WO2015184866A1 - 一种监控方法、装置及电源系统中的第一监控单元 - Google Patents

一种监控方法、装置及电源系统中的第一监控单元 Download PDF

Info

Publication number
WO2015184866A1
WO2015184866A1 PCT/CN2015/073138 CN2015073138W WO2015184866A1 WO 2015184866 A1 WO2015184866 A1 WO 2015184866A1 CN 2015073138 W CN2015073138 W CN 2015073138W WO 2015184866 A1 WO2015184866 A1 WO 2015184866A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
unit
monitoring unit
signal bus
monitored
Prior art date
Application number
PCT/CN2015/073138
Other languages
English (en)
French (fr)
Inventor
彭云
蒋翌平
周江玲
乐庆
兰鸿雁
杨鹏飞
胡志华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015184866A1 publication Critical patent/WO2015184866A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to the field of power supply monitoring, and in particular, to a monitoring method, a device, and a first monitoring unit in a power system.
  • Method 1 Single-monitor single-bus power system. This method is the simplest, the software and hardware solutions are very good, the software logic is not complicated, but there is no monitoring parallel function. This monitoring focuses on the human-machine interface, external interface, monitoring function of the power unit, etc. Since there is no monitoring backup, if the monitoring fails, the whole system can hardly work normally, and the single bus uses too much data interaction, which leads to communication. The speed is reduced, it is difficult to achieve real-time monitoring, and it is difficult to control some real-time data, such as voltage regulation of the power unit and circulation control, which require real-time control.
  • Method 2 Single-monitor dual-bus power system.
  • This method uses a bus for non-real-time data monitoring, such as the voltage and current values that the human-machine interface needs to display; uses another bus to collect real-time data and issue commands, such as voltage regulation of the power unit.
  • Circulation control this single-monitoring dual-bus method solves some of the shortcomings of Method 1. However, there is still only one monitoring, there is no monitoring backup. If the monitoring fails, the whole system can hardly work normally. The problem of Method 1 is still not solved.
  • Method 3 Dual monitoring of the single bus power system.
  • This method uses two identical monitors in parallel to monitor other units of the system, such as power units, using the same monitor bus.
  • One of the two monitors is responsible for the monitoring function of the entire system as the host, and the other monitor is only responsible for the analysis. Monitor the bus data and back it up.
  • the host fails, the slave can quickly assume the host function and continue to monitor the system.
  • the third method has the problem of the first method, that is, using a single bus, the data interaction is too much, which leads to a decrease in communication speed. It is difficult to achieve real-time monitoring, and it is difficult to control some real-time data, such as voltage regulation of power units and loop control, which require real-time control.
  • the purpose of the embodiments of the present invention is to provide a monitoring method, a device, and a first monitoring unit in a power system, so as to improve the real-time performance of the monitoring while ensuring the reliability of the power system monitoring.
  • An embodiment of the present invention provides a monitoring method for monitoring a first monitoring unit in a power system, where the power system further includes a monitored unit and a second monitoring unit, where the monitoring method includes:
  • the first monitoring unit interacts with the second monitoring unit by using the first signal bus after the setting itself is the monitoring host, so that the second monitoring unit can be used when the first monitoring unit fails to exit the working state.
  • Monitoring the monitored unit by using a second signal bus, wherein the first signal bus and the second signal bus are two signal buses independent of each other;
  • monitoring the monitored unit includes:
  • the response data is received by the second monitoring unit while being received by the first monitoring unit, so that the second monitoring unit can fail to exit in the first monitoring unit.
  • the monitored unit is monitored according to the response data.
  • the monitoring method further includes:
  • the first monitoring unit sets itself to be a monitoring host, and passes through the first signal bus a first contention message including the first identifier of the first monitoring unit is sent out, and the second signal that is sent by the second monitoring unit and includes the second identifier of the second monitoring unit is received by using the first signal bus Competitive news
  • the first monitoring unit sets itself as a monitoring host, and passes the first signal bus to the first
  • the second monitoring unit sends a response message for the second contention message, so that the second monitoring unit can set the second monitoring unit itself as a monitoring slave when receiving the response message;
  • the first monitoring unit sets itself as a monitoring slave.
  • the first signal bus is a controller area network bus
  • the second signal bus is an RS485 bus.
  • the embodiment of the present invention further provides a monitoring device, which is configured to monitor a first monitoring unit in the power system, the power system further includes a monitored unit and a second monitoring unit, and the monitoring device includes:
  • a first interaction module configured to enable the first monitoring unit to interact with the second monitoring unit by using a first signal bus after setting itself as a monitoring host, so that the second monitoring unit can be in the first
  • the monitored unit is monitored by using a second signal bus, wherein the first signal bus and the second signal bus are two independent signal buses;
  • the second interaction module is configured to monitor the monitored unit by interacting with the monitored unit by using the second signal bus while interacting with the second monitoring unit by using the first signal bus.
  • the first interaction module includes:
  • An interaction unit configured to send a monitoring command to the monitored unit by using the second signal bus while interacting with the second monitoring unit by using the first signal bus;
  • the receiving unit is configured to receive response data sent by the monitored unit by using the second signal bus after the monitoring unit executes the monitoring command.
  • the response data is received by the second monitoring unit while being received by the first monitoring unit, so that the second monitoring unit can fail to exit in the first monitoring unit.
  • the monitored unit is monitored according to the response data.
  • the monitoring device further includes:
  • a sending and receiving module configured to send the first contention message including the first identifier of the first monitoring unit by using the first signal bus before the first monitoring unit sets itself as the monitoring host, and Receiving, by the first signal bus, a second contention message that is sent by the second monitoring unit and includes a second identifier of the second monitoring unit;
  • a parsing module configured to parse the second identifier from the second contention message
  • a determining module configured to determine whether the first identifier and the second identifier meet the set comparison condition, and obtain a determination result
  • a setting and sending module configured to: when the determination result indicates that the first identifier and the second identifier meet the set comparison condition, enable the first monitoring unit to set itself as a monitoring host, and pass the Transmitting, by the first signal bus, a response message for the second contention message to the second monitoring unit, to enable the second monitoring unit to set the second monitoring unit itself when receiving the response message For monitoring slaves;
  • a setting module configured to enable the first monitoring unit to set itself as a monitoring slave when the determination result indicates that the first identifier and the second identifier do not satisfy the set comparison condition.
  • the first signal bus is a controller area network bus
  • the second signal bus is an RS485 bus.
  • An embodiment of the present invention further provides a first monitoring unit in a power system, where the first monitoring unit is connected to a monitored unit in the power system through an RS485 bus, through a controller area network bus and the power system.
  • the second monitoring unit is connected, and the first monitoring unit comprises the monitoring device described above.
  • the embodiment of the invention further provides a computer readable storage medium storing program instructions, which can be implemented when the program instructions are executed.
  • FIG. 1 is a flow chart showing the steps of a monitoring method according to an embodiment of the present invention.
  • FIG. 2 is a system block diagram showing a preferred embodiment of the present invention
  • FIG. 3 is a block diagram showing the principle of a monitoring unit according to a preferred embodiment of the present invention.
  • FIG. 4 is a block diagram showing a control bus communication mechanism according to a preferred embodiment of the present invention.
  • FIG. 5 is a block diagram showing a communication mechanism of a communication system bus according to a preferred embodiment of the present invention.
  • FIG. 6 is a structural block diagram of a monitoring apparatus according to an embodiment of the present invention.
  • FIG. 1 is a flow chart showing the steps of a monitoring method according to an embodiment of the present invention.
  • an embodiment of the present invention provides a monitoring method for monitoring a first monitoring unit in a power system, where the power system further includes The monitored unit and the second monitoring unit, the monitoring method includes the following steps:
  • Step 101 After the first monitoring unit sets itself as the monitoring host, the first monitoring unit interacts with the second monitoring unit by using the first signal bus, so that the second monitoring unit can exit the working in the first monitoring unit. In the state, the monitored unit is monitored by using a second signal bus, wherein the first signal bus and the second signal bus are two signal buses independent of each other;
  • Step 102 While using the first signal bus to interact with the second monitoring unit, interact with the monitored unit by using the second signal bus to monitor the monitored unit.
  • the different signal buses are used for the interaction between the monitoring unit of the monitored unit and the monitoring unit, thereby reducing the load on the signal bus for monitoring, thereby ensuring reliability by setting more than one monitoring unit. Improve the real-time performance of monitoring.
  • the monitored unit is, for example, a power unit, a static conversion unit, or the like.
  • the first signal bus may be a Controller Area Network (CAN) bus
  • the second signal bus may be an RS485 bus.
  • CAN Controller Area Network
  • the monitoring of the monitored unit by using the second signal bus to interact with the monitored unit may include:
  • the response data may be received by the second monitoring unit while being received by the first monitoring unit, so that the second monitoring unit can be used when the first monitoring unit fails to exit the working state. And monitoring the monitored unit according to the response data.
  • the monitoring method may further include:
  • the first monitoring unit Before the first monitoring unit sets itself as the monitoring host, sends a first contention message including the first identifier of the first monitoring unit through the first signal bus, and receives the first signal bus through the first signal bus. a second contention message that is sent by the second monitoring unit and includes the second identifier of the second monitoring unit;
  • the first monitoring unit sets itself as a monitoring host, and passes the first signal bus to the first
  • the second monitoring unit sends a response message for the second contention message, so that the second monitoring unit can set the second monitoring unit itself as a monitoring slave when receiving the response message;
  • the first monitoring unit sets itself as a monitoring slave.
  • the preferred embodiment provides a method for dual bus parallel monitoring.
  • the preferred embodiment relates to a dual bus parallel monitoring method for power electronic conversion technology, and more particularly to the field of monitoring of an AC output power source, a DC output power source, or a high voltage DC output power source.
  • the preferred embodiment solves the above technical problem, and proposes a dual bus parallel monitoring method to improve the reliability and real-time monitoring speed of the power product monitoring.
  • the preferred embodiment provides a method for parallel monitoring of dual buses, the method comprising:
  • the method is to use two identical monitoring units in the power system for parallel connection, and the two monitoring units back up each other and monitor other units in the system;
  • two monitoring units on the power system compete for the host according to the address, and the host can send various control commands and polling the monitored unit; another monitoring is set as a slave, and the slave does not have a send command.
  • the slave unit can immediately compete for the host, and implement monitoring functions of all the host units;
  • the master and slave monitoring units are designed to be arbitrarily plugged and unplugged for convenient maintenance; if the host is pulled out of the system, the slaves in the system compete for the host, taking over all the monitoring functions of the previous host; When a monitor is inserted, the monitor is automatically set to the slave;
  • the power system uses two different signal buses to monitor the system to improve real-time monitoring; one of the signal buses is used to monitor communication between units, called a control bus; another signal The bus is used for the monitoring unit to communicate with other units in the system, such as the power conversion unit, called a communication bus; the types of the two signal buses include, but are not limited to, RS485, RS232, CAN or Ethernet;
  • the host communicates with the slave through the control bus, and mainly performs data synchronization and master-slave management between the two monitoring units, for example, the switch can be operated only by the host, and the related parameters of the host are synchronized.
  • the host communicates with the monitored unit in the system through a communication bus, It mainly realizes the functions of polling, data collection and control of the monitored unit; and the slave also collects and parses the data through the communication bus but does not have the control function; the communication bus adopts the ring network design to improve the reliability of communication.
  • the method according to the preferred embodiment uses a dual-bus dual-monitoring parallel method to achieve more effective monitoring of the power system, greatly improving the reliability of the power system operation, and solving the traditional solution.
  • the shortcomings have the following beneficial effects:
  • each monitoring system data can be backed up and redundant with each other to improve product reliability
  • the master-slave dual-bus parallel monitoring method because the master-slave monitoring unit communicates through a separate control bus, the interactive data is more real-time, which avoids a long-term non-monitoring situation after monitoring the fault, and improves the response of the product processing abnormality. Speed, thereby improving the reliability of the product;
  • the unitized pluggable monitoring system also reduces the MTTR time and facilitates the maintenance and upgrade of the product.
  • the dual bus communication method adopts the ring network design, which also improves the communication reliability of the product.
  • the preferred embodiment applies a redundant parallel technology, and uses a dual bus parallel monitoring method to monitor the power system, which greatly improves the reliability and maintainability of the system.
  • a UPS system includes two monitoring units (SU), multiple power units (PUs) and static conversion units (STS), and these units pass The communication bus rings are connected in parallel, and the two monitoring units are connected in parallel through the control bus.
  • the communication bus uses the most commonly used RS485 mode, and the control bus uses CAN communication.
  • the hardware aspect monitoring unit mainly uses the ARM chip as the main control chip, which mainly includes the ARM minimum system (corresponding to the core processing unit in the figure), the sampling circuit (corresponding to the sampling unit in the figure), and the communication circuit (corresponding to the figure) Signal processing unit), LCD display (included in the human-machine interface in the figure), human-machine interface, external interface (corresponding to the external interface in the figure), power supply (corresponding to the power supply unit in the figure).
  • the connection between the monitoring unit and the system is mainly achieved by the DL37 connector for hot plugging.
  • the dual bus parallel monitoring method of the preferred embodiment mainly includes two sets of communication protocols, CAN and RS485. The following describes how the monitoring unit monitors the entire UPS system through the dual bus.
  • the CAN bus is the control bus of the preferred embodiment, which is a high-speed communication bus between two monitoring units.
  • the main communication mechanism is shown in Figure 4.
  • the main technology includes the control host competition mechanism and the master-slave machine. Data interaction mechanism.
  • the ID query command is sent once every interval, and sent three times in a row. If there is a response, the transmission is stopped. If other SUs respond with the same ID, if the sending SU receives a response, the alarm ID conflicts, and if no response is received, the ID is obtained.
  • Each SU is powered on when it is powered on.
  • the host ID saved by this unit is 0. If the host command is received, compare it with the host ID saved by the machine. If it is different, update the host ID.
  • Any monitoring unit can obtain the ID before competing for the host.
  • the host ID saved by the local machine is 0 or the host ID is greater than the local ID.
  • the host competing command is sent once every interval, and sent three times in succession.
  • any SU receives the host competing command, it compares the ID.
  • the receiving party's ID is smaller than the sender or the local machine is the host, it responds, otherwise it does not respond, and the local machine is the slave; the sender receives the response and sets the local machine.
  • the slave after the command is sent three times, it waits for 1S, and if there is no response, it sets the machine as the host.
  • step 5 If the slave does not receive the host command within 10 seconds, clear the host save host ID to 0 and go to step 4.
  • the host sends a status inquiry command every 2S. If no SU response is received within 10S, the CAN communication failure of the SU is reported. If no response from the slave is received within 10S, the local CAN communication failure is alarmed. This unit is a slave.
  • Parameter configuration command After the polling is found, the host sends a parameter configuration command when there is a parameter configuration request. When the slave parameter configuration request is 1, the receiver receives the message. If the receiver receives the correct one, the flag is cleared to 0. If it is 0, it is not received. This command does not answer.
  • Parameter update command the host sends and the slave answers. If there is no response within the 100MS, it will be sent every 100MS.
  • Control command the host sends and the slave answers. If there is no response within the 100MS, it will be sent every 100MS.
  • System time setting The host sends a system time setting command once a month, and the slave does not answer.
  • the host After the host obtains the new package, it sends out the communication host command, and receives the ID of the SU as the local ID+1.
  • the host triggers the start program download command in the control command, and all slaves respond after receiving the command.
  • the host sends the program download command in broadcast mode, the slave receives but does not answer, and sets the program download identifier to 1 after receiving the error; when the host rotates, it receives the program download identifier as 1, resends the program download command, and the slave receives the correct command. Clear the download ID to 0.
  • the 485 bus is the communication bus described in the present invention and is mainly used for internal communication of the system.
  • the 485 bus communication mechanism mainly has the following points:
  • the master-slave communication unit is used on the bus, the SU host acts as the host unit for communication, and the slave, the STS and the PU act as the slaves, and the master SU acts as the initiator of the communication information, and the slave does not actively send information.
  • the primary SU sends parameters to the slave, collects parameters, collects alarms, collects data, and issues commands. After receiving the polling command, each communication slave reports the corresponding information to the communication host. If the communication host does not receive the response of the communication slave within 200 ms, the communication is considered to have failed. If communication with one communication slave fails for 5 consecutive times, the communication of the communication slave is considered to be interrupted.
  • the sequence of host polling is shown in Fig. 5: SU slave, static conversion unit STS, power unit 1 to 4, SU slave, static conversion unit STS, power unit 5 to 8, ....
  • the number of power unit polls is based on the number of valid IDs, which are set in the monitoring unit. For example, if the first 8 power IDs are set to be valid, after polling the power unit 8, the SU slave is polled, and then the polling is resumed from the power unit 1. Data is exchanged with the unit immediately after each round of inquiry.
  • 485 bus interaction data specified parameter query / response, input real-time data query / response, output real-time data query / response, alarm query / response, version query / response, configuration query command / response, switch query, history Event query, historical data query, parameter acquisition command, network parameter backup command, dry node attribute backup command, alarm attribute backup command, control command, emergency shutdown command, bus voltage adjustment command, PU broadcast power-on command, SU broadcast data command , STS system parameter broadcast command, STS battery parameter broadcast command, PU system parameter broadcast command, communication host polling, operation related configuration parameter setting, zero offset setting command/response, parameter tuning command/response, configuration update command/response , Battery Management Configuration Parameters Backup Command/Answer, Local Exit Communication Host Command, System Time Configuration Command/Response, Delete Historical Event Command.
  • FIG. 6 is a structural block diagram of a monitoring apparatus according to an embodiment of the present invention.
  • an embodiment of the present invention further provides a monitoring apparatus, which is configured to monitor a first monitoring unit in a power supply system, wherein The power system further includes a monitored unit and a second monitoring unit, the monitoring device comprising:
  • the first interaction module 601 is configured to enable the first monitoring unit to interact with the second monitoring unit by using a first signal bus after setting itself as a monitoring host, so that the second monitoring unit can be in the first When the monitoring unit fails to exit the working state, the monitored unit is monitored by using the second signal bus, wherein the first signal bus and the second signal bus are two independent signal buses;
  • the second interaction module 602 is configured to monitor the monitored unit by interacting with the monitored unit by using the second signal bus while interacting with the second monitoring unit by using the first signal bus. .
  • the different signal buses are used for the interaction between the monitoring unit of the monitored unit and the monitoring unit, thereby reducing the load on the signal bus for monitoring, thereby ensuring reliability by setting more than one monitoring unit. Improve the real-time performance of monitoring.
  • the first interaction module 601 can include:
  • An interaction unit configured to send a monitoring command to the monitored unit by using the second signal bus while interacting with the second monitoring unit by using the first signal bus;
  • the receiving unit is configured to receive response data sent by the monitored unit by using the second signal bus after the monitoring unit executes the monitoring command.
  • the response data may be received by the second monitoring unit while being received by the first monitoring unit, so that the second monitoring unit can be used when the first monitoring unit fails to exit the working state. And monitoring the monitored unit according to the response data.
  • the monitoring device may further include:
  • a sending and receiving module configured to send the first contention message including the first identifier of the first monitoring unit by using the first signal bus before the first monitoring unit sets itself as the monitoring host, and Receiving, by the first signal bus, a second contention message that is sent by the second monitoring unit and includes a second identifier of the second monitoring unit;
  • a parsing module configured to parse the second identifier from the second contention message
  • a determining module configured to determine whether the first identifier and the second identifier meet the set comparison condition, and obtain a determination result
  • a setting and sending module configured to: when the determination result indicates that the first identifier and the second identifier meet the set comparison condition, enable the first monitoring unit to set itself as a monitoring host, and pass the Transmitting, by the first signal bus, a response message for the second contention message to the second monitoring unit, to enable the second monitoring unit to set the second monitoring unit itself when receiving the response message For monitoring slaves;
  • a setting module configured to enable the first monitoring unit to set itself as a monitoring slave when the determination result indicates that the first identifier and the second identifier do not satisfy the set comparison condition.
  • the first signal bus may be a controller area network bus
  • the second signal bus may be an RS485 bus.
  • An embodiment of the present invention further provides a first monitoring unit in a power system, where the first monitoring unit is connected to a monitored unit in the power system through an RS485 bus, through a controller area network bus and the power system.
  • the second monitoring unit is connected, and the first monitoring unit comprises the monitoring device described above.
  • the embodiment of the invention further provides a computer readable storage medium storing program instructions, which can be implemented when the program instructions are executed.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve. Thus, the invention is not limited to any specific combination of hardware and software.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • each device/function module/functional unit in the above embodiment When each device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the monitoring method and device provided by the embodiment of the invention and the first monitoring unit in the power system adopt different signal buses for the interaction between the monitoring and monitoring unit of the monitored unit, thereby reducing the signal bus for monitoring.
  • the load thus ensuring reliability by setting more than one monitoring unit, also improves the real-time monitoring.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Debugging And Monitoring (AREA)

Abstract

一种监控方法、装置及电源系统中的第一监控单元。所述电源系统还包括被监控单元和第二监控单元,所述监控方法包括:所述第一监控单元在设置自身为监控主机之后,利用第一信号总线与所述第二监控单元交互,使得所述第二监控单元能够在所述第一监控单元发生故障退出工作状态时,利用第二信号总线对所述被监控单元进行监控,其中,第一信号总线和第二信号总线是相互独立的两条信号总线(101);在利用所述第一信号总线与所述第二监控单元交互的同时,利用所述第二信号总线与所述被监控单元交互,对所述被监控单元进行监控(102)。能够在保证电源系统监控可靠性的同时,提高了监控的实时性。

Description

一种监控方法、装置及电源系统中的第一监控单元 技术领域
本发明涉及电源监控领域,尤其涉及一种监控方法、装置及电源系统中的第一监控单元。
背景技术
电源在各个领域得到了广泛应用,而且很多使用场合对电源的输出功率要求非常大,常常达到几百KW,甚至几兆W。如此大功率的系统基本都采用模块化并联式方案。而对于大功率电源的研发,其中可靠性是一项很重要的指标,直接影响用户的安全和供电的安全。其中监控单元的可靠性也就直接影响了系统的正常运行,是整个系统的重中之重。而目前各种电源设备的监控主要有以下几种方法:
方法一:单监控单总线的电源系统。这种方法最为简单,软硬件方案都很好做,软件逻辑也不复杂,但不存在监控并联功能。这个监控集中了人机界面、对外接口、对功率单元的监控功能等,由于没有监控备份,如果该监控故障,整个系统几乎无法正常工作,并且使用单总线,数据交互太多,这会导致通信速度降低,很难实现实时监控,对一些实时数据很难控制,比如对功率单元的电压调节、环流控制,这些都需要实时控制。
方法二:单监控双总线的电源系统。这种方法是使用一条总线用于非实时数据监控,比如人机接口需要显示的电压、电流值;使用另一条总线来进行实时数据的采集、命令的下发,比如对功率单元的电压调节、环流控制,这种单监控双总线的方法,很好地解决了方法一的部分缺陷。但是依然是只有一个监控,没有监控备份,如果该监控故障,整个系统几乎无法正常工作,方法一的这个问题依然没有解决;
方法三:双监控单总线的电源系统。这种方法是使用两个相同的监控并联,使用同一条监控总线对系统其他单元如功率单元进行监控。两个监控其中一个做为主机负责整个系统的监控功能,另一个监控做为从机只负责解析 监控总线的数据并为之备份,当主机故障后从机能迅速担当主机功能继续对系统进行监控。这很好地解决了前两种方法没有监控备份的问题,大大提高了监控的可靠性;但是方法三存在方法一的问题,即使用单总线,数据交互太多,这会导致通信速度降低,很难实现实时监控,对一些实时数据很难控制,比如对功率单元的电压调节、环流控制,这些都需要实时控制。
发明内容
本发明实施例的目的是提供一种监控方法、装置及电源系统中的第一监控单元,以便在保证电源系统监控可靠性的同时,提高了监控的实时性。
为解决上述技术问题,本发明实施例提供方案如下:
本发明实施例提供一种监控方法,用于监控电源系统中的第一监控单元,所述电源系统还包括被监控单元和第二监控单元,所述监控方法包括:
所述第一监控单元在设置自身为监控主机之后,利用第一信号总线与所述第二监控单元交互,使得所述第二监控单元能够在所述第一监控单元发生故障退出工作状态时,利用第二信号总线对所述被监控单元进行监控,其中,所述第一信号总线和所述第二信号总线是相互独立的两条信号总线;
在利用所述第一信号总线与所述第二监控单元交互的同时,利用所述第二信号总线与所述被监控单元交互,对所述被监控单元进行监控。
可选地,利用所述第二信号总线与所述被监控单元交互,对所述被监控单元进行监控包括:
利用所述第二信号总线向所述被监控单元发送监控命令;
接收所述被监控单元执行所述监控命令后利用所述第二信号总线发送的响应数据。
可选地,其中,所述响应数据在被所述第一监控单元接收的同时,还被所述第二监控单元接收,以便所述第二监控单元能够在所述第一监控单元发生故障退出工作状态时,根据所述响应数据,对所述被监控单元进行监控。
可选地,所述监控方法还包括:
所述第一监控单元设置自身为监控主机之前,通过所述第一信号总线将 包括所述第一监控单元的第一标识的第一竞争消息发送出去,并通过所述第一信号总线接收所述第二监控单元发送的包括所述第二监控单元的第二标识的第二竞争消息;
从所述第二竞争消息中解析出所述第二标识;
判断所述第一标识和所述第二标识是否满足设定的比较条件,获取判断结果;
当所述判断结果表明所述第一标识和所述第二标识满足设定的比较条件时,所述第一监控单元将自身设置为监控主机,并通过所述第一信号总线向所述第二监控单元发送针对所述第二竞争消息的响应消息,使得所述第二监控单元能够在收到所述响应消息时,将所述第二监控单元自身设置为监控从机;
当所述判断结果表明所述第一标识和所述第二标识不满足设定的比较条件时,所述第一监控单元将自身设置为监控从机。
可选地,所述第一信号总线为控制器局域网络总线,和/或,所述第二信号总线为RS485总线。
本发明实施例还提供一种监控装置,设置为监控电源系统中的第一监控单元,所述电源系统还包括被监控单元和第二监控单元,所述监控装置包括:
第一交互模块,设置为使所述第一监控单元在设置自身为监控主机之后,利用第一信号总线与所述第二监控单元交互,以使得所述第二监控单元能够在所述第一监控单元发生故障退出工作状态时,利用第二信号总线对所述被监控单元进行监控,其中,所述第一信号总线和所述第二信号总线是相互独立的两条信号总线;
第二交互模块,设置为在利用所述第一信号总线与所述第二监控单元交互的同时,利用所述第二信号总线与所述被监控单元交互,对所述被监控单元进行监控。
可选地,所述第一交互模块包括:
交互单元,设置为在利用所述第一信号总线与所述第二监控单元交互的同时,利用所述第二信号总线向所述被监控单元发送监控命令;
接收单元,设置为接收所述被监控单元执行所述监控命令后利用所述第二信号总线发送的响应数据。
可选地,其中,所述响应数据在被所述第一监控单元接收的同时,还被所述第二监控单元接收,以便所述第二监控单元能够在所述第一监控单元发生故障退出工作状态时,根据所述响应数据,对所述被监控单元进行监控。
可选地,所述监控装置还包括:
发送及接收模块,设置为使所述第一监控单元设置自身为监控主机之前,通过所述第一信号总线将包括所述第一监控单元的第一标识的第一竞争消息发送出去,并通过所述第一信号总线接收所述第二监控单元发送的包括所述第二监控单元的第二标识的第二竞争消息;
解析模块,设置为从所述第二竞争消息中解析出所述第二标识;
判断模块,设置为判断所述第一标识和所述第二标识是否满足设定的比较条件,获取判断结果;
设置及发送模块,设置为当所述判断结果表明所述第一标识和所述第二标识满足设定的比较条件时,使所述第一监控单元将自身设置为监控主机,并通过所述第一信号总线向所述第二监控单元发送针对所述第二竞争消息的响应消息,以使得所述第二监控单元能够在收到所述响应消息时,将所述第二监控单元自身设置为监控从机;
设置模块,设置为当所述判断结果表明所述第一标识和所述第二标识不满足设定的比较条件时,使所述第一监控单元将自身设置为监控从机。
可选地,所述第一信号总线为控制器局域网络总线,和/或,所述第二信号总线为RS485总线。
本发明实施例还提供一种电源系统中的第一监控单元,所述第一监控单元通过RS485总线与所述电源系统中的被监控单元连接,通过控制器局域网络总线与所述电源系统中的第二监控单元连接,所述第一监控单元包括以上所述的监控装置。
本发明实施例还提供一种计算机可读存储介质,存储有程序指令,当该程序指令被执行时可实现上面的方法。
从以上所述可以看出,本发明实施例至少具有如下有益效果:
由于对被监控单元的监控和监控单元之间的交互采用不同的信号总线,从而减轻了用于监控的信号总线的负荷,从而在通过设置不止一个监控单元保证了可靠性的同时,也提高了监控的实时性。
附图概述
图1表示本发明实施例提供的一种监控方法的步骤流程图;
图2表示本发明实施例的较佳实施方式的系统框图;
图3表示本发明实施例的较佳实施方式的监控单元原理框图;
图4表示本发明实施例的较佳实施方式的控制总线通信机制框图;
图5表示本发明实施例的较佳实施方式的通信制总线通信机制框图;
图6表示本发明实施例提供的一种监控装置的结构框图。
本发明的较佳实施方式
下面将结合附图及具体实施例对本发明实施例进行详细描述。
图1表示本发明实施例提供的一种监控方法的步骤流程图,参照图1,本发明实施例提供一种监控方法,用于监控电源系统中的第一监控单元,所述电源系统还包括被监控单元和第二监控单元,所述监控方法包括如下步骤:
步骤101,所述第一监控单元在设置自身为监控主机之后,利用第一信号总线与所述第二监控单元交互,使得所述第二监控单元能够在所述第一监控单元发生故障退出工作状态时,利用第二信号总线对所述被监控单元进行监控,其中,第一信号总线和第二信号总线是相互独立的两条信号总线;
步骤102,在利用所述第一信号总线与所述第二监控单元交互的同时,利用所述第二信号总线与所述被监控单元交互,对所述被监控单元进行监控。
可见,由于对被监控单元的监控和监控单元之间的交互采用不同的信号总线,从而减轻了用于监控的信号总线的负荷,从而在通过设置不止一个监控单元保证了可靠性的同时,也提高了监控的实时性。
其中,所述被监控单元例如:功率单元、静态转换单元等。
所述第一信号总线可为控制器局域网络(Controller Area Network,CAN)总线,和/或,所述第二信号总线可为RS485总线。
本发明实施例中,利用所述第二信号总线与所述被监控单元交互,对所述被监控单元进行监控可包括:
利用所述第二信号总线向所述被监控单元发送监控命令;
接收所述被监控单元执行所述监控命令后利用所述第二信号总线发送的响应数据。
其中,所述响应数据在被所述第一监控单元接收的同时,还可被所述第二监控单元接收,以便所述第二监控单元能够在所述第一监控单元发生故障退出工作状态时,根据所述响应数据,对所述被监控单元进行监控。
本发明实施例中,所述监控方法还可包括:
所述第一监控单元设置自身为监控主机之前,通过所述第一信号总线将包括所述第一监控单元的第一标识的第一竞争消息发送出去,并通过所述第一信号总线接收所述第二监控单元发送的包括所述第二监控单元的第二标识的第二竞争消息;
所述第一监控单元设置为监控主机之前,通过所述第一信号总线接收所述第二监控单元发送的包括所述第二监控单元的第二标识的第二竞争消息;
从所述第二竞争消息中解析出所述第二标识;
判断所述第一标识和所述第二标识是否满足设定的比较条件,获取判断结果;
当所述判断结果表明所述第一标识和所述第二标识满足设定的比较条件时,所述第一监控单元将自身设置为监控主机,并通过所述第一信号总线向所述第二监控单元发送针对所述第二竞争消息的响应消息,使得所述第二监控单元能够在收到所述响应消息时,将所述第二监控单元自身设置为监控从机;
当所述判断结果表明所述第一标识和所述第二标识不满足设定的比较条件时,所述第一监控单元将自身设置为监控从机。
下面提供本发明实施例的较佳实施方式。
本较佳实施方式提供一种双总线并联监控的方法。
本较佳实施方式涉及电力电子变换技术的双总线并联监控方法,尤其涉及交流输出电源、直流输出电源或者高压直流输出电源的监控领域。
针对上述电源系统监控方案的缺陷,本较佳实施方式为解决前文的技术问题,提出了一种双总线并联监控的方法,提高电源产品监控的可靠性和实时监控速度。
为解决以上技术问题,本较佳实施方式提供了一种双总线并联监控的方法,该方法包括:
该方法为在电源系统中使用两个相同的监控单元进行并联,两个监控单元互相备份,并对系统中其他单元实现监控;
可选地,所述电源系统上的两个监控单元根据地址竞争主机,主机能发送各种控制命令以及对被监控单元的轮询;另一个监控则置为从机,从机不具备发送命令信息的功能,但主机和从机都能解析被监控单元的回复命令帧。
可选地,当主机单元故障退出后,从机单元能立即竞争为主机,实现所有主机单元的监控功能;
可选地,所述的主从两个监控单元设计为均可任意插拔,方便维护;如果主机被拔出系统,系统中的从机竞争为主机,接替以前主机的所有监控功能;如果再插入一个监控,则该监控自动置为从机;
可选地,所述电源系统使用两种不同的信号总线来对系统进行监控以提高监控的实时性;其中一种信号总线用于监控单元之间的通讯,称为控制总线;另一种信号总线用于监控单元与本系统内的其它单元如功率变换单元进行通信,称为通信总线;这两种信号总线的类型包括但不限于RS485、RS232、CAN或者以太网;
可选地,所述的主机通过控制总线与从机进行通信,主要进行两个监控单元之间的数据同步和主从管理,比如只能通过主机进行开关机操作、主机相关参数设置后同步给从机;
可选地,所述的主机通过通信总线与本系统内的被监控单元进行通信, 主要实现对被监控单元的轮询、数据收集、控制等功能;并且从机也通过通信总线收集并解析这些数据但不具备控制功能;该通信总线采用环网设计,以提高通信的可靠性。
采用本较佳实施方式所述的方法与相关技术相比,采用双总线双监控并联的方法来实现对电源系统更加有效监控的目的,大幅提高了电源系统运行的可靠性,解决了传统方案中存在的缺点,具有如下有益效果:
主从式的双总线并联监控方法,各监控系统数据可以相互备份冗余,提高产品的可靠性;
主从式的双总线并联监控方法,由于主从监控单元通过单独的控制总线进行通讯,交互数据更实时,这就避免了一个监控故障后长时间无监控的情况发生,提高产品处理异常的响应速度,从而提高产品的可靠性;
单元化可插拔式的监控系统,也降低MTTR时间,为产品的维护升级提供了便利。
双总线通信方式,采用环网设计,也提高了产品的通信可靠性。
本较佳实施方式应用冗余并联技术,使用双总线并联监控的方式来对电源系统进行监控,大大提高了系统的可靠性和可维护性。
以下结合附图和在UPS系统上的具体实施例对本较佳实施方式进行详细说明。
如图2所示为本较佳实施方式双总线并联监控的系统框图,一台UPS系统含两个监控单元(SU),多个功率单元(PU)和静态转换单元(STS),这些单元通过通信总线环网并联在一起,两个监控单元再通过控制总线并联在一起,其中通信总线使用最常用的RS485方式,控制总线使用CAN通信的方式。
如图3所示,硬件方面监控单元主要采用ARM芯片为主控芯片,主要包括了ARM最小系统(对应图中核心处理单元)、采样电路(对应图中采样单元)、通信电路(对应图中信号处理单元)、LCD显示(包括在图中人机接口中)、人机接口、对外接口(对应图中外部接口)、电源(对应图中电源单元)等。监控单元与系统连接主要靠DL37接插件实现热插拔功能。
在软件方面,该较佳实施方式的双总线并联监控方法主要包括了CAN和RS485两套通信协议,以下分别说明监控单元如何通过双总线对整个UPS系统进行监控的。
一、CAN总线通信机制:
CAN总线即为本较佳实施方式所述的控制总线,为两个监控单元之间的高速通信总线,其主要通信机制见附图4所示,主要技术包括了控制主机竞争机制和主从机数据交互机制。
1、控制主机竞争机制:
UPS系统上电后,监控单元完成自身初始化后,即开始通信主机竞争,以下说明控制主机竞争机制:
1)监控单元上电后或通信故障恢复后,等待1S后,每间隔时间发送一次ID查询命令,连发三次,期间如有回应则停止发送。如其他SU回应有相同ID,发送SU如收到回应则告警ID冲突,如未收到回应则获得该ID。
2)SU在获得ID后才可以竞争主机。如本机告警ID冲突,则只能接收信息,不能发送。如ID修改,则清除告警。
3)每个SU上电时均为从机,本机保存的主机ID为0。如收到主机命令后,与本机保存的主机ID比较,如不同则更新主机ID。
4)任何一个监控单元获得ID后才可竞争主机,当本机为从机,本机保存的主机ID为0或主机ID大于本机ID,每间隔时间发送一次主机竞争命令,连发三次。任一SU收到主机竞争命令后,则比较ID,当接收方的ID小于发送方或本机为主机则回应,否则不回应,置本机为从机;发送方收到回应则置本机为从机,命令发送三次后,等待1S,无回应则置本机为主机。
5)从机10秒内未收到主机命令则将本机保存主机ID清0,执行步骤4。
6)主机每2S发送一次状态查询命令,10S内未收到某一SU回应则告该SU的CAN通讯故障,如10S内未收到任何从机的响应则告警本机CAN通讯故障,并置本机为从机。
7)主机在线升级时,置本机为从机。不处理通信信息。
8)主机在线升级后,恢复通信。
2、主从机数据交互机制
SU成为主机后,开始与从机进行数据交互;主要进行以下数据交互:
1)主从机竞争命令:从机发送,收发机制见上一节“控制主机竞争机制”。
2)参数配置命令:主机在轮询后发现有参数配置请求则下发参数配置命令,从机参数配置请求为1时接收,接收正确后将标识清0;为0时不接收。本命令不应答。
3)参数更新命令:主机发送,从机应答。100MS内如有从机未应答,每100MS发一次。
4)控制命令:主机发送,从机应答。100MS内如有从机未应答,每100MS发一次。
5)系统时间设置:主机每月发送一次系统时间设置命令,从机不应答。
6)实时数据查询:主机发送,从机应答。每100MS发一次。
7)紧急关机:主机发送,从机应答。100MS内如有从机未应答,每100MS发一次。
8)程序下载命令:
首先:主机获得新程序包后,发退出通信主机命令,接收SU的ID为本机ID+1。
其次:原主机程序更新后,重起并重新获取主机身份。
再次:主机在控制命令中触发启动程序下载命令,所有从机接到命令后回应。
最后:在所启动程序下载命令收到所有从机的回应后,发送程序下载命令。
主机以广播方式发送程序下载命令,从机接收但不应答,接收错误后将程序下载标识置1;主机轮循时,接收到程序下载标识为1,重发程序下载命令,从机接收正确后将下载标识清0。
9)电池管理:主机发送,从机应答。100MS内如有从机未应答,每100MS发一次;
10)实时数据下发:主机每20ms发送一次,从机不应应答。
二、485总线通信机制:
485总线即为本发明所述的通信总线,主要用于系统内部通信。485总线通信机制主要有以下几点:
1)总线上采用主从通信单元,SU主机担当通信的主机单元,从SU、STS与PU作为从机,主SU作为通信信息的发起方,从机不主动发信息。
2)主SU异常或是拔出时,从SU变为主机,当两个SU都异常或是拔出时,系统保持当前状态。
3)主SU向从机下发参数,收集参数,收集告警,收集数据,下发命令等。各通信从机接收到轮询命令后将相应的信息上报通信主机,若通信主机在200ms内收不到通信从机的响应,则认为此次通信失败。若连续5次与一个通信从机通信失败,则认为此通信从机通信中断。
4)主机轮询的顺序见附图5为:SU从机、静态转换单元STS、功率单元1~4、SU从机、静态转换单元STS、功率单元5~8,……。功率单元轮询的个数以有效ID数目为准,此有效ID数目在监控单元设置。比如设置前8个功率ID有效,则轮询到功率单元8之后,轮询SU从机,然后从功率单元1再重新开始轮询。每轮询完一个单元后,立即与该单元进行数据交互。
5)协议的基本格式:数据帧中所有数据以16进制传输,以固定字节80H作为帧头,固定字节82H作为帧尾。但是因为信息内容采用16进制传输,所以可能出现重码的问题,因此在除帧头和帧尾外的其他数据中遇到80H~85H的字节时,原字节变为两个字节传送,其中第一个字节为换码字节,另一个字节为原字节的反码。84H作为换码字节。例如:82H在传送时需要转换成84H(换码字节)+7DH(82H的反码)传送。
6)485总线交互的数据有:指定参数查询/应答、输入实时数据查询/应答、输出实时数据查询/应答、告警查询/应答、版本查询/应答、配置查询命令/应答、开关量查询、历史事件查询、历史数据查询、参数获取命令、网络参数备份命令、干结点属性备份命令、告警属性备份命令、控制命令、紧急关机命令、母线电压调整指令、PU广播开机命令、SU的广播数据发命令、 STS的系统参数广播命令、STS的电池参数广播命令、PU的系统参数广播命令、通信主机轮询、运行相关配置参数设置、零偏整定命令/应答、参数整定命令/应答、配置更新命令/应答、电池管理配置参数备份命令/应答、本机退出通信主机命令、系统时间配置命令/应答、删除历史事件命令。
图6表示本发明实施例提供的一种监控装置的结构框图,参照图6,本发明实施例还提供一种监控装置,设置为监控电源系统中的第一监控单元,其特征在于,所述电源系统还包括被监控单元和第二监控单元,所述监控装置包括:
第一交互模块601,设置为使所述第一监控单元在设置自身为监控主机之后,利用第一信号总线与所述第二监控单元交互,以使得所述第二监控单元能够在所述第一监控单元发生故障退出工作状态时,利用第二信号总线对所述被监控单元进行监控,其中,第一信号总线和第二信号总线是相互独立的两条信号总线;
第二交互模块602,设置为在利用所述第一信号总线与所述第二监控单元交互的同时,利用所述第二信号总线与所述被监控单元交互,对所述被监控单元进行监控。
可见,由于对被监控单元的监控和监控单元之间的交互采用不同的信号总线,从而减轻了用于监控的信号总线的负荷,从而在通过设置不止一个监控单元保证了可靠性的同时,也提高了监控的实时性。
其中,所述第一交互模块601可包括:
交互单元,设置为在利用所述第一信号总线与所述第二监控单元交互的同时,利用所述第二信号总线向所述被监控单元发送监控命令;
接收单元,设置为接收所述被监控单元执行所述监控命令后利用所述第二信号总线发送的响应数据。
其中,所述响应数据在被所述第一监控单元接收的同时,还可被所述第二监控单元接收,以便所述第二监控单元能够在所述第一监控单元发生故障退出工作状态时,根据所述响应数据,对所述被监控单元进行监控。
本发明实施例中,所述监控装置还可包括:
发送及接收模块,设置为使所述第一监控单元设置自身为监控主机之前,通过所述第一信号总线将包括所述第一监控单元的第一标识的第一竞争消息发送出去,并通过所述第一信号总线接收所述第二监控单元发送的包括所述第二监控单元的第二标识的第二竞争消息;
解析模块,设置为从所述第二竞争消息中解析出所述第二标识;
判断模块,设置为判断所述第一标识和所述第二标识是否满足设定的比较条件,获取判断结果;
设置及发送模块,设置为当所述判断结果表明所述第一标识和所述第二标识满足设定的比较条件时,使所述第一监控单元将自身设置为监控主机,并通过所述第一信号总线向所述第二监控单元发送针对所述第二竞争消息的响应消息,以使得所述第二监控单元能够在收到所述响应消息时,将所述第二监控单元自身设置为监控从机;
设置模块,设置为当所述判断结果表明所述第一标识和所述第二标识不满足设定的比较条件时,使所述第一监控单元将自身设置为监控从机。
本发明实施例中,所述第一信号总线可为控制器局域网络总线,和/或,所述第二信号总线可为RS485总线。
本发明实施例还提供一种电源系统中的第一监控单元,所述第一监控单元通过RS485总线与所述电源系统中的被监控单元连接,通过控制器局域网络总线与所述电源系统中的第二监控单元连接,所述第一监控单元包括以上所述的监控装置。
本发明实施例还提供一种计算机可读存储介质,存储有程序指令,当该程序指令被执行时可实现上面的方法。
上述内容为双总线并联监控方法在一款UPS上的具体实施方式。需要说明的是,上述说明仅是对本发明较佳实施例的详细描述,叙述仅为说明本发明的可实现性及其突出效果,具体特征并不能用来作为对本发明的技术方案的限制,本发明的保护范围应以本发明所附权利要求书为准。
以上所述仅是本发明实施例的实施方式,并不用于限定本发明的保护范围。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
上述实施例中的各装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的各装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
本发明实施例提供的一种监控方法、装置及电源系统中的第一监控单元,对被监控单元的监控和监控单元之间的交互采用不同的信号总线,从而减轻了用于监控的信号总线的负荷,从而在通过设置不止一个监控单元保证了可靠性的同时,也提高了监控的实时性。

Claims (12)

  1. 一种监控方法,用于监控电源系统中的第一监控单元,其特征在于,所述电源系统还包括被监控单元和第二监控单元,所述监控方法包括:
    所述第一监控单元在设置自身为监控主机之后,利用第一信号总线与所述第二监控单元交互,使得所述第二监控单元能够在所述第一监控单元发生故障退出工作状态时,利用第二信号总线对所述被监控单元进行监控,其中,所述第一信号总线和所述第二信号总线是相互独立的两条信号总线;
    在利用所述第一信号总线与所述第二监控单元交互的同时,利用所述第二信号总线与所述被监控单元交互,对所述被监控单元进行监控。
  2. 根据权利要求1所述的监控方法,其中,利用所述第二信号总线与所述被监控单元交互,对所述被监控单元进行监控包括:
    利用所述第二信号总线向所述被监控单元发送监控命令;
    接收所述被监控单元执行所述监控命令后利用所述第二信号总线发送的响应数据。
  3. 根据权利要求2所述的监控方法,其中,所述响应数据在被所述第一监控单元接收的同时,还被所述第二监控单元接收,以便所述第二监控单元能够在所述第一监控单元发生故障退出工作状态时,根据所述响应数据,对所述被监控单元进行监控。
  4. 根据权利要求1所述的监控方法,所述监控方法还包括:
    所述第一监控单元设置自身为监控主机之前,通过所述第一信号总线将包括所述第一监控单元的第一标识的第一竞争消息发送出去,并通过所述第一信号总线接收所述第二监控单元发送的包括所述第二监控单元的第二标识的第二竞争消息;
    从所述第二竞争消息中解析出所述第二标识;
    判断所述第一标识和所述第二标识是否满足设定的比较条件,获取判断结果;
    当所述判断结果表明所述第一标识和所述第二标识满足设定的比较条件 时,所述第一监控单元将自身设置为监控主机,并通过所述第一信号总线向所述第二监控单元发送针对所述第二竞争消息的响应消息,使得所述第二监控单元能够在收到所述响应消息时,将所述第二监控单元自身设置为监控从机;
    当所述判断结果表明所述第一标识和所述第二标识不满足设定的比较条件时,所述第一监控单元将自身设置为监控从机。
  5. 根据权利要求1所述的监控方法,其中,所述第一信号总线为控制器局域网络总线,和/或,所述第二信号总线为RS485总线。
  6. 一种监控装置,设置为监控电源系统中的第一监控单元,其特征在于,所述电源系统还包括被监控单元和第二监控单元,所述监控装置包括:
    第一交互模块,设置为使所述第一监控单元在设置自身为监控主机之后,利用第一信号总线与所述第二监控单元交互,以使得所述第二监控单元能够在所述第一监控单元发生故障退出工作状态时,利用第二信号总线对所述被监控单元进行监控,其中,所述第一信号总线和所述第二信号总线是相互独立的两条信号总线;
    第二交互模块,设置为在利用所述第一信号总线与所述第二监控单元交互的同时,利用所述第二信号总线与所述被监控单元交互,对所述被监控单元进行监控。
  7. 根据权利要求6所述的监控装置,其中,所述第一交互模块包括:
    交互单元,设置为在利用所述第一信号总线与所述第二监控单元交互的同时,利用所述第二信号总线向所述被监控单元发送监控命令;
    接收单元,设置为接收所述被监控单元执行所述监控命令后利用所述第二信号总线发送的响应数据。
  8. 根据权利要求7所述的监控装置,其中,所述响应数据在被所述第一监控单元接收的同时,还被所述第二监控单元接收,以便所述第二监控单元能够在所述第一监控单元发生故障退出工作状态时,根据所述响应数据,对所述被监控单元进行监控。
  9. 根据权利要求6所述的监控装置,所述监控装置还包括:
    发送及接收模块,设置为使所述第一监控单元设置自身为监控主机之前,通过所述第一信号总线将包括所述第一监控单元的第一标识的第一竞争消息发送出去,并通过所述第一信号总线接收所述第二监控单元发送的包括所述第二监控单元的第二标识的第二竞争消息;
    解析模块,设置为从所述第二竞争消息中解析出所述第二标识;
    判断模块,设置为判断所述第一标识和所述第二标识是否满足设定的比较条件,获取判断结果;
    设置及发送模块,设置为当所述判断结果表明所述第一标识和所述第二标识满足设定的比较条件时,使所述第一监控单元将自身设置为监控主机,并通过所述第一信号总线向所述第二监控单元发送针对所述第二竞争消息的响应消息,以使得所述第二监控单元能够在收到所述响应消息时,将所述第二监控单元自身设置为监控从机;
    设置模块,设置为当所述判断结果表明所述第一标识和所述第二标识不满足设定的比较条件时,使所述第一监控单元将自身设置为监控从机。
  10. 根据权利要求6所述的监控装置,其中,所述第一信号总线为控制器局域网络总线,和/或,所述第二信号总线为RS485总线。
  11. 一种电源系统中的第一监控单元,所述第一监控单元通过RS485总线与所述电源系统中的被监控单元连接,通过控制器局域网络总线与所述电源系统中的第二监控单元连接,所述第一监控单元包括如权利要求6至10中任一项权利要求所述的监控装置。
  12. 一种计算机可读存储介质,存储有程序指令,当该程序指令被执行时可实现权利要求1至5中任一项所述的方法。
PCT/CN2015/073138 2014-10-29 2015-02-15 一种监控方法、装置及电源系统中的第一监控单元 WO2015184866A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410594525.2A CN105607583A (zh) 2014-10-29 2014-10-29 一种监控方法、装置及电源系统中的第一监控单元
CN201410594525.2 2014-10-29

Publications (1)

Publication Number Publication Date
WO2015184866A1 true WO2015184866A1 (zh) 2015-12-10

Family

ID=54766093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073138 WO2015184866A1 (zh) 2014-10-29 2015-02-15 一种监控方法、装置及电源系统中的第一监控单元

Country Status (2)

Country Link
CN (1) CN105607583A (zh)
WO (1) WO2015184866A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110244700A (zh) * 2018-12-15 2019-09-17 华南理工大学 一种高频氧化电源的通信装置
CN111181169A (zh) * 2020-01-13 2020-05-19 深圳市禾望电气股份有限公司 Svg并联运行系统的控制方法、装置以及存储介质
CN111367766A (zh) * 2020-03-18 2020-07-03 深圳市英威腾电源有限公司 监控主机与设备间连接关系确定方法、装置及设备
CN115085758A (zh) * 2022-06-10 2022-09-20 贵州电网有限责任公司 一种双收发器多模式rs-485通信主机及工作方法
CN117826007A (zh) * 2024-03-06 2024-04-05 三峡金沙江川云水电开发有限公司 一种用于直流系统的环网故障检测系统及方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107270484A (zh) * 2017-06-26 2017-10-20 珠海格力电器股份有限公司 空调系统及其数据查询应答方法和装置
CN110324367B (zh) * 2018-03-28 2023-12-29 深圳光启空间技术有限公司 远程监控系统及其监控方法、装置、存储介质和处理器
CN111083003A (zh) * 2018-10-22 2020-04-28 中兴通讯股份有限公司 监控系统及方法、存储介质、处理器
CN110780891B (zh) * 2019-11-01 2023-12-22 北京车和家信息技术有限公司 监控系统的部署方法及部署装置
CN114650192B (zh) * 2020-12-18 2023-12-05 南京七和电子科技有限公司 一种crpb总线系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047575A (zh) * 2007-03-29 2007-10-03 华为技术有限公司 一种监控管理的系统、装置、设备及方法
US20090322151A1 (en) * 2008-06-27 2009-12-31 Andrew Rodney Ferlitsch Power Management of Network-Connected Devices in Peak Power Periods
CN102810908A (zh) * 2011-06-03 2012-12-05 中兴通讯股份有限公司 通信基站电源并联监控方法及通信基站电源系统
CN102856971A (zh) * 2011-06-28 2013-01-02 中兴通讯股份有限公司 一种实现多机监控的直流电源系统及方法
CN103984306A (zh) * 2014-05-08 2014-08-13 大连英微电气有限公司 一种双通信口的电源模块和用于电源模块的通讯系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038040A (ja) * 2010-08-05 2012-02-23 Auto Network Gijutsu Kenkyusho:Kk 処理システム、処理装置及び電源制御方法
DE102012002494A1 (de) * 2012-02-10 2013-08-14 Phoenix Contact Gmbh & Co. Kg Alternative Synchronisationsverbindungen zwischen redundanten Steuerungseinrichtungen
CN103538486B (zh) * 2012-07-12 2016-05-04 北汽福田汽车股份有限公司 电动汽车及电动汽车的电源管理装置
JP2014048933A (ja) * 2012-08-31 2014-03-17 Toshiba Corp プラント監視システム、プラント監視方法およびプラント監視プログラム
CN103872716B (zh) * 2012-12-17 2017-11-24 研祥智能科技股份有限公司 一种冗余电源供电系统
CN103941633B (zh) * 2014-04-29 2017-01-25 北京龙鼎源科技股份有限公司 可编程控制器冗余控制方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047575A (zh) * 2007-03-29 2007-10-03 华为技术有限公司 一种监控管理的系统、装置、设备及方法
US20090322151A1 (en) * 2008-06-27 2009-12-31 Andrew Rodney Ferlitsch Power Management of Network-Connected Devices in Peak Power Periods
CN102810908A (zh) * 2011-06-03 2012-12-05 中兴通讯股份有限公司 通信基站电源并联监控方法及通信基站电源系统
CN102856971A (zh) * 2011-06-28 2013-01-02 中兴通讯股份有限公司 一种实现多机监控的直流电源系统及方法
CN103984306A (zh) * 2014-05-08 2014-08-13 大连英微电气有限公司 一种双通信口的电源模块和用于电源模块的通讯系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110244700A (zh) * 2018-12-15 2019-09-17 华南理工大学 一种高频氧化电源的通信装置
CN111181169A (zh) * 2020-01-13 2020-05-19 深圳市禾望电气股份有限公司 Svg并联运行系统的控制方法、装置以及存储介质
CN111181169B (zh) * 2020-01-13 2023-10-20 深圳市禾望电气股份有限公司 Svg并联运行系统的控制方法、装置以及存储介质
CN111367766A (zh) * 2020-03-18 2020-07-03 深圳市英威腾电源有限公司 监控主机与设备间连接关系确定方法、装置及设备
CN115085758A (zh) * 2022-06-10 2022-09-20 贵州电网有限责任公司 一种双收发器多模式rs-485通信主机及工作方法
CN117826007A (zh) * 2024-03-06 2024-04-05 三峡金沙江川云水电开发有限公司 一种用于直流系统的环网故障检测系统及方法
CN117826007B (zh) * 2024-03-06 2024-05-17 三峡金沙江川云水电开发有限公司 一种用于直流系统的环网故障检测系统及方法

Also Published As

Publication number Publication date
CN105607583A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
WO2015184866A1 (zh) 一种监控方法、装置及电源系统中的第一监控单元
US8700760B2 (en) Method and systems for redundant server automatic failover
WO2021073105A1 (zh) 一种双机热备系统
CN110554943B (zh) 一种基于i3c的多节点服务器cmc管理系统及方法
WO2019153488A1 (zh) 服务配置管理方法、装置、存储介质和服务器
CN103944814B (zh) 一种数据交换方法和系统及一种网关服务器
CN106550438B (zh) 限制定期唤醒的方法及系统、移动设备
CN105159851A (zh) 多控存储系统
CN108616428A (zh) 一种远程管理rack机房的移动app实施方法
CN101980171A (zh) 一种软件系统故障自恢复方法及其使用的软件看门狗系统
JP2012043121A (ja) 運用管理システム、運用管理方法及び運用管理装置
CN102412983B (zh) 一种设备告警上报方法
CN103580941A (zh) 网络看门狗及其实现方法
CN107071189B (zh) 一种通讯设备物理接口的连接方法
CN109766110B (zh) 一种控制方法、基板管理控制器及控制系统
US11093014B2 (en) Method for monitoring, control and graceful shutdown of control and/or computer units
WO2018000792A1 (zh) 冰箱及其智能检测方法和智能检测系统
JP2001016222A (ja) ネットワークシステム、電子機器及び電源制御方法
WO2024082471A1 (zh) 节点间链路状态监测方法和装置
WO2019227839A1 (zh) 一种基于bmc的文件传输方法、装置、设备及介质
JPH11305881A (ja) 無停電電源装置の電源管理システムおよび無停電電源装置の電源管理方法
WO2019227836A1 (zh) 一种基于bmc的文件传输方法、装置、设备及介质
JP2001257688A (ja) ネットワーク装置
US20220239572A1 (en) Data Processing Method, Device, and System
WO2016180082A1 (zh) 通用化设备综合管理器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15803938

Country of ref document: EP

Kind code of ref document: A1