WO2015184697A1 - 基于双励磁绕组的励磁控制系统 - Google Patents

基于双励磁绕组的励磁控制系统 Download PDF

Info

Publication number
WO2015184697A1
WO2015184697A1 PCT/CN2014/086196 CN2014086196W WO2015184697A1 WO 2015184697 A1 WO2015184697 A1 WO 2015184697A1 CN 2014086196 W CN2014086196 W CN 2014086196W WO 2015184697 A1 WO2015184697 A1 WO 2015184697A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation
winding
field winding
auxiliary
generator
Prior art date
Application number
PCT/CN2014/086196
Other languages
English (en)
French (fr)
Inventor
许其品
杨铭
徐蓉
黄倩
耿敏彪
Original Assignee
国电南瑞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国电南瑞科技股份有限公司 filed Critical 国电南瑞科技股份有限公司
Publication of WO2015184697A1 publication Critical patent/WO2015184697A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices

Definitions

  • the invention belongs to the field of generator excitation control, and particularly relates to an excitation control system based on double excitation windings.
  • the relay protection When a short circuit occurs inside the generator or inside the transformer of the generator-transformer group, and between the generator end to the generator or the generator-transformer circuit breaker, the relay protection will trip, but the generator or generator-transformer After the group breaker trips, the short-circuit point is not cut off, and the induced potential generated by the generator rotor field current continues to maintain the fault current.
  • the short circuit can cause the insulation to burn out, the conductor to melt or burn the core. In a short duration, it can often cause serious damage to the generator and transformer, and it may cause the accident to expand rapidly. Measures to avoid or reduce equipment damage and limit accident expansion are to quickly de-excitation the generator and reduce the generator's excitation current to zero in the shortest possible time.
  • the energy-shifting demagnetization is widely used, that is, the action of breaking the arc voltage by the magnetic field breaker (the effect of the alternating voltage on the AC demagnetization mode), so that the rotor current is transferred to and from the loop formed by the magnetic field breaker.
  • a circuit composed of magnetoresistance After the current is completely transferred, the magnetic field breaker has a breaking current of zero and the arc is broken, the rotor excitation power is cut off, and the generator rotor and the de-excitation resistor form a closed loop.
  • the de-excitation breaking is completed, and the de-magnetization breaking arc voltage of the magnetic circuit breaker should not be lower than the sum of the highest voltage of the de-excitation resistor and the output voltage of the exciter starting excitation power rectifier.
  • the self-excitation mode Due to the high initial voltage response speed requirements of the excitation system and the safety requirements of the inter-well tube device under large-capacity conditions, the self-excitation mode has become the mainstream excitation mode.
  • the generator is demagnetized, especially the magnetic field.
  • the breaking capacity of the circuit breaker puts forward higher requirements.
  • the existing magnetic field breaker and the traditional DC de-magnetic scheme have the breaking capacity, which is difficult to meet the needs of large-scale generator sets for safe and rapid de-excitation.
  • the unit In the design process of the excitation system, it is usually necessary to consider that the unit has sufficient strong excitation capability. Considering the excitation system with strong excitation multiple, higher voltage and current requirements are required in the device design. Especially for large-capacity generator sets, the excitation system requires a large-capacity excitation transformer and a power conversion device. Although there is no bottleneck in the technology, the increase in capacity brings about a problem of reduced reliability.
  • the present invention provides a method based on double-excitation windings. Excitation control system.
  • An excitation control system based on double excitation windings comprising a main excitation winding and a secondary excitation winding, wherein the magnetic field of the main excitation winding and the auxiliary excitation winding are coupled through a core, and the magnetic field of the main excitation winding is used to provide the generator under non-excited excitation conditions.
  • the excitation magnetic field, the auxiliary excitation winding is used to input the generator under strong excitation conditions, and the excitation field of the auxiliary excitation winding is superimposed with the excitation field of the main excitation winding.
  • the secondary field winding includes a closed switch, and the closed switch is coupled in parallel with the secondary field winding.
  • the auxiliary field winding is separately provided with an excitation power source or shared with the main field winding.
  • a gate switch or a knife gate is disposed between the excitation power source and the auxiliary field winding of the auxiliary field winding.
  • the two excitation winding loops reduce the capacity of the excitation transformer and the breaking voltage of the magnetic circuit breaker, improve the power factor of the excitation system load, and reduce the harmonic of the excitation power supply.
  • the current reduces the loss of the excitation transformer and reduces the thyristor commutation spike overvoltage, so that the existing magnetic circuit breaker can be applied to the large generator set, especially the excitation system of the half-speed nuclear self-excited unit, and the excitation control system is improved. Reliability and safety, while also ensuring reliable operation of the generator set.
  • Figure 1 is a schematic view of the present invention
  • Embodiment 2 is a schematic view of Embodiment 2 of the present invention.
  • the excitation control system based on the double excitation winding includes a main excitation winding L1 and a secondary excitation winding L2, and the magnetic fields of the main excitation winding L1 and the auxiliary excitation winding L2 are coupled by a core, and the main excitation winding L1 provides non-strong excitation.
  • the excitation magnetic field of the generator the auxiliary excitation winding L2 is put into use under the strong excitation condition of the generator set, and is superimposed with the magnetic field of the main excitation winding L1 to jointly provide the excitation magnetic field of the generator under strong excitation conditions.
  • the main field winding L1 and the auxiliary field winding L2 have separate excitation circuits.
  • the excitation power supply Efl is supplied with the excitation current by the excitation transformer 1.
  • the power conversion part 1 supplies the excitation current to the main excitation winding L1, and the magnetic field breaker 1 is installed on the DC side, and the demagnetization and overvoltage protection circuit 1 is connected in parallel with the main excitation winding L1;
  • Excitation transformer 2 power conversion part 2 supplies excitation current to auxiliary excitation winding L2, magnetic field breaker 2 is installed on DC side, demagnetization and overvoltage protection circuit 2 is connected in parallel with auxiliary excitation winding L2, in order to ensure that auxiliary excitation winding L2 is not When it is put into use, it is in a closed state, and the closed switch is connected in parallel with the auxiliary field winding L2;
  • the voltage regulator AVR performs unified control on the power conversion portion 1 and the power conversion portion 2 according to the operating state of the generator.
  • the excitation transformer 1 and the excitation transformer 2 can be connected in parallel on the primary side.
  • a strobe switch or a knife gate is mounted on one side of the field transformer 2.
  • the auxiliary excitation winding L2 When the auxiliary excitation winding L2 is not put into use, it needs to be connected to the closed loop. It is realized by closing the switch. When it is put into use, the closed switch is opened. This can prevent the winding from inducing overvoltage and increase the damping of the unit.
  • the excitation power of the auxiliary excitation winding L2 is different from that in the first embodiment.
  • the excitation power supply EG of the auxiliary excitation winding L2 is separately set and connected to the other.
  • the power circuit of the factory or the power used by the factory can be used to avoid the shortcomings of insufficient excitation capability when the machine is short-circuited.
  • the main excitation winding L1 In normal operation, only the current on the main excitation winding L1 flows, providing the generator with the rotating magnetic field required for power generation, and the auxiliary excitation winding L2 forms a closed loop through the closed switch; when the generator needs strong excitation, the gate is closed.
  • the switch simultaneously disconnects the closed loop of the auxiliary field winding L2 and inputs the auxiliary field winding L2; the magnetic fields of the two windings are coupled together by the core to provide a rotating magnetic field required by the generator.
  • the main field winding L1 and the auxiliary field winding L2 have independent demagnetization and overvoltage protection circuits, which are input under the condition that each of them needs to be demagnetized and overvoltage protected.
  • the main excitation winding L1 works in non-strong excitation condition, and the parameters of the excitation transformer 1 capacity and the breaking voltage of the magnetic circuit breaker 1 can be designed and selected according to the parameters under the rated condition of the generator; since the forced excitation condition is not long-term continuous Working condition, the auxiliary excitation winding L2 is put into use when the unit is required to be strongly excited, and its excitation voltage is changed.
  • the parameters of the capacity of the device 2 and the breaking voltage of the magnetic circuit breaker 2 can be designed and selected according to the short-time working system required by the strong excitation of the generator.
  • the demagnetization resistance of the two field windings is determined according to the energy storage of the respective windings during operation.
  • the action values of the overvoltage protection loops of the two field windings are also designed by the overvoltage requirements of the respective windings.
  • the secondary side voltage of the excitation transformer in the double excitation winding system can be reduced by nearly half, and the maximum voltage of each winding is also reduced by nearly half, especially considering the commutation spike overvoltage, winding
  • the insulation can withstand the voltage level even lower to less than half, which can greatly provide the insulation safety level of the system; at the same time, the two excitation winding loops reduce the capacity of the excitation transformer and the breaking voltage of the magnetic circuit breaker, and improve the power of the excitation load.
  • the factor reduces the harmonic current of the excitation power supply, reduces the loss of the excitation transformer, and reduces the thyristor commutation spike overvoltage, so that the existing magnetic circuit breaker can be applied to large generator sets, especially the half-speed nuclear power self-excitation
  • the excitation system of the unit improves the reliability and safety of the excitation control system and ensures the reliable operation of the generator set.

Abstract

一种基于双励磁绕组的励磁系统,包含主励磁绕组(L1)和副励磁绕组(L2),两励磁绕组磁场通过转子铁芯耦合。主励磁绕组(L1)用于提供发电机非强励工况下的旋转磁场,副励磁绕组(L2)用于发电机强励工况下提供实现强励的旋转磁场。

Description

基于双励磁绕组的励磁控制系统 技术领域
本发明属于发电机励磁控制领域,尤其涉及一种基于双励磁绕组的励磁控制 系统。
背景技术
随着我国电源建设突飞猛进,在建发电机机组的单机容量迅速提高, 同时核 能、 水能、 风能、 太阳能和生物质能等可再生能源也在飞速发展。 在大容量的水 电、 火电、 核电机组中, 由于具有较大的额定励磁电源和额定励磁电流, 对发电 机励磁系统中的励磁变压器、磁场断路器、功率柜等工作性能指标和可靠性要求 提出了越来越高的要求。
发电机内部或发电机一变压器组的变压器内部,以及发电机端至发电机或发 电机一变压器组断路器之间发生短路事故时, 继电保护将动作跳闸,但发电机或 发电机一变压器组断路器跳闸后短路点未切除,发电机转子磁场电流产生的感应 电势继续维持故障电流。 短路的持续, 可导致绝缘烧坏、 导体熔化或烧损铁芯, 在很短的持续时间内, 往往也可能造成发电机、变压器的严重损坏, 并有可能使 事故迅速扩大。避免或减少设备损坏及限制事故扩大的措施是对发电机进行快速 灭磁,在尽可能短的时间内使发电机的励磁电流降低到零。 目前广泛采用的是移 能型灭磁, 即通过磁场断路器分断弧压的作用(对交流灭磁方式尚有交流电压的 作用), 使转子电流由与磁场断路器构成的回路转移至与灭磁电阻构成的回路。 在电流完全转移后, 磁场断路器分断电流为零而息弧分断, 切断转子励磁电源, 发电机转子与灭磁电阻构成闭合回路。为实现转子电流向灭磁电阻回路完全转移 完成灭磁分断,磁场断路器的灭磁分断弧压,应不低于灭磁电阻的最高电压与灭 磁开始励磁功率整流器输出电压之和。
由于对励磁系统的高起始电压响应速度的要求及大容量条件下晶间管器件 的安全要求, 自并励方式已经成为主流励磁方式。对于百万千瓦核电机组自并励 励磁系统而言, 由于其额定励磁电流较常规的 1000MW 燃煤汽轮发电机组或 700MW水轮发电机组要大一倍左右, 故给发电机灭磁特别是磁场断路器分断能 力提出了更高的要求。而采用现有磁场断路器和传统直流灭磁方案其分断能力难 以满足大型发电机组安全快速灭磁的需要。 在励磁系统的设计过程中,通常需要考虑要保证机组有足够的强励能力,考 虑强励倍数的励磁系统,在器件选型设计的时候就要求更高的电压电流要求。尤 其对于大容量发电机组,励磁系统需要大容量的励磁变压器和功率变换装置,其 技术虽然不存在瓶颈, 但容量的增大带来了可靠性降低的问题。
针对大容量机组对励磁系统可靠性及安全性的更高要求,单纯依靠磁场断路 器、励磁变压器性能的提升显然很难满足要求, 迫切需要保证大容量下保证励磁 系统安全、 可靠、 有效实现其功能的方法。
发明内容
为了解决现有磁场断路器和传统直流灭磁方案其分断能力难以满足大型发 电机组安全快速灭磁的需要及大型发电机组中主要设备可靠性降低的问题,本发 明提供一种基于双励磁绕组的励磁控制系统。
一种基于双励磁绕组的励磁控制系统,包含主励磁绕组和副励磁绕组, 主励 磁绕组和副励磁绕组的磁场通过铁芯耦合,主励磁绕组磁场用于提供发电机在非 强励工况下的励磁磁场, 副励磁绕组用于在发电机在强励工况下投入, 副励磁绕 组励磁磁场与主励磁绕组励磁磁场叠加。
还包括电压调节器,电压调节器对主励磁绕组和副励磁绕组的功率变换部分 的输出功率分别进行控制。
所述副励磁绕组包括闭合开关, 闭合开关与副励磁绕组并联。
所述副励磁绕组单独设置励磁电源或者与所述主励磁绕组共用。
在所述副励磁绕组的励磁电源与副励磁绕组之间装设选通开关或刀闸。 本发明相对于只有一个励磁绕组的励磁控制系统,两个励磁绕组回路降低了 对励磁变压器的容量和磁场断路器分断电压的要求,提高了励磁系统负荷的功率 因数, 降低了励磁电源的谐波电流, 减小了励磁变压器的损耗, 降低了晶闸管换 相尖峰过电压, 使得现有的磁场断路器可应用于大型发电机组,特别是半速核电 自并励机组的励磁系统,提高励磁控制系统的可靠性和安全性, 同时也保证了发 电机组的可靠运行。
附图说明
图 1为本发明中的示意图;
图 2为本发明中实施例二的示意图。
具体实施方式 如图 1所示, 基于双励磁绕组的励磁控制系统包括主励磁绕组 L1和副励磁 绕组 L2, 主励磁绕组 L1与副励磁绕组 L2的磁场通过铁芯耦合叠加, 主励磁绕 组 L1提供非强励工况下的发电机励磁磁场, 副励磁绕组 L2在发电机组强励工 况下投入使用, 与主励磁绕组 L1磁场叠加, 共同提供强励工况下发电机励磁磁 场。
主励磁绕组 L1和副励磁绕组 L2有各自独立的励磁回路。 励磁电源 Efl经 励磁变压器 1、 功率变换部分 1 向主励磁绕组 L1提供励磁电流, 在直流侧装设 磁场断路器 1, 灭磁及过压保护回路 1与主励磁绕组 L1并联; 励磁电源 EG经 励磁变压器 2、 功率变换部分 2向副励磁绕组 L2提供励磁电流, 在直流侧装设 磁场断路器 2, 灭磁及过压保护回路 2与副励磁绕组 L2并联, 为保证副励磁绕 组 L2在不投入使用的情况下处于闭合状态, 将闭合开关与副励磁绕组 L2并联; 电压调节器 AVR对功率变换部分 1和功率变换部分 2根据发电机运行状态进行 统一控制。励磁变压器 1与励磁变压器 2可以在一次侧并联。励磁变压器 2的一 侧装设选通开关或刀闸。 副励磁绕组 L2没有投入使用时需接入闭合回路, 通过 闭合开关实现,投入使用的情况下断开闭合开关,这样既可以防止绕组感应过电 压, 也可以增加机组的阻尼。
如图 2所示, 为本发明的实施例二, 实施例二与实施例一技术相比, 副励磁 绕组 L2励磁电源不同, 本实施例中副励磁绕组 L2励磁电源 EG单独设置, 接 到其他厂用电回路或取自厂用电,采用厂用电可以避免机端短路时强励能力不足 的缺陷。
正常工作的情况下, 只有主励磁绕组 L1上有电流流过, 为发电机提供发电 所需的旋转磁场, 副励磁绕组 L2通过闭合开关形成闭合回路; 当发电机需要强 励时, 闭合选通开关, 同时断开副励磁绕组 L2的闭合回路,投入副励磁绕组 L2; 两绕组的磁场通过铁芯耦合共同提供发电机所需的旋转磁场。 主励磁绕组 L1和 副励磁绕组 L2有各自独立的灭磁及过压保护回路, 在各自需要灭磁及过压保护 的情况下投入。
主励磁绕组 L1工作在非强励工况, 其励磁变压器 1容量、 磁场断路器 1分 断电压等参数可按发电机额定工况下的参数进行设计选型;由于强励工况并不是 长期连续工况, 副励磁绕组 L2在需要机组强励的时候才投入使用, 其励磁变压 器 2容量、磁场断路器 2分断电压等参数可按发电机强励要求的短时工作制进行 设计选型。两励磁绕组的灭磁电阻容量根据各自绕组工作时的储能确定。两励磁 绕组的过压保护回路动作值也由各自绕组的过压要求进行设计。
相对于只有一个励磁绕组的励磁控制系统,双励磁绕组系统中的励磁变压器 二次侧电压可以降低近一半,每个绕组承受得最大电压也下降近一半,特别是考 虑换相尖峰过电压,绕组绝缘承受得过电压水平甚至降低到一半以下,可以极大 提供系统的绝缘安全水平;同时两个励磁绕组回路降低了对励磁变压器的容量和 磁场断路器分断电压的要求,提高了励磁负荷的功率因数, 降低了励磁电源的谐 波电流, 减小了励磁变压器的损耗, 降低了晶闸管换相尖峰过电压, 使得现有的 磁场断路器可应用于大型发电机组,特别是半速核电自并励机组的励磁系统,提 高励磁控制系统的可靠性和安全性, 同时也保证了发电机组的可靠运行。

Claims

O 2015/184697 权 利 要 求 书 PCT/CN2014/086196
1、 一种基于双励磁绕组的励磁控制系统, 其特征在于, 包含主励磁绕组和 副励磁绕组, 主励磁绕组和副励磁绕组的磁场通过铁芯耦合, 主励磁绕组磁场用 于提供发电机在非强励工况下的励磁磁场,副励磁绕组用于在发电机在强励工况 下投入, 副励磁绕组励磁磁场与主励磁绕组励磁磁场叠加。
2、 根据权利要球 1所述的基于双励磁绕组的励磁控制系统, 其特征在于, 还包括电压调节器,电压调节器对主励磁绕组和副励磁绕组的功率变换部分的输 出功率分别进行控制。
3、 根据权利要球 1所述的基于双励磁绕组的励磁控制系统, 其特征在于, 所述副励磁绕组包括闭合开关, 闭合开关与副励磁绕组并联。
4、 根据权利要球 1所述的基于双励磁绕组的励磁控制系统, 其特征在于, 所述副励磁绕组单独设置励磁电源或者与所述主励磁绕组共用。
5、 根据权利要球 4所述的基于双励磁绕组的励磁控制系统, 其特征在于, 在所述副励磁绕组的励磁电源与副励磁绕组之间装设选通开关或刀闸。
PCT/CN2014/086196 2014-06-06 2014-09-10 基于双励磁绕组的励磁控制系统 WO2015184697A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410250815.5A CN104038124B (zh) 2014-06-06 2014-06-06 基于双励磁绕组的励磁控制系统
CN201410250815.5 2014-06-06

Publications (1)

Publication Number Publication Date
WO2015184697A1 true WO2015184697A1 (zh) 2015-12-10

Family

ID=51468753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086196 WO2015184697A1 (zh) 2014-06-06 2014-09-10 基于双励磁绕组的励磁控制系统

Country Status (2)

Country Link
CN (1) CN104038124B (zh)
WO (1) WO2015184697A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104362919A (zh) * 2014-11-27 2015-02-18 南车资阳机车有限公司 一种同步主辅发电机用励磁装置及其控制方法
CN104821757B (zh) * 2015-04-10 2017-02-08 国电南瑞科技股份有限公司 基于实时状态内电势控制的同步电机励磁系统控制方法
CN105141206A (zh) * 2015-08-14 2015-12-09 柳州佳力电机股份有限公司 一种大中型高压发电机的自并励励磁系统
CN105099308B (zh) * 2015-09-22 2018-06-29 东方电机控制设备有限公司 一种发电机励磁装置
CN114094897A (zh) * 2020-07-31 2022-02-25 华为技术有限公司 一种无线电励磁系统、检测方法及电动汽车
CN114172420B (zh) * 2021-11-26 2023-06-23 苏州热工研究院有限公司 转子耦合双机并列电动发电机组成套与保护控制系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239254A (en) * 1992-03-26 1993-08-24 Shindaiwa Kogyo Company Ltd. Series-exciting device for synchronous generators
US5325035A (en) * 1993-02-12 1994-06-28 Yong Ho Chiu Control device for intermittent operation of an induction motor
JPH08275569A (ja) * 1995-03-31 1996-10-18 Hitachi Koki Co Ltd 電動工具
US5757154A (en) * 1993-07-09 1998-05-26 Ryobi Motor Products Corp. Electric motor braking circuit arrangement
CN201211689Y (zh) * 2005-07-11 2009-03-25 布莱克和戴克公司 电动工具电机的软启动
CN202586860U (zh) * 2012-05-24 2012-12-05 湖北同发机电有限公司 一种带副绕组的复励励磁装置
CN103490685A (zh) * 2012-06-11 2014-01-01 杨泰和 具辅助激磁绕组的具导电环及电刷式开关式直流电机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85102365A (zh) * 1985-04-01 1986-07-02 华中工学院 多滑环式同步发电机的励磁装置
CN2309013Y (zh) * 1997-09-03 1999-02-24 曾一峰 同步发电机无刷励磁装置
CN1941607A (zh) * 2006-09-05 2007-04-04 四川东风电机厂有限公司 Trt同步发电机无刷励磁系统
CN201274445Y (zh) * 2008-08-13 2009-07-15 泰豪科技股份有限公司 倍极式无刷双流发电机
DE102010060998B4 (de) * 2010-12-03 2022-08-11 Siegfried Heier Bürstenloser Synchrongenerator und Generatoranordnung mit einem bürstenlosen Synchrongenerator
CN102522868B (zh) * 2011-12-12 2014-09-03 南京航空航天大学 双励磁绕组复励双凸极无刷直流发电机
CN103580417A (zh) * 2012-07-30 2014-02-12 英泰集团有限公司 一种增程式电动汽车用增程发电机
CN103684160B (zh) * 2013-12-05 2016-02-17 南京航空航天大学 自升压双凸极无刷直流发电系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239254A (en) * 1992-03-26 1993-08-24 Shindaiwa Kogyo Company Ltd. Series-exciting device for synchronous generators
US5325035A (en) * 1993-02-12 1994-06-28 Yong Ho Chiu Control device for intermittent operation of an induction motor
US5757154A (en) * 1993-07-09 1998-05-26 Ryobi Motor Products Corp. Electric motor braking circuit arrangement
JPH08275569A (ja) * 1995-03-31 1996-10-18 Hitachi Koki Co Ltd 電動工具
CN201211689Y (zh) * 2005-07-11 2009-03-25 布莱克和戴克公司 电动工具电机的软启动
CN202586860U (zh) * 2012-05-24 2012-12-05 湖北同发机电有限公司 一种带副绕组的复励励磁装置
CN103490685A (zh) * 2012-06-11 2014-01-01 杨泰和 具辅助激磁绕组的具导电环及电刷式开关式直流电机

Also Published As

Publication number Publication date
CN104038124A (zh) 2014-09-10
CN104038124B (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
WO2015184697A1 (zh) 基于双励磁绕组的励磁控制系统
US10326395B2 (en) System and method for magnetizing a transformer in an electrical system prior to energizing the electrical system
US9018783B2 (en) Doubly-fed induction generator wind turbine system having solid-state stator switch
CN104868507B (zh) 一种反应堆控制棒驱动机构供电系统
CN102939695A (zh) 电机的保护电路及方法
CN109756164A (zh) 发电机中的反磁场绕组
CN106300309A (zh) 一种具有快速恢复能力的柔性直流电网故障限流器
CN103840729B (zh) 无触点有载自动调压配电变压器的启动与过渡支路
Jiang et al. A review of series voltage source converter with fault current limiting function
CN102751710B (zh) 一种磁屏蔽空心变压器耦合桥式固态限流器
WO2012092698A1 (zh) 一种三相电流限制装置及方法
US10566786B2 (en) Fault current enhancement for energy resources with power electronic interface
Ning et al. Analysis and reduction of magnetizing inrush current for switch-on unloaded transformer
CN202663347U (zh) 保安自并励系统电路控制器
JP5409197B2 (ja) 二次励磁型発電システム
CN201570850U (zh) 具有辅助逆变脉冲发生器的励磁电路
CN109617476B (zh) 多功能开关磁阻发电机高压直流系统
Bose Ore-grinding cycloconverter drive operation and fault: My experience with an australian grid
CN109412480B (zh) 一种无刷励磁发电机灭磁特性的装置及方法
CN102664393A (zh) 短路电流限流装置
CN203800859U (zh) 一种超导电机系统
CN105356501B (zh) 一种新型双馈风电机组故障穿越保护电路
CN201976059U (zh) 保安自并励系统
CN201004550Y (zh) 发电机灭磁过压保护电路
CN204424886U (zh) 一种三相励磁涌流抑制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14894154

Country of ref document: EP

Kind code of ref document: A1