WO2015183034A1 - 금속 나노입자 및 이의 제조방법 - Google Patents

금속 나노입자 및 이의 제조방법 Download PDF

Info

Publication number
WO2015183034A1
WO2015183034A1 PCT/KR2015/005410 KR2015005410W WO2015183034A1 WO 2015183034 A1 WO2015183034 A1 WO 2015183034A1 KR 2015005410 W KR2015005410 W KR 2015005410W WO 2015183034 A1 WO2015183034 A1 WO 2015183034A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
metal
metal nanoparticles
peak
size
Prior art date
Application number
PCT/KR2015/005410
Other languages
English (en)
French (fr)
Inventor
최영민
이은정
정선호
서영희
류병환
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to US15/314,759 priority Critical patent/US10363602B2/en
Priority to CN201580029015.3A priority patent/CN106413951B/zh
Publication of WO2015183034A1 publication Critical patent/WO2015183034A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/30Low melting point metals, i.e. Zn, Pb, Sn, Cd, In, Ga
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to metal nanoparticles and a method for manufacturing the same, and in detail, to metal nanoparticles having a very excellent sintering ability and capable of forming metal wiring with excellent conductivity, and a method for manufacturing the same.
  • Inks containing metal and nanoparticles can be processed in a single printing process, such as screen printing, inkjet printing, gray bar offset printing, and reverse offset printing, without the use of complex photolithography processes.
  • a single printing process such as screen printing, inkjet printing, gray bar offset printing, and reverse offset printing
  • the process simplification can not only drastically reduce the manufacturing cost, but also enables the manufacture of highly integrated and highly efficient printed circuits by miniaturizing the wiring width.
  • the present applicant has provided a method for the synthesis of metal nanoparticles in which the formation of the surface oxide film is controlled by taking note that the conductivity of the metal wiring is reduced by the surface oxide film existing on the metal nanoparticles in the metal nanoparticle-based ink.
  • the present applicant has conducted extensive research on the method of synthesizing the proposed metal nanoparticles, and as a result, if the metal or nanoparticles have a specific distribution, and even if a certain amount of surface oxidation of the metal or nanoparticles occurs, the outstanding sintering ability
  • the present invention has been completed by finding that it can be used and especially suitable for photo sintering or laser sintering.
  • the object of the present invention is to provide metal nanoparticles having excellent sintering ability even when surface oxidation occurs.
  • the other object of the present invention is that even if the irradiation of very low light energy,
  • Another object of the present invention is to provide a manufacturing method capable of continuously producing large quantities of metal or nanoparticles which are prevented from forming oxide films in a short time.
  • Another object of the present invention is to provide a manufacturing method capable of continuously producing large quantities of metal or nanoparticles having excellent sintering ability, in particular, fluorine or laser sintering ability. will be.
  • the metal nanoparticles according to the present invention are metal nanoparticles having a size distribution of at least bimodal or larger, satisfying the following Equation 1, and the metal cores are capped with a capping layer containing an organic acid.
  • the area is the first peak with the smallest center size
  • a t is the total area of all peaks in the size distribution.
  • Metal nanoparticles according to an embodiment of the present invention may further satisfy the following Equation 2 and Equation 3.
  • Equation 2 D1 is the core size of the first peak.
  • D 2 is the center size of the system of 2 peaks having the largest core size based on the center size of the peak in the same size distribution.
  • the particles belonging to the second peak having the largest center size, at least, based on the peak concentration size are faceted shape.
  • the low U particles may have a specific phosphorylation degree of 0.2 or less on the X-ray photoelectron spectroscopy spectrum of the metal nanoparticles divided by the Cu 2p peak area of copper oxide.
  • the organic acid is oleic acid, lysine oleic acid, stearic acid, hydroxy stearic acid, linoleic acid, aminodecanoic acid, hydroxydecanoic acid, lauric acid.
  • Dekenoic acid Undekenoic acid, Pallet oleic acid, Nucleosildecanoic acid, Hydroxypalmitic acid, Hydroxymyritic acid ,
  • One or more may be selected from hydroxydecanoic acid, palmitoleic acid and misrisoleic acid.
  • the thickness of the capping layer may be 1 to 2 nm.
  • Metal nanoparticles according to an embodiment of the present invention may be selected from one or more of copper, nickel, tin, aluminum and their alloys. Metal nanoparticles according to an embodiment of the present invention may be for sintering.
  • the continuous manufacturing method of nanoparticles is characterized by containing a first solution and a reducing agent containing an organic acid, an organic amine and a metal precursor in an annular space, which is a space between a hollow cylindrical jacket and a cylinder which is concentric with the jacket and rotates apart. 12, the step of continuously injecting a solution; includes.
  • the first solution and the second solution are continuously injected into the reaction space through an inlet formed at one or one side of the jacket, and the other end or the other side of the jacket.
  • the outlet formed in the reaction chamber Through the outlet formed in the reaction chamber, the semi-product containing the metal nanoparticles capped with the capping layer containing the organic acid can be continuously discharged.
  • the cylinder can satisfy relation 4 below.
  • Equation 4 D is the separation distance between the jacket and the cylinder, and r is the
  • the speed can be 400 to 1000 rpm.
  • the temperature of the reaction space may be 100 to 350 ° C.
  • the metal nanoparticles according to the present invention have the advantage of manufacturing a conductive metal thin film having extremely good electrical conductivity compared to bulk and excellent bonding force with a substrate, as the light sintering is performed by irradiation of extremely low light energy. There is this.
  • the manufacturing method according to the present invention has the advantage of efficiently mass-producing metal nanoparticles that are prevented from forming oxide films, has a high yield, and precisely and reproducibly controls the size distribution of metal nanoparticles. There are advantages to doing this. Brief description of the drawings
  • FIG. 1 is a view showing a reaction device used in the manufacturing method according to an embodiment of the present invention
  • metal nanoparticles As the particle size becomes finer, the ratio of the number of atoms located on the surface to the number of atoms that make up the particles increases rapidly, and the ratio of the surface oxide film occupied by the particles increases remarkably.
  • metal nanoparticles having substantially 300 nm or more in size have been used.
  • the present applicant has provided, through international patent WO2013-147535, a method for producing fine metal nanoparticles which are capped with organic acids and which prevent surface oxide film formation.
  • a method for producing metal nanoparticles in which surface oxide film formation is inhibited and capped with organic acids by heating and stirring the reaction solution containing precursors, organic acids, organic amines and reducing agents.
  • the manufacturing method in the course of further study on the continuous production method that can be mass-produced and commercialized, when the metal nanoparticles have a specific distribution, the sintering ability of the metal nanoparticles is remarkably improved.
  • the present invention has been completed by discovering that even when a certain amount of surface oxidation of metal nanoparticles occurs, it can have excellent light or laser sintering ability, especially a very good sine ability.
  • metal nanoparticles refer to metal nanoparticles capped by a capping layer containing an organic acid.
  • the particulate metal surrounded by the capping layer containing the organic acid is referred to as a metal core.
  • metal nanoparticles may have relatively fine particles and Relatively coarse particles represent a mixed population of particles.
  • metal nanoparticles represent a plurality of groups of nanoparticles that can exhibit statistically stable size distributions. It can mean a particle group consisting of more than one metal or nanoparticles.
  • the metal nanoparticles according to the present invention are particles in which the metal core is capped with a capping layer containing an organic acid, and has a size distribution of at least bimodal and satisfies Equation 1 below.
  • Equation 1 the area of the first peak having the smallest center size, based on the center size of the peak, in the size distribution of the silver metal nanoparticles (size distribution with the number and size of two axes), At Is the total area of all peaks in the size distribution, i.e., equation 1 is the ratio of the number of particles that make up the first peak divided by the number of particles.
  • the size distribution of the metal nanoparticles is
  • the size distribution of the metal nanoparticles may be a size distribution shown by the diameter of the particles and the number of particles having that diameter.
  • At least a bimodal size distribution can mean that at least two peaks are present on the size distribution of the metal or nanoparticles, with the size (particle diameter) corresponding to the center of the peak being the largest and the smallest Particles belonging to one peak are referred to as first particles, and particles belonging to the second peak having the largest center size are referred to as second particles.
  • metal nanoparticles according to the present invention are characterized by a significantly higher fraction of relatively small first particles and relatively small first particles. .
  • densification also involves the transformation of solid and gas phase into solid and solid phases due to mass transfer. As a result, densification is also difficult when anomalous particle growth occurs with high energy barriers to mass movement. Known.
  • Equation 1 when the fraction of the relatively fine first particles corresponding to the first peak to the total particle (A ! / A t , which is the area ratio in the particle size distribution) is less than 0.4, the second There is a risk that the particles will not be surrounded by the first particles.
  • the second particles adjacent to the growth and densification (sintering) of the second particles may not only affect the sintering ability, but also the crystallinity depending on the film position.
  • heterogeneous membranes i.e., no homogeneous dispersion of systemic particles in the matrix of the first particles, and other second particles affect the growth or densification of the second particles. There may be little growth or densification of the second particles.
  • Equation 1 if the fraction of relatively small first particles corresponding to one peak of the total particle size (excess exceeding AJA t ⁇ l 0.8, the area ratio in the particle size distribution), the first particles alone Since little growth or densification occurs, there is a large amount of unsintered area that is hardly sintered.
  • the relation 1 described above is related to the coarse grain growth, while the coarse particles are relatively uniformly surrounded by the microparticles so that growth and densification occur actively in the regions where the coarse particles are located. This is a condition where only the fine particles are present in the surrounding area (for example, the area within the diffusion distance), so that an unsintered area that is not partially sintered may not occur.
  • metal nanoparticles can have a size distribution of bimodal or trimodal, as described above, coarse particles and coarse particles that can have a large growth driving force (material movement driving force).
  • Metal nanoparticles should have a bimodal size distribution so that they have reproducible and homogeneous sintering ability, as they can have improved sintering ability by microparticles that provide a uniform growth driving force to the particles.
  • the metal nanoparticles may further satisfy the following equation (2) and (3).
  • Equation 2 this is the center size of the U peak, that is, the average size of the first particles.
  • D 2 is the core size of the second peak with the largest center size, based on the peak size of the peaks, in the same size distribution. At 3, this is the average size of the first particle, and D 2 is the average size of the second particle.
  • relation 1 relation 2 and relation 3 are instantaneously irradiated with light energy.
  • the first particle may have an oxidation degree of 0.2 or less, specifically 0.01 to 0.2.
  • the particles (second particle) belonging to the second peak having the largest center size, at least, based on the center size of the peak, It can have a faceted shape.
  • the second particle may be a single crystal having an angular shape.
  • the flat surface of the shape may be those corresponding to the surface energy cusps on the ⁇ -plot of the metal material of the metal core.As well known, the ⁇ -plot With the vertical direction of the static face as its unit vector, the surface energy of the face is taken as a scalar value.
  • the surface of the angular shape silver particles is the ⁇ -plot surface energy of the metal core material.
  • each shape consists of only the faces corresponding to the surface energy curriculum, which means that the tangents on the surface of the metal particles are continuously changed in detail. It can mean a shape with sharp edges where the flat surfaces directly touch each other.
  • the surface corresponding to the surface energy curriculum may be one or more selected from ⁇ 111 ⁇ facets, ⁇ 11 facets, and ⁇ 10 facets based on the crystal structure of the metal core material.
  • Each side constituting the constituent includes a ⁇ 111 ⁇ noodle, ⁇ 110 ⁇ n, and / or ⁇ 10 noodle with ledge or kink formed.
  • the morphology may be angular. More specific example, when the material of the metal core has FCC crystal structure such as copper, nickel, aluminum, etc., the surface shape of the second particle is angular angular with ⁇ 111 ⁇ polyhedron. Alternatively, the ⁇ 111 ⁇ facets and the ⁇ 110 ⁇ facets may be angled polygons forming a surface.
  • the relatively fine first particles may be equilateral or include a flat surface.
  • the flat surfaces may have rounded corner-like angular shapes.
  • a similar-angular shape means a shape in which a flat surface exists but a curved area where the tangents of the particle surface continuously change.
  • the metal nanoparticle may be a metal core capped with a capping layer containing an organic acid.
  • the organic acid may be first chemisorbed to the metal core to form a dense organic acid film. Therefore, the capping layer can be made of organic acid, i.e., the capping layer can be a film of organic acid chemically adsorbed on the metal core.However, in the manufacturing process using organic acid and organic amine together, the capping layer can contain a trace amount of amine.
  • the metal core As the capping layer is capped, the surface oxide film formation of the metal core may be prevented, and the surface oxide film may not exist in the case of the second particles, which are substantially coarse particles.
  • the organic acid has at least one of linear, branched, and cyclic carbon atoms of 6 to 30 carbon atoms, and may be one or two or more selected from saturated or unsaturated organic acids. More specifically, the organic acid may be selected from oleic acid, lysine oleic acid, Stearic acid, hydroxystearic acid, linoleic acid, aminodecanoic acid, hydroxydecanoic acid, lauric acid, dekenoic acid, undecanoic acid, palistoleic acid, nucleosildecanoic acid, hydroxypalmic acid,
  • One or more may be selected from the group consisting of Miss Lioleic Acid, but not limited to these.
  • the thickness of the capping layer capping the metal core may be 1 to 2 nm. If the capping layer is too thin, the anti-oxidation effect may be reduced, and if the capping layer is too thick, the metal nanoparticles may be removed. Excessive energy and time may be consumed in the removal of the organic capping layer when manufacturing the metal thin film.
  • the metal (metal core) of the metal nanoparticles in the form of a capsule capped with a capping layer containing an organic acid and suppressing the formation of an oxide film may be a metal that is commonly used for manufacturing metal thin films. It may be one or more selected from the group consisting of nickel, aluminum, tin and their alloys.
  • the metal nanoparticles according to an embodiment of the present invention may be for sintering or laser sintering.
  • the metal nanoparticles according to an embodiment of the present invention are photosintered to form a metal thin film, By irradiating low energy light in a very short time, it is possible to produce a metal thin film having excellent physical and electrical performance.
  • laser sintering the metal or the nanoparticles according to an embodiment of the present invention there is an advantage that a fine metal pattern with excellent conductivity can be manufactured in a short time.
  • the metal nanoparticles according to the embodiment of the present invention are extremely low.
  • the metal nanoparticles according to the embodiment of the present invention is 2.6 (J / cm 2 ).
  • the coating film may be a metal sintering metal nanoparticle having a strength of less than 200 to 800nm, preferably 370nm to 800nm of light in the wavelength range of visible light continuously, that is, a metal nanoparticle according to an embodiment of the present invention
  • the coating film has very low intensity and continuously emits light in the visible wavelength band for 1 to 2 msec.
  • a thin metal film (metal thin film) with excellent conductivity can be produced while preventing thermal damage to the substrate.
  • the metal nanoparticles when using the metal nanoparticles according to an embodiment of the present invention, By irradiating visible light in the visible wavelength band for a very short time (l to 2 msec), a metal thin film having a specific resistance comparable to that of a metal thin film obtained through sintering using heat treatment can be manufactured.
  • the organic binder which is usually added to ensure the binding force between the engine and the coating film during manufacture, is applied to the metal foil even after the light is sintered, when the coating film (ink coated ink containing metal nanoparticles) is manufactured. It can remain in the film and can significantly improve the adhesion between the metal thin film and the substrate.
  • the present invention includes a conductive ink composition in which the metal core contains metal nanoparticles capped with a capping layer containing an organic acid.
  • the ink composition according to one embodiment of the present invention may contain the above-described metal nanoparticles, non-aqueous organic binder, and non-aqueous solvent.
  • Non-aqueous solvents are not particularly limited, but preferably alkanes, amines, roluenes, xylenes, chloroform, dichloromethane, tetradecane, octadecene, chlorobenzene, dichlorobenzene, chlorobenzoic acid, and di-carbons having 6 to 30 carbon atoms.
  • One or more may be selected from the group consisting of propylene glycol propyl ether.
  • the non-aqueous organic binder is not particularly limited, but may be used if it is a non-aqueous organic binder material that is generally used to improve the physical binding strength of the coating film when manufacturing conductive ink containing metal nanoparticles.
  • the non-aqueous organic binder material may be polyvinylidene fluoride (PVDF),
  • PMMA Polymethylmethacrylate
  • One or more of the acrylate-based, epoxy resin-based and combinations thereof may be selected.
  • the non-aqueous organic binder may be a non-aqueous polymer having an amine value of 5 to 150 mgKOH / g.
  • a non-aqueous polymer may serve as a binder and a dispersant at the same time.
  • Non-aqueous organic binders have a bleached-carboxylic acid-co-polymer-or-a-raft-heavy-polymer-yl-can-can-and-a-mgKOH / g It may be a copolymer of an unsaturated carboxylic acid or a graft polymer thereof.
  • Such non-aqueous organic binders play the role of binders and dispersants at the same time, but do not interfere with the binding between metals and nanoparticles at the time of photosynthesis and are more dense and more conductive. Excellent metal thin films can be produced.
  • 5-150 mgKOH / g Copolymers of unsaturated carboxylic acids or graft copolymers thereof having an amine number include C1-C10 alkyl (meth) acrylates and copolymers of unsaturated carboxylic acids,
  • Co-polymers of pliserketones and unsaturated carboxylic acids, copolymers of polyacrylamides and unsaturated carboxylic acids, copolymers of polyethylene oxide and unsaturated carboxylic acids, copolymers of polyethylene glycol and unsaturated carboxylic acids, or mixtures thereof May contain
  • the molecular weight (weight average molecular weight) is
  • It can be 1000 to 50000 g / m.
  • Non-aqueous organic binders commercially available materials containing the above-mentioned non-aqueous organic binders
  • the product can be used, for example, BYK130, BYK140, BYK160, BYK161, BYK162, BYK163, BYK164, BYK165, BYK167, BYK169, BYK170, BYK171, BYK174 EFKA 4610, EFKA 4644, EFKA 4654, EFKA 4620 , EFKA 4666 or EFKA 4642, but are not limited to these.
  • the conductive ink composition according to one embodiment of the present invention may contain 0.05 to 5 parts by weight of a non-aqueous organic binder and 20 to 800 parts by weight of a non-aqueous solvent based on 100 parts by weight of the metal nanoparticles.
  • the non-aqueous organic binder has a unique physical property. It can remain in the conductive metal thin film undamaged. Therefore, if the content of the nonaqueous organic binder in the conductive ink composition is too high, the metal nanoparticles are bound by the metal binder which binds between the metal nanoparticles, the metal nanoparticles and the substrate. Densification of the liver may be impaired.
  • the non-aqueous organic binder of 0.05 to 5 parts by weight of the particles has a physical strength that stably maintains its shape when the coated ink composition is dried, without compromising densification between metals and particles.
  • the adhesion between the substrate and the metal thin film is greatly reduced by the polymer binder remaining in the metal thin film after phototreatment, while the coating film having excellent binding power can be formed. It is a range that can be improved.
  • the ink composition can be manufactured with a metal thin film having a specific resistance of several ⁇ ⁇ by irradiation with light having an intensity of 2.6 (J / cm 2 ) or less.
  • the light sintering of the metal nanoparticles occurs at a light intensity of 1.2 J / cm 2 or more, it is possible to manufacture a metal thin film having a low specific resistance.
  • the desired thickness of the metal film is in the range of micro to tens of micrometers, it is preferable to irradiate light having a light intensity of 2.3 J / em 2 or more in terms of reproducibly producing a metal film having homogeneous electrical properties.
  • the ink composition according to one embodiment of the present invention has an intensity of 2.6 (J / cm 2 ) or less, and has a wavelength in the visible light wavelength range of 200 to 800 nm, preferably 370 nm to 800 nm.
  • the ink composition For sintering continuously irradiated for an extremely short time of 2 msec It may be an ink composition.
  • the ink composition according to one embodiment of the present invention is prepared from the metal nanoparticles described above.
  • the metal thin film By containing more than 60% by weight of the polymeric binder contained in the dried coating film before light irradiation can remain in the metal thin film even after light irradiation, whereby a metal thin film having an improved binding strength with the substrate can be produced.
  • the metal thin film may not be peeled off by the tape while maintaining a strong bond between the substrate and the metal thin film.
  • the conductive ink composition may contain 20 to 800 parts by weight of a non-aqueous solvent, and may have an appropriate fluidity for coating or printing.
  • the present invention includes a method for the continuous production of metal nanoparticles in which the metal core is capped with a capping layer containing an organic acid.
  • the present applicant has provided a method for producing metal nanoparticles capped with organic acids via international patent WO2013-147535.
  • the provided technology is a batch production method, There are limitations, and furthermore, it is difficult to control the quality of metal nanoparticles manufactured according to changes in micro process conditions for each batch.
  • the laminar flow shear continuous reaction technique enables continuous production of metal nanoparticles capped with organic acids in extremely high yields, and enables high-volume production of high quality metal nanoparticles in a short time. Found.
  • a method of continuously manufacturing metal nanoparticles includes an organic acid, an organic amine, and a metal precursor in a hollow cylindrical jacket and a reaction space, which is a space between the rotating cylinder having a concentric structure with the jacket. And continuously injecting 12 solutions of bran containing 1 solution and a reducing agent.
  • the laminar flow shear reaction apparatus is a cylinder, an interior of a cylinder.
  • the material is injected into the reaction space, which is a space between the jacket and the cylinder, which is formed in the center of the cylinder and is connected to the motor and the stirring rod, the stirring rod, which rotates the cylinder, is formed on the outer periphery of the cylinder. It may include an inlet and an outlet for discharging the finished product.
  • the cylinder may have a rotating axis that matches the longitudinal axis of the jacket.
  • the inlet may be located at one or one side of the jacket.
  • the outlet may be located at the other end of the jacket or at the other end of the jacket.
  • the laminar flow shear reaction device may further include a heating section located outside the jacket to heat the reaction space. Of course, it can be located in the surrounding form.
  • each of the vortices of a rotating ring pair array can form independent semi-magnus within the reaction space. .
  • the present applicant is responsible for the stable, reproducible, and extremely excellent yield of metal nanoparticles by introducing organic acids, organic amines, metal precursors and reducing agents into microreaction fields defined by the vortices and vortices of such ring pair arrays. It was found that metal nanoparticles in which the metal core was capped with a capping layer containing an organic acid were produced.
  • the metal nuclei are generated from the precursor metal and the metal nuclei grow into metal nanoparticles.
  • the organic acid introduced with the metal in the precursor state can cap the metal nanoparticles very stably.
  • metal nanoparticles capped with a capping layer containing organic acids can be produced with a very high yield of more than 95%.
  • the inlet can be formed at one end or one side of the jacket, and the first inlet through which the first solution is injected and the second inlet through which the second solution is injected can be formed.
  • the first and second solutions can be injected through a single inlet.
  • the first solution and the second solution are continuously injected into the reaction space through an inlet formed at one end or one end of the jacket, and the metal nanoparticles capped with the capping layer through the outlet formed at the other end or the other end of the jacket.
  • the jacket and the cylinder can satisfy the following relation.
  • Equation 4 D is the separation distance between the jacket and the cylinder, and ⁇ is the radius of the cylinder.
  • the spacing between the jacket and the cylinder determines the size of the vortex cell, the vortex of the ring pair array that is formed, which can affect the size and distribution of the synthesized particles.
  • the D / ri value is less than 0.1. In other words, the probability that the synthesized particles fill the gap decreases the fairness, and when the D / ri value is greater than 0.4, the size of the vortex cell formed increases, making it difficult to expect a uniform mixing effect.
  • the width of the reaction space is much smaller than it is preferable. If the width of the reaction space is extremely small (1 mm to 2.5 mm), it is advantageous for the production of metal nanoparticles of bimodal distribution satisfying relation (1).
  • the residence time in which the reaction fluid containing the injected system 1 and the second solution stays in the reaction space can be controlled by the rotational speed of the cylinder and the input amount of the reaction fluid.
  • the rotational speed of the cylinder is preferably 400 rpm or more in terms of stable Taylor-Quet vortex formation.
  • homogeneous nanoparticles must be present in each swirl cell to produce homogeneous nanoparticles. Should be less than 1000 ipm.
  • the rotation speed of the cylinder is preferably 600 to 800 rpm. This rotation speed is consistent with the reaction products present in the vortex cell.
  • the growth driving force the driving force provided by reaction water and other fine particles
  • the rotational speed of the cylinder can determine the magnitude of the overall nucleation and growth driving force of each vortex cell (micro vane), and as described above, the rotational speed of 600 to 800rpm By the abnormal growth of grown particles, at least metal nanoparticles satisfying relation 1 can be manufactured.
  • the reaction is not particularly limited but can be repeated in the range of 100 to 350 ° C, preferably 120 to 200 o C, more preferably 130 to 150 o C. Responding at has excellent resistivity
  • More than 95% high purity metal nanoparticles can be produced in yield.
  • the reaction rate should be 130 to 150 o C so that metal nanoparticles satisfying the above-mentioned Equation 1 and Equations 2 and 3 can be produced.
  • Overall nucleation and growth drive in vortex cells This can affect the rate at which it is consumed and the degree of nucleation. Due to the low temperature of 130 to 150 ° C, It can increase the particle size difference between relatively large particles, and increase the proportion of relatively small particles and decrease the average size of relatively small particles.
  • the reaction temperature and the rotational speed be controlled in a mutually correlated manner, rather than being controlled independently of each other.
  • the rotational speed and the reaction temperature should be proportional to each other. For example, when the rotational speed increases from 600 rpm to 800 rpm, the reaction temperature should increase from 130 ° C. to 150 o C.
  • the residence time of the reaction fluid containing the low U solution and the second solution in the reaction space is preferably from 1 to 4 minutes.
  • the residence time is based on the above-mentioned rotation speed and the above-mentioned jacket length, and the injection of the reaction fluid introduced through the inlet.
  • the speed can be adjusted, that is, the injection speed of the first and second solutions can be such that the residence time of the reaction fluid is between 1 and 4 minutes.
  • a linear protrusion may be formed on the inner circumferential surface of the jacket along the longitudinal axis in the rotational direction of the cylinder.
  • the first solution may include a metal precursor, an organic acid, and an organic amine
  • the second solution may include a reducing agent
  • the metal of the metal precursor may be selected from the group consisting of copper, nickel, tin, aluminum and their alloys. Specifically, the metal precursor may be selected from the group consisting of copper, nickel, aluminum and their alloys. Consisting of nitrates, sulfates, acetates, phosphates, silicates and hydrochlorides of selected metals
  • Organic acids have at least one form of linear, branched, or cyclic, having 6 to 30 carbon atoms. And one or more selected from saturated or unsaturated acids. More specifically, oleic acid, lysine oleic acid, stearic acid, hydroxystearic acid, linoleic acid, aminodecanoic acid, hydroxydecanoic acid, lauric acid, Decanoic Acid,
  • Undekenoic acid palideoleic acid, nucleated decanoic acid, hydroxy palmitic acid,
  • the organic amine is at least one of linear, branched and cyclic having 6 to 30 carbon atoms.
  • one or two or more can be selected from saturated and saturated amines. More specifically, it can be selected from, but not limited to, nucleosilamine, heptylamine, octylamine, dodecylamine, 2-ethylnucleosilamine, 1,3-dimethyl-n-butylamine, and 1-aminotoridecane.
  • the reducing agent is preferably a hydrazine reducing agent, and a hydrazine reducing agent
  • It may be one or more selected from hydrazine, hydrazine anhydride, hydrazine hydrochloride, hydrazine sulfate, hydrazine hydrate and phenyl hydrazine.
  • a borohydride system including tetramethylammonium borohydride, tetraethylammonium borohydride and sodium borohydride; sodium phosphate; And ascorbic acid; one or more may be selected and used.
  • the hydrazine reducing agent is preferable because of its strong reducing power.
  • the initial ratio of the first solution will be described above.
  • the composition ratio is not limited, but considering the capping efficiency, the acid may be 0.2-4 moles, preferably 1-4 moles per mole of the metal precursor.
  • the organic amine may be 0.2 or more, preferably 0.2 to 50, and more preferably 5 to 20 moles. In the case of organic amines, the upper limit is not necessarily limited as it acts as a non-aqueous solvent.
  • the first solution and the second solution may be injected so that the molar ratio of the reducing agent / metal precursor to the content of the metal precursor in the first solution is 1 to 100. If the molar ratio (reducing agent / metal precursor) is less than 1, the metal of the metal precursor is less than 1. There is a problem that the ion cannot be fully reduced, and if it exceeds 100, it is not preferable in terms of efficiency because it is excessive and does not affect the reduction rate.
  • the metal nanoparticles discharged from the outlet can be obtained as metal nanoparticles by separating and drying using a separation means such as centrifugal separation.
  • the conductive ink composition may be prepared by using the prepared metal nanoparticles, the non-aqueous solvent and the binder, and then, the substrate may be applied to a substrate and heated to manufacture a metal thin film.
  • the heating is preferably sintered or laser irradiated. .
  • the relative injection speed of the first solution and 12 solutions (volume / hour) The injection rate of the first solution and the second solution was adjusted through the inlet of the reaction chamber so that the residence time was 1 minute, 2 minutes, and 4 minutes at a ratio of 1.6: 1. Is maintained at 150 ° C, and the first and second solutions prepared using the syringe pump while rotating the cylinder at 800 rpm are laminar flow shear flow.
  • Copper nanoparticles were synthesized by continuous injection into a continuous reactor. Metal nanoparticles obtained through the outlet of the reactor were washed and recovered by centrifugation.
  • a capping layer having a thickness of about lnm was formed.
  • an alkyl chain (CC) was used. It was confirmed that the capping layer was formed by oleic acid having a) and a carboxylate (-COO-) moiety.
  • the dried coating film was irradiated continuously for 1.5 msec at an intensity of 2.5 J / cm 2 using a linear B-type for Xenon PLA-2010 sintering system having a wavelength band of 370-800 nm. Photo sintering was performed. It was found that the specific resistance of the copper thin film manufactured by the photo sintering was 6.8 ⁇ ?
  • Specific resistance-Specific resistance before bending test / Specific resistance before bending test * 100 (%) was confirmed to be less than 60%.
  • adhesion test between the substrate and the metal thin film was carried out using a standard tape according to the ASTM D3359-97 method. As a result, it was confirmed that the metal thin film was not peeled off by the tape while still maintaining the strongly bonded state of the substrate and the metal thin film.
  • Example 1 copper nanoparticles were prepared in the same manner as in Example 1, except that the reaction temperature was 130 ° C., the cylinder rotation speed was 600 rpm, and the residence time was fixed at 2 minutes.
  • the conductive ink composition was prepared in the same manner as in Example 1, and then applied and dried to a dried coating film, and photosintered under the same conditions as the sample of Example 1. 9.0 ⁇ by light sintering That metal thin films with specific resistance of ⁇ are manufactured The sample of Example 1 was used to obtain bending test results and adhesion test results similar to those of the metal thin film manufactured.
  • Example 1 copper nanoparticles were prepared in the same manner as in Example 1, except that the reaction temperature was set at 155 ° C., the cylinder rotation speed was set at 600 rpm, and the residence time was fixed at 2 minutes.
  • Example 2 Thereafter, a conductive ink composition was prepared in the same manner as shown in Example 1, and then applied and dried to a dried coating film, and then subjected to photosintering under the same conditions as the sample of Example 1. It was confirmed that a metal thin film having a specific resistance of ⁇ ⁇ was produced.
  • Example 1 copper nanoparticles were prepared in the same manner as in Example 1, except that the reaction temperature was 125 ° C., the cylinder rotation speed was 800 rpm, and the residence time was fixed at 2 minutes.
  • the conductive ink composition was prepared in the same manner as shown in Example 1, and then applied and dried to a dried coating film, and photosintered under the same conditions as the sample of Example 1. 50.0 ⁇ by light sintering It was confirmed that a metal thin film having a specific resistance of ⁇ was produced.

Abstract

본 발명에 따른 금속 나노입자는 적어도 바이모달 (bimodal) 이상의 크기 분포를 가지며,금속 나노입자의 크기 분포에서,피크의 중심 크기를 기준으로,가장 작은 중심크기를 갖는 제 1피크의 면적을 크기 분포를 이루는 모든 피크의 면적을 합한 총 면적으로 나눈 비가 0.4내지 0.8을 만족하며,유기산을 포함하는 캡핑층으로 캡핑된 금속 나노입자이다.

Description

명세서
발명의명칭:금속나노입자및이의제조방법 기술분야
[1] 본발명은금속나노입자및이의제조방법에관한것으로,상세하게,극히 우수한소결능을가져,전도도가우수한금속배선의형성이가능한금속 나노입자및이의제조방법에관한것이다.
배경기술
[2] 금속나노입자를포함하는잉크및페이스트를기반으로다양한프린팅공정을 활용하여전자부품소자및에너지웅용부품을제작하는연구는현재의 기술개발의메가트렌드중하나이다.
[3] 금속 .나노입자를포함하는잉크는포토리소그라피의복잡한공정을사용하지 않고도,미세한패턴의금속배선을스크린프린팅,잉크젯프린팅,그라이바 오프셋프린팅및리버스오프셋프린팅등의단일프린팅공정을통해다양한 기재에인쇄함으로써공정을단순화할수있는장점을가진다.또한이에따른 공정의단순화로제조원가를획기적으로줄일수있을뿐만아니라,배선폭의 미세화로고집적및고효율의인쇄회로의제조를가능하게한다.
[4] 본출원인은금속나노입자기반잉크에서,금속나노입자에존재하는표면 산화막에의해금속배선의전도도특성이저하됨을주목하여표면산화막의 형성이제어된금속나노입자의합성방법을제공한바있다 (국제특허
WO2013-147535).
[5] 본출원인은제안한금속나노입자의합성방법에대한연구를장기간동안 심화한결과,금속나노입자가특정한분포를갖는경우,설사금속나노입자의 표면산화가일정량발생한경우에도현저하게우수한소결능을가질수있음을 발견하고,특히광소결또는레이저소결에적합함을발견하여본발명을 완성하였다.
발명의상세한설명
기술적과제
[6] 본발명의목적은표면산화가발생한경우에도우수한소결능을갖는금속 나노입자를제공하는것이다.
[7] 본발명의다른목적은매우낮은광에너지를조사하여도,우수한
전기전도도를갖는금속배선의제조가가능한금속나노압자를제공하는 것이다.
[8] 본발명의또다른목적은산화막형성이방지된금속나노입자를단시간에 연속적으로대량생산할수있는제조방법을제공하는것이다.
[9] 본발명의또다른목적은우수한소결능,특히,광소결능또는레이저소결능을 갖는금속나노입자를연속적으로대량생산할수있는제조방법을제공하는 것이다.
과제해결수단
[10] 본발명에따른금속나노입자는적어도바이모달 (bimodal)이상의크기분포를 가지며,하기관계식 1을만족하고,금속코아가유기산을포함하는캡핑층으로 캡핑된금속나노입자이다.
[11] (관계식 1)
[12] 0.4<A1/At≤0.8
[13] 관계식 1에서, AL은금속나노입자의크가분포에서,피크의중심크기를
기준으로,가장작은중심크기를갖는제 1피크의면적이며, At는크기분포를 이루는모든피크의면적을합한총면적이다.
[14] 본발명의일실시예에따른금속나노입자는하기관계식 2및관계식 3을더 만족할수있다.
[15] (관계식 2)
[16] 30nm < D, < lOOnm
[17] 관계식 2에서, D1은제 1피크의증심크기이다.
[18] (관계식 3)
[19] 3 < D2/D! < 5
[20] 관계식 3에서, ^은금속나노입자의크기분포에서,피크의증심크기를
기준으로,가장작은증심크기를갖는제 1피크의중심크기이며, D2는동일크기 분포에서,피크의중심크기를기준으로,가장큰증심크기를갖는계 2피크의 중심크기이다.
[21] 본발명의일실시예에따른금속나노입자에있어,상기크기분포에서,피크의 증심크기를기준으로,적어도,가장큰중심크기를갖는제 2피크에속하는 입자는각진형상 (faceted shape)을가질수있다.
[22] 본발명의일실시예에따른금속나노입자에있어,제 1피크에속하는
저 U입자는,금속나노입자의 X-선광전자분광스펙트럼상,구리산화물의 Cu 2p 피크면적을구리의 Cu 2p피크면적으로나눈비인산화도가 0.2이하일수있다.
[23] 본발명의일실시예에따른금속나노입자에있어,상기유기산은올레산, 리신올레산,스테아릭산,히아드록시스테아릭산,리놀레산,아미노데카노익산, 하이드록시데카노익산,라우르산,데케노익산,운데케노익산,팔리트을레산, 핵실데카노익산,하이드특시팔미틱산,하이드록시미리스트산,
하이드록시데카노익산,팔미트올레산및미스리스올레산에서하나또는둘 이상선택될수있다.
[24] 본발명의일실시예에따른금속나^입자에있어 ,상기캡핑층의두께는 1 내지 2nm일수있다.
[25] 본발명의일실시예에따른금속나노입자는구리,니켈,주석,알루미늄및 이들의합금에서하나또는둘이상선택될수있다ᅳ [26] 본발명의일실시예에따른금속나노입자는광소결용일수있다.
[27]
[28] 본발명에따른금속코어가유기산을포함하는캡핑층으로캡핑된금속
나노입자의연속적제조방법은속빈원통형자켓및상기자켓과동심구조를 이루며이격위치하여회전하는실린더사이의공간인반웅공간에유기산, 유기아민및금속전구체를함유하는제 1용액과환원제를함유하는겨 12용액을 연속적으로주입하는단계 ;를포함한다.
[29] 본발명의일실시예에따른연속적제조방법에있어,상기자켓의일단또는 일단측면에형성된유입구를통해제 1용액과제 2용액이반웅공간으로 연속적으로주입되어,상기자켓타단또는타단측면에형성된유출구를통해 유기산을포함하는캡핑층으로캡핑된금속나노입자를포함하는반웅산물이 연속적으로배출될수있다.
[30] 본발명의일실시예에따른연속적제조방법에있어,상기자켓과상기
실린더는하기관계식 4를만족할수있다.
[31] (관계식 4)
Figure imgf000005_0001
[33] 관계식 4에서, D는자켓과실린더사이의이격간격이며, r,는실린더의
반지름이다.
[34] 본발명의일실시예에따른연속적제조방법에있어,상기실린더의회전
속도는 400내지 1000 rpm일수있다.
[35] 본발명의일실시예에따른연속적제조방법에있어,반웅공간의온도는 100 내지 350oC일수있다.
발명의효과
[36] 본발명에따른금속나노입자는극히낮은광에너지의조사에의해광소결이 이루어짐에따라,벌크에비견되는매우우수한전기전도도를가지면서도 기판과의결합력이극히우수한전도성금속박막을제조할수있는장점이있다.
[37] 본발명에따른제조방법은산화막형성이방지된금속나노입자를효율적으로 대량생산할수있는장점이있으며,수율 (yield)이높은장점이있고,금속 나노입자의크기분포를엄밀하고재현성있게제어할수있는장점이있다. 도면의간단한설명
[38] 도 1은본발명의일실시예에따른제조방법에서사용되는반웅장치를도시한 도면이며,
[39] 도 2는본발명의일실시예에서제조된금속나노입자를관찰한
주사전자현미경사진이다.
[40] 도 3은본발명의일실시예에서제조된금속나노입자의캡핑층두께를관찰한 투과전자현미경사진이다. 발명의실시를위한형태
[42] 이하첨부한도면들을참조하여본발명의금속나노입자및이의제조방법을 상세히설명한다.다음에소개되는도면들은당업자에게본발명의사상이 충분히전달될수있도록하기위해예로서제공되는것이다.따라서,본발명은 이하제시되는도면들에한정되지않고다른형태로구체화될수도있으며,이하 제시되는도면들은본발명의사상을명확히하기위해과장되어도시될수 있다.이때,사용되는기술용어및과학용어에있어서다른정의가없다면,이 발명이속하는기술분야에서통상의지식을가진자가통상적으로이해하고 있는의미를가지며,하기의설명및첨부도면에서본발명의요지를
불필요하게흐릴수있는공지기능및구성에대한설명은생략한다.
[43] 통상적인금속나노입자의경우,입자크기가미세화될수록,입자를이루는 원자수대비표면에위치하는원자수의비율이급격히증가하게되어,입자에서 표면산화막이차지하는비율이현저하게증가한다.이에따라,전도성박막을 제조하기위해,실질적으로 300nm이상의크기를갖는금속나노입자가 사용되어왔다.
[44] 그러나,저은열처리에의해우수한전기전도도를갖는금속배선을제조하기 위해서는,표면산화막형성이억제되고가능한미세한금속나노입자를제조할 수있는기술이절실히요구되고있다.
[45] 이러한기술적요구에따라,본출원인은국제특허 WO2013-147535를통해, 유기산으로캡핑되어,표면산화막형성이방지된미세한금속나노입자의 제조방법을제공한바있다.상세하게,본출원인은금속전구체,유기산, 유기아민및환원제를포함하는반웅용액을가열및교반하여표면산화막 생성이억제되고유기산으로캡핑된금속나노입자의제조방법을제공한바 있다.
[46] 본출원인은국제특허 WO2013-147535를통해제공한기술이배치식
제조방법임을고려하여,대량생산및상업화가능한연속식제조방법에대해 보다심화하여연구하는과정에서,금속나노입자가특정한분포를갖는경우, 금속나노입자의소결능이현저하게향상됨을발견하였으며,나아가,설사금속 나노입자의표면산화가일정량발생한경우에도우수한광또는레이저소결능, 특히현저하게우수한광소결능을가질수있음을발견하여본발명을 완성하기에이르렀다.
[47] 이하,본발명을상술함에있어,특별히언급하지않는한,금속나노입자는 유기산을포함하는캡핑층으로캡핑된금속나노입자를의미하며,금속
-ᅳ—―—나노—입-자—-또 ¾ ^층으—로ᅵ캡 ^된—금속—나노—입-자의-용 -어.7ᅡ서로—흔용^^
이때,유기산을포함하는캡핑층으로둘러싸이는입자상의금속은금속코어로 지칭한다.
[48] 또한,특별히제한하지않는한,금속나노입자는상대적으로미세한입자와 상대적으로조대한입자들이흔합된입자군을의미한다.구체적으로,금속 나노입자는통계학적으로안정적인크기분포를나타낼수있는복수개의 나노입자군을의미한다.구체적인일예로,금속나노입자는적어도 500개 이상의금속나노입자로이루어진입자군을의미할수있다.
[49] 본발명에따른금속나노입자는금속코어가유기산을포함하는캡핑층으로 캡핑된입자이고,적어도바이모달 (bimodal)이상의크기분포를가지며,하기 관계식 1을만족한다.
[50] (관계식 1)
[51] 0.4<A1/At≤().8
[52] 관계식 1에서, ^은금속나노입자의크기분포 (갯수와크기를두축으로하는 크기분포)에서,피크의중심크기를기준으로,가장작은중심크기를갖는 제 1피크의면적이며, At는크기분포를이루는모든피크의면적을합한총 면적이다.즉,관계식 1은제 1피크를이루는입자의수를총입자의수로나눈 비이다.
[53] 본발명의일구체예에있어,금속나노입자의크기분포는
동적광산란법 (Dynamic Light Scattering: DLS)을이용하여측정된것일수 있으며,상세하게, 25°C의온도및 0.01내지 0.1증량 %농도의샘플 (크기분석 대상나노입자)의조건으로측정된것일수있다.금속나노입자의크기분포는 입자의직경및해당직경을갖는입자의수로도시되는크기분포일수있다. 적어도바이모달이상의크기분포는금속나노입자의크기분포상적어도둘 이상의피크가존재함을의미할수있다.이때,피크의중심에해당하는 크기 (입자직경)가증심크기이며,가장작은증심크기를갖는제 1피크에속하는 입자들은제 1입자로,가장큰중심크기를갖는제 2피크에속하는입자들은 제 2입자로통칭한다.
[54] 관계식 1로제시된바와같이,본발명에따른금속나노입자는상대적으로 작은제 1입자들과상대적으로큰제 2입자들중,상대적으로작은제 1입자의 분율이현저하게높은특징이있다.
[55] 알려진바와같이,모든입자의생성및성장에서그성장양상이정상
입자성장 (normal grain growth)과비정상입자성장 (abnormal grain growth)으로 나눠진다.그증,구리,니켈,알루미늄등과같이전도도가우수한순수한금속은 일반적인정상입자성장이아닌,특정한몇몇입자만이매우빠른성장속도로 비정상적으로크게성장하는비정상입자성장을하는것으로알려져있다. 이러한비정상입자성장은입자의성장에요구되는에너지가정상입자의성장 시보다매우높아,높은성장구동력을가질수있는몇몇입자들만이
선택적으로성장함으로씨발생하는것으로해석되고있다.
[56] 입자성장과마찬가지로치밀화또한물질이동에의해고상과기상계면이 고상과고상계면으로변화되는것이다.이에따라물질이동에높은에너지 장벽이존재하는비정상입자성장이발생하는경우치밀화또한어려운것으로 알려져있다.
[57] 캡핑층으로캡핑된금속나노입자의경우,표면산화막형성이억제되어,소결 시순수한금속의성장특성을나타낼수있다.이러한순수한금속의성장 특성을기반으로,관계식 1에따라,높은성장구동력 (물질이동의구동력)을 가질수있는제 2입자들과함께,제 2입자각각에균일하게성장구동력을제공할 수있도록제 2입자가계 1입자들에의해둘러싸일수있을정도로다량의 제 1입자들이흔재하는분포를가질때,현저하게향상된소결능을가질수있다.
[58] 구체적으로,관계식 1에서,전체입자대비제 1피크에해당하는상대적으로 미세한제 1입자들의분율 (입자크기분포에서의면적비인 A!/At)이 0.4미만으로 미량인경우,제 2입자가제 1입자들로둘러싸이지않을위험이있다.이러한 경우,제 2입자의성장및치밀화 (소결)에인접하는제 2입자가영향을미쳐 소결능이떨어질수있을뿐만아니라,막의위치에따라소결정도가서로다른 비균질한막이제조될위험이있다.즉,제 1입자들의매트릭스에계 2입자들이 균질하게분산된상태가형성되지않고,다른제 2입자가일제 2입자의성장이나 치밀화영향을미치게되어제 2입자의성장이나치밀화가거의이루어지지않을 수있다.
[59] 또한,관계식 1에서,전체입자대비계 1피크에해당하는상대적으로미세한 제 1입자들의분율 (입자크기분포에서의면적비인 AJAt^l 0.8을초과하는 과량인경우,제 1입자들만으로는성장이나치밀화가거의발생하지않아, 소결이거의이루어지지않은미소결영역이다량존재할수있다.
[60] 즉,상술한관계식 1은,상대적으로조대입자들이상대적으로미세입자들에 의해균일하게둘러싸여상대적으로조대입자가위치하는영역들에서성장과 치밀화가활발히발생하면서도,조대한일입자성장에관여하는주변영역 (일 예로,확산거리내의영역)에상대적으로미세입자들만이존재함으로써 부분적으로소결이거의이루어지지않은미소결영역이발생하지않을수있는 조건이다.
[61] 본발명의일구체예에있어,금속나노입자는바이모달또는트라이모달의 크기분포를가질수있다.이때,상술한바와같이,큰성장구동력 (물질이동 구동력)을가질수있는조대입자및조대입자에균일하게성장구동력을 제공하는미세입자에의해,향상된소결능을가질수있음에따라,금속 나노입자는재현성있고균질한소결능을가질수있도록바이모달크기분포를 갖는것이좋다.
[62] 본발명의일구체예에있어,금속나노입자는하기관계식 2및관계식 3을더 만족할수있다.
[63] (관계식 2)
[64] 30nm < Dj < lOOnm
[65] 관계식 2에서,이은겨 U피크의중심크기,즉,제 1입자의평균크기이다.
[66] (관계식 3)
Figure imgf000009_0001
[68] 관계식 3에서,이은금속나노입자의크기분포에서,피크의중심크기를
기준으로,가장작은증심크기를갖는제 1피크의중심크기이며, D2는동일크기 분포에서,피크의증심크기를기준으로,가장큰중심크기를갖는제 2피크의 증심크기이다.즉,관계식 3에서,이은제 1입자의평균크기이며, D2는제 2입자의 평균크기이다.
[69] 관계식 1의조건을만족함과동시에,관계식 2와관계식 3을만족함으로써, 제 1입자들로부터제 2입자들로극히활발한물질이동이발생하여,우수한 소결능을가질수있다.
[70] 특히,관계식 1,관계식 2및관계식 3은순간적으로광에너지를조사하여
소결을야기하는극히빠른소결방법인광소결시,매우낮은광에너지로, 현저하게비저항이낮은금속배선이형성될수있는조건이다.
[71] 본출원인이국제특허 WO2013-147535를통해제안한유기산으로캡핑된금속 나노입자의제조방법을심화하여연구한결과,상대적으로조대한입자의경우, 금속코어가유기산으로캡핑되며표면산화막의형성이실질적으로완전히 방지될수있다.그러나,입자의크기가미세해질수록금속코어가유기산또는 유기산과유기아민으로캡핑되더라도,부분적인금속의표면산화가발생할수 있다.실질적으로는 50nm수준의크기를갖는금속나노입자에서도금속과 산소와의화학적결합이관찰되고있다.
[72] 놀라운점은,관계식 1을만족하도록제 1입자들이다량존재하는경우,관계식 2와같이,입자의크기가매우미세하여어느정도표면산화가발생하여도,금속 나노입자가여전히우수한소결능을유지할수있다는점이다.
[73] 이는,상대적으로미세한제 1입자들에서상대적으로조대한제 2입자들로
물질이동이발생할때,미세한제 1입자들에형성되는산화막에의한악영향이 거의나타나지않음을의미할수있다.나아가,조대한제 2입자들의표면 특성 (산화막형성이방지되어순수한금속표면을갖는조대한입자들)에의해 전체적인금속나노입자의소결특성이결정됨을의미할수있다.
[74] 본발명의일실시예에따른금속나노입자에서,상기제 1피크에속하는
제 1입자는,그산화도가 0.2이하,구체적으로는 0.01내지 0.2일수있다.
산화도는금속나노입자의 X-선광전자스펙트럼상,구리산화물의 Cu 2p피크 면적을구리의 Cu 2p피크면적으로나눈비를의미할수있다.구체적으로, 10-8 이하의진공도에서 ΑΙ Κα소스를이용해서 920-960 eV의바인딩에너지 조건에서 X-선광전자스펙트럼을측정하고구리및구리산화물의 Cu 2p픽을 ᅳ추출 -하여—두—곽깊:의—면-적―바를―통해-산화—도를-산출할 -수-있-타「
관계식 1,관계식 2의제 1입자의평균크기및관계식 3의게 1입자대비 제 2입자의상대적크기는,산화도가 0.2에이르는미세금속나노입자들이 존재할지라도,금속나노입자가우수한소결능을가질수있는크기범위다. 상세하게,제 2입자의평균크기를나타내는관계식 3은제 2입자가제 1입자와 함께흔재할때,균일하고균질한소결특성을가질수있으면서도,매우낮은광 에너지로,현저하게비저항이낮은금속배선이형성될수있는크기범위이다.
[76] 본발명의일실시예에따른금속나노입자에있어,상기크기분포에서,피크의 중심크기를기준으로,적어도,가장큰중심크기를갖는제 2피크에속하는 입자 (제 2입자)는각진형상 (faceted shape)을가질수있다.
[77] 보다구체적으로,제 2입자는각진형상을갖는단결정체일수있다.각진
형상의편평한표면은금속코어를이루는금속물질의 γ-플롯 (γ-plot)상 표면에너지커습 (surface energy cusp)에해당하는면들일수있다.익히알려진 바와같이 γ-폴롯 (γ-plot)은결정학적면의수직방향을그단위백터로하여해당 면의표면에너지를스칼라값으로가진다.
[78] 이때,각진형상은입자의표면이금속코어물질의 γ-플롯상표면에너지
커습 (cusp)에해당하는면들을포함하여구성되는것을의미하며,보다 바람직하게표면에너지커습에해당하는면들만으로구성되는것을의미한다. 각진형상이표면에너지커습에해당하는면들만으로구성됨은금속입자 표면의접선기을기가블연속적으로변화함을의미한다.상세하게,금속입자 표면의접선기울기가불연속적으로변하는경우는표면에너지커습에 해당하는편평한표면들이직접적으로맞닿아날카로운에지 (edge)가형성된 형상을의미할수있다.
[79] 구체적인일예로,표면에너지커습에해당하는면은금속코어물질고유의 결정구조를기준으로 { 111 }면족, { 11아면족및 { 10 면족군에서하나이상 선택된면일수있다 이때,상기표면을구성하는각면은레지 (ledge)또는 킹크 (kink)가형성된 { 111 }면족, { 110}면족및 /또는 { 10 면족을포함함은 물른이다.
[80] 형태적으로,금속나노입자에서적어도계 2입자의표면형상 (surface
morphology)은각진다각형상일수있다.보다구체적인일예로금속코어의 물질이구리,니켈,알루미늄등과같은 FCC결정구조를갖는경우,제 2입자의 표면형상은 { 111 }면족이표면을이루는각진다각형상또는 { 111 }면족과 { 110}면족들이표면을이루는각진다각형상일수있다.
[81] 상대적으로미세한제 1입자는등근형태이거나,편평한표면을포함하되
적어도,편평한표면들이만나는모서리가둥근유사 -각진형상을가질수있다. 즉유사 -각진형상은편평한표면이존재하되,입자표면의접선기을기가 연속적으로변화하는곡면영역이존재하는형상을의미한다.
[82] 본발명의일실시예에따른금속나노입자는금속코어가유기산을포함하는 캡핑층으로캡핑된것일수있다.유기산은금속코어에우선적으로화학 흡착 (chemisorption)하여치밀한유기산막을형성할수있음에따라,캡핑층은 유기산으로이루어질수있다.즉,캡핑층은금속코어에화학흡착된유기산의 막일수있다.그러나,유기산과유기아민을함께사용하는제조공정상 캡핑층에미량의아민이포함될수있음은물론이다.금속코어가유기산을 포함하는캡핑층으로캡핑됨에따라,금속코어의표면산화막형성이방지될수 있으며,실질적으로상대적으로조대한입자인제 2입자의경우표면산화막이 존재하지않을수있다.
[83] 유기산은탄소수가 6 ~ 30인직쇄형,분지형및환형중적어도하나의형태를 가지며,포화또는불포화유기산에서선택된하나또는둘이상일수있다.보다 구체적으로,유기산은을레산,리신올레산,스테아릭산,히아드록시스테아릭산, 리놀레산,아미노데카노익산,하이드록시데카노익산,라우르산,데케노익산, 운데케노익산,팔리트올레산,핵실데카노익산,하이드록시팔미틱산,
하이드록시미리스트산,하이드록시데카노익산,팔미트올레산및
미스리스올레산등으로이루어진군에서하나또는둘이상선택될수있으나, 이에한정되는것은아니다.
[84] 금속코어를캡핑하는캡핑층의두께는 1내지 2nm일수있다.캡핑층이너무 얇은경우산화막형성방지효과가감소될수있으며,또한캡핑층의두께가 너무과도하게두꺼운경우,금속나노입자를이용한금속박막의제조시, 유기물인캡핑층의제거에과도한에너지와시간이소모될수있다ᅳ
[85] 유기산을포함하는캡핑층으로캡핑되고산화막형성이억제된캡슐형태의 금속나노입자의금속 (금속코어)은금속박막을제조하는데통상적으로 사용되는금속이면무방하다.구체적인일예로,금속은구리,니켈,알루미늄, 주석및이들의합금등으로이루어진군으로부터하나또는둘이상선택된것일 수있다.
[86] 본발명의일실시예에따른금속나노입자는광소결용또는레이저소결용일 수있다ᅳ상세하게,본발명의일실시예에따른금속나노입자를광소결하여 금속박막을형성하는경우,현저히낮은에너지의광을극히짧은시간에 조사함으로써,물리적및전기적성능이우수한금속박막을제조할수있다. 또한,본발명의일실시예에따른금속나노입자를레이저소결하는경우, 전도도가우수한미세금속패턴을단시간내에제조할수있는장점이있다.
[87] 상술한바와같이,본발명의일실시예에따른금속나노입자는극히낮은
에너지의광조사에의해서도우수한소결능을가질수있다.구체적인일예로, 2.6(J/cm2)이하의강도를갖는광의조사에의해,수 μΩ«η의비저항을갖는금속 박막의제조가가능하다.
[88] 보다구체적으로,본발명의일실시예에따른금속나노입자는 2.6(J/cm2)
이하의강도를가지며, 200내지 800nm,좋게는 370nm내지 800nm의가시광의 파장대역의광이연속적으로조사되는광소결용금속나노입자일수있다.즉, 본발명의일실시예에따른금속나노입자를도포한후,도포막에매우낮은 강도를가지며가시광파장대역의광을 1내지 2msec동안연속적으로
조사함으로써 ,기판의열손상을방지하면서도,우수한전도도를갖는금속 박막 (금속박막)이제조될수있다.
[89] 상술한바와같이,본발명의일실시예에따른금속나노입자를이용하는경우, 극히낮은강도를가지며,가시광파장대역의광을매우단시간 (l~2msec) 조사하는것만으로,열처리를이용한소결을통해얻을수있는금속박막에 버금가는비저항을갖는금속박막이제조될수있다.이때,극히낮은에너지의 광에의해소결이이루어짐에따라,도포막 (금속나노입자를포함하는잉크가 도포된도포막)제조시기관과도포막간의결착력을담보하기위해통상적으로 투입되는유기바인더가광소결후에도금속박막내에잔류할수있어,금속 박막과기판간의결착력올현저하게향상시킬수있다.
[90] 본발명은금속코어가유기산을포함하는캡핑층으로캡핑된금속나노입자를 함유하는전도성잉크조성물을포함한다.
[91] 상세하게,본발명의일실시예에따른잉크조성물은상술한금속나노입자, 비수계유기바인더및비수계용매를함유할수있다.
[92] 비수계용매는특별히제한되지않지만좋게는탄소수가 6 ~ 30인알케인, 아민,롤루엔,크실렌,클로로포름,디클로로메탄,테트라데칸,옥타데센, 클로로벤젠,다이클로로벤젠,클로로벤조산,및다이프로필렌글리콜프로필 에테르로이루어진군으로부터하나또는둘이상을선택할수있다.
[93] 비수계유기바인더는특별히한정되지않으나,금속나노입자를함유하는 전도성잉크제조시,도포막의물리적결착력을향상시키기위해통상적으로 사용되는비수계유기바인더물질이면사용가능하다.구체적이고비한정적인 일예로,비수계유기바인더물질은폴리불화비닐리덴 (PVDF),
폴리메틸메타크릴레이트 (PMMA),자기가교성아크릴수지에멀전,
하이드록시에틸샐를로오스,에틸하이드록시에틸셀를로오스,
카르복시메틸샐를로스,하이드록시셀를로오스,메틸셀를로오스,
니트로샐를로오스,에틸샐를로오스,스티렌부타디엔고무 (SBR),
C1-C10알킬 (메타)아크릴레이트와불포화카르복실산의공증합체,
젤라틴 (gelatine),틴소톤 (Thixoton),스타치 (starch),폴리스티렌,폴리우레탄, 카르복실기를포함하는수지 ,페놀성수지,에틸샐를로오스와페놀성수지의 흔합물,에스터중합체,메타크릴레이트중합체,자기가교성의 (메타)아크릴산 공증합체,에틸렌성불포화기를갖는공증합체,에틸셀를로스계,
아크릴레이트계,에폭시수지계및이들흔합물중에서하나또는둘이상선택될 수있다.
[94] 보다구체적인일예로,비수계유기바인더는 5 - 150 mgKOH/g의아민가를 갖는비수계고분자물질일수있다.이러한비수계고분자물질은바인더및 분산제의역할을동시에수행할수있어좋다.특히,비수계유기바인더는 블표화 -카ᅵ르복실ᅵ산의 -공-중합체 -또는 -어—의 라프-트 -중함체-일—수 -었—으-며—, mgKOH/g의아민가를갖는불포화카르복실산의공중합체또는이의그라프트 중합체일수있다.이러한비수계유기바인더는바인더및분산제의역할을 동시에수행하면서도,광소결시금속나노입자간의결착을방해하지않아,보다 치밀하고보다전도도가우수한금속박막이제조될수있다. 5 - 150 mgKOH/g의 아민가를갖는,불포화카르복실산의공증합체또는이의그라프트증합체는 C1-C10알킬 (메타)아크릴레이트와불포화카르복실산의공증합체,
플리이써케톤과불포화카르복실산의공증합체,폴리아크릴아마이드와불포화 카르복실산의공중합체,폴리에틸렌옥사이드와불포화카르복실산의공중합체, 폴리에틸렌글리콜와불포화카르복실산의공증합체또는이들의흔합물을 포함할수있다. 5 - 150 mgKOH/g의아민가를갖는불포화카르복실산의 공중합체또는이의그라프트증합체인경우,그분자량 (중량평균분자량)은
1000내지 50000g/m이일수있다.
[95] 비수계유기바인더로,상술한비수계유기바인더물질을함유하는상용
제품을사용하여도무방한데,구체적인일예로, BYK130, BYK140, BYK160, BYK161, BYK162, BYK163, BYK164, BYK165, BYK167, BYK169, BYK170, BYK171, BYK174 EFKA 4610, EFKA 4644, EFKA 4654, EFKA 4665, EFKA 4620, EFKA 4666또는 EFKA 4642등을들수있으나,이에한정되는것은아니다.
[96] 본발명의일실시예에따른전도성잉크조성물은금속나노입자 100중량부를 기준으로, 0.05내지 5증량부의비수계유기바인더및 20내지 800중량부의 비수계용매를함유할수있다.
[97] 상술한바와같이,본발명의일실시예에따른금속나노입자를함유한전도성 잉크조성물을도포한후,광을조사하여광소결을수행하는경우,비수계유기 바인더가고유의물성이손상되지않은상태로전도성금속박막에잔류할수 있다.이에따라,전도성잉크조성물내비수계유기바인더의함량이너무높은 경우금속나노입자간,금속나노입자와기판간을결착시키는고분자바인더에 의해,금속나노입자간의치밀화가저해될수있다.입자대비 0.05내지 5 증량부의비수계유기바인더는금속나노입자간의치밀화를저해하지 않으면서도,도포된잉크조성물이건조되었을때안정적으로형상이유지되는 물리적강도를가지며기판과의결착력이우수한도포막이형성될수있으면서, 이와동시에,광소결후금속박막에잔류하는고분자바인더에의해기판과 금속박막간의결착력이현저하게향상될수있는범위이다.
[98] 상술한바와같이,본발명의일실시예에따론잉크조성물은 2.6(J/cm2)이하의 강도를갖는광의조사에의해,수 μΩ ιη의비저항을갖는금속박막의제조가 가능하다.이때,본발명의일실시예에따른금속나노입자를함유하는경우, 1.2J/cm2이상의광강도에서금속나노입자의광소결이발생하여낮은비저항을 갖는금속박막의제조가가능하나,제조하고자하는금속박막의두께가수 마이크로내지수십마이크로수준인경우,균질한전기적특성을갖는금속 박막을재현성있게생산하는측면에서, 2.3J/em2이상의광강도를갖는광이 조사되는것이좋다.
[99] 보다구체적으로,본발명의일실시예에따른잉크조성물은 2.6(J/cm2)이하의 강도를가지며, 200내지 800nm,좋게는 370nm내지 800nm의가시광의파장 대역의광이 1내지 2msec의극히짧은시간동안연속적으로조사되는광소결용 잉크조성물일수있다.
[100] 본발명의일실시예에따른잉크조성물은상술한금속나노입자를
함유함으로써,광조사전잉크조성물이건조된도포막에함유된고분자 바인더의 60중량 %이상이광조사후에도금속박막내에잔류할수있으며,이에 의해,기판과의결착력이놀랍도록향상된금속박막이제조될수있다.구체적인 일예로, ASTM D3359-97방법에기준한테이프를이용한접착력테스트시, 기판과금속박막이강하게결합된상태를유지하여금속박막이테이프에의해 박리되지않을수있다.
[101] 전도성잉크조성물의도포방법에따라어느정도달라질수있으나,전도성 잉크조성물이 20내지 800중량부의비수계용매를함유함으로써,코팅또는 프린팅에적절한유동성을가질수있다.
[102]
[103] 본발명은금속코어가유기산을포함하는캡핑층으로캡핑된금속나노입자의 연속적제조방법을포함한다.
[104] 상술한바와같이,본출원인은국제특허 WO2013-147535를통해유기산으로 캡핑된금속나노입자의제조방법을제공한바있다.그러나,제공한기술이 배치식제조방법임에따라,대량생산에한계가있으며,나아가,배치별미세 공정조건의변화에따라제조되는금속나노입자의품질조절이어려워,대량 생산및상업화가능한연속식제조방법을개발하고자장기간연구를
수행하였다.
[105] 그연구결과,층류전단흐름연속반웅기법을이용하는경우,극히높은수율로 유기산으로캡핑된금속나노입자의연속적인제조가가능하며,고론품질의 금속나노입자를단시간에대량생산할수있음을발견하였다.
[106] 나아가,배치식으로는매우어려운,상대적으로조대한입자와상대적으로 미세한입자의상대적분율및상대적으로조대한입자와상대적으로미세한 입자의크기가용이하게조절가능함을발견하였다.
[107] 본발명에따른금속나노입자의연속적제조방법은속빈원통형자켓및상기 자켓과동심구조를이루며이격위치하여회전하는실린더사이의공간인반웅 공간에유기산,유기아민및금속전구체를함유하는제 1용액과환원제를 함유하는겨 12용액을연속적으로주입하는단계;를포함한다.
[108] 도 1은본발명의일실시예에따른제조방법에서사용될수있는층류전단흐름 반응장치의일예를도시한도면이다.도 1에도시한바와같이,층류전단흐름 반응장치는실린더,실린더의내부증앙에형성되고그일단이모터와연결되어 실린더를회전시키는교반봉,교반봉을동심으로하며,실린더의외주에 형성되어고정되는원통형자켓,자켓과실린더간의이격공간인반응공간에 물질을주입하는유입구와반웅이완료된생성물을배출하는유출구를포함할 수있다.이에따라,실린더는자켓의종축과일치하는회전축을가질수있다.
[109] 이때,도 1에도시한바와같이,유입구는자켓의일단또는일단측면에위치할 수있으며,유출구는자켓타단또는타단측면에위치할수있다.또한, 층류전단흐름반웅장치는자켓의외측에위치하여반웅공간을가열하는 가열부를더포함할수있음은물론이며,가열부가자켓의외측을둘러싼형태로 위치할수있음은물론이다.
[110] 고정되어있는자켓에실린더가회전하는경우,반웅공간을흐르는유체는 원심력에의해고정된자켓방향으로나가려는경향을가지게되며,이에의해 유체가불안정하게되어,회전축을따라규칙적이며서로반대방향으로 회전하는고리쌍배열의와류인쿠에트-테일러와류가형성될수있다.
[111] 쿠에트-테일러와류는단지내부실린더와자켓간의상대적인회전에
의해서만와류가발생함에따라,와류의유동성이잘규정될수있으며와류의 요동변화가거의발생하지않을수있다.또한,회전하는고리쌍배열의와류 각각은반웅공간내에서서로독립적인반웅장을형성할수있다.
[112] 본출원인은이러한고리쌍배열의와류및와류에의해규정되는미세반응 장에유기산,유기아민,금속전구체및환원제를투입하여금속나노입자를 제조하는경우,안정적이고재현성있게,극히우수한수율로금속코어가 유기산을포함하는캡핑층으로캡핑된금속나노입자가제조됨을발견하였다.
[113] 상세하게,테일러-쿠에트와류에기반한층류전단흐름연속반웅기법은
실린더의회전에의해서만,잘규정되는흐름을갖는와류가발생하며,와류 각각이독립적은미세반웅장을형성함에따라,전구체상태의금속으로부터 금속핵이생성되고,금속핵이금속나노입자로성장하는과정에서,전구체 상태의금속과함께투입되는유기산이금속나노입자를매우안정적으로 캡핑할수있다.또한, 95%이상의매우높은수율로유기산을포함하는 캡핑층으로캡핑된금속나노입자가제조될수있다.
[114] 상술한바와유사하게,유입구는자켓의일단또는일단측면에형성될수 있으며,제 1용액이주입되는제 1유입구와제 2용액아주입되는제 2유입구가 형성될수있다.이와독립적으로,제 1용액과제 2용액이유입구로유입되며서로 흔합되도록주입함으로써,단일한유입구를통해,제 1용액과제 2용액이주입될 수있다.
[115] 즉,자켓의일단또는일단측면에형성된유입구를통해제 1용액과제 2용액이 반웅공간으로연속적으로주입되어,자켓타단또는타단측면에형성된 유출구를통해캡핑층으로캡핑된금속나노입자를포함하는반웅산물이 연속적으로배출됨으로써,연속적으로금속나노입자를제조할수있다.이때, 제조되는금속나노입자의입자크기분포를엄밀하고재현성있게제어하는 측면에서,단일한유입구를통해제 1용액과제 2용액이동시주입될수있다.
[116] 본발명의일실시예에따른제조방법에있어,자켓과실린더는하기관계식 4를만족할수있다.
[117] (관계식 4)
[118] 0.1 < D/ri < 0.4 [119] 관계식 4에서, D는자켓과실린더사이의이격간격이며, η는실린더의 반지름이다.
[120] 관계식 4와같이,자켓과실린더사이의이격간격 (D=r。(자켓의내부반경) -r과 실린더의반지름 (Γ,)의비율 (D/ri)은 0.1-0.4것이좋다.
[121] 자켓과실린더사이의간격은형성되는고리쌍배열의와류인와류셀의크기를 결정하게되어합성되는입자의크기및분포에영향을미칠수있다.또한, D/ri의값이 0.1보다작으면합성된입자들이간격을메을확률이커져서 공정성을저하시키고, D/ri의값이 0.4보다크면형성되는와류샐이크기가 커져서균일한흔합효과를기대하기어렵다.
[122] 상세하게,관계식 4를만족하며,자켓과실린더의이격간격은 1mm내지
2.5mm로,반웅공간의폭이극히작은것이보다좋다.반응공간의폭이 1mm 내지 2.5mm로극히작은경우,관계식 1을만족하는바이모달분포의금속 나노입자제조에유리하다.
[123] 주입된계 1용액과제 2용액을포함하는반웅유체가반웅공간에체류하는 체류시간은실런더의회전속도와반웅유체의투입량에의해조절될수있다.
[124] 실린더의회전속도는안정적인테일러 -쿠에트와류형성측면에서 400rpm 이상인것이좋다.또한,각와류셀내에층분한반웅물이존재하여야균질한 나노입자들이제조될수있다.이에따라,실린더의회전속도는 1000 ipm이하인 것이좋다.
[125] 관계식 1을만족하는바이모달분포의금속나노입자를제조하는측면에서, 실린더의회전속도는 600내지 800rpm인것이좋다.이러한회전속도는와류샐 내에존재하는반웅물들이반웅하여,지속적으로금속의핵생성및성장이 발생함과동시에,성장한입자들간에는특정크기이상의입자들이지속적으로 성장하며반응장내의성장구동력 (반웅물및다른미세입자들로부터제공되는 구동력)을소모하고,다른입자들의성장을억제하거나미세한핵들을다시 녹여내며관계식 1을만족하는금속나노입자가제조될수있다.
[126] 즉,실린더의회전속도는각와류샐 (미세반웅장)의전체적인핵생성및성장 구동력의크기를결정할수있으며,상술한바와같이, 600내지 800rpm의회전 속도는지속적인핵생성및성장과,성장된입자들의비정상성장에의해, 적어도관계식 1을만족하는금속나노입자들이제조될수있는범위이다.
[127] 본발명의일실시예에따른제조방법에있어,반웅은도는특별히한정하지 않지만 100내지 350°C의범주에서반웅시킬수있으며좋게는 120~200oC,더욱 좋게는 130~150oC에서반웅하는것이우수한비저항특성을가지면서
수율에서도 95%이상의고순도의금속나노입자가제조될수있다.
[128] 좋게는,상술한관계식 1및관계식 2와 3을모두만족하는금속나노입자가 제조될수있도록,반웅은도는 130내지 150oC인것이좋다.와류샐내에서의 전체적인핵생성및성장구동력이소모되는속도와핵생성정도에영향을미칠 수있다. 130내지 150°C의낮은온도에의해,상대적으로작은입자와 상대적으로큰입자간의입자크기차를증가시킬수있으며,상대적으로작은 입자들의비율증가와상대적으로작은입자들의평균크기감소를야기할수 있다.
[129] 이때,반웅온도가와류셀의전체적인구동력이소모되는속도와핵생성
정도에영향을미치며,실린더의회전속도가와류셀의전체적인구동력의 크기를제어함에따라,반웅온도와회전속도가서로독립적으로제시된 범위에서조절되는것보다는,상호연계되어조절되는것이좋다.구체적인일 예로,회전속도와반웅온도는비례관계인것이좋은데,일예로,회전속도가 600rpm에서 800rmp으로증가하는경우,반웅온도는 130°C에서 150oC로 증가하는것이좋다.
[130] 각와류샐이각각독립된반웅장을형성함에따라,와류셀내에존재하는 반웅물들이소모되며반응장내에존재하는금속나노입자들간의비정상 입자성장이반웅의주를이를수있다.이에따라,반웅물들이소모된후비정상 입자성장기간이과도하게길어지는경우,상대적으로미세한입자군이소모될 위험이있다.이에따라,자켓의길이는대량생산에유리하며,안정적으로여러 개의와류셀이형성될수있는길이이면서도,상술한온도및회전속도 조건에서,비정상입자성장이주를이루는구간이과도하게길어지지않는 범위인것이좋다.구체적이며비한정적인일예로,관계식 4를만족하는경우, 자켓의길이 (반웅공간의종축길이)는 30내지 50D(D=자켓과실린더간의이격 거리)일수있다.
[131] 본발명의일실시예에따른제조방법에있어,유입구를통해주입되는
저 U용액과제 2용액을포함하는반웅유체가반웅공간에머무르는체류시간은 1 내지 4분인것이좋다.이러한체류시간은상술한회전속도및상술한자켓 길이에서,유입구를통해주입되는반웅유체의주입속도를통해조절할수 있다.즉,제 1용액과제 2용액의주입속도는반웅유체의체류시간이 1내지 4분이되도록하는속도일수있다.
[132] 본발명의일실시예에따른제조방법에있어,자켓의내주면에는실린더의 회전방향으로종축방향을따라서나선형돌기가형성되어있을수있다.
이러한나선형돌기가형성되는경우반웅물의흔합효율이더욱증가되어더욱 짧은시간내에환원반웅이완결되어금속나노입자가신속히제조될수있다.
[133] 본발명의일실시예에따른제조방법에있어,제 1용액은금속전구체,유기산 및유기아민을포함할수있으며,계 2용액은환원제를포함할수있다.
[134] 금속전구체의금속은구리,니켈,주석,알루미늄및이들의합금으로이루어진 군으로부터하나또는둘이상을선택할수있다.구체적으로금속전구체는 구리,니켈,알루미늄및이들의합금으로이루어진군에서선택된금속의 질산염,황산염,아세트산염,인산염,규산염및염산염으로이루어진
무기염에서 1종이상선택할수있다.
[135] 유기산은탄소수가 6 ~ 30인직쇄형,분지형및환형중적어도하나의형태를 가지며,포화또는불포화산에서선택된하나또는둘이상일수있다.보다 구체적으로,올레산,리신올레산,스테아릭산,히아드록시스테아릭산,리놀레산, 아미노데카노익산,하이드록시데카노익산,라우르산,데케노익산,
운데케노익산,팔리트올레산,핵실데카노익산,하이드록시팔미틱산,
하이드록시미리스트산,하이드록시데카노익산,팔미트올레산및
미스리스을레산등으로이루어진군에서하나또는둘이상선택할수있으나 이에한정되는것은아니다.
[136] 유기아민은탄소수가 6 ~ 30인직쇄형,분지형및환형중적어도하나의
형태를가지며,포화및블포화아민증에서하나또는둘이상을선택할수있다. 보다구체적으로핵실아민,헵틸아민,옥틸아민,도데실아민, 2-에틸핵실아민, 1,3-디메틸 -n-부틸아민, 1-아미노토리데칸둥에서선택할수있으나이에 한정되는것은아니다.
[137] 환원제는하이드라진계환원제인것이좋고,하이드라진계환원제는
하이드라진,하이드라진무수물,염산하이드라진,황산하이드라진,하이드라진 하이드레이트및페닐하이드라진에서선택된하나또는둘이상일수있다.또한 이밖에도하이드라이드계;테트라부틸암모늄보로하이드라이드,
테트라메틸암모늄보로하이드라이드,테트라에틸암모늄보로하이드라이드및 소듐보로하이드라이드둥을포함하는보로하이드라이드계;소듐포스페이트계; 및아스크로빅산;에서하나또는둘이상을선택하여사용할수있다.그증 하이드라진계환원제는환원력이강하여바람직하다.
[138] 제 1용액의초성비에대하여상술하기로한다.상기조성비는크게제한적이지 않지만,캡핑효율을고려하였을때,금속전구체 1몰에대하여산은 0.2 ~ 4몰, 좋게는 1내지 4몰일수있고,유기아민은 0.2이상,좋게는 0.2 - 50,더욱좋게는 5~20몰을함유할수있다.유기아민의경우,비수계용매로작용함에따라,그 상한이굳이제한되지않는다.
[139] 제 1용액과제 2용액은제 1용액에서금속전구체의함량에대하여환원제 /금속 전구체몰비가 1~100이되도록주입될수있다.몰비 (환원제 /금속전구체)가 1미만인경우금속전구체의금속이온이전부환원되지못하는문제가있으며 100을초과하는경우과잉이되어환원속도에영향을주지못하므로효율면에서 바람직하지못하다.
[140] 유출구에서배출되는금속나노입자는통상의방법에의해나노입자로
수거되거나또는전도성잉크조성물로제조될수있다.
[141] 즉,유출구에서배출되는금속나노입자는원심분리등의분리수단을이용하여 분리하고건조함으로써금속나노입자로수득돨수있다.
[142] 또한,제조한금속나노입자와비수계용매및바인더를이용하여전도성잉크 조성물을제조한후이를기판에도포하고가열하여금속박막을제조할수 있다.이때,가열은광소결또는레이저조사인것이바람직하다.
[143] [144] (실시예 1)
[145] Octyl amine 1.41 mol, Oleic acid 0.20 mol및 copper(II) acetate 0.14m이을흔합한 겨 l l용액과 phenyl hydrazine 1.96m이인제 2용액을준비하였다.실린더의외경 19 mm,자켓의내경 23mm로서실린더와자켓사이의반웅부의간극이 2mm이고 길이가 90mm인층류전단흐름반응장치를자켓을감싸는히팅부를이용하여 150°C로가열하였다.제 1용액과겨 12용액의상대적주입속도 (부피 /시간)를 1.6: 1의비율로하고,체류시간이 1분, 2분, 4분이되도록제 1용액과제 2용액의주입 속도를조절하여반웅기의유입구를통하여주입하였다.이때히팅부를통하여 반응영역의온도를 150°C로유지시켰으며, 800rpm으로실린더를회전시키면서, 주사기펌프를이용하여준비된제 1용액과제 2용액을층류전단흐름
연속반웅기에연속적으로주입하여반웅시켜구리나노입자를합성하였다. 반응기의유출구를통하여얻어지는금속나노입자를원심분리법을이용하여 세척및회수하였다.
[146] 제조된나노입자가구리나노입자임은 X-선회절분석으로확인하였다.반응 시간과무관하게,회수된구리나노입자의수율은 96%로매우짧은시간에매우 높은수율로얻어짐을알수있었다.
[147] 얻어진구리나노입자의형태는 2분반응한경우의입자형태를도 2에
나타내었다.도 2에서알수있듯이,바이모달분포를가지며상대적으로조대한 입자들의경우,각진다각형상을가짐을확인하였다.이때,투과전자현미경및 전자회절패턴을분석하여,제조된나노입자들이단결정체구리입자임을 확인하였으며,입자의각진표면이 { 111 }면족과 { 110}면족으로이루어진것을 확인하였다.
[148] 또한,도 3의투과전자현미경사진에서알수있듯이,약 lnm두께의캡핑층이 형성됨을알수있으며, X선광전자분광법을이용하여 C ls및 O ls픽을분석한 결과,알킬체인 (C-C)과카복실레이트 (-COO-)모이어티를갖는올레산에의해 캡핑층이형성됨을확인하였다.
[149] 또한,제조된나노입자들올 X선광전자분광법을이용하여산화도를
산출하였다.상세하게,구리및구리산화물의 Cu 2p픽을추출하여두픽간의 면적비를통해구리와구리산화물간의비율을분석한결과,제 1입자에속하는 상대적으로작은크기의나노입자들의경우 0.05내지 0.2의산화도를가짐을 확인하였으며,제 2입자군에속하는상대적으로큰크기를갖는나노입자들은 표면산화가발생하지않음을확인하였다.
[150] 동적광산란법을이용하여제조된구리나노입자의크기분포를측정한결과, 바이모달분포를갖는입자가제조됨을확인하였으며, 2분의체류시간인경우, Ai/AF O.^ D^ Onm및 = 3인나노입자가제조되며, 1분의체류시간인 경우, AJAt= 0.8, Dl=50nm및 Ε^/Ιλ = 4인나노입자가제조되고, 4분의체류 시간인경우, A^AF OA D^lOOnm및 D2/DL = 3인나노입자가제조됨을 확인하였다. [151] 2분반웅시켜얻어진나노입자를를루엔에분산시킴으로서전도성잉크 조성물을제조하였다.를루엔 100증량부에대하여 20중량부의구리나노입자 및 1중량부의비수계고분자바인더를첨가한후,볼밀링및초음파조사를통해 균일한분산상을가지는구리전도성잉크조성물을제조하였다.준비된잉크 조성물을캐스팅법을이용하여절연성기판상에두께가 3 되도록
도포하였다.건조된도포막에 370-800 nm파장대역을가지는광원 (linear B-type for Xenon PLA-2010 sintering system)을이용하여, 2.5J/cm2의강도로 1.5msec간 연속적으로광조사하여광소결을수행하였다.광소결에의해제조된구리 박막의비저항이 6.8μΩ·αη으로서극히우수한전기적특성올나타냄을알수 있었다.
[152] X선광전자분광법으로광소결된금속박막을분석한결과,광조사전건조된 도포막에함유된고분자바인더의 60증량 %이상이광조사후에도금속박막 내에잔류함을확인하였다.또한,만번의굽힘시험후,비저항을측정하고,굽힘 시험전의제조직후비저항을기준으로비저항증가율 ([굽힘시험후
비저항 -굽힘시험전비저항] /굽힘시험전비저항 *100(%))이 60%이하임을 확인하였다.또한, ASTM D3359-97방법에기준한테이프를이용하여,기판과 금속박막간의접착력테스트를수행한결과,여전히기판과금속박막이강하게 결합된상태를유지하여금속박막이테이프에의해박리되지않음을 확인하였다.
[153] 1분및 4분의체류시간에서제조된샘플 (금속나노입자)들을이용하여, 2분의 샘플과동일하게잉크조성물을제조하고,광소결을수행하였으며,굽힘 테스트와접착력테스트를수행하였다. 1분의체류시간에서제조된샘플을 이용한경우,광소결시 7μΩ·ί;ηι의비저항을갖는금속박막이제조되었으며, 4분의체류시간에서제조된샘플의경우,광소결시 8.5μΩ·αη의비저항을갖는 금속박막이제조되었다.!분및 4분의샘플을이용하여제조된금속박막의 경우, 2분의샘풀을이용하여제조된금속박막과유사한굽힘테스트결과및 접착력테스트결과를얻었다.
[154]
[155] (실시예 2)
[156] 실시예 1에서,반웅온도를 130°C로하고,실린더회전속도를 600rpm으로 하며,체류시간을 2분으로고정한것을제외하고,실시예 1과동일하게구리 나노입자를제조하였다.
[157] 동적광산란법을이용하여제조된구리나노입자의크기분포를측정한결과, 바이모달분포를갖는입자가제조됨을확인하였으며, A^AF 0.6, Dl=100nm및 I D, = 3.5인나노입자가제조됨을확인하였다.
[158] 이후,실시예 1에서제시된바와동일하게전도성잉크조성물을제조한후, 이를도포하고건조한도포막에,실시예 1의샘플과동일한조건에서광소결을 수행하였다.광소결에의해 9.0μΩ·αη의비저항을갖는금속박막이제조됨을 확인하였으며,실시예 1의샘플을이용하여제조된금속박막과유사한유사한 굽힘테스트결과및접착력테스트결과를얻었다.
[159]
[160] (실시예 3)
[161] 실시예 1에서,반웅온도를 155°C로하고,실린더회전속도를 600rpm으로 하며,체류시간을 2분으로고정한것을제외하고,실시예 1과동일하게구리 나노입자를제조하였다.
[162] 동적광산란법을이용하여제조된구리나노입자의크기분포를측정한결과, A!/At= 0.1, Dl=100nm및 I D! = 2인나노입자가제조됨을확인하였다.
[163] 이후,실시예 1에서제시된바와동일하게전도성잉크조성물을제조한후, 이를도포하고건조한도포막에,실시예 1의샘플과동일한조건에서광소결을 수행하였다.광소결에의해 όΟ.ΟμΩ ηι의비저항을갖는금속박막이제조됨올 확인하였다.
[164] (실시예 4)
[165] 실시예 1에서,반웅온도를 125°C로하고,실린더회전속도를 800rpm으로 하며,체류시간을 2분으로고정한것을제외하고,실시예 1과동일하게구리 나노입자를제조하였다.
[166] 동적광산란법을이용하여제조된구리나노입자의크기분포를측정한결과, A,/At= 0.8, Dl=5nm및 D2/D, = 2인나노입자가제조됨을확인하였다.
[167] 이후,실시예 1에서제시된바와동일하게전도성잉크조성물을제조한후, 이를도포하고건조한도포막에,실시예 1의샘플과동일한조건에서광소결을 수행하였다.광소결에의해 50.0μΩ·αη의비저항을갖는금속박막이제조됨을 확인하였다.
[168] 이상과같이본발명에서는특정된사항들과한정된실시예및도면에의해 설명되었으나이는본발명의보다전반적인이해를돕기위해서제공된것일 뿐,본발명은상기의실시예에한정되는것은아니며,본발명이속하는 분야에서통상의지식을가진자라면이러한기재로부터다양한수정및변형이 가능하다.
[169] 따라서,본발명의사상은설명된실시예에국한되어정해져서는아니되며, 후술하는특허청구범위뿐아니라이특허청구범위와균둥하거나등가적변형 ο 있는모든것들은본발명사상의범주에속한다고할것이다.
[170]
[171]

Claims

청구범위
적어도바이모달 (bimodal)이상의크기분포를가지며,하기 관계식 1을만족하고,금속코어가유기산을포함하는캡핑층으로 캡핑된금속나노입자.
(관계식 1)
0.4<AJAt<0.8
(관계식 1에서, ^은금속나노입자의크기분포에서,피크의중심 크기를기준으로,가장작은중심크기를갖는제 1피크의
면적이며, At는크기분포를이루는모든피크의면적을합한총 면적이다)
제 1항에있어서,
하기관계식 2및관계식 3을더만족하는금속나노입자.
(관계식 2)
30nm < Di < lOOnm
(관계식 2에서, D1은제 1피크의중심크기이다)
(관계식 3)
3 < D2 D, < 5
(관계식 3에서,이은금속나노입자의크기분포에서,피크의중심 크기를기준으로,가장작은증심크기를갖는제 1피크의
중심크기이며, D2는동일크기분포에서,피크의중심크기를 기준으로,가장큰중심크기를갖는제 2피크의중심크기이다) 제 1항에있어서,
상기크기분포에서,피크의중심크기를기준으로,적어도,가장 큰증심크기를갖는제 2피크에속하는입자는각진형상 (faceted shape)을갖는금속나노입자.
제 1항에있어서,
상기금속나노입자에서상기제 1피크에속하는제 1입자는, X-선 광전자분광스펙트럼상,구리산화물의 Cu 2p피크면적을구리의 Cu 2p피크면적으로나눈비인산화도가 0.2이하인금속
나노입자.
제 1항내지제 4항중어느한항에있어서,
상기유기산은올레산,리신올레산,스테아릭산,
히아드록시스테아릭산,리놀레산,아미노데카노익산,하이드록시 데카노익산,라우르산,데쩨노익산,운데케노익산,팔리트올레산, 핵실데카노익산,하이드록시팔미틱산,하이드록시미리스트산, 하이드록시데카노익산,팔미트을레산및미스리스올레산에서 하나또는둘이상선택되는금속나노입자. [청구항 6] 제 1항내지제 4항증어느한항에있어서,
상기캡핑층의두께는 1내지 2mn인금속나노입자.
[청구항 7] 제 1항내지제 4항증어느한항에밌어서,
상기금속나노입자는구리,니켈,주석,알루미늄및이들의 합금에서하나또는둘이상선택되는금속나노입자.
[청구항 8] 제 1항내지제 4항증어느한항에있어서,
상기금속나노입자는광소결용또는레이저소결용인금속 나노입자.
[청구항 9] 속빈원통형자켓및상기자켓과동심구조를이루며이격
위치하여회전하는실린더사이의공간인반웅공간에유기산, 유기아민및금속전구체를함유하는제 1용액과환원제를 함유하는제 2용액을연속적으로주입하는단계를포함하는 유기산으로캡핑된금속나노입자의연속적제조방법.
[청구항 10] 제 9항에있어서,
상기자켓의일단또는일단측면에형성된유입구를통해 제 1용액과제 2용액이반웅공간으로연속적으로주입되어,상기 자켓타단또는타단측면에형성된유출구를통해유기산을 포함하는 ¾핑층으로 ¾핑된금속나노입자를포함하는
반웅산물이연속적으로배출되는연속적제조방법.
[청구항 11] 제 9항에있어서,
상기자켓과상기실린더는하기관계식 4를만족하는연속적 제조방법.
(관계식 4)
Figure imgf000023_0001
(관계식 4에서, D는자켓과실린더사이의이격간격이며, η는 실린더의반지름이다)
[청구항 12] 제 9항에있어서,
상기실린더의회전속도는 400내지 1000 rpm인연속적제조방법. [청구항 13] 제 9항에있어서,
상기반웅공간의온도는 100내지 350°C인연속적제조방법.
PCT/KR2015/005410 2014-05-30 2015-05-29 금속 나노입자 및 이의 제조방법 WO2015183034A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/314,759 US10363602B2 (en) 2014-05-30 2015-05-29 Metal nanoparticles, and preparation method therefor
CN201580029015.3A CN106413951B (zh) 2014-05-30 2015-05-29 金属纳米颗粒及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0065947 2014-05-30
KR20140065947 2014-05-30

Publications (1)

Publication Number Publication Date
WO2015183034A1 true WO2015183034A1 (ko) 2015-12-03

Family

ID=54699293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005410 WO2015183034A1 (ko) 2014-05-30 2015-05-29 금속 나노입자 및 이의 제조방법

Country Status (4)

Country Link
US (1) US10363602B2 (ko)
KR (1) KR101689679B1 (ko)
CN (1) CN106413951B (ko)
WO (1) WO2015183034A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154806A (ja) * 2017-03-15 2018-10-04 Dic株式会社 金属微粒子分散体、導電性インク、および電子デバイス
CN111627698A (zh) * 2020-06-08 2020-09-04 江苏国瓷泓源光电科技有限公司 一种mlcc用镍内电极浆料
US11274224B2 (en) * 2016-09-30 2022-03-15 Kuprion Inc. Ink composition, method for forming a conductive member, and conductive device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201403731D0 (en) * 2014-03-03 2014-04-16 P V Nano Cell Ltd Nanometric copper formulations
KR101930159B1 (ko) * 2017-04-20 2018-12-17 한양대학교 산학협력단 광 소결 입자 제조방법, 광 소결 타겟 제조방법 및 광 소결 방법
EP3915698A1 (en) * 2020-05-26 2021-12-01 General Electric Company Binder solutions comprising nanoparticles for use in additive manufacturing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070110084A (ko) * 2005-02-14 2007-11-15 오스트레일리언뉴클리어사이언스앤드테크놀로지오거나이제이션 층상 나노입자
KR20100082609A (ko) * 2009-01-09 2010-07-19 한국과학기술연구원 금속 화합물 미세 분말의 제조방법
KR20130032190A (ko) * 2011-09-22 2013-04-01 한국과학기술연구원 코어-셀 구조의 복합 분말 및 그 제조 방법
KR20130111180A (ko) * 2012-03-30 2013-10-10 한국화학연구원 표면 산화막 형성이 제어된 금속 나노 입자 합성 방법 및 용액 공정을 통한 금속 전도성 박막의 제조방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449820B1 (ko) 2002-07-02 2004-09-22 오재완 스크류형 연속식 금속분말 제조장치
US7264872B2 (en) * 2004-12-30 2007-09-04 3M Innovative Properties Company Durable high index nanocomposites for AR coatings
CA2857801C (en) * 2006-10-26 2014-12-30 Xyleco, Inc. Methods of processing biomass comprising electron-beam radiation
KR100818195B1 (ko) * 2006-12-14 2008-03-31 삼성전기주식회사 금속 나노입자의 제조방법 및 이에 따라 제조된 금속나노입자
US7918339B2 (en) * 2007-03-23 2011-04-05 Yamato Packing Technology Institute Co., Ltd. Packing implement for goods transportation
US8017044B2 (en) * 2008-07-08 2011-09-13 Xerox Corporation Bimodal metal nanoparticle ink and applications therefor
DE102009015470A1 (de) * 2008-12-12 2010-06-17 Byk-Chemie Gmbh Verfahren zur Herstellung von Metallnanopartikeln und auf diese Weise erhaltene Metallnanopartikel und ihre Verwendung
US8558117B2 (en) * 2010-02-13 2013-10-15 Aculon, Inc. Electroconductive inks made with metallic nanoparticles
CN202498214U (zh) * 2012-01-09 2012-10-24 上海龙翔新材料科技有限公司 一种大规模连续生产纳米银粉的装置
WO2013147535A1 (en) 2012-03-30 2013-10-03 Korea Research Institute Of Chemical Technology Synthetic method of suppressing metal nano-particle from having oxidized film and method of manufacturing conductive metal thin film via solution-processed
JP5827203B2 (ja) * 2012-09-27 2015-12-02 三ツ星ベルト株式会社 導電性組成物
KR101269407B1 (ko) * 2012-11-05 2013-05-30 한국기계연구원 탄소피막이 형성된 구리분말의 제조방법
KR101344846B1 (ko) * 2012-12-04 2014-01-16 한국화학연구원 정전수력학적 인쇄용 금속 나노 잉크를 이용한 소자제작 방법
CN203292491U (zh) * 2013-06-18 2013-11-20 上海大学 液相还原法制备超细银粉的装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070110084A (ko) * 2005-02-14 2007-11-15 오스트레일리언뉴클리어사이언스앤드테크놀로지오거나이제이션 층상 나노입자
KR20100082609A (ko) * 2009-01-09 2010-07-19 한국과학기술연구원 금속 화합물 미세 분말의 제조방법
KR20130032190A (ko) * 2011-09-22 2013-04-01 한국과학기술연구원 코어-셀 구조의 복합 분말 및 그 제조 방법
KR20130111180A (ko) * 2012-03-30 2013-10-10 한국화학연구원 표면 산화막 형성이 제어된 금속 나노 입자 합성 방법 및 용액 공정을 통한 금속 전도성 박막의 제조방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11274224B2 (en) * 2016-09-30 2022-03-15 Kuprion Inc. Ink composition, method for forming a conductive member, and conductive device
JP2018154806A (ja) * 2017-03-15 2018-10-04 Dic株式会社 金属微粒子分散体、導電性インク、および電子デバイス
CN111627698A (zh) * 2020-06-08 2020-09-04 江苏国瓷泓源光电科技有限公司 一种mlcc用镍内电极浆料

Also Published As

Publication number Publication date
CN106413951B (zh) 2019-05-03
KR20150138088A (ko) 2015-12-09
US20170197244A1 (en) 2017-07-13
KR101689679B1 (ko) 2016-12-26
US10363602B2 (en) 2019-07-30
CN106413951A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
WO2015183034A1 (ko) 금속 나노입자 및 이의 제조방법
KR101785350B1 (ko) 광소결을 이용한 전도성 금속박막의 제조방법
Yang et al. Self-seeded growth of five-fold twinned copper nanowires: mechanistic study, characterization, and SERS applications
Sun Silver nanowires–unique templates for functional nanostructures
Zhou et al. Growth of nanobipyramid by using large sized Au decahedra as seeds
Liu et al. Synthesis and characterization of spherical and mono-disperse micro-silver powder used for silicon solar cell electronic paste
Jiang et al. Studies on the preparation and characterization of gold nanoparticles protected by dendrons
Velázquez-Salazar et al. Controlled overgrowth of five-fold concave nanoparticles into plasmonic nanostars and their single-particle scattering properties
Amarjargal et al. Facile in situ growth of highly monodispersed Ag nanoparticles on electrospun PU nanofiber membranes: flexible and high efficiency substrates for surface enhanced Raman scattering
Zhu et al. Branched Au nanostructures enriched with a uniform facet: Facile synthesis and catalytic performances
CN103938014A (zh) 一种准晶脱合金化制备的纳米多孔Pd材料及其制备工艺
Imura et al. Neuron-shaped gold nanocrystals and two-dimensional dendritic gold nanowires fabricated by use of a long-chain amidoamine derivative
CN106623973A (zh) 一种镍铂合金纳米颗粒的可控合成方法
Kotlyar et al. Coating silver nanoparticles on poly (methyl methacrylate) chips and spheres via ultrasound irradiation
Lan et al. The preparation of oleylamine modified micro-size sphere silver particles and its application in crystalline silicon solar cells
Dios et al. Chemical precipitation of nickel nanoparticles on Ti (C, N) suspensions focused on cermet processing
Ider et al. Rapid synthesis of silver nanoparticles by microwave-polyol method with the assistance of latex copolymer
CN104858416A (zh) 立体五角星金纳米粒子及其制备方法
JP2006124787A (ja) 高結晶性ナノ銀粒子スラリー及びその製造方法
Tsuji et al. Syntheses of Au@ PdAg and Au@ PdAg@ Ag core–shell nanorods through distortion-induced alloying between Pd shells and Ag atoms over Au nanorods
Bauer et al. Synthesis of 3D dendritic gold nanostructures assisted by a templated growth process: application to the detection of traces of molecules
Krishnan et al. Low dimensional CuO nanocomposites synthesis by pulsed wire explosion and their crystal growth mechanism
Zuraiqi et al. Field’s Metal Nanodroplets for Creating Phase-Change Materials
Jin et al. Interfacial synthesis of lollipop-like Au–polyaniline nanocomposites for catalytic applications
JP6494338B2 (ja) ニッケル粒子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799534

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15314759

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15799534

Country of ref document: EP

Kind code of ref document: A1