WO2015186391A1 - ガス遮断器 - Google Patents

ガス遮断器 Download PDF

Info

Publication number
WO2015186391A1
WO2015186391A1 PCT/JP2015/056280 JP2015056280W WO2015186391A1 WO 2015186391 A1 WO2015186391 A1 WO 2015186391A1 JP 2015056280 W JP2015056280 W JP 2015056280W WO 2015186391 A1 WO2015186391 A1 WO 2015186391A1
Authority
WO
WIPO (PCT)
Prior art keywords
driven
drive
electrode
rod
driving
Prior art date
Application number
PCT/JP2015/056280
Other languages
English (en)
French (fr)
Inventor
雄輝 中井
将直 寺田
陽一 大下
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2015186391A1 publication Critical patent/WO2015186391A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/42Driving mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism

Definitions

  • This invention relates to the gas circuit breaker used for interruption
  • the present invention relates to a gas circuit breaker having a bidirectional drive mechanism for driving electrodes in opposite directions.
  • a gas circuit breaker used for a high-voltage power system is generally called a puffer type that uses a rise in arc-extinguishing gas pressure during the opening operation and blows a compressed gas against the arc generated between the electrodes to cut off the current. It is used for.
  • Compressed gas is obtained by mechanical compression and thermal compression.
  • the former drives the puffer cylinder connected to the electrode by the energy of the actuator as a driving source such as hydraulic pressure and spring, compresses the arc-extinguishing gas by reducing the volume of the compression chamber between the puffer piston and the arc. It is something that is sprayed on.
  • the latter increases the pressure of the arc extinguishing gas by the heat generated by the arc, and imparts operating force or blows directly onto the arc.
  • a puffer-type gas circuit breaker that uses a heat expansion chamber with a fixed volume and that is used in combination with a mechanical compression chamber that reduces the volume at the time of opening is known as a means for using arc heat to generate pressure.
  • the speed on the driven side can be arbitrarily set by a groove cam.
  • the groove cam is composed of running course section 17, 18 and connection course section19.
  • the axes of running course section17 and 18 are separated. Therefore, in order to increase the rotation angle of the rotary lever, it is necessary to increase the length of the rotary lever, and the bidirectional drive mechanism device becomes large.
  • a gas circuit breaker is provided with a driving side electrode and a driven side electrode facing each other in a sealed tank (21), and the driving side electrode is a driving side main electrode (2).
  • the drive side arc electrode (4) the driven side electrode has a driven side main electrode (3) and a driven side arc electrode (5), and the driving side arc electrode (4) is an operating device.
  • the driven-side arc electrode (5) is coupled to a bidirectional driving mechanism, and the bidirectional driving mechanism is configured to receive a driving force from the driving-side electrode.
  • a driven side rod (18) connected to the driven side arc electrode (5), and a rotation for moving the driven side rod (18) in a direction opposite to the operation of the driving side rod (10).
  • the drive-side movable pin (15) is communicated, and the drive-side movable pin (15) moves in the groove cams (11, 13) by the operation of the drive-side rod (10).
  • (12) is rotated, and the driven side rod electrode (18) is driven in the opposite direction to the driving side rod (10), and the driven side arc electrode (5) connected to the driven side rod (18).
  • the operation energy can be reduced as compared with the conventional bidirectional driving method. Further, the rotation angle of the rotary lever can be widened, and the bidirectional drive mechanism can be reduced.
  • FIG. 2 is an enlarged view of the vicinity of a driving side movable pin 15 of the bidirectional mechanism unit in FIG. 1. It is a front view which shows one Embodiment of the bidirectional
  • the guide 19 is shown only on the right half of the drawing, and the left half of the drawing is omitted to show the internal structure.
  • FIG. 3 shows the injection state of the gas circuit breaker to which this invention is applied.
  • one end of the shaft 6 is connected to the operating device 1 on the driving side of the gas circuit breaker.
  • the other end of the shaft 6 is connected to the drive side arc electrode 4.
  • a nozzle 8 and a drive side main electrode 2 are provided coaxially with the drive side arc electrode 4.
  • a thermal expansion chamber 9 is formed in the space inside the cylinder to which the drive side main electrode 2 is connected.
  • a mechanical compression chamber 7 is formed in a space inside the cylinder provided with the thermal expansion chamber 9 and the other cylinder in which the cylinder slides.
  • the driven main electrode 3 and the driven arc electrode 5 are coaxially formed.
  • the driven-side arc electrode 5 is driven in the opposite direction to the driving-side electrode by a dual drive mechanism shown in detail in FIG.
  • one end of the drive side rod 10 constituting the dual drive mechanism is connected to the tip of the nozzle 8 connected to the drive side electrode by bolting or the like, and the driven side rod constituting the dual drive mechanism.
  • One end of 18 is connected to the driven-side arc electrode 4, and the driving-side electrode and the driven-side arc electrode 4 are connected with the rotating shaft of the rotary lever 12 interposed therebetween, so that each is driven in the opposite direction.
  • the shut-off portion shown in FIG. 4 it is set to a position where the driving side main electrode 2 and the driven side main electrode 3 are brought into conduction by the driving source by the hydraulic pressure of the operating device 1 or a spring, and the circuit of the power system at normal time Configure.
  • the operating device 1 When interrupting a short-circuit current due to lightning or the like, the operating device 1 is driven in the opening direction, and the driving side main electrode 2 and the driven side main electrode 3 are separated through the shaft 6. After these two main electrodes are dissociated, the driving side arc electrode 4 and the driven side arc electrode 5 are dissociated, and an arc is generated therebetween.
  • the arc generated between the two arc electrodes is extinguished by the arc-extinguishing gas blowing by the mechanical compression chamber 7 and the arc-extinguishing gas blowing using the arc heat by the thermal expansion chamber 9, and the current is cut off. Is done.
  • FIG. 5 shows an exploded view of the bidirectional drive mechanism in the embodiment of the present invention.
  • the drive-side rod 10 is attached to the nozzle 8 at the right end of the drawing as described above.
  • a first groove cam 11 is cut into the drive side rod 10.
  • One end of the rotating lever 12 is bifurcated, and the drive rod 10 is sandwiched between them.
  • the first groove cam 11 of the drive side rod 10 and the second groove cam 13 cut into the rotary lever 12 form a laminated structure in the direction perpendicular to the paper surface, and the drive side movable pin 15 passes through these two cams. .
  • a holding spring 20 is fixed to the end of the second groove cam 13 cut into the rotating lever 12 on the side far from the rotation axis of the rotating lever 12 (FIG. 2).
  • the holding spring 20 is movable on the drive side.
  • the pin 15 is fixed so as to be biased toward the rotating shaft of the rotating lever 12.
  • the driven side movable pin 16 is fixed to the rotary lever 12 so as to protrude from both sides thereof, and the driven side movable pin 16 can be moved in the third groove cam 14 cut into the driven side rod 18.
  • the rotary lever 12 and the driven rod 18 are connected.
  • the driven-side rod 18 and the driving-side rod 10 are limited in the vertical displacement by the driven-side rod pressing groove 19A and the driving-side rod pressing groove 19B provided in the guide 19, and the movement direction is only the opening direction.
  • a lever rotation pin 17 is passed through the guide 19 and the rotation lever 12.
  • the driving side movable pin 15 and the lever rotating pin 17 are fixed by a driving side fixing pin fixing nut 22 and a lever rotating pin fixing nut 23, respectively.
  • FIG. 1 shows details of the bidirectional drive mechanism in the embodiment of the present invention.
  • a first groove cam 11 is cut into the drive side rod 10, and the first groove cam 11 is seen from the operating device side 1 (see FIG. 4).
  • the first groove cam 11 has a first linear portion 161, a recessed portion 162, and a curved portion 163.
  • a second linear portion 164 is provided.
  • the first straight portion 161 and the second straight portion 164 are provided in parallel with the blocking operation axis, and each is provided on the same straight line or in parallel.
  • a curved portion 163 and a hollow portion 162 are provided so as to protrude from the driven rod 18 side.
  • a second groove cam 13 is formed on the rotary lever 12, and a third groove cam 14 is cut into the driven rod 18.
  • a drive-side movable pin 15 having a diameter equal to the groove width of the first groove cam 11 and the second groove cam 13 is configured to move freely in the first groove cam 11 and the second groove cam 13.
  • the driven movable pin 16 is fitted and fixed in a hole provided in the rotary lever 12, and both ends of the driven movable pin 16 are moved up and down in accordance with the rotation of the rotary lever 12. To do.
  • the driving side movable pin 15 and the driven side movable pin 16 are arranged on the opposite sides of the lever rotating pin 17 of the rotating lever 12.
  • the driving side arc electrode 4 connected to the driving side rod 10 attached to the driving side nozzle 8 is driven in the opening direction.
  • the driving side movable pin 15 that connects the driving side rod 10 and the rotation lever 12 moves in the first groove cam 11, and the driving side movable pin 15 moves in the recessed portion 162 of the first groove cam 11.
  • the drive side movable pin 15 moves from the upper end to the lower end of the second groove cam 13 of the rotary lever 12, and the drive side movable pin 15 pushes the holding spring 20 fixed to the end of the rotary lever 12,
  • the rotation lever 12 rotates around the lever rotation pin 17.
  • the driven side movable pin 16 that connects the driven side rod 18 and the rotating lever 12 moves in the third groove cam 14 upward in the drawing, so that the driven side rod 18 is driven in the opposite direction to the driving side rod 10. To do.
  • the drive side movable pin 15 is moved when the first groove cam 11 of the drive side rod 10 is moving in the opening direction. Since it moves to the curved part 163 without passing through the indented part 162, the rotating lever 12 cannot rotate, the driving side movable pin 15 stops, and the blocking operation stops.
  • the drive side movable pin 15 pushes the holding spring 20 fixed to the second groove cam 13 of the rotary lever 12.
  • the drive-side movable pin 15 fits into the indented portion 162 so that the upper and lower portions of the rotating lever 12 can rotate beyond the central axis when the perpendicular passing through the lever rotating pin 17 is taken as the central axis. Can be made wide angle.
  • FIG. 1 is a cross-sectional view of the bidirectional drive mechanism in a state where the gas circuit breaker is turned on.
  • the driving side movable pin 15 is located at the end of the first linear portion 161 in the first groove cam, and the driving side rod 10 and the driven side rod 18 are stationary.
  • the drive-side movable pin 15 and the driven-side movable pin 16 are positioned in opposite directions with the lever rotation pin 17 of the rotation lever 12 interposed therebetween.
  • the drive side movable pin 15 is held by a holding spring 20 provided at an end portion in the second groove cam 13 (see FIG. 2).
  • FIG. 2 is an enlarged view showing details of the end portion of the rotary lever 12 on the drive side rod 10 side.
  • the holding spring 20 is fixed so as to close the end of the second groove cam 13 of the rotary lever 12.
  • Examples of the holding spring 20 include a disc spring and a coil spring.
  • the holding spring 20 is not limited to a spring as long as it can bias the driving side movable pin 15.
  • the holding spring 20 presses and holds the driving side movable pin 15 against the end of the second groove cam 13 toward the lever rotation pin 17.
  • the holding spring 20 is supported by a holding spring fixing portion 24, and the holding spring fixing portion 24 is fixed to the end of the rotary lever 12 with a bolt.
  • FIG. 3 is a view of the bidirectional drive mechanism viewed from the direction of the shutoff operation axis.
  • FIG. 3 in order to show the internal configuration of the guide 19, only the right half of the paper 19 is shown and the left half of the paper is omitted.
  • One end of the rotary lever 12 is formed into two forks, and the drive side rod 10 is disposed between them. Further, the holding spring 20 and the holding spring fixing portion 24 are fixed in a state where the holding spring 20 and the holding spring fixing portion 24 are sandwiched between the forked ends of the rotation lever 12.
  • FIG. 4 shows a state in which the gas circuit breaker is turned on.
  • the drive side main electrode 2 and the driven side main electrode 3 are set in a conductive state by a drive source such as a hydraulic pressure of the operating device 1 or a spring, thereby constituting a circuit of a normal power system.
  • the operating device 1 When interrupting a short-circuit current due to lightning or the like, the operating device 1 is driven in the opening direction, and the driving side main electrode 2 and the driven side main electrode 3 are separated through the shaft 6. At that time, an arc is generated between the driving-side arc electrode 4 and the driven-side arc electrode 5.
  • the electric current is interrupted by blowing off the arc by mechanical arc extinguishing gas blowing by the mechanical compression chamber 7 and arc extinguishing gas blowing using the arc heat by the thermal expansion chamber 9.
  • FIG. 6 shows strokes of the drive side arc electrode 4 and the driven side arc electrode 5.
  • Time a indicates the operation start time of the drive-side arc electrode 4.
  • the drive-side movable pin 15 moves from the upper end to the lower end of the second groove cam 13 of the rotary lever 12, and the drive-side movable pin 15 is pushed into the indented portion 162.
  • Time c indicates the time when the driving side movable pin 15 starts to move the curved portion 163.
  • Time d indicates the time when the drive side movable pin 15 passes through the curved portion 163 and the operation of the driven side arc electrode 5 ends.
  • Time e indicates the time when the drive side movable pin 15 reaches the end of the second linear portion 164 and the operation of the drive side arc electrode 4 ends.
  • FIG. 7 is a cross-sectional view of the bidirectional drive mechanism just before the operation of the driven rod 18 connected to the driven arc electrode 5.
  • the driving side movable pin 15 moves to the front of the indented portion 162 in the first groove cam, and the driving side rod 10 is moving in the opening direction, but the driven side rod 18 is stationary.
  • FIG. 8 shows a state immediately before operation of the driven-side arc electrode 5.
  • the driving side arc electrode 4 is driven ab (> driven ab)
  • FIG. 9 is a cross-sectional view of the bidirectional drive mechanism portion immediately after the driven side rod 18 connected to the driven side arc electrode 5 operates.
  • the drive-side movable pin 15 reaches the indented portion 162 in the first groove cam
  • the drive-side movable pin 15 moves from the upper end to the lower end of the second groove cam 13 of the rotary lever 12 and is provided below the rotary lever 12.
  • the holding spring 20 By pushing the holding spring 20, the driving side movable pin 15 reaches the indented portion 162 in the first groove cam 11.
  • the rotating lever 12 rotates around the lever rotating pin 17, the driven side movable pin 16 moves to the upper end in the third groove cam 14, and the driven side rod 18 is in the opposite direction to the driving side rod 10. Operate.
  • FIG. 10 shows a state immediately after the driven arc electrode 5 is operated.
  • the moving side arc electrode 4 is driven ac (> driven ac)
  • the driven side arc electrode 5 is driven ac, and both electrodes are operating.
  • FIG. 11 is a sectional view of the bidirectional drive mechanism when the operation of the driven rod 18 connected to the driven arc electrode 5 is completed. This is a state in which the operation of the driven-side arc electrode 5 has been completed.
  • the drive side movable pin 15 passes through the indented portion 162 in the first groove cam 11 and moves to the front of the second linear portion 164.
  • the drive side movable pin 15 is pushed back by the lower holding spring 20 provided on the rotary lever 12 and moves from the lower end to the upper end of the second groove cam 13. At this time, the driving side rod 10 moves in the opening direction, the driven side movable pin 16 moves to the lower end in the third groove cam, and the operation of the driven side rod 18 ends.
  • FIG. 12 shows a state in which the operation of the driven-side arc electrode 5 has been completed.
  • the driving side arc electrode 4 is driven ad (> driven ad)
  • the driven side arc electrode 5 is driven ad
  • the driving side arc electrode 4 operates in the opening direction.
  • the operation of the driven-side arc electrode 5 ends.
  • FIG. 13 is a cross-sectional view of the bidirectional drive mechanism when the gas circuit breaker is in the open state (when the breaking operation is completed).
  • the drive-side movable pin 15 reaches the end of the second linear portion 164 in the first groove cam 11, the operation of the drive-side rod 10 is finished, and the driven-side rod 18 is in a stationary state.
  • the drive-side movable pin 15 is held by a lower holding spring 20 and is restrained from moving in the second groove cam 13.
  • FIG. 14 shows the open state of the gas circuit breaker (the state when the interruption operation is completed).
  • the driving side arc electrode 4 is driven ae (> driven ae)
  • the driven side arc electrode 5 is driven ae
  • the operation of the driving side arc electrode 4 ends,
  • the drive side arc electrode 5 is in a stationary state.
  • the rotation angle of the rotation lever can be widened by providing the recess groove provided on the first groove cam of the drive side rod and the second groove cam and holding spring on the rotation lever. Can be small.
  • the design flexibility of the straight groove portion, the hollow portion, and the curved portion of the first groove cam is large, so it is easy to change the design according to the different models of the blocking portion configuration and blocking method. Therefore, it is possible to design an optimum groove cam shape that ensures the blocking performance.
  • the drive side rod is located on the lower side of the paper surface.
  • the same effect can be achieved with a configuration located on the upper side of the paper surface.
  • the puffer type gas circuit breaker using both the thermal expansion chamber and the mechanical compression chamber has been described in the above embodiment, the present invention is not limited to this type, and has only one of the thermal expansion chamber or the mechanical compression chamber. The same can be applied to the gas circuit breaker.

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Circuit Breakers (AREA)

Abstract

 密封タンク(21)内に駆動側電極と、被駆動側電極、と双方向駆動機構部を設ける。双方向駆動機構部は、駆動側ロッド(10)と、被駆動側ロッド(18)と、これらのロッドを反対方向に動作させる回転レバー(12)と、これらのロッドの動作を規定するガイド(19)とを備える。駆動側ロッド(10)が有する第一溝カム(11)と、回転レバー(12)が有する第二溝カム(13)それぞれに、駆動側可動ピン(15)を連通させ、駆動側ロッド(10)の動作により回転レバー(12)を回動させ、被駆動側ロッド(18)が駆動側ロッド(10)と反対方向に駆動されることで、被駆動側ロッド(18)に接続する被駆動側アーク電極(5)が駆動側ロッド(10)に接続する駆動側電極の前記駆動側アーク電極(4)と反対方向に駆動する。

Description

ガス遮断器
 本発明は電力系統における短絡電流の遮断に用いるガス遮断器に関する。特に、電極を互いに反対方向に駆動する双方向駆動機構を有するガス遮断器に関する。
 高電圧の電力系統に用いるガス遮断器は、開極動作途中の消弧ガス圧力上昇を利用し、圧縮ガスを電極間に生じるアークに吹き付けることで電流を遮断するパッファ形と呼ばれるものが一般的に用いられている。
 圧縮ガスは、機械的圧縮と熱的圧縮により得られる。前者は、油圧やばねなど駆動源となる操作器のエネルギーにより電極と連結されたパッファシリンダを駆動し、パッファピストンとの間の圧縮室の容積を小さくすることで消弧ガスを圧縮し、アークに吹き付けるものである。後者は、アークによる熱で消弧ガスを圧力上昇させ、操作力の付与やアークへの直接吹き付けをするものである。
 アーク熱を吹き付け圧力の形成に利用するものとして、容積固定の熱膨張室を設け、開極時に容積を縮小する機械的圧縮室と併用するパッファ形ガス遮断器が知られている。
 パッファ形ガス遮断器遮断性能を向上させるためには開極速度を大きくすることが必要だが、そのためには操作器をより駆動力の大きいものにする必要があり、装置が大型化しコスト増となる。
 そこで、従来固定されていた被駆動側の電極を開極方向と反対方向に駆動する双方向駆動方式が提案されている。例えば、駆動側電極と被駆動側電極の速度比を任意に設定可能な構造として溝カムを用いたものがある(特許文献1)。
欧州特許出願公開第93250073号明細書
 特許文献1に係る双方向駆動方式は、溝カムにより被駆動側の速度を任意に設定可能であるが、その溝カムは running course section 17、18とconnection course section19で構成され、connection course section19を挟んでrunning course section17、18の軸が離れている。そのため、回転レバーの回転角を大きくするためには、回転レバーの長さを長くする必要があり、双方向駆動機構装置が大きくなる。
 前記課題を解決するために、本発明に係るガス遮断器は、密封タンク(21)内に駆動側電極と被駆動側電極を対向して設け、前記駆動側電極は駆動側主電極(2)と駆動側アーク電極(4)を有し、前記被駆動側電極は被駆動側主電極(3)と被駆動側アーク電極(5)を有し、前記駆動側アーク電極(4)は操作器(1)に接続され、前記被駆動側アーク電極(5)は双方向駆動機構部に連結され、前記双方向駆動機構部は、前記駆動側電極からの駆動力を受ける駆動側ロッド(10)と、前記被駆動側アーク電極(5)に接続した被駆動側ロッド(18)と、前記駆動側ロッド(10)の動作に対して前記被駆動側ロッド(18)を反対方向に動作させる回転レバー(12)と、前記駆動側ロッド(10)と前記被駆動側ロッド(18)の動作を規定するガイド(19)とを備え、前記駆動側ロッド(10)が有する第一溝カム(11)と、前記回転レバー(12)が有する第二溝カム(13)それぞれに、駆動側可動ピン(15)を連通させ、前記駆動側ロッド(10)の動作により前記駆動側可動ピン(15)が前記それぞれの溝カム(11、13)内を運動することで、前記回転レバー(12)を回動させ、前記被駆動側ロッド(18)が前記駆動側ロッド(10)と反対方向に駆動され、前記被駆動側ロッド(18)に接続する前記被駆動側アーク電極(5)が前記駆動側ロッド(10)に接続する前記駆動側電極の前記駆動側アーク電極(4)と反対方向に駆動することを特徴とする。
 本発明によれば、従来の双方向駆動方式に比べ操作エネルギーを小さくすることができる。さらに、回転レバーの回転角を広角にでき、双方向駆動機構部を小さくすることができる。
本発明に係る双駆動機構部の一実施形態を示す断面図である。 図1における双方向機構部の駆動側可動ピン15近傍の拡大図である。 本発明に係る双方向機構部の一実施形態を示す正面図である。図3では、ガイド19は紙面右半分のみ示し、紙面左半分は内部構造を示すため省略している。 本発明を適用したガス遮断器の投入状態を示す断面図である。 本発明に係る双方向機構部の分解図である。 本発明を適用したガス遮断器のストローク特性を示す図である。 本発明を適用したガス遮断器の開極途中で、被駆動側アーク電極の動作前の双方向機構部を示す図である。 双駆動機構部が図7の状態における遮断部の状態を示す断面図である。 本発明を適用したガス遮断器の開極途中で、被駆動側アーク電極の動作中の双方向機構部を示す図である。 双駆動機構部が図9の状態における遮断部の状態を示す断面図である。 本発明を適用したガス遮断器の開極途中で、被駆動側アーク電極の動作が終了したときの双方向機構部を示す図である。 双駆動機構部が図11の状態における遮断部の状態を示す断面図である。 本発明を適用したガス遮断器の遮断動作終了時の双方向機構部を示す図である。 双駆動機構部が図13の状態における遮断部の状態を示す断面図である。
 以下、図面を参照して本発明の実施形態に係るガス遮断器を説明する。
 図4に示すように、ガス遮断器は、駆動側が操作器1にシャフト6の一端が連結される。シャフト6の他端は駆動側アーク電極4に連結される。駆動側アーク電極4と同軸状にノズル8及び駆動側主電極2が設けられる。駆動側主電極2が連結するシリンダの内側の空間に熱膨張室9が形成される。熱膨張室9の設けられたシリンダと、そのシリンダが摺動する他のシリンダの内側の空間には機械的圧縮室7が形成される。
 被駆動側は、被駆動側主電極3及び被駆動側アーク電極5が同軸状に形成される。被駆動側アーク電極5は図1に詳細を示す双駆動機構により駆動側電極と反対方向に駆動される。
 一例を挙げれば、双駆動機構部を構成する駆動側ロッド10の一端が、駆動側電極に連結されたノズル8の先端にボルト締め等により連結され、双駆動機構部を構成する被駆動側ロッド18の一端が被駆動側アーク電極4に連結され、駆動側電極と被駆動側アーク電極4が回転レバー12の回転軸を挟んで連結されることでそれぞれが反対方向に駆動される。
 図4に示す遮断部の投入状態では、操作器1の油圧やばねによる駆動源により、駆動側主電極2と被駆動側主電極3を導通させる位置に設定され、通常時の電力系統の回路を構成する。
 落雷などによる短絡電流を遮断する際には、操作器1を開極方向に駆動し、シャフト6を介し駆動側主電極2及び被駆動側主電極3を引き離す。これらの2つの主電極が解離した後、駆動側アーク電極4と被駆動側アーク電極5が解離し、その間にアークが生成される。
 この2つのアーク電極間に生成されるアークは、機械的圧縮室7による機械的な消弧ガス吹き付けと熱膨張室9によるアーク熱を利用した消弧ガス吹き付けにより、消弧され、電流が遮断される。
 図5に本発明の実施形態における双方向駆動機構部の分解図を示す。駆動側ロッド10はの紙面右端は、上述のとおりノズル8に取り付けられる。この駆動側ロッド10には第一溝カム11が切り込まれている。
 回転レバー12の一端は二股に分岐し、その間に駆動側ロッド10を挟み込んで構成する。駆動側ロッド10の第一溝カム11と回転レバー12に切り込まれた第二溝カム13は紙面垂直方向に積層構造を成し、駆動側可動ピン15がこれら2つのカムを貫通している。
 回転レバー12に切り込まれた第二溝カム13には回転レバー12の回転軸に対して遠い側の端部に保持ばね20が固定されている(図2)保持ばね20は、駆動側可動ピン15を回転レバー12の回転軸に向けて付勢するように固定する。
 回転レバー12に、その両側から突出するように被駆動側可動ピン16を固定し、被駆動側ロッド18に切り込まれた第三溝カム14内を被駆動側可動ピン16が移動可能となるようにして回転レバー12と被駆動側ロッド18を連結する。
 被駆動側ロッド18と駆動側ロッド10はガイド19設けられた被駆動側ロッド押さえ溝19Aと駆動側ロッド押さえ溝19Bで上下方向の変位が制限され、運動方向は開極方向のみとなる。
 ガイド19と回転レバー12にはレバー回転ピン17が通される。駆動側可動ピン15とレバー回転ピン17はピンをそれぞれ駆動側固定ピン固定ナット22、レバー回転ピン固定ナット23で固定されている。
 図1に本発明の実施形態における双方向駆動機構部の詳細を示す。駆動側ロッド10には、第一溝カム11が切り込まれており、操作器側1(図4参照)から見て、第一溝カム11は第一直線部161、くぼみ部162、曲線部163及び第二直線部164で構成されている。第一直線部161と第二直線部164は遮断動作軸と平行に設けられ、かつ、それぞれが同一直線上又は平行に設けられている。第一直線部161と前記第二直線部164の間には、曲線部163及びくぼみ部162が被駆動側ロッド18から遠い側に凸に設けられている。
 回転レバー12には第二溝カム13が形成され、被駆動側ロッド18には第三溝カム14が切り込まれている。第一溝カム11及び第二溝カム13の溝幅に等しい径の駆動側可動ピン15が第一溝カム11及び第二溝カム13内を回動自在に移動するよう構成する。
 被駆動側可動ピン16を回転レバー12に設けた孔に嵌めこんで固定し、被駆動側可動ピン16の両端が回転レバー12の回転に応じて第三溝カム14を上下動するように構成する。駆動側可動ピン15と被駆動側可動ピン16は回転レバー12のレバー回転ピン17を挟んで反対側に配置する。
 駆動側のノズル8に取り付けた駆動側ロッド10と連結する駆動側アーク電極4が開極方向に駆動される。駆動側ロッド10の動作により、駆動側ロッド10と回転レバー12を連結する駆動側可動ピン15が第一溝カム11内を運動し、駆動側可動ピン15が第一溝カム11のくぼみ部162に差し掛かると、駆動側可動ピン15は回転レバー12の第二溝カム13の上端から下端に運動し、駆動側可動ピン15が回転レバー12の端部に固定された保持ばね20を押し込み、駆動側可動ピン15がくぼみ部162にはまることで、回転レバー12がレバー回転ピン17を中心に回転する。
 被駆動側ロッド18と回転レバー12を連結する被駆動側可動ピン16が第三溝カム内14を紙面上方向に移動することで、被駆動側ロッド18は駆動側ロッド10と反対方向に駆動する。
 このとき、仮に回転レバー12の第二溝カム13に保持ばね20がない場合を考慮すると、駆動側可動ピン15は駆動側ロッド10の第一溝カム11が開極方向に運動しているとき、くぼみ部162を通過せずに曲線部163に移動するため、回転レバー12が回転することができず、駆動側可動ピン15が停止し、遮断動作が停止する。
 このような事態を防ぐため、回転レバー12に第二溝カム13と保持ばね20を設けることで、駆動側可動ピン15が回転レバー12の第二溝カム13に固定された保持ばね20を押し込み、駆動側可動ピン15がくぼみ部162にはまることで、レバー回転ピン17を通る垂線を中心軸としたとき、回転レバー12の上部と下部が中心軸を超えて回転することができ、回転角を広角にすることができる。
 図1は、ガス遮断器の投入状態における双方向駆動機構部の断面図である。駆動側可動ピン15は前記第一溝カム内の前記第一直線部161の端部に位置し、駆動側ロッド10と被駆動側ロッド18は静止状態である。このとき、駆動側可動ピン15と被駆動側可動ピン16は回転レバー12のレバー回転ピン17を挟んで反対方向に位置する。駆動側可動ピン15は第二溝カム13内の端部に設けられた保持ばね20で保持されている(図2参照)。
 図2は、回転レバー12の駆動側ロッド10側端部詳細を示す拡大図である。保持ばね20は前記回転レバー12の第二溝カム13の端部を塞ぐように固定されている。保持ばね20は、例えば、皿ばね、コイルばね等が挙げられるが、駆動側可動ピン15を付勢できるものであれば、ばねに限定されない。保持ばね20は、駆動側可動ピン15をレバー回転ピン17に向けて第二溝カム13の端部に押しつけて保持する。保持ばね20は保持ばね固定部24で支えられ、保持ばね固定部24は回転レバー12の端部にボルトで固定する。
 図3は、双方向駆動機構部を遮断動作軸方向から見た図である。図3ではガイド19の内部構成を示すため、ガイド19を紙面右半分のみ示し、紙面左半分は省略した。回転レバー12の一端は2股に構成し、この間に駆動側ロッド10が配される。また、保持ばね20と保持ばね固定部24は回転レバー12の二股の先端に挟み込まれた状態で固定される。
 図4は、ガス遮断器の投入状態である。投入状態では操作器1の油圧やばねによる駆動源により、駆動側主電極2と被駆動側主電極3を導通させる位置に設定され、通常時の電力系統の回路を構成する。
 落雷などによる短絡電流を遮断する際には、操作器1を開極方向に駆動し、シャフト6を介し駆動側主電極2及び被駆動側主電極3を引き離す。その際、駆動側アーク電極4と被駆動側アーク電極5の間にアークが生成される。機械的圧縮室7による機械的な消弧ガス吹き付けと熱膨張室9によるアーク熱を利用した消弧ガス吹き付けにより、このアークを吹き消すことで電流を遮断する。
 図6に、駆動側アーク電極4と被駆動側アーク電極5のストロークを示す。時刻aは、駆動側アーク電極4の動作開始時刻を示す。時刻bは、駆動側可動ピン15が回転レバー12の第二溝カム13の上端から下端に運動し、駆動側可動ピン15をくぼみ部162に押し込むことで、被駆動側アーク電極4の動作が開始する時刻を示す。時刻cは駆動側可動ピン15が曲線部163の移動を開始する時刻を示す。時刻dは、駆動側可動ピン15が曲線部163を抜けて、被駆動側アーク電極5の動作が終了する時刻を示す。時刻eは、駆動側可動ピン15が第二直線部164の端部に到達し、駆動側アーク電極4の動作が終了する時刻を示す。
 図7は、被駆動側アーク電極5と連結している被駆動側ロッド18の動作直前の双方向駆動機構部の断面図である。駆動側可動ピン15が第一溝カム内の前記くぼみ部162手前まで移動し、駆動側ロッド10は開極方向に動作しているが前記被駆動側ロッド18は静止している。
 図8は、被駆動側アーク電極5の動作直前の状態である。時刻aから時刻bまでのストロークでは、前記駆動側アーク電極4は駆動ab(>被駆動ab)、被駆動側アーク電極5は被駆動ab=0であり、被駆動側アーク電極5は動作していない。
 図9は、被駆動側アーク電極5と連結している被駆動側ロッド18が動作直後の双方向駆動機構部の断面図である。駆動側可動ピン15が第一溝カム内のくぼみ部162に差し掛かると駆動側可動ピン15は回転レバー12の第二溝カム13の上端から下端まで移動し、回転レバー12の下部に設けた保持ばね20を押し込むことで、駆動側可動ピン15が第一溝カム11内のくぼみ部162に到達する。このとき、回転レバー12がレバー回転ピン17を中心に回転し、被駆動側可動ピン16が第三溝カム14内の上端まで移動し、被駆動側ロッド18が駆動側ロッド10と反対方向に動作する。
 図10は、被駆動側アーク電極5の動作直後の状態である。時刻aから時刻cまでのストロークは、動側アーク電極4は駆動ac(>被駆動ac)、被駆動側アーク電極5は被駆動acであり、両電極とも動作している。
 図11は、被駆動側アーク電極5と連結している被駆動側ロッド18の動作が終了したときの双方向駆動機構部の断面図である。被駆動側アーク電極5の動作が終了した状態である。駆動側可動ピン15が第一溝カム11内のくぼみ部162を抜け、第二直線部164の手前まで移動する。
 駆動側可動ピン15は回転レバー12に設けた下部の保持ばね20に押し戻され第二溝カム13の下端から上端まで移動する。このとき、駆動側ロッド10は開極方向に動作し、被駆動側可動ピン16が第三溝カム内の下端まで移動し、被駆動側ロッド18の動作は終了する。
 図12は、被駆動側アーク電極5の動作が終了した状態である。時刻aから時刻dまでのストロークは、駆動側アーク電極4は駆動ad(>被駆動ad)、被駆動側アーク電極5は被駆動adであり、駆動側アーク電極4は開極方向に動作し、前記被駆動側アーク電極5の動作は終了する。
 図13は、ガス遮断器の開極状態(遮断動作完了時)における双方向駆動機構部の断面図である。駆動側可動ピン15が第一溝カム11内の第二直線部164の端部に到達すると、駆動側ロッド10の動作は終了し、被駆動側ロッド18は静止状態となる。駆動側可動ピン15は下部の保持ばね20で保持され、第二溝カム13内での移動を抑制されている。
 図14は、ガス遮断器の開極状態(遮断動作完了時の状態)である。時刻aから時刻eまでのストロークは、駆動側アーク電極4は駆動ae(>被駆動ae)、被駆動側アーク電極5は被駆動aeであり、駆動側アーク電極4の動作は終了し、被駆動側アーク電極5は静止状態である。
 以上のように、駆動側ロッドの第一溝カムに設けたくぼみ部と回転レバーに第二溝カム、保持ばねを設けることで回転レバーの回転角を広角にできるため、双方向駆動機構部を小さくすることができる。
 また、本実施例に示す構成にすれば、第一溝カムの直線部、くぼみ部、曲線部の設計自由度が大きいことから、遮断部構成、遮断方式の異なる機種に応じて容易に設計変更が可能であり、遮断性能を確保するような最適な溝カム形状が設計可能である。
 なお、上記実施例では駆動側ロッドが紙面下側に位置しているが、紙面上側に位置した構成でも同様の効果を発揮する。また、上記実施例では熱膨張室と機械的圧縮室とを併用するパッファ形ガス遮断器について説明したが、本発明はこの形式に限らず、熱膨張室又は機械的圧縮室の一方のみを有するガス遮断器についても同様に適用することが可能である。
1・・・操作器
2・・・駆動側主電極
3・・・被駆動側主電極
4・・・駆動側アーク電極
6・・・シャフト
8・・・ノズル
9・・・熱膨張室
10・・・駆動側ロッド
11・・・第一溝カム
12・・・回転レバー
13・・・第二溝カム
14・・・第三溝カム
15・・・駆動側可動ピン
16・・・被駆動側可動ピン
17・・・レバー回転ピン
18・・・被駆動側ロッド
19・・・ガイド
19A・・・被駆動側ロッド押さえ溝
19B・・・駆動側ロッド押さえ溝
20・・・保持ばね
21・・・タンク
22・・・駆動側固定ピン固定ナット
23・・・レバー回転ピン固定ナット
24・・・保持ばね固定部
161・・・第一直線部
162・・・くぼみ部
163・・・曲線部
164・・・第二直線部

Claims (6)

  1.  密封タンク内に駆動側電極と被駆動側電極を対向して設け、前記駆動側電極は駆動側主電極と駆動側アーク電極を有し、前記被駆動側電極は被駆動側主電極と被駆動側アーク電極を有し、前記駆動側アーク電極は操作器に接続され、前記被駆動側アーク電極は双方向駆動機構部に連結されたガス遮断器であって、
     前記双方向駆動機構部は、前記駆動側電極からの駆動力を受ける駆動側ロッドと、前記被駆動側アーク電極に接続した被駆動側ロッドと、前記駆動側ロッドの動作に対して前記被駆動側ロッドを反対方向に動作させる回転レバーと、前記駆動側ロッドと前記被駆動側ロッドの動作を規定するガイドとを備え、
     前記駆動側ロッドが有する第一溝カムと、前記回転レバーが有する第二溝カムそれぞれに、駆動側可動ピンを連通させ、前記駆動側ロッドの動作により前記駆動側可動ピンが前記第一溝カム内及び前記第二溝カム内それぞれを運動することで、前記回転レバーを回動させ、前記被駆動側ロッドが前記駆動側ロッドと反対方向に駆動され、前記被駆動側ロッドに接続する前記被駆動側アーク電極が前記駆動側ロッドに接続する前記駆動側電極の前記駆動側アーク電極と反対方向に駆動されるガス遮断器。
  2.  請求項1に記載のガス遮断器において、
     前記第一溝カムは第一直線部と第二直線部を有し、
     前記第一直線部と前記第二直線部は遮断動作軸と平行に設けられ、かつ、それぞれが同一直線上又は平行に設けられ、
     前記第一直線部と前記第二直線部の間には、曲線部とくぼみ部が前記被駆動側ロッドから遠い側に凸に設けられることを特徴とする、
    ガス遮断器。
  3.  請求項2に記載のガス遮断器において、
     前記駆動側可動ピンが前記第一直線部を移動するとき、前記回転レバーの回転が静止した状態であり、
     前記駆動側可動ピンが前記くぼみ部に差し掛かると、前記回転レバーが回転を開始し、
     前記駆動側可動ピンが前記くぼみ部を抜けると前記回転レバーは回転を終了し、
     前記駆動側可動ピンが前記第二直線部を移動するとき、前記回転レバーの回転が静止した状態であることを特徴とする、
    ガス遮断器。
  4.  請求項1に記載のガス遮断器において、
     前記第二溝カムの前記回転レバーの回転軸に対して遠い側の端部には、前記駆動側可動ピンを前記回転レバーの回転軸に向けて付勢する弾性体が設けられていることを特徴とするガス遮断器。
  5.  請求項2に記載のガス遮断器において、
     前記第二溝カムの前記回転レバーの回転軸に対して遠い側の端部には、前記駆動側可動ピンを前記回転レバーの回転軸に向けて付勢する弾性体が設けられていることを特徴とするガス遮断器。
  6.  請求項3に記載のガス遮断器において、
     前記第二溝カムの前記回転レバーの回転軸に対して遠い側の端部には、前記駆動側可動ピンを前記回転レバーの回転軸に向けて付勢する弾性体が設けられていることを特徴とするガス遮断器。
PCT/JP2015/056280 2014-06-05 2015-03-04 ガス遮断器 WO2015186391A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014116346A JP2015230818A (ja) 2014-06-05 2014-06-05 ガス遮断器
JP2014-116346 2014-06-05

Publications (1)

Publication Number Publication Date
WO2015186391A1 true WO2015186391A1 (ja) 2015-12-10

Family

ID=54766472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056280 WO2015186391A1 (ja) 2014-06-05 2015-03-04 ガス遮断器

Country Status (2)

Country Link
JP (1) JP2015230818A (ja)
WO (1) WO2015186391A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107240527A (zh) * 2016-03-28 2017-10-10 株式会社日立制作所 气体断路器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109480A (ja) * 2001-09-28 2003-04-11 Toshiba Corp ガス遮断器
JP2012028106A (ja) * 2010-07-22 2012-02-09 Hitachi Ltd 双駆動式ガス遮断器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109480A (ja) * 2001-09-28 2003-04-11 Toshiba Corp ガス遮断器
JP2012028106A (ja) * 2010-07-22 2012-02-09 Hitachi Ltd 双駆動式ガス遮断器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107240527A (zh) * 2016-03-28 2017-10-10 株式会社日立制作所 气体断路器

Also Published As

Publication number Publication date
JP2015230818A (ja) 2015-12-21

Similar Documents

Publication Publication Date Title
KR101759452B1 (ko) 가스 차단기
JP6266448B2 (ja) ガス遮断器
JP6364358B2 (ja) ガス遮断器
WO2015186391A1 (ja) ガス遮断器
JP6132744B2 (ja) ガス遮断器
JP6535610B2 (ja) ガス遮断器
JP2018106924A (ja) ガス遮断器
JP2004281175A (ja) ガス遮断器
JP6685146B2 (ja) ガス遮断器
US9870884B2 (en) Gas circuit breaker
JP6596360B2 (ja) ガス遮断器
US9754742B2 (en) Gas circuit breaker
KR20090072579A (ko) 차단기용 동시구동장치
KR101783801B1 (ko) 가스절연 차단기
WO2017175450A1 (ja) ガス遮断器
JP6476073B2 (ja) ガス遮断器
JP6568775B2 (ja) ガス遮断器
JP2017195103A (ja) ガス遮断器
JP2007157376A (ja) パッファ形ガス遮断器
JP2018181502A (ja) ガス遮断器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15803064

Country of ref document: EP

Kind code of ref document: A1