸基を含むビスフェノールA型エポキシ樹脂中で、ポリプロピレンジオールとイソホロンジイソシアネートを、イソホロンジイソシアネート中のNCO基とビスフェノールA型エポキシ樹脂とポリプロピレンジオールの合計のOH基のモル比がNCO/OH=1.0となるように配合して合成したポリウレタン変性エポキシ樹脂に、ポリオキシアルキレンジグリシジルエーテル等の特定のエポキシ樹脂を配合したエポキシ樹脂組成物は、せん断強度、剥離強度、ねじりせん断強度が高く接着性および耐衝撃性に優れる自動車用の構造用接着剤向けとして開示されている。
 しかしながら、上記ポリウレタン変性エポキシ樹脂は、合成時における水酸基を含むエポキシ樹脂の仕込み濃度を規定して樹脂特性および硬化物特性を制御する記載はない。また、組成物の粘度や硬化物の破断伸度、破壊靭性およびガラス転移温度についてのデーターも開示されていない。
 特許文献3には、ビスフェノールA型エポキシ樹脂中で特定のジオール化合物とジフェニルメタンジイソシアネートを仕込んで反応させてウレタンプレポリマーを得た後、鎖長延長剤の1,4-ブタンジオールを仕込んでポリウレタン化したウレタン変性エポキシ樹脂を含む樹脂組成物は、電気電子用途や建材用途に有用な高破壊靭性値の硬化物となることが開示されている。
 しかしながら、同様に上記ウレタン変性エポキシ樹脂にも、合成時における水酸基を含むエポキシ樹脂の仕込み濃度を規定して樹脂特性および硬化物特性を制御する記載はない。また、組成物の粘度や硬化物の破断伸度のデータは開示されていない。破壊靭性とガラス転移温度のデータは記載されていて前者には顕著な向上効果が認められるが、後者はエポキシ樹脂硬化物としては低温であり耐熱性が十分ではない。
特開2007-284467号公報 特開2007-284474号公報 特開2007-224144号公報
 本発明は、エポキシ樹脂組成物としたときの粘度が、注型材における金型注型、複合材料における繊維含浸および構造用接着剤における被着体への塗工が各々可能な25 ℃で60 Pa・s以下の範囲にすることが可能であり、かつ注型材、複合材、構造用接着剤の耐疲労性や剥離強度を向上させるために硬化物の破断伸度が5 %以上、破壊靭性が1.1 MPa・m0.5以上で、さらに耐熱性を保持するためにガラス転移温度が110 ℃以上とすることが可能な新規なポリウレタン変性エポキシ樹脂とその樹脂組成物および硬化物を提供しようとするものである。
 本発明は、エポキシ当量150~200 g/eqで、水酸基当量2000~2600 g/eqの下記式(1)で示されるビスフェノール系エポキシ樹脂(a)を、数平均分子量200以上の中高分子量ポリオール化合物(b)、ポリイソシアネート化合物(c)および鎖長延長剤としての数平均分子量が200未満の低分子量ポリオール化合物(d)によって変性してなり、エポキシ樹脂(a)を、成分(a)、(b)、(c)及び(d)の合計量に対して20~60重量%使用し、かつ中高分子量ポリオール化合物(b)とポリイソシアネート化合物(c)を、成分(b)のOH基と成分(c)のNCO基のモル比が1:1.5~1:3の範囲となる使用量にて、エポキシ樹脂(a)の存在下で反応させて、ウレタンプレポリマー(P)を生成させたのち、ウレタンプレポリマー(P)のNCO基と低分子量ポリオール化合物(d)のOH基のモル比が0.9:1~1:0.9の範囲になるように低分子量ポリオール化合物(d)を加えてポリウレタン化反応させることによって得られる両末端及び/又は片末端にエポキシ樹脂(a)が付加したポリウレタンを含むポリウレタン変性エポキシ樹脂である。
Figure JPOXMLDOC01-appb-C000020
 ここで、RはH又はメチル基であり、aは0~10の数である。
 また、本発明は、エポキシ当量150~200 g/eqで、水酸基当量2000~2600 g/eqのビスフェノール系エポキシ樹脂(a)を、該エポキシ樹脂(a)、数平均分子量200以上の中高分子量ポリオール化合物(b)、ポリイソシアネート化合物(c)および鎖長延長剤としての数平均分子量が200未満の低分子量ポリオール化合物(d)の合計量に対して20~60重量%使用し、かつ中高分子量ポリオール化合物(b)とポリイソシアネート化合物(c)を、成分(b)のOH基と成分(c)のNCO基のモル比を1:1.5~1:3の範囲となる使用量で、エポキシ樹脂(a)の存在下で反応させて、両末端及び/又は片末端がエポキシ樹脂(a)で封止されたウレタンプレポリマー(P)を生成させたのち、ウレタンプレポリマー(P)のNCO基と低分子量ポリオール化合物(d)のOH基のモル比が0.9:1~1:0.9の範囲になるように低分子量ポリオール化合物(d)を加えてポリウレタン化反応させるポリウレタン変性エポキシ樹脂の製造方法である。
 また、本発明は、上記のポリウレタン変性エポキシ樹脂に、ポリウレタン未変性のエポキシ樹脂(e)、硬化剤(f)および硬化促進剤(g)を配合してなるエポキシ樹脂組成物であり、ポリウレタン構成成分(ポリオール化合物(b)、ポリイソシアネート化合物(c)および低分子量ポリオール化合物(d)の合計)の重量濃度(以下、ポリウレタン成分濃度と称する)が、10~30重量%であるエポキシ樹脂組成物である。
 更に、本発明は上記のエポキシ樹脂組成物を硬化させたエポキシ樹脂硬化物である。
 本発明のポリウレタン変性エポキシ樹脂は、それを使用した硬化前の樹脂組成物粘度が加工性を阻害しない範囲に抑制でき、かつ硬化物の破断伸度と破壊靭性を共に向上でき、さらにガラス転移温度の低下も抑制できるので、その樹脂組成物および硬化物が、複合材料用マトリックス用、接着剤用、コーティング材用、電気電子材料用等に適するものとなる。
 本発明のポリウレタン変性エポキシ樹脂は、上記エポキシ樹脂(a)と共に、中高分子量ポリオール化合物(b)、ポリイソシアネート化合物(c)および低分子量ポリオール化合物(d)を反応させることにより製造することができる。
 中高分子量ポリオール化合物(b)としては、下記式(2)~(11)のいずれかで示される化合物を使用でき、ポリイソシアネート化合物(c)としては、下記式(12)で示される化合物を使用でき、そして低分子量ポリオール化合物(d)としては、下記式(13)で示される化合物を使用できる。この場合、各成分(b)(c)(d)について、それぞれ、1種又は2種以上を混合して用いることができる。
Figure JPOXMLDOC01-appb-C000021
 ここで、b1,b2,b3は独立に1~50の数で、cは0もしくは1の数である。
Figure JPOXMLDOC01-appb-C000022
 ここで、R2はH又はメチル基であり、d1,d2,e1,e2は独立に1~20の数である。
Figure JPOXMLDOC01-appb-C000023
 ここで、fは独立に1~20の数であり、gは1~50の数である。
Figure JPOXMLDOC01-appb-C000024
 ここで、h1,h2は独立に1~20の数であり、iは1~50の数である。
Figure JPOXMLDOC01-appb-C000025
 ここで、j1,j2,j3は独立に1~20の数であり、k1,k2は独立に1~50の数である。
Figure JPOXMLDOC01-appb-C000026
 ここで、l1,l2,l3,l4,l5は独立に1~20の数であり、m1,m2は独立に1~50の数である。
Figure JPOXMLDOC01-appb-C000027
 ここで、o1,o2,o3,o4は独立に1~20の数である。
Figure JPOXMLDOC01-appb-C000028
 ここで、R3はH又はメチル基であり、p1,p2,p3,p4は独立に1~20の数である。
Figure JPOXMLDOC01-appb-C000029
 ここで、q1,q2,q3,q4は独立に1~20の数である。
Figure JPOXMLDOC01-appb-C000030
 ここで、r,s,tは独立に1~20の数であり、nは1~50の数である。
Figure JPOXMLDOC01-appb-C000031
 ここで、式12において、R4は式12a~12fから選ばれる2価の基である。
Figure JPOXMLDOC01-appb-C000032
 ここで、式13において、R5は式13aで表されるアルキレン基であり、gは1~10の数である。 
 特に、エポキシ樹脂(a)が、下記式(14)で示されるビスフェノールA型エポキシ樹脂又は下記式(15)で示されるビスフェノールF型エポキシ樹脂であり、中高分子量ポリオール化合物(b)が、下記式(16)で示されるポリプロピレングリコールであり、低分子量ポリオール化合物(d)が、下記式(17)で示される1,4-ブタンジオールであり、ポリイソシアネート化合物(c)が、下記式(18)で示される4,4’-ジフェニルメタンジイソシアネートであることが好ましい。
Figure JPOXMLDOC01-appb-C000033
 ここで、a1は0~10の数である。
                  
Figure JPOXMLDOC01-appb-C000034
 ここで、a2は0~10の数である。
Figure JPOXMLDOC01-appb-C000035
 ここで、b1,b2は独立に1~50の数である。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
 本発明において、エポキシ樹脂(a)は、上記式(1)で示され、エポキシ当量150~200 g/eq、かつ水酸基当量2000~2600 g/eqの2級水酸基含有ビスフェノール系エポキシ樹脂である。式(1)において、R1は水素原子又はメチル基である。好ましいエポキシ樹脂(a)は、上記式(14)で示されるビスフェノールA型エポキシ樹脂または上記式(15)で示されるビスフェノールF型エポキシ樹脂である。
 式中、aは0~10の数であるが、分子量分布を有するときは平均値(数平均値)が上記範囲を満足することがよい。このaは上記エポキシ当量と水酸基当量を満足するように定められる。
 中高分子量ポリオール化合物(b)は、数平均分子量200以上で上記式(2)~上記式(11)のいずれかの分子構造を有するものである。好ましいポリオール化合物(b)は、上記式(16)で示されるポリプロピレングリコールである。
 ポリイソシアネート化合物(c)は、上記式(12)で示される。ここで、R2は上記式(12a)~(12f)から選ばれる2価の基である。好ましいポリイソシアネート化合物は、上記式(17)で示される。
 低分子量ポリオール化合物(d)は、上記式(13)で示され、数平均分子量が200未満のポリオール化合物である。これは、鎖長延長剤として使用される。ここで、R3は式(13a)で表されるアルキレン基であり、cは1~10の数(整数)である。
 エポキシ樹脂(a)中のOH基は、主に重合度1のエポキシ樹脂(n=1体という。)中に含まれる2級OH基である。重合度2以上のエポキシ樹脂(n>1体という。)を含有する場合は、その中にも2級OH基を含むが、これも同様である。以下、n=1体とn>1体をまとめて、n=1以上体という。
 一方、ポリオール化合物(b)のOH基は1級OH基であるため、エポキシ樹脂(a)、ポリオール化合物(b)およびポリイソシアネート化合物(c)を仕込んで反応させた場合、ポリオール化合物(b)の1級OH基とポリイソシアネート化合物(c)のNCO基が優先的に反応する。
 ポリオール化合物(b)中の1級OH基とポリイソシアネート化合物(c)中のNCO基のモル比(b):(c)を、1:1.5~1:3の範囲とすると、NCO基末端のウレタンプレポリマー(P1)が生成する。その後、エポキシ樹脂(a)の中のn=1以上体の2級OH基が、ウレタンプレポリマー(P1)の末端NCO基の一部と反応してウレタン結合を形成し、ウレタンプレポリマーの両末端もしくは片末端にエポキシ樹脂(a)中のn=1以上体が付加したウレタンプレポリマー(P2)となると考えられる。
 すなわち、ウレタンプレポリマー(P)は、NCO基末端のウレタンプレポリマー(P1)とP1の両末端もしくは片末端にエポキシ樹脂(a)中のn=1以上体が付加したウレタンプレポリマー(P2)の混合物と考えられる。
 エポキシ樹脂(a)の仕込み割合を増加させるにつれ、両末端もしくは片末端がエポキシ樹脂(a)中のn=1以上体で封止され、末端NCO基が消費され、鎖長延長剤である低分子量ポリオール化合物(d)とも反応しないウレタンプレポリマー(P2)量が増加し、末端がNCO基である当初のウレタンプレポリマー(P1)の割合が減少し、P1の末端NCO基と鎖延長剤である低分子量ポリオール化合物(d)のOH基との反応で生成するポリウレタンの生成量が減少するため、ポリウレタン変性エポキシ樹脂の分子量分布も低分子量側にシフトすると考えられる。
 反対に、エポキシ樹脂(a)の仕込み割合を減少させると、両末端もしくは片末端がエポキシ樹脂(a)中のn=1以上体で封止されたウレタンプレポリマー(P2)の量が減少し、末端がNCO基のままの当初のウレタンプレポリマー(P1)の割合が増大する。そのため、P1の末端NCO基と鎖延長剤である低分子量ポリオール化合物(d)のOH基との反応で生成するポリウレタンの生成量が増大するため、ポリウレタン変性エポキシ樹脂の分子量分布も高分子量側にシフトすると考えられる。
 エポキシ樹脂(a)は、常温で液状であることが好ましく、かかる観点からエポキシ当量が200 g/eq以下であることが好ましい。エポキシ樹脂(a)は、繰り返し数nが0の単量体と、1以上の多量体の混合物であることが多いが、多量体の場合はエポキシ基が開環して生じる2級OH基を有する。このOH基はポリイソシアネート化合物(c)のNCO基又はウレタンプレポリマー(P)の末端のNCO基と反応性であるため、エポキシ樹脂(a)中のn=1以上体は、これと反応する。なお、OH基を有しないn=0体はこの反応には関与しない。
 ポリオール化合物(b)とポリイソシアネート化合物(c)の仕込み比率をそれぞれのOH基又はNCO基のモル比(b):(c)が1:1.5~1:3の範囲に設定して反応させるが、ポリオール化合物(b)とポリイソシアネート化合物(c)がいずれも2官能であれば、上記モル比はポリオール化合物(b)とポリイソシアネート化合物(c)のモル比と一致する。(b)と(c)の仕込みモル比を前記のように(c)リッチにすることで、両末端イソシアネート基のウレタンプレポリマーを得ることができる。上記モル比が1.5より低いと1.0に近いほど、生成するウレタンプレポリマーの分子量が過度に増大して粘度が高くなり過ぎる。一方、モル比が3より高いと生成するウレタンプレポリマーの分子量が小さくなり過ぎ、硬化物特性における塑性変形性など、改質効果が十分発揮できなくなる可能性が生じて好ましくない。上記のように官能基のモル比を1からずらすことにより低分子量のウレタンプレポリマーが得られる。
 ポリオール化合物(b)としては、数平均分子量が1500~5000で、エポキシ樹脂(a)との相溶性に優れるものが好ましい。例えば、エチレングリコールやグリセリン等の多価アルコールにエチレンオキサイドやプロピレンオキサイドを開環重付加させたポリエチレングリコール類やポリプロピレングリコール類が例示できるが、上記式(6)で示されるポリプロピレングリコールが、入手の容易さ、価格と特性のバランスの良さの点から好ましい。また、ポリオール化合物(b)のOH基の数は2以上であればよいが、2であることが好ましい。
 ポリプロピレングリコールとしては、数平均分子量が1500~5000、好ましくは2000~3000のポリプロピレングリコールが、ポリウレタン変性エポキシ樹脂組成物を増粘もしくは半固形化させず、この組成物の良好な注型性およびカーボンファイバーやガラスファイバーへの良好な含浸性を担保する観点から好ましい。
 上記ポリイソシアネート化合物(c)としては、上記式(3)で表わされる化合物が使用され、式(3)において、Rは式(2a)~(2f)から選ばれる2価の基である。そして、エポキシ樹脂(a)との相溶性に優れるものが好ましい。
 例えば、トルエンジイソシアネート(TDI)、4,4’-ジフェニルメタンジイソシアネート(MDI)、キシリレンジイソシアネート(XDI)、水素化キシリレンジイソシアネート(HXDI)、イソホロンジイソシアネート(IPDI)、ナフタレンジイソシアネート等を挙げることができるが、低分子量で増粘性がなく低価格、安全性などの観点から上記式(6)で示されるMDIが好ましい。ポリイソシアネート化合物(c)のNCO基の数は2以上であればよいが、2であることが好ましい。
 エポキシ樹脂(a)中でウレタンプレポリマー(P)を得たのち、低分子量ポリオール化合物(d)をウレタンプレポリマー(P)中のNCO基と前記低分子量ポリオール化合物(d)中のOH基のモル比(P):(d)が0.9:1~1:0.9の範囲になるように仕込んでポリウレタン化反応させることによって、本発明のポリウレタン変性エポキシ樹脂を得ることができる。
 上記の低分子量ポリオール化合物(d)は、数平均分子量が200未満であり、具体的には1,4-ブタンジオール、1,6-ペンタンジオール等の多価アルコールなどが挙げられる。好ましくはOH基を2つ有するジオールであり、入手の容易さ、価格と特性のバランスの良さの点から1,4-ブタンジオールが、より好ましい。低分子量ポリオール化合物(d)は、上記式(3)で表わされる。ここで、R3は式(3a)で表されるアルキレン基であり、cは1~10の数である。
 低分子量ポリオール化合物(d)は、前記ウレタンプレポリマー(P)末端のNCO基と低分子量ポリオール化合物(d)のOH基がほぼ等モルとなる量を使用することがよい。すなわち、ポリオール化合物(b)と低分子量ポリオール化合物(d)はOH基を有し、ポリイソシアネート化合物(c)はNCO基を有するので、(b)+(d)のOH基モル数(B)と、(c)のNCO基モル数(C)をほぼ同じとすることが好ましい。好ましくは、0.9:1~1:0.9の範囲である。OH基モル数とNCO基モル数の比を1に近づけるほど生成するポリウレタンの分子量が増大する。
 本発明の製造方法においては、エポキシ樹脂(a)を、該エポキシ樹脂(a)、数平均分子量200以上のポリオール化合物(b)、ポリイソシアネート化合物(c)および鎖長延長剤としての数平均分子量が200未満の低分子量ポリオール化合物(d)の合計量に対して20~60重量%使用し、かつポリオール化合物(b))とポリイソシアネート化合物(c)を、それぞれのOH基とNCO基のモル比(b):(c)を1:1.5~1:3の範囲となる使用量で、エポキシ樹脂(a)の存在下で反応させる(反応1)。この反応1では、ポリオール化合物(b))とポリイソシアネート化合物(c)の反応が優先的に起こり、ウレタンプレポリマー(P1)が生成し、その後ウレタンプレポリマー(P1)の一部とエポキシ樹脂(a)との反応が起こり、両末端もしくは片末端がエポキシ化されたウレタンプレポリマー(P2)が生成し、両末端がNCOのままのウレタンプレポリマー(P1)との混合物となる。
 上記ウレタンプレポリマー(P1)とエポキシ樹脂(a)の反応(反応1)は、エポキシ樹脂(a)中のn=1以上体の低反応性な2級OH基をNCO基と反応させてウレタン結合を生成させる必要から、反応温度は80~150 ℃の範囲に、反応時間は1~5 hの範囲とすることが好ましい。
 その後、ウレタンプレポリマー(P)中のNCO基と低分子量ポリオール化合物(d)中のOH基のモル比(P):(d)が0.9:1~1:0.9の範囲になるように低分子量ポリオール化合物(d)を加えてポリウレタン化反応させる(反応2)。なお、エポキシ樹脂n=0体のエポキシ基とポリオール化合物(d)のOH基は、ポリオール化合物(d)のOH基がアルコール性OH基なので反応しない。
 上記反応(反応1及び2)の過程においては、必要に応じて触媒を用いることができる。この触媒は、ウレタン結合の生成を十分に完結させる目的のために使用するものであり、エチレンジアミン等のアミン化合物が例示できる。
 反応2では、両末端もしくは片末端がNCOであるウレタンプレポリマー(P1)は、低分子量ポリオール化合物(d)と反応して鎖長が延長されポリウレタン化し、両末端がエポキシ樹脂(a)中のn=1以上体の付加物であるウレタンプレポリマー(P2)は、未反応のまま存在する。
 すなわち、本発明のポリウレタン変性エポキシ樹脂は、ウレタンプレポリマー(P)の両末端にエポキシ樹脂(a)中のn=1以上体が付加した樹脂成分、ウレタンプレポリマー(P)の一方の片末端にエポキシ樹脂(a)中のn=1以上体が付加し、もう一方の片末端はNCO基である樹脂成分、ウレタンプレポリマー(P)の両末端がNCO基である樹脂成分およびエポキシ樹脂(a)中のn=0体成分の混合物であり、エポキシ当量は300~1000 g/eqの範囲、120 ℃における粘度は0.1~20 Pa・sの範囲であることが好ましい。
 以下に、本発明のポリウレタン変性エポキシ樹脂を得る際の反応式を示す。
 下記式19は、上記反応1としてのウレタンプレポリマー工程を模式的に説明したものである。n=0体とn=1体から主としてなるビスフェノール系エポキシ樹脂(a)、中高分子量ポリオール化合物(b)およびポリイソシアネート化合物(c)を反応させると、ウレタンプレポリマー(P)を生成する。このウレタンプレポリマー(P)としては、両末端がNCO基であるウレタンプレポリマー(C')、一方の末端がNCO基でもう一方の末端に2級水酸基を有するn=1体のエポキシ樹脂が付加したウレタンプレポリマー(B')、および両末端に2級水酸基を有するn=1体のエポキシ樹脂が付加したウレタンプレポリマー(A')の三種が生成する。エポキシ樹脂(a)のうち、2級水酸基を有しないn=0体エポキシ樹脂は、反応に関与しない。
Figure JPOXMLDOC01-appb-C000038
 下記式20は、上記反応2としてのウレタンポリマー工程(ポリウレタン工程)を模式的に説明したものである。上記反応1で生成した両末端がNCO基であるウレタンプレポリマー(C')、一方の末端がNCO基でもう一方の末端にn=1体のエポキシ樹脂が付加したウレタンプレポリマー(B')、両末端にn=1体のエポキシ樹脂が付加したウレタンプレポリマー(A')、および2級水酸基を有さないため反応に関与しなかった n=0体エポキシ樹脂の混合物中に、低分子量ポリオール(d)を加えて反応させると、主に片末端n=1体エポキシ樹脂付加したウレタンプレポリマー(B')と低分子量ポリオール(d)との反応による両末端ともn=1体エポキシ樹脂が付加している低分子量ポリウレタン(A)、主に両末端NCO基ウレタンプレポリマー(C')および片末端n=1体エポキシ樹脂付加したウレタンプレポリマー(B')と低分子量ポリオール(d)との反応による片末端のみn=1体エポキシ樹脂が付加している中分子量ポリウレタン(B)、主に両末端NCO基ウレタンプレポリマー(C')と低分子量ポリオール(d)との反応による両末端ともn=1体エポキシ樹脂が付加していない高分子量ポリウレタン(C)が生成する。こうして生成されるポリウレタン(A)(B)(C)は、ウレタンポリマー反応に関与しない成分、即ち両末端にn=1体エポキシ樹脂が付加したウレタンプレポリマー(A')およびn=0体エポキシ樹脂との混合物となる。
Figure JPOXMLDOC01-appb-C000039
 本発明のポリウレタン変性エポキシ樹脂組成物は、上記のポリウレタン変性エポキシ樹脂にポリウレタン濃度の調整剤としてのポリウレタン未変性のエポキシ樹脂(e)、硬化剤(f)および硬化促進剤(g)を配合することで得ることができる。この樹脂組成物には必要に応じて、炭酸カルシウム、タルク、二酸化チタン等の無機フィラーを増量材、補強材として配合できる。
 ポリウレタン未変性エポキシ樹脂(e)としても、常温で液状のビスフェノールA型エポキシ樹脂またはビスフェノールF型エポキシ樹脂が入手の容易さ、価格と特性のバランスの良さの点から好ましい。
 ポリウレタン未変性エポキシ樹脂(e)の配合量を増減することによって、ポリウレタン変性エポキシ樹脂組成物硬化物中のポリウレタン濃度を増減することができる。ここで、上記ポリウレタン濃度は、ポリウレタン構成成分であるポリオール(b)、ポリイソシアネート(c)、低分子量ポリオール(d)の硬化物中の重量%を示す。
 すなわち、下記式で計算される濃度である。
 ポリウレタン濃度={(b)+(c)+(d)}×100/{(a)+(b)+(c)+(d)+(e)+(f)+(g)}
 ここで、(a)~(g)は、対応する各成分の使用重量である。
 硬化物中のポリウレタン濃度が増えると、破断伸度や破壊靭性およびガラス転移温度といった硬化物特性が変化する。ポリウレタン濃度が増大すると、硬化物の破断伸度は増大傾向を、破壊靭性は増加傾向を、ガラス転移温度は減少傾向を示す。
 ポリウレタン未変性エポキシ樹脂(e)として、液状ビスフェノールA型エポキシ樹脂を用いた場合には、硬化物中のポリウレタン変性率(=ポリウレタン濃度)が10~30 wt%の範囲になるよう、ビスフェノールA型エポキシ樹脂の組成物中配合率を5~40 wt%とするのが好ましく、そのことによって硬化物の破断伸度は5 %以上を、破壊靭性は1.1 MPa・m0.5以上を、ガラス転移温度は120 ℃以上を各々示し、優れた可とう性、強靭性、耐熱性を両立することができる。
 ポリウレタン未変性エポキシ樹脂(e)として、液状ビスフェノールF型エポキシ樹脂を用いた場合には、硬化物中のポリウレタン変性率が20~30 wt%の範囲になるよう、ビスフェノールF型エポキシ樹脂の組成物中配合率を1~30 wt%とするのが好ましく、そのことによって硬化物の破断伸度は5 %以上を、破壊靭性は1.1 MPa・m0.5以上を、ガラス転移温度は120 ℃以上を各々示し、優れた可とう性、強靭性、耐熱性を両立することができる。
 硬化剤(f)としては、メチルテトラヒドロ無水フタル酸等の各種液状カルボン酸無水物や各種液状アミン化合物が、同様に入手の容易さ、価格と特性のバランスの良さの点から好ましい。
 硬化剤(f)としては、公知のエポキシ樹脂用硬化剤が使用できるが、液状の硬化剤が好ましい。例えば、カルボン酸無水物系硬化剤としては、無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルハイミック酸等を例示することができる。アミノ系硬化剤としては、ポリアルキレンポリアミン、アミノエチルピペラジン、メタキシレンジアミン、イソホロンジアミン、ポリオキシアルキレンジアミンの他、これらアミンとモノマー酸やダイマー酸との反応物や、変性ポリアミン等を例示することができる。
 硬化剤(f)の配合量は、硬化剤が酸無水物の場合はポリウレタン変性エポキシ樹脂とポリウレタン未変性エポキシ樹脂(e)を含む全エポキシ樹脂のエポキシ基のモル数と硬化剤の酸無水物基のモル数×2で計算されるモル数の比が1:1~1.2の範囲、硬化剤がアミン化合物の場合は全エポキシ樹脂のエポキシ基のモル数と硬化剤の活性水素のモル数の比が1:1~1.2の範囲に設定することが、硬化物特性の点から好ましい。
 硬化促進剤(g)としては、1-ベンジル-2-メチルイミダゾール等のイミダゾール化合物等を用いることができる。硬化促進剤(g)の配合量は、ポリウレタン変性エポキシ樹脂とポリウレタン未変性の液状エポキシ樹脂(e)を含む全エポキシ樹脂と硬化剤(f)の合計に対し、0.1~5wt%の範囲が好ましい。
 上記のようにして得た本発明のポリウレタン変性エポキシ樹脂組成物は、金型への注型性やカーボンファイバーやガラスファイバーおよびそれらの織物への含浸性といった加工性を阻害することがない。
 本発明のポリウレタン変性エポキシ樹脂組成物の硬化物は、上記のポリウレタン変性エポキシ樹脂組成物を金型注型した後、もしくはカーボンファイバーやガラスファイバーおよびそれらの織物への含浸した後、もしくは接着剤として被着体に塗布して貼り合わせた後、あるいは塗料として被塗物に塗布した後、80 ℃~200 ℃の温度に加熱し、数時間保持することで、得ることができる。
 このようにして得られる本発明のポリウレタン変性エポキシ樹脂組成物の硬化物は、引張試験における破断伸度が5.0 %以上の高破断伸度性および破壊靭性値が1.1  MPa・m0.5以上の高破壊靭性を有し、さらにガラス転移温度が120 ℃以上の高温度となる。
 次に、実施例に基づいて本発明を具体的に説明する。実施例1~実施例5および参考例1~参考例4は、ポリウレタン変性エポキシ樹脂に関するものであり、実施例6~実施例10および比較例1~比較例4は、その組成物および硬化物に関するものである。本発明はこの具体例に限定されるものではなく、本発明の要旨を逸脱しない限りにおいてあらゆる変形や変更が可能である。
 実施例中に示した特性の評価方法は、次の通りである。
(1)粘度:以下の実施例、比較例に示した各ポリウレタン変性エポキシ樹脂の120℃における粘度は、ICI粘度計で測定した。また、各硬化前樹脂組成物の25℃における粘度は、E型粘度計で測定した。
(2)IRによる残存NCO基の有無判定: 得られたポリウレタン変性エポキシ樹脂0.05 gを10 mlのテトラヒドロフランに溶解した後、マイクロシュパーテル平板部を用いてKBr板上に塗り付け、室温で15分間乾燥してテトラヒドロフランを蒸発させてIR測定用試料を調製した。これをパーキンエルマー社製FT-IR装置Spectrum-Oneにセットし、NCO基の特性吸収帯である2270 cm-1の伸縮振動吸収スペクトルが消失した場合に残存NCO基なし、と判定した。
(3)エポキシ当量: JIS K 7236 に従って定量した。
(4)水酸基当量: ジメチルホルムアミド25 mlを200 mlガラス栓付三角フラスコにとり、水酸基11mg/当量以下を含む試料を精秤して加え溶解させる。1 mol/l-フェニルイソシアネートトルエン溶液20 mlとジブチルスズマレート蝕日溶液1 mlとをそれぞれピペットで加え、よく振り混ぜて混合し、密栓して30~60分間反応させる。反応終了後2 mol/l-ジブチルアミントルエン溶液20 mlを加えよく振り混ぜて混合し、15 分間放置して過剰のフェニルイソシアネートと反応させる。次に、メチルセロソルブ30 mlとブロムクレゾールグリーン指示薬0.5 mlとを加え、過剰のアミンを標定済の1 mol/l-過塩素三メチルセロソルブ溶液で滴定する。指示薬は青から緑さらに黄色へと変化するので、黄色になった最初の点を終点とし、以下の式i、式iiを用いて水酸基当量を求めた。
 水酸基当量 (g/eq)=(1000×W)/C(S-B)・・・(i)
C:1mol/l-過塩素酸メチルセロソルブ溶液の濃度 mol/l
W:試料量 (g)
S:試料の滴定に要した1 mol/l-過塩素酸メチルセロソルブ溶液の滴定量 (ml)
B:滴定の際のブランクテストに要した1mol/l-過塩素酸メチルセロソルブ溶液の滴定量 (ml)
 C=(1000×W)/{121×(s-b)}・・・(ii)
w:標定のために秤取したトリス-(ハイドロキシメチル)-アミノメタンの採取量 (g)
s:トリス-(ハイドロキシメチル)-アミノメタンの滴定に要した1 mol/l-過塩素酸メチルセロソルブ溶液の滴定量 (ml)
b:標定の際のブランクテストに要した1 mol/l-過塩素酸メチルセロソルブ溶液の滴定量 (ml)
(5)引張試験: JIS K 6911の形状に金型注型によって成形した硬化物を試験片とし、万能試験機を用いて、室温23℃下、クロスヘッドスピード5 mm/分の条件で引張試験を行い、破断伸度、破断強度、弾性率をおのおの測定した。
(6)破壊靭性(K1C): ASTM E-399の曲げ法に従い、室温23下、クロスヘッドスピード0.5 mm/分で測定した。
(7)動的粘弾性(DMA): 4 mm×10 mm×50 mmの直方体形状に金型注型にて成形した硬化物試験片を、周波数10 Hz、昇温速度2 ℃/分の条件下、動的粘弾性測定装置を用いて温度分散損貯蔵弾性率(E’)、温度分散損失正接(tan δ)を測定し、40 ℃および180 ℃のE’を算出した。合わせて、tan δ曲線のピーク温度からガラス転移温度(Tg)を導出した。
 使用した原料は次のとおりである。
・エポキシ樹脂(a1):新日鉄住金化学株式会社製エポトートYD-128、ビスフェノールA型エポキシ樹脂、エポキシ当量186 g/eq、水酸基当量2272 g/eq
・エポキシ樹脂(a2):新日鉄住金化学株式会社製エポトートYDF-170、ビスフェノールF型エポキシ樹脂、エポキシ当量=170 (g/eq)、水酸基当量=2489 (g/eq)
・ポリオール(b);株式会社ADEKA製アデカポリエーテルP-2000、ポリプロピレングリコール、平均分子量2000、水酸基当量1020 g/eq
・ポリイソシアネート(c);三井化学株式会社製コスモネートPH、4,4’-ジフェニルメタンジイソシアネート
・低分子量ポリオール(d);1,4-ブタンジオール(試薬)
・ポリウレタン未変性エポキシ樹脂(e1):エポキシ樹脂(a1)と同じもの
・ポリウレタン未変性エポキシ樹脂(e2):エポキシ樹脂(a2)と同じもの
・硬化剤(f):日立化成工業株式会社製HN-2200R、メチルテトラヒドロ無水フタル酸
・硬化促進剤(g):四国化成工業株式会社製キュアゾール1B2MZ、1-ベンジル-2-メチルイミダゾール
実施例1
ポリウレタン変性ビスフェノールA型エポキシ樹脂Iの合成
 エポキシ樹脂(a1)として、ビスフェノールA型エポキシ樹脂 “エポトートYD-128”80.0 g、ポリオール(b)として、ポリプロピレングリコール “アデカポリエーテルP-2000”249.4 gを窒素導入管、攪拌機、温度調節機を備えた500 ml四つ口セパラブルフラスコに各々仕込み、室温で15分間攪拌混合した。次に、ポリイソシアネート(c)として、4,4’-ジフェニルメタンジイソシアネート “コスモネートPH”61.1 gを同セパラブルフラスコに仕込み120 ℃で2 h反応(反応1:ウレタンプレポリマー工程)させた後、鎖長延長剤である低分子量ポリオール(d)として、1,4-ブタンジオール9.4 gを同セパラブルフラスコに仕込み、120 ℃で2 h反応(反応2:ポリウレタン工程)させて、ポリウレタン変性ビスフェノールA型エポキシ樹脂I 400 gを得た。ここで、エポキシ樹脂(a1)は、反応2の生成物100重量%に対して20 重量%となるように仕込んだ。反応が完結していることは、IR測定により、NCO基の吸収スペクトルが消失したことで確認した。得られたポリウレタン変性ビスフェノールA型エポキシ樹脂Iのエポキシ当量は、936 g/eq、120 ℃における粘度は、11.5 Pa・sであった。
実施例2
ポリウレタン変性ビスフェノールA型エポキシ樹脂IIの合成
 原料仕込み組成を第1表記載の通りとした以外は、実施例1と同じ手順で反応を行い、ポリウレタン変性ビスフェノールA型エポキシ樹脂II 400 gを得た。ここで、エポキシ樹脂(a1)は、反応2の生成物100重量%に対して40 重量%となるように仕込んだ。反応が完結していることは、IR測定により、NCO基の吸収スペクトルが消失したことで確認した。得られたポリウレタン変性ビスフェノールA型エポキシ樹脂IIのエポキシ当量は、464 g/eq、120 ℃における粘度は、2.64 Pa・sであった。
実施例3
ポリウレタン変性ビスフェノールA型エポキシ樹脂IIIの合成
 原料仕込み組成を第1表記載の通りとした以外は、実施例1と同じ手順で反応を行い、ポリウレタン変性ビスフェノールA型エポキシ樹脂III 400 gを得た。ここで、エポキシ樹脂(a1)は、反応2の生成物100重量%に対して60 重量%となるように仕込んだ。反応が完結していることは、IR測定により、NCO基の吸収スペクトルが消失したことで確認した。得られたポリウレタン変性ビスフェノールA型エポキシ樹脂IIIのエポキシ当量は、312 g/eq、120 ℃における粘度は、0.45 Pa・sであった。
実施例4
ポリウレタン変性ビスフェノールF型エポキシ樹脂Iの合成
 原料仕込み組成を第1表記載の通りとした以外は、実施例1と同じ手順で反応を行い、ポリウレタン変性ビスフェノールF型エポキシ樹脂I 400 gを得た。ここで、エポキシ樹脂(a2)は、反応2の生成物100重量%に対して40 重量%となるように仕込んだ。反応が完結していることは、IR測定により、NCO基の吸収スペクトルが消失したことで確認した。得られたポリウレタン変性ビスフェノールF型エポキシ樹脂Iのエポキシ当量は、416 g/eq、120 ℃における粘度は、1.44 Pa・sであった。
実施例5
ポリウレタン変性ビスフェノールF型エポキシ樹脂IIの合成
 原料仕込み組成を第1表記載の通りとした以外は、実施例1と同じ手順で反応を行い、ポリウレタン変性ビスフェノールF型エポキシ樹脂II 400 gを得た。ここで、エポキシ樹脂(a2)は、反応2の生成物100重量%に対して60 重量%となるように仕込んだ。反応が完結していることは、IR測定により、NCO基の吸収スペクトルが消失したことで確認した。得られたポリウレタン変性ビスフェノールF型エポキシ樹脂IIのエポキシ当量は、378 g/eq、120 ℃における粘度は、0.30 Pa・sであった。
参考例1
ポリウレタン変性ビスフェノールA型エポキシ樹脂IVの合成
 原料仕込み組成を第1表記載の通りとした以外は、実施例1と同じ手順で反応を行い、ポリウレタン変性ビスフェノールA型エポキシ樹脂IV 400 gを得た。ここで、エポキシ樹脂(a1)は、反応2の生成物100重量%に対して10 重量%となるように仕込んだ。反応が完結していることは、IR測定により、NCO基の吸収スペクトルが消失したことで確認した。得られたポリウレタン変性ビスフェノールA型エポキシ樹脂IVのエポキシ当量は、1870 g/eq、120 ℃における粘度は、32.8 Pa・sであった。
参考例2
ポリウレタン変性ビスフェノールA型エポキシ樹脂Vの合成
 原料仕込み組成を第1表記載の通りとした以外は、実施例1と同じ手順で反応を行い、エポキシ樹脂濃度64 wt.%のポリウレタン変性ビスフェノールA型エポキシ樹脂V 400 gを得た。ここで、エポキシ樹脂(a1)は、反応2の生成物100重量%に対して64 重量%となるように仕込んだ。反応が完結していることは、IR測定により、NCO基の吸収スペクトルが消失したことで確認した。得られたポリウレタン変性ビスフェノールA型エポキシ樹脂Vのエポキシ当量は、290 g/eq、120 ℃における粘度は、0.21 Pa・sであった。
参考例3
ポリウレタン変性ビスフェノールF型エポキシ樹脂IIIの合成
 原料仕込み組成を第1表記載の通りとした以外は、実施例1と同じ手順で反応を行い、ポリウレタン変性ビスフェノールF型エポキシ樹脂III 400 gを得た。ここで、エポキシ樹脂(a2)は、反応2の生成物100重量%に対して10 重量%となるように仕込んだ。反応が完結していることは、IR測定により、NCO基の吸収スペクトルが消失したことで確認した。得られたポリウレタン変性ビスフェノールF型エポキシ樹脂IIIのエポキシ当量は、1680 g/eq、120 ℃における粘度は、34.4 Pa・sであった。
参考例4
ポリウレタン変性ビスフェノールF型エポキシ樹脂IVの合成
 原料仕込み組成を第1表記載の通りとした以外は、実施例1と同じ手順で反応を行い、エポキシ樹脂濃度66 wt.%のポリウレタン変性ビスフェノールF型エポキシ樹脂IV 400 gを得た。ここで、エポキシ樹脂(a2)は、反応2の生成物100重量%に対して66 重量%となるように仕込んだ。反応が完結していることは、IR測定により、NCO基の吸収スペクトルが消失したことで確認した。得られたポリウレタン変性ビスフェノールF型エポキシ樹脂IVのエポキシ当量は、257 g/eq、120 ℃における粘度は、0.17 Pa・sであった。
Figure JPOXMLDOC01-appb-T000040
次に、上述した実施例1~5及び参考例のポリウレタン変性エポキシ樹脂を使用したエポキシ樹脂組成物及びエポキシ樹脂硬化物の実施例を示す。併せて、その結果を、表2にまとめて示す。
実施例6
 ポリウレタン変性エポキシ樹脂として、実施例1で得たポリウレタン変性ビスフェノールA型エポキシ樹脂Iを26.0 g、ポリウレタン未変性エポキシ樹脂(e)としてエポトートYD-128を52.3 g、硬化剤(f)としてHN-2200Rを51.0 g、硬化促進剤(g)として1B2MZを0.7 g、各々500 mlのディスポカップに仕込み、ステンレス製ヘラでよく攪拌混合し、液状の樹脂組成物を得た。ここで、エポキシ基と無水カルボン酸基のモル比は、1:1とし、硬化物中のポリウレタン濃度が10 wt%のポリウレタン変性ビスフェノールA型エポキシ樹脂組成物を130 g調製した。このようにして配合調製した前記組成物は、次に泡の抜けを良くするため、熱風オーブン中、80 ℃で15分間加熱した後、真空デシケーターに入れ、1.5 h の真空脱泡を行なった。得られた脱泡操作済み液状樹脂組成物の25 ℃における粘度は、34 Pa・s であった。
 次に、この脱泡済み液状樹脂組成物をJIS K 6911の引張試験用試験片寸法の溝形状を5本有する金型と、破壊靭性試験用およびDMA試験用に、たて×よこ×長さ=100 mm×4 mm×5 mmの形状の溝形状を6本有する金型へおのおの注型した。このときの注型性は、余裕をもって十分注型可能なレベルであった。次に、樹脂を注型した金型を熱風オーブン中に入れ、80 ℃で2 h、さらに100 ℃で3 hの加熱硬化を行いエポキシ樹脂硬化物試験片を調製した。これを、前記条件下で引張試験および破壊靭性試験した結果、破断伸度は7.0 %、破壊靭性は1.80 MPa・s0.5となり、硬化物が高い耐疲労特性が求められる先端複合材料用の樹脂等として非常に有用であった。また、DMA測定による硬化物のガラス転移温度は、126 ℃となり、5 %以上の高破断伸度、1.1 MPa・m0.5以上の高破壊靭性およびガラス転移温度110 ℃以上の高耐熱性を両立するものであった。
実施例7
 ポリウレタン変性エポキシ樹脂として、実施例2で得たポリウレタン変性ビスフェノールA型エポキシ樹脂II、ポリウレタン未変性エポキシ樹脂(e)、硬化剤(f)および硬化促進剤(g)を第2表記載の配合組成とした以外は、実施例6と同じ手順で硬化物中のポリウレタン濃度が20 wt%のポリウレタン変性ビスフェノールA型エポキシ樹脂組成物130 gを調製した。次に、実施例6と同様の手順で脱泡操作を行い、脱泡液状樹脂組成物を得た。この脱泡操作済み液状樹脂組成物の25 ℃における粘度は、54 Pa・s であった。次も、実施例6と同様の手順で脱泡液状樹脂組成物を金型注型して熱硬化させ特性評価用の試験片を調製した。次も、実施例6と同様の条件で、引張試験、DMA測定および破壊靭性試験を行った。その結果、破断伸度は11.2 %、破壊靭性は1.62 MPa・s0.5となり、同様に硬化物が高い耐疲労特性が求められる先端複合材料用の樹脂等として非常に有用であった。また、DMA測定による硬化物のガラス転移温度は、123 ℃となり、5 %以上の高破断伸度、1.1 MPa・m0.5以上の高破壊靭性およびガラス転移温度110 ℃以上の高耐熱性を両立するものであった。
実施例8
 ポリウレタン変性エポキシ樹脂として、実施例3で得たポリウレタン変性ビスフェノールA型エポキシ樹脂III、ポリウレタン未変性エポキシ樹脂(e)、硬化剤(f)および硬化促進剤 (g)を第2表記載の配合組成とした以外は、実施例6と同じ手順で硬化物中のポリウレタン濃度が30 wt%のポリウレタン変性ビスフェノールA型エポキシ樹脂組成物130 gを調製した。次に、実施例6と同様の手順で脱泡操作を行い、脱泡液状樹脂組成物を得た。この脱泡操作済み液状樹脂組成物の25 ℃における粘度は、54 Pa・s であった。次も、実施例6と同様の手順で脱泡液状樹脂組成物を金型注型して熱硬化させ特性評価用の試験片を調製した。次も、実施例6と同様の条件で、引張試験、DMA測定および破壊靭性試験を行った。その結果、破断伸度は6.5 %、破壊靭性は1.26 MPa・s0.5となり、同様に硬化物が高い耐疲労特性が求められる先端複合材料用の樹脂等として非常に有用であった。また、DMA測定による硬化物のガラス転移温度は、120 ℃となり、5 %以上の高破断伸度、1.1 MPa・m0.5以上の高破壊靭性およびガラス転移温度110 ℃以上の高耐熱性を両立するものであった。
実施例9
 ポリウレタン変性エポキシ樹脂として、実施例4で得たポリウレタン変性ビスフェノールF型エポキシ樹脂I、エポキシ樹脂(希釈用)、酸無水物(硬化剤)およびイミダゾール(硬化促進剤)を第2表記載の配合組成とした以外は、実施例6と同じ手順で硬化物中のポリウレタン濃度が20 wt%のポリウレタン変性ビスフェノールF型エポキシ樹脂組成物130 gを調製した。次に、実施例6と同様の手順で脱泡操作を行い、脱泡液状樹脂組成物を得た。この脱泡操作済み液状樹脂組成物の25 ℃における粘度は、18 Pa・s であった。次も、実施例6と同様の手順で脱泡液状樹脂組成物を金型注型して熱硬化させ特性評価用の試験片を調製した。次も、実施例6と同様の条件で、引張試験、DMA測定および破壊靭性試験を行った。その結果、破断伸度は8.9 %、破壊靭性は1.39 MPa・m0.5となり、同様に硬化物が高い耐疲労特性が求められる先端複合材料用の樹脂等として非常に有用であった。また、DMA測定による硬化物のガラス転移温度は、120 ℃となり、5 %以上の高破断伸度、1.1 MPa・m0.5以上の高破壊靭性およびガラス転移温度110 ℃以上の高耐熱性を両立するものであった。
実施例10
 ポリウレタン変性エポキシ樹脂として、実施例5で得たポリウレタン変性ビスフェノールF型エポキシ樹脂II、エポキシ樹脂(希釈用)、酸無水物(硬化剤)およびイミダゾール(硬化促進剤)を第2表記載の配合組成とした以外は、実施例6と同じ手順で硬化物中のポリウレタン濃度が30 wt%のポリウレタン変性ビスフェノールF型エポキシ樹脂組成物130 gを調製した。次に、実施例6と同様の手順で脱泡操作を行い、脱泡液状樹脂組成物を得た。この脱泡操作済み液状樹脂組成物の25 ℃における粘度は、12 Pa・s であった。次も、実施例6と同様の手順で脱泡液状樹脂組成物を金型注型して熱硬化させ特性評価用の試験片を調製した。次も、実施例6と同様の条件で、引張試験、DMA測定および破壊靭性試験を行った。その結果、破断伸度は5.2 %、破壊靭性は1.20 MPa・m0.5となり、同様に硬化物が高い耐疲労特性が求められる先端複合材料用の樹脂等として非常に有用であった。また、DMA測定による硬化物のガラス転移温度は、120 ℃となり、5 %以上の高破断伸度、1.1 MPa・m0.5以上の高破壊靭性およびガラス転移温度110 ℃以上の高耐熱性を両立するものであった。
比較例1
 ポリウレタン変性エポキシ樹脂として、参考例1で得たポリウレタン変性ビスフェノールA型エポキシ樹脂IV、エポキシ樹脂(希釈用)、酸無水物(硬化剤)およびイミダゾール(硬化促進剤)を第2表記載の配合組成とした以外は、実施例6と同じ手順で硬化物中のポリウレタン濃度が5 wt%のポリウレタン変性ビスフェノールA型エポキシ樹脂組成物130 gを調製した。次に、実施例6と同様の手順で脱泡操作を行い、脱泡液状樹脂組成物を得た。この脱泡操作済み液状樹脂組成物の25 ℃における粘度は、12 Pa・s であった。次も、実施例6と同様の手順で脱泡液状樹脂組成物を金型注型して熱硬化させ特性評価用の試験片を調製した。次も、実施例6と同様の条件で、引張試験、DMA測定および破壊靭性試験を行った。その結果、破断伸度は2.4 %、破壊靭性は1.20 MPa・s0.5、ガラス転移温度は129 ℃となった。1.1 MPa・m0.5以上の高破壊靭性、ガラス転移温度110 ℃以上の高耐熱性は、示したものの、破断伸度は5 %以下となり、3両立には至らなかった。
比較例2
 ポリウレタン変性エポキシ樹脂として、参考例2で得たポリウレタン変性ビスフェノールA型エポキシ樹脂V、エポキシ樹脂(希釈用)、酸無水物(硬化剤)およびイミダゾール(硬化促進剤)を第2表記載の配合組成とした以外は、実施例6と同じ手順で硬化物中のポリウレタン濃度が32 wt%のポリウレタン変性ビスフェノールA型エポキシ樹脂組成物130 gを調製した。次に、実施例6と同様の手順で脱泡操作を行い、脱泡液状樹脂組成物を得た。この脱泡操作済み液状樹脂組成物の25 ℃における粘度は、21 Pa・s であった。次も、実施例6と同様の手順で脱泡液状樹脂組成物を金型注型して熱硬化させ特性評価用の試験片を調製した。次も、実施例6と同様の条件で、引張試験、DMA測定および破壊靭性試験を行った。その結果、破断伸度は4.3 %、破壊靭性は1.10 MPa・s0.5、ガラス転移温度は111 ℃となった。1.1 MPa・m0.5以上の高破壊靭性、ガラス転移温度110 ℃以上の高耐熱性は、示したものの、破断伸度は5 %以下となり、3両立には至らなかった。
比較例3
 ポリウレタン変性エポキシ樹脂として、参考例3で得たポリウレタン変性ビスフェノーF型エポキシ樹脂III、エポキシ樹脂(希釈用)、酸無水物(硬化剤)およびイミダゾール(硬化促進剤)を第2表記載の配合組成とした以外は、実施例6と同じ手順で硬化物中のポリウレタン濃度が5 wt%のポリウレタン変性ビスフェノールF型エポキシ樹脂組成物130 gを調製した。次に、実施例6と同様の手順で脱泡操作を行い、脱泡液状樹脂組成物を得た。この脱泡操作済み液状樹脂組成物の25 ℃における粘度は、3 Pa・s であった。次も、実施例6と同様の手順で脱泡液状樹脂組成物を金型注型して熱硬化させ特性評価用の試験片を調製した。次も、実施例6と同様の条件で、引張試験、DMA測定および破壊靭性試験を行った。その結果、破断伸度は1.1 %、破壊靭性は0.52 MPa・s0.5、ガラス転移温度は125 ℃となった。ガラス転移温度110 ℃以上の高耐熱性は、示したものの、1.1 MPa・m0.5以上の高破壊靭性、5 %以上の破断伸度を示すには至らなかった。
比較例4
 ポリウレタン変性エポキシ樹脂として、参考例4で得たポリウレタン変性ビスフェノールF型エポキシ樹脂IV、エポキシ樹脂(希釈用)、酸無水物(硬化剤)およびイミダゾール(硬化促進剤)を第2表記載の配合組成とした以外は、実施例6と同じ手順で硬化物中のポリウレタン濃度が5 wt%のポリウレタン変性ビスフェノールF型エポキシ樹脂組成物130 gを調製した。次に、実施例6と同様の手順で脱泡操作を行い、脱泡液状樹脂組成物を得た。この脱泡操作済み液状樹脂組成物の25 ℃における粘度は、7 Pa・s であった。次も、実施例6と同様の手順で脱泡液状樹脂組成物を金型注型して熱硬化させ特性評価用の試験片を調製した。次も、実施例6と同様の条件で、引張試験、DMA測定および破壊靭性試験を行った。その結果、破断伸度は4.6 %、破壊靭性は1.11 MPa・s0.5、ガラス転移温度は106 ℃となった。1.1 MPa・m0.5以上の高破壊靭性は、示したものの、5 %以上の破断伸度および110 ℃以上ガラス転移温度を示すには至らなかった。
Figure JPOXMLDOC01-appb-T000041
 本発明のポリウレタン変性エポキシ樹脂は、その樹脂組成物および硬化物が、複合材料用マトリックス用、接着剤用、コーティング材用、電気電子材料用などの各種用途に好適に利用できる。

Claims (6)

  1.  エポキシ当量150~200 g/eqで、水酸基当量2000~2600 g/eqの下記式(1)で示されるビスフェノール系エポキシ樹脂(a)を、数平均分子量200以上の中高分子量ポリオール化合物(b)、ポリイソシアネート化合物(c)および鎖長延長剤としての数平均分子量200未満の低分子量ポリオール化合物(d)によって変性してなり、エポキシ樹脂(a)を、成分(a)、(b)、(c)及び(d)の合計量に対して20~60重量%使用し、かつ中高分子量ポリオール化合物(b)とポリイソシアネート化合物(c)を、成分(b)のOH基と成分(c)のNCO基のモル比が1:1.5~1:3の範囲となる使用量にて、エポキシ樹脂(a)の存在下で反応させて、ウレタンプレポリマー(P)を生成させたのち、ウレタンプレポリマー(P)のNCO基と低分子量ポリオール化合物(d)のOH基のモル比が0.9:1~1:0.9の範囲になるように低分子量ポリオール化合物(d)を加えてポリウレタン化反応させることによって得られる両末端及び/又は片末端にエポキシ樹脂(a)が付加したポリウレタンを含むことを特徴とするポリウレタン変性エポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000001
     ここで、RはH又はメチル基であり、aは0~10の数である。
  2.  中高分子量ポリオール化合物(b)が、下記式(2)~(11)のいずれかで示される化合物であり、ポリイソシアネート化合物(c)が、下記式(12)で示される化合物であり、そして低分子量ポリオール化合物(d)が、下記式(13)で示される化合物であることを特徴とする請求項1に記載のポリウレタン変性エポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000002
    ここで、b1,b2,b3は独立に1~50の数、cは0又は1の数である。
    Figure JPOXMLDOC01-appb-C000003
    ここで、R2はH又はメチル基であり、d1,d2,e1,e2は独立に1~20の数である。
    Figure JPOXMLDOC01-appb-C000004
    ここで、fは独立に1~20の数であり、gは1~50の数である。
    Figure JPOXMLDOC01-appb-C000005
    ここで、h1,h2は、独立に1~20の数であり、iは1~50の数である。
    Figure JPOXMLDOC01-appb-C000006
    ここで、j1,j2,j3は独立に1~20の数であり、k1,k2は独立に1~50の数である。
    Figure JPOXMLDOC01-appb-C000007
     ここで、l1,l2,l3,l4,l5は独立に1~20の数であり、m1,m2は独立に1~50の数である。
    Figure JPOXMLDOC01-appb-C000008
    ここで、o1,o2,o3,o4は独立に1~20の数である。
    Figure JPOXMLDOC01-appb-C000009
     ここで、R3はH又はメチル基であり、p1,p2,p3,p4は独立に1~20の数である。
    Figure JPOXMLDOC01-appb-C000010
     ここで、q1,q2,q3,q4は独立に1~20の数である。
    Figure JPOXMLDOC01-appb-C000011
     ここで、r,s,tは独立に1~20の数であり、nは1~50の数である。
    Figure JPOXMLDOC01-appb-C000012
     ここで、式12において、R4は式12a~12fから選ばれる2価の基である。
    Figure JPOXMLDOC01-appb-C000013
     ここで、式13において、R5は式13aで表されるアルキレン基であり、gは1~10の数である。
  3.  エポキシ樹脂(a)が、下記式(14)で示されるビスフェノールA型エポキシ樹脂または下記式(15)で示されるビスフェノールF型エポキシ樹脂であり、中高分子量ポリオール化合物(b)が、下記式(16)で示されるポリプロピレングリコールであり、低分子量ポリオール化合物(d)が、下記式(17)で示される1,4-ブタンジオールであり、さらにポリイソシアネート化合物(c)が、下記式(18)で示される4,4’-ジフェニルメタンジイソシアネートである請求項1又は2に記載のポリウレタン変性エポキシ樹脂。
     ここで、a1は0~10の数である。
    Figure JPOXMLDOC01-appb-C000015
     ここで、a2は0~10の数である。
    Figure JPOXMLDOC01-appb-C000016
     ここで、b1,b2は独立に1~50の数である。
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
  4.  エポキシ当量150~200 g/eqで、水酸基当量2000~2600 g/eqの下記式(1)で示されるビスフェノール系エポキシ樹脂(a)を、該エポキシ樹脂(a)、数平均分子量200以上の中高分子量ポリオール化合物(b)、ポリイソシアネート化合物(c)および鎖長延長剤としての数平均分子量が200未満の低分子量ポリオール化合物(d)の合計量に対して20~60重量%使用し、かつ中高分子量ポリオール化合物(b)とポリイソシアネート化合物(c)を、成分(b)のOH基と成分(c)のNCO基のモル比を1:1.5~1:3の範囲となる使用量にて、エポキシ樹脂(a)の存在下で反応させて、ウレタンプレポリマー(P)を生成させたのち、ウレタンプレポリマー(P)のNCO基と低分子量ポリオール化合物(d)のOH基のモル比が0.9:1~1:0.9の範囲になるように低分子量ポリオール化合物(d)を加えてポリウレタン化反応させることを特徴とする請求項1に記載のポリウレタン変性エポキシ樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000019
     ここで、RはH又はメチル基であり、aは0~10の数である。
  5.  請求項1~3に記載のポリウレタン変性エポキシ樹脂に、ポリウレタン未変性のエポキシ樹脂(e)、硬化剤(f)および硬化促進剤(g)を配合してなるエポキシ樹脂組成物であり、ポリウレタン構成成分の重量濃度が10~30重量%であることを特徴とするエポキシ樹脂組成物。
  6.  請求項5に記載のエポキシ樹脂組成物を硬化させたことを特徴とするエポキシ樹脂硬化物。
PCT/JP2015/065920 2014-06-03 2015-06-02 ポリウレタン変性エポキシ樹脂、その製造方法、エポキシ樹脂組成物および硬化物 WO2015186707A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/315,215 US10266637B2 (en) 2014-06-03 2015-06-02 Polyurethane-modified epoxy resin, method for producing same, epoxy resin composition and cured product
CN201580029348.6A CN106414542B (zh) 2014-06-03 2015-06-02 聚氨酯改性环氧树脂、其制造方法、环氧树脂组合物及固化物
EP15802555.1A EP3153535B1 (en) 2014-06-03 2015-06-02 Polyurethane-modified epoxy resin, method for producing same, epoxy resin composition and cured product
KR1020167036955A KR102320440B1 (ko) 2014-06-03 2015-06-02 폴리우레탄 변성 에폭시 수지, 그 제조 방법, 에폭시 수지 조성물 및 경화물

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-115063 2014-06-03
JP2014115063 2014-06-03
JP2015009681A JP6547999B2 (ja) 2014-06-03 2015-01-21 ポリウレタン変性エポキシ樹脂、その製造方法、エポキシ樹脂組成物および硬化物
JP2015-009681 2015-01-21

Publications (1)

Publication Number Publication Date
WO2015186707A1 true WO2015186707A1 (ja) 2015-12-10

Family

ID=54766776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065920 WO2015186707A1 (ja) 2014-06-03 2015-06-02 ポリウレタン変性エポキシ樹脂、その製造方法、エポキシ樹脂組成物および硬化物

Country Status (6)

Country Link
US (1) US10266637B2 (ja)
EP (1) EP3153535B1 (ja)
JP (1) JP6547999B2 (ja)
KR (1) KR102320440B1 (ja)
CN (1) CN106414542B (ja)
WO (1) WO2015186707A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188399A1 (ja) * 2018-03-30 2019-10-03 日鉄ケミカル&マテリアル株式会社 低濃度ポリウレタン変性エポキシ樹脂、その製造方法、エポキシ樹脂組成物および硬化物

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016142452A1 (de) * 2015-03-11 2016-09-15 Basf Se Verfahren zur herstellung kompakter polyurethane mit verbesserter hydrolysestabilität
JP6739921B2 (ja) * 2015-10-21 2020-08-12 日鉄ケミカル&マテリアル株式会社 ウレタン変性エポキシ樹脂組成物、およびその硬化物
JP6795942B2 (ja) * 2016-09-30 2020-12-02 太陽インキ製造株式会社 光硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
KR101967043B1 (ko) 2017-05-12 2019-04-08 부산대학교 산학협력단 높은 연신율 및 내충격성을 갖는 구조용 접착제 조성물
WO2019163577A1 (ja) * 2018-02-20 2019-08-29 Dic株式会社 硬化性組成物及び繊維強化複合材料
CN112004854B (zh) * 2018-03-30 2023-05-02 日铁化学材料株式会社 环氧树脂组合物及固化物
CN109627910A (zh) * 2018-12-06 2019-04-16 河北晨阳工贸集团有限公司 一种内墙漆及其制备方法
JP7235557B2 (ja) * 2019-03-28 2023-03-08 日鉄ケミカル&マテリアル株式会社 硬化性樹脂組成物、及びそれを用いたトゥプリプレグ
TWI704180B (zh) * 2019-04-26 2020-09-11 明安國際企業股份有限公司 固化組成物、固化物及複合材
CN114127152A (zh) * 2019-08-06 2022-03-01 Dic株式会社 固化性组合物、固化物、纤维增强复合材料及成型品
CN110556216B (zh) * 2019-09-06 2022-09-30 常州斯威克光伏新材料有限公司 一种导电胶膜的制备方法
EP4036142A1 (en) 2019-09-27 2022-08-03 NIPPON STEEL Chemical & Material Co., Ltd. Epoxy resin composition and cured product
CN111057213B (zh) * 2019-12-31 2022-02-22 北京市市政工程研究院 一种装配式混凝土空心板桥铰缝维修用潜伏固化型聚氨酯材料及其制备方法
KR102275069B1 (ko) * 2020-03-04 2021-07-08 한국화학연구원 이액형 구조용 접착제 조성물 및 이를 이용한 경화물
TWI729913B (zh) * 2020-08-18 2021-06-01 金門化工有限公司 耐衝擊環氧樹脂組成物、耐衝擊膜、及包含其的壓力瓶
CN114075367A (zh) * 2020-08-18 2022-02-22 金门化工有限公司 耐冲击环氧树脂组成物、耐冲击膜、及包含其的压力瓶
JP2022057431A (ja) 2020-09-30 2022-04-11 日鉄ケミカル&マテリアル株式会社 ポリウレタン変性エポキシ樹脂および樹脂組成物
WO2022071346A1 (ja) * 2020-09-30 2022-04-07 日鉄ケミカル&マテリアル株式会社 ポリウレタン変性エポキシ樹脂、エポキシ樹脂組成物および硬化物
KR102411510B1 (ko) * 2021-03-11 2022-06-22 한국화학연구원 우레탄계 변성 에폭시 화합물을 포함하는 접착제 조성물 및 이로부터 제조된 경화물
CN114045102B (zh) * 2021-10-19 2022-10-28 中昊北方涂料工业研究设计院有限公司 一种运载交通油箱用燃油蒸汽隔离涂料及其制备方法
CN115141591A (zh) * 2022-08-22 2022-10-04 哈尔滨工业大学无锡新材料研究院 一种环氧树脂改性的单组分聚氨酯结构胶及其制备方法
KR102486174B1 (ko) * 2022-11-02 2023-01-10 (주)피엠씨 에폭시 변성 폴리우레탄수지계 복합도료 조성물 및 그 시공방법
KR102637874B1 (ko) * 2023-10-19 2024-02-19 주식회사 이에스씨솔루션 교통 안전시설 부착용 이액형 접착제 조성물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271827A (ja) * 1993-03-23 1994-09-27 Nippon Zeon Co Ltd 常温硬化型ウレタン変性エポキシ系接着剤組成物
JPH06329755A (ja) * 1993-05-17 1994-11-29 Nippon Paint Co Ltd ソフトセグメントを含んでいる電着用変性エポキシ樹脂
JP2010507709A (ja) * 2006-10-24 2010-03-11 シーカ・テクノロジー・アーゲー 誘導体化された固体エポキシ樹脂およびその使用
JP2012219223A (ja) * 2011-04-12 2012-11-12 Yokohama Rubber Co Ltd:The エポキシ樹脂組成物
JP2013073064A (ja) * 2011-09-28 2013-04-22 Hitachi Chemical Co Ltd 感光性樹脂組成物、及びそれを用いた永久マスクレジストとその製造方法
JP2014077074A (ja) * 2012-10-11 2014-05-01 Nagoya Electrical Educational Foundation ポリウレタン変性エポキシ樹脂とその製造方法および硬化物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4576726A (en) * 1983-01-25 1986-03-18 Toyo Tire & Rubber Company Limited Magnetic coating composition
JPH10162348A (ja) * 1996-11-25 1998-06-19 Fuji Photo Film Co Ltd 磁気記録媒体
JP2007224144A (ja) 2006-02-23 2007-09-06 Kyowa Hakko Chemical Co Ltd 樹脂組成物
JP2007284474A (ja) 2006-04-12 2007-11-01 Yokohama Rubber Co Ltd:The エポキシ樹脂組成物
JP2007284467A (ja) 2006-04-12 2007-11-01 Yokohama Rubber Co Ltd:The エポキシ樹脂組成物
JP2010229381A (ja) * 2009-03-05 2010-10-14 Nagoya Electrical Educational Foundation ウレタン変性エポキシ樹脂、ウレタン変性エポキシ樹脂硬化物、ウレタン変性エポキシ樹脂の製造方法、及びウレタン変性エポキシ樹脂硬化物の製造方法
CN101798492B (zh) * 2010-02-22 2012-01-25 北京高盟新材料股份有限公司 紫外光固化复合粘合剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271827A (ja) * 1993-03-23 1994-09-27 Nippon Zeon Co Ltd 常温硬化型ウレタン変性エポキシ系接着剤組成物
JPH06329755A (ja) * 1993-05-17 1994-11-29 Nippon Paint Co Ltd ソフトセグメントを含んでいる電着用変性エポキシ樹脂
JP2010507709A (ja) * 2006-10-24 2010-03-11 シーカ・テクノロジー・アーゲー 誘導体化された固体エポキシ樹脂およびその使用
JP2012219223A (ja) * 2011-04-12 2012-11-12 Yokohama Rubber Co Ltd:The エポキシ樹脂組成物
JP2013073064A (ja) * 2011-09-28 2013-04-22 Hitachi Chemical Co Ltd 感光性樹脂組成物、及びそれを用いた永久マスクレジストとその製造方法
JP2014077074A (ja) * 2012-10-11 2014-05-01 Nagoya Electrical Educational Foundation ポリウレタン変性エポキシ樹脂とその製造方法および硬化物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3153535A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188399A1 (ja) * 2018-03-30 2019-10-03 日鉄ケミカル&マテリアル株式会社 低濃度ポリウレタン変性エポキシ樹脂、その製造方法、エポキシ樹脂組成物および硬化物
JPWO2019188399A1 (ja) * 2018-03-30 2021-04-01 日鉄ケミカル&マテリアル株式会社 低濃度ポリウレタン変性エポキシ樹脂、その製造方法、エポキシ樹脂組成物および硬化物
JP7212035B2 (ja) 2018-03-30 2023-01-24 日鉄ケミカル&マテリアル株式会社 低濃度ポリウレタン変性エポキシ樹脂、その製造方法、エポキシ樹脂組成物および硬化物
US11802175B2 (en) 2018-03-30 2023-10-31 Nippon Steel Chemical & Material Co., Ltd. Epoxy resin modified with polyurethane in low concentration, production method therefor, epoxy resin composition, and cured object

Also Published As

Publication number Publication date
CN106414542B (zh) 2020-01-24
KR20170013353A (ko) 2017-02-06
KR102320440B1 (ko) 2021-11-02
EP3153535A4 (en) 2018-01-24
US20170198085A1 (en) 2017-07-13
JP6547999B2 (ja) 2019-07-24
JP2016011409A (ja) 2016-01-21
US10266637B2 (en) 2019-04-23
EP3153535A1 (en) 2017-04-12
EP3153535B1 (en) 2022-12-21
CN106414542A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
JP6547999B2 (ja) ポリウレタン変性エポキシ樹脂、その製造方法、エポキシ樹脂組成物および硬化物
JP2016011409A5 (ja)
CN104768991B (zh) 用于环氧基粘合剂的新型抗冲改性剂
JP7212035B2 (ja) 低濃度ポリウレタン変性エポキシ樹脂、その製造方法、エポキシ樹脂組成物および硬化物
JP2014077074A (ja) ポリウレタン変性エポキシ樹脂とその製造方法および硬化物
JP6739921B2 (ja) ウレタン変性エポキシ樹脂組成物、およびその硬化物
JP5227561B2 (ja) ウレア樹脂組成物
JP7227960B2 (ja) エポキシ樹脂組成物および硬化物
US11702502B2 (en) Epoxy resin composition and cured product
WO2022071346A1 (ja) ポリウレタン変性エポキシ樹脂、エポキシ樹脂組成物および硬化物
JP2022057431A (ja) ポリウレタン変性エポキシ樹脂および樹脂組成物
JP2023096685A (ja) ポリウレタン変性エポキシ樹脂組成物および硬化物
JP2024007372A (ja) ポリウレタン変性エポキシ樹脂、ポリウレタン変性エポキシ樹脂組成物並びに当該組成物を用いた硬化物、繊維強化複合材料用樹脂組成物および繊維強化複合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15802555

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15315215

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167036955

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015802555

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015802555

Country of ref document: EP