WO2015185778A1 - Un sistema para aplicaciones de biodetección - Google Patents

Un sistema para aplicaciones de biodetección Download PDF

Info

Publication number
WO2015185778A1
WO2015185778A1 PCT/ES2015/070434 ES2015070434W WO2015185778A1 WO 2015185778 A1 WO2015185778 A1 WO 2015185778A1 ES 2015070434 W ES2015070434 W ES 2015070434W WO 2015185778 A1 WO2015185778 A1 WO 2015185778A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
lever
mechanical
nanoparticle
detection
Prior art date
Application number
PCT/ES2015/070434
Other languages
English (en)
French (fr)
Inventor
Francisco Javier Tamayo De Miguel
Priscila Monteiro Kosaka
Valerio PINI
Montserrat CALLEJA GOMÉZ
Jose Jaime RUZ MARTINEZ
Daniel RAMOS VEGA
Maria Ujue GONZALEZ SAGARDOY
Original Assignee
Consejo Superior De Investigaciones Cientificas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Cientificas filed Critical Consejo Superior De Investigaciones Cientificas
Priority to ES15742334.4T priority Critical patent/ES2684794T3/es
Priority to EP15742334.4A priority patent/EP3153844B1/en
Priority to DK15742334.4T priority patent/DK3153844T3/en
Priority to PL15742334T priority patent/PL3153844T3/pl
Priority to US15/315,029 priority patent/US10502734B2/en
Publication of WO2015185778A1 publication Critical patent/WO2015185778A1/es
Priority to US16/668,005 priority patent/US20200072829A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N2021/5903Transmissivity using surface plasmon resonance [SPR], e.g. extraordinary optical transmission [EOT]

Definitions

  • the present invention belongs to the field of biosensors. More particularly, the present invention relates to a system for biodetection applications comprising two basic elements, a substrate with a functionalized surface and a nanoparticle, the system being able to enhance the plasmonic effect of the nanoparticle.
  • the invention also relates to a biosensor that incorporates such a system, in addition to the method for detecting and quantifying a selected target analyte in a sample using such a system.
  • the invention relates to a device that can detect the enhanced optoplasmonic effect of the nanoparticles by means of the system of the invention or combine the detection of such an optoplasmonic effect with the analysis of changes in the mechanical characteristics of the substrate.
  • a biosensor measures the physical changes that a biological recognition layer attached to a solid transducer undergoes when it interacts with a sample containing the molecules chosen as the target. Thus, it employs the ability of some biomolecules (receptors) to specifically bind (recognize) complementary biomolecules (ligands). The most typical interactions are complementary nucleic acid hybridization and antibody / antigen binding. Biosensors are increasingly in demand in fundamental biological studies, health sciences research, drug discovery and clinical diagnosis 1 "3. Depending on the physical change measured, biosensors can be classified as optical, electrical and mechanical.
  • Optical biosensors can be divided mainly into detection based on marks and detection without marks.
  • the most commonly used brand-based biosensors are based on fluorescence-based detection, target molecules or biorecognition molecules are labeled with fluorescent labels, such as dyes; The intensity of the fluorescence signal indicates the amount of molecules chosen as the target. While fluorescence-based detection is extremely sensitive, it suffers from laborious marking procedures that can also interfere with the function of the biomolecule. In contrast, in unlabeled detection, the molecules chosen as the target are not labeled or altered, and are detected in their natural forms.
  • a significant part of the unmarked optical sensors measures the change in the refractive index close to the sensor surface by exciting an evanescent field that decreases exponentially in bulk solution with a characteristic length between tens to hundreds of nanometers 4 .
  • the surface plasmon resonance procedure (SPR) and the localized surface plasmon resonance procedures (LSPR) are the most popular among unbranded optical biosensors.
  • electrochemical devices have traditionally received most of the 5 "7 attention. These devices normally couple enzymes that produce or consume electrons after recognition of substrates to an electrode transducer. Many of these enzymes specifically catalyze reactions of clinically important analytes such as glucose, lactate, cholesterol, amino acids, urate, pyruvate, glutamate, alcohol, hydroxybutyrate, to name a few. Advances in nanotechnology are also providing nanometric-scale electrical biosensors based on nanowires and semiconductor nanotubes, in that the electrochemical opening occurs from a change in the local surface potential due to the 8 "10 target binding.
  • quartz crystal resonators such as those used in watches
  • the resonance frequency is measured and related to the change in mass induced by the binding of the analyte to the layer of recognition immobilized on the crystalline surface.
  • a subclass of mechanical biosensors is called nanomechanical biosensors, who take the greatest return the size of nanometric scale of at least one dimension 14 "20.
  • ELISA endpoint detection bioassays
  • ELISAs are essential tools in the biomedical field due to their good sensitivity, simplicity of the assay, reliability and high performance.
  • NP nanoparticles
  • LSPR localized surface plasmon resonance
  • plasmonic ELISA the localized plasmon resonance shift facilitated by the aggregation of gold nanoparticles is used to color the detection mark of very low concentrations of an analyte of interest.
  • both PSA and the p24 antigen of the HIV 1 capsid are detected at concentrations of only 1 x 10 "18 g / ml.
  • the biocatalytic cycle of an enzyme generates colored NP solutions due to fact that when the concentration of hydrogen peroxide decreases aggregate NPs are formed.
  • the binding of the analyte promotes the aggregation of NP which in turn gives the solution a blue color. This color change is used as a detection signal that can even be followed with the naked eye and thus provides a low cost detection approach.
  • the labeling of NP with various DNA sequences provides the multiplexing capability that metallic NPs would not have alone, since they lack a range of color marks to mark each specific reaction.
  • the so-called bar biocode procedure has not only been used for DNA detection, but has also successfully treated protein detection.
  • the bar biocode is based on magnetic microparticle probes with antibodies that specifically bind to a target of interest, for example, a clinically relevant protein as a specific prosthetic antigen (PSA) (see reference 23) and nanoparticle probes which are encoded with DNA that is unique to the target protein of interest and antibodies that can match the target captured by the microparticle probes.
  • PSA prosthetic antigen
  • Magnetic separation of complex and target probes, followed by dehybridization of oligonucleotides on the surface of the probe of nanoparticles, allows the determination of the presence of the target protein that identifies the oligonucleotide sequence released from the nanoparticle probe. Because the nanoparticle probe carries a large number of oligonucleotides for the protein binding event, there is substantial signal amplification and the target protein can be detected at low concentrations (atomolar concentration). Alternatively, a polymerase chain reaction (PCR) in oligonucleotide barcodes can enhance sensitivity to 3 atomolar. Comparable clinically accepted conventional trials have sensitivity limits of 3 picomolar, six orders of magnitude less sensitive to that observed with this procedure 23 .
  • PCR polymerase chain reaction
  • a limitation of this technique is the required analysis time, up to 100 minutes, given the need to separate the complex and target probes from the sample solution and subsequent identification of the DNA tags. With this procedure quantification is also possible.
  • One approach is to perform a PCR and / or gel electrophoresis, but these are procedures not suitable for point of care applications and exclude rapid analysis as discussed in reference 25.
  • An alternative detection procedure is based on the spectral change in the scattered light when at least two NPs get close to each other 26,27 .
  • the color change is due to a shift in the surface plasmon resonance of the Au nanoparticles when at least two NPs get close to each other. This produces a detectable color shift and a change in the intensity of collected light that can be measured optically.
  • NP probe complexes always comprise two or more nanoparticles bound to a specific target analyte, this has been called a light scattering complex. This has the advantage that only NP aggregates, which contain the analyte, are detected. Non-aggregated particles, which include those that do not contain the target analyte, are not detected in this procedure.
  • One way to eliminate the need for PCR amplification while maintaining a good multiplexing capacity is to hybridize the GNP dispersion complexes on a solid support functionalized with known sequences at defined positions, as is done in fluorescent matrices.
  • the subsequent scan of the scattered light serves as a biosensor signal and the multiplexing capacity is obtained by the predefined positions of the known immobilized sequences.
  • a way to amplify this optical signal is needed.
  • a method for scaling the scattered light signal of the NP marks is the reduction of silver promoted by nanoparticles 28 or colorimetric response by enzymatic catalysis on optically coated silicon substrates 29 . This procedure is used to amplify the optical signal and also allows quantifying the amount of analyte in sample 30 .
  • Nanomechanical resonators have demonstrated unprecedented detection limits in the detection of masses of atoms and molecules under vacuum.
  • the mass detection limits have recently been pushed to the range of yoctograms, that is, the mass of a single proton can be measured.
  • Two components are essential to achieve mass sensitivity: devices with nanometric scale dimensions and high quality factors (1000-100000) that involve vacuum measurements.
  • the detection of biomolecules should ideally be carried out in aqueous solutions, the natural environment in which biological processes occur.
  • Nanomechanical resonators in liquids have a very low quality factor (1-10) as a result of viscous damping. In addition, the liquid is dragged along with the nanomechanical resonator, increases its effective mass and thus reduces sensitivity.
  • nanometric scale The miniaturization of devices at the nanometric scale does not improve these limitations. And, more importantly, biological detection requires many repetitive measurements that can only be achieved with disposable and cost-effective devices that can be both easily manipulated and measured. These requirements are met by micro-lever matrices that are commercially available, but not by resonators. Nanometric scale mechanics of the state of the matter that are still manufactured at low speed by nanofabrication techniques and are highly irreproducible in dimensions and mechanical response. In addition, the measurement of the resonant frequency of these devices in liquid is scientifically and technically demanding. These limitations have limited the success of nanomechanical resonators as biological sensors.
  • Nanomechanical resonators with mass marks Nanomechanical resonators have made use of NP to amplify the signal, here, the greater mass bonding provided by the marks increases the mechanical response of the sensor.
  • a reduction in the resonance frequency is related to the added mass of the analyte-NP complex that binds to the resonator.
  • cancer biomarkers are in blood plasma at a concentration in the range of 1 ng / ml, while the concentration of unwanted proteins is approximately 70 mg / ml.
  • the sensitivity to achieve the detection of cancer biomarkers is satisfied by most nanomechanical biosensors.
  • the selectivity that determines the rate of false positives and false negatives has received little attention.
  • the detection of cancer biomarkers in complex media such as serum requires selectivity greater than 1 part per million.
  • Theoretical predictions indicate that the selectivity required for the detection of biomarkers in complex media can be achieved by functionalizing the sensors with a high surface density of receptors 32.
  • PEG polyethylene glycol
  • BSA bovine serum albumin
  • nanomechanical element matrices with an internal reference helps to reject common noise sources, which include non-specific adsorption.
  • Another approach is the implementation of sandwich assays traditionally used in ELISA.
  • the nanomechanical system is functionalized with a specific molecular receptor for the biomarker of interest. After exposure of the nanomechanical system to the sample, the device is incubated with secondary receptors attached to a molecule or a material that acts as a signal amplifier, such as a nanoparticle to increase the effect of the mass.
  • the use of two different receivers greatly enhances sensitivity and specificity.
  • a second promising strategy that maintains the unmarked characteristic of nanomechanical biosensors is to implement microfluidics for purification and preconcentration of samples.
  • the potential of this approach has been demonstrated with non-branded nanowire nanosensors.
  • a microfluidic purification chip simultaneously captures multiple biomarkers of blood samples and releases them, after washing, in purified buffer for detection by nanosensors 8 .
  • This two-stage approach isolates the detector from complex whole blood environment, and reduces its minimum required sensitivity by effectively pre-concentrating biomarkers.
  • nanotechnology has provided biosensors with unpredictable levels of sensitivity without the need for marking
  • nanosensors have also shown significant difficulties in issues related to specificity and reproducibility, and hence are not yet ready for the selection of biomarkers in blood .
  • the high biological noise set by non-specific interactions greatly exceeds the intrinsic noise of most existing nanosensors.
  • the problem is not sensitivity, but:
  • the authors of the present invention have found a system for biodetection applications that allows ultra-low detection limits as it discriminates concentrations at the edge of 10 ag / ml.
  • the system allows the detection of target analytes in complex biological background noises such as blood samples, without the need for any purification stage.
  • the invention is based on a sandwich-type optical test that takes advantage of the surprising and unexpected enhancement of the plasmonic effect caused in the nanoparticles by the combination of the particular nature and design of the substrate used in the biosensor and the particular nature and dimensions of the nanoparticle.
  • This system can be adapted in a nanomechanical device in order to analyze both optoplasmonic and mechanical signals so as to improve detection reliability.
  • the robustness of this dual biosensor leads to an extremely low false positive and false negative rate, «2 ⁇ 10 " 4 at an ultra low concentration 100 ag / ml, thus providing an excellent solution to be integrated into a POC device.
  • Biosensor Analytical device comprising a biological recognition element (for example, enzyme, receptor, DNA, antibody, or microorganism) in intimate contact with a transducer of electrochemical, mechanical, optical, thermal, acoustic or other physical signals that together allow the analysis of chemical properties or detection or quantification of target analytes.
  • a biological recognition element for example, enzyme, receptor, DNA, antibody, or microorganism
  • Dielectric material is an electrical insulator that can be polarized by an applied electric field.
  • Functionalized surface or surface functionalization A procedure or technique to introduce chemical functional groups into a surface. This is used in biosensors to immobilize a recognition element on a surface, in the present invention on the surface of the substrate.
  • Recognition element It is the element of the immobilized system that functionalizes the surface of the substrate that can specifically recognize and bind to the target analyte.
  • the recognition element may be selected from, but not limited to, an antibody, a receptor, a peptide, a protein, a carbohydrate, a nucleic acid, a cell, a microorganism or a part thereof.
  • Detection element It is the element of the system attached to the nanoparticle and that can specifically recognize and bind to the target analyte.
  • the detection element together with the nanoparticle allow the detection of the target analyte when it is present in the sample.
  • Target analyte It is the element sought for detection and / or quantification. May be of any nature such as organic or inorganic molecules (drugs, hormones, cholesterol, etc.), biological molecules (peptides or proteins, nucleic acid molecules, growth factors, biomarkers etc.), cells (protozoic cells, bacterial cells, fungal cell, eukaryotic cells) or cell fragments (bacterial walls, cellular organelles such as mitochondria, cell vesicles, etc.) or viruses.
  • organic or inorganic molecules drug, hormones, cholesterol, etc.
  • biological molecules peptides or proteins, nucleic acid molecules, growth factors, biomarkers etc.
  • cells protozoic cells, bacterial cells, fungal cell, eukaryotic cells
  • cell fragments bacterial walls, cellular organelles such as mitochondria, cell vesicles, etc.
  • Extinction coefficient The extinction coefficient is the imaginary part of the complex index of refraction.
  • refractive index The refractive index of a substance (optical medium) is a dimensionless number that describes how light, or any other radiation, propagates through that medium.
  • Surrounding material It is the material underlying both surfaces of the substrate in the system of the invention.
  • the refractive index of the surrounding material is relevant in achieving the enhanced plasmonic effect.
  • Plasmonic effect It is the phenomenon produced in nanoparticles that have plasmonic properties when irradiated with an appropriate electromagnetic radiation.
  • the plasmonic effect is produced by the oscillations of free electrons induced in a metal by an electromagnetic wave.
  • Antibody A Y-shaped protein (immunoglobulin) on the surface of B lymphocytes that is secreted in the blood or lymph in response to an antigenic stimulus, such as a bacterium, virus, parasite or transplanted organ, and that neutralizes the antigen by binding specifically to him.
  • an antigenic stimulus such as a bacterium, virus, parasite or transplanted organ.
  • the detection of antibody-antigen pair formation can be followed by several procedures and is the basis of many biosensors.
  • Receiver It is a biological structure that can detect chemical stimuli from its surroundings. Receptors are normally present on the cell surface and are adapted to detect a particular type of molecule that is responsible for inducing a response in the cell once in contact with the receptor. Peptide: Short chains of amino acid monomers linked by peptide bonds.
  • Carbohydrate refers in the context of the invention to complex oligosaccharide or polysaccharide molecules that have the ability to bind specific targets.
  • lipopolysaccharide can be cited.
  • Nucleic acid Any polymeric or oligomeric molecule that has a skeleton that contains a sequence of nitrogen bases - adenine (A), thymine (T), cytosine (C) and guanine (G).
  • nucleic acid molecules include, among others, DNA molecules, RNA molecules, aptamers or PNA molecules.
  • Plasmonic metamaterial nanoparticle It is a nanoparticle made of an artificial material manipulated to manifest plasmonic properties.
  • Transmittance is the fraction of incident light (electromagnetic radiation) at a specified wavelength that passes through a sample.
  • Reflectance Reflectivity or reflectance is the fraction of incident electromagnetic power that is reflected from a separation surface.
  • Detection It is the action of identifying the presence or absence of the target analyte in the sample.
  • Quantification It is the action of determining the concentration of a target analyte within the sample.
  • Electromagnetic radiation Electromagnetic radiation is a fundamental phenomenon of electromagnetism, behaving like waves that propagate through space and carry radiant energy. An electromagnetic wave has both electric and magnetic field components, which oscillate in a fixed relationship with each other, perpendicular to each other and perpendicular to the direction of energy and wave propagation.
  • Dispersion of light is a type of interaction between matter and an electromagnetic wave.
  • the reflected wave is normally concentrated in the specular direction as determined by the well-known laws of reflection.
  • specular reflection there is also a diffuse component that is irradiated over a wide range of angles centered on the specular beam that is commonly known as light scattering.
  • the dispersion processes can be produced from the non-zero roughness of the surface or by the presence of small particles deposited on it.
  • Absorption The absorption of electromagnetic radiation is the way in which the energy of an electromagnetic radiation is collected by matter, usually the electrons of an atom. Thus, electromagnetic energy is transformed into internal energy of the absorber, for example, thermal energy.
  • Extinction signal The term "extinction” means the loss of light in a transmitted optical beam when it passes through a medium or object. Two different mechanisms contribute to extinction: absorption and dispersion.
  • a first objective of the invention is a system for biodetection applications comprising: a. a substrate of dielectric material having at least one functionalized surface with a recognition element that can specifically bind to a target analyte and
  • the substrate of dielectric material has a thickness between 0.1 ⁇ and 5 ⁇ and an extinction coefficient of less than 0.3
  • the nanoparticle has at least one of its dimensions with a size of 2 nm to 300 nm and
  • the system of the invention is adapted for sandwich detection and quantification procedures (see, for example, Figure 1).
  • the use of a recognition element and a detection element is a first aspect that greatly improves the sensitivity and specificity of the system.
  • the most surprising and advantageous aspect of the system of the invention derives from the potentiated plasmonic effect that can be achieved in optoplasmonic detections. This particular effect allows ultra-low detection limits.
  • the effect is a hybrid plasmonic mode that results from the combination of the particular nature and design of elements that make up the system, specifically the substrate and the nanoparticle.
  • the substrate has to be a dielectric material so that the phenomenon of surface plasmon resonance can take place.
  • Any dielectric material in the electromagnetic spectral range of interest is suitable in the system of the invention. The only condition is that its extinction coefficient must be less than 0.3.
  • the dielectric material is quartz, silicon, silicon nitride, silicon carbide, graphene, polymers such as photoresist, for example SU8, and hydrogels such as mixtures of PEG and PLA or DEXTRANO and PEG.
  • the most preferred dielectric materials are silicon or silicon nitride.
  • the thickness of the substrate should be between 0.1 ⁇ and 5 ⁇ , more preferably between 0.25 ⁇ and 2 ⁇ .
  • the incident electromagnetic radiation is refracted and cannot produce a multireflector effect within the substrate cavity, which is the physical phenomenon that ultimately contributes to the potentiation of the plasmonic effect (see Figure 2a).
  • the potentiation of the plasmonic effect is a hybrid mode that results from the coupling of the surface plasmon mode located on the nanoparticles and the optical cavity mode.
  • the nanoparticle When the nanoparticle is on the substrate, in addition to backward scattering, multiple pathways help enhance dispersion by a single nanoparticle.
  • One route involves the amplification of direct dispersion by the nanoparticle by multiple reflections.
  • the coupling between the dipole plasmon resonance of the nanoparticle and the resonances of the optical substrate cavities creates a hybrid mode that reinforces the dispersion signal at the nanoparticle site.
  • the non-scattered light undergoes multiple reflections in the optical cavity of the substrate, producing a cascade of scattering interactions at neighboring nanoparticle sites that lead to a higher bulk density of nanoparticles in, for example, a field image Dark.
  • the substrate is in the form of a lever with a thickness design between 0.1 ⁇ and 5 ⁇ .
  • a clear difference in the intensity of the scatter signal can be observed between the chip region in which the thickness is greater than 5 ⁇ and the lever region in which the thickness is between
  • the second key point to consider in the design of the system is that the ratio between the refractive index of the dielectric material (substrate) and the surrounding material must be greater than 1, 1.
  • This aspect is also essential in achieving the multireflector effect in the substrate cavity.
  • the presence of materials surrounding the substrate that have a different index of refraction in the particular ratio greater than 1, 1, makes the opposite surfaces of the substrate as mirrors, which allows multireflection within the cavity.
  • the surrounding material may be both in the solution itself in which the substrate is submerged for detection as any surrounding fluid or gases, or a particular surrounding solid material with the sole condition that the refractive index of the surrounding material differs from the refractive index of the substrate.
  • the system of the invention can in principle be used in any type of biosensor or mechanical resonator conformation.
  • the substrate can be in the form of a micro lever, a micropile, a rope, a trampoline, a rectangular lever, a triangular lever, a pyramid lever, a shovel lever, a membrane, a plate, a bridge, a hollow tube or a nanowire (see, for example, Figure 11).
  • the target analyte is the element to be detected from the sample, especially from biological samples.
  • the target analyte can be of any nature such as organic or inorganic molecules (drugs, hormones, cholesterol, etc.), biological molecules (peptides or proteins, nucleic acid molecules, growth factors, biomarkers etc.), cells (protozoic cells , bacterial cells, fungal cell, eukaryotic cells) or cell fragments (bacterial walls, cellular organelles such as mitochondria, cell vesicles, etc.) or viruses.
  • An advantage of the system of the invention is that it allows detecting and quantifying analytes within complex samples, such as, for example, blood or urine samples, without the need for any purification stage or separation stage. This makes the manipulation simpler and reduces the time for detection, which makes the present system very suitable for implementation in POC devices.
  • the recognition element that functionalizes the surface of the substrate can be any element that can recognize and specifically bind a target analyte.
  • the recognition element may be an antibody (a polyclonal or monoclonal antibody), a receptor (a cell surface receptor such as an opioid receptor), a peptide (such as an opioid peptide), a protein (such as lectins), a carbohydrate (such as lipopolysaccharide O antigen), a nucleic acid (a DNA or RNA sequence), a cell (protozoic cells, bacterial cells, fungal cell, eukaryotic cells), a microorganism or a part thereof (such as bacterial walls, cell organelles such as mitochondria, cell vesicles etc.).
  • the recognition element is an antibody, more preferably a monoclonal antibody.
  • the nanoparticle must have plasmonic properties.
  • the nanoparticle can be, for example, a gold, silver or plasmonic metamaterial nanoparticle such as, but not limited to, titanium nitride and non-stoichiometric oxides such as vanadium, titanium and aluminum.
  • the nanoparticle can take a multitude of forms or structures such as, for example, nanospheres, nanovarillas, sharp nanovarillas, nanovainas, nanojaulas / frames, hollow nanospheres, tetrahedra, octahedra, cubes, icosahedrons, rhombic dodecahedrons, concave nanocubes, tetrahexahedrons, bipyramids obtuse triangular, trisohectahedra and nanoprisms (see Figure 12), but it is essential that at least one of its dimensions has a size of 2 nm to 300 nm, preferably 5 nm to 150 nm, because the peak of plasmonic resonance is highly dependent on the size of the nanoparticle.
  • the nanoparticle comprises at least one detection element attached to it that can specifically bind to the target analyte.
  • the detection element can be any type of element that can be attached to the target analyte, thus, in principle its nature may be the same or similar to that of the recognition element.
  • the detection element is selected from both an antibody and a nucleic acid molecule.
  • the detection element has the function of detecting the presence of the target analyte captured by the recognition element immobilized on the surface of the substrate. Thus, the nanoparticle will only bind to the substrate through the detection element attached to it if the target analyte is present in the analyzed sample.
  • the recognition element can be attached to the target analyte which is then detected by the detection element in a sandwich arrangement.
  • the absence of the target analyte in the sample has the consequence that the recognition element will not join the target analyte and thus no detection by the detection element will occur.
  • the target analyte if it is present in the sample, even at ultra low concentrations, it can be detected and quantified based on the dispersion intensity or extinction intensity (depending on the measured parameters) produced by the nanoparticles. If the target analyte is not present in the sample, no detectable plasmonic effect will take place on the substrate since no nanoparticles will be present.
  • the detection and quantification can be done by measuring the intensity of dispersion produced by the nanoparticles when the system is irradiated with electromagnetic radiation.
  • a detectable plasmonic effect will take place by irradiation at any wavelength of the white light spectrum thanks to the amplification of the signal provided by the substrate that meets the design parameters.
  • the type of signal measured is the dispersion signal
  • the measurement is made in reflectance and, in this case, the substrate reflectance index ranges between 0.01 and 1.
  • detection and quantification can be carried out by measuring the extinction signal of the irradiated nanoparticles with electromagnetic radiation. If the extinction signal is measured, the measurement is made in transmittance and, in such case, the transmittance index of the substrate comprises between 0.01 and 1.
  • the visualization of the nanoparticles in the system of the invention can be performed by optical means such as a dark field microscope or a cross polarization microscope.
  • a further aspect of the invention is a biosensor comprising a system according to the invention.
  • the system of the invention is in principle applicable to any type of biosensor on which the system can be arranged.
  • the system is arranged in a micro or nanomechanical biosensor so that optomechanoplasmonic signals can be detected and analyzed.
  • This particular type of dual biosensor allows superior reliability, since the biosensor response is only considered positive when both plasmonic and mechanical signals give a positive result.
  • the dual biosensor does not improve the detection limit of the optoplasmonic system of the invention alone, it clearly improves the specificity of the assay, thus improving its reliability.
  • the biosensor is arranged in the form of a matrix comprising multiple systems according to the invention, each system comprising a substrate designed to detect a different target analyte or different concentrations of the same analyte.
  • Another aspect of the invention is a method for detecting and / or quantifying a selected target analyte in a sample comprising: a) contacting a sample with a substrate of dielectric material having a functionalized surface with a recognition element that can be attached specifically to the target analyte, the substrate of dielectric material having a thickness between 0.1 ⁇ and 5 ⁇ and an extinction coefficient of less than 0.3 and the ratio between the refractive index of the dielectric material and the surrounding material exceeding 1 , one
  • b) add to the substrate resulting from a) at least one nanoparticle with plasmonic properties and having at least one of its dimensions with a size of 2 nm to 300 nm, comprising at least one detection element attached to it and which can be specifically bound to the target analyte, in order to detect the presence of the target analyte bound to the recognition element
  • the process of the invention is based on the use of the sandwich detection system of the invention as explained above.
  • Stage a) is the recognition stage, in which the sample is contacted with the functionalized surface of the substrate.
  • the substrate surface is designed to detect a particular type of target analyte.
  • the dielectric material used in the process can be any dielectric material as long as it has an extinction coefficient of less than 0.3.
  • the dielectric material is quartz, silicon, silicon nitride, silicon carbide, graphene, polymers such as photoresists such as SU8 and hydrogels such as mixtures of PEG and PLA or DEXTRANO and PEG.
  • the most preferred dielectric materials are silicon or silicon nitride.
  • the recognition element used in the process of the invention can be any element that can specifically recognize and bind to a desired target analyte.
  • the recognition element may be an antibody. (a polyclonal or monoclonal antibody), a receptor (a cell surface receptor such as an opioid receptor), a peptide (such as an opioid peptide), a protein (such as lectins), a carbohydrate (such such as lipopolysaccharide O antigen), a nucleic acid (a sequence of DNA or RNA), a cell (protozoic cells, bacterial cells, fungal cell, eukaryotic cells), a microorganism or a part thereof (such as bacterial walls, organelles cell such as mitochondria, cell vesicles, etc.).
  • the recognition element is an antibody, more preferably a monoclonal antibody.
  • Step b) of the process of the invention comprises the detection stage.
  • the nanoparticle that acts as a mark for detection and quantification is attached to a detection element that can specifically bind to the target analyte at a different position or area of the recognition element. If the target analyte is present in the sample, the structure resulting from step a) will be detected by the detection element after a suitable incubation time. Once the detection reaction has taken place, the nanoparticles are immobilized on the surface of the substrate and are in a condition to be detected and / or quantified based on their plasmonic properties.
  • the detection element attached to the nanoparticle used in the context of the process can be any type of element that can bind to the target analyte, thus, in principle its nature may be the same or similar to that of the recognition element.
  • the detection element is selected from both an antibody and a nucleic acid molecule.
  • the type of nanoparticle used in the process of the invention can be any nanoparticle that has plasmonic properties.
  • the nanoparticle can be a nanoparticle of gold, silver or plasmonic metamaterial.
  • the nanoparticle can adopt any structure such as nanospheres, nanovarillas, sharp nanovarillas, nanovainas, nanojaulas / frames, hollow nanospheres, tetrahedra, octahedra, cubes, icosahedrons, rhombic dodecahedrons, concave nanocubes, tetrahexahedrons, obtuse triangular bipyramids, trisohectahedra and nanoprisms as long as one of its dimensions is 2 nm to 300 nm in size.
  • Step c) comprises irradiation of the substrate surface with electromagnetic radiation so as to reveal the presence or absence of the nanoparticle in the substrate.
  • the electromagnetic radiation incident on the substrate resulting from step b) will reveal whether or not the sample contains the target analyte. If the target analyte is present in the sample, the incident electromagnetic radiation will produce a plasmonic effect on the nanoparticle that will be greatly enhanced by the particular phenomena that take place within the substrate cavity due to its particular design.
  • the enhanced plasmonic effect produced when the nanoparticles are present in the substrate is a hybrid mode that results from the coupling of the surface plasmon mode located on the nanoparticles and the optical cavity mode.
  • step d comprises measuring the light scattering or intensity of the extinction signal so that the presence or absence of the target analyte in the sample is detected and for quantification thereof. Measurements can be made by optical devices or means adapted for such a task as a dark field microscope or a cross polarization microscope.
  • Quantification can be done based on the intensity of the light scattering signal or the intensity of the light extinction signal.
  • the intensity of the measured signal can be related to an unknown analyte concentration by comparison with a calibration curve obtained from samples with previously known concentrations of an analyte.
  • the process of the invention can be designed to measure the enhanced plasmonic effect on nanoparticles in reflectance or transmittance.
  • the intensity of the dispersion signal is measured and thus the substrate of dielectric material must have a reflectance index between 0.01 and 1.
  • the intensity of the extinction signal is measured and thus the substrate of dielectric material must have a transmittance index between 0.01 and 1.
  • the process of the present invention allows ultra-low detection limits since it discriminates concentrations at the edge of 10 ag / ml and has the advantage that it allows the detection of target analytes in complex biological samples such as blood or urine samples without the need for no preparation or prior purification of the sample.
  • the process of the invention is performed in a micromechanical system whereby the substrate of dielectric material is arranged as a mechanical element that can undergo a change in at least one mechanical characteristic when the target analyte is present in the sample, and when the following additional steps are performed: e) measure the at least one mechanical characteristic in the mechanical element so that it detects the presence or absence of the target analyte in the sample, f) combine the optical data obtained in step d ) with mechanical data from step e) in order to improve the reliability of the detection procedure.
  • the process of the invention although it does not improve the detection limit dramatically, improves the reliability of the procedure when compared to the procedure based solely on the optoplasmonic effect.
  • the process of the invention in this particularly preferred embodiment leads to a very low rate of false positives and false negatives. The superior reliability is explained because the result of the procedure is only considered when both the plasmonic and the mechanical signals give a positive result.
  • the dielectric material substrate that is essential in the present invention due to its optical properties is also arranged to act as a mechanical element that can undergo a change in at least one mechanical characteristic when the target analyte is present in the sample.
  • This change in a mechanical characteristic can be measured so that a mechanical signal is obtained, in addition to the optoplasmonic signal.
  • the presence of the nanoparticle when the target analyte is present in the sample also produces an amplified mechanical signal due to the greater mass provided by the nanoparticle.
  • the mechanical element may be in the form of a micro lever, a micropile, a string resonator, a trampoline resonator, a rectangular lever, a triangular lever, a pyramid lever, a blade lever, a membrane resonator, a plate resonator , a bridge, a hollow lever or a nanowire.
  • the substrate is arranged to act as a mechanical element in the form of a micro lever.
  • a change of any mechanical characteristic of the mechanical element can be measured in order to detect the presence of the target analyte in the sample.
  • the change in the detected mechanical characteristic can be selected, but not limited to, the position of a portion of the mechanical element, the vibration characteristic of the mechanical element, such as the vibration phase of the mechanical element, the frequency of the vibration of the element. mechanical, the amplitude of the vibration of the mechanical element or the surface tension on a portion of the mechanical element or the dissipation changes of the mechanical element.
  • step d) The combination of the optical data obtained in step d) with the mechanical data of step e) of the present process provides improved process reliability.
  • Another object of the invention is a device that can detect the enhanced optoplasmonic effect of the nanoparticles by means of the system of the invention or combine the detection of such an optoplasmonic effect with the analysis of changes in the mechanical characteristics in the substrate.
  • a first sensitive detector such as a dark field microscope or a cross polarization microscope arranged to receive electromagnetic radiation when reflected or transmitted through the substrate to produce at least a first output signal in response to the dispersion and / or the extinction of said electromagnetic radiation;
  • the device also comprises: a subsystem for detecting a change in a mechanical characteristic in the substrate, said subsystem comprising a second sensitive detector arranged to detect a mechanical change in the substrate to produce at least a second signal in response to said mechanical change, namely:
  • FIGURES Figure 1 Schematic representation of the sandwich assay on the substrate in the form of a lever, (a) The lever is functionalized with capture antibodies.
  • the functionalization comprises silanization, antibody binding on the upper surface of the lever and blocking with polyethylene glycol to minimize non-specific interactions on the lower surface of the lever and gaps between the antibodies.
  • Figure 2 Plasmonic detection of the CEA protein biomarker on the optical microcavity of the lever, (a) Schemes illustrating the different routes for the generation of the optical signal on the lever by multiple internal reflections, (b) Dispersion spectra of the assay of sandwich in the chip and lever regions for the CEA detection test. The dispersion is normalized to that of the silicon chip. The coupling between the dipole plasmonic modes and the individual modes of the lever microcavity leads to a double effect, first the plasmon-assisted dispersion is enhanced by the optical lever cavity by almost an order of magnitude, and second, the spectrum Plasmon nanoparticles are discretized by the modes of optical cavity of the lever.
  • Figure 3 Schemes of the optical beam deflection procedure to measure the vibration of the lever.
  • a laser beam focuses on the region of the free end of the lever.
  • the deflection of the reflected beam due to the vibration of the lever is measured by a linear position sensitive photodetector (PSD).
  • PSD linear position sensitive photodetector
  • a frequency generator sweeps the frequency by exciting a piezoelectric actuator located below the base of the lever matrix. The amplitude of vibration versus frequency is adjusted to the harmonic oscillator model to derive the resonance frequency and the quality factor of the lever.
  • Figure 4 Scanning electron microscope (SEM) images of a lever region that meets the design that leads to enhanced plasmonic effect (surface of the micro lever) and chip that has dimensions that do not lead to the enhanced plasmonic effect, both after the sandwich test in a control experiment and in a 1 pg / ml detection assay of serum CEA.
  • SEM scanning electron microscope
  • Figure 5 Density of nanoparticles on the micro-levers and chip in buffer measured with a scanning electron microscope and using a signal-based contrast algorithm implemented in Matlab software.
  • Figure 6 Plasmonic detection of the CEA protein biomarker.
  • the micro lever acts as an optical cavity while the dispersion in the chip's pre-pinning region is low, and cannot be used to discriminate the presence of CEA in the sample,
  • the signal is obtained from a quick inspection of the levers with a simple commercial optical microscope and dark field objective with low magnification.
  • the lever data is compared with the chip data to evaluate the effect of the optical lever cavity.
  • the dispersion for the control experiments in the lever and chip regions are represented as discontinuous regions representing the standard deviation of the data.
  • Figure 7 (a) Dispersion spectra of the effect of the nanoparticles that join on the chip that have dimensions that do not lead to the enhanced plasmonic effect, and lever regions that meet the design that leads to the enhanced plasmonic effect.
  • the dispersion is normalized to that of a raw silicon chip.
  • the box illustrates the different routes for generating the signal scattered on the lever by means of multiple internal reflections (also represented in Figure 2.)
  • Figure 8 Resonance of nanoparticle plasmons and optical lever cavity
  • the gold nanoparticles used in the sandwich assay characterize plasmon resonances associated with collective electron oscillations in the nanoparticle. These resonances give rise to enhanced dispersion and absorption close to the optical resonance frequency
  • the thickness of the lever means that the light can bounce effectively multiple times between the opposite sides of the lever that lead to an enhancement of the optical reflectivity at wavelengths where constructive interference occurs and, instead, to suppression of the reflectivity for wavelengths in which destructive interference occurs, (e) Bright-field images of the lever and chip regions showing the modulation of the reflectivity of the lever with the illumination wavelength in the region of the visible spectrum . The modulation of the reflectivity of the chip is insignificant, (f) Relative reflectivity on the lever with respect to the chip.
  • FIG. 9 Biomarker of the mechanical detection CEA protein, (a) Frequency of mechanical resonance of a silicon lever before and after the recognition stage with antibodies bound to nanoparticles for a control experiment and for a detection assay of CEA (1 pg / ml in PBS). The measurements were carried out in air at room temperature. The fundamental resonance frequency and the quality factors of the uncoated levers were 4.8 ⁇ 0.5 kHz and 5.5 ⁇ 0.5, respectively, (b) Relative displacement of the resonance frequency of the fundamental vibration mode against the concentration of biomarker in buffer and serum samples (red symbols). The lines are a guide for the eyes. The frequency shifts measured in buffer solution are compared with the predicted theoretical frequency offset of the buffer. distribution of nanoparticles on the lever obtained by scanning electron microscopy. The good agreement confirms that the frequency shift occurs from the mass loading of nanoparticles. The frequency offset for control experiments is represented as a discontinuous region that represents the standard deviation of the data.
  • Figure 10 (a) DET curves for a concentration of 10 fg / ml using nanomechanical and plasmonic signals and an optimal linear combination of them, (b) False negative rate versus false positive rate for each transduction mechanism and for a hybrid procedure that uses an optimal linear combination of dispersion and mechanical resonance frequency offset signals.
  • the colors indicate the target concentration.
  • Figure 11 Examples of different forms for the substrate of the system (a) commercial micro-levers, (b) micropilar resonators, (c) chord resonator, (d) trampoline resonators, (e) rectangular, triangular and blade levers, (f) membrane resonators, (g) plate resonators, (h) SEM image of a hollow lever and schematic representation, (i) nano-wire.
  • Figure 12 Gold nanoparticles of different size and shape useful in the system of the invention.
  • Small (a) and large nanospheres (b), (c) nanovarillas, (d) sharp nanovarillas, (e) nanovainas, (f) nanojaulas / frames, (g) hollow nanospheres, (h) tetrahedra / octahedra / cubes / icosahedra , (i) rhombic dodecahedra, (j) octahedra, (k) concave nanocubes, (I) tetrahexahedrons, (m) rhombic dodecahedra, (n) obtuse triangular bipyramides, (or) trisoctahedra and (p) nanoprisms.
  • a sandwich immunoassay was performed for the detection of a cancer biomarker.
  • Carcinoembryonic antigen (CEA) detection was chosen as the model.
  • CCA Carcinoembryonic antigen
  • a biofunctionalization procedure was applied to levers with optimum recognition efficiency and ultra-low embedding capacity 33 (see Figure 1 a).
  • the silicon levers were 500 ⁇ in length, 100 ⁇ in width and 1 ⁇ in thickness. This biofunctionalization occurs to immobilize the receptor layer which recognizes and traps the cancer biomarker.
  • the biofunctionalized lever was immersed in the liquid sample for a certain period of time and fixed temperature to allow the binding of the biomarker chosen as target to the capture antibodies immobilized on the surface of the lever (see Figure 1b ).
  • the lever was exposed to a solution containing the detection antibody bound to the nanoparticle that it recognized and bound to a specific region of the surface captured biomarker (see Figure 1c); here also the ideal time and temperature for the second recognition was determined.
  • a sandwich test was carried out that involves two stages of recognition to enhance selectivity and amplify the sensor response.
  • the detection antibody was bound to a 100 nm diameter gold nanoparticle that converted and amplified the biorecognition product into two detectable physical signals: (i) an increase in mass and (ii) an increase in light scattering due to the plasmonic properties of the nanoparticle (see Figure 7a and 7b).
  • lever matrices were cleaned with piranha solution (3H2S04: 1 H2O2) (be careful: the piranha solution is extremely corrosive, reactive and potentially explosive) for 15 minutes at room temperature (TA).
  • piranha solution 3H2S04: 1 H2O2
  • the levers were rinsed three times with Milli-Q water and dried under a stream of nitrogen.
  • the levers were immersed in a 0.2% solution of (3-glycidyloxypropyl) trimethoxysilane in dry toluene overnight at room temperature. After that, the samples were washed with toluene, Milli-Q water and dried under N2.
  • a solution of 100 mM NTA in 50 mM carbonate buffer at pH 9.5 was prepared and the levers were incubated overnight at 25 ° C under gentle agitation. Then, the levers were rinsed with 50 mM carbonate buffer at pH 9.5, Milli-Q water and dried under N2.
  • the carboxyl groups on the lever surface were activated by immersion in a mixed solution of 100 mM EDC and 150 mM sulfo-NHS, both dissolved in 10 mM MES at pH 5.5. The levers were incubated for 45 minutes at 37 ° C under gentle agitation. The samples were rinsed thoroughly with 10 mM MONTH.
  • the levers were incubated for 2 hours at 37 ° C. After that, the samples were washed with 10 mM MES at pH 5.5 and incubated for 45 minutes at 37 ° C with 10 mM sodium phosphate buffer at pH 8.0 with 0.3 M NaCl to desorb antibodies that do not They were covalently attached to the surface.
  • anti-HRP rabbit-produced anti-peroxidase antibody
  • MAb3C6 rabbit-produced anti-peroxidase antibody
  • the same antibody concentration and procedure applied to the covalent and oriented immobilization of MAb3C6 were used.
  • 1 ml of a 4 mg / ml solution of anti-HRP in Milli-Q water was dialyzed overnight at 4 ° C.
  • the concentration of the antibody solution after dialysis was determined using the Bradford assay [MM Bradford, MM Analytical Biochemistry, 1976, 72, 248-254].
  • a calibration curve was made using bovine serum albumin (BSA) as a protein standard.
  • BSA bovine serum albumin
  • the linearity range of the assay was 5 ⁇ g / ml to 2500 ⁇ g / ml.
  • the lever surface was blocked to prevent nonspecific adsorption. .
  • the levers were immersed in 1 mg / ml of
  • the levers were incubated for 1 hour at 37 ° C in CEA solutions with concentrations ranging from 1 pg / ml to 1 ag / ml in PBS solution with 0.05% Tween® 20 at pH 7.4 (PBST) .
  • the concentration of CEA in solution used for these samples was 1 ⁇ g / ml.
  • CEA solutions were prepared with a concentration ranging from 100 fg / ml to 10 ag / ml in SBF and for the rigorous control experiments in SBF the concentration of CEA was maintained at 1 ⁇ g / ml.
  • the levers were washed twice with PBST and once with PBS at pH 7.4. After that, the samples were rinsed with Milli-Q water and dried under a stream of N2.
  • the levers were immersed in 1 ⁇ g / ml of spherical gold nanoparticles solution functionalized with the detection antibody (GNPs-MAb3C1) prepared in 10 mM MES with 0.05% Tween® 20 pH 5, 5.
  • the samples were incubated at 37 ° C for 1 hour under gentle agitation, washed three times with MES with Tween, twice with MES, rinsed thoroughly with Milli-Q water and dried under a stream of N2.
  • the efficiency of biomarker recognition can be affected by the bioreceptor layer immobilized on the lever and also by the experimental conditions at which the recognition reaction takes place such as temperature, pH and time.
  • Strategies to immobilize the bioreceptor layer must be optimized for each case; they can include the orientation and density of the receptors on the surface, and blocking strategies to avoid interactions not specific
  • the detection biomarker is a small protein
  • the strategy to immobilize the antibodies on the surface of the micro lever, such as its density and orientation, and the chosen blocking molecule will not be the same if the biosensor is now revealed for detection of a bacterial cell, which is greater.
  • Ideal conditions such as concentration, pH, time and temperature to be used should be determined and optimized.
  • the immobilization and experimental conditions for the recognition of analytes have to be customized each case; but the principle of the procedure presented here, based on dual detection, remains the same.
  • Optical measurements were made using a commercial optical microscope in a darkfield reflective mode (Axioskop 2 MAT equipped with AxioCam MRc 5 and bright field / dark field EC Epiplan Neofluor® lenses from Zeiss 50x from Zeiss - Oberkochen, Germany).
  • the chip and lever surfaces were observed after the CEA recognition stage on the lever and after the sandwich assay (binding of the functionalized nanoparticles with the detection antibody).
  • the resonant frequency was obtained from the activated vibration of the lever that is detected optically by means of the simple optical lever procedure 35 (see Figure 3).
  • the resonance frequency of the fundamental vibration mode of the lever is measured in air before and after exposure of the lever to the gold nanoparticles functionalized with the primary antibody.
  • Figure 6a shows the dark field images of the chip region for a control experiment and for a detection experiment with 1 pg / ml CEA in PBS
  • the dispersion signal is negligible in the control experiment.
  • the chip region has dimensions outside the design rules for the substrate in the invention, thus not leading to the enhanced plasmonic effect.
  • the attached nanoparticles make the area of the lever shine, since the lever complies with the design that leads to the enhanced plasmonic effect.
  • the mean dispersion signal obtained from the dark field images is represented in Figure 6b as a function of the concentration of CEA in buffer or serum.
  • the detection limit found for the experiments performed in buffer medium is 0.1 fg / ml.
  • the scatter signal on the lever is approximately 6 times the signal on the chip, showing increases in the optical signal by the designed substrate.
  • the resonant enhancement of the dispersion signal plays a role in determining CEA at ultra low serum concentrations.
  • the dispersion signal in the chip is based on the region obtained in the control experiments for CEA concentrations of 0.1 fg / ml to 100 fg / ml.
  • the potentiation induced by the dispersion signal lever cavity allows discrimination of concentrations of only 0.1 fg / ml.
  • the bright aspect of the lever is related to its effect as an optical cavity, as outlined in Figure 7a.
  • the light interacts with a nanoparticle on the lever chip (a support that does not meet the design rules of the object of the invention)
  • the scattered light collected is only given by the backward dispersion of the dispersion from the surface of separation between the environment and the raw substrate.
  • the nanoparticle is on the lever, in addition to the backward dispersion observed in the raw support chip, multiple routes help enhance the dispersion by a single nanoparticle that dramatically boosts the measured backward scatter signal.
  • One route involves the amplification of the light scattered by the nanoparticle towards the lever by multiple reflections, producing multiple dispersion procedures.
  • a second route encloses procedures in which the light that strikes in the regions of the lever between nanoparticles undergo multiple reflections in the cavity of the optical lever, producing a cascade of dispersal interactions at the site of nanoparticles.
  • Figure 9 shows the mechanical frequency response of the lever due to the added mass given by antibody-coated nanoparticles that bind.
  • Mechanical resonance was measured by an instrument with a laser beam deflection procedure as depicted in Figure 3 for reading.
  • Figure 9a shows the peak mechanical resonance frequency before and after the nanoparticle recognition step in buffer media for the control experiment and during 1 pg / ml CEA.
  • the mechanical resonance peaks before and after the exposure of the control lever to the solution contained in the CEA biomarkers show negligible differences. A significant shift of the mechanical resonance peak at lower frequencies is observed in the CEA detection test.
  • the movements of the mechanical resonance frequency versus the concentration of CEA are shown in Figure 9b for purified buffer (left) and serum solutions (right).
  • the mechanical resonance shifts in buffer solution are shown in Figure 9b (left) together with the biological base noise determined in the control assays.
  • the experimental data show an excellent coincidence with the theoretical prediction based on the mass of the nanoparticles attached to the lever that the present inventors have evaluated by SEM.
  • the limit of detection in these calibration curves is 0.1 fg / ml.
  • the limit of detection increases an order of magnitude when the tests are carried out in serum due to the enormous amount of non-specific interactions of competition between plasma biomolecules and the lever surface.
  • the sensitivity and specificity of a diagnostic test are a function of a chosen threshold value. Changing the threshold value so that sensitivity increases will decrease specificity, and vice versa.
  • the receiver operating characteristic (ROC) curve is a graph of all the sensitivity / specificity pairs resulting from continuously varying the decision threshold with respect to the complex range of observed results. This is a graph of the true positive rate (or sensitivity) on the y-axis and the true negative rate
  • the true positive rate (TPR) is the probability that a disease case is classified correctly and the true negative rate (TNR) is the probability that a true normal case is correctly classified.
  • ROC curve can also be used to compare the performance of two or more diagnostic tests 7 '8. An alternative to the curve of
  • ROC is the graph of the detection error compensation (DET), which represents the false negative rate (lost detections) versus the false positive rate (false alarms) on the logarithmic x and y axis.
  • DET detection error compensation
  • This alternative spends more graphic area in the region of interest, that is, the region with a minimum false rate.
  • the DET plot is made assuming a normal distribution determined by the experimentally obtained mean value and standard deviation.
  • Figure 10a shows the DET curves for a concentration of 10 fg / ml by the plasmonic and nanomechanical transduction procedures. The dashed-line corresponds to a random parameter. Both transduction procedures provide DET curves well below this non-discrimination curve.
  • the optimal value of the threshold signal is that which gives a minimum in the distance between the DET curve and the origin.
  • the signal of the present inventors is a combination of the dispersion intensity and the displacement of the mechanical resonance frequency 7 .
  • the linear combination is optimized by minimizing the distance minimum between the DET curve and the origin.
  • the false detection rate of the present inventors is always enhanced as shown in Figure 10a.
  • the enhancement in reliability is modest for the lower concentrations as can be seen in Figure 10b, in which the plasmonic transduction is clearly superior to the nanomechanical transduction.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

La presente invención se refiere a un sistema para aplicaciones de biodetección que comprende dos elementos básicos, un sustrato con una superficie funcionalizada y una nanopartícula, siendo el sistema capaz de potenciar el efecto plasmónico de la nanopartícula. La invención también se refiere a un biosensor que incorpora tal sistema,además de al procedimiento para detectar y cuantificar un analito diana seleccionado en una muestra usando tal sistema. Finalmente, la invención se refiere a un dispositivo que puede detectar el efecto optoplasmónico potenciado de las nanopartículas por medio del sistema de la invención o biencombinar la detección de tal efecto optoplasmónico con el análisis de los cambios en las características mecánicas en el sustrato.

Description

UN SISTEMA PARA APLICACIONES DE BIODETECCIÓN D E S C R I P C I Ó N
CAMPO DE LA INVENCIÓN
La presente invención pertenece al campo de los biosensores. Más particularmente, la presente invención se refiere a un sistema para aplicaciones de biodetección que comprende dos elementos básicos, un sustrato con una superficie funcionalizada y una nanopartícula, pudiendo el sistema potenciar el efecto plasmónico de la nanopartícula. La invención también se refiere a un biosensor que incorpora tal sistema, además de al procedimiento para detectar y cuantificar un analito diana seleccionado en una muestra usando tal sistema. Finalmente, la invención se refiere a un dispositivo que puede detectar el efecto optoplasmónico potenciado de las nanopartículas por medio del sistema de la invención o bien combinar la detección de tal efecto optoplasmónico con el análisis de los cambios en las características mecánicas en el sustrato.
ANTECEDENTES DE LA INVENCIÓN
Biosensores
Un biosensor mide los cambios físicos que una capa de reconocimiento biológico unida a un transductor sólido experimenta cuando interacciona con una muestra que contiene las moléculas elegidas como diana. Así, emplea la capacidad de algunas biomoléculas (receptores) para unirse específicamente (reconocer) a biomoléculas complementarias (ligandos). Las interacciones más típicas son hibridación de ácidos nucleicos complementarios y unión de anticuerpo/antígeno. Los biosensores son cada vez más demandados en estudios biológicos fundamentales, investigación de ciencias de la salud, descubrimiento de fármacos y diagnóstico clínico1"3. Dependiendo del cambio físico medido, los biosensores pueden clasificarse en ópticos, eléctricos y mecánicos.
Los biosensores ópticos pueden dividirse principalmente en detección basada en marcas y detección sin marcas. Los biosensores basados en marcas más comúnmente usados se basan en detección basada en fluorescencia, las moléculas diana o bien las moléculas de biorreconocimiento se marcan con marcas fluorescentes, tales como colorantes; la intensidad de la señal de fluorescencia indica la cantidad de moléculas elegidas como diana. Mientras que la detección basada en fluorescencia es extremadamente sensible, sufre de laboriosos procedimientos de marcado que pueden también interferir con la función de la biomolécula. A diferencia, en la detección sin marcar, las moléculas elegidas como diana no son marcadas o alteradas, y se detectan en sus formas naturales. Una parte significativa de los sensores ópticos sin marca mide el cambio del índice de refracción próximo a la superficie del sensor excitando un campo evanescente que disminuye exponencialmente en la disolución a granel con una longitud característica entre decenas a cientos de nanometros4. El procedimiento de resonancia de plasmones superficiales (SPR) y los procedimientos de resonancia de plasmones superficiales localizados (LSPR) son los más populares entre los biosensores ópticos sin marca.
Entre los biosensores eléctricos, los dispositivos electroquímicos han recibido tradicionalmente la mayor parte de la atención5"7. Estos dispositivos normalmente acoplan enzimas que producen o consumen electrones tras el reconocimiento de sustratos a un transductor de electrodos. Muchas de estas enzimas catalizan específicamente las reacciones de analitos clínicamente importantes tales como glucosa, lactato, colesterol, aminoácidos, urato, piruvato, glutamato, alcohol, hidroxibutirato, por nombrar algunos. Los avances en la nanotecnología también están proporcionando biosensores eléctricos a escala nanométrica basados en nanoalambres y nanotubos semiconductores, en los que la apertura electroquímica se produce a partir de un cambio en el potencial superficial local debido a la unión a diana8"10.
Entre los biosensores mecánicos, la microbalanza de cristal de cuarzo se ha convertido en una de las técnicas más establecidas11-13. Estos dispositivos se basan en resonadores de cristal de cuarzo (tales como aquellos usados en relojes), que son piezoeléctricos y así permiten la medición directa de la deformación del cristal por procedimientos eléctricos. En estos dispositivos, la frecuencia de resonancia se mide y relaciona con el cambio de masa inducido por la unión del analito a la capa de reconocimiento inmovilizada sobre la superficie cristalina. Una subclase de biosensores mecánicos se denomina biosensores nanomecánicos, que sacan el mayor rendimiento del tamaño de escala nanométrica de al menos una de sus dimensiones14"20.
Entre los procedimientos existentes, los biosensores más satisfactorios en el campo biomédico incluyen bioensayos de detección del punto final tales como ELISA. Los ELISA son herramientas esenciales en el campo biomédico debido a su buena sensibilidad, simplicidad del ensayo, fiabilidad y alto rendimiento.
Por otra parte, dispositivos como los ensayos de flujo lateral son de suma importancia en el corto tiempo de análisis necesario y se han miniaturizado satisfactoriamente y simplificado hasta el punto de que incluso es posible la prueba en casa. Sin embargo, la menor concentración de analito que pueden detectar es comúnmente de hasta 0, 1 μΜ, que no es suficientemente buena para detectar muchas dianas de importancia biológica. Por comparación, el ELISA requiere un tiempo de análisis mucho mayor
(~1 h), pero ofrece mucha mejor sensibilidad de concentración (~1 pM).
Todavía está en investigación la técnica de biodeteccion que pueda combinar excelente sensibilidad y especificidad con corto tiempo de análisis, junto con potencial de miniaturización. En particular, hay una alta demanda de técnicas que puedan integrarse en un dispositivo de punto de cuidado que sean dignas de sensibilidad, capacidad de cuantificación y buen intervalo dinámico. Hasta la fecha no se ha demostrado ninguna técnica que proporcione esto. La capacidad para ser integrado en un dispositivo de punto de cuidado (POC) significa que los protocolos de detección deben ser simples, usar pequeños volúmenes de muestra y no deben requerir etapas de preparación y/o de lavado complicadas o químicas complejas para preparar las muestras y/o dispositivos de detección. Un bajo coste para los análisis completos y la larga estabilidad en almacén también es un requisito para obtener un producto comercialmente viable.
Biosensores basados en nanopartículas
Hay enfoques en la técnica anterior que han tenido éxito en muchos, aunque no todos, los retos citados para dispositivos de POC. El uso de nanopartículas (NP) ha tomado su parte en este éxito. Particularmente, el oro y otras nanopartículas de metales nobles se han usado en la detección de analitos. La resonancia de plasmones superficiales localizados (LSPR) en NP de oro se desplaza cuando cambia la constante dieléctrica de alrededor, de manera que los desplazamientos en el pico espectral de LSPR facilitados por la unión de biomoléculas proporcionan un procedimiento para la detección de analitos en muestras clínicas. Diferentes enfoques de detección que hacen uso de este fenómeno a escala nanométrica se revisan en la referencia 21. En un enfoque satisfactorio, llamado ELISA plasmónico, el desplazamiento de la resonancia de plasmones localizados facilitado por la agregación de nanopartículas de oro se usa para colorear la marca de detección de muy bajas concentraciones de un analito de interés. En la referencia 22, tanto PSA como el antígeno p24 de la cápside del VIH 1 se detectan a concentraciones de tan solo 1 x 10"18 g/ml. En este procedimiento, el ciclo biocatalítico de una enzima genera disoluciones de NP coloreadas debido al hecho de que cuando la concentración de peróxido de hidrógeno disminuye se forman NP agregadas. La unión del analito promueve la agregación de NP que a su vez da un color azul a la disolución. Este cambio de color se usa como señal de detección que puede incluso ser seguida a simple vista y así proporciona un enfoque de detección de bajo coste.
En otra metodología relevante, el marcado de NP con diversas secuencias de ADN proporciona la capacidad de multiplexación que no tendrían NP metálicas solas, ya que carecen de un intervalo de marcas de color para marcar cada reacción específica. El así llamado procedimiento de biocódigo de barras no solo se ha usado para la detección de ADN, sino que también ha tratado satisfactoriamente la detección de proteínas. Para después, el biocódigo de barras se basa en sondas de micropartículas magnéticas con anticuerpos que se unen específicamente a una diana de interés, por ejemplo, una proteína clínicamente relevante como antígeno prostético específico (PSA) (véase la referencia 23) y sondas de nanopartículas que están codificadas con ADN que es único para la proteína diana de interés y anticuerpos que pueden emparedar la diana capturada por las sondas de micropartículas. La separación magnética de las sondas complejadas y diana, seguido de la deshibridación de los oligonucleótidos sobre la superficie de la sonda de nanopartículas, permite la determinación de la presencia de la proteína diana que identifica la secuencia de oligonucleótidos liberada de la sonda de nanopartículas. Debido a que la sonda de nanopartículas lleva consigo un gran número de oligonucleótidos para el evento de unión a proteína, hay una sustancial amplificación de señales y la proteína diana puede detectarse a bajas concentraciones (concentración 30 atomolar). Alternativamente, una reacción en cadena de la polimerasa (PCR) en los códigos de barras de oligonucleótidos puede reforzar la sensibilidad a 3 atomolar. Ensayos convencionales clínicamente aceptados comparables tienen límites de sensibilidad de 3 picomolar, seis órdenes de magnitud menos sensibles al que se observa con este procedimiento23. Una limitación de esta técnica es el tiempo de análisis requerido, hasta 100 minutos, dada la necesidad de separación de las sondas complejadas y diana de la disolución de muestra y posterior identificación de las marcas de ADN. Con este procedimiento también es posible la cuantificación. Un enfoque es realizar una PCR y/o electroforesis en gel, pero éstos son procedimientos no adecuados para aplicaciones de punto de cuidado y excluyen el rápido análisis como se trata en la referencia 25.
Un procedimiento de detección alternativo se basa en el cambio espectral en la luz dispersa cuando al menos dos NP se ponen próximas entre sí26,27. El cambio de color es debido a un desplazamiento en la resonancia de plasmones superficiales de las nanopartículas de Au cuando al menos dos NP se ponen próximas entre sí. Esto produce un desplazamiento de color detectable y un cambio en la intensidad de luz recogida que puede medirse ópticamente. Los complejos de sonda de NP siempre comprenden dos o más nanopartículas unidas a un analito diana específico, esto se ha llamado un complejo de dispersión de la luz. Esto tiene la ventaja de que solo se detectan los agregados de NP, que contienen el analito. Las partículas no agregadas, que incluyen aquellas que no contienen el analito diana, no son detectadas en este procedimiento. Esto permite la detección de agregados de NP en presencia de un exceso significativo de partículas no agregadas. Este procedimiento ha demostrado excelente sensibilidad, mejor que 10 femtomoles de un oligonucleótido. Dentro de este procedimiento, el uso de iluminación evanescente por medio de una guía de onda de soporte y detección colorimétrica basada en la dispersión ha demostrado ser 4 órdenes de magnitud mejor que las pruebas de manchas basadas en absorbancia (documento EP1639370).
Una forma de eliminar la necesidad de amplificación por PCR a la vez que se mantiene una buena capacidad de multiplexación es hibridar los complejos de dispersión de GNP sobre un soporte sólido funcionalizado con secuencias conocidas en posiciones definidas, como se hace en las matrices fluorescentes. La posterior detección escanométrica de la luz dispersa sirve de señal biosensora y la capacidad de multiplexación se obtiene por las posiciones predefinidas de las secuencias inmovilizadas conocidas. Normalmente, se necesita una forma de amplificar esta señal óptica. Un procedimiento para la ampliación de la señal de luz dispersa de las marcas de NP es la reducción de plata promovida por nanopartículas28 o respuesta colorimétrica por catálisis enzimática sobre sustratos de silicio ópticamente recubiertos29. Este procedimiento se usa para amplificar la señal óptica y también permite cuantificar la cantidad de analito en la muestra30.
Biosensores basados en resonadores nanomecánicos
Los resonadores nanomecánicos han demostrado límites de detección sin precedentes en la detección de masas de átomos y moléculas a vacío. Los límites de detección de masa se han empujado recientemente al intervalo de yoctogramos, es decir, puede medirse la masa de un único protón. Dos componentes son esenciales para lograr la sensibilidad de la masa: dispositivos con dimensiones de escala nanométrica y altos factores de calidad (1000-100000) que implican mediciones a vacío. Sin embargo, la detección de biomoléculas debe llevarse a cabo idealmente en disoluciones acuosas, el entorno natural en el que se producen los procesos biológicos. Los resonadores nanomecánicos en líquidos presentan un factor de calidad muy bajo (1-10) como consecuencia del amortiguamiento viscoso. Además, el líquido es arrastrado junto con el resonador nanomecánico, aumenta su masa eficaz y así reduce la sensibilidad. La miniaturización de los dispositivos a la escala nanométrica no mejora estas limitaciones. Y, lo que es más importante, la detección biológica requiere muchas mediciones repetitivas que sólo pueden lograrse con dispositivos desechables y rentables que puedan ser tanto fácilmente manipulados como medidos. Estos requisitos se satisfacen por matrices de micropalanca que están comercialmente disponibles, pero no por los resonadores mecánicos de escala nanométrica del estado de la materia que todavía se fabrican a baja velocidad por técnicas de nanofabricación y son altamente irreproducibles en las dimensiones y respuesta mecánica. Además, la medición de la frecuencia resonante de estos dispositivos en líquido es científica y técnicamente exigente. Estas limitaciones han limitado el éxito de los resonadores nanomecánicos como sensores biológicos.
Resonadores nanomecánicos con marcas de masa. Los resonadores nanomecánicos han hecho uso de NP para amplificar la señal, aquí, la unión a masa mayor proporcionada por las marcas aumenta la respuesta mecánica del sensor. Aquí, una reducción en la frecuencia de resonancia está relacionada con masa añadida del complejo analito-NP que se une al resonador. A pesar de que los sensores nanomecánicos dinámicos han demostrado un buen rendimiento sin marcas; el marcado mejora ampliamente la especificidad y puede reducir el límite de detección. Se ha demostrado que el marcado de muestras para la detección nanomecánica es ventajoso en los ensayos de punto final. Craighead y colaboradores demostraron en la referencia 31 que el marcado de un anticuerpo monoclonal con nanopartículas en un inmunoensayo tipo sándwich pudo mejorar el límite de detección en tres órdenes de magnitud para alcanzar 2 ng/ml en la detección de proteínas priónicas y detectar incluso la presencia de 50 fg/ml de PSA enriquecido en un ruido de fondo de suero bovino fetal. La técnica también es cuantitativa, ya que los autores encontraron una clara dependencia lineal de la respuesta de frecuencia sobre la concentración de PSA. La capacidad para detectar concentraciones fM de una proteína diana en un ruido de fondo realista coloca a los sensores de palanca resonantes marcados en una excelente posición para competir con todas las técnicas innovadoras citadas, además de las tecnologías más establecidas. Todavía, los resonadores nanomecánicos todavía no se usan ampliamente en la clínica. Esto es debido a que carecen de la robustez necesaria en la respuesta. Los pocos estudios que muestran un número estadísticamente significativo de pruebas muestran que el número de positivos y negativos falsos es todavía demasiado alto. El desplazamiento de la frecuencia comúnmente usado como señal de detección en estos sensores depende en gran medida de la adsorción no específica sobre la superficie del dispositivo. Una limitación clave de los resonadores nanomecánicos es la adsorción no específica. Los límites de detección definitivos predichos por los enfoques teóricos pueden estar lejos de los límites de detección reales cuando biosensores nanomecánicos funcionalizados con biorreceptores se sumergen en disoluciones complejas, tales como suero, para detectar la presencia de biomarcadores en tiempo real o ex-situ. En esta situación, otras moléculas a concentración mucho mayor, incluso billones de veces mayor, están presentes en la disolución. Aunque estas moléculas tienen mucha menor afinidad por los receptores injertados con sensores, su alta concentración impone el límite de detección real. Por ejemplo, los biomarcadores del cáncer están en plasma sanguíneo a una concentración en el intervalo de 1 ng/ml, mientras que la concentración de proteínas no deseadas es de aproximadamente 70 mg/ml. La sensibilidad para lograr la detección de biomarcadores del cáncer se satisface por la mayoría de los biosensores nanomecánicos. Sin embargo, la selectividad que determina la tasa de positivos falsos y negativos falsos ha recibido poca atención. La detección de biomarcadores de cáncer en medios complejos tales como suero requiere selectividad superior a 1 parte por millón. Predicciones teóricas indican que la selectividad requerida para la detección de biomarcadores en medios complejos puede lograrse funcionalizando los sensores con una alta densidad superficial de receptores32. Esta predicción está de acuerdo con los hallazgos en biosensores nanomecánicos basados en tensión superficial, en los que los mejores resultados se obtienen a altas densidades de empaquetamiento de receptores. Una segunda predicción teórica es que la etapa de pasivación superficial intermedia adicional por pequeñas moléculas inertes después de la incubación del receptor podría reducir significativamente la bioincrustación y ayuda a lograr mejor selectividad. De forma interesante, el tamaño y geometría de la molécula bloqueante usada para volver a llenar los vacíos en la superficie del sensor desempeña una función crítica. Esto está de acuerdo con los resultados de recientes análisis estadísticos del efecto de inmunorreacciones sobre la respuesta de biosensores nanomecánicos en el modo estático33. El estudio comprendió 1012 palancas con diferentes densidades superficiales de anticuerpo, dos estrategias de bloqueo basadas en polietilenglicol (PEG) y albúmina de suero bovino (BSA), controles rigurosos con anticuerpos no específicos y proteínas pequeñas tales como lisozimas. El estudio reveló que el rendimiento del ensayo depende críticamente de tanto la densidad superficial de anticuerpos como las estrategias de bloqueo. Encontraron que las condiciones óptimas implican densidades superficiales de anticuerpos próximas, pero inferiores, a la saturación y bloqueo con PEG.
Además, se han propuesto otros enfoques prácticos para minimizar la adsorción no específica y potenciar la selectividad. El uso de matrices de elementos nanomecánicos con una referencia interna ayuda a rechazar fuentes de ruido comunes, que incluyen adsorción no específica. Otro enfoque es la implementación de los ensayos de sándwich tradicionalmente usados en ELISA. En este ensayo, el sistema nanomecánico se funcionaliza con un receptor molecular específico para el biomarcador de interés. Después de la exposición del sistema nanomecánico a la muestra, el dispositivo se incuba con receptores secundarios unidos a una molécula o un material que actúa de amplificador de señales, tal como una nanopartícula para aumentar el efecto de la masa. El uso de dos receptores diferentes potencia ampliamente la sensibilidad y especificidad. Este enfoque se aplicó para detectar proteínas priónicas con resonador nanomecánico, que en formas conformacionalmente alteradas se sabe que producen enfermedades neurodegenerativas en animales, además de seres humanos34. La frecuencia de resonancia se detectó ex-situ en alto vacío. Para la incubación directa de los resonadores nanomecánicos funcionalizados con un anticuerpo primario contra la proteína priónica, el límite de detección fue aproximadamente 20 μg/ml. Cuando los resonadores se sometieron a una etapa de incubación posterior con anticuerpos secundarios que se unen, el límite de detección se potenció 3 órdenes de magnitud, siendo aproximadamente 2 ng/ml.
Una segunda estrategia prometedora que mantiene la característica sin marca natural de los biosensores nanomecánicos es implementar microfluídica para la purificación y preconcentración de muestras. El potencial de este enfoque se ha demostrado con nanosensores de nanoalambre sin marca. En este trabajo, un chip de purificación microfluídica captura simultáneamente múltiples biomarcadores de muestras de sangre y los libera, después de lavar, en tampón purificado para la detección por los nanosensores8. Este enfoque de dos etapas aisla el detector del entorno complejo de sangre completa, y reduce su sensibilidad requerida mínima pre- concentrando eficazmente los biomarcadores. Los autores demostraron detección cuantitativa y específica de dos antígenos del cáncer modelo de una muestra de 10 mi de sangre completa en menos de 20 min.
A pesar de que la nanotecnología haya proporcionado biosensores con niveles impredecibles de sensibilidad sin necesidad de marcado, los nanosensores también han mostrado dificultades significativas en cuestiones referentes a la especificidad y reproducibilidad, y de ahí que todavía no estén listos para la selección de biomarcadores en sangre. Esto surge de la dificultad extrema de 'encontrar' biomarcadores de proteína de baja abundancia en un 'pajar' de proteínas plasmáticas, algunas de ellas a concentraciones al menos siete órdenes de magnitud superiores (albúmina 40 mg/ml aprox). Así, la situación es que el alto ruido biológico fijado por las interacciones no específicas supera ampliamente el ruido intrínseco de la mayoría de los nanosensores existentes. En pocas palabras, el problema no es la sensibilidad, sino:
Especificidad; para discriminar trazas de biomarcadores en la compleja mezcla de proteínas de la sangre.
Fiabilidad, para minimizar los dolorosos positivos falsos y negativos falsos en el diagnóstico de pacientes.
Ahora, los autores de la presente invención han encontrado un sistema para aplicaciones de biodetección que permite límites de detección ultrabajos ya que discrimina concentraciones al borde de 10 ag/ml. Además, el sistema permite la detección de analitos diana en ruidos de fondo biológicos complejos como, por ejemplo, muestras de sangre, sin la necesidad de ninguna etapa de purificación. La invención se basa en un ensayo óptico tipo sándwich que se aprovecha del sorprendente e inesperado potenciamiento del efecto plasmónico causado en las nanopartículas por la combinación de la naturaleza y diseño particulares del sustrato usado en el biosensor y la naturaleza y dimensiones particulares de la nanopartícula.
Este sistema puede adaptarse en un dispositivo nanomecánico con el fin de analizar tanto señales optoplasmónicas como mecánicas de manera que mejore la fiabilidad de la detección. La robustez de este biosensor dual conduce a una tasa de positivo falso y negativos falsos extremadamente baja, «2 χ 10"4 a una concentración ultrabaja de 100 ag/ml, proporcionando así una excelente solución para ser integrada en un dispositivo de POC.
DESCRIPCIÓN DE LA INVENCIÓN
Está previsto que las siguientes definiciones ayuden en el entendimiento e interpretación de la presente invención:
Biosensor: Dispositivo analítico que comprende un elemento de reconocimiento biológico (por ejemplo, enzima, receptor, ADN, anticuerpo, o microorganismo) en contacto íntimo con un transductor de señales electroquímicas, mecánicas, ópticas, térmicas, acústicas u otras señales físicas que juntos permiten el análisis de propiedades químicas o detección o cuantificación de analitos diana.
Material dieléctrico: Un material dieléctrico es un aislante eléctrico que puede polarizarse por un campo eléctrico aplicado.
Superficie funcionalizada o funcionalización superficial: Un procedimiento o técnica para introducir grupos funcionales químicos en una superficie. Ésta se usa en biosensores para inmovilizar un elemento de reconocimiento en una superficie, en la presente invención sobre la superficie del sustrato.
Elemento de reconocimiento: Es el elemento del sistema inmovilizado y que funcionaliza la superficie del sustrato que puede reconocer y unirse específicamente al analito diana. El elemento de reconocimiento puede seleccionarse de, pero no se limita a, un anticuerpo, un receptor, un péptido, una proteína, un hidrato de carbono, un ácido nucleico, una célula, un microorganismo o una parte de los mismos.
Elemento de detección: Es el elemento del sistema unido a la nanopartícula y que puede reconocer y unirse específicamente al analito diana. El elemento de detección conjuntamente con la nanopartícula permiten la detección del analito diana cuando está presente en la muestra.
Analito diana: Es el elemento buscado para la detección y/o cuantificación. Puede ser de cualquier naturaleza tal como moléculas orgánicas o inorgánicas (fármacos, hormonas, colesterol, etc.), moléculas biológicas (péptidos o proteínas, moléculas de ácidos nucleicos, factores de crecimiento, biomarcadores etc.), células (células protozoicas, células bacterianas, célula fúngica, células eucariotas) o fragmentos celulares (paredes bacterianas, orgánulos celulares como mitocondrias, vesículas celulares, etc.) o virus.
Coeficiente de extinción: El coeficiente de extinción es la parte imaginaria del índice complejo de refracción. índice de refracción: El índice de refracción de una sustancia (medio óptico) es un número adimensional que describe cómo la luz, o cualquier otra radiación, se propaga a través de ese medio.
Material circundante: Es el material subyacente a ambas superficies del sustrato en el sistema de la invención. El índice de refracción del material circundante es de relevancia en el logro del efecto plasmónico potenciado.
Efecto plasmónico: Es el fenómeno producido en las nanopartículas que tienen propiedades plasmónicas cuando se irradian con una radiación electromagnética apropiada. El efecto plasmónico se produce por las oscilaciones de electrones libres inducidas en un metal por una onda electromagnética.
Anticuerpo: Una proteína en forma de Y (inmunoglobulina) sobre la superficie de linfocitos B que es secretada en la sangre o linfa en respuesta a un estímulo antigénico, tal como una bacteria, virus, parásito u órgano trasplantado, y que neutraliza el antígeno uniéndose específicamente a él. La detección de la formación de pares anticuerpo-antígeno puede seguirse por varios procedimientos y es la base de muchos biosensores.
Receptor: Es una estructura biológica que puede detectar estímulos químicos de su entorno. Los receptores normalmente están presentes sobre la superficie de células y están adaptados para detectar un tipo particular de molécula que es responsable de inducir una respuesta en la célula una vez en contacto con el receptor. Péptido: Cadenas cortas de monómeros de aminoácidos unidos por enlaces peptídicos.
Hidrato de carbono: Se refiere en el contexto de la invención a moléculas de oligosacáridos o polisacáridos complejas que tienen capacidad de unirse a dianas específicas. Como un ejemplo puede citarse lipopolisacárido.
Ácido nucleico: Cualquier molécula polimérica u oligomérica que tiene un esqueleto que contiene una secuencia de bases nitrogenosas -adenina (A), timina (T), citosina (C) y guanina (G). En el contexto de la presente invención, las moléculas de ácidos nucleicos incluyen, entre otras, moléculas de ADN, moléculas de ARN, aptámeros o moléculas de PNA.
Nanopartícula de metamaterial plasmónico: Es una nanopartícula hecha de un material artificial manipulado para manifestar propiedades plasmónicas.
Transmitancia: La transmitancia es la fracción de luz incidente (radiación electromagnética) a una longitud de onda especificada que pasa a través de una muestra.
Reflectancia: La reflectividad o reflectancia es la fracción de potencia electromagnética incidente que es reflejada de una superficie de separación.
Detección: Es la acción de identificar la presencia o ausencia del analito diana en la muestra.
Cuantificación: Es la acción de determinar la concentración de un analito diana dentro de la muestra.
Muestra: Una preparación de un fluido biológico que va a analizarse normalmente en forma líquida aunque también es posible como una forma sólida que va a resolverse en forma líquida o reconstituible. Radiación electromagnética: La radiación electromagnética es un fenómeno fundamental del electromagnetismo, comportándose como ondas que se propagan a través del espacio y que llevan energía radiante. Una onda electromagnética tiene tanto componentes de campo eléctrico como magnético, que oscilan en un relación fija entre sí, perpendiculares entre sí y perpendiculares a la dirección de propagación de energía y ondas.
Dispersión de la luz: La dispersión de la luz es un tipo de interacción entre la materia y una onda electromagnética. Cuando una onda que se propaga es incidente sobre una superficie, la onda reflejada se concentra normalmente en la dirección especular como se ha determinado por las muy conocidas leyes de la reflexión. Además de la reflexión especular también hay un componente difuso que es irradiado sobre un amplio intervalo de ángulos centrados sobre el haz especular que comúnmente se conoce como dispersión de la luz. Los procedimientos de dispersión pueden producirse a partir de la rugosidad no cero de la superficie o por la presencia de pequeñas partículas depositadas sobre la misma.
Absorción: La absorción de radiación electromagnética es la forma en la que la energía de una radiación electromagnética es recogida por la materia, normalmente los electrones de un átomo. Así, la energía electromagnética se transforma en energía interna del absorbedor, por ejemplo, energía térmica.
Señal de extinción: El término "extinción" significa la pérdida de luz en un haz óptico transmitido cuando pasa a través de un medio u objeto. Dos mecanismos diferentes contribuyen a la extinción: absorción y dispersión.
Un primer objetivo de la invención es un sistema para aplicaciones de biodetección que comprende: a. un sustrato de material dieléctrico que tiene al menos una superficie funcionalizada con un elemento de reconocimiento que puede unirse específicamente a un analito diana y
b. al menos una nanopartícula con propiedades plasmónicas que comprende al menos un elemento de detección unido a ella y que puede unirse específicamente al analito diana en una disposición tipo sándwich, caracterizado porque: el sustrato de material dieléctrico tiene un espesor entre 0, 1 μηι y 5 μηι y un coeficiente de extinción inferior a 0,3,
la nanopartícula tiene al menos una de sus dimensiones con un tamaño de 2 nm a 300 nm y
porque la relación entre el índice de refracción del material dieléctrico y el material circundante es superior a 1 ,1.
El sistema de la invención está adaptado para procedimientos de detección y cuantificación tipo sándwich (véase, por ejemplo, la Figura 1). El uso de un elemento de reconocimiento y un elemento de detección es un primer aspecto que mejora ampliamente la sensibilidad y especificidad del sistema. Sin embargo, el aspecto más sorprendente y ventajoso del sistema de la invención se deriva del potenciado efecto plasmónico que puede lograrse en detecciones optoplasmónicas. Este efecto particular permite límites de detección ultrabajos. El efecto es un modo plasmónico híbrido que resulta de la combinación de la naturaleza y diseño particulares de elementos que forman el sistema, concretamente el sustrato y la nanopartícula.
El sustrato tiene que ser un material dieléctrico de manera que pueda tener lugar el fenómeno de resonancia de plasmones superficiales. Cualquier material dieléctrico en el intervalo espectral electromagnético de interés es adecuado en el sistema de la invención. La única condición es que su coeficiente de extinción deba ser inferior a 0,3. En una realización particular, el material dieléctrico es cuarzo, silicio, nitruro de silicio, carburo de silicio, grafeno, polímeros tales como fotorresistentes, por ejemplo SU8, e hidrogeles tales como mezclas de PEG y PLA o de DEXTRANO y PEG. Los materiales dieléctricos más preferidos son silicio o nitruro de silicio.
Otro aspecto importante del sistema de la invención es el diseño del sustrato. Hay dos puntos clave en el diseño del sustrato que tienen que cumplirse con el fin de lograr el efecto plasmónico potenciado en el sitio de la nanopartícula. Lo primero es que el espesor del sustrato deba estar entre 0, 1 μηι y 5 μηι, más preferentemente entre 0,25 μηι y 2 μηι. Para espesores mayores, la radiación electromagnética incidente es refractada y no puede producir un efecto multirreflector dentro de la cavidad del sustrato que es el fenómeno físico que al final contribuye a producir la potenciación del efecto plasmónico (véase la Figura 2a). En la práctica, la potenciación del efecto plasmónico es un modo híbrido que resulta del acoplamiento del modo de plasmones superficiales localizados sobre las nanopartículas y el modo de cavidad óptica. Cuando la nanopartícula está sobre el sustrato, además de la dispersión hacia atrás, múltiples rutas ayudan a potenciar la dispersión por una única nanopartícula. Una ruta implica la amplificación de la dispersión directa por la nanopartícula por múltiples reflexiones. En este mecanismo, el acoplamiento entre la resonancia de plasmones dipolares de la nanopartícula y las resonancias de las cavidades del sustrato óptico crea un modo híbrido que refuerza la señal de dispersión en el sitio de nanopartículas. En una segunda ruta, la luz no dispersa experimenta múltiples reflexiones en la cavidad óptica del sustrato, produciendo una cascada de interacciones de dispersión en los sitios de nanopartículas vecinos que conducen a una densidad aparente mayor de nanopartículas en, por ejemplo, una imagen de campo oscuro.
La relevancia del espesor en la señal de dispersión se demuestra claramente por una realización particular de la invención en la que el sustrato está en forma de una palanca con un diseño de espesor entre 0,1 μηι y 5 μηι. Puede observarse una clara diferencia en la intensidad de la señal de dispersión entre la región de chip en la que el espesor es superior a 5 μηι y la región de palanca en la que el espesor está entre
0,1 μηι y 5 μηι (véase la Figura 6a).
El segundo punto clave a tener en cuenta en el diseño del sistema es que la relación entre el índice de refracción del material dieléctrico (sustrato) y el material circundante debe ser superior a 1 ,1. Este aspecto también es esencial en el logro del efecto multirreflector en la cavidad del sustrato. La presencia de materiales circundantes al sustrato que tienen un índice de refracción diferente en la relación particular superior a 1 ,1 , hace que las superficies opuestas del sustrato sean como espejos, que permite la multirreflexión dentro de la cavidad. El material circundante puede estar tanto en la propia disolución en la que el sustrato se sumerge para la detección como cualquier fluido o gases de alrededor, o un material sólido particular circundante con la única condición de que el índice de refracción del material circundante se diferencie del índice de refracción del sustrato. El sistema de la invención puede en principio usarse en cualquier tipo de conformación de biosensor o de resonadores mecánicos. En particular, en el sistema de la invención, el sustrato puede tener la forma de una micropalanca, un micropilar, una cuerda, un trampolín, una palanca rectangular, una palanca triangular, una palanca piramidal, una palanca de pala, una membrana, una placa, un puente, un tubo hueco o un nanoalambre (véase, por ejemplo, la Figura 11).
El analito diana es el elemento que va a detectarse de la muestra, especialmente de muestras biológicas. El analito diana puede ser de cualquier naturaleza tal como moléculas orgánicas o inorgánicas (fármacos, hormonas, colesterol, etc.), moléculas biológicas (péptidos o proteínas, moléculas de ácidos nucleicos, factores de crecimiento, biomarcadores etc.), células (células protozoicas, células bacterianas, célula fúngica, células eucariotas) o fragmentos de células (paredes bacterianas, orgánulos celulares como mitocondrias, vesículas celulares, etc.) o virus. Una ventaja del sistema de la invención es que permite detectar y cuantificar analitos dentro de muestras complejas, tales como, por ejemplo, sangre o muestras de orina, sin la necesidad de ninguna etapa de purificación o etapa de separación. Esto hace la manipulación más simple y reduce el tiempo para la detección, lo que hace que el presente sistema sea muy adecuado para su implementación en dispositivos de POC.
El elemento de reconocimiento que funcionaliza la superficie del sustrato puede ser cualquier elemento que pueda reconocer y unirse específicamente a un analito diana. En este sentido, el elemento de reconocimiento puede ser un anticuerpo (un anticuerpo policlonal o monoclonal), un receptor (un receptor de la superficie celular tal como un receptor de opioides), un péptido (tal como un péptido de opiodes), una proteína (tal como lectinas), un hidrato de carbono (tal como el antígeno O de lipopolisacárido), un ácido nucleico (una secuencia de ADN o ARN), una célula (células protozoicas, células bacterianas, célula fúngica, células eucariotas), un microorganismo o una parte del mismo (tal como paredes bacterianas, orgánulos celulares como mitocondrias, vesículas celulares etc.). En una realización preferida de la invención, el elemento de reconocimiento es un anticuerpo, más preferentemente un anticuerpo monoclonal.
La otra característica esencial del sistema, aparte del sustrato funcionalizado, es la nanopartícula. Por supuesto, la nanopartícula debe tener propiedades plasmónicas. En principio puede usarse cualquier tipo de nanopartícula con propiedades plasmónicas. Así, la nanopartícula puede ser, por ejemplo, una nanopartícula de oro, plata o de metamaterial plasmónico tal como, pero no se limita a, nitruro de titanio y óxidos no estequiométricos tales como vanadio, titanio y aluminio.
Además, la nanopartícula puede adoptar multitud de formas o estructuras tales como, por ejemplo, nanoesferas, nanovarillas, nanovarillas afiladas, nanovainas, nanojaulas/marcos, nanoesferas huecas, tetraedros, octaedros, cubos, icosaedros, dodecaedros rómbicos, nanocubos cóncavos, tetrahexaedros, bipirámides triangulares obtusas, trisohectaedros y nanoprismas (véase la Figura 12), pero es esencial que al menos una de sus dimensiones tenga un tamaño de 2 nm a 300 nm, preferentemente 5 nm a 150 nm, debido a que el pico de resonancia plasmónica es altamente dependiente del tamaño de la nanopartícula.
La nanopartícula comprende al menos un elemento de detección unido a ella que puede unirse específicamente al analito diana. El elemento de detección puede ser cualquier tipo de elemento que pueda unirse al analito diana, así, en principio su naturaleza puede ser la misma o similar a la del elemento de reconocimiento. Sin embargo, en una realización preferida, el elemento de detección tanto se selecciona de un anticuerpo como de una molécula de ácido nucleico. El elemento de detección tiene la función de detectar la presencia del analito diana capturado por el elemento de reconocimiento inmovilizado sobre la superficie del sustrato. Así, la nanopartícula solo se unirá al sustrato mediante el elemento de detección unido a ella si el analito diana está presente en la muestra analizada. En tal caso, el elemento de reconocimiento puede unirse al analito diana que después se detecta por el elemento de detección en una disposición tipo sándwich. La ausencia del analito diana en la muestra tiene la consecuencia de que el elemento de reconocimiento no se unirá al analito diana y así no se producirá detección por el elemento de detección.
En resumen, si el analito diana está presente en la muestra, incluso a concentraciones ultrabajas, puede detectarse y cuantificarse basándose en la intensidad de dispersión o intensidad de extinción (dependiendo de los parámetros medidos) producidos por las nanopartículas. Si el analito diana no está presente en la muestra, no tendrá lugar efecto plasmónico detectable sobre el sustrato ya que no estarán presentes nanopartículas.
La detección y cuantificación pueden hacerse midiendo la intensidad de dispersión producida por las nanopartículas cuando el sistema se irradia con una radiación electromagnética. Un efecto plasmónico detectable tendrá lugar por irradiación a cualquier longitud de onda del espectro de la luz blanca gracias a la amplificación de la señal proporcionada por el sustrato que cumple los parámetros de diseño.
Si el tipo de señal medida es la señal de dispersión, la medición se hace en reflectancia y, en tal caso, el índice de reflectancia del sustrato comprende entre 0,01 y 1.
Alternativamente, la detección y cuantificación pueden llevarse a cabo midiendo la señal de extinción de las nanopartículas irradiadas con la radiación electromagnética. Si la señal de extinción se mide, la medición se hace en transmitancia y, en tal caso, el índice de transmitancia del sustrato comprende entre 0,01 y 1.
La visualización de las nanopartículas en el sistema de la invención puede realizarse por medios ópticos tales como un microscopio de campo oscuro o un microscopio de polarización cruzada.
Un aspecto adicional de la invención es un biosensor que comprende un sistema según la invención. El sistema de la invención es en principio aplicable a cualquier tipo de biosensor sobre el que pueda disponerse el sistema.
En una realización particularmente preferida, el sistema está dispuesto en un biosensor micro o nanomecánico de manera que señales optomecanoplasmónicas puedan detectarse y analizarse. Este tipo particular de biosensor dual permite una fiabilidad superior, ya que la respuesta del biosensor solo se considera positiva cuando tanto las señales plasmónicas como mecánicas dan un resultado positivo. Aunque el biosensor dual no mejora el límite de detección del sistema optoplasmónico de la invención solo, claramente mejora la especificidad del ensayo, mejorando así su fiabilidad.
Por ejemplo, en una realización particular, de un biosensor de señal dual basado en un sustrato en forma de una micropalanca, en la que se midieron tanto las señales plasmónicas como mecánicas, se observó que la tasa de error para las concentraciones menores era más pequeña en la transduccion optoplasmónica. Para concentraciones superiores a 1 fg/ml, la tasa de error de tanto transduccion mecánica como optoplasmónica se volvió comparable, pero positivamente, la combinación de señales mecánicas y optoplasmónicas (señal optomecanoplasmónica) potenció significativamente la confianza del ensayo que conduce a una tasa de positivos falsos y negativos falsos extremadamente baja, de aproximadamente 2 x 10"4 a una concentración ultrabaja de 100 ag/ml del analito diana (Figura 10).
En una realización particular, el biosensor está dispuesto en forma de una matriz que comprende múltiples sistemas según la invención, comprendiendo cada sistema un sustrato diseñado para detectar un analito diana diferente o diferentes concentraciones del mismo analito.
Otro aspecto de la invención es un procedimiento para detectar y/o cuantificar un analito diana seleccionado en una muestra que comprende: a) poner en contacto una muestra con un sustrato de material dieléctrico que tiene una superficie funcionalizada con un elemento de reconocimiento que puede unirse específicamente al analito diana, teniendo el sustrato de material dieléctrico un espesor entre 0,1 μηι y 5 μηι y un coeficiente de extinción inferior a 0,3 y siendo la relación entre el índice de refracción del material dieléctrico y el material circundante superior a 1 , 1
b) añadir al sustrato resultante de a) al menos una nanopartícula con propiedades plasmónicas y que tiene al menos una de sus dimensiones con un tamaño de 2 nm a 300 nm, que comprende al menos un elemento de detección unido a ella y que puede unirse específicamente al analito diana, con el fin de detectar la presencia del analito diana unido al elemento de reconocimiento
c) irradiar el sustrato resultante de b) con una radiación electromagnética en la que la presencia del analito diana en la muestra produce un efecto plasmónico en las nanopartículas amplificadas por la presencia del sustrato que puede detectarse por medios ópticos,
d) medir la dispersión de la luz o intensidad de la señal de extinción de manera que detecte la presencia o ausencia del analito diana en la muestra y para la cuantificación de la misma.
El procedimiento de la invención se basa en el uso del sistema de detección tipo sándwich de la invención como se ha explicado anteriormente.
La etapa a) es la etapa de reconocimiento, en la que la muestra se pone en contacto con la superficie funcionalizada del sustrato. La superficie del sustrato se diseña para detectar un tipo particular de analito diana. Así, después de un tiempo de incubación adecuado de manera que pueda tener lugar la reacción si el analito diana está presente en la muestra, se unirá al elemento de reconocimiento y así se inmovilizará sobre la superficie.
Como se ha explicado anteriormente, el material dieléctrico usado en el procedimiento puede ser cualquier material dieléctrico en tanto que tenga un coeficiente de extinción inferior a 0,3. En una realización particular, el material dieléctrico es cuarzo, silicio, nitruro de silicio, carburo de silicio, grafeno, polímeros tales como fotorresistentes como SU8 e hidrogeles tales como mezclas de PEG y PLA o de DEXTRANO y PEG. Los materiales dieléctricos más preferidos son silicio o nitruro de silicio.
También como se ha explicado anteriormente, el elemento de reconocimiento usado en el procedimiento de la invención puede ser cualquier elemento que pueda reconocer y unirse específicamente a un analito diana deseado. En este sentido, en una realización particular, el elemento de reconocimiento puede ser un anticuerpo (un anticuerpo policlonal o monoclonal), un receptor (un receptor de la superficie celular tal como un receptor de opioides), un péptido (tal como un péptido de opiodes), una proteína (tal como lectinas), un hidrato de carbono (tal como el antígeno O de lipopolisacárido), un ácido nucleico (una secuencia de ADN o ARN), una célula (células protozoicas, células bacterianas, célula fúngica, células eucariotas), un microorganismo o una parte del mismo (tal como paredes bacterianas, orgánulos celulares como mitocondrias, vesículas celulares, etc.). En una realización preferida de la invención, el elemento de reconocimiento es un anticuerpo, más preferentemente un anticuerpo monoclonal.
La etapa b) del procedimiento de la invención comprende la etapa de detección. La nanopartícula que actúa de marca para la detección y cuantificación está unida a un elemento de detección que puede unirse específicamente al analito diana en una posición o área diferente del elemento de reconocimiento. Si el analito diana está presente en la muestra, la estructura resultante de la etapa a) se detectará por el elemento de detección después de un tiempo de incubación adecuado. Una vez ha tenido lugar la reacción de detección, las nanopartículas se inmovilizan sobre la superficie del sustrato y están en condición de ser detectadas y/o cuantificadas basándose en sus propiedades plasmónicas.
El elemento de detección unido a la nanopartícula usada en el contexto del procedimiento puede ser cualquier tipo de elemento que pueda unirse al analito diana, así, en principio su naturaleza puede ser la misma o similar a la del elemento de reconocimiento. Sin embargo, en una realización preferida, el elemento de detección tanto se selecciona de un anticuerpo como de una molécula de ácido nucleico.
También como se explica antes, el tipo de nanopartícula usada en el procedimiento de la invención puede ser cualquier nanopartícula que presente propiedades plasmónicas. En este sentido, la nanopartícula puede ser una nanopartícula de oro, plata o de metamaterial plasmónico. Con respecto a la forma, la nanopartícula puede adoptar cualquier estructura tal como nanoesferas, nanovarillas, nanovarillas afiladas, nanovainas, nanojaulas/marcos, nanoesferas huecas, tetraedros, octaedros, cubos, icosaedros, dodecaedros rómbicos, nanocubos cóncavos, tetrahexaedros, bipirámides triangulares obtusas, trisohectaedros y nanoprismas en tanto que una de sus dimensiones tenga un tamaño de 2 nm a 300 nm.
La etapa c) comprende la irradiación de la superficie del sustrato con una radiación electromagnética de manera que revele la presencia o no de la nanopartícula en el sustrato. La radiación electromagnética incidente en el sustrato resultante de la etapa b) revelará si la muestra contiene o no el analito diana. Si el analito diana está presente en la muestra, la radiación electromagnética incidente producirá un efecto plasmónico en la nanopartícula que se potenciará enormemente por los fenómenos particulares que tienen lugar dentro de la cavidad del sustrato debido a su diseño particular. Como se ha explicado anteriormente, el efecto plasmónico potenciado producido cuando las nanopartículas están presentes en el sustrato es un modo híbrido que resulta del acoplamiento del modo de plasmones superficiales localizados sobre las nanopartículas y el modo de cavidad óptica.
La última etapa del procedimiento de la invención, etapa d), comprende medir la dispersión de la luz o intensidad de la señal de extinción de manera que se detecte la presencia o ausencia del analito diana en la muestra y para la cuantificación de la misma. Las mediciones pueden hacerse por dispositivos o medios ópticos adaptados para tal tarea tal como microscopio de campo oscuro o un microscopio de polarización cruzada.
La cuantificación puede hacerse basándose en la intensidad de la señal de la dispersión de la luz o la intensidad de la señal de la extinción de la luz. La intensidad de la señal medida puede relacionarse con una concentración de analito desconocida por comparación con una curva de calibración obtenida de muestras con concentraciones previamente conocidas de un analito.
El procedimiento de la invención puede diseñarse para medir el efecto plasmónico potenciado sobre las nanopartículas en reflectancia o transmitancia.
Si la medición se hace en reflectancia, entonces la intensidad de la señal de dispersión se mide y así el sustrato de material dieléctrico debe tener índice de reflectancia comprendido entre 0,01 y 1. Alternativamente, si la medición se hace en transmitancia, entonces la intensidad de la señal de extinción se mide y así el sustrato de material dieléctrico debe tener índice de transmitancia comprendido entre 0,01 y 1.
El procedimiento de la presente invención permite límites de detección ultrabajos ya que discrimina concentraciones al borde de 10 ag/ml y tiene la ventaja de que permite la detección de analitos diana en muestras complejas biológicas tales como muestras de sangre o de orina sin la necesidad de ninguna preparación o purificación previa de la muestra.
En una realización particularmente preferida, el procedimiento de la invención se realiza en un sistema micromecánico por el cual el sustrato de material dieléctrico está dispuesto como un elemento mecánico que puede sufrir un cambio en al menos una característica mecánica cuando el analito diana está presente en la muestra, y cuando se realizan las siguientes etapas adicionales: e) medir la al menos una característica mecánica en el elemento mecánico de manera que detecte la presencia o ausencia del analito diana en la muestra, f) combinar los datos ópticos obtenidos en la etapa d) con datos mecánicos de la etapa e) con el fin de mejorar la fiabilidad del procedimiento de detección.
Los inventores han encontrado que en esta realización particularmente preferida, el procedimiento de la invención, aunque no mejora el límite de detección espectacularmente, mejora la fiabilidad del procedimiento cuando se compara con el procedimiento solo basado en el efecto optoplasmónico. El procedimiento de la invención en esta realización particularmente preferida conduce a una tasa muy baja de positivos falsos y negativos falsos. La superior fiabilidad se explica debido a que el resultado del procedimiento solo se considera cuando tanto las señales plasmónicas como las mecánicas dan un resultado positivo.
En esta realización particular, el sustrato de material dieléctrico que es esencial en la presente invención debido a sus propiedades ópticas está dispuesto para también actuar de elemento mecánico que puede sufrir un cambio en al menos una característica mecánica cuando el analito diana está presente en la muestra. Este cambio en una característica mecánica puede medirse de manera que se obtenga una señal mecánica, además de la señal optoplasmónica. La presencia de la nanopartícula cuando el analito diana está presente en la muestra también produce una señal mecánica amplificada debido a la mayor masa proporcionada por la nanopartícula.
El elemento mecánico puede estar en forma de una micropalanca, un micropilar, un resonador de cuerda, un resonador de trampolín, una palanca rectangular, una palanca triangular, una palanca piramidal, una palanca de pala, un resonador de membrana, un resonador de placa, un puente, una palanca hueca o un nanoalambre. En una realización particularmente preferida, el sustrato está dispuesto para actuar de elemento mecánico en forma de una micropalanca.
Además, un cambio de cualquier característica mecánica del elemento mecánico puede medirse con el fin de detectar la presencia del analito diana en la muestra. El cambio de la característica mecánica detectado puede seleccionarse, aunque no limitarse a, la posición de una porción del elemento mecánico, la característica de vibración del elemento mecánico, tal como la fase de la vibración del elemento mecánico, la frecuencia de la vibración del elemento mecánico, la amplitud de la vibración del elemento mecánico o la tensión superficial sobre una porción del elemento mecánico o los cambios de disipación del elemento mecánico.
La combinación de los datos ópticos obtenidos en la etapa d) con los datos mecánicos de la etapa e) del presente procedimiento proporciona una fiabilidad mejorada del procedimiento.
Finalmente, otro objetivo de la invención es un dispositivo que puede detectar el efecto optoplasmónico potenciado de las nanopartículas por medio del sistema de la invención o bien combinar la detección de tal efecto optoplasmónico con el análisis de los cambios en las características mecánicas en el sustrato.
Más precisamente, el dispositivo para la inspección superficial dispuesto para detectar el efecto optoplasmónico en al menos una nanopartícula de un sistema según las etapas c) y d) del procedimiento de la invención comprende: una fuente de radiación electromagnética dispuesta para generar al menos un haz de radiación electromagnética;
un primer detector sensible tal como un microscopio de campo oscuro o un microscopio de polarización cruzada dispuesto para recibir la radiación electromagnética cuando se refleja o transmite a través del sustrato para producir al menos una primera señal de salida en respuesta a la dispersión y/o la extinción de dicha radiación electromagnética;
un sistema de control electrónico;
Adicionalmente, con el fin de realizar las etapas e) y f) del procedimiento de la invención, en las que se miden cambios en las características mecánicas cuando el analito diana está presente en la muestra, el dispositivo también comprende: un subsistema para detectar un cambio en una característica mecánica en el sustrato, comprendiendo dicho subsistema un segundo detector sensible dispuesto para detectar un cambio mecánico en el sustrato para producir al menos una segunda señal en respuesta a dicho cambio mecánico, concretamente:
o una luz de iluminación o rayo láser y un fotodetector sensible a la posición lineal (PSD) para registrar el cambio en la característica mecánica sobre el sustrato
o un sistema de control electrónico;
o medios de barrido para el desplazamiento relativo de dicha luz o rayo láser con respecto al sustrato de manera que se barra el sustrato con el haz de luz siguiendo instrucciones del sistema de control electrónico.
y
medios para producir una señal de salida final basada en la combinación de la primera y segunda señales de salida del primer y segundo detectores sensibles.
BREVE DESCRIPCIÓN DE LAS FIGURAS Figura 1 : Representación esquemática del ensayo de sándwich sobre el sustrato en forma de una palanca, (a) La palanca está funcionalizada con anticuerpos de captura. La funcionalización comprende silanización, unión de anticuerpo sobre la superficie superior de la palanca y bloqueo con polietilenglicol para minimizar interacciones no especificas sobre la superficie inferior de la palanca y huecos entre los anticuerpos.
(b) La palanca se sumerge entonces en la muestra de suero para unir la proteína de biomarcador, si está presente, por inmunorreacción con los anticuerpos de captura (elemento de reconocimiento), (c) Finalmente, las inmunorreacciones se revelan exponiendo la palanca a un anticuerpo primario (elemento de detección) que está unido a una nanopartícula de oro de 100 nm de diámetro que reconoce una región libre específica del biomarcador capturado.
Figura 2: Detección plasmónica del biomarcador de proteína CEA sobre la microcavidad óptica de la palanca, (a) Esquemas que ilustran las diferentes rutas para la generación de la señal óptica en la palanca mediante múltiples reflexiones internas, (b) Espectros de dispersión del ensayo de sándwich en las regiones de chip y de palanca para el ensayo de detección de CEA. La dispersión se normaliza a la del chip de silicio. El acoplamiento entre los modos plasmónicos dipolares y los modos individuales de la microcavidad de la palanca conduce a un efecto doble, primero la dispersión asistida por plasmones se potencia por la cavidad de la palanca óptica por casi un orden de magnitud, y segundo, el espectro de plasmones de nanopartículas se discretiza por los modos de cavidad óptica de la palanca.
Figura 3: Esquemas del procedimiento de deflexión del rayo óptico para medir la vibración de la palanca. Un rayo láser se enfoca sobre la región del extremo libre de la palanca. La deflexión del haz reflectado debido a la vibración de la palanca se mide por un fotodetector sensible a la posición lineal (PSD). Un generador de frecuencia barre la frecuencia excitando un actuador piezoeléctrico localizado debajo de la base de la matriz de la palanca. La amplitud de vibración frente a la frecuencia se ajusta al modelo de oscilador armónico para derivar la frecuencia de resonancia y el factor de calidad de la palanca.
Figura 4: Imágenes del microscopio electrónico de barrido (SEM) de una región de la palanca que cumple el diseño que conduce al efecto plasmónico potenciado (superficie de la micropalanca) y chip que tiene dimensiones que no conducen al efecto plasmónico potenciado, tanto después del ensayo de sándwich en un experimento de control como en un ensayo de detección de 1 pg/ml de CEA en suero. La superficie de la palanca y la superficie del chip muestran la misma cantidad promedio de nanopartículas.
Figura 5: Densidad de nanopartículas sobre las micropalancas y chip en tampón medido con un microscopio electrónico de barrido y usando un algoritmo basado en contraste de señales implementado en el software Matlab.
Figura 6: Detección plasmónica del biomarcador de proteínas CEA. (a) Imágenes ópticas de campo oscuro de la palanca después de la etapa de reconocimiento con los anticuerpos unidos a las nanopartículas para un experimento de control riguroso y para el ensayo de detección de CEA con una muestra de 1 pg/ml en solución salina tamponada con fosfato. La señal de dispersión es insignificante en el experimento de control, mientras que es significativamente mayor en la región de micropalanca en el ensayo de detección. La micropalanca actúa de cavidad óptica mientras que la dispersión en la región de prepinzamiento del chip es baja, y no puede usarse para discriminar la presencia de CEA en la muestra, (b) Señal de dispersión media en la micropalanca y el chip frente a la concentración de CEA en tampón y suero. La señal se obtiene de una rápida inspección de las palancas con un simple microscopio óptico comercial y objetivo de campo oscuro con bajo aumento. Los datos de la palanca se comparan con los datos del chip para evaluar el efecto de la cavidad de la palanca óptica. La dispersión para los experimentos de control en las regiones de palanca y de chip se representan como regiones discontinuas que representan la desviación estándar de los datos.
Figura 7: (a) Espectros de dispersión del efecto de las nanopartículas que se unen sobre el chip que tiene dimensiones que no conducen al efecto plasmónico potenciado, y regiones de palanca que cumplen el diseño que conduce al efecto plasmónico potenciado. La dispersión se normaliza a la de un chip de silicio en bruto. El recuadro ilustra las diferentes rutas para la generación de la señal dispersada en la palanca mediante múltiples reflexiones internas (también representadas en la Figura 2.) (b) Esquemas del efecto de la carga de masa de nanopartículas sobre la frecuencia de resonancia de la palanca. La reducción resultante de la frecuencia de resonancia es proporcional al aumento de masa.
Figura 8: Resonancia de plasmones de nanopartículas y cavidad de la palanca óptica, (a) Las nanopartículas de oro usadas en el ensayo de sándwich caracterizan resonancias de plasmones asociadas a oscilaciones de electrones colectivas en la nanopartícula. Estas resonancias dan lugar a dispersión y absorción potenciadas próximas a la frecuencia de resonancia óptica, (b) Imagen óptica de campo oscuro de una única nanopartícula de 100 nm de diámetro después de realizar un ensayo de sándwich sobre un sustrato de silicio. La nanopartícula de oro presenta el muy conocido patrón de Airy debido a la difracción de la luz. (c) Espectros de dispersión recogidos de un área de 20 x 20 μηι2 con una única nanopartícula. (d) Imagen de microscopía electrónica de barrido que muestra la frontera entre el chip, 6 μηι de espesor, y la palanca, 1 μηι de espesor. El espesor de la palanca hace que la luz pueda rebotar eficazmente múltiples veces entre los lados de la palanca opuestos que dan lugar a un potenciamiento de la reflectividad óptica a longitudes de onda en las que se producen interferencia constructiva y, en cambio, a supresión de la reflectividad para longitudes de onda en las se produce interferencia destructiva, (e) Imágenes de campo brillante de las regiones de palanca y chip que muestran la modulación de la reflectividad de la palanca con la longitud de onda de iluminación en la región del espectro visible. La modulación de la reflectividad del chip es insignificante, (f) Reflectividad relativa en la palanca con respecto al chip.
Figura 9: Biomarcador de la proteína CEA de detección mecánica, (a) Frecuencia de resonancia mecánica de una palanca de silicio antes y después de la etapa de reconocimiento con los anticuerpos unidos a nanopartículas para un experimento de control y para un ensayo de detección de CEA (1 pg/ml en PBS). Las mediciones se llevaron a cabo en aire a temperatura ambiente. La frecuencia de resonancia fundamental y los factores de calidad de las palancas sin recubrir fueron 4,8 ± 0,5 kHz y 5,5 ± 0,5, respectivamente, (b) Desplazamiento relativo de la frecuencia de resonancia del modo de vibración fundamental frente a la concentración de biomarcador en tampón y muestras de suero (símbolos rojos). Las líneas son una guía para los ojos. Los desplazamientos de la frecuencia medidos en disolución de tampón se comparan con el desplazamiento de la frecuencia teórica predicho de la distribución de nanopartículas sobre la palanca obtenida por microscopía electrónica de barrido. La buena concordancia confirma que el desplazamiento de la frecuencia se produce a partir de la carga de masa de nanopartículas. El desplazamiento de la frecuencia para los experimentos de control se representa como una región discontinua que representa la desviación estándar de los datos.
Figura 10: (a) Curvas de DET para una concentración de 10 fg/ml usando las señales nanomecánicas y plasmónicas y una combinación lineal óptima de ellas, (b) Tasa de negativos falsos frente a la tasa de positivos falsos para cada mecanismo de transduccion y para un procedimiento híbrido que usa una combinación lineal óptima de las señales de desplazamiento de frecuencia de resonancia de dispersión y mecánicas. Los colores indican la concentración diana.
Figura 11 : Ejemplos de diferentes formas para el sustrato del sistema (a) micropalancas comerciales, (b) resonadores de micropilar, (c) resonador de cuerda, (d) resonadores de trampolín, (e) palancas rectangulares, triangulares y de pala, (f) resonadores de membrana, (g) resonadores de placa, (h) imagen de SEM de una palanca hueca y representación esquemática, (i) nanoalambre.
Figura 12: Nanopartículas de oro de diverso tamaño y forma útiles en el sistema de la invención. Nanoesferas pequeñas (a) y grandes (b), (c) nanovarillas, (d) nanovarillas afiladas, (e) nanovainas, (f) nanojaulas/marcos, (g) nanoesferas huecas, (h) tetraedros/octaedros/cubos/icosaedros, (i) dodecaedros rómbicos, (j) octaedros, (k) nanocubos cóncavos, (I) tetrahexaedros, (m) dodecaedros rómbicos, (n) bipirámides triangulares obtusas, (o) trisoctaedros y (p) nanoprismas.
DESCRIPCIÓN DE UNA REALIZACIÓN PREFERIDA DE LA INVENCIÓN
Como experimento de prueba de concepto para soportar la invención se realizó un inmunoensayo de sándwich para la detección de un biomarcador de cáncer. La detección del antígeno carcinoembrionario (CEA) se eligió como modelo. Primero, se aplicó un procedimiento de biofuncionalización a palancas con eficiencia de reconocimiento óptima y capacidad de incrustación ultrabaja33 (véase la Figura 1 a). Las palancas de silicio tuvieron 500 μηι de longitud, 100 μηι de anchura y 1 μηι de espesor. Esta biofuncionalización se produce para inmovilizar la capa de receptor que reconoce y atrapa el biomarcador de cáncer. Después de eso, la palanca biofuncionalizada se sumergió en la muestra de líquido durante un periodo de tiempo determinado y temperatura fija para permitir la unión del biomarcador elegido como diana a los anticuerpos de captura inmovilizados sobre la superficie de la palanca (véase la Figura 1 b). Después del aclarado riguroso, la palanca se expuso a una disolución que contenía el anticuerpo de detección unido a la nanopartícula que reconoció y se unió a una región específica del biomarcador capturado de superficie (véase la Figura 1c); aquí también se determinó el tiempo y temperatura ideales para el segundo reconocimiento. Básicamente, se llevó a cabo un ensayo de sándwich que implica dos etapas de reconocimiento para potenciar la selectividad y amplificar la respuesta del sensor. El anticuerpo de detección se unió a una nanopartícula de oro de 100 nm de diámetro que convirtió y amplificó el producto de biorreconocimiento en dos señales físicas detectables: (i) un aumento de masa y (ii) un aumento de dispersión de la luz debido a las propiedades plasmónicas de la nanopartícula (véanse la Figura 7a y 7b).
Para estos experimentos, el protocolo detallado para la inmovilización del anticuerpo de captura, detección del biomarcador y el ensayo de sándwich se aplicó como se describe a continuación.
Conjugación de anticuerpo con nanopartículas de oro esféricas de polímero de carboxilo
El anticuerpo primario, monoclonal de ratón anti-antígeno carcinoembrionario 3C1 (MAb3C1), se inmovilizó sobre la superficie de las nanopartículas de oro esféricas de polímero de carboxilo de 100 nm de diámetro siguiendo el procedimiento proporcionado por Nanopartz™. La muestra se almacenó en el frigorífico a 4 °C hasta su uso. Funcionalización de la palanca y activación de los grupos carboxilo sobre la superficie
Antes de la funcionalización de la superficie, las matrices de palancas se limpiaron con disolución piraña (3H2S04:1 H2O2) (cuidado: la disolución piraña es extremadamente corrosiva, reactiva y potencialmente explosiva) durante 15 minutos a temperatura ambiente (TA). Las palancas se aclararon tres veces con agua Milli-Q y se secaron bajo una corriente de nitrógeno. Las palancas se sumergieron en una disolución al 0,2 % de (3-glicidiloxipropil)trimetoxisilano en tolueno seco durante la noche a temperatura ambiente. Después de eso, las muestras se lavaron con tolueno, agua Milli-Q y se secaron bajo N2. Se preparó una disolución de NTA 100 mM en tampón carbonato 50 mM a pH 9,5 y las palancas se incubaron durante la noche a 25 °C bajo agitación suave. Entonces, las palancas se aclararon con tampón carbonato 50 mM a pH 9,5, agua Milli-Q y se secaron bajo N2. Los grupos carboxilo en la superficie de la palanca se activaron por inmersión en una disolución mixta de EDC 100 mM y sulfo-NHS 150 mM, ambos disueltos en MES 10 mM a pH 5,5. Las palancas se incubaron durante 45 minutos a 37 °C bajo agitación suave. Las muestras se aclararon ampliamente con MES 10 mM.
Inmovilización covalente y orientada de los anticuerpos de captura y control sobre la palanca
Justamente después de la etapa de activación superficial, la inmovilización del anticuerpo se realizó solo sobre el lado superior de las palancas. Se preparó una disolución de 50 μg/ml del anticuerpo de captura, monoclonal de ratón anti-antígeno carcinoembrionario 3C6 (MAb3C6), en MES 10 mM a pH 5,5. Las palancas se incubaron durante 2 horas a 37 °C. Después de eso, las muestras se lavaron con MES 10 mM a pH 5,5 y se incubaron durante 45 minutos a 37 °C con tampón fosfato de sodio 10 mM a pH 8,0 con NaCI 0,3 M para desorber anticuerpos que no estaban covalentemente unidos a la superficie. Para los experimentos de control, anticuerpo anti-peroxidasa producido en conejo (anti-HRP) se inmovilizó sobre el lado superior de la superficie de la palanca en lugar de MAb3C6. Para las muestras de control se usaron la misma concentración de anticuerpo y procedimiento aplicados a la inmovilización covalente y orientada de MAb3C6. Antes de la inmovilización del anticuerpo de control sobre las palancas, 1 mi de una disolución de 4 mg/ml de anti- HRP en agua Milli-Q se dializó durante la noche a 4 °C. La concentración de la disolución de anticuerpo después de la diálisis se determinó usando el ensayo de Bradford [M. M. Bradford, M. M. Analytical Biochemistry, 1976, 72, 248-254]. Se hizo una curva de calibración usando albúmina bovina de suero (BSA) como patrón de proteína. El intervalo de linealidad del ensayo fue de 5 μg/ml a 2500 μg/ml. Después de la inmovilización de anticuerpos de captura (MAb3C6) y control (anti- HRP) en un modo covalente y orientado y desorción de los anticuerpos que no se unen covalentemente a la superficie, la superficie de la palanca se bloqueó para prevenir adsorciones no específicas. Las palancas se sumergieron en 1 mg/ml de
(aminoetil)polietilenglicol (PEG), durante la noche a 4 °C. Después de eso, las muestras se lavaron con MES a pH 5,5 con 0,05 % de Tween® 20 (pH 5,5).
Reconocimiento de biomarcadores y ensayo de sándwich
Las palancas se incubaron durante 1 hora a 37 °C en disoluciones de CEA con concentraciones que oscilan de 1 pg/ml a 1 ag/ml en disolución de PBS con 0,05 % de Tween® 20 a pH 7,4 (PBST). Con el fin de tener experimentos de control rigurosos, la concentración de CEA en disolución usada para estas muestras fue de 1 μg/ml. Para simular una muestra real se prepararon disoluciones de CEA con concentración que oscila de 100 fg/ml a 10 ag/ml en SBF y para los rigurosos experimentos de control en SBF la concentración de CEA se mantuvo a 1 μg/ml. Justo después, las palancas se lavaron dos veces con PBST y una vez con PBS a pH 7,4. Después de eso, las muestras se aclararon con agua Milli-Q y se secaron bajo una corriente de N2.
Para el ensayo de sándwich, las palancas se sumergieron en 1 μg/ml de disolución de nanopartículas de oro esféricas funcionalizadas con el anticuerpo de detección (GNPs-MAb3C1) preparado en MES 10 mM con 0,05 % de Tween® 20 pH 5,5. Las muestras se incubaron a 37 °C durante 1 hora bajo agitación suave, se lavaron tres veces con MES con Tween, dos veces con MES, se aclararon ampliamente con agua Milli-Q y se secaron bajo una corriente de N2.
La eficiencia del reconocimiento de biomarcador puede afectarse por la capa de biorreceptor inmovilizada sobre la palanca y también por las condiciones experimentales a las que la reacción de reconocimiento tiene lugar tales como temperatura, pH y tiempo. Las estrategias para inmovilizar la capa de biorreceptor deben optimizarse para cada caso; pueden incluir la orientación y densidad de los receptores sobre la superficie, y las estrategias de bloqueo para evitar interacciones no específicas. Por ejemplo, si el biomarcador de detección es una proteína pequeña, la estrategia para inmovilizar los anticuerpos sobre la superficie de la micropalanca, como su densidad y orientación, y la molécula de bloqueo elegida no serán las mismas si ahora el biosensor se revela para la detección de una célula bacteriana, que es mayor. Incluso cuando se trabaja solo con anticuerpos las condiciones pueden cambiar; deberían determinarse y optimizarse condiciones ideales como concentración, pH, tiempo y temperatura que va a usarse. La inmovilización y condiciones experimentales para el reconocimiento de analitos tienen que personalizarse cada caso; pero el principio del procedimiento presentado aquí, basado en la detección dual, sigue siendo el mismo.
Las mediciones ópticas se realizaron usando un microscopio óptico comercial en modo reflectivo de campo oscuro (Axioskop 2 MAT equipado con AxioCam MRc 5 y objetivos de campo brillante/campo oscuro EC Epiplan Neofluor® de Zeiss 50x de Zeiss - Oberkochen, Alemania). Las superficies del chip y la palanca se observaron después de la etapa de reconocimiento de CEA sobre la palanca y después del ensayo de sándwich (unión de las nanopartículas funcionalizadas con el anticuerpo de detección). La frecuencia de resonancia se obtuvo de la vibración accionada de la palanca que se detecta ópticamente por medio del simple procedimiento de palanca óptica35 (véase la Figura 3). La frecuencia de resonancia del modo de vibración fundamental de la palanca se mide en aire antes y después de la exposición de la palanca a las nanopartículas de oro funcionalizadas con el anticuerpo primario.
Las muestras usadas en los experimentos para la prueba de concepto se analizaron por microscopía electrónica de barrido (SEM) como se ilustra en la Figura 4. Al menos 100 imágenes sobre la palanca y el chip se tomaron para cada concentración de CEA detectada y ambas superficies presentaron la misma densidad de nanopartículas (Figura 5). La información obtenida de las imágenes de SEM se usará para soportar los resultados encontrados de las mediciones ópticas y mecánicas.
La Figura 6a muestra las imágenes de campo oscuro de la región de chip para un experimento de control y para un experimento de detección con 1 pg/ml de CEA en PBS. La señal de dispersión es despreciable en el experimento de control. En el caso del ensayo de detección de CEA, un aumento despreciable de la dispersión se observa en la región de chip, la región de chip tiene dimensiones fuera de las reglas del diseño para el sustrato en la invención, no conduciendo así al efecto plasmónico potenciado, mientras que las nanopartículas unidas hacen que el área de la palanca brille, ya que la palanca cumple con el diseño que conduce al efecto plasmónico potenciado.
La señal de dispersión media obtenida de las imágenes de campo oscuro se representa en la Figura 6b en función de la concentración de CEA en tampón o suero.
El límite de detección encontrado para los experimentos realizados en medio tampón es 0,1 fg/ml. La señal de dispersión en la palanca es aproximadamente 6 veces la señal en el chip, mostrando los aumentos de la señal óptica por el sustrato diseñado. El potenciamiento resonante de la señal de dispersión desempeña una función de determinación en la detección de CEA a concentraciones ultrabajas en suero. Así, la señal de dispersión en el chip se basa en la región obtenida en los experimentos de control para concentraciones de CEA de 0,1 fg/ml a 100 fg/ml. Impresionantemente, el potenciamiento inducido por la cavidad de la palanca de la señal de dispersión permite la discriminación de concentraciones de tan solo 0, 1 fg/ml.
El aspecto brillante de la palanca está relacionado con su efecto como cavidad óptica, como se bosqueja en la Figura 7a. Si la luz interacciona con una nanopartícula sobre el chip de la palanca (un soporte que no cumple las reglas de diseño del objetivo de la invención), la luz dispersa recogida se da solo por la dispersión hacia atrás de la dispersión procedente de la superficie de separación entre el medio medioambiental y el sustrato en bruto. Si la nanopartícula está sobre la palanca, además de la dispersión hacia atrás observada en el chip de soporte en bruto, múltiples rutas ayudan a potenciar la dispersión por una única nanopartícula que potencia espectacularmente la señal de dispersión hacia atrás medida. Una ruta implica la amplificación de la luz dispersada por la nanopartícula hacia la palanca por múltiples reflexiones, produciendo procedimientos de dispersión múltiple. Una segunda ruta encierra los procedimientos en los que la luz que golpea en las regiones de la palanca entre nanopartículas experimentan múltiples reflexiones en la cavidad de la palanca óptica, produciendo una cascada de interacciones de dispersión en el sitio de nanopartículas.
Con el fin de determinar el acoplamiento entre la cavidad óptica y la respuesta de plasmones se analizó la respuesta espectral de la dispersión en la palanca y el chip de soporte. Los espectros mostraron el potenciamiento resonante de la dispersión asistida por plasmones de la cavidad de la palanca óptica por casi un orden de magnitud. Los procedimientos de múltiple reflexión en la cavidad de la palanca dan lugar a la modulación de la señal de dispersión con la longitud de onda, reminiscente de la modulación de reflectividad mostrada en la Figura 8.
La Figura 9 muestra la respuesta de frecuencia mecánica de la palanca debido a la masa añadida dada por nanopartículas recubiertas de anticuerpo que se unen. La resonancia mecánica se midió por un instrumento con un procedimiento de deflexión de rayo láser como se representa en la Figura 3 para la lectura. La Figura 9a muestra el pico de frecuencia de resonancia mecánica antes y después de la etapa de reconocimiento de nanopartículas en medios tampón para el experimento de control y durante 1 pg/ml de CEA. Los picos de resonancia mecánica antes y después de la exposición de la palanca de control a la disolución que contiene los biomarcadores de CEA presentan diferencias despreciables. En el ensayo de detección de CEA se observa un desplazamiento significativo del pico de resonancia mecánica a frecuencias menores. Los desplazamientos de la frecuencia de resonancia mecánica frente a la concentración de CEA se representan en la Figura 9b para tampón purificado (izquierda) y disoluciones en suero (derecha). Los desplazamiento de resonancia mecánica en disolución de tampón se muestran en la Figura 9b (izquierda) junto con el ruido base biológico determinado en los ensayos de control.
Los datos experimentales muestran una coincidencia excelente con la predicción teórica basándose en la masa de las nanopartículas unidas a la palanca que los presentes inventores han evaluado por SEM. El límite de detección en estas curvas de calibración es 0,1 fg/ml. El límite de detección aumenta un orden de magnitud cuando los ensayos se realizan en suero debido a la enorme cantidad de interacciones no específicas de competición entre las biomoléculas de plasma y la superficie de la palanca.
El hecho de que la técnica óptica alcance un mayor límite de detección al obtenido con la medición mecánica no indica que sea un mejor biosensor. Un análisis estadístico de la fiabilidad de los sensores ópticos y mecánicos puros indica que ambos biosensores tienen rendimientos similares, pero la combinación de los dos mecanismos de transduccion condujo a un biosensor dual con rendimiento mejorado como puede observarse en la Figura 10.
Estudio estadístico de la fiabilidad del sensor optomecanoplasmónico (señal híbrida)
La sensibilidad y especificidad de una prueba de diagnóstica son función de un valor umbral elegido. El cambiar el valor umbral de manera que aumente la sensibilidad disminuirá la especificidad, y viceversa. La curva de la característica operativa del receptor (ROC) es una gráfica de todos los pares de sensibilidad/especificidad resultantes de variar continuamente el umbral de decisión con respecto al intervalo complejo de resultados observados. Éste es un gráfico de la tasa de positivos verdaderos (o sensibilidad) en el eje y y la tasa de negativos verdaderos
(especificidad 1) en el eje x. La tasa de positivos verdaderos (TPR) es la probabilidad de que un caso de enfermedad se clasifique correctamente y la tasa de negativos verdaderos (TNR) es la probabilidad de que un caso normal verdadero se clasifique correctamente. La curva de ROC también puede usarse para comparar el rendimiento de dos o más pruebas de diagnóstico7'8. Una alternativa a la curva de
ROC es la gráfica de la compensación del error de detección (DET), que representa la tasa de negativos falsos (detecciones perdidas) frente a la tasa de positivos falsos (alarmas falsas) en eje x e y logarítmicos. Esta alternativa gasta más área de gráfica en la región de interés, es decir, la región con tasa de falsos mínima. La gráfica de DET se realiza suponiendo una distribución normal determinada por el valor medio y desviación estándar experimentalmente obtenidos. La Figura 10a muestra las curvas de DET para una concentración de 10 fg/ml por los procedimientos de transduccion plasmónica y nanomecánica. La línea de rayas-puntos se corresponde con un parámetro aleatorio. Ambos procedimientos de transduccion proporcionan curvas de DET muy por debajo de esta curva de no discriminación. El valor óptimo de la señal umbral es aquel que da un mínimo en la distancia entre la curva de DET y el origen. Ahora se considera el caso en el que la señal de los presentes inventores sea una combinación de la intensidad de dispersión y el desplazamiento de la frecuencia de resonancia mecánica7. La combinación lineal se optimiza minimizando la distancia mínima entre la curva de DET y el origen. De esta forma, gracias a la señal dual, la tasa de falsos de la detección de los presentes inventores siempre se potencia como se muestra en la Figura 10a. La potenciación en la fiabilidad es modesta para las menores concentraciones como puede apreciarse en la Figura 10b, en la que la transducción plasmónica es claramente superior a la transducción nanomecánica.
Sin embargo, a medida que aumenta la concentración, la fiabilidad de ambos procedimientos de transducción se vuelve comparable, y la optimización por combinación lineal de ambas señales es claramente ventajosa (véanse los símbolos de esferas en la Figura 10b).
REFERENCIAS
I . D'Orazio, P. Biosensors in clinical chemistry-2011 update. Clínica Chimica Acta 412, 1749-1761 (2011).
2. Tothill, I. E. 55-62 (Elsevier).
3. Justino, C. I. L, Rocha-Santos, T. A. & Duarte, A. C. Review of analytical figures of merit of sensors and biosensors in clinical applications. TrAC Trends in Analytical Chemistry 29, 1172-1183 (2010).
4. Fan, X. y col. Sensitive optical biosensors for unlabeled targets: A review. Analytical chimica acta 620, 8-26 (2008).
5. Wang, J. Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis 17, 7-14 (2005).
6. Wang, J. Electrochemical biosensors: Towards point-of-care cáncer diagnostics. Biosensors and Bioelectronics 2 , 1887-1892 (2006).
7. Wang, J. Amperometric biosensors for clinical and therapeutic drug monitoring: a review. Journal of pharmaceutical and biomedical analysis 19, 47-53 (1999).
8. Stern, E. y col. Label-free biomarker detection from whole blood. Nature nanotechnology 5, 138-142 (2009).
9. Duan, X. y col. Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors. Nature nanotechnology 7, 401-407 (2012).
10. Zheng, G., Gao, X. P. A. & Lieber, C. M. Frequency domain detection of biomolecules using silicon nanowire biosensors. Nano Letters 10, 3179-3183 (2010).
I I . Dixon, M. C. Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. Journal of biomolecular techniques: JBT 19, 151 (2008).
12. Lange, K., Rapp, B. E. & Rapp, M. Surface acoustic wave biosensors: a review. Analytical and bioanalytical chemistry 391 , 1509-1519 (2008).
13. O'sullivan, C. & Guilbault, G. Commercial quartz crystal microbalances-theory and applications. Biosensors and Bioelectronics 14, 663-670 (1999).
14. Arlett, J., Myers, E. & Roukes, M. Comparative advantages of mechanical biosensors. Nature nanotechnology Q, 203-215 (2011).
15. Boisen, A. & Thundat, T. Design & fabrication of cantilever array biosensors. Materials Today 12, 32-38 (2009).
16. Datar, R. y col. Cantilever sensors: nanomechanical tools for diagnostics. MRS bulletin 34, 449-454 (2009).
17. Boisen, A., Dohn, S., Keller, S. S., Schmid, S. & Tenje, M. Cantilever-like micromechanical sensors. Reports on Progress in Physics 74, 036101 (2011).
18. Fritz, J. Cantilever biosensors. Analyst 133, 855-863 (2008).
19. Raiteri, R., Grattarola, M., Butt, H. J. & Skladal, P. Micromechanical cantilever- based biosensors. Sensors and Actuators B: Chemical 79, 115-126 (2001).
20. Waggoner, P. S. & Craighead, H. G. Micro-and nanomechanical sensors for environmental, chemical, and biological detection. Lab Chip 7, 1238-1255 (2007).
21. Kathryn M. Mayer, Jason H. Hafner, Localized Surface Plasmon Resonance Sensors, Chemical Reviews 1 11 , 3828-3857 (2011)
22. Roberto de la Rica, Molly M. Stevens, Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye, Nature Nanotechnology 7, 821- 824 (2012)
23. Jwa-Min Nam, C. Shad Thaxton, Chad A. Mirkin, Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins, Science 301 , 1884-1886 (2003)
25. Dong y col., Two types of nanoparticle-based bio-barcode amplification assays to detect HIV-1 p24 antigen, Virology Journal 9, 180 (2012)
26. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science 277, 1078-81 (1997)
27. James J. Storhoff , Robert Elghanian , Robert C. Mucic , Chad A. Mirkin , Robert L. Letsinger, One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes, J. Am. Chem. Soc, 120, 1959-1964 (1998) 28. T. Andrew Taton, Chad A. Mirkin, Robert L. Letsinger, Scanometric DNA Array Detection with Nanoparticle Probes, Science 289, 1757-1760 (2000)
29. Robert Jenison, Shao Yang, Ayla Haeberli, Barry Polisky, Interference-based detection of nucleic acid targets on optically coated silicon, Nature Biotechnology 19, 62 - 65 (2001)
30. Goluch ED1 , Nam JM, Georganopoulou DG, Chiesl TN, Shaikh KA, Ryu KS, Barron AE, Mirkin CA, Liu C, A bio-barcode assay for on-chip attomolar-sensitivity protein detection, Lab Chip. 6, 1293-9 (2006)
31. Waggoner, P. S., Varshney, M. & Craighead, H. G. Detection of prostate specific antigen with nanomechanical resonators. Lab Chip 9, 3095-3099 (2009).
32. Nair, P. R. & Alam, M. A. Theory of "Selectivity" of label-free nanobiosensors: A geometro-physical perspective. Journal of applied physics 107, 064701-064701- 064706 (2010).
33. Priscila M. Kosaka, Javier Tamayo, José J. Ruz, Sara Puertas, Ester Polo, Valeria Grazu, Jesús M. de la Fuente y Montserrat Calleja. Tackling Reproducibility in Microcantilever Biosensors: A Statistical Approach for Sensitive and Specific End- point detection of Immunoreactions, Analyst 138, 863-872 (2013).
34. Varshney M, Waggoner PS, Tan CP, Aubin K, Montagna RA, Craighead HG., Prion protein detection using nanomechanical resonator arrays and secondary mass labeling, Anal Chem. 80, 2141-8 (2008).
35. Javier Tamayo, Valerio Pini, Prisicila Kosaka, Nicolás F Martínez, Oscar Ahumada, Montserrat Calleja, Imaging the surface stress and vibration modes of a microcantilever by láser beam deflection microscopy, Nanotechnology, 23, 315501 (2012)

Claims

R E I V I N D I C A C I O N E S
1. Un sistema para aplicaciones de biodetección que comprende: a. un sustrato de material dieléctrico que tiene al menos una superficie funcionalizada con un elemento de reconocimiento que puede unirse específicamente a un analito diana y
b. al menos una nanopartícula con propiedades plasmónicas que comprende al menos un elemento de detección unido a ella y que puede unirse específicamente al analito diana en una disposición tipo sándwich, caracterizado porque: - el sustrato de material dieléctrico tiene un espesor entre 0, 1 μηι y 5 μηι y un coeficiente de extinción inferior a 0,3,
la nanopartícula tiene al menos una de sus dimensiones con un tamaño de 2 nm a 300 nm y
porque la relación entre el índice de refracción del material dieléctrico y el material circundante es superior a 1 , 1.
2. Un sistema según la reivindicación 1 , en el que el material dieléctrico está seleccionado de cuarzo, silicio, nitruro de silicio, carburo de silicio, grafeno, polímeros e hidrogeles.
3. Un sistema según cualquiera de las reivindicaciones 1 ó 2, en el que el sustrato tiene la forma de una micropalanca, un micropilar, un resonador de cuerda, un resonador de trampolín, una palanca rectangular, una palanca triangular, una palanca piramidal, una palanca de pala, un resonador de membrana, un resonador de placa, un puente, una palanca hueca o un nanoalambre.
4. Un sistema según cualquiera de las reivindicaciones 1 a 3, en el que el sustrato está funcionalizado con un elemento de reconocimiento seleccionado de un anticuerpo, un receptor, un péptido, una proteína un hidrato de carbono, un ácido nucleico, una célula, un microorganismo o una parte del mismo.
5. Un sistema según cualquiera de las reivindicaciones 1 a 4, en el que el elemento de detección está seleccionado de un anticuerpo o una molécula de ácido nucleico.
6. Un sistema según la reivindicación 1 a 5, en el que la nanopartícula es una nanopartícula de oro, plata o de metamaterial plasmónico.
7. Un sistema según la reivindicación 1 a 5, en el que la nanopartícula tiene una estructura seleccionada del grupo de nanoesferas, nanovarillas, nanovarillas afiladas, nanovainas, nanojaulas/marcos, nanoesferas huecas, tetraedros, octaedros, cubos, icosaedros, dodecaedros rómbicos, nanocubos cóncavos, tetrahexaedros, bipirámides triangulares obtusas, trisohectaedros y nanoprismas.
8. Un sistema según cualquiera de las reivindicaciones 1 a 7, en el que el sustrato tiene un índice de transmitancia comprendido entre 0,01 y 1 y/o un índice de reflectancia comprendido entre 0,01 y 1.
9. Un biosensor que comprende un sistema según cualquiera de las reivindicaciones 1 a 8.
10. Un biosensor dispuesto en forma de una matriz que comprende múltiples sistemas según cualquiera de las reivindicaciones 1 a 8, comprendiendo cada sistema un sustrato diseñado para detectar un analito diana diferente o concentraciones diferentes del mismo analito.
11. Un procedimiento para detectar y/o cuantificar un analito diana seleccionado en una muestra que comprende: a) poner en contacto una muestra con un sustrato de material dieléctrico que tiene una superficie funcionalizada con un elemento de reconocimiento que puede unirse específicamente al analito diana, teniendo el sustrato de material dieléctrico un espesor entre 0,1 μηι y 5 μηι y un coeficiente de extinción inferior a 0,3 y siendo la relación entre el índice de refracción del material dieléctrico y el material circundante superior a 1 , 1
b) añadir al sustrato resultante de a) al menos una nanopartícula con propiedades plasmónicas y que tiene al menos una de sus dimensiones con un tamaño de 2 nm a 300 nm, que comprende al menos un elemento de detección unido a ella y que puede unirse específicamente al analito diana, con el fin de detectar la presencia del analito diana unido al elemento de reconocimiento
c) irradiar el sustrato resultante de b) con una radiación electromagnética en la que la presencia del analito diana en la muestra produce un efecto plasmónico en las nanopartículas amplificadas por la presencia del sustrato que puede detectarse por medios ópticos,
d) medir la dispersión de la luz o intensidad de la señal de extinción de manera que detecte la presencia o ausencia del analito diana en la muestra y para la cuantificación de la misma.
12. Un procedimiento según la reivindicación 11 , en el que el material dieléctrico está seleccionado de cuarzo, silicio, nitruro de silicio, carburo de silicio, polímeros, hidrogeles o grafeno.
13. Un procedimiento según cualquiera de las reivindicaciones 1 1 a 12, en el que el elemento de reconocimiento está seleccionado de un anticuerpo, un receptor, un péptido, un hidrato de carbono, un ácido nucleico, una célula y un microorganismo o una parte del mismo.
14. Un procedimiento según cualquiera de las reivindicaciones 1 1 a 13, en el que el elemento de detección está seleccionado de un anticuerpo o una molécula de ácido nucleico.
15. Un procedimiento según cualquiera de las reivindicaciones 1 1 a 14, en el que la nanopartícula es una nanopartícula de oro, plata o un metamaterial plasmónico.
16. Un procedimiento según cualquiera de las reivindicaciones 1 1 a 15, en el que la nanopartícula tiene una estructura seleccionada del grupo de nanoesferas, nanovarillas, nanovarillas afiladas, nanovainas, nanojaulas/marcos, nanoesferas huecas, tetraedros, octaedros, cubos, icosaedros, dodecaedros rómbicos, nanocubos cóncavos, tetrahexaedros, bipirámides triangulares obtusas, trisohectaedros y nanoprismas.
17. Un procedimiento según cualquiera de las reivindicaciones 1 1 a 16, en el que el medio óptico comprende microscopio de campo oscuro o un microscopio de polarización cruzada.
18. Un procedimiento según cualquiera de las reivindicaciones 1 1 a 17, en el que:
« el sustrato de material dieléctrico tiene un índice de reflectancia comprendido entre 0,01 y 1 cuando la señal de intensidad de dispersión se mide o • el sustrato de material dieléctrico tiene un índice de transmitancia comprendido entre 0,01 y 1 cuando la señal de intensidad de extinción se mide.
19. Un procedimiento según cualquiera de la reivindicación 11 a 18, en el que el procedimiento se realiza en un sistema m i croe lectro mecánico por el cual el sustrato de material dieléctrico está dispuesto como elemento mecánico que puede sufrir un cambio en al menos una característica mecánica cuando el analito diana está presente en la muestra, y, en el que se realizan las siguientes etapas adicionales: e) medir al menos una característica mecánica en el elemento mecánico de manera que detecte la presencia o ausencia del analito diana en la muestra, f) combinar los datos ópticos obtenidos en la etapa d) con datos mecánicos de la etapa e) con el fin de mejorar la fiabilidad del procedimiento de detección.
20. Un procedimiento según la reivindicación 19, en el que el elemento mecánico puede estar en forma de una micropalanca, un micropilar, un resonador de cuerda, un resonador de trampolín, una palanca rectangular, una palanca triangular, una palanca piramidal, una palanca de pala, un resonador de membrana, un resonador de placa, un puente, una palanca hueca o un nanoalambre.
21. Un procedimiento según cualquiera de las reivindicaciones 19-20, en el que la al menos una característica mecánica puede seleccionarse de: la posición de una porción del elemento mecánico, la característica de vibración del elemento mecánico, tal como la fase de la vibración del elemento mecánico, la frecuencia de la vibración del elemento mecánico, la amplitud de la vibración del elemento mecánico o la tensión superficial sobre una porción del elemento mecánico o los cambios de disipación del elemento mecánico.
22. Dispositivo para la inspección superficial dispuesto para detectar un efecto optoplasmónico en al menos una nanopartícula de un sistema según la reivindicación 1 , comprendiendo dicho dispositivo: - una fuente de radiación electromagnética dispuesta para generar al menos un haz de radiación electromagnética;
un primer detector sensible dispuesto para recibir la radiación electromagnética cuando se refleja o transmite a través del sustrato para producir al menos una primera señal de salida en respuesta a la dispersión y/o la extinción de dicha radiación electromagnética;
un sistema de control electrónico;
23. Un dispositivo según la reivindicación 22, en el que el dispositivo comprende además:
- un subsistema para detectar un cambio en una característica mecánica en el sustrato, comprendiendo dicho subsistema un segundo detector sensible dispuesto para detectar un cambio mecánico en el sustrato para producir al menos una segunda señal en respuesta a dicho cambio mecánico; y medios para producir una señal de salida final basada en la combinación de primera y segunda señales de salida del primer y segundo detectores sensibles.
24. Un dispositivo según la reivindicación 23, en el que dicho subsistema de detección comprende:
- una luz de iluminación o rayo láser y un fotodetector sensible de posición lineal para registrar el cambio en la característica mecánica sobre el sustrato un sistema de control electrónico;
medios de barrido para el desplazamiento relativo de dicha luz o rayo láser con respecto al sustrato de manera que barran el sustrato con el rayo de luz siguiendo instrucciones del sistema de control electrónico.
PCT/ES2015/070434 2014-06-03 2015-06-02 Un sistema para aplicaciones de biodetección WO2015185778A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES15742334.4T ES2684794T3 (es) 2014-06-03 2015-06-02 Sistema para aplicaciones de biodetección
EP15742334.4A EP3153844B1 (en) 2014-06-03 2015-06-02 System for biodetection applications
DK15742334.4T DK3153844T3 (en) 2014-06-03 2015-06-02 System for bio-detection applications
PL15742334T PL3153844T3 (pl) 2014-06-03 2015-06-02 System do zastosowań w biodetekcji
US15/315,029 US10502734B2 (en) 2014-06-03 2015-06-02 System for biodetection applications
US16/668,005 US20200072829A1 (en) 2014-06-03 2019-10-30 System for biodetection applications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201430846 2014-06-03
ES201430846A ES2553027B1 (es) 2014-06-03 2014-06-03 Un sistema para aplicaciones de biodetección

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/315,029 A-371-Of-International US10502734B2 (en) 2014-06-03 2015-06-02 System for biodetection applications
US16/668,005 Division US20200072829A1 (en) 2014-06-03 2019-10-30 System for biodetection applications

Publications (1)

Publication Number Publication Date
WO2015185778A1 true WO2015185778A1 (es) 2015-12-10

Family

ID=53758237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070434 WO2015185778A1 (es) 2014-06-03 2015-06-02 Un sistema para aplicaciones de biodetección

Country Status (8)

Country Link
US (2) US10502734B2 (es)
EP (1) EP3153844B1 (es)
DK (1) DK3153844T3 (es)
ES (2) ES2553027B1 (es)
HU (1) HUE040582T2 (es)
PL (1) PL3153844T3 (es)
PT (1) PT3153844T (es)
WO (1) WO2015185778A1 (es)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170328912A1 (en) * 2016-05-10 2017-11-16 Regents Of The University Of Minnesota Glycopolymer capture matrix for use with surface-enhanced raman spectroscopy detection and related systems and methods
JP6760508B2 (ja) * 2017-08-10 2020-09-23 株式会社Jvcケンウッド 分析方法及び分析装置
US11041187B2 (en) 2017-10-26 2021-06-22 The Board Of Trustees Of The University Of Illinois Photonic resonator absorption microscopy (PRAM) for digital resolution biomolecular diagnostics
ES2866149T3 (es) * 2018-05-28 2021-10-19 Consejo Superior Investigacion Método y sistema para el análisis de analitos mediante transducción de resonancia mecánica
CN108956743B (zh) * 2018-07-24 2021-01-08 哈尔滨工程大学 可用AuNPs增强的场效应晶体管生物传感器的检测方法
CN109030455B (zh) * 2018-07-27 2020-11-10 天津大学 一种基于微片的表面拉曼增强基底的制备和检测方法
KR102103077B1 (ko) * 2018-08-20 2020-04-22 한국표준과학연구원 고소광계수 표지자와 유전체기판을 이용한 고감도 바이오센서칩, 측정시스템 및 측정방법
CN109060727B (zh) * 2018-08-22 2024-01-26 东北大学 一种双通道光纤spr生物传感器
ES2938687T3 (es) 2019-04-03 2023-04-13 Mecwins S A Procedimiento de detección óptica de biomarcadores
EP3719461A1 (en) 2019-04-03 2020-10-07 Mecwins, S.A. Biosensor platform and method for the simultaneous, multiplexed, ultra-sensitive and high throughput optical detection of biomarkers
CN110243800B (zh) * 2019-04-18 2020-05-29 华中科技大学 一种生物炭质量产率的检测方法及装置
CN111360280B (zh) * 2020-04-09 2022-09-06 大连海事大学 一种拉曼增强材料及其快速制备方法
WO2022271882A1 (en) * 2021-06-22 2022-12-29 Northwestern University Multiplexed antigen-based detection of sars-cov-2 and other diseases using nanomechanical sensors
CN114295601B (zh) * 2021-12-31 2024-01-30 厦门大学 一种基于连续体束缚态的表面拉曼增强传感结构
WO2024086829A1 (en) * 2022-10-20 2024-04-25 Quidel Corporation Devices and kits for detecting analytes of interest and methods of using the same
WO2024112303A1 (en) * 2022-11-23 2024-05-30 Izmir Biyotip Ve Genom Merkezi A biosensor system for the diagnosis of fmf (familial mediterranean fever) disease
CN117871873A (zh) * 2024-02-18 2024-04-12 河南省科学院物理研究所 一种基于高分子微球的显微暗场生物检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1639370A2 (en) 2003-05-30 2006-03-29 Nanosphere, Inc. Method for detecting analytes based on evanescent illumination and scatter-based detection of nanoparticle probe complexes
US20090147254A1 (en) * 2007-06-14 2009-06-11 Hrl Laboratories, Llc. Integrated quartz biological sensor and method
US20100053598A1 (en) * 2008-08-27 2010-03-04 Sunghoon Kwon Surface deformation detection

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2295954T (pt) 1999-10-06 2016-08-03 Becton Dickinson Co Nanopartículas compósitas activas por espectroscopia de superfície intensificada
CA3060724A1 (en) * 2010-11-05 2012-05-10 Genalyte, Inc. Optical analyte detection systems and methods of use
ES2440368B1 (es) * 2012-07-26 2015-03-06 Univ Zaragoza Biosensor con nanoparticulas metálicas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1639370A2 (en) 2003-05-30 2006-03-29 Nanosphere, Inc. Method for detecting analytes based on evanescent illumination and scatter-based detection of nanoparticle probe complexes
US20090147254A1 (en) * 2007-06-14 2009-06-11 Hrl Laboratories, Llc. Integrated quartz biological sensor and method
US20100053598A1 (en) * 2008-08-27 2010-03-04 Sunghoon Kwon Surface deformation detection

Non-Patent Citations (39)

* Cited by examiner, † Cited by third party
Title
ANNA LUKOWIAK ET AL: "Sensing abilities of materials prepared by sol-gel technology", JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, KLUWER ACADEMIC PUBLISHERS, BO, vol. 50, no. 2, 28 March 2009 (2009-03-28), pages 201 - 215, XP019683114, ISSN: 1573-4846 *
ARLETT, J.; MYERS, E.; ROUKES, M.: "Comparative advantages of mechanical biosensors", NATURE NANOTECHNOLOGY, vol. 6, 2011, pages 203 - 215, XP055116692, DOI: doi:10.1038/nnano.2011.44
BERNARD WENGER ET AL: "Au-labeled antibodies to enhance the sensitivity of a refractometric immunoassay: Detection of cocaine", BIOSENSORS AND BIOELECTRONICS, ELSEVIER BV, NL, vol. 34, no. 1, 17 January 2012 (2012-01-17), pages 94 - 99, XP028468860, ISSN: 0956-5663, [retrieved on 20120203], DOI: 10.1016/J.BIOS.2012.01.033 *
BOISEN, A.; DOHN, S.; KELLER, S. S.; SCHMID, S.; TENJE, M: "Cantilever-like micromechanical sensors", REPORTS ON PROGRESS IN PHYSICS, vol. 74, 2011, pages 036101
BOISEN, A.; THUNDAT, T.: "Design & fabrication of cantilever array biosensors", MATERIALS TODAY, vol. 12, 2009, pages 32 - 38, XP026644069, DOI: doi:10.1016/S1369-7021(09)70249-4
DATAR, R.: "Cantilever sensors: nanomechanical tools for diagnostics", MRS BULLETIN, vol. 34, 2009, pages 449 - 454
DIXON, M. C.: "Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions", JOURNAL OF BIOMOLECULAR TECHNIQUES: JBT, vol. 19, 2008, pages 151
DONG: "Two types of nanoparticle-based bio-barcode amplification assays to detect HIV-1 p24 antigen", VIROLOGY JOURNAL, vol. 9, 2012, pages 180, XP021122118, DOI: doi:10.1186/1743-422X-9-180
D'ORAZIO; P. BIOSENSORS: "clinical chemistry-2011 update", CLINICA CHIMICA ACTA, vol. 412, 2011, pages 1749 - 1761, XP028246432, DOI: doi:10.1016/j.cca.2011.06.025
DUAN, X.: "Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors", NATURE NANOTECHNOLOGY, vol. 7, 2012, pages 401 - 407, XP055417535, DOI: doi:10.1038/nnano.2012.82
ELGHANIAN R; STORHOFF JJ; MUCIC RC; LETSINGER RL; MIRKIN CA: "Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles", SCIENCE, vol. 277, 1997, pages 1078 - 81, XP002294466, DOI: doi:10.1126/science.277.5329.1078
FAN, X.: "Sensitive optical biosensors for unlabeled targets: A review", ANALYTICA CHIMICA ACTA, vol. 620, 2008, pages 8 - 26, XP022732615, DOI: doi:10.1016/j.aca.2008.05.022
FRITZ, J.: "Cantilever biosensors", ANALYST, vol. 133, 2008, pages 855 - 863, XP009107903, DOI: doi:10.1039/b718174d
GOLUCH ED1; NAM JM; GEORGANOPOULOU DG; CHIESL TN; SHAIKH KA; RYU KS; BARRON AE; MIRKIN CA; LIU C.: "A bio-barcode assay for on-chip attomolar-sensitivity protein detection", LAB CHIP, vol. 6, 2006, pages 1293 - 9
JAMES J. STORHOFF; ROBERT ELGHANIAN; ROBERT C. MUCIC; CHAD A. MIRKIN; ROBERT L. LETSINGER: "One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes", J. AM. CHEM. SOC., vol. 120, 1998, pages 1959 - 1964, XP002294465, DOI: doi:10.1021/ja972332i
JAVIER TAMAYO; VALERIO PINI; PRISICILA KOSAKA; NICOLAS F MARTINEZ; OSCAR AHUMADA; MONTSERRAT CALLEJA: "Imaging the surface stress and vibration modes of a microcantilever by laser beam deflection microscopy", NANOTECHNOLOGY, vol. 23, 2012, pages 315501, XP020227327, DOI: doi:10.1088/0957-4484/23/31/315501
JUSTINO, C. I. L.; ROCHA-SANTOS, T. A.; DUARTE, A. C.: "Review of analytical figures of merit of sensors and biosensors in clinical applications", TRAC TRENDS IN ANALYTICAL CHEMISTRY, vol. 29, 2010, pages 1172 - 1183, XP027409052
JWA-MIN NAM; C. SHAD THAXTON; CHAD A. MIRKIN: "Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins", SCIENCE, vol. 301, 2003, pages 1884 - 1886, XP002428236
KATHRYN M. MAYER; JASON H. HAFNER: "Localized Surface Plasmon Resonance Sensors", CHEMICAL REVIEWS, vol. 111, 2011, pages 3828 - 3857, XP055125519, DOI: doi:10.1021/cr100313v
KOSAKA P ET AL: "Simultaneous imaging of the topography and dynamic properties of nanomechanical systems by optical beam deflection microscopy", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS, US, vol. 109, no. 6, 24 March 2011 (2011-03-24), pages 64315 - 64315, XP012147833, ISSN: 0021-8979, DOI: 10.1063/1.3561812 *
LANGE, K.; RAPP, B. E.; RAPP, M.: "Surface acoustic wave biosensors: a review", ANALYTICAL AND BIOANALYTICAL CHEMISTRY, vol. 391, 2008, pages 1509 - 1519, XP019621302
M. M. BRADFORD; M. M., ANALYTICAL BIOCHEMISTRY, vol. 72, 1976, pages 248 - 254
MISIAKOS, K: "Monolithic silicon optoelectronic devices for protein and DNA detection", SPIE, PO BOX 10 BELLINGHAM WA 98227-0010 USA, vol. 6125, 2006, pages 61250W-1 - 61250W-1, XP040219660 *
NAIR, P. R.; ALAM, M. A.: "Theory of ''Selectivity'' of label-free nanobiosensors: A geometro-physical perspective", JOURNAL OF APPLIED PHYSICS, vol. 107, 2010, pages 064701 - 064701,064706
O'SULLIVAN, C.; GUILBAULT, G: "Commercial quartz crystal microbalances-theory and applications", BIOSENSORS AND BIOELECTRONICS, vol. 14, 1999, pages 663 - 670
PRISCILA M. KOSAKA; JAVIER TAMAYO; JOSE J. RUZ; SARA PUERTAS; ESTER POLO; VALERIA GRAZU; JESUS M. DE LA FUENTE; MONTSERRAT CALLEJA: "Tackling Reproducibility in Microcantilever Biosensors: A Statistical Approach for Sensitive and Specific End-point detection of Immunoreactions", ANALYST, vol. 138, 2013, pages 863 - 872
RAITERI, R.; GRATTAROLA, M.; BUTT, H. J.; SKLADAL, P: "Micromechanical cantilever-based biosensors", SENSORS AND ACTUATORS B: CHEMICAL, vol. 79, 2001, pages 115 - 126, XP004305508, DOI: doi:10.1016/S0925-4005(01)00856-5
ROBERT JENISON; SHAO YANG; AYLA HAEBERLI; BARRY POLISKY: "Interference-based detection of nucleic acid targets on optically coated silicon", NATURE BIOTECHNOLOGY, vol. 19, 2001, pages 62 - 65, XP002319097, DOI: doi:10.1038/83530
ROBERTO DE LA RICA; MOLLY M. STEVENS: "Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye", NATURE NANOTECHNOLOGY, vol. 7, 2012, pages 821 - 824, XP055083051, DOI: doi:10.1038/nnano.2012.186
STERN, E.: "Label-free biomarker detection from whole blood", NATURE NANOTECHNOLOGY, vol. 5, 2009, pages 138 - 142
SU MING ET AL: "Microcantilever resonance-based DNA detection with nanoparticle probes", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747, vol. 82, no. 20, 19 May 2003 (2003-05-19), pages 3562 - 3564, XP012034160, ISSN: 0003-6951, DOI: 10.1063/1.1576915 *
T. ANDREW TATON; CHAD A. MIRKIN; ROBERT L. LETSINGER: "Scanometric DNA Array Detection with Nanoparticle Probes", SCIENCE, vol. 289, 2000, pages 1757 - 1760, XP002158394, DOI: doi:10.1126/science.289.5485.1757
VARSHNEY M; WAGGONER PS; TAN CP; AUBIN K; MONTAGNA RA; CRAIGHEAD HG: "Prion protein detection using nanomechanical resonator arrays and secondary mass labeling", ANAL CHEM., vol. 80, 2008, pages 2141 - 8, XP002497474, DOI: doi:10.1021/ac702153p
WAGGONER, P. S.; CRAIGHEAD, H. G: "Micro- and nanomechanical sensors for environmental, chemical, and biological detection", LAB CHIP, vol. 7, 2007, pages 1238 - 1255, XP007903089, DOI: doi:10.1039/b707401h
WAGGONER, P. S.; VARSHNEY, M.; CRAIGHEAD, H. G.: "Detection of prostate specific antigen with nanomechanical resonators", LAB CHIP, vol. 9, 2009, pages 3095 - 3099
WANG, J.: "Amperometric biosensors for clinical and therapeutic drug monitoring: a review", JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, vol. 19, 1999, pages 47 - 53
WANG, J.: "Carbon-nanotube based electrochemical biosensors: A review", ELECTROANALYSIS, vol. 17, 2005, pages 7 - 14
WANG, J.: "Electrochemical biosensors: Towards point-of-care cancer diagnostics", BIOSENSORS AND BIOELECTRONICS, vol. 21, 2006, pages 1887 - 1892, XP024961662, DOI: doi:10.1016/j.bios.2005.10.027
ZHENG, G.; GAO, X. P. A.; LIEBER, C. M.: "Frequency domain detection of biomolecules using silicon nanowire biosensors", NANO LETTERS, vol. 10, 2010, pages 3179 - 3183

Also Published As

Publication number Publication date
US20200072829A1 (en) 2020-03-05
EP3153844A1 (en) 2017-04-12
PT3153844T (pt) 2018-10-19
ES2684794T3 (es) 2018-10-04
PL3153844T3 (pl) 2019-03-29
EP3153844B1 (en) 2018-05-23
US20170205405A1 (en) 2017-07-20
US10502734B2 (en) 2019-12-10
DK3153844T3 (en) 2018-08-27
ES2553027A1 (es) 2015-12-03
HUE040582T2 (hu) 2019-03-28
ES2553027B1 (es) 2016-09-13

Similar Documents

Publication Publication Date Title
ES2684794T3 (es) Sistema para aplicaciones de biodetección
Zhang et al. Immunosensor-based label-free and multiplex detection of influenza viruses: State of the art
Munawar et al. Nanosensors for diagnosis with optical, electric and mechanical transducers
Tokel et al. Advances in plasmonic technologies for point of care applications
Souto et al. A brief review on the strategy of developing SPR-based biosensors for application to the diagnosis of neglected tropical diseases
Feuz et al. Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas
Couture et al. Modern surface plasmon resonance for bioanalytics and biophysics
Luppa et al. Immunosensors—principles and applications to clinical chemistry
Arshavsky Graham et al. Mass transfer limitations of porous silicon-based biosensors for protein detection
JP4676983B2 (ja) テラヘルツ放射を用いて生体分子結合を検出するための方法及び系
Omar et al. Recent development of SPR spectroscopy as potential method for diagnosis of dengue virus E-protein
Ong et al. Diagnosing human blood clotting deficiency
Tessaro et al. A systematic review on gold nanoparticles based-optical biosensors for Influenza virus detection
Lifson et al. Enhancing the detection limit of nanoscale biosensors via topographically selective functionalization
Ahmed et al. Immunosensors
Das et al. Computational modeling for intelligent surface plasmon resonance sensor design and experimental schemes for real‐time plasmonic biosensing: A Review
Liu et al. Surface plasmonic biosensors: principles, designs and applications
Masterson et al. Selective detection and ultrasensitive quantification of SARS-CoV-2 IgG antibodies in clinical plasma samples using epitope-modified nanoplasmonic biosensing platforms
Kaladharan et al. Dual-clamped one-pot SERS-based biosensors for rapid and sensitive detection of SARS-CoV-2 using portable Raman spectrometer
Fendi et al. Surface plasmon resonance sensor for covid-19 detection: a review on plasmonic materials
Kim et al. Label-free C-reactive protein SERS detection with silver nanoparticle aggregates
US7829349B2 (en) Base carrier for detecting target substance, element for detecting target substance, method for detecting target substance using the element, and kit for detecting target substance
CN102150033A (zh) 改进的线栅衬底结构和用于制造这种衬底的方法
Tamayo de Miguel et al. System for biodetection applications
Rippa et al. Fractal Plasmonic Molecule for Multi-Sensing: SERS Platform for SARS-CoV-2 Detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15742334

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2015742334

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15315029

Country of ref document: US

Ref document number: 2015742334

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE