WO2015184954A1 - 一种用于水轮机的尾水管 - Google Patents

一种用于水轮机的尾水管 Download PDF

Info

Publication number
WO2015184954A1
WO2015184954A1 PCT/CN2015/079464 CN2015079464W WO2015184954A1 WO 2015184954 A1 WO2015184954 A1 WO 2015184954A1 CN 2015079464 W CN2015079464 W CN 2015079464W WO 2015184954 A1 WO2015184954 A1 WO 2015184954A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe section
draft tube
rectifying cylinder
cylinder
water turbine
Prior art date
Application number
PCT/CN2015/079464
Other languages
English (en)
French (fr)
Inventor
杨栗晶
Original Assignee
中山市创想模型设计有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山市创想模型设计有限公司 filed Critical 中山市创想模型设计有限公司
Publication of WO2015184954A1 publication Critical patent/WO2015184954A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present invention relates to the field of fluid machinery and engineering equipment, and in particular to a draft tube for a water turbine.
  • a hydraulic turbine is a power machine that converts the kinetic energy of a water flow into mechanical energy, and belongs to a turbomachinery in a fluid machine.
  • Most of the modern turbines are installed in hydropower stations to drive power generation equipment.
  • the turbines are generally equipped with draft pipes.
  • the draft pipes are usually designed as a curved pipe with a small cross-sectional area.
  • the water flow at the exit of the runner passes through the tail.
  • the draft pipe is also called a diffuser pipe.
  • the draft tube is a diffuser type pipe, when the water flows through the draft tube, it is easy to cause de-flow, secondary reflow and flow instability, especially for the elbow-shaped draft tube. The phenomenon is more obvious.
  • the flow into the draft tube becomes more complicated.
  • the water flow is eccentric under the influence of periodic non-stationary factors and centrifugal force, and forms an eccentric vortex, an eccentric vortex.
  • the belt rotates in the draft tube at a low frequency cycle, impinging on the wall of the draft tube, forming a reflected wave propagating upstream and precessing, and then a recirculation zone occurs, causing a pressure pulsation in the draft tube, and the pressure pulsation frequency induced by the eccentric vortex is close to A certain natural frequency of the unit will cause strong resonance.
  • Patent No. 201210209725.2 which discloses a turbine draft tube vortex generator comprising a turbine draft tube and a plurality of metal blades uniformly arranged on the inner wall of the turbine draft tube, each metal blade having a right-angled trapezoid shape, each trapezoidal blade
  • the upper bottom, the lower bottom, the high and the oblique side are included, wherein the height of the trapezoid is taken as the installation section, and is fixed on the inner wall of the draft tube, the upper bottom is installed on the side close to the water inlet of the draft tube, and the lower bottom is installed away from the water inlet of the draft tube.
  • the installation section of the vortex generator is a section formed by the vortex inside the draft tube, and two trapezoidal blades in each pair of metal blades are symmetrically used, and the planes of the two blades are symmetrical about the central axis.
  • the invention increases the stability of its operation to a certain extent and reduces the pulsation pressure, but the metal piece disposed on the inner wall of the draft tube causes the water flow to lose a large amount of energy while destroying the eccentric vortex to make the water flow run smoothly.
  • the energy recovery coefficient needs to be further improved to improve the efficiency of the turbine.
  • the present invention has been made in view of the deficiencies of the prior art.
  • the technical problem to be solved by the present invention is to provide a draft tube for a water turbine, in which a rectifying cylinder with a front and rear ends is provided in a passage of the draft tube, the rectifying cylinder is coaxial with the conical pipe section, and the water of the turbine flows through the outlet of the revolver. And entering the taper pipe section of the draft tube, the water pressure in the taper pipe section has the characteristics of small axial center and large periphery. When the water flow encounters the rectifying cylinder opened at the front and rear at a certain position in the taper pipe section, the water pressure of the axial center increases.
  • the pressure in the periphery is reduced in the opposite direction, so that the pressure difference between the shaft center and the periphery is reduced, so that the generation and influence of the eccentric vortex band can be suppressed. It can effectively slow down the water flow speed of the axial part of the straight taper without affecting the power output of the turbine, making the water flow more stable and prolonging the time for pushing the turbine runner to work continuously without increasing the height of the straight cone. Under the premise of not increasing the lower excavation of the hydropower station, the goal of improving the energy recovery coefficient is achieved, and the energy conversion efficiency of the turbine is improved.
  • the present invention has two embodiments.
  • the first embodiment includes a tapered pipe section having a small front end opening and a large rear end opening, and the front end of the tapered pipe section is docked with the water turbine runner water outlet, and is characterized in that A rectifying cylinder coaxial with the front and rear openings is disposed in the passage of the tapered pipe section.
  • the axial length of the tapered pipe section is L1
  • the axial length of the straightening cylinder is L2
  • the front end surface of the straightening cylinder is L3 from the rear end surface of the tapered pipe section, which satisfies L2 ⁇ 0.5L1, 0 ⁇ L3 ⁇ L1.
  • the inner diameter of the front port of the taper pipe section is D1
  • the inner diameter of the rear port of the taper pipe section is D3
  • the inner diameter of the outer diameter of the rectifying cylinder is D2, which satisfies 0.1D1 ⁇ D2 ⁇ D3.
  • the rectifying cylinder is a hollow cylinder with a front and rear opening, or a regular polygonal cylinder, or a horn, or a straight cone.
  • the straight cone has a cone angle of 0°-20°.
  • the rectifying cylinder can also be formed into a honeycomb structure by three identical, hollow-shaped, front and rear open hexagonal cylinders, and the adjacent two regular hexagonal cylinders are mutually 120°.
  • the first fixing manner is to provide a fixing rod in the circumferential direction between the outer surface of the rectifying cylinder and the inner surface of the conical pipe section for fixedly connecting the rectifying cylinder to the conical pipe section.
  • the second fixing method adopts a fixed connection at the rear end of the rectifying cylinder by a support rod, and the other end of the support rod is fixed on the ground.
  • a cone section and a diffusion section are included, the front end opening of the cone section is small and the rear end opening is large, and an elbow section for transitional connection is provided between the rear end of the cone section and the front end of the diffusion section.
  • the front end of the taper pipe section is docked with the water outlet of the turbine runner, and the channel at the interface between the taper pipe section and the elbow pipe section is provided with a rectifying cylinder coaxial with the taper pipe section and open front and rear, and the outer surface of the rectifying cylinder is fixed along the circumferential direction.
  • a rod the other end of which is fixedly connected to the cone section or the inner wall of the elbow section.
  • the rectifying cylinder is a hollow cylinder with a front and rear opening, or a regular polygonal cylinder, or a horn, or a straight cone.
  • the straight cone has a cone angle of 0°-20°.
  • the rectifying cylinder can also be formed into a honeycomb structure by three identical, hollow-shaped, front and rear open hexagonal cylinders, and the adjacent two regular hexagonal cylinders are mutually 120°.
  • the invention has a rectifying cylinder which is open at the front and the rear ends in the passage of the draft tube, and ensures that the rectifying cylinder and the conical pipe section are coaxial.
  • Fig. 1 is a schematic view showing the structure of a cylindrical cylinder according to the present invention.
  • Figure 2 is a cross-sectional view of Figure 1.
  • Fig. 3 is a schematic view showing the structure of the rectifying cylinder using the regular polygonal cylinder in the present invention.
  • Figure 4 is a cross-sectional view of Figure 3.
  • Fig. 5 is a structural schematic view showing a honeycomb structure in which a rectifying cylinder is spliced by three regular hexagonal cylinders according to the present invention.
  • Figure 6 is a cross-sectional view of Figure 5.
  • Fig. 7 is a schematic view showing the structure of a straightening cone used in the rectifying cylinder of the present invention.
  • Figure 8 is a schematic view showing the structure of a rectifying cylinder using a horn according to the present invention.
  • Figure 9 is one of the reference state diagrams of the first embodiment of the present invention.
  • Figure 10 is a second diagram of the use of the reference state diagram of the first embodiment of the present invention.
  • Figure 11 is one of the reference state diagrams of the second embodiment of the present invention.
  • Figure 12 is a second diagram of the use of a reference state diagram in accordance with a second embodiment of the present invention.
  • Figure 13 is a graph showing the relationship between the current I and the time t in Comparative Experiment 1.
  • Figure 14 is a graph showing the relationship between power P and time t in Comparative Experiment 1.
  • Figure 15 is a graph showing the relationship between current I and time t in Comparative Experiment 2.
  • Figure 16 is a graph showing the relationship between power P and time t in Comparative Experiment 2.
  • Figure 17 is a graph showing the relationship between the current I and the time t in Comparative Experiment 3.
  • Figure 18 is a graph showing the relationship between power P and time t in Comparative Experiment 3.
  • Figure 19 is a graph showing the relationship between the current I and the time t in Comparative Experiment 4.
  • Figure 20 is a graph showing the relationship between power P and time t in Comparative Experiment 4.
  • Figure 21 is a graph showing the relationship between current I and time t in Comparative Experiment 5.
  • Figure 22 is a graph showing the relationship between power P and time t in Comparative Experiment 5.
  • a first embodiment of the present invention includes a tapered pipe section 1 having a small front end opening and a large rear end opening, and the front end of the tapered pipe section 1 is docked with a water turbine runner water outlet, characterized in that the tapered pipe section A rectifying cylinder 2 coaxial with the front and rear openings is provided in the passage of 1.
  • the axial length of the tapered pipe section 1 is L1
  • the axial length of the rectifying cylinder 2 is L2
  • the front end surface of the rectifying cylinder 2 is L3 from the rear end surface of the tapered pipe section 1 and satisfies L2 ⁇ 0.5L1. 0 ⁇ L3 ⁇ L1.
  • the inner diameter of the front port of the tapered pipe section 1 is D1
  • the inner diameter of the rear port of the tapered pipe section 1 is D3
  • the inner diameter of the outer circumference of the rectifying cylinder 2 is D2, which satisfies 0.1D1 ⁇ D2 ⁇ D3.
  • the rectifying cylinder 2 is a hollow cylinder which is open at the front and rear; or as shown in FIG. 3, the rectifying cylinder 2 is a hollow-shaped and regular polygonal cylinder which is open at the front and rear; or as shown in FIG. 7, the rectifying cylinder 2
  • the horn is hollow and has a front and rear opening; or as shown in FIG. 8, the rectifying cylinder 2 is a hollow cone which is hollow and has a front and rear opening, and the cone has a taper angle of 0° to 20°.
  • the rectifying cylinder 2 can also be formed into a honeycomb structure by three identical hollow hexagonal cylinders which are open in front and rear, and two adjacent hexagonal cylinders are mutually connected. Into 120 °.
  • a fixing rod 3 is provided between the outer surface of the rectifying cylinder 2 and the inner surface of the tapered pipe section 1 in the circumferential direction for fixedly connecting the rectifying cylinder 2 to the conical pipe section 1.
  • a structure as shown in FIG. 10 can also be employed to fix the rectifying cylinder 2. That is, the rear end of the rectifying cylinder 2 is fixedly connected by a support rod 4, and the other end of the support rod 4 is fixed to the ground.
  • a tapered pipe section 1 and a diffusing section 5 are included, and the front end opening of the tapered pipe section 1 is small and the rear end opening is large, and the rear end of the tapered pipe section 1 is An elbow pipe section 6 is provided between the diffusing sections 5 for the transition connection.
  • the front end of the taper pipe section 1 is connected to the water outlet of the turbine runner.
  • the abutting portion of the taper pipe section 1 and the elbow pipe section 6 is coaxial with the taper pipe section 1 and is front and rear. Opened rectifying cylinder 2.
  • the outer surface of the rectifying cylinder 2 is provided with a fixing rod 3 in the circumferential direction, and the other end of the fixing rod 3 is fixedly connected with the inner surface of the conical pipe section 1 or the elbow pipe section 6.
  • the rectifying cylinder 2 is fixedly connected to the tapered pipe section 1 through the fixing rod 3, and the front end of the rectifying cylinder 2 is located in front of the abutment of the tapered pipe section 1 and the elbow pipe section 6; as shown in FIG. 12, the rectifying cylinder 2 passes the fixing rod. 3 is fixedly connected with the elbow pipe section 6.
  • the front end of the rectifying cylinder 2 may be located in front of or behind the abutment of the conical pipe section 1 and the elbow pipe section 6.
  • the rectifying cylinder 2 is a hollow cylinder with a front and rear opening, or a regular polygonal cylinder, or a horn, or a straight cone.
  • the straight cone has a taper angle of 0°-20°.
  • the rectifying cylinder 2 can also be formed into a honeycomb structure by three identical, hollow-shaped, front and rear open hexagonal cylinders, and the adjacent two regular hexagonal cylinders are mutually 120°.
  • the front end of the tapered pipe section 1 is docked with the water outlet of the turbine runner.
  • the structure of the first embodiment as shown in FIG. 9 and FIG. 10
  • the water flowing out from the water outlet of the turbine runner enters the cone section 1
  • the rectifying cylinder 2 is divided into two parts, and then discharged directly from the rear end of the conical pipe section 1.
  • the structure of the second embodiment as shown in FIG. 11 and FIG. 12
  • the water flowing out from the water outlet of the turbine runner enters the cone section 1, and is divided into two parts by the rectifying cylinder 2, and then passes through the elbow section 6 and The diffusion section 5 is discharged.
  • the model is JZD volute axial flow hydro-generator produced by Guanghua Electric Appliance Factory of Pingnan County, Guangxi.
  • the enterprise standard number is Q/PNGN01, and the production date is December 21, 2013.
  • the hydro-generator The rated head is 8m, the actual maximum head is 7.12m, the draft tube is 480mm long, and the diameter of the draft tube outlet is ⁇ 240mm.
  • the pipe connected with the volute axial flow turbine generator adopts a PVC pipe with a diameter of ⁇ 160mm, and the volume of the storage water tank is 6.6m3.
  • the amount of water for each volute axial flow turbine generator is 5.5. M3, the actual maximum water head is 7.12m, and ensure that the water outlet at the lower end of the draft tube is submerged in water, about 350mm from the water surface.
  • the volute axial flow turbine generator is an AC single-phase generator.
  • the generated electric energy is directly connected to a 50 ⁇ heating tube without a voltage regulator.
  • two universal meters are used to detect the real-time.
  • the voltage U across the heat pipe and the current I passed through, and a video recorder to record the corresponding values of the two universal meters in real time.
  • the experimental data is plotted as a relationship between current I, power P and time t produced by the hydroelectric generator.
  • the curves a1 and a2 in the figure correspond to the relationship between the current I and the power P respectively corresponding to the time t when the straightening tube 2 is not installed in the channel of the tapered tube section 1 respectively;
  • the curves b1 and b2 correspond to the curves b1 and b2, respectively.
  • the current I and the power P correspond to the relationship of time t, respectively.
  • the duration is about 97 seconds during steady operation. It can be seen that under the premise of the same working condition, after the cylindrical cylinder is installed in the 1 channel of the tapered pipe section, the duration of the stable operation of the turbine is increased by 7 seconds compared with the case without the cylindrical cylinder, so the continuous effective power generation time increases by 7.78%.
  • the electric power generated by the hydro-generator is also increased accordingly, and it is concluded that under the same working condition, after the cylindrical cylinder is installed, the flow velocity distribution of the shaft center and the periphery is re-adjusted to make the shaft center and The pressure difference around the circumference is reduced, which effectively suppresses the generation and influence of the eccentric vortex belt, improves the water flow in the draft tube, reduces the pressure pulsation, and makes it run smoothly. Although it does not affect the output power, the amount of electricity generated is significantly increased, further improving the power generation efficiency.
  • the c1 and c2 curves correspond to the increase in the axial length of the cylindrical cylinder, respectively, and the current I and the power P generated by the volute axial flow turbine generator correspond to the time t, respectively.
  • the axial length of the rectifying cylinder 2 is appropriately increased.
  • L2>0.5L1 the performance of the rectifying cylinder 2 begins to deteriorate significantly, although the water flow in the draft tube can be effectively improved, the pressure pulsation is reduced, and the operation is performed. It is stable and prolongs the stable running time, but the rectifying cylinder 2 also affects the output of the impeller while slowing down the water flow speed of the draft tube. Therefore, it should be satisfied: L2 ⁇ 0.5L1.
  • the corresponding current value and power value on the curves e1 and e2 are basically the same as the values corresponding to the curves a1 and a2 in which the rectifying cylinder 2 is not installed, and the overall power generation amount is also There is no obvious increase.
  • the rectifying cylinder 2 is formed by merging three identical regular hexagonal cylinders into a honeycomb structure, and other experimental conditions are the same as those of the comparative experiment 1.
  • the curves f1 and f2 respectively correspond to the relationship between the current I and the power P generated by the volute axial flow turbine generator and the time t, respectively, in the case where the rectifying cylinder 2 in which the honeycomb structure is disposed in the channel of the conical section 1 is used.
  • the use of the honeycomb structure of the rectifying cylinder 2 has a certain effect on improving the pulsating pressure of the draft tube and making it run smoothly.
  • the cylindrical cylinder structure is preferentially used as the rectifying cylinder 2. Because the rectifying cylinder can effectively suppress the generation of the eccentric vortex belt, reduce the pressure pulsation of the draft tube, reduce the pressure difference between the shaft center and the periphery, and make the water flow more stable, prolonging the time when the water flow pushes the turbine runner to continue work. Effectively increase the energy recovery coefficient of the draft tube, so that the energy conversion efficiency of the turbine is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

本发明公开了一种用于水轮机的尾水管,在尾水管的通道内设有前后两端开口的整流筒,整流筒与锥管段同轴,水轮机的水流经转轮出口流出,并进入尾水管的锥管段。水流进入锥管段后,锥管段中的水压具有轴心小周边大的特点,当水流在锥管段某个位置遇到前后开口的整流筒后会使轴心的水压增大,而周边的压力相反会减小,因此,就会使轴心和周边的压力差减小,从而可以实现抑制偏心涡带的产生及影响,它可在不影响水轮机输出功率的情况下有效地抑制或减少回流现象,使得水流更稳定并延长其推动水轮机转轮持续做功的时间。在不增加直锥管高度,也即不增加水电站的下部开挖前提条件下,实现了提高能量恢复系数的目标,使水轮机的能量转换效率得到提高。

Description

一种用于水轮机的尾水管
【技术领域】
本发明涉及流体机械及工程设备技术领域,具体涉及一种用于水轮机的尾水管。
【背景技术】
水轮机是把水流的动能转换为机械能的动力机械,属于流体机械中的透平机械。现代水轮机大多数安装在水电站内,用来驱动发电设备,水轮机一般都设有尾水管,尾水管通常设计成一种管径横截面面积由小增大的弯管,转轮出口处的水流经过尾水管时,流速下降,压力升高,形成逆压力场,因此尾水管又叫做扩压管。其作用是:把转轮出口处的水流排向下游,并回收转轮出口处一部分水流的能量,尽最大化地利用水流的位能。在实际运用中我们希望尾水管中水流的流动尽可能平稳,扩压效果尽可能好,恢复系数尽可能高。
然而在实际工作中,尾水管往往存在着以下几种状况。
其一,由于尾水管是一种扩压式的管道,当水流流经尾水管时,容易引起脱流、二次回流以及流动不稳定的现象,特别是对于弯肘式的尾水管,这种现象更为明显。
其二,当水轮机在偏离最优工况运行时,进入尾水管的流动就会变得更加的复杂,水流在周期性非平稳因素及离心力的影响下产生偏心,并形成偏心涡带,偏心涡带以低频的周期在尾水管内旋转,撞击着尾水管的壁面,形成反射波向上游传播而旋进,进而出现回流区,致使尾水管产生压力脉动,当偏心涡带诱发的压力脉动频率接近机组的某一个固有频率时,又将引起强烈的共振。
上述这些问题不仅会使机组的运行存在着不稳定的情况,还使尾水管的恢复系数降低,致使水轮机的工作效率下降。
发明专利号:201210209725.2,其公开了一种水轮机尾水管涡流发生器,包括水轮机尾水管和若干对均匀排列在水轮机尾水管内壁的金属叶片,每个金属叶片的形状为直角梯形,每个梯形叶片含上底、下底、高和斜边,其中梯形的高作为安装截面,固定在尾水管的内壁,上底安装在接近尾水管进水口的一侧,下底安装在远离尾水管进水口的一侧,涡流发生器的安装截面为尾水管内部旋涡开始形成的截面,每对金属叶片中两个梯形叶片对称使用,两叶片所在平面关于中心轴线对称。该发明在一定程度上增加了其运行的稳定性,减小了脉动压力,但是设在尾水管内壁的金属片在破坏偏心涡带使水流平稳运行的同时,也使得水流损失大量的能量,因此,能量恢复系数有待进一步提高,以提高水轮机的效率。
本发明即对现有技术的不足研究而提出。
【发明内容】
本发明要解决的技术问题是提供一种用于水轮机的尾水管,在尾水管的通道内设有前后两端开口的整流筒,整流筒与锥管段同轴,水轮机的水流经转轮出口流出,并进入尾水管的锥管段,锥管段内的水压有轴心小周边大的特点,当水流在锥管段内某个位置遇到前后开口的整流筒后会使轴心的水压增加,周边的压力相反会减小,所以这样就会使轴心和周边的压力差减小,从而可以实现抑制偏心涡带的产生及影响。它可在不影响水轮机功率输出的情况下有效地减慢直锥段轴心部分的水流速度,使得水流更稳定并延长推动水轮机转轮持续做功的时间,在不增加直锥管高度,也即不增加水电站的下部开挖的前提条件下,实现了提高能量恢复系数的目标,使水轮机的能量转换效率得到提高。
为解决上述技术问题,本发明有两种实施方式,第一种实施方式包括前端开口小且后端开口大的锥管段,所述锥管段前端与水轮机转轮出水口对接,其特征在于所述锥管段的通道内设有与其同轴且前后开口的整流筒。
所述锥管段轴向长度为L1,所述整流筒轴向长度为L2,所述整流筒前端面距离锥管段后端面为L3,满足L2<0.5L1, 0<L3<L1。
所述锥管段前端口内径为D1,所述锥管段后端口内径为D3,所述整流筒外接圆内径为D2,满足0.1D1<D2<D3。
所述整流筒为中空状且前后开口的圆柱筒,或者正多边形筒,或者喇叭筒,或者直锥筒,所述直锥筒的锥角为0°~20°。
所述整流筒也可以采用由三个相同的、呈中空状且前后开口的正六边形筒拼接而成蜂窝状结构,相邻两个正六边形筒互成120°。
为了将整流筒相对锥管段固定,第一种固定方式采用在所述整流筒外表面与锥管段内表面之间沿周向设有固定杆,用于将整流筒固定连接在锥管段上。
第二种固定方式采用在所述整流筒的后端用支撑杆固定连接,所述支撑杆另一端固定于地面上。
作为本发明的第二种实施方式,包括锥管段和扩散段,所述锥管段前端开口小且后端开口大,所述锥管段后端与扩散段前端之间设有用于过渡连接的肘管段,所述锥管段前端与水轮机转轮出水口对接,所述锥管段与肘管段对接处的通道内设有与锥管段同轴且前后开口的整流筒,所述整流筒外表面沿周向设有固定杆,所述固定杆另一端与锥管段或者肘管段内壁固定连接。
所述整流筒为中空状且前后开口的圆柱筒,或者正多边形筒,或者喇叭筒,或者直锥筒,所述直锥筒的锥角为0°~20°。
所述整流筒也可以采用由三个相同的、呈中空状且前后开口的正六边形筒拼接而成蜂窝状结构,相邻两个正六边形筒互成120°。
本发明在尾水管的通道内设有前后两端开口的整流筒,并保证整流筒与锥管段同轴,当水轮机的水流经转轮出口流出进入尾水管的锥管段后,水轮机的水流经转轮出口流出,并进入尾水管的锥管段。水流进入锥管段后,锥管段中的水压具有轴心小周边大的特点,当水流在锥管段内某个位置遇到前后开口的整流筒后会使轴心的水压增大,而周边的压力相反会减小,因此,就会使轴心和周边的压力差减小,从而可以实现抑制偏心涡带的产生及影响,它可在不影响水轮机输出功率的情况下有效地抑制或减少回流现象,使得水流更稳定并延长其推动水轮机转轮持续做功的时间。在不增加直锥管高度,也即不增加水电站的下部开挖前提条件下,实现了提高能量恢复系数的目标,使水轮机的能量转换效率得到提高。
【附图说明】
图1为本发明中整流筒采用圆柱筒的结构示意图。
图2为图1的剖视图。
图3为本发明中整流筒采用正多边形筒的结构示意图。
图4为图3的剖视图。
图5为本发明中整流筒采用三个正六边形筒拼接而成蜂窝状结构的结构示意图。
图6为图5的剖视图。
图7为本发明中整流筒采用直锥筒的结构示意图。
图8为本发明中整流筒采用喇叭筒的结构示意图。
图9为本发明第一种实施例的使用参考状态图之一。
图10为本发明第一种实施例的使用参考状态图之二。
图11为本发明第二种实施例的使用参考状态图之一。
图12为本发明第二种实施例的使用参考状态图之二。
图13为对比实验一中电流I与时间t的关系曲线图。
图14为对比实验一中功率P与时间t的关系曲线图。
图15为对比实验二中电流I与时间t的关系曲线图。
图16为对比实验二中功率P与时间t的关系曲线图。
图17为对比实验三中电流I与时间t的关系曲线图。
图18为对比实验三中功率P与时间t的关系曲线图。
图19为对比实验四中电流I与时间t的关系曲线图。
图20为对比实验四中功率P与时间t的关系曲线图。
图21为对比实验五中电流I与时间t的关系曲线图。
图22为对比实验五中功率P与时间t的关系曲线图。
【具体实施方式】
本发明第一种实施例如图1至图10所示,包括前端开口小且后端开口大的锥管段1,所述锥管段1前端与水轮机转轮出水口对接,其特征在于所述锥管段1的通道内设有与其同轴且前后开口的整流筒2。所述锥管段1轴向长度为L1,所述整流筒2轴向长度为L2,所述整流筒2前端面距离锥管段1后端面为L3,满足L2<0.5L1, 0<L3<L1。所述锥管段1前端口内径为D1,所述锥管段1后端口内径为D3,所述整流筒2外接圆内径为D2,满足0.1D1<D2<D3。
如图1所示,整流筒2为中空状且前后开口的圆柱筒;或者如图3所示,整流筒2为中空状且前后开口的正多边形筒;或者如图7所示,整流筒2为中空状且前后开口的喇叭筒;或者如图8所示,整流筒2为中空状且前后开口的直锥筒,该直锥筒的锥角为0°~20°。
如图3、图4所示,所述整流筒2也可以采用由三个相同的、呈中空状且前后开口的正六边形筒拼接而成蜂窝状结构,相邻两个正六边形筒互成120°。
为了将整流筒2固定,所述整流筒2外表面与锥管段1内表面之间沿周向设有固定杆3,用于将整流筒2固定连接在锥管段1上。
该实施例中,还可以采用如图10所示的结构,以将整流筒2固定。即在所述整流筒2的后端用支撑杆4固定连接,所述支撑杆4另一端固定于地面上。
作为本发明的第二种实施例,如图11和图12所示,包括锥管段1和扩散段5,所述锥管段1前端开口小且后端开口大,所述锥管段1后端与扩散段5之间设有用于过渡连接的肘管段6,所述锥管段1前端与水轮机转轮出水口对接,所述锥管段1与肘管段6对接处设有与锥管段1同轴且前后开口的整流筒2。
所述整流筒2外表面沿周向设有固定杆3,所述固定杆3另一端与锥管段1或者肘管段6内壁固定连接。如图11所示,整流筒2通过固定杆3与锥管段1固定连接,且整流筒2的前端位于锥管段1与肘管段6对接处前方;如图12所示,整流筒2通过固定杆3与肘管段6固定连接,根据设计需要,整流筒2的前端可以位于锥管段1与肘管段6对接处前方或者后方。
该实施例中,所述整流筒2为中空状且前后开口的圆柱筒,或者正多边形筒,或者喇叭筒,或者直锥筒,所述直锥筒的锥角为0°~20°。
所述整流筒2也可以采用由三个相同的、呈中空状且前后开口的正六边形筒拼接而成蜂窝状结构,相邻两个正六边形筒互成120°。
本发明工作时,锥管段1的前端与水轮机转轮出水口对接,当采用第一种实施例结构时,如图9和图10所示,从水轮机转轮出水口流出的水进入锥管段1后,被整流筒2分为两部分,之后从锥管段1的后端直接排出。当采用第二种实施例结构时,如图11和图12所示,从水轮机转轮出水口流出的水进入锥管段1后,被整流筒2分为两部分,再先后经由肘管段6和扩散段5排出。
针对实例的使用参考状态图,我们进行了对比实验。选用由广西平南县光华电机电器厂生产的,型号为JZD的蜗壳轴流式水轮发电机,企业标准号为Q/PNGN01,生产日期为2013年12月21日,该水轮发电机的额定水头为8m,现场实际最大水头是7.12m,尾水管长480mm,尾水管出水口直径为φ240mm。
实验时,与蜗壳轴流式水轮发电机连接的管道采用直径为φ160mm的PVC管,储水水箱容积为6.6m3,每次推动蜗壳轴流式水轮发电机做功的水量为5.5 m3,实际最大水头是7.12m,并保证尾水管下端的出水口浸没水中,距离水面约为350mm。
本案例开展了锥管段1内未装整流筒2和装设整流筒2两种情况下的实验。蜗壳轴流式水轮发电机为交流单相发电机,其产生的电能不经稳压器直接接用一个电阻为50Ω的发热管,每次实验时,用两个万能表分别实时检测发热管两端的电压U及通过的电流I,并用一台录象机实时记录两个万能表相互对应的数值。将实验数据分别绘制成水轮发电机产生的电流I、功率P与时间t的关系曲线。
对比实验一:
整流筒2采用圆柱筒,其直径为φ110mm、轴向长L2=100mm。如图13、14所示,图中曲线a1和a2分别对应于锥管段1通道内未装整流筒2时,电流I和功率P分别对应于时间t的关系曲线;曲线b1和b2分别对应于锥管段1通道内装设整流筒2时,电流I和功率P分别对应于时间t的关系曲线。
根据图13和图14所示,分别比较曲线a1与a2、b1与b2可知,在锥管段1通道内装设圆柱筒后,蜗壳轴流式水轮发电机产生的电流和功率开始时的波动较小,而且最大电流和最大功率有所提高,装设整流筒2和未装整流筒2两种情况下,电流和功率变化趋势一致。
比较曲线a1与a2时间过程可知,在锥管段1上没有加装整流筒2的前提下,水流从蜗壳轴流式水轮发电机的转轮出水口进入锥管段1后直接排出,当蜗壳轴流式水轮发电机产生平稳电流、功率时,持续时间约为90秒。
而在锥管段1上装设整流筒2后,由曲线b1和b2可知,在稳定运行期间,持续时间约为97秒。由此可知,相同工况前提条件下,在锥管段1通道内安装圆柱筒后,使水轮机稳定运行的持续时间较未装圆柱筒时增加了7秒,因此持续有效发电时间增长了7.78%。
综上所述,安装圆柱筒后水轮发电机发出的电量也相应增加,进而得出,在相同工况下,安装了圆柱筒后轴心和周边的流速分布重新调整后,使轴心和周边的压力差减小,有效抑制了偏心涡带的产生及影响,改善了尾水管内的水流,减小了压力脉动,使之运行平稳。虽然并未对输出的功率产生影响,但所发出的电量有明显增加,进一步提高了发电效率。
对比实验二:
如图15和图16所示,除了圆柱筒轴向长度增加外,其他实验条件与对比实验一保持相同,锥管段1通道内设置有直径为φ110mm、轴向长L2=300mm的圆柱筒。c1和c2曲线分别对应于增加圆柱筒轴向长度时,蜗壳轴流式水轮发电机产生的电流I和功率P分别对应于时间t的关系曲线。
与曲线a1和a2比较,从曲线c1和c2可知,在稳定运行期间,同一时刻,电流I与功率P的值都明显下降,但稳定运行的时间则增加了15秒,而对于实验所用水量的势能,其转化为电能则基本相等。不足之处是正常运行时的功率P大幅降低。
再与曲线b1和b2比较,从曲线c1和c2可知,相同工况前提条件下,增加圆柱筒轴向长度后,使水轮机稳定运行的持续时间较未增长圆柱筒轴向长度时,持续有效发电时间再增加了8秒。但输出功率P也明显降低。
综上所述,适当增加整流筒2的轴向长度,当L2>0.5L1时,整流筒2的表现开始明显变差,虽然可以有效改善尾水管内的水流,减小压力脉动,使之运行平稳,并延长稳定运行时间,但整流筒2在减慢尾水管水流速度的同时也影响了叶轮的出力。所以应满足:L2<0.5L1。
对比实验三:
如图17和图18所示,在对比实验一的基础上,除了圆柱筒直径增加外,其他实验条件与对比实验一保持相同, d1和d2曲线分别对应于圆柱筒直径为φ200mm、轴向长L2=100mm时,蜗壳轴流式水轮发电机产生的电流I与功率P分别与时间t的关系曲线。
与曲线a1和a2比较,从曲线d1和d2可知,稳定运行时长稍有增加,但电流值和功率值也稍有降低,总体发电量并没有太明显的增多或减小。
再与曲线c1和c2比较,当圆柱筒直径增加一定程度后,并不能延长稳定运行的持续时间。
综上所述,当整流筒2 直径增加到一定程度,当D2接近D3时,整流筒2的表现开始明显变差,若整流筒2直径过大,其对提高水轮发电机的效率没有显著的影响,会影响水轮发电机的综合表现,所以应满足D2<D3。
对比实验四:
如图19和图20所示,在对比实验一的基础上,除了圆柱筒直径减小外,其他实验条件与对比实验一保持相同, 曲线e1和e2分别对应于圆柱筒直径为φ30mm、轴向长L2=100mm时,蜗壳轴流式水轮发电机产生的电流I与功率P分别与时间t的关系曲线。
与曲线b1和b2相比较,圆柱筒直径减小到一定值后,稳定运行的持续时间没有延长,而且从开始测试至稳定运行这一段时间内,波动极大,需要达到稳定运行的时间向后平移了,即从启动至运行稳定的时长增加;
与曲线a1和a2相比较,稳定运行后,曲线e1和e2上对应的电流值和功率值,与没有安装整流筒2的曲线a1和a2所对应数值相比较,其基本一致,总体发电量也没有明显的增多。
综上所述,当整流筒2直径减小到一定程度,当 D2接近0.1D1时,整流筒2的表现开始明显变差,若直径过小,其对提高水轮发电机的效率没有显著的作用,在增加发电量方面的作用会越来越有限;而且会增加尾水管的脉动压力,破坏尾水管的稳定运行,所以应满足0.1D1<D2。
对比实验五:
如图21和图22所示,整流筒2采用由三个相同的正六边形筒拼接而成蜂窝状结构,其它实验条件与对比实验一保持相同, 曲线f1和f2分别对应于锥管段1通道内设置有蜂窝状结构的整流筒2的情况下,蜗壳轴流式水轮发电机产生的电流I与功率P分别与时间t的关系曲线。
与曲线a1和a2相比,曲线f1和f2在稳定运行时,同一时刻所对应的电流值和功率值有所降低,其总体发电量基本一致,但稳定运行的持续时长增加了4秒。
综合所述,采用蜂窝状结构的整流筒2,对改善尾水管的脉动压力,使之运行平稳有一定的作用。
所以,本发明实施例中,优先采用圆柱筒结构作为整流筒2。因为,整流筒可以有效抑制偏心涡带的产生,减小了尾水管的压力脉动,使轴心和周边的压力差减小,并使得水流更稳定,延长了水流推动水轮机转轮持续做功的时间,有效提高尾水管的能量恢复系数,使水轮机的能量转换效率得到提高。

Claims (10)

  1. 一种用于水轮机的尾水管,包括前端开口小且后端开口大的锥管段(1),所述锥管段(1)前端与水轮机转轮出水口对接,其特征在于所述锥管段(1)的通道内设有与其同轴且前后开口的整流筒(2)。
  2. 按权利要求1所述一种用于水轮机的尾水管,其特征在于所述锥管段(1)轴向长度为L1,所述整流筒(2)轴向长度为L2,所述整流筒(2)前端面距离锥管段(1)后端面为L3,满足L2<0.5L1, 0<L3<L1。
  3. 按权利要求1所述一种用于水轮机的尾水管,其特征在于所述锥管段(1)前端口内径为D1,所述锥管段(1)后端口内径为D3,所述整流筒(2)外接圆内径为D2,满足0.1D1<D2<D3。
  4. 按权利要求1或2或3所述一种用于水轮机的尾水管,其特征在于所述整流筒(2)为中空状且前后开口的圆柱筒,或者正多边形筒,或者喇叭筒,或者直锥筒,所述直锥筒的锥角为0°~20°。
  5. 按权利要求1或2或3所述一种用于水轮机的尾水管,其特征在于所述整流筒(2)由三个相同的、呈中空状且前后开口的正六边形筒拼接而成蜂窝状结构,相邻两个正六边形筒互成120°。
  6. 按权利要求1所述一种用于水轮机的尾水管,其特征在于所述整流筒(2)外表面与锥管段(1)内表面之间沿周向设有用于将整流筒(2)相对锥管段(1)固定连接的固定杆(3)。
  7. 按权利要求1所述一种用于水轮机的尾水管,其特征在于所述整流筒(2)的后端固定连接有支撑杆(4),所述支撑杆(4)另一端固定于地面上。
  8. 一种用于水轮机的尾水管,其特征在于包括锥管段(1)和扩散段(5),所述锥管段(1)前端开口小且后端开口大,所述锥管段(1)后端与扩散段(5)前端之间设有用于过渡连接的肘管段(6),所述锥管段(1)前端与水轮机转轮出水口对接,所述锥管段(1)与肘管段(6)对接处的通道内设有与锥管段(1)同轴且前后开口的整流筒(2),所述整流筒(2)外表面沿周向设有固定杆(3),所述固定杆(3)另一端与锥管段(1)或者肘管段(6)内壁固定连接。
  9. 按权利要求8所述一种用于水轮机的尾水管,其特征在于所述整流筒(2)为中空状且前后开口的圆柱筒,或者正多边形筒,或者喇叭筒,或者直锥筒,所述直锥筒的锥角为0°~20°。
  10. 按权利要求8或9所述一种用于水轮机的尾水管,其特征在于所述整流筒(2)由三个相同的、呈中空状且前后开口的正六边形筒拼接而成蜂窝状结构,相邻两个正六边形筒互成120°。
PCT/CN2015/079464 2014-06-03 2015-05-21 一种用于水轮机的尾水管 WO2015184954A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410243350.0 2014-06-03
CN201410243350.0A CN103982361B (zh) 2014-06-03 2014-06-03 一种用于水轮机的尾水管

Publications (1)

Publication Number Publication Date
WO2015184954A1 true WO2015184954A1 (zh) 2015-12-10

Family

ID=51274474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079464 WO2015184954A1 (zh) 2014-06-03 2015-05-21 一种用于水轮机的尾水管

Country Status (2)

Country Link
CN (1) CN103982361B (zh)
WO (1) WO2015184954A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1009116B (el) * 2016-05-11 2017-09-14 Ευθαλια Γεωργιου Καλαμπαλικη-Τσιτσιγιαννη Υδροστροβιλος
CN113958439A (zh) * 2021-11-25 2022-01-21 国网新源控股有限公司 水轮机尾水涡带消弱方法和装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103982361B (zh) * 2014-06-03 2019-03-15 中山市创想模型设计有限公司 一种用于水轮机的尾水管
CN108119289B (zh) * 2017-11-29 2019-07-09 广东水利电力职业技术学院(广东省水利电力技工学校) 一种便于组装连接的尾水管
CN110285005B (zh) * 2019-05-15 2020-11-03 江苏大学 一种具有圆形和椭圆形网格的水轮机尾水管
CN111927674A (zh) * 2020-07-10 2020-11-13 江苏大学 利用三个正六边形通槽组成的导流栅作抑涡装置的尾水管
CN111927675B (zh) * 2020-07-10 2022-02-15 江苏大学 一种利用正六边形导流栅作抑涡装置的尾水管
CN111927672A (zh) * 2020-07-10 2020-11-13 江苏大学 一种利用圆筒组成的导流栅作抑涡装置的尾水管
CN111927673A (zh) * 2020-07-10 2020-11-13 江苏大学 一种带栅格网的中心管作抑涡装置的尾水管
CN111927676B (zh) * 2020-07-10 2022-02-15 江苏大学 一种利用矩形导流翼片组成的导流栅作抑涡装置的尾水管
CN112360660B (zh) * 2020-11-06 2022-07-12 陕西省引汉济渭工程建设有限公司 一种长短叶片型可逆式水泵水轮机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166866A (ja) * 1984-09-10 1986-04-05 Fuji Electric Co Ltd 反動水車の吸出し管
CN102720622A (zh) * 2012-06-21 2012-10-10 河海大学 一种水轮机尾水管涡流发生器
CN103982361A (zh) * 2014-06-03 2014-08-13 中山市创想模型设计有限公司 一种用于水轮机的尾水管
CN203962278U (zh) * 2014-06-03 2014-11-26 中山市创想模型设计有限公司 一种用于水轮机的尾水管

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3292901A (en) * 1965-03-04 1966-12-20 Newport News S & D Co Turbine apparatus
CN2100503U (zh) * 1991-07-20 1992-04-01 东方电机厂 水轮机翼形稳流装置
CN2162541Y (zh) * 1993-07-12 1994-04-20 水利水电科学研究院水力机电研究所 一种水轮机水压脉动稳流器
AUPN772396A0 (en) * 1996-01-25 1996-02-15 Kouris, Paul S The kouris centri-turbine generator
JP2006214404A (ja) * 2005-02-07 2006-08-17 Toshiba Corp 水力機械
CN103670882A (zh) * 2013-11-21 2014-03-26 南通高盛机械制造有限公司 一种尾水管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166866A (ja) * 1984-09-10 1986-04-05 Fuji Electric Co Ltd 反動水車の吸出し管
CN102720622A (zh) * 2012-06-21 2012-10-10 河海大学 一种水轮机尾水管涡流发生器
CN103982361A (zh) * 2014-06-03 2014-08-13 中山市创想模型设计有限公司 一种用于水轮机的尾水管
CN203962278U (zh) * 2014-06-03 2014-11-26 中山市创想模型设计有限公司 一种用于水轮机的尾水管

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1009116B (el) * 2016-05-11 2017-09-14 Ευθαλια Γεωργιου Καλαμπαλικη-Τσιτσιγιαννη Υδροστροβιλος
CN113958439A (zh) * 2021-11-25 2022-01-21 国网新源控股有限公司 水轮机尾水涡带消弱方法和装置

Also Published As

Publication number Publication date
CN103982361A (zh) 2014-08-13
CN103982361B (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
WO2015184954A1 (zh) 一种用于水轮机的尾水管
KR101665702B1 (ko) 터빈 엔진용 인듀서와 관련된 방법, 시스템 및/또는 장치
US20170166318A1 (en) Exhaust nozzle for gas turbine engine
JP2009085185A (ja) 軸流タービンおよび軸流タービン段落構造
US9334745B2 (en) Gas turbine stator vane
CN107131009B (zh) 一种叶轮机械自锁封严结构及具有其的发动机
US7018174B2 (en) Turbine blade
JP2012041924A (ja) ハブ流路輪郭
KR102590226B1 (ko) 배기 가스 터빈의 디퓨저
CN115962153A (zh) 过渡段子午流道宽度变窄的压气机和发动机
RU2664046C2 (ru) Способ изготовления вращающейся части гидравлической машины, вращающаяся часть гидравлической машины, изготовленная этим способом, и установка для преобразования энергии
KR100241998B1 (ko) 응력감소를 위한 임펠러 날개
US2713990A (en) Exhaust structure for gas turbine
CA2844566A1 (en) A francis turbine or a francis pump or a francis pump turbine
CN203962278U (zh) 一种用于水轮机的尾水管
US10962021B2 (en) Non-axisymmetric impeller hub flowpath
CN113944565B (zh) 一种用于改善振动特性的尾喷管结构
CN209654085U (zh) 一种超高压比的超音速涡轮喷嘴叶栅结构
JPH0610603A (ja) 応力軽減型輻流インペラブレード
JP3884880B2 (ja) 羽根入口再循環流および羽根旋回失速を抑制したターボ機械
JP4945511B2 (ja) 分岐部を有する配管を備えたプラント及び沸騰水型原子力プラント
JPH02140466A (ja) 曲り吸出し管の旋回抑制フイン
JPH0849501A (ja) 蒸気タービン
CN117989035A (zh) 一种可降低涡带引起压力脉动幅值水平的水轮机尾水管结构
JPH08296544A (ja) 導流壁付き軽負荷改善ランナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/05/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15803048

Country of ref document: EP

Kind code of ref document: A1