WO2015186637A1 - 金属ナトリウムの不活化方法 - Google Patents

金属ナトリウムの不活化方法 Download PDF

Info

Publication number
WO2015186637A1
WO2015186637A1 PCT/JP2015/065639 JP2015065639W WO2015186637A1 WO 2015186637 A1 WO2015186637 A1 WO 2015186637A1 JP 2015065639 W JP2015065639 W JP 2015065639W WO 2015186637 A1 WO2015186637 A1 WO 2015186637A1
Authority
WO
WIPO (PCT)
Prior art keywords
inert oil
metallic sodium
inert
water
storage tank
Prior art date
Application number
PCT/JP2015/065639
Other languages
English (en)
French (fr)
Inventor
伊藤 英明
徹 荒川
相羽 孝弘
Original Assignee
日本曹達株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本曹達株式会社 filed Critical 日本曹達株式会社
Priority to JP2016525147A priority Critical patent/JP6286727B2/ja
Priority to US15/313,667 priority patent/US20170209905A1/en
Priority to CN201580027197.0A priority patent/CN106413924B/zh
Priority to EP15802358.0A priority patent/EP3153244A4/en
Publication of WO2015186637A1 publication Critical patent/WO2015186637A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/083Removing scrap from containers, e.g. removing labels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D1/00Oxides or hydroxides of sodium, potassium or alkali metals in general
    • C01D1/04Hydroxides
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/38Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by oxidation; by combustion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • B08B1/10Cleaning by methods involving the use of tools characterised by the type of cleaning tool
    • B08B1/16Rigid blades, e.g. scrapers; Flexible blades, e.g. wipers
    • B08B1/165Scrapers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/40Inorganic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a method for inactivating metallic sodium and a method for cleaning an apparatus or storage tank to which metallic sodium is attached.
  • the metal sodium dispersion (hereinafter sometimes referred to as SD drug) is obtained by dispersing metal sodium particles in an inert oil.
  • the metal sodium dispersion is used for PCB removal or the like. While the SD medicine is stored in the storage tank, metallic sodium may accumulate on the top surface or the inner side surface of the tank and become a lump of ice. If the lump is left as it is, there is a risk that the storage tank will crack and cause an explosion or fire due to the reaction between water and metallic sodium.
  • Non-patent document 1 describes a cleaning method for equipment parts to which metallic sodium is adhered. Water vapor cleaning in air, water vapor cleaning in an inert gas, alcohol cleaning, high-temperature oil cleaning, liquefied ammonia cleaning, and low-temperature alloy cleaning. , Washing with cloth, washing with water, sand plast, etc. are disclosed.
  • Non-Patent Document 1 steam cleaning is the most common method of sodium cleaning. It is also effective when the storage tank has a shape that makes it difficult to extract sodium. However, it takes time if there is a large amount of sodium. Sodium may be blown off with water vapor and fall into a puddle, and the reaction may proceed excessively. Alcohol used for alcohol cleaning has a slower reaction with metallic sodium than water. It takes time if there is a large amount of metallic sodium. Alcohol is flammable.
  • High temperature oil cleaning is a method of mechanically washing away with mineral oil at about 200 ° C. However, sufficient cleaning is not possible.
  • the human wiping method is not suitable for washing a large amount of sodium because it is wiped with a cloth dampened with a very small amount of water or alcohol.
  • Heavy equipment is required for work in an inert gas atmosphere. It is difficult to control the generated hydrogen by irrigating with water, and the metal sodium heated by the reaction heat of the metal sodium and water may melt at once and the reaction may accelerate at once. It may be difficult to control.
  • Patent Document 1 adheres by cleaning the surface of the device to which metallic sodium is adhered with wet inert gas mixed with carbon dioxide under pressure fluctuations such as pressurization, atmospheric pressure, and reduced pressure in one step.
  • a method for treating metallic sodium adhering to the surface of equipment which is characterized by converting metallic sodium to sodium carbonate and stabilizing it.
  • Patent Document 2 is used in a sodium-using facility in which metallic sodium is used, and the attached component is obtained by washing the components of the sodium-using facility to which metallic sodium is adhered with an inert oil having a temperature equal to or higher than the melting point of sodium.
  • a method for cleaning a sodium-using facility is disclosed, which is characterized by carrying out removal of metallic sodium.
  • Patent Document 3 is a method for cleaning a member to be cleaned to which metallic sodium is adhered, in which a cleaning liquid is stored in a cleaning container constituting the cleaning device to provide a liquid phase, and the member to be cleaned having metallic sodium adhered to the liquid phase.
  • a method of cleaning metallic sodium characterized by immersing the metal, and blowing an inert gas into the cleaning device that cleans the member to be cleaned, to which the metallic sodium adheres, so that the oxygen concentration in the cleaning device is less than the explosion limit concentration.
  • cleaning method characterized by these is disclosed.
  • a method for inactivating metallic sodium comprising immersing metallic sodium in an inert oil, and then adding water to the inert oil to convert metallic sodium into caustic soda.
  • the inactivation method according to [1] further comprising changing the liquid level of the inert oil in parallel with the addition of moisture.
  • a method for cleaning an apparatus to which metal sodium has adhered comprising immersing the apparatus to which metal sodium has adhered in an inert oil, and then adding water to the inert oil to convert the metal sodium into caustic soda.
  • a method for cleaning a storage tank with metal sodium attached comprising adding inert oil to a storage tank to which metallic sodium is adhered, and then adding water to the inert oil to convert metallic sodium into caustic soda.
  • metallic sodium can be industrially and safely inactivated.
  • metallic sodium adhering to a storage tank or an apparatus can be industrially safely and reliably inactivated and cleaned.
  • the cleaning method of the present invention even a large amount of metallic sodium adhering to the inner surface of a storage tank or apparatus can be deactivated stepwise and removed safely and reliably.
  • the inactivation method and cleaning method of the present invention can be applied to a wide range from a small laboratory level to a large factory level.
  • the method for inactivating metallic sodium according to the first embodiment of the present invention comprises immersing metallic sodium in an inert oil, and then adding water to the inert oil to convert metallic sodium into caustic soda. It is.
  • the inert oil used in the present invention is not particularly limited as long as it is used when storing metallic sodium.
  • the inert oil include hexane, cyclohexane, benzene, kerosene, decalin, trans oil (trans oil described in JIS C 2320-1993), heavy oil (described in JIS K2205), liquid paraffin or washing oil (fluorocarbon, trichloroethane).
  • Examples of alternatives such as kerosene include hydrocarbon-based solvents used for cleaning automobiles, electronic parts, and precision equipment).
  • the temperature of the inert oil is preferably 0 ° C. to 98 ° C., more preferably 0 ° C. to 60 ° C., and more preferably 0 ° C. to 40 ° C. from the viewpoint of the conversion reaction efficiency from metallic sodium to caustic soda and safety. Even more preferably.
  • the metallic sodium to which the method of the present invention is applied is not limited by its state. Examples include metallic sodium adhering to equipment and storage tanks, metallic sodium dispersed in a medium such as metallic sodium dispersion, mixtures of metallic sodium and other substances, and degraded metallic sodium that has been oxidized by exposure to air. It is done.
  • the apparatus includes pipes, valves, flanges, strainers and the like that connect the mechanical equipment.
  • the amount of metallic sodium relative to the inert oil is not particularly limited as long as the inert oil touches the metallic sodium even when moisture is added.
  • the amount can be adjusted so that the entire apparatus attached with metal sodium is immersed in the inert oil.
  • the amount can be adjusted so that the metal sodium attached to the inner surface of the storage tank is below the surface of the inert oil.
  • the moisture to be added is not particularly limited in that state.
  • Examples of moisture include ice, water (liquid), water vapor, humidified inert gas, mist, mist, and fume.
  • the amount of water (H 2 O) added is preferably 3 mol or more (temperature of the inert oil: 0 to 98 ° C.), more preferably 4 mol or more (inert) with respect to 1 mol of Na. Oil temperature: 0 to 40 ° C.).
  • the upper limit of the amount of moisture (H 2 O) added is appropriately set so that the generated hydrogen gas concentration is less than 4 vol%.
  • the method of adding moisture can be selected according to the state of moisture. If the water is solid, it can be thrown into, for example, an inert oil. If the moisture is liquid, it can be dropped, poured down or poured from a position higher than the level of the inert oil, or via a pipe from a position lower than the level of the inert oil. Can be sent. When the moisture is a gas, it can be blown from the position higher than the liquid level of the inert oil via the pipe, or can be blown from the position lower than the liquid level of the inert oil via the pipe. When water is fed from a position lower than the level of the inert oil so as to cause bubbling via a pipe, the contact between metal sodium and water may be improved.
  • the liquid level means the height in the vertical direction from the bottom surface of the inert oil to the liquid surface.
  • the level of the inert oil can be changed by gradually extracting or adding the inert oil from the storage tank. By changing the liquid level, the attached metallic sodium is exposed or sinks, so that the contact between water (H 2 O) and metallic sodium (Na) can be changed and adhered. There is a tendency that inactivation of metallic sodium tends to proceed.
  • the inert gas include nitrogen gas and argon gas. Stirring may be performed with a stirrer or may be performed by bubbling by blowing water vapor or humidified inert gas.
  • the inert gas is preferably introduced into a storage tank or a container that performs inactivation continuously while adjusting the flow rate so that the generated hydrogen gas concentration is less than 4 vol%.
  • either one or both of the water and the inert oil described above preferably includes a surfactant, and more preferably at least water includes a surfactant.
  • the surfactant is not particularly limited as long as it can increase the affinity between water and the inert oil.
  • examples of the surfactant include an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant.
  • Nonionic surfactants include polyoxyalkylene alkyl (C11-15) ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene benzyl phenyl ether, polyoxyethylene monostyryl phenyl ether, polyoxyethylene distyryl phenyl ether, polyoxyethylene
  • examples include polyoxyethylene aryl ethers such as oxyethylene tristyryl phenyl ether, sucrose fatty acid esters, polyoxyethylene sucrose fatty acid esters, sorbitan fatty acid esters, polyoxyethylene alkylene glycol, polyoxyethylene / polyoxypropylene block polymers, etc. .
  • Anionic surfactants include alkyl aryl sulfonates such as sodium alkyl aryl sulfonate, calcium alkyl aryl sulfonate, ammonium alkyl aryl sulfonate, polyoxyethylene alkyl phenyl ether sulfate, polyoxyethylene alkyl phenyl ether phosphate Salts, alkyl sulfates such as sodium dodecyl sulfate, polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl ether phosphates, dialkyl sulfosuccinates, alkyl naphthalene sulfonates such as sodium alkyl naphthalene sulfonate, naphthalene sulfonates Formaldehyde polycondensates, lignin sulfonates, polycarboxylates and the like.
  • the cationic surfactant examples include alkyl quaternary ammonium salts, alkylamine salts, and alkylpyridinium salts.
  • amphoteric surfactants include alkyl betaines, amine oxides, and alkyl amino acid salts. These surfactants can be used singly or in combination of two or more. Of these, anionic surfactants or nonionic surfactants are preferred.
  • the content of the surfactant is not particularly limited as long as the affinity between water and the inert oil can be increased.
  • the surfactant can be contained in an amount of preferably 0.01 to 20% by mass, more preferably 1 to 10% by mass, and still more preferably 5 to 10% by mass with respect to the mass of moisture.
  • the surfactant can be contained in an amount of preferably 0.01 to 20% by mass, more preferably 1 to 10% by mass, based on the mass of the inert oil.
  • the hydrogen production amount per hour can be calculated by measuring the hydrogen gas concentration. For example, the hydrogen gas concentration can be measured in the exhaust line of the storage tank. The progress of the reaction can be ascertained from the amount of hydrogen produced per hour. In order to improve safety, when the amount of hydrogen produced per hour is large, it is preferable to reduce the amount of moisture added per hour. Specifically, it is preferable to adjust the amount of water added per hour while monitoring the hydrogen gas concentration in the exhaust gas so that the hydrogen gas concentration is less than 4 vol%.
  • the amount of water added per hour is about 10 to 100 ml / hour, more preferably about 15 to 90 ml / hour, and still more preferably about 35 to 70 ml / hour with respect to 1 mole of Na. It is preferable to set appropriately.
  • the produced caustic soda can be washed away with water (liquid) after completing the inactivation of metallic sodium.
  • sludge and the like may be generated due to impurities. Solids such as sludge can be washed away with water or oil.
  • the method for cleaning a storage tank to which metallic sodium is attached is to put inert oil into the storage tank to which metallic sodium is attached, and then add water to convert metallic sodium into caustic soda. It is what you have.
  • cleaning method which concerns on this embodiment is demonstrated below, the description may be abbreviate
  • the state of the storage tank is checked.
  • the storage tank include a metal sodium dispersion storage tank.
  • the inner surface of the storage tank is examined for metallic sodium adhesion using a surveillance camera.
  • it is checked whether or not a pipe for discharging the metallic sodium dispersion out of the system exists in the storage tank. If there is no pipe for discharge, a drain pipe is temporarily installed in the storage tank. Since hydrogen gas is generated when metallic sodium is converted to caustic soda, it is checked whether there is an exhaust line for releasing hydrogen gas in the storage tank. If there is no exhaust line, temporarily install an exhaust line in the storage tank. It is preferable to provide a demister and a water washing tower in the exhaust line.
  • the inert oil mist may contain metallic sodium particles, it is preferable to inactivate the contained metallic sodium by bringing the inert oil mist into contact with water.
  • a mechanism for preventing the backflow of hydrogen in the exhaust line is a seal pot.
  • various safety devices such as a nitrogen or water vapor introduction device or a flame arrester at the exhaust port.
  • the extraction of the metallic sodium dispersion can be performed using a pump, or can be performed by feeding an inert gas or the like to the storage tank and applying pressure. Nitrogen gas, argon gas, etc. are preferable as the inert gas.
  • the metal sodium dispersion may not be completely extracted from the storage tank. However, if the amount of metallic sodium dispersion remaining in the dead space is small, the reservoir can be considered empty.
  • an inert oil is put into an empty storage tank.
  • the metal sodium dispersion remaining in a small amount can be washed out.
  • water is added. It is preferable to add the water while stirring the inert oil in an inert gas atmosphere.
  • the inert gas include nitrogen gas and argon gas. Stirring may be performed with a stirrer or may be performed by bubbling by blowing water vapor or humidified inert gas.
  • Metal sodium adhering to the storage tank and metal sodium in the metal sodium dispersion remaining in a small amount can react with H 2 O to be converted into caustic soda and inactivated. The progress of the reaction can be grasped by measuring the hydrogen gas concentration. For example, the hydrogen gas concentration can be measured in the exhaust line of the storage tank. It is preferable to avoid a sudden increase in hydrogen gas concentration from the viewpoint of improving safety.
  • the hydrogen explosion limit concentration in the air is 4 vol% to 75 vol%. Therefore, it is preferable to provide an exhaust line in the storage tank, measure the hydrogen gas concentration in the exhaust line, and adjust the amount of water added per hour based on the measured hydrogen gas concentration. As described, it is more preferable to adjust the amount of water added per hour. Further, the temperature of the inert oil is preferably adjusted to 0 ° C to 98 ° C, more preferably 0 ° C to 60 ° C, and still more preferably 0 ° C to 40 ° C.
  • the inert oil containing water and caustic soda is extracted from the storage tank.
  • the extraction can be performed by, for example, a pump through a preliminary nozzle closing flange or a sight glass.
  • water can be sprayed on the inner wall surface of the storage tank as necessary.
  • Metal sodium remaining in a trace amount can be inactivated by water.
  • caustic soda generated by inactivation can be eluted in water and washed away.
  • the storage tank may be filled with water.
  • the wiping is performed, for example, by first measuring the oxygen concentration in the storage tank and confirming safety, then installing a scaffold in the tank as necessary, and a person entering the storage tank.
  • the attached metallic sodium can be removed safely and reliably without cutting and decomposing the storage tank.
  • Embodiment 2 When the amount of metallic sodium dispersion remaining in the dead space is large, the following operation can be performed to empty the storage tank. Fill the storage tank with new inert oil, and wash the metal sodium dispersion remaining in the dead space with the inert oil. And the washed-out metal sodium dispersion is extracted from a storage tank. Extraction of the inert oil containing the washed-out metallic sodium dispersion can be performed by sending an inert gas or the like to the storage tank and applying pressure. Note that the concentration of metallic sodium in the extracted metallic sodium dispersion is measured, and when it is higher than a predetermined value, washing and extraction with an inert oil can be repeated.
  • the temperature of the inert oil is preferably 0 ° C. to 98 ° C., more preferably 0 to 60 ° C., and still more preferably 0 to 40 ° C.
  • the storage tank can be considered empty.
  • the empty storage tank can be treated in the same manner as in the first embodiment. Specifically, the inert oil is filled into an empty storage tank, then water is added to the inert oil to convert metallic sodium into caustic soda, and the inert oil containing water and caustic soda is extracted from the storage tank. Accordingly, water can be sprayed on the inner surface of the storage tank, and water, caustic soda and oil remaining on the inner surface of the storage tank can be wiped off.
  • inert oil Inject inert oil into the storage tank until the bottom of the tank is hidden. Put a metal jig from the preliminary nozzle closing flange or sight glass, and scrape the lump of metallic sodium adhering to the inner surface of the tank. The lump of metallic sodium scraped off is dropped into an inert oil.
  • the temperature of the inert oil is preferably 0 ° C. to 98 ° C., more preferably 0 to 60 ° C., and still more preferably 0 to 40 ° C.
  • an inert gas is introduced into the storage tank to create an inert gas atmosphere.
  • the inactivation of the lump of metallic sodium scraped off can be performed simultaneously with the inactivation of metallic sodium adhering to the inner surface of the storage tank described in the first embodiment.
  • the inert oil is filled into an empty storage tank, and then water is added to the inert oil to convert metallic sodium (including lump of metallic sodium scraped off) into caustic soda.
  • Inert oil containing water and caustic soda can be extracted from the water, sprayed onto the inner surface of the storage tank as necessary, and further water, caustic soda and oil remaining on the inner surface of the storage tank can be wiped off.
  • Inactivation of the lump of metallic sodium scraped off can be performed prior to inactivation of metallic sodium adhering to the inner surface of the storage tank described in the first embodiment. For example, after introducing an inert oil in an amount that hides the bottom surface in the tank containing metallic sodium scraped off by the method described in Embodiment 3, it is scraped off by adding water while stirring. Metal sodium can be inactivated by reacting with H 2 O in an inert oil. In the reaction, it is preferable to adjust the amount of water to be added while monitoring the generated hydrogen gas concentration as described in the first embodiment and embodiment 1.
  • the inert oil containing the deactivated metallic sodium may be extracted from the storage tank or may be left as it is.
  • the inert oil can be extracted by using a pump or by pumping with an inert gas.
  • the inert oil is filled into an empty storage tank, then water is added to the inert oil to convert metallic sodium into caustic soda, and the inert oil containing water and caustic soda is extracted from the storage tank. Accordingly, water can be sprayed on the inner surface of the storage tank, and water, caustic soda and oil remaining on the inner surface of the storage tank can be wiped off.
  • Embodiment 5 In Embodiment 1, it is preferable to perform an operation of changing the level of the inert oil in parallel with the addition of moisture to the inert oil.
  • the inert oil In order to change the level of the inert oil, the inert oil can be gradually extracted from the storage tank or added gradually.
  • the degree of variation in the level of the inert oil is not particularly limited, but it is preferable to make it proportional to the integrated amount of moisture. Changes in the level of the inert oil may cause the exposed metal sodium to be exposed or sink, change the state of contact with moisture, and facilitate the inactivation of the attached metal sodium. .
  • a method for cleaning an apparatus to which metallic sodium adheres wherein the apparatus to which metallic sodium is adhered is immersed in an inert oil, and then water is added to convert metallic sodium into caustic soda. It is what you have. Specific examples of the cleaning method of this embodiment will be described below, but the description of the same configuration as the inactivation method according to the first embodiment and the cleaning method according to the second embodiment may be omitted. is there.
  • a container such as a tank is used for immersion in the inert oil.
  • the inert oil may be stored in the container before the device is stored in the container, or the inert oil may be stored in the container after the device is stored in the container.
  • the amount of the inert oil is not limited as long as the apparatus can be immersed.
  • the remaining steps of washing metal sodium such as a method of adding moisture, can be performed by the method described in the first or second embodiment, for example.
  • Example 1 A sealable 100 ml container was filled with an inert oil at a temperature of 19 ° C., and four pieces of metal sodium of 6 mm ⁇ 6 mm ⁇ 6 mm in size were put therein. The container was sealed, and the inert oil in the container was stirred with a stir bar while supplying nitrogen gas to the container at 40 ml / min. To this, water was added at a rate of 0.6 ml / hour for 1 hour, 1.2 ml / hour for 0.5 hour, 2.4 ml / hour for 1.3 hour, and a total of 4.3 ml. The added water was present as water droplets in the inert oil.
  • Example 2 A 5% aqueous sodium dodecyl sulfate solution (quenching agent A) was prepared.
  • a sealable 100 ml container was filled with an inert oil at a temperature of 17 ° C., and four pieces of metal sodium of 6 mm ⁇ 6 mm ⁇ 6 mm in size were put therein.
  • the container was sealed, and the inert oil in the container was stirred with a stir bar while supplying nitrogen gas to the container at 40 ml / min.
  • Quenching agent A was added at a rate of 0.6 ml / hour for 1 hour, 1.2 ml / hour for 0.5 hour, and 2.4 ml / hour for 1.5 hour, for a total of 4.8 ml.
  • the added quenching agent A was emulsified in an inert oil and existed in a micelle state. Since micelles and metallic sodium contacted without interruption, the deactivation reaction proceeded mildly and continuously. At the end of addition of quenching agent A, about 2/3 of the metal sodium added was inactivated. Since the concentration of the generated hydrogen gas gradually changes corresponding to the amount of quenching agent A added, the amount of quenching agent A added can be easily controlled by detecting the hydrogen gas concentration.
  • Example 3 A 10% polyoxyalkylene alkyl (C11-15) ether aqueous solution (quenching agent B) was prepared.
  • a sealable 100 ml container was filled with an inert oil having a temperature of 21 ° C., and four pieces of metal sodium of 6 mm ⁇ 6 mm ⁇ 6 mm in size were put therein.
  • the container was sealed, and the inert oil in the container was stirred with a stir bar while supplying nitrogen gas to the container at 40 ml / min.
  • Quenching agent B was added thereto at 0.6 ml / hour for 1 hour, 1.2 ml / hour for 0.5 hour, and 2.4 ml / hour for 1.3 hour, for a total of 4.3 ml.
  • the added quenching agent B was emulsified in an inert oil and present in a micelle state. Since micelles and metallic sodium contacted without interruption, the deactivation reaction proceeded mildly and continuously. At the end of addition of quenching agent B, about 2/3 of the metal sodium added was inactivated. Since the concentration of the generated hydrogen gas gradually changes corresponding to the amount of quenching agent B added, the amount of quenching agent B added can be easily controlled by detecting the hydrogen gas concentration.
  • the present invention is typified by the embodiment as described above.
  • the present invention is not limited to the embodiment described above, and may be implemented with appropriate modifications within a scope that can meet the gist of the present invention. Of course, it is possible and both are included in the technical scope of the present invention.
  • metallic sodium can be industrially safely inactivated.
  • the cleaning method of the present invention even if the amount of metallic sodium attached to the storage tank or the apparatus is unknown, the storage tank is safely cleaned at the place where the storage tank is installed without moving the storage tank. be able to. Furthermore, even metallic sodium adhered to the inner surface and solidified can be deactivated in stages and removed safely.
  • the inactivation method and cleaning method of the present invention can be applied to a wide range from a small laboratory level to a large factory level.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

 金属ナトリウムが付着した貯槽の洗浄方法は、金属ナトリウムが付着した貯槽に不活性油を充溢させ、次いで、水、水蒸気または加湿不活性ガスを不活性油に添加し、貯槽に排気ラインを設けて該排気ラインの水素ガス濃度を測定し、水素ガス濃度のレベルに応じて、時間あたりの、水、水蒸気または加湿不活性ガスの添加量を調整し、また不活性油の温度を0℃~98℃に調整し、さらに水、水蒸気または加湿不活性ガスの不活性油への添加に並行して、不活性油の液面レベルを変えながら、金属ナトリウムを苛性ソーダに転化させることを有する。

Description

金属ナトリウムの不活化方法
 本発明は、金属ナトリウムの不活化方法、および金属ナトリウムが付着した装置または貯槽の洗浄方法に関する。
 本願は、2014年6月4日に日本に出願された特願2014-115803号及びに2015年4月13日に日本に出願された特願2015-081912号基づき優先権を主張し、その内容をここに援用する。
 金属ナトリウム分散体(以下、SD薬剤ということがある。)は、金属ナトリウム粒子を不活性油に分散させてなるものである。金属ナトリウム分散体は、PCBの除去などに使用される。SD薬剤を貯槽に保管している間に、槽内天面または槽内側面に金属ナトリウムが堆積して氷柱状などの塊りになることがある。その塊りをそのまま放置していると、貯槽に亀裂が入り、水と金属ナトリウムとの反応で爆発や火災を起こす危険がある。
 金属ナトリウムの付着した機器部品の洗浄方法として、非特許文献1は、空気中での水蒸気洗浄、不活性ガス中での水蒸気洗浄、アルコール洗浄、高温度オイル洗浄、液化アンモニア洗浄、低温合金による洗浄、布などによる洗浄、水洗、サンドプラストなどを開示している。
 非特許文献1などによれば、水蒸気洗浄は、ナトリウム洗浄の最も一般的な方法である。貯槽がナトリウムを取出しにくい形状の場合にも有効である。しかし、ナトリウムが多量にある場合には時間がかかる。ナトリウムが水蒸気で吹き飛ばされて水溜りに落ち、過度に反応が進行する可能性もある。
 アルコール洗浄に用いられるアルコールは水に比べて金属ナトリウムとの反応が遅い。金属ナトリウムが多量にある場合には時間がかかる。またアルコールは引火性がある。
 高温オイル洗浄は、200℃程度で鉱物油により機械的に洗い流す方法である。しかし、十分な洗浄は不可能である。
 人による拭き取り方法は、極少量の水またはアルコールで湿らせた布などで拭き取るため、多量のナトリウム洗浄には不向きである。不活性ガス雰囲気下での作業のため、重装備が必要である。
 水を掛け流して失活させる方法は、発生する水素のコントロールが難しく、金属ナトリウムと水の反応熱で加熱された金属ナトリウムが一度に溶融して、反応が一気に加速するおそれがあり、失活の制御が難しくなる恐れがある。
 また、特許文献1は、金属ナトリウムの付着した機器表面を、加圧、大気圧、減圧等の圧力変動下に炭酸ガスを混入した湿り不活性ガスで、一段階で洗浄することにより、付着している金属ナトリウムを炭酸ナトリウムに転化し、安定化することを特徴とする機器表面に付着残存した金属ナトリウムの処理方法を開示している。
 特許文献2は、金属ナトリウムが用いられるナトリウム使用設備に用いられ、金属ナトリウムが付着している前記ナトリウム使用設備の構成部品をナトリウムの融点以上の温度の不活性油で洗浄することにより前記付着している金属ナトリウムの除去を実施することを特徴とするナトリウム使用設備の洗浄方法を開示している。
 特許文献3は、金属ナトリウムが付着した被洗浄部材の洗浄方法であって、洗浄装置を構成する洗浄容器に洗浄液を貯留して液相を設け、その液相に金属ナトリウムが付着した被洗浄部材を浸漬させることを特徴とする金属ナトリウムの洗浄方法、ならびに金属ナトリウムが付着した被洗浄部材を洗浄する洗浄装置内に不活性ガスを吹き込み、洗浄装置内の酸素濃度を爆発限界濃度以下とすることを特徴とする金属ナトリウムの洗浄方法を開示している。
特開昭62-75396号公報 特開2007-254870号公報 特開2003-121593号公報
「液体ナトリウム取扱い安全指針」日本原子力研究所、17~19頁、1968年12月
 上記目的を達成するために検討した結果、以下の形態を包含する本発明を完成するに至った。
〔1〕 金属ナトリウムを不活性油に浸け、次いで、該不活性油に水分を添加して金属ナトリウムを苛性ソーダに転化させることを有する、金属ナトリウムの不活化方法。
〔2〕 水分の添加に並行して、不活性油の液面レベルを変えることをさらに有する、〔1〕に記載の不活化方法。
〔3〕 不活性油の温度を0℃~98℃に調整することをさらに有する、〔1〕または〔2〕に記載の不活化方法。
〔4〕 水分および不活性油のいずれか一方または両方が界面活性剤を含むものである、〔1〕~〔3〕のいずれかひとつに記載の不活化方法。
〔5〕 金属ナトリウムが付着した装置を不活性油に浸け、次いで、該不活性油に水分を添加して金属ナトリウムを苛性ソーダに転化させることを有する、金属ナトリウムが付着した装置の洗浄方法。
〔6〕 金属ナトリウムが付着した貯槽に不活性油を入れ、次いで、該不活性油に水分を添加して金属ナトリウムを苛性ソーダに転化させることを有する、金属ナトリウムが付着した貯槽の洗浄方法。
〔7〕 付着した金属ナトリウムを不活性油に掻き落とすことをさらに有する、〔5〕または〔6〕に記載の洗浄方法。
〔8〕 水素ガス濃度を測定し、測定された水素ガス濃度に基づいて、時間あたりの水分の添加量を調整する、〔5〕~〔7〕のいずれかひとつに記載の洗浄方法。
〔9〕 水分の添加に並行して、不活性油の液面レベルを変えることをさらに有する、〔5〕~〔8〕のいずれかひとつに記載の洗浄方法。
〔10〕 不活性油の温度を0℃~98℃に調整することをさらに有する、〔5〕~〔9〕のいずれかひとつに記載の洗浄方法。
[11]
 水分および不活性油のいずれか一方または両方が界面活性剤を含むものである、〔5〕~〔10〕のいずれかひとつに記載の洗浄方法。
 本発明の一実施形態に係る金属ナトリウムの不活化方法によれば、金属ナトリウムを、工業的に、安全に、不活化することができる。
 本発明の別の一実施形態に係る洗浄方法によれば、貯槽や装置内に付着する金属ナトリウムを、工業的に安全かつ確実に不活化し、洗浄することができる。本発明の洗浄方法によれば、貯槽や装置の内面に固まりとなって付着した多量の金属ナトリウムであっても、段階的に失活させ、安全に、確実に取り除くことができる。本発明の不活化方法および洗浄方法は、実験室レベルの小規模なものから工場レベルの大規模なものまでの幅広いものに適用できる。
 本発明の第一の実施態様に係る金属ナトリウムの不活化方法は、金属ナトリウムを不活性油に浸け、次いで、該不活性油に水分を添加して金属ナトリウムを苛性ソーダに転化させることを有するものである。
 本発明に使用される不活性油は、金属ナトリウムを保管する際に使用されるものであれば特に限定されない。不活性油としては、例えば、ヘキサン、シクロヘキサン、ベンゼン、ケロシン、デカリン、トランス油(JIS C 2320-1993に記載のトランス油)、重油(JIS K2205に記載)、流動パラフィン又は洗浄油(フロン、トリクロロエタン、灯油などの代替品として、自動車、電子部品、精密機器の洗浄用に用いられる炭化水素系を主成分とした溶剤)などを挙げることができる。不活性油の温度は、金属ナトリウムから苛性ソーダへの転化反応効率および安全性の観点から、0℃~98℃であることが好ましく、0~60℃であることがより好ましく、0~40℃であることがより更に好ましい。
 本発明の方法が適用される金属ナトリウムは、その状態によって制限されない。例えば、装置や貯槽に付着した金属ナトリウム、金属ナトリウム分散体などの媒体中に分散された金属ナトリウム、金属ナトリウムと他の物質との混合物、空気に触れて酸化したような劣化金属ナトリウムなどが挙げられる。装置は、ニーダー、ポンプ、攪拌翼などの機械設備に加えて、それら機械設備間を繋ぐ管、弁、フランジ、ストレーナなどを包含するものである。
 不活性油に対する金属ナトリウムの量は、水分を添加したときにも不活性油が金属ナトリウムに触れていれば、特に制限されない。例えば、装置に付着した金属ナトリウムを不活化する場合には、金属ナトリウムが付着した装置全体が不活性油に浸かる程度の量にすることができる。貯槽に付着した金属ナトリウムを不活化する場合には、貯槽内面に付着した金属ナトリウムが不活性油の液面下になる程度の量にすることができる。
 添加する水分は、その状態において特に制限されない。水分としては、氷、水(液体)、水蒸気、加湿不活性ガス、霧、ミスト、ヒュームなどが挙げられる。
 水分(H2O)の添加量は、転化反応効率の観点から、Na1モルに対して好ましくは3モル以上(不活性油の温度:0~98℃)、さらに好ましくは4モル以上(不活性油の温度:0~40℃)である。水分(H2O)の添加量の上限値は、発生する水素ガス濃度が4vol%未満となるように適宜設定される。
 水分の添加方法は、水分の状態に応じて選択することができる。水分が固体である場合は、例えば不活性油に投げ入れることができる。水分が液体である場合は、例えば、不活性油の液面より高い位置から滴下したり、降り注いだり、掛け流したりすることができ、または不活性油の液面より低い位置から管を経由して送り込むことができる。水分が気体である場合は、不活性油の液面より高い位置から管を経由して吹き込むことができ、または不活性油の液面より低い位置から管を経由して吹き込むことができる。不活性油の液面より低い位置から管を経由してバブリングが生じるように水分を送り込むと金属ナトリウムと水分との接触性を向上させることがある。本発明においては、水分の添加に並行して、不活性油の液面レベルを変えることが好ましく、水分添加積算量に比例するように、不活性油の液面レベルを増大させることがより好ましい。ここで、液面レベルとは、不活性油の底面から液表面までの鉛直方向の高さを意味する。不活性油の液面レベルは、不活性油を貯槽から徐々に抜き出したり、徐々に添加することにより変えることができる。液面レベルの変更によって、付着していた金属ナトリウムが露出したり、沈没することになり、水分(H2O)と金属ナトリウム(Na)との接触性を変えることができ、付着していた金属ナトリウムの不活化が進みやすくなる傾向にある。
 水分の添加は不活性ガス雰囲気下で不活性油を撹拌しながら行うことが好ましい。不活性ガスとしては、窒素ガス、アルゴンガスなどが挙げられる。撹拌は攪拌機で行ってもよいし、水蒸気または加湿不活性ガスの吹き込みによるバブリングで行ってもよい。不活性ガスは、発生する水素ガス濃度が4vol%未満となるように流量を調節しながら、連続的に貯槽または不活性化を実施する容器内に導入することが好ましい。
 本発明においては、前述の水分および不活性油のいずれか一方または両方が、界面活性剤を含むものであることが好ましく、少なくとも水分が界面活性剤を含むものであることがより好ましい。界面活性剤は、水と不活性油との親和性を高めることができるものであれば特に限定されない。界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤などを挙げることができる。
 ノニオン性界面活性剤としては、ポリオキシアルキレンアルキル(C11-15)エーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンベンジルフェニルエーテル、ポリオキシエチレンモノスチリルフェニルエーテル、ポリオキシエチレンジスチリルフェニルエーテル、ポリオキシエチレントリスチリルフェニルエーテルなどのポリオキシエチレンアリールエーテル、ショ糖脂肪酸エステル、ポリオキシエチレンショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンアルキレングリコール、ポリオキシエチレン・ポリオキシプロピレンブロックポリマーなどが挙げられる。
 アニオン性界面活性剤としては、アルキルアリールスルホン酸ナトリウム、アルキルアリールスルホン酸カルシウム、アルキルアリールスルホン酸アンモニウムなどのアルキルアリールスルホン酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテルリン酸塩、ドデシル硫酸ナトリウムなどのアルキル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルエーテルリン酸塩、ジアルキルスルホコハク酸塩、アルキルナフタレンスルホン酸ナトリウムなどのアルキルナフタレンスルホン酸塩、ナフタレンスルホン酸塩のホルムアルデヒド重縮合物、リグニンスルホン酸塩、ポリカルボン酸塩などが挙げられる。
 カチオン性界面活性剤としては、アルキル第4級アンモニウム塩、アルキルアミン塩、アルキルピリジニウム塩などを挙げることができる。
 両性界面活性剤としては、アルキルベタイン、アミンオキサイド、アルキルアミノ酸塩などを挙げることができる。
 これらの界面活性剤は、1種単独で若しくは2種以上を組み合わせて用いることができる。これらのうち、アニオン性界面活性剤、またはノニオン性界面活性剤が好ましい。
 界面活性剤の含有量は水と不活性油との親和性を高めることができる範囲であれば特に限定されない。例えば、界面活性剤は、水分の質量に対して、好ましくは0.01~20質量%、より好ましくは1~10質量%、より更に好ましくは5~10質量%を含有させることができる。例えば、界面活性剤は、不活性油の質量に対して、好ましくは0.01~20質量%、より好ましくは1~10質量%を含有させることができる。
 水分(H2O)とNaとの反応によって苛性ソーダ(NaOH)と水素が生成する。水素ガス濃度を測定して、時間あたりの水素生成量を算出することができる。例えば、貯槽の排気ラインにて水素ガス濃度を測定することができる。時間あたりの水素生成量から反応の進行状況を把握することができる。安全性向上のため、時間あたりの水素生成量が多い場合は、時間あたりの水分の添加量を減らすことが好ましい。具体的には、水素ガス濃度が4vol%未満となるように、排気中の水素ガス濃度をモニターしながら、時間あたりの水分添加量を調整することが好ましい。例えば、時間あたりの水分添加量は、Na1モルに対して、10~100ml/時程度、より好ましくは15~90ml/時程度、更に好ましくは35~70ml/時程度の範囲で、水素ガス濃度に基づき適宜設定されることが好ましい。
 一方、生成した苛性ソーダは、金属ナトリウムの不活化を完了した後に、水(液体)などで洗い流すことができる。また、不純物に由来してスラッジなどが生成することがある。スラッジなどの固形分は水や油などにて洗い流すことができる。
 本発明の第二の実施態様に係る金属ナトリウムが付着した貯槽の洗浄方法は、金属ナトリウムが付着した貯槽に不活性油を入れ、次いで、水分を添加して金属ナトリウムを苛性ソーダに転化させることを有するものである。
 以下に、本実施態様に係る洗浄方法の具体例について説明するが、前記第一の実施態様の不活化方法と同じ構成についてはその説明を省略することがある。
(実施形態1)
 前記洗浄方法の一実施形態においては、先ず、貯槽の状態を点検する。貯槽としては、例えば、金属ナトリウム分散体貯槽が挙げられる。貯槽の内面は監視カメラなどにて金属ナトリウムの付着状況を調査する。また、貯槽に金属ナトリウム分散体を系外に排出するための管が在るか否かを点検する。排出のための管が無い場合は抜出管を貯槽に仮設する。金属ナトリウムを苛性ソーダに転化させる際に水素ガスが発生するので、貯槽に水素ガスを逃がすための排気ラインが在るか否かを点検する。排気ラインが無い場合は貯槽に排気ラインを仮設する。排気ラインにはデミスタや水洗塔を設けることが好ましい。不活性油ミストには金属ナトリウム粒子が含まれていることがあるので、不活性油ミストを水と接触させて、含まれている金属ナトリウムを不活化することが好ましい。また、水素の逆流を防止するための仕組みを排気ラインに設けることが好ましい。逆流防止の仕組みとして、例えば、シールポットが挙げられる。安全性向上のために、排気口に、窒素や水蒸気の導入装置、フレームアレスターなどの各種安全装置を設けることが好ましい。
 金属ナトリウム分散体が多量に貯槽内に残っている場合はそれを抜き出して貯槽を空にすることができる。金属ナトリウム分散体の抜き出しは、ポンプを用いて行うこともできるし、貯槽に不活性ガスなどを送り圧力を掛けて行うこともできる。不活性ガスとして窒素ガス、アルゴンガス等が好ましい。
 デッドスペースなどのために、貯槽から金属ナトリウム分散体をすべて完全に抜き出すことができないことがある。しかし、デッドスペースに残っている金属ナトリウム分散体の量が少ない場合は、貯槽は空になったとみなすことができる。
 本発明においては、空になった貯槽に不活性油を入れる。貯槽に不活性油を入れることによって、少量で残っていた金属ナトリウム分散体を洗い出すことができる。
 次に、水分を添加する。水分の添加は不活性ガス雰囲気下で不活性油を撹拌しながら行うことが好ましい。不活性ガスとしては、窒素ガス、アルゴンガスなどが挙げられる。撹拌は攪拌機で行ってもよいし、水蒸気または加湿不活性ガスの吹き込みによるバブリングで行ってもよい。貯槽に付着していた金属ナトリウムおよび少量残留していた金属ナトリウム分散体中の金属ナトリウムはH2Oと反応して苛性ソーダに転化し、不活化させることができる。反応の進行状態は、水素ガス濃度を測定することによって把握することができる。例えば、貯槽の排気ラインにて水素ガス濃度を測定することができる。急激な水素ガス濃度の上昇は安全性向上の観点から避けることが好ましい。空気中の水素爆発限界濃度は4vol%~75vol%である。そこで、貯槽に排気ラインを設け、該排気ラインの水素ガス濃度を測定し、測定された水素ガス濃度に基づいて、時間あたりの水分添加量を調整することが好ましく、前記第一の実施態様に記載のように、時間あたりの水分添加量を調整することがより好ましい。また、不活性油の温度を0℃~98℃、より好ましくは0~60℃、より更に好ましくは0~40℃に調整することが好ましい。
 その後、貯槽から水および苛性ソーダを含む不活性油を抜き出す。抜き出しは、例えば、予備ノズル閉止フランジあるいはサイトグラスを通してポンプ等で行うことができる。
 次に、不活性油を抜き出した後、貯槽の内壁面に、必要に応じて、水を吹き付けることができる。水によって微量に残る金属ナトリウムを不活化することができる。また不活化で生じた苛性ソーダを水に溶出させ洗い流すことができる。なお、水の吹き付けに替えて、水を貯槽に充溢させてもよい。
 そして、貯槽の内面に残る水、苛性ソーダおよび油分を拭き取ることができる。拭き取りは、例えば、先ず貯槽内の酸素濃度を測定して安全を確認後に、必要に応じて槽内に足場を設置し、人が貯槽に入って行う。
 以上の洗浄方法によれば、貯槽内に在る金属ナトリウムの量が不明であっても、貯槽を切断分解することなく、付着した金属ナトリウムを、安全に、確実に取り除くことができる。
(実施形態2)
 デッドスペースに残っている金属ナトリウム分散体の量が多い場合は、貯槽を空にするために、以下の操作を行うことができる。
 新しい不活性油を貯槽に充溢させ、デッドスペースなどに残留する金属ナトリウム分散体を不活性油で洗い出す。そして、洗い出された金属ナトリウム分散体を貯槽から抜き出す。洗い出された金属ナトリウム分散体を含む不活性油の抜き出しは、貯槽に不活性ガスなどを送り圧力を掛けて行うことができる。なお、抜き出された金属ナトリウム分散体中の金属ナトリウム濃度を測定し、所定値よりも高い場合は不活性油による洗い出しおよび抜き出しを繰り返すことができる。不活性油の温度は、0℃~98℃であることが好ましく、0~60℃であることがより好ましく、0~40℃であることがより更に好ましい。
 抜き出された金属ナトリウム分散体中の金属ナトリウム濃度が所定値を下回った場合は、貯槽は空になったとみなすことができる。空になった貯槽は、実施形態1と同じ方法で処理することができる。具体的には、不活性油を空の貯槽に充溢させ、次いで、水分を不活性油に添加して金属ナトリウムを苛性ソーダに転化させ、貯槽から水および苛性ソーダを含む不活性油を抜き出し、必要に応じて貯槽内面に水を吹き付け、さらに貯槽内面に残る水、苛性ソーダおよび油分を拭き取ることができる。
(実施形態3)
 貯槽に付着していた金属ナトリウムが塊りになっている場合は、効果的な不活化のために、以下の操作を行うことができる。
 まず、貯槽を他の設備から取り外す。取り外しは閉止フランジなどを管に挿入することなどによって行うことができる。配管内や接続フランジの隙間等に残る金属ナトリウム分散体が、フランジボルトを緩めた時に、垂れてくることがあるので、金属製容器等をフランジの下に置き、金属ナトリウム分散体を受けるようにすることが好ましい。受けた金属ナトリウム分散体はメタノールなどで不活化することができる。貯槽の内圧を大気圧まで下げ、予備ノズル閉止フランジあるいはサイトグラスを開放する。内視鏡などで内部を観察し、金属ナトリウム分散体の付着状況を点検する。
 貯槽に不活性油を槽内底面が隠れるまで注入する。予備ノズル閉止フランジあるいはサイトグラスから金属製の冶具を入れ、槽内面に付着している金属ナトリウムの塊りを掻き落とす。なお、掻き落とされた金属ナトリウムの塊りは不活性油に落とし入れる。不活性油の温度は、0℃~98℃であることが好ましく、0~60℃であることがより好ましく、0~40℃であることがより更に好ましい。
 掻き落とし作業完了後、取り外した予備ノズル閉止フランジあるいはサイトグラスを復旧する。貯槽に不活性ガスを流入させ、不活性ガス雰囲気にする。掻き落とされた金属ナトリウムの塊りの不活化は、実施形態1に記載した貯槽内面に付着している金属ナトリウムの不活化と同時並行して行うことができる。具体的には、不活性油を空の貯槽に充溢させ、次いで、水分を不活性油に添加して金属ナトリウム(掻き落とされた金属ナトリウムの塊りも含む。)を苛性ソーダに転化させ、貯槽から水および苛性ソーダを含む不活性油を抜き出し、必要に応じて貯槽内面に水を吹き付け、さらに貯槽内面に残る水、苛性ソーダおよび油分を拭き取ることができる。
(実施形態4)
 掻き落とされた金属ナトリウムの塊りの不活化は、実施形態1に記載した貯槽内面に付着している金属ナトリウムの不活化に先立って行うこともできる。
 例えば、実施形態3に記載された方法で掻き落とされた金属ナトリウムを含む槽内底面が隠れる程度の量の不活性油を導入後、攪拌しながら、更に水分を添加することによって、掻き落とされた金属ナトリウムを不活性油中にてH2Oと反応させ、不活化することができる。該反応において、発生する水素ガス濃度を、第一の実施態様や実施形態1に記載したように、モニタリングしながら、添加する水分の量を調整することが好ましい。
 掻き落とされた金属ナトリウムの塊りの不活化が完了したのち、貯槽から不活化された金属ナトリウムを含む不活性油を抜き出してもよいし、そのままにしてもよい。該不活性油の抜き出しは、ポンプを用いて行うこともできるし、不活性ガスによる圧送で行うこともできる。
 次いで、実施形態1と同じ方法で処理することができる。具体的には、不活性油を空の貯槽に充溢させ、次いで、水分を不活性油に添加して金属ナトリウムを苛性ソーダに転化させ、貯槽から水および苛性ソーダを含む不活性油を抜き出し、必要に応じて貯槽内面に水を吹き付け、さらに貯槽内面に残る水、苛性ソーダおよび油分を拭き取ることができる。
(実施形態5)
 実施形態1において、水分の不活性油への添加に並行して、不活性油の液面レベルを変える操作を行うことが好ましい。不活性油の液面レベルを変えるために、不活性油を貯槽から徐々に抜き出したり、徐々に添加することができる。不活性油の液面レベルの変動度合いは、特に制限されないが、水分の添加積算量に比例させることが好ましい。不活性油の液面レベルの変動によって、付着していた金属ナトリムが露出したり沈没したりし、水分との接触状態が変わり、付着していた金属ナトリウムの不活化が進みやすくなることがある。不活性油の液面レベル低下で生じる気相には不活性ガスを送り込むことが好ましい。不活性ガスの送り込みによって、金属ナトリウムの苛性ソーダへの転化がより安全に実施される。
 本発明の第三の実施態様に係る金属ナトリウムが付着した装置の洗浄方法は、金属ナトリウムが付着した装置を不活性油に浸け、次いで、水分を添加して金属ナトリウムを苛性ソーダに転化させることを有するものである。
 以下に本実施態様の洗浄方法の具体例について説明するが、前記第一の実施態様に係る不活化方法と第二の実施態様に係る洗浄方法と同様の構成についてはその説明を省略することがある。
(実施形態6)
 本実施形態では、先ず、ニーダー、ポンプ、配管などの装置の状態を点検する。そして、該装置を製造ラインから切り離す。切り離した装置に付着する金属ナトリウムの状況を調査する。切り離すときに装置または配管から金属ナトリウム分散体が垂れ落ちることがあるので、受け皿などで受け取るようにする。
 切り離された装置を不活性油に浸ける。不活性油への浸漬にはタンクなどの容器が用いられる。装置を容器に収納する前に容器に不活性油を溜めておいてもよいし、装置を容器に収納した後に不活性油を容器に溜めてもよい。不活性油は装置が浸かる程度であればその量に制限はない。水分を添加する方法等の金属ナトリウムを洗浄する残りの工程は、例えば、前述の第一または第二の実施態様に記載の方法で行うことができる。
(実施例1)
 密閉可能な100ml容器に温度19℃の不活性油を満たし入れ、これに大きさ6mm×6mm×6mmの金属ナトリウム片を4つ入れた。容器を密閉し、該容器に窒素ガスを40ml/分で供給しながら、撹拌子で容器内の不活性油を撹拌した。これに水を0.6ml/時で1時間、1.2ml/時で0.5時間、2.4ml/時で1.3時間、合計で4.3mlを添加した。添加した水は不活性油中に水滴の状態で存在した。大きな水滴と金属ナトリウムとが間欠的に接触することがあるので、失活反応が急激で間欠的に進行することがあった。水の添加終了時に、入れた金属ナトリウムのすべてが失活していた。生成する水素ガスの濃度が激しく変動することがあるので、水の添加量を適宜制御することが好ましい。
(実施例2)
 5%ドデシル硫酸ナトリウム水溶液(クエンチ剤A)を用意した。密閉可能な100ml容器に温度17℃の不活性油を満たし入れ、これに大きさ6mm×6mm×6mmの金属ナトリウム片を4つ入れた。容器を密閉し、該容器に窒素ガスを40ml/分で供給しながら、撹拌子で容器内の不活性油を撹拌した。これにクエンチ剤Aを0.6ml/時で1時間、1.2ml/時で0.5時間、2.4ml/時で1.5時間、合計で4.8mlを添加した。添加したクエンチ剤Aは不活性油中で乳化しミセルの状態で存在した。ミセルと金属ナトリウムとが間断なく接触するので、失活反応は温和で連続的に進行した。クエンチ剤Aの添加終了時に、入れた金属ナトリウムのうち約2/3が失活していた。生成する水素ガスの濃度がクエンチ剤Aの添加量に対応して徐々に変化するので、クエンチ剤Aの添加量の制御を水素ガス濃度の検出で容易に行うことができる。
(実施例3)
 10%ポリオキシアルキレンアルキル(C11-15)エーテル水溶液(クエンチ剤B)を用意した。密閉可能な100ml容器に温度21℃の不活性油を満たし入れ、これに大きさ6mm×6mm×6mmの金属ナトリウム片を4つ入れた。容器を密閉し、該容器に窒素ガスを40ml/分で供給しながら、撹拌子で容器内の不活性油を撹拌した。これにクエンチ剤Bを0.6ml/時で1時間、1.2ml/時で0.5時間、2.4ml/時で1.3時間、合計で4.3mlを添加した。添加したクエンチ剤Bは不活性油中で乳化しミセルの状態で存在した。ミセルと金属ナトリウムとが間断なく接触するので、失活反応は温和で連続的に進行した。クエンチ剤Bの添加終了時に、入れた金属ナトリウムのうち約2/3が失活していた。生成する水素ガスの濃度がクエンチ剤Bの添加量に対応して徐々に変化するので、クエンチ剤Bの添加量の制御を水素ガス濃度の検出で容易に行うことができる。
 本発明は前記のような実施形態に代表されるものであるが、本発明は前記実施形態によって限定されるものではなく、本発明の趣旨に適合し得る範囲で適宜に変更を加えて実施することが勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 本発明の金属ナトリウムの不活化方法によれば、金属ナトリウムを、工業的に安全に不活化することができる。
 本発明の洗浄方法によれば、貯槽や装置内に付着する金属ナトリウムの量が不明であっても、貯槽を移動させずに、貯槽が設置されている箇所にて、安全に貯槽を洗浄することができる。更に、内面に付着し、固まりとなった金属ナトリウムであっても、段階的に失活させ、安全に取り除くことができる。本発明の不活化方法および洗浄方法は、実験室レベルの小規模なものから工場レベルの大規模なものまでの幅広いものに適用できる。

Claims (11)

  1.  金属ナトリウムを不活性油に浸け、
     次いで、該不活性油に水分を添加して金属ナトリウムを苛性ソーダに転化させることを有する、
     金属ナトリウムの不活化方法。
  2.  水分の添加に並行して、不活性油の液面レベルを変えることをさらに有する、
     請求項1に記載の不活化方法。
  3.  不活性油の温度を0℃~98℃に調整することをさらに有する、請求項1または2に記載の不活化方法。
  4.  水分および不活性油のいずれか一方または両方が界面活性剤を含むものである、請求項1~3のいずれかひとつに記載の不活化方法。
  5.  金属ナトリウムが付着した装置を不活性油に浸け、
     次いで、該不活性油に水分を添加して金属ナトリウムを苛性ソーダに転化させることを有する、
     金属ナトリウムが付着した装置の洗浄方法。
  6.  金属ナトリウムが付着した貯槽に不活性油を入れ、
     次いで、該不活性油に水分を添加して金属ナトリウムを苛性ソーダに転化させることを有する、
     金属ナトリウムが付着した貯槽の洗浄方法。
  7.  付着した金属ナトリウムを不活性油に掻き落とすことをさらに有する、請求項5または6に記載の洗浄方法。
  8.  水素ガス濃度を測定し、測定された水素ガス濃度に基いて、時間あたりの水分の添加量を調整する、請求項5~7のいずれかひとつに記載の洗浄方法。
  9.  水分の添加に並行して、不活性油の液面レベルを変えることをさらに有する、
     請求項5~8のいずれかひとつに記載の洗浄方法。
  10.  不活性油の温度を0℃~98℃に調整することをさらに有する、請求項5~9のいずれかひとつに記載の洗浄方法。
  11.  水分および不活性油のいずれか一方または両方が界面活性剤を含むものである、請求項5~10のいずれかひとつに記載の洗浄方法。
PCT/JP2015/065639 2014-06-04 2015-05-29 金属ナトリウムの不活化方法 WO2015186637A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016525147A JP6286727B2 (ja) 2014-06-04 2015-05-29 金属ナトリウムの不活化方法
US15/313,667 US20170209905A1 (en) 2014-06-04 2015-05-29 Method for inactivating sodium metal
CN201580027197.0A CN106413924B (zh) 2014-06-04 2015-05-29 金属钠的钝化方法
EP15802358.0A EP3153244A4 (en) 2014-06-04 2015-05-29 Method for inactivating sodium metal

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014115803 2014-06-04
JP2014-115803 2014-06-04
JP2015081912 2015-04-13
JP2015-081912 2015-04-13

Publications (1)

Publication Number Publication Date
WO2015186637A1 true WO2015186637A1 (ja) 2015-12-10

Family

ID=54766710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065639 WO2015186637A1 (ja) 2014-06-04 2015-05-29 金属ナトリウムの不活化方法

Country Status (5)

Country Link
US (1) US20170209905A1 (ja)
EP (1) EP3153244A4 (ja)
JP (1) JP6286727B2 (ja)
CN (1) CN106413924B (ja)
WO (1) WO2015186637A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019122933A (ja) * 2018-01-18 2019-07-25 日本曹達株式会社 金属ナトリウムが内面に付着したタンクの洗浄方法
JP2020010999A (ja) * 2018-07-20 2020-01-23 日本曹達株式会社 金属ナトリウムの不活化方法
JP2021515103A (ja) * 2018-03-01 2021-06-17 ハイドロ−ケベック アルカリ金属およびアルカリ土類金属に対する抑制剤
JP7498251B1 (ja) 2022-11-29 2024-06-11 新菱冷熱工業株式会社 ナトリウムの安定化処理方法及びそのシステム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108060434B (zh) * 2017-08-02 2023-10-27 中盐内蒙古化工钠业有限公司 金属钠出钠刮刀转移保护罩
CN111330906B (zh) * 2020-04-13 2021-06-29 中国原子能科学研究院 清洗工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133187A (ja) * 1997-10-30 1999-05-21 Fuji Electric Co Ltd 高速炉金属ナトリウムの廃棄処理装置
JP2000246002A (ja) * 1999-02-25 2000-09-12 Shinko Pantec Co Ltd 有機ハロゲン化合物で汚染された固形物の浄化方法とその装置
JP2001234208A (ja) * 2000-02-23 2001-08-28 Tosoh Corp カルシウム含有金属ナトリウム分散体の製造方法
JP2001294539A (ja) * 2000-04-13 2001-10-23 Tosoh Corp 有機ハロゲン化合物の脱ハロゲン化処理法
JP2002097159A (ja) * 2000-09-21 2002-04-02 Nuclear Fuel Ind Ltd Pcb処理法
JP2004095602A (ja) * 2002-08-29 2004-03-25 Kobelco Eco-Solutions Co Ltd 有機ハロゲン化合物で汚染された安定器、低圧トランス・コンデンサ等の機器類の処理方法とその装置
JP2006273802A (ja) * 2005-03-30 2006-10-12 Nippon Soda Co Ltd 残存アルカリ金属の不活性化処理方法
JP2007254870A (ja) * 2006-03-24 2007-10-04 Kobelco Eco-Solutions Co Ltd ナトリウム使用設備の洗浄方法と該洗浄を実施してナトリウム分散体を製造するナトリウム分散体製造方法
JP2011255010A (ja) * 2010-06-09 2011-12-22 Chugoku Electric Power Co Inc:The Pcb混入絶縁油の無害化処理方法及び貯蔵方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770252A (en) * 1970-06-19 1973-11-06 Snam Progetti Apparatus for treating viscous liquids
JPS49119467A (ja) * 1973-03-19 1974-11-14
JP2003121593A (ja) * 2001-10-11 2003-04-23 Toshiba Corp 金属ナトリウムの洗浄方法および装置
US6919061B1 (en) * 2002-05-22 2005-07-19 The United States Of America As Represented By The United States Department Of Energy In-situ method for treating residual sodium
KR101237327B1 (ko) * 2007-05-11 2013-02-28 엠 히카리 앤 에너지 레보레토리 컴퍼니 리미티드 온 사이트 통합 생산 공장
KR101277972B1 (ko) * 2008-05-20 2013-06-27 닛뽕소다 가부시키가이샤 폴리실란 화합물의 제조 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133187A (ja) * 1997-10-30 1999-05-21 Fuji Electric Co Ltd 高速炉金属ナトリウムの廃棄処理装置
JP2000246002A (ja) * 1999-02-25 2000-09-12 Shinko Pantec Co Ltd 有機ハロゲン化合物で汚染された固形物の浄化方法とその装置
JP2001234208A (ja) * 2000-02-23 2001-08-28 Tosoh Corp カルシウム含有金属ナトリウム分散体の製造方法
JP2001294539A (ja) * 2000-04-13 2001-10-23 Tosoh Corp 有機ハロゲン化合物の脱ハロゲン化処理法
JP2002097159A (ja) * 2000-09-21 2002-04-02 Nuclear Fuel Ind Ltd Pcb処理法
JP2004095602A (ja) * 2002-08-29 2004-03-25 Kobelco Eco-Solutions Co Ltd 有機ハロゲン化合物で汚染された安定器、低圧トランス・コンデンサ等の機器類の処理方法とその装置
JP2006273802A (ja) * 2005-03-30 2006-10-12 Nippon Soda Co Ltd 残存アルカリ金属の不活性化処理方法
JP2007254870A (ja) * 2006-03-24 2007-10-04 Kobelco Eco-Solutions Co Ltd ナトリウム使用設備の洗浄方法と該洗浄を実施してナトリウム分散体を製造するナトリウム分散体製造方法
JP2011255010A (ja) * 2010-06-09 2011-12-22 Chugoku Electric Power Co Inc:The Pcb混入絶縁油の無害化処理方法及び貯蔵方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3153244A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019122933A (ja) * 2018-01-18 2019-07-25 日本曹達株式会社 金属ナトリウムが内面に付着したタンクの洗浄方法
JP7008512B2 (ja) 2018-01-18 2022-01-25 日本曹達株式会社 金属ナトリウムが内面に付着したタンクの洗浄方法
JP2021515103A (ja) * 2018-03-01 2021-06-17 ハイドロ−ケベック アルカリ金属およびアルカリ土類金属に対する抑制剤
US11873430B2 (en) 2018-03-01 2024-01-16 HYDRO-QUéBEC Inhibitor for alkali and alkaline earth metals
JP2020010999A (ja) * 2018-07-20 2020-01-23 日本曹達株式会社 金属ナトリウムの不活化方法
JP7179518B2 (ja) 2018-07-20 2022-11-29 日本曹達株式会社 金属ナトリウムの不活化方法
JP7498251B1 (ja) 2022-11-29 2024-06-11 新菱冷熱工業株式会社 ナトリウムの安定化処理方法及びそのシステム

Also Published As

Publication number Publication date
EP3153244A1 (en) 2017-04-12
JPWO2015186637A1 (ja) 2017-04-20
EP3153244A4 (en) 2017-12-27
CN106413924A (zh) 2017-02-15
US20170209905A1 (en) 2017-07-27
JP6286727B2 (ja) 2018-03-07
CN106413924B (zh) 2019-01-22

Similar Documents

Publication Publication Date Title
JP6286727B2 (ja) 金属ナトリウムの不活化方法
JP5214841B2 (ja) 表面汚染除去のための組成物、気泡および方法
EP3328562B1 (en) Clean-place method and system and composition for the same
CN104877811A (zh) 清洗剂组合物原液、清洗剂组合物、清洗方法以及用途
JP3998815B2 (ja) 石油精製プラントの修理方法
KR100507598B1 (ko) 습식배기가스처리장치내의 스케일생성방지방법
KR101425608B1 (ko) 상온에서 적용 가능한 상온탈지제 및 이를 이용한 탈지방법
JP2017189731A (ja) 粉体取扱装置の粉体付着防止方法及び粉体取扱装置
CN101622099A (zh) 金属制构件的焊接部的表面处理方法
CN104498950B (zh) 一种高选择性钛层腐蚀液组合物
JP7008512B2 (ja) 金属ナトリウムが内面に付着したタンクの洗浄方法
JP5769112B2 (ja) 気体分離方法及び装置そして気体処理方法及び装置
JP2008043923A (ja) 反応装置及び反応生成物の製造方法
CN104651866A (zh) 金属零件的除油方法
JP2003121593A (ja) 金属ナトリウムの洗浄方法および装置
JP2010028022A (ja) 添加剤溶解装置
JP7179518B2 (ja) 金属ナトリウムの不活化方法
CN115362034A (zh) 去除烃设备中爆炸性气体和有毒气体并清洁金属表面的方法
RU2200637C2 (ru) Способ очистки поверхности от углеводородных загрязнений
CN106513375A (zh) 清洗装置、清洗待清洗工件的方法以及清洗ic衬底传送滚轮的清洗液及方法
RU2205709C2 (ru) Способ подготовки газовых цистерн к ремонту и/или техническому освидетельствованию и устройство для его реализации
JP2011184714A (ja) 防錆膜形成方法
JP2009024250A (ja) 鉄系装置乃至鉄系装置部材の洗浄方法及び錆落とし洗浄剤
CN201375944Y (zh) 随动喷雾装置
JP2002343760A (ja) 有機高分子物質の除去装置および除去方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15802358

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016525147

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015802358

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15313667

Country of ref document: US

Ref document number: 2015802358

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE