WO2015186591A1 - カルス誘導剤及びカルス誘導方法 - Google Patents

カルス誘導剤及びカルス誘導方法 Download PDF

Info

Publication number
WO2015186591A1
WO2015186591A1 PCT/JP2015/065332 JP2015065332W WO2015186591A1 WO 2015186591 A1 WO2015186591 A1 WO 2015186591A1 JP 2015065332 W JP2015065332 W JP 2015065332W WO 2015186591 A1 WO2015186591 A1 WO 2015186591A1
Authority
WO
WIPO (PCT)
Prior art keywords
callus
group
formula
plant
salt
Prior art date
Application number
PCT/JP2015/065332
Other languages
English (en)
French (fr)
Inventor
雄司 中野
忠男 浅見
あゆみ 山上
長田 裕之
美沙都 大谷
拓 出村
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Priority to JP2016525126A priority Critical patent/JP6536836B2/ja
Priority to US15/315,886 priority patent/US10676711B2/en
Priority to EP15803135.1A priority patent/EP3153014B1/en
Publication of WO2015186591A1 publication Critical patent/WO2015186591A1/ja
Priority to US16/860,597 priority patent/US11345885B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/002Culture media for tissue culture
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/005Methods for micropropagation; Vegetative plant propagation using cell or tissue culture techniques
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N39/00Biocides, pest repellants or attractants, or plant growth regulators containing aryloxy- or arylthio-aliphatic or cycloaliphatic compounds, containing the group or, e.g. phenoxyethylamine, phenylthio-acetonitrile, phenoxyacetone
    • A01N39/02Aryloxy-carboxylic acids; Derivatives thereof
    • A01N39/04Aryloxy-acetic acids; Derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/601,4-Diazines; Hydrogenated 1,4-diazines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • C12N5/0025Culture media for plant cell or plant tissue culture

Definitions

  • the present invention relates to a callus inducer and a callus induction method.
  • Plants have totipotency, can form callus from highly differentiated somatic cells, and if cultured under certain conditions, callus can undergo plant differentiation through somatic embryos, adventitious buds and adventitious root differentiation. Can be played.
  • the callus culture is 1) has infinite growth ability, 2) can be differentiated from a cell mass of callus into various tissues and individuals, 3) uniform and large number of proliferating cells that are difficult to obtain in plants 4) It is suitable as an experimental material with no seasonal variation in cell quality and quantity. 5)
  • the effects of substances added to the medium can be directly seen on the plant. It is excellent in that it is easily induced and can be used for breeding. Therefore, callus culture is widely used for production of useful substances, development of new varieties, gene transfer into plant bodies and regeneration of transformants, production of artificial seeds, and the like.
  • Non-patent Document 1 Callus is usually produced by a method of culturing a plant tissue section on a medium containing plant hormones auxin and cytokinin. This method has been established over 30 years ago and is now an indispensable technique for the production of genetically modified crops. On the other hand, since the types and concentration ratios of auxin and cytokinin used differ depending on the plant species, it has been difficult to find appropriate callus formation conditions.
  • 2,4-Dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid are known as synthetic auxins, and their analog 4-chlorophenoxyacetic acid has been investigated from the explant placement in Saint Paulia leaf tissue culture. It has been reported that the days required for callus formation, adventitious shoots and adventitious root formation were shortened by specific concentration treatment (Non-patent Document 2). However, it cannot be said that the efficiency of callusification is high, and plant species that can be callusified are limited.
  • Patent Document 1 discloses N-methyl-N′-phenylacetylpiperazine, N-benzyl-N′-benzoylpiperazine, and the like for a color developing system in a two-color thermosensitive recording material. It is described that it is useful as a decoloring agent.
  • Patent Document 2 describes that a piperazine derivative having a substituent other than the 1-position and 4-position of the piperazine ring is useful as an anti-inflammatory agent.
  • fipexide 1-[(p-chlorophenoxy) acetyl) -4-piperonylpiperazine, 1- (4-chlorophenoxyacetyl) -4- (1,3-benzodioxole) -5-ylmethyl) piperazine
  • an antidepressant 1-[(p-chlorophenoxy) acetyl) -4-piperonylpiperazine, 1- (4-chlorophenoxyacetyl) -4- (1,3-benzodioxole) -5-ylmethyl) piperazine
  • 1-piperonylpiperazine (1- (3,4-methylenedioxybenzyl) piperazine) and a number of its 1-substituted piperazine derivatives are commercially available for the purpose of producing raw materials.
  • An object of the present invention is to provide a callus inducer having a basic structure different from that of a conventional callus inducer, and a callus induction method using the callus inducer.
  • the gist of the present invention is as follows.
  • Ar 1 is at least a phenyl group substituted with at least one substituent selected from a C 1-6 -alkoxy group and a substituted or unsubstituted methylenedioxy group
  • Ar 2 is a phenyl group substituted with 1 to 3 halogen atoms
  • R 1 and R 2 are each a hydrogen atom, a substituted or unsubstituted C 1-3 -alkyl group, a cyano group, or a carboxyl group
  • R 1 and R 2 may together represent an oxo group
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each a hydrogen atom or a methyl group
  • R 3 and R 4 , R 5 and R 6 , R 7 and R 8 , and / or R 9 and R 10 may jointly represent an oxo group.
  • a callus inducer comprising a compound represented by the formula:
  • the compound represented by the formula (I-1) or a salt thereof is 1-piperonylpiperazine or a salt thereof, and the compound represented by the formula (I-2) or a salt thereof is 4-chlorophenoxyacetic acid. Or the callus inducer as described in said (3) which is the salt.
  • a callus induction method comprising bringing a plant body, a plant cell, a plant tissue piece or a plant seed into contact with the callus inducer according to any one of (1) to (4) to induce callus formation.
  • Callus comprising bringing a plant body, plant cell, plant tissue piece or plant seed into contact with the callus inducer according to any one of (1) to (4) to induce callus formation and proliferate Manufacturing method.
  • a method for transforming a plant comprising the use of a medium containing a callus inducer according to any one of (1) to (4) as a callus induction medium in a method for transforming a plant by the Agrobacterium method .
  • the callus inducer of the present invention comprises a 1,4-disubstituted piperazine derivative or 1-substituted piperazine derivative having a basic structure different from that of conventional callus inducers as an active ingredient, and has a wide range of applicable plants. .
  • FIG. 1 shows the results of a callus-inducing activity test of fipexide (FPX) using Arabidopsis.
  • FIG. 2 shows the state of redifferentiation in the pipexide treatment (A) and non-treatment (B).
  • FIG. 3 shows the results of comparison of callus induction efficiency between fipoxide (FPX) and the conventional method (2,4-dichlorophenoxyacetic acid (2,4-D) / kinetine).
  • FIG. 1 shows the results of a callus-inducing activity test of fipexide (FPX) using Arabidopsis.
  • FIG. 2 shows the state of redifferentiation in the pipexide treatment (A) and non-treatment (B).
  • FIG. 3 shows the results of comparison of callus induction efficiency between fipoxide (FPX) and the conventional method (2,4-dichlorophenoxyacetic acid (2,4-D) / kinetine).
  • FIG. 1 shows the results of a callus-induc
  • FIG. 4 shows fipexide (FPX), 4-chlorophenoxyacetic acid single agent (CPA), 1-piperonylpiperazine (PPZ) single agent, and 4-chlorophenoxyacetic acid (CPA) and 1-piperonylpiperazine (PPZ)
  • derivation activity test by the process of combined use is shown.
  • FIG. 5 shows the results of a callus-inducing activity test for fipexide (FPX) using rice wild-type Nipponbare.
  • FIG. 6 shows the results of a callus-inducing activity test of fipexide (FPX) on soybean seeds (crane-child), tomato seeds (microtom), and cucumber seeds (summer suzumi).
  • FIG. 7 shows the results of a callus-inducing activity test of fipoxide (FPX) using wild type poplar.
  • FIG. 8 shows the result of plant transformation by the Agrobacterium method using callus induction by fipexide
  • the present invention relates to a specific substituted piperazine skeleton (piperazine skeleton in which one nitrogen atom is substituted with Ar 1 -C (R 1 ) (R 2 )-) and a benzene ring substituted with 1 to 3 halogen atoms.
  • piperazine skeleton in which one nitrogen atom is substituted with Ar 1 -C (R 1 ) (R 2 )-
  • a benzene ring substituted with 1 to 3 halogen atoms Using a compound having a phenoxyacetyl group (—CO—CH 2 —O—Ar 2 ) in the same molecule, or having the substituted piperazine skeleton and the substituted phenoxyacetyl group in separate molecules.
  • the present invention relates to a callus inducer and a callus induction method for inducing callus using a combination of various compounds.
  • Examples of the halogen atom as a substituent in the substituted phenyl group represented by Ar 2 in the formulas (I) and (I-2) include a fluorine atom, a chlorine atom, and an iodine atom.
  • Examples of the compound having a phenoxyacetyl group (—CO—CH 2 —O—Ar 2 ) in which the benzene ring is substituted with 1 to 3 halogen atoms include 2,4-dichlorophenoxyacetic acid, 2,4,5- There are trichlorophenoxyacetic acid and 4-chlorophenoxyacetic acid, which are known as synthetic auxins.
  • Examples of the C 1-6 -alkoxy group as a substituent in the substituted phenyl group represented by Ar 1 in the formulas (I) and (I-1) include a methoxy group, an ethoxy group, a propoxy group, and an isopropoxy group.
  • Examples of the substituted methylenedioxy group include a difluoromethylenedioxy group and a dichloromethylenedioxy group.
  • Examples of the substituted phenyl group represented by Ar 1 include a 3,4-methylenedioxyphenyl group (1,3-benzodioxol-5-yl group) and a 2,3-methylenedioxyphenyl group (1,1). 3-benzodioxol-4-yl group), 3,4- (difluoromethylenedioxy) phenyl group (2,2-difluoro-1,3-benzodioxol-5-yl group), 2,3 -(Difluoromethylenedioxy) phenyl group (2,2-difluoro-1,3-benzodioxol-4-yl group), 3,4-methylenedioxy-5-methoxyphenyl group (7-methoxy-1) , 3-benzodioxol-5-yl group), 3,4-dimethoxyphenyl group, 3,4,5-trimethoxyphenyl group, preferably 3,4-methylenedioxyphenyl group (1,3-benzodi
  • Examples of the substituted phenyl group represented by Ar 2 in the formulas (I) and (I-2) include a 4-chlorophenyl group, a 2,4-dichlorophenyl group, a 2,4,5-trichlorophenyl group, preferably 4 -Chlorophenyl group.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, and isopropyl group, these C 1
  • the -3 -alkyl group may be substituted with one or more substituents selected from an amino group, a hydroxyl group, a carboxyl group, a cyano group, a halogen atom (eg, a fluorine atom, a chlorine atom, an iodine atom), a nitro group, and the like.
  • R 1 and R 2 may together represent an oxo group.
  • R 1 and R 2 are preferably a hydrogen atom.
  • Examples of the C 1-7 -hydrocarbon group represented by R 11 in the formula (I-1) include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, C 1-5 -alkyl groups such as tert-butyl group, pentyl group and isopentyl group; C 2 ⁇ such as allyl group (2-propen-1-yl group) and 2-methyl-2-propen-1-yl group 5 -alkenyl group; C 2-5 -alkynyl group such as propargyl group (2-propyn-1-yl group); benzyl group, etc.
  • C 1-7 -hydrocarbon groups include amino group, hydroxyl group, It may be substituted with one or more substituents selected from a cyano group, a halogen atom (for example, fluorine atom, chlorine atom, iodine atom), methoxy group and the like.
  • substituents selected from a cyano group, a halogen atom (for example, fluorine atom, chlorine atom, iodine atom), methoxy group and the like.
  • the substituted phenyl group represented by Ar 1 is a 3,4-methylenedioxyphenyl group (1,3-benzodioxol-5-yl group), and Ar
  • the substituted phenyl group represented by 2 is a 4-chlorophenyl group, and R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are hydrogen atoms.
  • Fipexide is a commercially available compound that has few substituents and is known as an antidepressant, and is preferable in terms of availability.
  • the substituted phenyl group represented by Ar 1 is a 3,4-methylenedioxyphenyl group (1,3-benzodioxol-5-yl group).
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 are hydrogen atoms
  • 1-piperonylpiperazine has few substituents
  • a commercially available compound which is preferable in terms of availability.
  • Examples of the salt of the compound represented by the formula (I) or (I-1) include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydroiodic acid, nitric acid, pyrosulfuric acid, and metaphosphoric acid. Or citric acid, benzoic acid, acetic acid, propionic acid, fumaric acid, maleic acid, tartaric acid, succinic acid, sulfonic acid (for example, methanesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid), amino acid (for example, glutamic acid) And salts with organic acids such as
  • Examples of the salt of the compound represented by the formula (I-2) include alkali metal salts such as sodium salt and potassium salt, lysine salt, and arginine salt.
  • the compound represented by the formula (I) can be produced as follows according to a known method, for example, a method described in JP-T-2002-503239.
  • Ar 1 , Ar 2 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are as defined above, and X 1 and X 2 is a halogen atom (a chlorine atom, a bromine atom or an iodine atom).)
  • the compound represented by the formula (I-1a) corresponds to a compound in which R 11 is a hydrogen atom in the formula (I-1).
  • a commonly used technique such as column chromatography using silica gel or the like as a carrier or a recrystallization method using methanol, ethanol, chloroform, dimethyl sulfoxide, water or the like is used. You can do it.
  • the column chromatography elution solvent include methanol, ethanol, chloroform, acetone, hexane, dichloromethane, ethyl acetate, and mixed solvents thereof.
  • the plant to which the present invention is applied is a dicotyledonous plant such as Arabidopsis (Arabidopsis) plant, tree (eg, poplar, eucalyptus), rapeseed, tomato, tobacco, soybean, carrot, melon, apple, cassava, duckweed, striga, etc.
  • Monocotyledonous plants such as gramineous plants (eg, rice, wheat, barley, corn, brachypodium), liliaceous plants (eg, onion);
  • the plant, plant cell, plant tissue piece or plant seed placed on the medium may be any material as long as it can induce callus.
  • plant tissues include shoot tips, stems, leaves, shoots, germ cells, and roots. It is desirable that the plant body to be placed is sterilized with an aqueous sodium hypochlorite solution and the like to be sterilized, but this is not necessary when using a plant body grown by aseptic sowing.
  • the callus inducer of the present invention can contain known additives for pharmaceutical preparations in addition to the above active ingredients.
  • Known additives for pharmaceutical preparations include excipients, emulsifiers, wetting agents and the like.
  • the form of the callus inducer of the present invention is not particularly limited, and may be any form as long as it is a form that can be used in the art. For example, it can be in the form of an emulsion, liquid, oil, aqueous solution, wettable powder, flowable, powder, fine granule, granule, aerosol or paste.
  • the method of contacting the callus inducing method of the present invention with the callus inducing method of the present invention and the callus inducing method of the present invention is not particular limitation on the method of contacting the callus inducing method of the present invention with the callus inducing method of the present invention and the callus inducing method of the present invention, depending on the type of plant, the target organ, the dosage form of the callus inducing agent, etc. However, it is preferably performed by culturing a plant body or the like in a medium containing the callus inducer of the present invention.
  • the callus induction medium used is (i) a compound represented by the above formula (I) or a salt thereof, or (ii) a compound represented by the above formula (I-1) or a salt thereof, and the above formula (I-2). If the callus can be induced
  • the concentration of the compound represented by the formula (I) or a salt thereof in the medium is not particularly limited, but is usually 5 to 200 ⁇ M, preferably 15 to 60 ⁇ M.
  • a medium for the compound represented by the formula (I-1) or a salt thereof and the compound represented by the formula (I-2) or a salt thereof are used in combination, a medium for the compound represented by the formula (I-1) or a salt thereof
  • the concentration in the medium is not particularly limited, but is usually 0.01 to 100 ⁇ M, preferably 0.1 to 60 ⁇ M.
  • the concentration of the compound represented by the formula (I-2) or a salt thereof in the medium is not particularly limited. Usually, the concentration is 0.01 to 100 ⁇ M, preferably 0.1 to 60 ⁇ M.
  • Components other than the above compounds may be those commonly used for callus induction, such as sugars, gelling agents and inorganic salts. Moreover, you may add a plant hormone to a culture medium in the range which does not impair the effect of this invention.
  • Cultivation is preferably performed under aseptic conditions.
  • the culture temperature is preferably 20 to 25 ° C.
  • the light condition is preferably between constant light irradiation and constant dark conditions.
  • callus induction is observed 2 to 4 weeks after culture.
  • the fresh callus induction medium (agarose solid MS medium or liquid MS medium, each containing 0.9% sucrose) is used. Replace it.
  • auxin indoleacetic acid 0.15 mg / L
  • cytokinin N6-2-isopentenyladenine
  • MS medium agarose 0.9%
  • Callus is transplanted into sucrose (1.5%), and shoots (adventitious buds) are produced after about 2 to 4 weeks.
  • the callus obtained according to the present invention can also be used for production of genetically modified crops.
  • callus is prepared from cells infected with Agrobacterium, or Agrobacterium having a plasmid to be introduced into callus cells is infected with callus, and then the cells with the plasmid inserted into the chromosome are separated, When the plant is regenerated and regenerated, a genetically modified crop that stably inherits the transgene can be obtained.
  • Example 1 Fipexide activity test using Arabidopsis (1) Observation of morphology of Arabidopsis (Columbia) by treatment with fipexide Wild type seeds of Arabidopsis (Columbia) were added to a 1/2 MS medium supplemented with 0, 15, 30 or 45 ⁇ M of fipexide. The seeds were seeded and observed for morphology.
  • the roots were mainly callus at a low concentration of 15 ⁇ M, and the shoot apex portion was callusified at a high concentration of 45 ⁇ M (FIG. 1). Since the root callus formation was suppressed at high concentrations, the root was more sensitive to fipexide than the shoot apex, and cell division was thought to be inhibited.
  • FIG. 3 shows the state of hypocotyls cultured for 87 days under constant light irradiation conditions.
  • Fipexide is a compound in which 4-chlorophenoxyacetic acid and 1-piperonylpiperazine are amide-bonded, and is non- Enzymatic hydrolysis was expected. Therefore, a single agent treatment or a combination treatment with 4-chlorophenoxyacetic acid and 1-piperonylpiperazine was tried.
  • Arabidopsis (Columbia) embryos light-germinated on 1 / 2MS medium supplemented with 4-chlorophenoxyacetic acid and 1-piperonylpiperazine alone or simultaneously at 0, 5, 15, 30, 45 and 60 ⁇ M for 7 days The axis was cut and the morphology was observed.
  • Example 2 Fipexide activity test in other plants As in Arabidopsis germination conditions, as a result of culturing in a fipex medium under conditions using sterile seeds, rice germinating seeds, eucalyptus germinating seeds, soybean seeds (crane seeds), Callus induction was observed in tomato seeds (MicroTom) and cucumber seeds (Summer Suzumi).
  • FIG. 5 shows the state of seed germination on the 30th day of the rice wild-type Japanese sunny type. A form of callus was observed at a fipexide concentration of 45 ⁇ M.
  • FIG. 6 shows the results of a callus-inducing activity test of fipexide (FPX) on soybean seeds (Tsurunoko), tomato seeds (Microtom), and cucumber seeds (Summer Suzumi).
  • FPX fipexide
  • poplar stems and poplar roots were cultured in a fipexide medium. As a result, callus induction was observed in the poplar stems and poplar roots.
  • the induced callus was re-differentiated medium (MS medium (agarose 0.9%, sucrose 1.5 mg / L, auxin (indoleacetic acid), 0.5 mg / L cytokinin (N6-2-isopentenyladenine)). 5%), or 1/2 MS medium containing 0.1 mg / L of 3-indolebutyric acid (IBA), 0.2 mg / L of 6-benzylaminopurine (BAP) (Phytoagar (plant agarose) 0.9%, shoe When cultured in Claus 0.2%)), redifferentiation was observed.
  • MS medium agarose 0.9%, sucrose 1.5 mg / L, auxin (indoleacetic acid), 0.5 mg / L cytokinin (N6-2-isopentenyladenine)
  • MS medium containing 0.1 mg / L of 3-indolebutyric acid (IBA), 0.2 mg / L of 6-benzylaminopurine (BAP) (Phytoagar (plant agarose) 0.9%, shoe When
  • Poplar wild type sterile stem (not hypocotyl) and root organ organ section cut and 30 days after fipexide present in the middle of FIG. 7 and then 30 days after replacement with redifferentiation medium is shown in FIG. 7 right .
  • pH35GS including GATEWAY cassette (Kubo M. et al., Genes & Dev., 19, 1855-1860, 2005) (Implanter Innovations Co., Ltd., product code: IN3-VEC17)
  • GATEWAY cassette Zabo M. et al., Genes & Dev., 19, 1855-1860, 2005
  • product code: IN3-VEC17 product code: IN3-VEC17
  • a stem sample (5 mm long) was cut out from an aseptic cultured poplar (Populus tremula x tremuloides T89) young individual grown in a pot. 2. Co-cultured with Agrobacterium (3 days, dark, 22 ° C.). 3. After washing Agrobacterium, it was placed on MS1 medium or modified MS1 medium (containing 30 ⁇ M fipexide instead of 3-indolebutyric acid (IBA) and 6-benzylaminopurine (BAP)) and cultured at 25 ° C. 4). (In the fourth week, it was confirmed that callus was vigorous in modified MS1 medium containing fipoxide, whereas callus was not normally formed in MS1 medium.) 5.
  • IBA 3-indolebutyric acid
  • BAP 6-benzylaminopurine
  • MS1 medium composition (in 1 L) 4.4g Murashige & Skoog salt 20g sucrose 0.2mg BAP 0.1mg IBA 0.01mg TDZ (Thidiazuron) pH 5.6
  • Modified MS1 medium composition (in 1 L) 4.4g Murashige & Skoog salt 20 g sucrose 30 ⁇ M fipoxide pH 5.6
  • GUS substrate solution composition (in 1 L) 1 mM X-Gluc 50 mM PBS (pH 7.0) 0.1% Triton X-100 1 mM Potassium ferricyanide 1 mM Potassium ferrocyanide

Abstract

 本発明は、式(I):(式中、Arはアルコキシ及びメチレンジオキシから選ばれる基で置換されたフェニル;Arはハロゲンで置換されたフェニル;R及びRは水素、アルキル、シアノ又はカルボキシル;R及びRは共同してオキソを表してもよく;R~R10は水素又はメチル;RとR、RとR、RとR、及び/又はRとR10は共同してオキソを表してもよい。)で示される化合物、又はそのアミド結合の加水分解物を含有するカルス誘導剤、並びに前記カルス誘導剤を用いるカルス誘導方法及び植物の形質転換方法に関する。

Description

カルス誘導剤及びカルス誘導方法
 本発明は、カルス誘導剤及びカルス誘導方法に関する。
 植物は分化全能性を持ち、高度に分化した体細胞からカルスを形成させることができ、また、カルスを一定条件下で培養すれば、不定胚や不定芽及び不定根の分化を経て、植物個体を再生させることができる。カルス培養は、1)無限増殖能を有する、2)カルスの細胞塊から様々な組織や個体へ分化させることができる、3)植物体では得にくい増殖細胞が均一かつ多量に得られる、4)細胞の質や量に季節変動がなく実験材料として適している、5)培地に加えた物質の植物に対する影響を直接に見ることができる、6)植物によってはカルスを経ることにより遺伝子の変異が誘発されやすく育種などに利用できる等の点で優れている。そのため、カルス培養は、有用物質の生産、新品種の開発、植物体への遺伝子導入及び形質転換体の再生、人工種子の生産等に広く利用されている。
 カルスは、通常、植物ホルモンであるオーキシンとサイトカイニンを含む培地上で植物の組織切片を培養する方法で作製される(非特許文献1)。この方法は30年以上前に確立しており、現在は遺伝子組み換え作物の作製にも欠かすことのできない技術である。その一方で植物種によって使用するオーキシンとサイトカイニンの種類や濃度比が異なるため、適切なカルス化条件を見つけ出す困難さが課題となっていた。
 合成オーキシンとして2,4-ジクロロフェノキシ酢酸、2,4,5-トリクロロフェノキシ酢酸が知られ、またこれらの類縁体である4-クロロフェノキシ酢酸について、セントポーリアの葉組織培養における外植体の置床からカルス形成、不定苗条及び不定根の形成までに要した日数が特定の濃度処理により短縮されたことが報告されている(非特許文献2)。しかしながら、カルス化の効率が高いとはいえず、カルス化できる植物種も限られていた。
 一方、1,4-二置換ピペラジン誘導体としては、特許文献1には、N-メチル-N’-フェニルアセチルピペラジン、N-ベンジル-N’-ベンゾイルピペラジン等が2色感熱記録材料における発色系に対する消色剤として有用であることが記載されている。
 特許文献2には、ピペラジン環の1位及び4位以外にも置換基を有するピペラジン誘導体が抗炎症剤として有用であることが記載されている。
 また、1,4-二置換ピペラジン誘導体の1種であるフィペキシド(fipexide; 1-[(p-chlorophenoxy)acetyl]-4-piperonylpiperazine、1-(4-chlorophenoxyacetyl)-4-(1,3-benzodioxole-5-ylmethyl)piperazine)は抗うつ薬として知られている。
 更に、1-ピペロニルピペラジン(1-(3,4-メチレンジオキシベンジル)ピペラジン)及びその類縁体である多数の1-置換ピペラジン誘導体が製造原料等の目的で市販されている。
 しかしながら、1,4-二置換ピペラジン誘導体及び1-置換ピペラジン誘導体がカルスを誘導させる作用を有することはこれまで報告されていない。
特公平6-67668号公報 特表2002-503239号公報
Skoog, F., and Miller, C.O. (1957). Chemical regulation of growth and organ formation in plant tissue cultured in vitro. Symp. Soc. Exp. Biol. 54, 118-130. 箱崎 美義他、4-クロロフェノキシ酢酸がセントポーリアの葉外植片のカルス・不定苗条および不定根形式に及ぼす影響、明治大学科学技術研究所紀要 40, 1-7, 2001
 本発明は、従来のカルス誘導剤とは異なる基本構造を有するカルス誘導剤、及び当該カルス誘導剤を用いるカルス誘導方法を提供することを目的とする。
 本発明の要旨は以下のとおりである。
(1)次式(I):
Figure JPOXMLDOC01-appb-C000004
(式中、Arは、少なくとも、C1-6-アルコキシ基及び置換又は非置換のメチレンジオキシ基から選ばれる少なくとも1つの置換基で置換されたフェニル基であり;
Arは1~3個のハロゲン原子で置換されたフェニル基であり;
及びRは、それぞれ、水素原子、置換又は非置換のC1-3-アルキル基、シアノ基又はカルボキシル基であり;
及びRは、共同してオキソ基を表してもよく;
、R、R、R、R、R、R及びR10は、それぞれ、水素原子又はメチル基であり;
とR、RとR、RとR、及び/又はRとR10は、共同してオキソ基を表してもよい。)
で示される化合物又はその塩を含有するカルス誘導剤。
(2)前記式(I)で示される化合物又はその塩がフィペキシド又はその塩である前記(1)に記載のカルス誘導剤。
(3)次式(I-1):
Figure JPOXMLDOC01-appb-C000005
(式中、Ar、R、R、R、R、R、R、R、R、R及びR10は、前記(1)に記載の前記式(I)中の定義と同義であり、R11は水素原子、置換又は非置換のC1-7-炭化水素基又はアミジノ基である。)
で示される化合物又はその塩、及び次式(I-2):
Figure JPOXMLDOC01-appb-C000006
(式中、Arは、前記(1)に記載の前記式(I)中の定義と同義である。)
で示される化合物又はその塩を含有するカルス誘導剤。
(4)前記式(I-1)で示される化合物又はその塩が1-ピペロニルピペラジン又はその塩であり、前記式(I-2)で示される化合物又はその塩が4-クロロフェノキシ酢酸又はその塩である前記(3)に記載のカルス誘導剤。
(5)植物体、植物細胞、植物組織片又は植物種子を、前記(1)~(4)のいずれかに記載のカルス誘導剤と接触させ、カルス化を誘導することを含むカルス誘導方法。
(6)植物体、植物細胞、植物組織片又は植物種子を、前記(1)~(4)のいずれかに記載のカルス誘導剤と接触させ、カルス化を誘導し、増殖することを含むカルス作製方法。
(7)前記(6)に記載の方法で作製されるカルス。
(8)アグロバクテリウム法による植物の形質転換方法において、カルス誘導培地として前記(1)~(4)のいずれかに記載のカルス誘導剤を含有する培地を用いることを含む植物の形質転換方法。
 本発明のカルス誘導剤は、従来のカルス誘導剤とは異なる基本構造を有する1,4-二置換ピペラジン誘導体又は1-置換ピペラジン誘導体を有効成分とするものであり、適用できる植物の範囲が広い。
図1はアラビドプシスを用いたフィペキシド(FPX)のカルス誘導活性試験の結果を示す。 図2はフィペキシド処理(A)及び非処理(B)における再分化の状態を示す。 図3はフィペキシド(FPX)と従来法(2,4-ジクロロフェノキシ酢酸(2,4-D)/カイネチン)とのカルス誘導効率を比較した結果を示す。 図4はフィペキシド(FPX)、4-クロロフェノキシ酢酸単剤(CPA)、1-ピペロニルピペラジン(PPZ)単剤、及び4-クロロフェノキシ酢酸(CPA)と1-ピペロニルピペラジン(PPZ)の併用の処理によるカルス誘導活性試験の結果を示す。 図5はイネ野生型日本晴種を用いたフィペキシド(FPX)のカルス誘導活性試験の結果を示す。 図6はダイズ種子(鶴の子)、トマト種子(マイクロトム)及びキュウリ種子(夏すずみ)に対するフィペキシド(FPX)のカルス誘導活性試験の結果を示す。 図7はポプラ野生型を用いたフィペキシド(FPX)のカルス誘導活性試験の結果を示す。 図8はフィペキシドによるカルス誘導を利用したアグロバクテリウム法による植物の形質転換の結果を示す。
 以下、本発明を詳細に説明する。
 本発明は、特定の置換ピペラジン骨格(1つの窒素原子がAr-C(R)(R)-で置換されたピペラジン骨格)と、ベンゼン環が1~3個のハロゲン原子で置換されたフェノキシアセチル基(-CO-CH-O-Ar)を同一分子中に有する化合物を用いて、あるいは、前記置換ピペラジン骨格と、前記置換フェノキシアセチル基を、それぞれ別個の分子中に有する2種の化合物を併用して、カルスを誘導するためのカルス誘導剤及びカルス誘導方法に関するものである。
 前記置換ピペラジン骨格を有する化合物とカルス誘導との関係についてはこれまで報告されていない。
 前記式(I)及び(I-2)においてArで表される置換フェニル基における置換基としてのハロゲン原子としては、例えばフッ素原子、塩素原子、ヨウ素原子が挙げられる。
 ベンゼン環が1~3個のハロゲン原子で置換されたフェノキシアセチル基(-CO-CH-O-Ar)を有する化合物としては、例えば2,4-ジクロロフェノキシ酢酸、2,4,5-トリクロロフェノキシ酢酸、4-クロロフェノキシ酢酸があり、これらは合成オーキシンとして知られている。
 前記式(I)及び(I-1)においてArで表される置換フェニル基における置換基としてのC1-6-アルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基が挙げられ、置換メチレンジオキシ基としては、例えばジフルオロメチレンジオキシ基、ジクロロメチレンジオキシ基が挙げられる。
 Arで表される置換フェニル基としては、例えば3,4-メチレンジオキシフェニル基(1,3-ベンゾジオキソール-5-イル基)、2,3-メチレンジオキシフェニル基(1,3-ベンゾジオキソール-4-イル基)、3,4-(ジフルオロメチレンジオキシ)フェニル基(2,2-ジフルオロ-1,3-ベンゾジオキソール-5-イル基)、2,3-(ジフルオロメチレンジオキシ)フェニル基(2,2-ジフルオロ-1,3-ベンゾジオキソール-4-イル基)、3,4-メチレンジオキシ-5-メトキシフェニル基(7-メトキシ-1,3-ベンゾジオキソール-5-イル基)、3,4-ジメトキシフェニル基、3,4,5-トリメトキシフェニル基、好ましくは3,4-メチレンジオキシフェニル基(1,3-ベンゾジオキソール-5-イル基)が挙げられる。
 前記式(I)及び(I-2)においてArで表される置換フェニル基としては、例えば4-クロロフェニル基、2,4-ジクロロフェニル基、2,4,5-トリクロロフェニル基、好ましくは4-クロロフェニル基が挙げられる。
 前記式(I)及び(I-1)においてR又はRで表されるC1-3-アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基が挙げられ、これらのC1-3-アルキル基は、アミノ基、水酸基、カルボキシル基、シアノ基、ハロゲン原子(例えば、フッ素原子、塩素原子、ヨウ素原子)、ニトロ基等から選ばれる1以上の置換基で置換されていてもよい。R及びRは、共同してオキソ基を表してもよい。R及びRとしては、水素原子が好ましい。
 前記式(I)及び(I-1)におけるR、R、R、R、R、R、R及びR10としては、水素原子が好ましい。
 前記式(I-1)においてR11で表されるC1-7-炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基等のC1-5-アルキル基;アリル基(2-プロペン-1-イル基)、2-メチル-2-プロペン-1-イル基等のC2-5-アルケニル基;プロパルギル基(2-プロピン-1-イル基)等のC2-5-アルキニル基;ベンジル基が挙げられ、これらのC1-7-炭化水素基は、アミノ基、水酸基、シアノ基、ハロゲン原子(例えば、フッ素原子、塩素原子、ヨウ素原子)、メトキシ基等から選ばれる1以上の置換基で置換されていてもよい。
 前記式(I)で示される化合物のうち、Arで表される置換フェニル基が3,4-メチレンジオキシフェニル基(1,3-ベンゾジオキソール-5-イル基)であり、Arで表される置換フェニル基が4-クロロフェニル基であり、R、R、R、R、R、R、R、R、R及びR10が水素原子であるフィペキシドは、置換基が少なく、抗うつ薬として知られている市販の化合物であり、入手容易性の点で好ましい。
 前記式(I-1)で示される化合物のうち、Arで表される置換フェニル基が3,4-メチレンジオキシフェニル基(1,3-ベンゾジオキソール-5-イル基)であり、R、R、R、R、R、R、R、R、R、R10及びR11が水素原子である1-ピペロニルピペラジンは、置換基が少なく、市販の化合物であり、入手容易性の点で好ましい。
 前記式(I)又は(I-1)で示される化合物の塩としては、例えば、塩酸、硫酸、リン酸、臭化水素酸、ヨウ化水素酸、硝酸、ピロ硫酸、メタリン酸等の無機酸、又はクエン酸、安息香酸、酢酸、プロピオン酸、フマル酸、マレイン酸、酒石酸、コハク酸、スルホン酸(例えば、メタンスルホン酸、p-トルエンスルホン酸、ナフタレンスルホン酸)、アミノ酸(例えば、グルタミン酸)等の有機酸との塩が挙げられる。
 前記式(I-2)で示される化合物の塩としては、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩、リジン塩、アルギニン塩が挙げられる。
 前記式(I)で示される化合物は、公知の方法、例えば特表2002-503239号公報に記載の方法に従って、以下のようにして製造することができる。
Figure JPOXMLDOC01-appb-C000007
(式中、Ar、Ar、R、R、R、R、R、R、R、R、R及びR10は、前記と同義であり、X及びXはハロゲン原子(塩素原子、臭素原子又はヨウ素原子)である。)
 前記式(I-1a)で示される化合物は、前記式(I-1)においてR11が水素原子である化合物に相当する。
 前記のようにして得られる生成物を精製するには、通常用いられる手法、例えばシリカゲル等を担体として用いたカラムクロマトグラフィーやメタノール、エタノール、クロロホルム、ジメチルスルホキシド、水等を用いた再結晶法によればよい。カラムクロマトグラフィーの溶出溶媒としては、メタノール、エタノール、クロロホルム、アセトン、ヘキサン、ジクロロメタン、酢酸エチル、及びこれらの混合溶媒等が挙げられる。
 また、前記式(I)、(I-1)及び(I-2)で示される化合物のうち、多くの化合物は市販されているので、これらの市販品を本発明に用いることができる。
 本発明の適用対象となる植物は、アラビドプシス(シロイヌナズナ)属植物、樹木(例えば、ポプラ、ユーカリ)、ナタネ、トマト、タバコ、ダイズ、ニンジン、メロン、リンゴ、キャッサバ、ウキクサ、ストライガ等の双子葉植物;イネ科植物(例えば、イネ、コムギ、オオムギ、トウモロコシ、ブラキポディウム)、ユリ科植物(例えば、タマネギ)等の単子葉植物が挙げられる。
 培地に置床する植物体、植物細胞、植物組織片又は植物種子はカルス誘導可能なものであればどのようなものでもよい。植物組織としては、例えば茎頂、茎、葉、苗条、胚細胞、根が挙げられる。置床する植物体等は、次亜塩素酸ナトリウム水溶液等で殺菌し、無菌状態にしておくことが望ましいが、無菌播種により育成した植物体等を用いる場合はその必要はない。
 本発明のカルス誘導剤は、前記有効成分に加えて、公知の製剤用添加剤を含むことができる。公知の製剤用添加剤としては、賦形剤、乳化剤、湿潤剤等が挙げられる。また、本発明のカルス誘導剤の形態は特に限定されず、当業界で利用可能な形態であればいかなる形態であってもよい。例えば、乳剤、液剤、油剤、水溶液、水和剤、フロアブル、粉剤、微粒剤、粒剤、エアゾール又はペースト剤等の形態とすることができる。
 本発明のカルス誘導方法及びカルス作製法における植物体等と本発明のカルス誘導剤とを接触させる方法については特に制限はなく、植物の種類、対象器官、カルス誘導剤の剤形等に応じて、浸漬、塗布、散布、培地への添加等を適宜選択することができるが、好ましくは、植物体等を本発明のカルス誘導剤を含有する培地で培養することにより行う。
 使用するカルス誘導培地は、(i)前記式(I)で示される化合物又はその塩、又は(ii)前記式(I-1)で示される化合物又はその塩、及び前記式(I-2)で示される化合物又はその塩を含み、カルスを誘導できるものであれば特に限定されない。
 前記式(I)で示される化合物又はその塩の培地中の濃度は特に限定されないが、通常5~200μM、好ましくは15~60μMである。
 前記式(I-1)で示される化合物又はその塩と前記式(I-2)で示される化合物又はその塩を併用する場合、前記式(I-1)で示される化合物又はその塩の培地中の濃度は特に限定されないが、通常0.01~100μM、好ましくは0.1~60μMであり、前記式(I-2)で示される化合物又はその塩の培地中の濃度は特に限定されないが、通常0.01~100μM、好ましくは0.1~60μMである。
 前記化合物以外の成分は、糖類、ゲル化剤、無機塩類などカルス誘導に一般的に用いられるものでよい。また、本発明の効果を損なわない範囲で、植物ホルモンを培地に添加してもよい。
 培養は無菌条件下で行うことが好ましい。培養時の温度は20~25℃とすることが好ましく、光条件は恒常的光照射から恒常的暗所条件の間とすることが好ましい。通常、培養から2~4週間でカルスの誘導が認められる。
 以上のようにして、誘導されたカルスを増殖するには、例えば、1ヶ月おきに、新鮮な上記カルス誘導培地(アガロース固形MS培地又は液体MS培地。各々0.9%シュークロースを含む)に交換すればよい。
 増殖されたカルスを再分化するには、例えば、オーキシン(インドール酢酸)0.15mg/L、サイトカイニン(N6-2-イソペンテニルアデニン)0.5mg/Lを含むMS培地(アガロース0.9%、シュークロース1.5%)にカルスを移植し、約2~4週間後にシュート(不定芽)を生成させる。
 本発明にしたがって得られたカルスは遺伝子組み換え作物の作製に利用することもできる。例えば、アグロバクテリウムに感染した細胞からカルスを作製するか、あるいはカルス細胞に導入したいプラスミドを有するアグロバクテリウムをカルスに感染させた後、プラスミドが染色体に挿入された細胞を分離し、これを再分化させて植物個体を再生すると、導入遺伝子を安定的に遺伝する遺伝子組み換え作物が得られる。
 本明細書は、本願の優先権の基礎である特願2014-117832の明細書及び/又は図面に記載される内容を包含する。
 以下、実施例を挙げて本発明を更に具体的に説明するが、本発明の範囲は以下の実施例に限定されるものではない。
 (実施例1)アラビドプシスを用いたフィペキシド活性試験
(1)フィペキシド処理によるアラビドプシス(Columbia)の形態観察
 フィペキシドを0、15、30又は45μM添加した1/2MS培地にアラビドプシス(Columbia)の野生型種子を播種し、形態観察を行った。
 フィペキシド処理により15μMの低濃度では主に根、45μMの高濃度では茎頂の部分がカルス化する形態が見られた(図1)。高濃度では根のカルス化が抑制されていることから、茎頂と比較して根の方がフィペキシドに対する感受性が高く、細胞分裂が阻害されていると考えられた。
(2)フィペキシド処理によるカルス誘導及び再分化
 アラビドプシス(Columbia)の根器官を切断後、フィペキシドを45μM添加した1/2MS培地中で2週間処理してカルスを誘導させた後、再分化培地(オーキシン/サイトカイニン)中で培養したところ、再分化が認められた(図2A)。
 一方、アラビドプシス(Columbia)の根器官を切断後、カルスを誘導させずに、そのまま前記再分化培地中で培養したところ、再分化は認められなかった(図2B)。
(3)フィペキシドと従来法との比較
 アラビドプシスにおけるカルス誘導において、最適化されたオーキシン/サイトカイニン濃度条件下(2,4-ジクロロフェノキシ酢酸2.26μM/カイネチン0.465μM)でのカルス誘導と、フィペキシド45μMによるカルス誘導を比較したところ、フィペキシドは、最適化されたオーキシン/サイトカイニン濃度条件下でのカルス誘導効率よりも、高頻度でカルス誘導を引き起こすことがわかった。恒常的光照射条件において、87日間培養した胚軸の状態を図3に示す。
(4)フィペキシドの推定代謝産物4-クロロフェノキシ酢酸及び1-ピペロニルピペラジンの機能解析
 フィペキシドは4-クロロフェノキシ酢酸と1-ピペロニルピペラジンがアミド結合した化合物であり、植物体中で非酵素的に加水分解されることが予想された。そこで4-クロロフェノキシ酢酸と1-ピペロニルピペラジンによる単剤処理又は併用処理を試みた。
 4-クロロフェノキシ酢酸と1-ピペロニルピペラジンを0、5、15、30、45、60μMで単独あるいは同時にそれぞれ添加した1/2MS培地上に7日間弱光発芽させたアラビドプシス(Columbia)の胚軸を切り置き、形態観察を行った。
 その結果、フィペキシド処理と同様に4-クロロフェノキシ酢酸処理でカルス誘導活性が認められた。この結果は、4-クロロフェノキシ酢酸の構造がカルス形成に重要な役割を持っていることが考察された。
 一方、1-ピペロニルピペラジン単剤で処理した場合には、側根の数と長さの増大、葉面積の拡大が観察されたが、カルス誘導活性は認められなかった。
 更に4-クロロフェノキシ酢酸と1-ピペロニルピペラジンを共に、アラビドプシス胚軸に処理した場合は4-クロロフェノキシ酢酸単剤よりもカルス増殖速度が速い傾向が観察された。これらの結果は、4-クロロフェノキシ酢酸によるカルス誘導は1-ピペロニルピペラジンによる細胞伸長活性によって相加的に促進されていると考察された。
 結果を図4に示す。
 (実施例2)他の植物におけるフィペキシド活性試験
 アラビドプシス発芽条件と同様に、滅菌種子を用いた条件において、フィペキシド培地で培養した結果、イネ発芽種子、ユーカリ発芽種子、ダイズ種子(鶴の子)、トマト種子(マイクロトム)、キュウリ種子(夏すずみ)において、カルス誘導を認めた。
 イネ野生型日本晴種の種子発芽30日目の状態を図5に示す。フィペキシド濃度45μMでカルス化する形態が見られた。
 ダイズ種子(鶴の子)、トマト種子(マイクロトム)及びキュウリ種子(夏すずみ)に対するフィペキシド(FPX)のカルス誘導活性試験の結果を図6に示す。
 アラビドプシス植物体条件と同様に、ポプラ茎及びポプラ根を、フィペキシド培地で培養した結果、ポプラ茎及びポプラ根において、カルス誘導を認めた。
 誘導されたカルスを再分化培地(オーキシン(インドール酢酸)0.15mg/L、サイトカイニン(N6-2-イソペンテニルアデニン)0.5mg/Lを含むMS培地(アガロース0.9%、シュークロース1.5%)、又は3-インドール酪酸(IBA)0.1mg/L、6-ベンジルアミノプリン(BAP)0.2mg/Lを含む1/2MS培地(Phytoagar(植物用アガロース)0.9%、シュークロース0.2%))中で培養したところ、再分化が認められた。
 ポプラ野生型の無菌茎(胚軸ではない)及び根器官の器官切片切断後フィペキシド存在下30日目の状態を図7中央、その後再分化培地に置換後30日後の状態を図7右に示す。
 (実施例3)フィペキシドによるカルス誘導を利用した形質転換
 ポプラにおける通常のカルス化誘導条件で、オーキシン/サイトカイニンに換えて、フィペキシドを用いて、カルス誘導を行って、アグロバクテリウムを感染させたカルスが形質転換されているかを確認した。
 アグロバクテリウムのバイナリーベクターとしては、GATEWAYカセットを含むpH35GS(Kubo M. et al., Genes & Dev., 19, 1855-1860, 2005)(株式会社インプランタイノベーションズ、製品コード:IN3-VEC17)に感染を確認するためGUS遺伝子をGATEWAYシステムを利用して導入したものを用いた。
 形質転換プロトコールを以下に示す。
1.ポット内で育てた無菌培養ポプラ(Populus tremula x tremuloides T89)幼個体から、茎サンプル(5mm長)を切り出した。
2.アグロバクテリウムと共培養した(3日間、暗所、22℃)。
3.アグロバクテリウムを洗浄後、MS1培地あるいは改変MS1培地(3-インドール酪酸(IBA)と6-ベンジルアミノプリン(BAP)の代わりに30μMフィペキシドを含む)の上に置床し25℃で培養した。
4.(4週間目、通常MS1培地ではカルスができていないのに対してフィペキシドを含む改変MS1培地ではカルスが旺盛にできていることを確認した。)
5.カルス誘導培養2ヶ月後のカルス23個体を90%(w/w)アセトンにて-30℃一晩固定の後、サンプルを50mM PBSバッファー(pH7.0)で2回洗浄後、GUS基質液中、37℃で15分インキュベートして染色した。
 その結果、全個体でGUS活性が確認された。結果を図8に示す。
 MS1培地、改変MS1培地及びGUS基質液の組成を以下に示す。
[MS1培地組成(1L中)]
4.4g Murashige & Skoog salt
20g シュークロース
0.2mg BAP
0.1mg IBA
0.01mg TDZ(Thidiazuron)
pH5.6
[改変MS1培地組成(1L中)]
4.4g Murashige & Skoog salt
20g シュークロース
30μM フィペキシド
pH5.6
[GUS基質液組成(1L中)]
1mM X-Gluc
50mM PBS(pH7.0)
0.1% Triton X-100
1mM Potassium ferricyanide
1mM Potassium ferrocyanide
 以上のことから、フィペキシドによるカルス誘導はアグロバクテリウム法による植物の形質転換方法にも適用可能であることがわかった。
 本明細書中で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書中にとり入れるものとする。

Claims (8)

  1.  次式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Arは、少なくとも、C1-6-アルコキシ基及び置換又は非置換のメチレンジオキシ基から選ばれる少なくとも1つの置換基で置換されたフェニル基であり;
    Arは1~3個のハロゲン原子で置換されたフェニル基であり;
    及びRは、それぞれ、水素原子、置換又は非置換のC1-3-アルキル基、シアノ基又はカルボキシル基であり;
    及びRは、共同してオキソ基を表してもよく;
    、R、R、R、R、R、R及びR10は、それぞれ、水素原子又はメチル基であり;
    とR、RとR、RとR、及び/又はRとR10は、共同してオキソ基を表してもよい。)
    で示される化合物又はその塩を含有するカルス誘導剤。
  2.  前記式(I)で示される化合物又はその塩がフィペキシド又はその塩である請求項1記載のカルス誘導剤。
  3.  次式(I-1):
    Figure JPOXMLDOC01-appb-C000002
    (式中、Ar、R、R、R、R、R、R、R、R、R及びR10は、請求項1記載の前記式(I)中の定義と同義であり、R11は水素原子、置換又は非置換のC1-7-炭化水素基又はアミジノ基である。)
    で示される化合物又はその塩、及び次式(I-2):
    Figure JPOXMLDOC01-appb-C000003
    (式中、Arは、請求項1記載の前記式(I)中の定義と同義である。)
    で示される化合物又はその塩を含有するカルス誘導剤。
  4.  前記式(I-1)で示される化合物又はその塩が1-ピペロニルピペラジン又はその塩であり、前記式(I-2)で示される化合物又はその塩が4-クロロフェノキシ酢酸又はその塩である請求項3記載のカルス誘導剤。
  5.  植物体、植物細胞、植物組織片又は植物種子を、請求項1~4のいずれか1項に記載のカルス誘導剤と接触させ、カルス化を誘導することを含むカルス誘導方法。
  6.  植物体、植物細胞、植物組織片又は植物種子を、請求項1~4のいずれか1項に記載のカルス誘導剤と接触させ、カルス化を誘導し、増殖することを含むカルス作製方法。
  7.  請求項6記載の方法で作製されるカルス。
  8.  アグロバクテリウム法による植物の形質転換方法において、カルス誘導培地として請求項1~4のいずれか1項に記載のカルス誘導剤を含有する培地を用いることを含む植物の形質転換方法。
PCT/JP2015/065332 2014-06-06 2015-05-28 カルス誘導剤及びカルス誘導方法 WO2015186591A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016525126A JP6536836B2 (ja) 2014-06-06 2015-05-28 カルス誘導剤及びカルス誘導方法
US15/315,886 US10676711B2 (en) 2014-06-06 2015-05-28 Agent for inducing callus and method for inducing callus
EP15803135.1A EP3153014B1 (en) 2014-06-06 2015-05-28 Agent for inducing plant callus and method for inducing plant callus
US16/860,597 US11345885B2 (en) 2014-06-06 2020-04-28 Agent for inducing callus and method for inducing callus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-117832 2014-06-06
JP2014117832 2014-06-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/315,886 A-371-Of-International US10676711B2 (en) 2014-06-06 2015-05-28 Agent for inducing callus and method for inducing callus
US16/860,597 Division US11345885B2 (en) 2014-06-06 2020-04-28 Agent for inducing callus and method for inducing callus

Publications (1)

Publication Number Publication Date
WO2015186591A1 true WO2015186591A1 (ja) 2015-12-10

Family

ID=54766664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065332 WO2015186591A1 (ja) 2014-06-06 2015-05-28 カルス誘導剤及びカルス誘導方法

Country Status (4)

Country Link
US (2) US10676711B2 (ja)
EP (1) EP3153014B1 (ja)
JP (1) JP6536836B2 (ja)
WO (1) WO2015186591A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111093662B (zh) 2017-06-20 2023-10-03 安布里亚制药公司 用于提高心脏代谢效率的组合物和方法
CN110100735A (zh) * 2019-06-17 2019-08-09 山东农业大学 一种组培嘎啦苹果苗不定根离体再生不定芽的方法
CN111448992A (zh) * 2019-10-30 2020-07-28 福建农林大学 一种快速诱导二穗短柄草种子产生愈伤组织的培养基及方法
US11780811B2 (en) 2020-06-30 2023-10-10 Imbria Pharmaceuticals, Inc. Methods of synthesizing 2-[4-[(2,3,4-trimethoxyphenyl)methyl]piperazin-1-yl]ethyl pyridine-3-carboxylate
US11530184B2 (en) 2020-06-30 2022-12-20 Imbria Pharmaceuticals, Inc. Crystal forms of 2-[4-[(2,3,4-trimethoxyphenyl)methyl]piperazin-1-yl]ethyl pyridine-3-carboxylate
US11883396B2 (en) 2021-05-03 2024-01-30 Imbria Pharmaceuticals, Inc. Methods of treating kidney conditions using modified forms of trimetazidine
CN115715544A (zh) * 2022-11-04 2023-02-28 北京林业大学 一种小分子化合物在桉树无性繁殖和遗传转化中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62201572A (ja) * 1986-03-03 1987-09-05 Mitsui Toatsu Chem Inc カルスの誘導培地
JP2002503239A (ja) * 1997-06-12 2002-01-29 シェリング アクチェンゲゼルシャフト ピペラジン誘導体及び抗炎症剤としてのそれらの使用
JP2003047463A (ja) * 2001-07-24 2003-02-18 Kumho Petrochem Co Ltd シバ成熟種子由来カルスのための植物体再生方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1151532B (it) * 1982-03-29 1986-12-24 Ravizza Spa Procedimento per la preparazione di p. clorofenossiacetil-piperonilpiperazina
JPH0667668B2 (ja) 1985-01-24 1994-08-31 株式会社リコー 2色感熱記録材料
GB201211634D0 (en) 2012-06-28 2012-08-15 Randox Lab Assay for benzylpiperazine and metabolites

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62201572A (ja) * 1986-03-03 1987-09-05 Mitsui Toatsu Chem Inc カルスの誘導培地
JP2002503239A (ja) * 1997-06-12 2002-01-29 シェリング アクチェンゲゼルシャフト ピペラジン誘導体及び抗炎症剤としてのそれらの使用
JP2003047463A (ja) * 2001-07-24 2003-02-18 Kumho Petrochem Co Ltd シバ成熟種子由来カルスのための植物体再生方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP3153014A4 *
SHOTA TANAKA ET AL.: "Physiological function of FPX as a novel plant callus inducible compound and PPG as a novel promoter for plant growth", JAPANESE SOCIETY FOR CHEMICAL REGULATION OF PLANTS DAI 49 KAI TAIKAI KENKYU HAPPYO KIROKUSHU, vol. 49, 1 October 2014 (2014-10-01), pages 58, XP008185340 *
SHOTA TANAKA ET AL.: "Shinki Shokubutsu Callus Keisei Sokushin Kagobutsu FPX to Shinki Shokubutsu Seicho Sokushin Kagobutsu PPG no Dotei to Seiri Sayo Kaiseki", DAI 56 KAI PROCEEDINGS OF THE ANNUAL MEETING OF THE JAPANESE SOCIETY OF PLANT PHYSIOLOGISTS, 9 March 2015 (2015-03-09), pages 307, 2P11, XP008185420 *

Also Published As

Publication number Publication date
EP3153014A4 (en) 2017-11-15
JPWO2015186591A1 (ja) 2017-04-20
US20200255797A1 (en) 2020-08-13
EP3153014A1 (en) 2017-04-12
EP3153014B1 (en) 2020-12-30
US20170105414A1 (en) 2017-04-20
US11345885B2 (en) 2022-05-31
JP6536836B2 (ja) 2019-07-03
US10676711B2 (en) 2020-06-09

Similar Documents

Publication Publication Date Title
US11345885B2 (en) Agent for inducing callus and method for inducing callus
US6610544B2 (en) Regeneration of both plant tissues and transgenic plant tissues using a new plant hormone, 5-bromoindole-3-acetic acid
JP3307604B2 (ja) スーパーオキシドジスムターゼを大量生産する形質転換されたきゅうりの製造方法
US20060005273A1 (en) Novel maize split-seed explant and methods for in vitro regeneration of maize
US6815205B2 (en) Auxinic analogues of indole-3-acetic acid
Ravnikar et al. Regulation of potato meristem development by jasmonic acid in vitro
WO2015099674A1 (en) Sugarcane regeneration and transformation methods
AU2016380736B2 (en) High stress resistant plant growth regulator and preparation and use thereof
Nofouzi et al. Improvement of the in vitro regeneration and Agrobacterium-mediated genetic transformation of Medicago sativa L.
WO2016056581A1 (ja) 植物成長促進剤及び植物成長促進方法
Tippani et al. In vitro plantlet regeneration and Agrobacterium tumefaciens-mediated genetic transformation of Indian Kino tree (Pterocarpus marsupium Roxb.)
JPWO2018123651A1 (ja) 植物の環境ストレス耐性向上剤
CN112772662B (zh) 小分子化合物在促进植物生长发育中的应用
Chen et al. Effects of exogenous plant growth regulator on in vitro regeneration of cotyledonar explants in pepper
US20060030487A1 (en) Materials and methods for the regeneration of plants from cultured plant tissue
Salma et al. Conserving biodiversity of a potent anticancer plant, Catharanthus roseus through in vitro biotechnological intercessions: substantial progress and imminent prospects
Nikolić et al. Gibberellic acid promotes in vitro regeneration and shoot multiplication in Lotus corniculatus L.
WO1997020034A1 (en) Auxinic analogues of indole-3-acetic acid
Prospects Conserving Biodiversity of a Potent Anticancer Plant, Catharanthus roseus
JP2017093347A (ja) 遺伝的に改変された植物体を作製するための形質転換植物体の製造方法、及びこの製造方法により作製された、遺伝的に改変された形質転換植物体
Sivanesan et al. Optimizing factors affecting somatic embryogenesis in Cineraria
Maas et al. LEC1-mediated Stable and Transient Regeneration
WO2001067861A1 (en) Materials and methods for the regeneration of plants from cultured plant tissue
JP2000501395A (ja) インドール―3―酢酸のオーキシンアナログ
JPH05219852A (ja) シクラメンの不定胚の形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803135

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016525126

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15315886

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015803135

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015803135

Country of ref document: EP