WO2015182859A1 - Method for obtaining low-molecular weight collagen peptides from fish bones and shells using pressurized hydrothermal hydrolysis - Google Patents

Method for obtaining low-molecular weight collagen peptides from fish bones and shells using pressurized hydrothermal hydrolysis Download PDF

Info

Publication number
WO2015182859A1
WO2015182859A1 PCT/KR2015/002571 KR2015002571W WO2015182859A1 WO 2015182859 A1 WO2015182859 A1 WO 2015182859A1 KR 2015002571 W KR2015002571 W KR 2015002571W WO 2015182859 A1 WO2015182859 A1 WO 2015182859A1
Authority
WO
WIPO (PCT)
Prior art keywords
collagen
molecular weight
fish
mackerel
weight collagen
Prior art date
Application number
PCT/KR2015/002571
Other languages
French (fr)
Korean (ko)
Inventor
전병수
Original Assignee
부경대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부경대학교산학협력단 filed Critical 부경대학교산학협력단
Publication of WO2015182859A1 publication Critical patent/WO2015182859A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]

Definitions

  • the present invention relates to a method for recovering functional components from fish. More specifically, collagen macromolecules (about 126 kDa) extracted from by-products such as shells, bones and intestines left after fish processing are hydrolyzed by pressurized hydrothermal reaction to convert into collagen peptides with low molecular weight (about 3 kDa). A method for obtaining collagen peptides.
  • Collagen is a protein with a variety of structures, generally found in animal bone, shell, and cartilage tissue. Collagen accounts for 25% of the total weight of the animal and contains 1-2% in muscle. Collagen is a major component of the cell matrix matrix of human and animal connective tissue. Collagen exists in various forms. The typical collagen type, collagen I, has a triple helical structure with three polypeptide chains twisted at about 126 kDa (Trofocollagen). There are three major amino acids in collagen, and the specific one is a repeating structure of "glycine-proline-X" or "glycine-X-hydroxyproline” (where X is any amino acid).
  • Collagen is a biomaterial for tissue regeneration due to its excellent bio-compatibility, bio-degrability and anti-aging properties, and is widely used in industries such as food, cosmetics, biopharmaceuticals, and pharmaceuticals. .
  • collagen enhances immune function, promotes bone cell regeneration by adsorbing calcium in bone tissue, and strengthens joints. It also has excellent effects on skin beauty by activating skin metabolism and maintaining moisturizing power. It is known to exert, and is utilized as functional ingredients, such as a pharmaceutical and cosmetics. In particular, it is used as a component of the functional cosmetics to improve the wrinkles of the skin caused by aging or ultraviolet rays.
  • collagen In extracting collagen from biological tissues, it is extracted with an organic solvent, treated with acid or alkali, and then collagen which is insoluble in water is obtained using appropriate enzymes such as trypsin and hyaluronidase.
  • appropriate enzymes such as trypsin and hyaluronidase.
  • Most of the collagen in use today is isolated and purified from the bones and shells of land animals such as cattle, calves, pigs and poultry.
  • BSE bovine spongiform encephalopathy
  • FMD foot-and-mouth disease
  • AI avian influenza
  • TSE transmissible spongiform encephalopathy
  • Natural collagen obtained from fish has a relatively high molecular weight of about 126 kDa and thus has a problem in that it cannot be absorbed in vivo because it does not penetrate deep into the living body. Therefore, there is a need for the development of a technology capable of producing a relatively low molecular weight collagen peptide to efficiently penetrate collagen into the living body.
  • methods for decomposing high molecular substances derived from living bodies include chemical hydrolysis using an acid, an alkali or a catalyst, and enzymatic hydrolysis using an enzyme.
  • chemical hydrolysis requires severe reaction conditions, causes severe environmental pollution, requires a process for recovering the injected chemicals, and may result in deterioration of the product.
  • enzymatic hydrolysis is not economical because the reaction process is complicated and takes a long time to complete the production cycle.
  • Patent Document 1 Japanese Unexamined Patent Publication No. H06-157233A (Published: June 3, 1994, "Odorless to low-odor component in shellfish peptides, preparation method thereof, and external preparation or solvent containing the component")
  • the present invention has been proposed to solve the problems of the prior art of producing low molecular weight collagen by chemical or enzymatic hydrolysis using acid, alkali or catalyst described above, namely by-product generation, environmental pollution, prolonged process conditions, etc.
  • An object of the present invention is to provide a method for obtaining collagen peptide hydrolysates (low molecular weight collagen peptides) derived from fish from bones, shells, intestines and the like which are by-products after fish processing.
  • Another object of the present invention is to provide a method for obtaining collagen hydrolyzate derived from fish while being economical, environmentally friendly and safe through a simple process without using a catalyst.
  • Another object of the present invention is to provide a method for producing collagen hydrolyzate derived from fish that is easy to absorb and penetrate into the human body.
  • a method of obtaining low molecular weight collagen derived from fish comprising the step of hydrothermally hydrolyzing a high molecular weight collagen powder extracted from at least one fish processing by-product selected from the group consisting of fish bones, shells and intestines.
  • a method for producing low molecular weight collagen derived from fish comprising hydrolyzing high molecular weight collagen powder extracted from at least one fish processing by-product selected from the group consisting of fish bones, shells and intestines with high temperature and high pressure water.
  • the method further comprises the step of extracting the high molecular weight collagen powder from the dried and ground fish processing by-product sample, wherein the high molecular weight collagen powder
  • the method of 1 or 2 which is used as a starting material of the step of hydrothermal hydrolysis.
  • Extracting high molecular weight collagen powder comprises treating the ground mackerel bone with an alkaline solution diluted in a ratio of 1: 5-1:20 (w / v); Decalcifying by adding an acid in a ratio of 1: 5 to 1:20 (w / v) to the insoluble mackerel bone obtained by treatment of the alkaline solution; Degreasing by adding 1: 5-1:20 (w / v) alcohol to the decalcified mackerel bone; And hydrolyzing by adding pepsin to the degreased mackerel bone residue.
  • the step of extracting high molecular weight collagen powder comprises the steps of treating the ground mackerel with an alkaline solution diluted in a ratio of 1:20-1:50 (w / v); Degreasing by adding 1:20-1:50 (w / v) alcohol to the insoluble mackerel shell obtained by treatment of the alkaline solution; And hydrolyzing by adding pepsin to the degreased mackerel shell residue.
  • a method of obtaining collagen peptide hydrolyzate having a low molecular weight by using hydrothermal hydrolysis using high-temperature and high-pressure water from by-products such as bones, shells and intestines of fishes is provided.
  • the present invention adopts a simple process that does not use substances such as enzymes or organic acids to ensure the efficiency and economic efficiency of the process, while ensuring environmental friendliness and safety, while being used as a functional ingredient such as food, medicine, cosmetics, etc.
  • the advantage is that it can rapidly produce molecular weight collagen peptides.
  • the present invention can be used as a raw material collagen extracted from by-products such as bones, shells, intestines discarded after the processing of the fish, the fish collagen peptide produced in the present invention does not have the smell peculiar to the fish functionalities of the applied product , Stability and safety are also excellent.
  • the collagen peptide hydrolyzate finally recovered and obtained according to the present invention has a molecular weight of 3,000 Da or less, it is easy to penetrate and absorb into the human body, thereby making it a functional ingredient for enhancing immunity, preventing skin aging, and regenerating bone cells It can be added to pharmaceuticals, cosmetics, etc., can be utilized in these industries.
  • FIG. 1 is a process diagram schematically illustrating a process for obtaining low molecular weight collagen peptide hydrolyzate from fish processing by-products and an analytical method for confirming the structure and function of collagen obtained in these processes according to an exemplary embodiment of the present invention.
  • FIG. 2 is a schematic of a pressurized hydrothermal hydrolysis process apparatus for obtaining low molecular weight collagen peptide hydrolyzate from fish processing by-products in accordance with an exemplary embodiment of the present invention.
  • FIG. 3 is a photograph of Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for pepsin soluble collagen isolated from fish bones and shells in an embodiment of the present invention.
  • MMP represents molecular weight marker protein
  • CSC represents calf shell collagen
  • MSC represents fish shell collagen
  • MBC represents fish bone collagen
  • BATC represents Achilles tendon collagen.
  • 4 and 5 are FT-IR spectrum analysis results for pepsin soluble collagen isolated from fish bone and shell in the embodiment of the present invention.
  • Figure 6 is a heat denaturation measurement results for pepsin soluble collagen isolated from fish bone and shell in the embodiment of the present invention.
  • FIG. 7 to 9 are MALDI-TOF mass spectrum analysis results for collagen hydrolysates obtained by pressurized hydrothermal hydrolysis of pepsin soluble collagen isolated from fish bones and shells in the examples of the present invention.
  • 7 is a collagen hydrolyzate obtained by hydrothermal hydrolysis of pepsin soluble collagen isolated from fish bone at 200 ° C., 30 bar
  • FIG. 8 is a hydrothermal hydrolysis of pepsin soluble collagen isolated from fish skin at 200 ° C. and 30 bar
  • the collagen hydrolyzate obtained by FIG. 9 is a collagen hydrolyzate obtained by hydrothermal hydrolysis of pepsin soluble collagen isolated from fish shells at 250 °C, 70 bar.
  • 10 to 13 is a measurement result of the antioxidant activity of the collagen hydrolyzate obtained by the hydrothermal hydrolysis of pepsin soluble collagen isolated from the bone and shell of fish in the embodiment of the present invention.
  • 10 shows DPPH free radical scavenging activity
  • FIG. 11 shows ABTS free radical scavenging activity
  • FIG. 12 shows ferric reducing power analysis
  • FIG. 13 shows Fe 2+ chelate activity measurement results.
  • the present inventors obtained a low molecular weight collagen peptide by pressurized hydrothermal hydrolysis using high-temperature, high-pressure water to collagen derived from fish.
  • Collagen poptide has completed the present invention with the focus on the fact that it can be used in a variety of industries, such as pharmaceuticals, health foods, cosmetics.
  • the present invention provides a method for obtaining low molecular weight collagen derived from fish, comprising the step of hydrothermally hydrolyzing a high molecular weight collagen powder extracted from at least one fish processing by-product selected from the group consisting of fish bones, shells and intestines. It is about.
  • the present invention also provides a low molecular weight collagen derived from fish, comprising hydrolyzing high molecular weight collagen powder extracted from at least one fish processing by-product selected from the group consisting of fish bones, shells and intestines with high temperature and high pressure water. It is about a method.
  • the term 'fish processing by-product' refers to by-products remaining as non-edible parts after being processed into food materials, for example bone, shells, intestines and the like.
  • Fish includes, for example, mackerel, tuna, and the like, but is not limited thereto, and may be any kind having a high content of collagen in processed by-products.
  • the high molecular weight collagen extracted from fish is used as a starting material of the pressurized hydrothermal reaction.
  • 'high molecular weight collagen' is a natural collagen extracted from a fish by a known method means that the average molecular weight is about 126 kDa.
  • low molecular weight collagen specifically, collagen having a molecular weight of 3,000 Da or less is obtained by the hydrothermal hydrolysis of high molecular weight collagen as described above.
  • Hydrolysis using subcritical water hydrolysis (also called 'SWH') generated by high pressure and high temperature is an environmentally friendly and fast hydrolysis method.
  • the boiling point of water is 0.1 MPa, 100 ° C.
  • the critical points are 22 MPa, 374 ° C.
  • the subcritical water is near the critical point of water.
  • Subcritical water exhibits different properties from those of water at room temperature, atmospheric pressure, or near boiling point, that is, low dielectric constant and high ionicity. Low dielectric constants have high solubility in organics, and high ionicity can act as an acid or basic catalyst to promote hydrolysis.
  • Subcritical water hydrolysis processes are environmentally friendly because they do not generate environmental pollution and by-products.
  • a pressurized hydrothermal hydrolysis reaction using high temperature and high pressure water is used. Pure water has a boiling point of 100 ° C at atmospheric pressure and hot water extraction is performed in this area, but the experimental range for temperature change without changing the pressure is limited.
  • the critical point of water is at a temperature of 374 ° C. and a pressure of 22 MPa, below which water maintains a subcritical state, in which water maintains a liquid phase due to high pressure. That is, in the subcritical state, water is not divided into gas and liquid regions, and different process conditions may be formed according to various temperature and pressure changes, and the subcritical water in various regions may have different physical properties.
  • hydrolysis reaction When hydrolyzing the polymer material using unique physical properties such as high solubility of subcritical water, low dielectric constant, small interfacial tension, fast permeability, and low viscosity, the hydrolysis reaction can be efficiently proceeded.
  • hydrothermal reactions with sub-critical water at various conditions have much more ions than at ambient atmospheric pressure, and these ions catalyze as acids or bases.
  • subcritical water for example, can function as a solvent suitable for the dissolution of a wide range of organic compounds due to its low dielectric constant.
  • subcritical water below supercritical conditions i.e. below critical temperature and critical pressure, may function as a new reaction medium in a variety of chemical reactions due to its unique physical and chemical properties.
  • the hydrothermal hydrolysis process in the subcritical state is recognized as an alternative to the conventional hydrolysis process due to the short reaction time, high hydrolysis rate, the safety of the hydrolyzate, the simplicity of the process, and the environmentally friendly process. . Therefore, in the present invention, by using hydrothermal hydrolysis using high-temperature and high-pressure water in a subcritical state, when the subcritical water is out of the saturated gas region and becomes a liquid state, the polymeric material is not carbonized and the liquid hydrothermal hydrolysis is performed. (pressurized hydrothermal hydrolysis) is characterized in that the reaction proceeds to obtain a product having functional properties.
  • Subcritical water hydrolysis process requires no pre-treatment, relatively short reaction time, less corrosion or residue generation by reaction, no need for toxic solvents, and formation of decomposition products This small advantage is an environmentally friendly and rapid biomass hydrolysis method that can be used as an alternative to chemical or catalytic methods using existing acids or bases.
  • the high temperature, high pressure water used to obtain the hydrolyzate of fish-derived high molecular weight collagen, eg pepsin soluble collagen, ie low molecular weight collagen, according to the present invention has a temperature of 150-350 ° C. and 4 A subcritical condition with a pressure of 400 bar, preferably at a temperature of 200-300 ° C. and a pressure of 20-100 bar, more preferably at a temperature of 220-260 ° C. and a pressure range of 30-70 bar.
  • a pressure of 400 bar preferably at a temperature of 200-300 ° C. and a pressure of 20-100 bar, more preferably at a temperature of 220-260 ° C. and a pressure range of 30-70 bar.
  • the negative organoleptic properties of the hydrolyzate recovered are induced and are undesirable because they are not competitive in terms of energy and economy.
  • the high molecular weight collagen powder is extracted from dried and ground fish processing by-product samples before the step of hydrothermal hydrolysis of high molecular weight collagen powder. It further comprises a step, and may be used as a starting material of the step of hydrothermal hydrolysis of the high molecular weight collagen powder obtained here.
  • the step of extracting the high molecular weight collagen powder comprises the steps of treating the ground fish bone with an alkaline solution diluted at a ratio of 1: 5-1:20 (w / v). And demineralizing the fish bone by adding a demineralizing agent in a ratio of 1: 5-1:20 (w / v) to the insoluble fish bone obtained by the treatment of the alkaline solution, and adding the demineralized fish bone to the 1: 5-1:20 (w / v) of alcohol to degreasing and adding pepsin to the degreased fish bone residue may comprise hydrolysis.
  • the extracting of the high molecular weight collagen powder is performed by treating the ground fish skin with an alkaline solution diluted at a ratio of 1:20-1:50 (w / v). And degreasing by adding 1:20-1:50 (w / v) alcohol to the insoluble fish shell obtained by treating the alkaline solution, and hydrolyzing by adding pepsin to the degreased fish shell residue. It may include.
  • FIG. 1 is a process diagram schematically illustrating a method for recovering, obtaining and analyzing collagen hydrolysates derived from fish in accordance with one exemplary embodiment of the present invention.
  • a fish processing by-product sample such as bones, skin and intestines of fish is prepared. Wash it thoroughly with water and dry it. It can be dried naturally in a windy shade or freeze-dried at low temperatures.
  • the freeze-drying method is particularly useful because the collagen contained in fish bones and shells is not modified by heat.
  • the freeze drying temperature is approximately -20 to 10 ° C, preferably -5 to 10 ° C, and the drying time is in the range of 48-96 hours. Can be. Lyophilization under these conditions yields a completely dried sample.
  • the freeze drying temperature and drying time may be chosen differently depending on the state of the prepared fish processing by-product.
  • the dried sample is then cut and ground to the appropriate size.
  • the dried sample may be cut to a size of approximately 0.1-3 cm using a mechanical blend and then ground into powder form.
  • the dried sample may be ground into a powder form using a homogenizer.
  • the collagen is then separated from the milled sample.
  • exemplary proteases such as pepsin
  • pepsin may be used as proteolytic enzymes other than collagenase that completely degrades collagen, for example in milled samples.
  • pepsin can be used to isolate pepsin-solubilized collagen (PSC) from fish samples and recover it in powder form.
  • the ground fish bone is mixed with an alkaline solution of 1: 5-1:20 (w / v) to remove the collagen free portion.
  • an alkaline solution of 1: 5-1:20 (w / v) to remove the collagen free portion.
  • demineralized by adding a deliming agent at a ratio of 1: 5-1:20 (w / v)
  • 1: 5 to decalcified fish bones -Degreasing by adding alcohol at a ratio of 1:20 (w / v) and hydrolyzing by adding pepsin to the degreased fish bone residue.
  • alkaline solutions may be sodium hydroxide or calcium hydroxide solutions in concentrations of 0.01-1.0 M.
  • deliming agents examples include formic acid, acetic acid, picric acid, and acid solutions such as trichloroacetic acid, buffers such as citric acid and citric acid buffer, and metals that form chelates.
  • histochemical deliming methods such as using a complex salt of ethylene diamine tetra acetic acid (EDTA) at a concentration of 0.1-1.0 M may be used.
  • EDTA ethylene diamine tetra acetic acid
  • alcohols having 1 to 4 carbon atoms for example butyl alcohol
  • pepsin can be used, for example, in a form diluted in an acid such as acetic acid.
  • washing or neutralizing with distilled water or the like to remove alkali, washing or neutralizing with distilled water, etc. to remove the deliming agent after decalcification, or degreasing It may further comprise any one of the steps of washing with distilled water in order to remove.
  • the step of separating the collagen the shell of the pulverized fish with an alkaline solution such as sodium hydroxide or calcium hydroxide solution of 0.01-1.0 M concentration 1:20-1:50 ( mixing and treating at a ratio of w / v), insoluble fish shell obtained by treatment of an alkaline solution, such as for example butyl alcohol, having 1 to 4 carbon atoms such as butyl alcohol, 1:20 to 1:50 (w / and degreasing by adding in a proportion of v), and hydrolyzing by adding pepsin to the degreased fish shell residue.
  • pepsin can be used, for example, in diluted form with an acid such as acetic acid.
  • washing and neutralizing with distilled water or the like to remove the alkali may include the step of washing with distilled water to remove alcohol and the like.
  • a salt such as NaCl to adjust the concentration of the solution, centrifuging the precipitate and dissolving it with an acid such as acetic acid.
  • Collagen including collagen type I has three polypeptide chains bound together to form a helix structure, and has a telopeptide structure having no helix structure at both ends of the molecule.
  • telopeptide is the part where intra-molecule and inter-molecule crosslinking takes place. That is, in vivo, collagen is insoluble by crosslinking of molecules in the telopeptide moiety. When this insoluble collagen is treated with a protease such as pepsin, the telopeptide of the crosslinked moiety can be removed and digested to obtain a solubilized atherocollagen.
  • collagen hydrolyzate is recovered and obtained by a pressurized hydrothermal hydrolysis reaction in which high-temperature, high-pressure water is added to pepsin soluble collagen derived from fish.
  • the pressurized hydrothermal hydrolysis process using high temperature and high pressure water may be performed using the hydrolysis equipment shown in FIG. 2.
  • collagen samples obtained from fish-derived bones and / or shells, such as fish are transferred from sample collector 8 to reactor 5 and filled with water, such as distilled water.
  • the collagen sample and water that can be converted into a subcritical state can be reacted by mixing in the reactor 5 at a ratio of 1: 100-1: 300 w / v.
  • the temperature controller 7 and the pressure gauge 2 are operated to hydrolyze the collagen by the pressurized hydrothermal reaction to adjust the inside of the reactor 5 to a predetermined temperature and pressure.
  • using a stirrer 6 attached inside the reactor 5 to maintain uniformity of the collagen and subcritical water mixture injected into the reactor 5 while inducing a uniform pressure and heat distribution throughout the sample. can do.
  • the collagen hydrolyzate derived from the bone and / or shell of the fish recovered through the above-described process was measured by molecular weight measurement, amino acid composition analysis and antioxidant activity by MALDI-TOF-MS analysis.
  • all of the molecular weight of the collagen hydrolyzate obtained by the hydrothermal hydrolysis reaction was 2000 Da or less, it was confirmed that significantly reduced compared to the molecular weight of several hundred kDa of the general collagen (Figs. 7 to 9 and Examples) 7).
  • This analysis means that collagen hydrolysates derived from fish bones and / or shells finally recovered and obtained according to the present invention can be rapidly introduced into the human body.
  • the collagen hydrolyzate obtained according to an exemplary embodiment of the present invention has a relatively high content of lysine, an amino acid that helps people suffering from anorexia and anemia, and also has an important function in forming connective tissue of the body. It contains a lot of glycine, proline and hydroxyproline to be performed (see Table 7 in Example 8).
  • the collagen hydrolyzate recovered according to the process of the present invention has antioxidant activity (see Table 8 and FIGS. 10 to 13).
  • the high molecular weight collagen was isolated using the bone or shell of the fish as a starting material, and collagen hydrolyzate, that is, low molecular weight collagen, was obtained by the hydrothermal hydrolysis.
  • collagen hydrolyzate that is, low molecular weight collagen
  • collagen may be separated from fish processing by-products, and hydrolysates containing collagen peptides and amino acids may be obtained through pressure hydrothermal hydrolysis. Since the collagen hydrolyzate recovered according to the present invention not only has an antioxidant activity but can be relatively easily administered to the human body, it can be added as a functional ingredient of cosmetics, drugs and / or foods, and thus can be utilized in various industries. It is expected to be.
  • the mackerel (Scomber japonicus ) processing by-product was provided by a seafood processing company in Dongwonhae Sarang Co., Ltd. in Busan.
  • Reagents used (pepsin, protein marker, terrestrial collagen, 2,2-diphenyl-1-picrylhydrzyl (DPPH), 2,2-azino-bis (3-ethylbeznothiazoline-6-sulfonic acd) diammonium salt (ABTS), potassisum ferricyanide, 3- (2-pyridyl) -5,6-bis (4-phenyl-sulfonic acid) -1,2,4-triazine (ferrozine), 6-hydroxy-2,5,7,8-tetramethyl chroman- 2-carboxylic acid (trolox) was purchased from Sigma Aldrich (St. Louis, MO., USA), and other reagents and solvents were used for analytical or HPLC grade.
  • the bones and shells of the mackerel were washed in cold water and the samples were freeze dried for 72 hours.
  • the dried sample was ground in a homogenizer and stored at -20 ° C.
  • water, ash, crude fat and protein content were measured according to the Association of Official Analytical Chemists (AOAC) method.
  • Non-protein content was calculated by subtracting the total content of moisture, ash, fat and protein.
  • freeze-dried mackerel bone and skin samples were used. Table 1 is a result of the analysis of the content of the major components in the dried mackerel bone and shell, it can be seen that the dried mackerel shell is relatively higher in the content of protein and lipid than the dried mackerel bone.
  • PSC Pepsin-solubilized collagen
  • the ground mackerel bone was mixed with 0.1 M NaOH in a 1:10 (w / v) ratio.
  • the mixture was continuously stirred at 250 rpm for 24 hours with a magnetic stirrer. At this time, the alkaline solution was exchanged every 6 hours.
  • the sample was then washed with cold distilled water and lyophilized until the pH of the sample reached neutrality (EYELA FDV-2100, Rikakikai Co. Ltd., Tokyo, Japan). Thereafter, 0.5 M ethylenediaminetetraacetic acid (EDTA, pH 7.5) was added to the sample in a 1:10 (w / v) ratio and decalcified for 4 days. EDTA solution was changed daily.
  • EDTA ethylenediaminetetraacetic acid
  • the residue was washed with cold distilled water and the recovered residue was mixed with 10% (v / v) butyl alcohol aqueous solution at a ratio of 1:10 (w / v) and treated for 24 hours. After washing again with distilled water, the residue was mixed with 0.5% M acetic acid solution containing 0.1% (w / v) pepsin at 1:10 (w / v) for 3 days and treated at 12,000 rpm for 50 minutes. Centrifugation was performed. The residue was extracted again with the same solution for 3 days and centrifuged under the same conditions. NaCl was added to the viscous solution to finally adjust the concentration to 2.0M.
  • the solution was incubated for 24 hours and the resulting precipitate was centrifuged at 12,000 rpm for 20 minutes and then dissolved in 0.57M acetic acid.
  • the solution was dialyzed with 0.1 M acetic acid and distilled water, placed in a dialysis bag and stored for 2 hours, and then lyophilized to obtain pepsin soluble collagen powder.
  • Collagen was isolated from the mackerel shell as follows. 0.1M NaOH was mixed at a ratio of 1:35 (w / v) in the ground mackerel shell, and then treated with a magnetic stirrer for 24 hours while stirring. The alkaline solution was then replaced four times a day. And washed with cold distilled water, and then lyophilized. The freeze-dried sample was mixed with 10% (w / v) butyl alcohol aqueous solution at a ratio of 1:35 (w / v) and degreased for 24 hours.
  • the degreased residue was washed with cold distilled water, and the residue was then treated for 3 days by mixing 1:35 (w / v) in 0.57M acetic acid solution containing 0.1% (w / v) pepsin. Then, the same procedure as when separating collagen from mackerel bone was performed to obtain pepsin soluble collagen powder.
  • the collagen content in pepsin soluble collagen powder obtained from mackerel bone and skin was determined by hydroxyproline according to the method described in the literature (DE Goll et al., 1963 J. Food Science , 28 (5): 503-509), Obtained by multiplying the conversion factor.
  • the content of hydroxyproline was quantified by slightly modifying the method described in the literature (I. Bergman et al., 1963, Analytical Chemistry , 35 (12): 1961-65).
  • Table 2 shows the results of collagen (protein) and general ingredient contents in pepsin soluble collagen powder obtained from mackerel bone and skin, respectively.
  • the skin content of pepsin soluble collagen was higher than that of mackerel bone.
  • Mackerel bone and skin protein contents were 90.05 ⁇ 2.34 and 86.89 ⁇ 2.48%, respectively.
  • the mackerel bone and skin moisture content was 6.28 ⁇ 0.12 and 7.48 ⁇ 0.10%, the ash content was 3.48 ⁇ 0.09 and 5.37 ⁇ 0.06%, and the fat content was 0.19 ⁇ 0.02 and 0.26 ⁇ 0.03%.
  • the molecular weight of the pepsin soluble collagen powder obtained in Example 2 was measured using SDS-PAGE. Proteins were analyzed by Laemmli's modified method using 3.0% stacking gel and 5.0% resolving gel. After dissolving 2 g of the pepsin soluble collagen (PSC) powder sample obtained in Example 2 in 1.0 mL of 0.02 M sodium phosphate buffer (pH 7.2), the dissolved sample was buffered (1M Tris-HCl, pH 6.8, 10% SDS, 25% glycerol, 2% bromophenol blue, 5% 2-mercaptoethanol) and 1: 1 (v / v) ratio was mixed.
  • PSC pepsin soluble collagen
  • FT-IR analysis was performed on pepsin soluble collagen (PSC) powders obtained from bone and skin of mackerel respectively in Example 2.
  • PSCs pepsin soluble collagen
  • Example 2 PSCs FT-IR spectra of freeze-dried mackerel bone and skin were obtained using Perkin Elmer (USA), Spectrum X, and the spectra were measured at resolutions of 4000-650 cm -1 and 4 cm -1 .
  • FT-IR spectra of collagen isolated from mackerel bone and skin are shown in FIGS. 4 and 5, respectively. As can be seen in these figures, the band of collagen isolated from the mackerel bone and skin was 3283 cm -1 and It appeared at 3285 cm -1 .
  • Example 5 Determination of viscosity and denaturation temperature of pepsin soluble collagen
  • the viscosity and denaturation temperature of the pepsin soluble collagen powder obtained in Example 2 were measured.
  • the viscosity of the bone and skin of the mackerel was measured using a Brookfield DVII + Pro viscometer (Brookfield Engineering Laboratories, Inc., Middleboro, MA 02346 USA) as follows. 8 mL of 0.1M acetic acid containing 0.1% (w / v) PSC was incubated at 10 ° C. for 20 minutes and then placed in a container. Then, the viscosity of the sample was measured by rotating at 150 rpm using a viscosity measuring device component SC4-18, and the unit of viscosity was expressed in centipose (cP).
  • a Brookfield DVII + Pro viscometer Brookfield Engineering Laboratories, Inc., Middleboro, MA 02346 USA
  • Collagen has a high viscosity is an important feature
  • the viscosity of collagen (PSC) separated from the mackerel bone and shell according to the present embodiment is shown in Table 3.
  • the viscosity ranges were 18.34 ⁇ 0.25 and 20.26 ⁇ 0.21 cP.
  • denaturation temperature was measured as follows. Samples were taken at 3 ° C intervals while heating 8 mL of 0.1M acetic acid containing 0.1% (w / v) PSC from 10 ° C to 40 ° C. Viscosity was measured after the collected solution was stored at the collected temperature for 20 minutes. The heat denaturation curve of the PSC showed a slight change in viscosity with temperature (see FIG. 6). The fractional viscosity was calculated by dividing the maximum viscosity by the viscosity measured at each temperature, and the temperature at which the fractional viscosity approached 0.5 was determined as the denaturation temperature. Table 3 below shows the viscosity and denaturation temperature of the collagen isolated from the bone and shell of the mackerel.
  • the pepsin soluble collagen obtained in Example 2 was hydrolyzed using a high temperature, high pressure batch reactor such as that shown in FIG. 2.
  • a hydrolysis reactor a hydrolysis reaction was carried out using a high-pressure reactor (material: Hastelloy 276, Ilshin Autoclave Co., Ltd.) equipped with a temperature controller and a pressure gauge as described below in a batch reaction of 200 mL.
  • Collagen (0.5 g) and water obtained in Example 2 were mixed at a ratio of 1: 200 (w / v) and injected into the reactor.
  • the heater was heated to a temperature of 200-250 ° C. and a pressure range of 30-70 bar using an electric heater, and the temperature and pressure of the reactor were measured using a thermostat and a pressure gauge during the experiment. Stirred using a magnetic stirrer at 150 rpm. The desired temperature was reached after 26-54 minutes heating and held at this temperature for 3 minutes. After cooling by connecting a cooling circulation jacket to the reactor, the hydrolyzate was recovered from the reactor and filtered using filter paper.
  • Example 6 Matrix Assisted Laser Desorption / Ionization-Time Of Flight-Mass Spectrometry (MALDI-TOF-MS) analysis was performed on the recovered collagen hydrolyzate.
  • PSC pepsin soluble collagen
  • DHB 2,5-dihydroxybenzoic acid
  • Each sample was analyzed using a MALDI TOF MS from an Ultraflex III mass spectrometer (Bruker Daltonics, Germany) equipped with a pulsed nitrogen laser of 377 nm. Data were obtained by accumulating data from 200 laser shots in cationization and reflection mode at 700-6000 m / z.
  • Example 7 The analysis results of Example 7 are shown in FIGS. 7 to 9 and Tables 4 to 6 below.
  • the molecular weight range of the peptide was about 759-988 Da, and the collagen singer of the shell of the mackerel treated under the same conditions Peptide molecular weights of the digests ranged from 789-1632 Da.
  • Hydrolysis reaction conditions The molecular weight of the peptide present in the collagen hydrolyzate of the mackerel shell treated at 250 ° C. and 70 bar showed a range of 952-1638 Da.
  • Table 4 shows the results of MALDI-TOF mass spectrometry (200 ° C., 30 bar) of mackerel bone collagen hydrolyzate
  • Table 5 shows the results of MALDI-TOF mass analysis (200 ° C., 30 bar) for mackerel skin collagen hydrolyzate
  • 6 shows the results of MALDI-TOF mass spectrometry (250 ° C., 70 bar) on mackerel bone collagen hydrolysates, respectively.
  • the amino acid composition of the recovered hydrolyzate obtained in Example 7 was analyzed.
  • S430 (SYKAM) amino acid automated analyzer was used for amino acid content analysis.
  • the cation separation column LCA K07 / Li (4.6 ⁇ 150 mm) had a temperature of 37-74 ° C. and a buffer pH range of 2.90-7.95.
  • the mobile phase was 1, was used a flow rate 5 mM p-toluenesulphonic acid solution per minute at 0.45 mL, 5 mM p -toluenesulphonic acid and, 20 mM of Bis-Tris, post-column reagent a mixture of EDTA 100 m at a flow rate of 0.25 mL per minute Used as.
  • the emission wavelength was 440 and 570 nm.
  • the composition and content of amino acids in the hydrolyzate of collagen isolated from mackerel bone and skin are shown in Table 7. In view of the change in amino acid content depending on the applied temperature and pressure conditions, it can be seen that the temperature and pressure of the hydrothermal reaction are important variables in the hydrolysis reaction.
  • the glycine content was high in the amino acids present in the hydrolyzate, about 27.90-29.44% for the hydrolyzate of mackerel and about 32.38-35.25% for the hydrolyzate of the mackerel shell.
  • the antioxidant activity of the collagen hydrolyzate obtained in Example 6 was confirmed by DPPH free radical scavenging ability, ABTS free radical scavenging ability, Ferric reducing power activity, Fe 2+ chelating activity method.
  • DPPH free radical scavenging ability was calculated by the following equation.
  • the ABTS + free-radical-removing method was performed as follows. A 7 mM ABTS aqueous solution and a 2.45 mM potassium sulfate aqueous solution were mixed at a volume ratio of 1: 1, and reacted at room temperature in a dark room to prepare an ABTS + solution, and stored for 12-16 hours before use.
  • ABTS + solution was diluted to 80% methanol such that the absorbance 0.70 ⁇ 0.02 at 734nm, diluted with ABTS + solution 3.95 mL to PSC and its hydrolyzate samples in a respective addition of 0.05 mL, and then, the mixture was a dark environment 6 minutes It was kept at room temperature. Absorbance of all samples was measured at 734 nm.
  • the free radical scavenging activity ABTS + percent was calculated by the following formula.
  • the Fe 3+ reducing power of the PSC sample and the hydrolyzate was determined in the following manner, respectively.
  • 0.125 mL of PSC samples were mixed with 0.625 mL of 0.2M phosphate buffer, pH 6.6, 0.625 mL of 1% potassium ferricyanide at various concentrations. This mixture was incubated at 50 ° C. for 20 minutes. After centrifugation at 3,000 rpm for 10 minutes, 0.625 mL of 10% trichloroacetic acid was added. 1.0 mL of the upper portion of the solution was mixed with 1.0 mL of distilled water and 1.0 mL of 0.1% ferric chloride. And absorbance was read at 700 nm. The increase in absorbance was found to be associated with an increase in reducing power.
  • the Fe 2+ chelate capacity of the samples was determined in the following manner. PSC samples (0.1 mL) were mixed with 3.0 mL of distilled water at various concentrations before and after hydrolysis. In addition, 50 ⁇ L of 2 mM FeCl 2 and 0.1 mL of 5 mM ferrozine were added to PSC samples before and after hydrolysis, and incubated at room temperature for 20 minutes. The absorbance was then measured at 562 nm. Various concentrations of EDTA were used as control samples. Distilled water was used as a negative control. Chelating activity (%) was calculated using the following formula.
  • FIGS. 10 to 13 and Table 8 The analysis results of this example are shown in FIGS. 10 to 13 and Table 8 below.
  • Figure 10 shows the DPPH radical scavenging ability of the hydrolyzate of collagen separated from the mackerel bone and skin by hydrothermal reaction, showing a relatively high antioxidant activity at a concentration of 10 mg / mL.
  • 11 is a comparison of the ABTS scavenging ability of the collagen (PCS) and the hydrolyzate isolated from the mackerel bone and skin, the antioxidant properties of the hydrolyzate was higher than the collagen before hydrolysis.
  • PSCs IC 50 values in mackerel bone were 8.21 ⁇ 0.15 mg / mL in samples hydrolyzed at 200 ° C and 30 bar, and 7.27 ⁇ 0.14 mg / mL in samples hydrolyzed at 250 ° C and 70 bar.
  • 30 bar condition is 7.91 ⁇ 0.11 mg / mL
  • the sample hydrolyzed at 250 °C, 70 bar condition shows an IC 50 value of 7.01 ⁇ 0.12 mg / mL.
  • Table 8 below shows the DPPH, ABTS radical scavenging activity and Fe 2+ chelating activity (IC 50 ) of the collagen hydrolyzate, and these values are higher than the reference value.
  • VOCs volatiles
  • the low molecular weight collagen peptide hydrolyzate produced by using a pressurized hydrothermal reaction from fish bones, shells, intestines, etc. generated by the processing of fish can be absorbed into the living body due to its molecular weight of 3 kDa or less. It contains glycine and proline, which are important materials for tissue regeneration, and exhibits antioxidant activity, so it can be usefully used in various industrial fields, including medicines, dietary supplements, and cosmetics.

Abstract

The present invention relates to a method for obtaining and retrieving collagen hydrolysate from fish bones and shells through a reaction with high-temperature high-pressure water. The hydrolysate obtained in the hydrolysis process contains collagen peptides (<3000 Da) with a low molecular weight, into which collagen proteins (116,000 - 126,000 Da) isolated from fish bones and shells are lysed. It was verified that the hydrolysate derived from fish collagen contains essential amino acids. The antioxidative activity of the fish collagen hydrolysate was higher than that of the initially isolated fish collagen. The fish collagen hydrolysate had a reduced smell that acts as a negative factor of products, but an increased smell that is in favor of sensory feeling. According to the present invention, the process is simple and eco-friendly, and the product safety is excellent, and thus the hardness enhancement is anticipated. Therefore, the fish collagen hydrolysate obtained in the present invention can be utilized as a functional material in food, medicinal, and cosmetic fields.

Description

가압 수열 가수분해를 이용하여 어류의 뼈와 껍질로부터 저분자량 콜라겐 펩타이드를 수득하는 방법Process for obtaining low molecular weight collagen peptides from bones and shells of fish using press hydrothermal hydrolysis
본 발명은 어류로부터 기능성 성분을 회수하는 방법에 관한 것이다. 더욱 상세하게는, 어류 가공 후에 남겨지는 껍질, 뼈, 내장 등의 부산물에서 추출한 콜라겐 거대 분자 (약 126 kDa)를 가압 수열 반응으로 가수분해하여 콜라겐 펩타이드 저분자 (약 3 kDa)로 전환하여 저분자량의 콜라겐 펩타이드를 수득하는 방법에 관한 것이다.The present invention relates to a method for recovering functional components from fish. More specifically, collagen macromolecules (about 126 kDa) extracted from by-products such as shells, bones and intestines left after fish processing are hydrolyzed by pressurized hydrothermal reaction to convert into collagen peptides with low molecular weight (about 3 kDa). A method for obtaining collagen peptides.
콜라겐은 다양한 구조를 가진 단백질로서, 일반적으로 동물의 뼈, 껍질, 연골 조직에서 찾을 수 있다. 콜라겐은 동물 전체 중량의 25%를 차지하고 있고, 근육에 1 - 2%가 함유되어 있다. 콜라겐은 인간을 비롯한 동물 결합 조직의 세포 기질 매트릭스의 주요 성분이다. 콜라겐은 다양한 형태로 존재하는데, 대표적인 콜라겐 타입인 콜라겐 Ⅰ은 분자량이 약 126 kDa으로 3개의 폴리펩타이드 사슬이 꼬여 있는 삼중 나선형 구조를 갖는다(트로포콜라겐). 콜라겐에는 3개의 주요 아미노산이 존재하며, 특이한 것은 "글리신-프롤린-X"나 "글리신-X-하이드록시프롤린"(X는 임의의 아미노산임)이 반복된 구조를 가지고 있다. Collagen is a protein with a variety of structures, generally found in animal bone, shell, and cartilage tissue. Collagen accounts for 25% of the total weight of the animal and contains 1-2% in muscle. Collagen is a major component of the cell matrix matrix of human and animal connective tissue. Collagen exists in various forms. The typical collagen type, collagen I, has a triple helical structure with three polypeptide chains twisted at about 126 kDa (Trofocollagen). There are three major amino acids in collagen, and the specific one is a repeating structure of "glycine-proline-X" or "glycine-X-hydroxyproline" (where X is any amino acid).
현대의 많은 소비자들은 면역력을 강화시키는 천연물 유래의 건강 기능성 식품 또는 건강 보조 식품에 큰 관심을 가지고 있다. 콜라겐은 우수한 생체적합성(bio-compatibility), 생분해성(bio-degrability) 및 항 노화성을 가지고 있어서 조직 재생을 위한 생체 재료로서, 식품, 화장품, 바이오 의약품, 의약품 등의 산업 분야에서 널리 이용되고 있다. 또한, 콜라겐은 면역 기능을 향상시키고, 특히 골 조직에서 칼슘의 흡착을 통해 골세포의 재생 작용을 촉진하여 관절을 튼튼하게 해주며, 피부의 신진대사 활성화 및 보습력 유지를 통하여 피부 미용에 탁월한 효과를 발휘하는 것으로 알려져 있어서, 의약품, 화장품 등의 기능성 성분으로서 활용되고 있다. 특히, 노화 또는 자외선 등에 의해 야기되는 피부의 주름을 개선하기 위한 기능성 화장품의 성분으로 사용된다.Many modern consumers are very interested in health foods or dietary supplements derived from natural products that enhance immunity. Collagen is a biomaterial for tissue regeneration due to its excellent bio-compatibility, bio-degrability and anti-aging properties, and is widely used in industries such as food, cosmetics, biopharmaceuticals, and pharmaceuticals. . In addition, collagen enhances immune function, promotes bone cell regeneration by adsorbing calcium in bone tissue, and strengthens joints. It also has excellent effects on skin beauty by activating skin metabolism and maintaining moisturizing power. It is known to exert, and is utilized as functional ingredients, such as a pharmaceutical and cosmetics. In particular, it is used as a component of the functional cosmetics to improve the wrinkles of the skin caused by aging or ultraviolet rays.
생체 조직에서 콜라겐을 추출함에 있어서는 유기 용매로 추출하여 산이나 알칼리 처리를 한 다음, 적절한 효소, 예를 들어 트립신, 히알루로니다아제를 사용하여 물에 대해 불용성인 콜라겐을 얻는다. 현재 사용되고 있는 콜라겐의 대부분은 육상 동물인 소, 송아지, 돼지, 가금류의 뼈나 껍질에서 분리 정제된다. In extracting collagen from biological tissues, it is extracted with an organic solvent, treated with acid or alkali, and then collagen which is insoluble in water is obtained using appropriate enzymes such as trypsin and hyaluronidase. Most of the collagen in use today is isolated and purified from the bones and shells of land animals such as cattle, calves, pigs and poultry.
그러나 육상 동물에서 분리된 콜라겐의 경우, 최근 광우병(bovine spongiform encephalopathy, BSE), 구제역(foot-and-mouth disease, FMD), 조류 인플루엔자(avian influenza, AI), 전염성 광우병 (transmissible spongiform encephalopathy, TSE) 등의 질병이 발생하면서 안전성 문제가 대두되고 있다. 또한 돼지는 이슬람권에서 혐오되는 동물이어서, 돼지 유래의 콜라겐은 특정 종교를 가진 사회에서는 사용이 불가능하다. 따라서 전염성 질병 예방 및 특정 종교인을 위한 대체 콜라겐의 생산 기술 개발이 요구된다. However, in the case of collagen isolated from terrestrial animals, recently, bovine spongiform encephalopathy (BSE), foot-and-mouth disease (FMD), avian influenza (AI), and transmissible spongiform encephalopathy (TSE) With the development of such diseases, safety issues are emerging. In addition, pigs are disgusted animals in the Islamic world, so collagen derived from pigs cannot be used in a society with a certain religion. Therefore, there is a need for the prevention of infectious diseases and the development of alternative collagen production technology for certain religious people.
어류(Scomber japonicus)는 전 세계적으로 소비되는 중요한 식품 소재로, 다양한 요리 방법을 통해 섭취되고 있으며 매일 많은 양의 어류가 소비되고 있다. 어류가 식품으로 소비될 때 뼈, 껍질 그리고 내장은 비-식용 부위로서 부산물로 처리되거나, 동물 사료로 이용되기도 하지만, 방치되어 환경 오염원이 되기도 한다. 그러나 이러한 부산물에 함유된 기능성 물질의 높은 영양 가치 및 기타 산업적 활용 가능성을 고려해 볼 때, 현재 폐기되고 있는 이들 소재에 의한 환경오염의 문제를 해소하는 동시에, 적절한 가공 기술이 도입된다면 상업적으로 유용한 소재를 회수하여 활용함으로써 경제적 이익을 얻을 수도 있다.Fish ( Scomber japonicus ) is an important food ingredient consumed around the world. It is consumed through various cooking methods and a large amount of fish is consumed every day. When fish are consumed as food, bones, shells and intestines are treated as by-products as non-edible parts or used as animal feed, but are also left unattended as environmental pollutants. However, given the high nutritional value and other industrial possibilities of the functional materials contained in these by-products, it is possible to solve the problems of environmental pollution caused by these materials that are currently being disposed of, and to obtain commercially useful materials if appropriate processing technology is introduced. Economic benefits can also be gained through recovery and use.
아울러, 전술한 것과 같이 최근에 국지적, 세계적으로 구제역 등이 유행하면서 육상 동물로부터 추출된 콜라겐에 대한 안전성 문제가 대두되고 있다. 하지만, 어류의 뼈, 껍질, 내장 등에 존재하는 콜라겐을 사용한다면 이러한 문제점을 해소할 수 있다. 특히 3면이 바다로 둘러싸인 국내의 지리적 환경에서 현재 다량 폐기되고 있는 어류의 껍질, 뼈, 내장 등으로부터 콜라겐 가수분해물을 추출할 수 있다면, 수산 자원의 효율적 이용이라는 점에서 바람직할 수 있다. In addition, as described above, foot and mouth disease has recently been popularized locally and globally, and safety problems with collagen extracted from terrestrial animals have emerged. However, using collagen present in fish bones, shells, intestines, etc. can solve this problem. In particular, if the collagen hydrolyzate can be extracted from the shells, bones, intestines, etc. of fish that are currently discarded in large quantities in the domestic geographic environment surrounded by the sea on three sides, it may be preferable in view of efficient use of fishery resources.
어류로부터 수득되는 천연 콜라겐은 분자량이 약 126 kDa 정도로 상대적으로 분자량이 커서 생체 내부로 깊숙이 침투하지 못하기 때문에 생체 내에서 흡수되지 못하는 문제가 있다. 따라서, 콜라겐을 생체 내부로 효율적으로 침투시키기 위해 상대적으로 분자량이 작은 콜라겐 펩타이드를 생산할 수 있는 기술의 개발이 요구되고 있다. Natural collagen obtained from fish has a relatively high molecular weight of about 126 kDa and thus has a problem in that it cannot be absorbed in vivo because it does not penetrate deep into the living body. Therefore, there is a need for the development of a technology capable of producing a relatively low molecular weight collagen peptide to efficiently penetrate collagen into the living body.
종래 생체 유래의 고분자 물질을 분해시키기 위한 방법으로는, 산, 알칼리 또는 촉매를 이용하는 화학적 가수분해법과, 효소를 이용하는 효소적 가수분해법이 있다. 그러나 화학적 가수분해법은 격렬한 반응 조건을 필요로 하고, 심각한 환경오염을 초래하며, 투입된 화학 물질을 회수하기 위한 공정이 요구되며, 제품의 품질 저하가 따를 수 있다. 한편, 효소적 가수분해법은 반응 진행과정이 복잡하고 생산 주기를 완료하는데 오랜 시간이 소요되어 경제적이지 않다. Conventionally, methods for decomposing high molecular substances derived from living bodies include chemical hydrolysis using an acid, an alkali or a catalyst, and enzymatic hydrolysis using an enzyme. However, chemical hydrolysis requires severe reaction conditions, causes severe environmental pollution, requires a process for recovering the injected chemicals, and may result in deterioration of the product. On the other hand, enzymatic hydrolysis is not economical because the reaction process is complicated and takes a long time to complete the production cycle.
[선행기술문헌][Preceding technical literature]
특허 문헌 1: 일본 공개 특허 공보 H06-157233A (공개일: 1994.06.03., "어패류 펩타이드에서의 무취 내지 저 냄새성 성분, 그 제조법 및 상기 성분을 함유하는 외용제 또는 내용제")Patent Document 1: Japanese Unexamined Patent Publication No. H06-157233A (Published: June 3, 1994, "Odorless to low-odor component in shellfish peptides, preparation method thereof, and external preparation or solvent containing the component")
본 발명은 전술한 산, 알칼리 또는 촉매를 사용하여 화학적 또는 효소적 가수분해법으로 저분자량의 콜라겐을 생산하는 종래 기술의 문제점, 즉 부산물 발생, 환경오염, 장시간의 공정 조건 등을 해소하기 위하여 제안된 것으로서, 본 발명의 목적은 어류 가공 후의 부산물인 뼈, 껍질, 내장 등으로부터 어류 유래의 콜라겐 펩타이드 가수분해물 (저분자량 콜라겐 펩타이드)를 수득하는 방법을 제공하는 것을 목적으로 한다. The present invention has been proposed to solve the problems of the prior art of producing low molecular weight collagen by chemical or enzymatic hydrolysis using acid, alkali or catalyst described above, namely by-product generation, environmental pollution, prolonged process conditions, etc. An object of the present invention is to provide a method for obtaining collagen peptide hydrolysates (low molecular weight collagen peptides) derived from fish from bones, shells, intestines and the like which are by-products after fish processing.
본 발명의 다른 목적은 촉매를 사용하지 않는 간단한 공정을 통하여 경제적이고, 환경 친화적이며 안전성을 담보하면서 어류 유래의 콜라겐 가수분해물을 수득하는 방법을 제공하는 것이다. Another object of the present invention is to provide a method for obtaining collagen hydrolyzate derived from fish while being economical, environmentally friendly and safe through a simple process without using a catalyst.
본 발명의 또 다른 목적은 인체 내로의 흡수 및 침투가 용이한 어류 유래의 콜라겐 가수분해물을 생산하는 방법을 제공하는 것이다. Another object of the present invention is to provide a method for producing collagen hydrolyzate derived from fish that is easy to absorb and penetrate into the human body.
전술한 본 발명의 기술적 과제는 다음과 같은 해결 수단에 의해 달성된다.The technical problem of the present invention described above is achieved by the following solving means.
1. 어류 뼈, 껍질 및 내장으로 구성된 군에서 선택되는 하나 이상의 어류 가공 부산물로부터 추출된 고분자량의 콜라겐 분말을 가압 수열 가수분해 반응시키는 단계를 포함하는, 어류 유래의 저분자량 콜라겐을 수득하는 방법.1. A method of obtaining low molecular weight collagen derived from fish, comprising the step of hydrothermally hydrolyzing a high molecular weight collagen powder extracted from at least one fish processing by-product selected from the group consisting of fish bones, shells and intestines.
2. 어류 뼈, 껍질 및 내장으로 구성된 군에서 선택되는 하나 이상의 어류 가공 부산물로부터 추출된 고분자량의 콜라겐 분말을 고온 및 고압의 물로 가수분해하는 것을 포함하는, 어류 유래의 저분자량 콜라겐의 제조 방법. 2. A method for producing low molecular weight collagen derived from fish, comprising hydrolyzing high molecular weight collagen powder extracted from at least one fish processing by-product selected from the group consisting of fish bones, shells and intestines with high temperature and high pressure water.
3. 저분자량 콜라겐은 3,000 Da 이하의 분자량을 가지는 것인, 상기 1 또는 2의 방법.3. The method of 1 or 2 above, wherein the low molecular weight collagen has a molecular weight of 3,000 Da or less.
4. 가압 수열 가수분해 반응에는 150~370℃의 온도 및 5~400 bar 압력의 물이 사용되는 것인, 상기 1 또는 2의 방법.4. The method of 1 or 2 above, wherein water at a temperature of 150 to 370 ° C. and a pressure of 5 to 400 bar is used in the hydrothermal hydrolysis reaction.
5. 고분자량의 콜라겐 분말을 가압 수열 가수분해 반응시키는 단계 이전에, 건조 및 분쇄된 어류 가공 부산물 시료로부터 고분자량의 콜라겐 분말을 추출하는 단계를 더 포함하고, 여기서 얻은 고분자량의 콜라겐 분말을 가압 수열 가수분해 반응시키는 단계의 출발 물질로 사용하는 것인, 상기 1 또는 2의 방법.5. Before the pressurized hydrothermal hydrolysis of the high molecular weight collagen powder, the method further comprises the step of extracting the high molecular weight collagen powder from the dried and ground fish processing by-product sample, wherein the high molecular weight collagen powder The method of 1 or 2, which is used as a starting material of the step of hydrothermal hydrolysis.
6. 고분자량의 콜라겐 분말을 추출하는 단계는 분쇄된 고등어의 뼈를 1:5 - 1:20 (w/v)의 비율로 희석한 알칼리 용액으로 처리하는 단계; 알칼리 용액의 처리에 의해 얻어진 불용성 고등어 뼈에 1:5 ~ 1:20 (w/v)의 비율의 산을 가하여 탈석회화 하는 단계; 탈석회화된 고등어 뼈에 1:5 - 1:20 (w/v)의 알코올을 가하여 탈지 처리하는 단계; 및 탈지 처리된 고등어 뼈 잔여물에 펩신을 가하여 가수분해하는 단계를 포함하는 것인, 상기 1 또는 2의 방법.6. Extracting high molecular weight collagen powder comprises treating the ground mackerel bone with an alkaline solution diluted in a ratio of 1: 5-1:20 (w / v); Decalcifying by adding an acid in a ratio of 1: 5 to 1:20 (w / v) to the insoluble mackerel bone obtained by treatment of the alkaline solution; Degreasing by adding 1: 5-1:20 (w / v) alcohol to the decalcified mackerel bone; And hydrolyzing by adding pepsin to the degreased mackerel bone residue.
7. 고분자량의 콜라겐 분말을 추출하는 단계는 분쇄된 고등어의 껍질을 1:20 - 1:50 (w/v)의 비율로 희석한 알칼리 용액으로 처리하는 단계; 알칼리 용액의 처리에 의해 얻어진 불용성 고등어 껍질에 1:20 - 1:50 (w/v)의 알코올을 가하여 탈지 처리하는 단계; 및 탈지 처리된 고등어 껍질 잔여물에 펩신을 가하여 가수분해하는 단계를 포함하는 것인, 상기 1 또는 2의 방법.7. The step of extracting high molecular weight collagen powder comprises the steps of treating the ground mackerel with an alkaline solution diluted in a ratio of 1:20-1:50 (w / v); Degreasing by adding 1:20-1:50 (w / v) alcohol to the insoluble mackerel shell obtained by treatment of the alkaline solution; And hydrolyzing by adding pepsin to the degreased mackerel shell residue.
본 발명에 따라 어류의 뼈, 껍질, 내장 등 어류의 가공 후에 남겨지는 부산물로부터 고온, 고압의 물을 이용한 가압 수열 가수분해를 이용하여 분자량이 적은 콜라겐 펩타이드 가수분해물을 수득하는 방법이 제공되었다. According to the present invention, a method of obtaining collagen peptide hydrolyzate having a low molecular weight by using hydrothermal hydrolysis using high-temperature and high-pressure water from by-products such as bones, shells and intestines of fishes is provided.
본 발명은 효소나 유기산 등과 같은 물질을 사용하지 않는 간단한 공정을 채택함으로써 공정의 효율성 및 경제성의 확보가 가능하고, 환경 친화적이고 안전성을 담보하면서도, 식품, 약품, 화장품 등의 기능성 성분으로 활용되는 저분자량의 콜라겐 펩타이드를 신속하게 생산할 수 있다는 장점이 있다. The present invention adopts a simple process that does not use substances such as enzymes or organic acids to ensure the efficiency and economic efficiency of the process, while ensuring environmental friendliness and safety, while being used as a functional ingredient such as food, medicine, cosmetics, etc. The advantage is that it can rapidly produce molecular weight collagen peptides.
또한, 본 발명은 어류의 가공 후에 버려지는 뼈, 껍질, 내장 등의 부산물로부터 추출된 콜라겐을 원료로 활용할 수 있고, 본 발명으로 생산된 어류 콜라겐 펩타이드는 어류 특유의 냄새가 없어서 적용 제품의 관능성, 안정성 및 안전성 역시 우수하다. In addition, the present invention can be used as a raw material collagen extracted from by-products such as bones, shells, intestines discarded after the processing of the fish, the fish collagen peptide produced in the present invention does not have the smell peculiar to the fish functionalities of the applied product , Stability and safety are also excellent.
본 발명에 따라 최종적으로 회수, 수득된 콜라겐 펩타이드 가수분해물은 분자량이 3,000 Da 이하로서 작기 때문에, 인체로의 침투와 흡수가 용이하여 면역 증강, 피부 노화 방지, 골세포 재생 등을 위한 기능성 성분으로 식품, 의약품, 화장품 등에 첨가될 수 있어서, 이들 산업에 활용될 수 있다. Since the collagen peptide hydrolyzate finally recovered and obtained according to the present invention has a molecular weight of 3,000 Da or less, it is easy to penetrate and absorb into the human body, thereby making it a functional ingredient for enhancing immunity, preventing skin aging, and regenerating bone cells It can be added to pharmaceuticals, cosmetics, etc., can be utilized in these industries.
도 1은 본 발명의 예시적인 실시형태에 따라 어류 가공 부산물로부터 저분자량 콜라겐 펩타이드 가수분해물을 수득하는 공정과, 이들 공정에서 얻어진 콜라겐의 구조 및 기능을 확인하기 위한 분석 방법을 개략적으로 도시한 공정도이다. 1 is a process diagram schematically illustrating a process for obtaining low molecular weight collagen peptide hydrolyzate from fish processing by-products and an analytical method for confirming the structure and function of collagen obtained in these processes according to an exemplary embodiment of the present invention. .
도 2는 본 발명의 예시적인 실시형태에 따라 어류 가공 부산물로부터 저분자량 콜라겐 펩타이드 가수분해물을 수득하기 위한 가압 수열 가수분해 공정 장치의 개략도이다. 2 is a schematic of a pressurized hydrothermal hydrolysis process apparatus for obtaining low molecular weight collagen peptide hydrolyzate from fish processing by-products in accordance with an exemplary embodiment of the present invention.
도 3은 본 발명의 실시예에서 어류 뼈와 껍질에서 분리한 펩신 가용성 콜라겐에 대한 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 사진이다. 도 3에서 MMP는 분자량 마커 단백질, CSC는 송아지 껍질 콜라겐, MSC는 어류 껍질 콜라겐, MBC는 어류 뼈 콜라겐, BATC는 아킬레스 건 콜라겐을 나타낸다. 3 is a photograph of Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for pepsin soluble collagen isolated from fish bones and shells in an embodiment of the present invention. In Figure 3, MMP represents molecular weight marker protein, CSC represents calf shell collagen, MSC represents fish shell collagen, MBC represents fish bone collagen, and BATC represents Achilles tendon collagen.
도 4 및 도 5는 본 발명의 실시예에서 어류 뼈와 껍질에서 각각 분리한 펩신 가용성 콜라겐에 대한 FT-IR 스펙트럼 분석 결과이다. 4 and 5 are FT-IR spectrum analysis results for pepsin soluble collagen isolated from fish bone and shell in the embodiment of the present invention.
도 6은 본 발명의 실시예에서 어류 뼈와 껍질에서 각각 분리한 펩신 가용성 콜라겐에 대한 열 변성 측정 결과이다. Figure 6 is a heat denaturation measurement results for pepsin soluble collagen isolated from fish bone and shell in the embodiment of the present invention.
도 7 내지 도 9는 본 발명의 실시예에서 어류 뼈와 껍질에서 각각 분리한 펩신 가용성 콜라겐을 가압 열수 가수분해 반응시켜 얻은 콜라겐 가수분해물에 대한 MALDI-TOF 질량 스펙트럼 분석 결과이다. 도 7은 어류 뼈에서 분리한 펩신 가용성 콜라겐을 200℃, 30 bar에서 가압 열수 가수분해하여 얻은 콜라겐 가수분해물, 도 8은 어류 껍질에서 분리한 펩신 가용성 콜라겐을 200℃, 30 bar에서 가압 열수 가수분해하여 얻은 콜라겐 가수분해물, 도 9는 어류 껍질에서 분리한 펩신 가용성 콜라겐을 250℃, 70 bar에서 가압 열수 가수분해하여 얻은 콜라겐 가수분해물에 대한 것이다. 7 to 9 are MALDI-TOF mass spectrum analysis results for collagen hydrolysates obtained by pressurized hydrothermal hydrolysis of pepsin soluble collagen isolated from fish bones and shells in the examples of the present invention. 7 is a collagen hydrolyzate obtained by hydrothermal hydrolysis of pepsin soluble collagen isolated from fish bone at 200 ° C., 30 bar, and FIG. 8 is a hydrothermal hydrolysis of pepsin soluble collagen isolated from fish skin at 200 ° C. and 30 bar. The collagen hydrolyzate obtained by FIG. 9 is a collagen hydrolyzate obtained by hydrothermal hydrolysis of pepsin soluble collagen isolated from fish shells at 250 ℃, 70 bar.
도 10 내지 13은 본 발명의 실시예에서 어류의 뼈와 껍질에서 각각 분리한 펩신 가용성 콜라겐을 가압 열수 가수분해하여 수득한 콜라겐 가수분해물에 대한 항산화 활성 측정 결과이다. 도 10은 DPPH 자유 라디칼 소거 활성, 도 11은 ABTS 자유 라디칼 소거 활성, 도 12는 ferric 환원력 분석, 도 13은 Fe2+ 킬레이트 활성 측정 결과이다. 10 to 13 is a measurement result of the antioxidant activity of the collagen hydrolyzate obtained by the hydrothermal hydrolysis of pepsin soluble collagen isolated from the bone and shell of fish in the embodiment of the present invention. 10 shows DPPH free radical scavenging activity, FIG. 11 shows ABTS free radical scavenging activity, FIG. 12 shows ferric reducing power analysis, and FIG. 13 shows Fe 2+ chelate activity measurement results.
[부호의 설명][Description of the code]
1: 안전밸브2: 압력 게이지1: safety valve 2: pressure gauge
3: 니들 밸브4: 전기 히터3: needle valve 4: electric heater
5: 고압 반응기6: 임펠러/교반기5: high pressure reactor 6: impeller / stirrer
7: 교반 속도/온도 컨트롤러8: 샘플 수집기7: Stirring Speed / Temperature Controller 8: Sample Collector
본 발명자들은 종래 기술의 문제점을 해소하기 위한 방법으로, 어류 유래의 고분자량의 콜라겐을 고온, 고압의 물을 이용하는 가압 수열 가수분해 반응으로 저분자량의 콜라겐 펩타이드를 수득하였으며, 이와 같이 수득한 저분자량 콜라겐 팝타이드는 의약품, 건강 식품, 화장품 등 다양한 산업 분야에서 활용될 수 있다는 점에 착안하여 본 발명을 완성하였다. In order to solve the problems of the prior art, the present inventors obtained a low molecular weight collagen peptide by pressurized hydrothermal hydrolysis using high-temperature, high-pressure water to collagen derived from fish. Collagen poptide has completed the present invention with the focus on the fact that it can be used in a variety of industries, such as pharmaceuticals, health foods, cosmetics.
본 발명은 어류 뼈, 껍질 및 내장으로 구성된 군에서 선택되는 하나 이상의 어류 가공 부산물로부터 추출된 고분자량의 콜라겐 분말을 가압 수열 가수분해 반응시키는 단계를 포함하는, 어류 유래의 저분자량 콜라겐을 수득하는 방법에 관한 것이다. The present invention provides a method for obtaining low molecular weight collagen derived from fish, comprising the step of hydrothermally hydrolyzing a high molecular weight collagen powder extracted from at least one fish processing by-product selected from the group consisting of fish bones, shells and intestines. It is about.
또한 본 발명은 어류 뼈, 껍질 및 내장으로 구성된 군에서 선택되는 하나 이상의 어류 가공 부산물로부터 추출된 고분자량의 콜라겐 분말을 고온 및 고압의 물로 가수분해하는 것을 포함하는, 어류 유래의 저분자량 콜라겐의 제조 방법에 관한 것이다. The present invention also provides a low molecular weight collagen derived from fish, comprising hydrolyzing high molecular weight collagen powder extracted from at least one fish processing by-product selected from the group consisting of fish bones, shells and intestines with high temperature and high pressure water. It is about a method.
본 발명에 있어서, '어류 가공 부산물'이라는 용어는 식품 소재로 가공된 이후에 비-식용 부위로서 남겨지는 부산물, 예를 들면, 뼈, 껍질, 내장 등을 의미한다. 어류는 예를 들면, 고등어, 참치 등을 포함하지만, 이에 한정되는 것은 아니며, 가공 부산물에 콜라겐의 함량이 높은 어떤 종류라도 무방하다. In the present invention, the term 'fish processing by-product' refers to by-products remaining as non-edible parts after being processed into food materials, for example bone, shells, intestines and the like. Fish includes, for example, mackerel, tuna, and the like, but is not limited thereto, and may be any kind having a high content of collagen in processed by-products.
본 발명에서는 가압 수열 반응의 출발 물질로서 어류로부터 추출된 고분자량의 콜라겐을 사용하는 것을 특징으로 한다. 이때 '고분자량의 콜라겐'은 어류로부터 공지의 방법으로 추출된 천연 콜라겐으로서 평균 분자량이 약 126 kDa 정도인 것을 의미한다. In the present invention, the high molecular weight collagen extracted from fish is used as a starting material of the pressurized hydrothermal reaction. In this case, 'high molecular weight collagen' is a natural collagen extracted from a fish by a known method means that the average molecular weight is about 126 kDa.
본 발명에서는 상기와 같은 고분자량의 콜라겐을 가압 수열 가수분해 반응으로 저분자량의 콜라겐, 구체적으로는 3,000 Da 이하의 분자량을 가지는 콜라겐을 수득한다. In the present invention, low molecular weight collagen, specifically, collagen having a molecular weight of 3,000 Da or less is obtained by the hydrothermal hydrolysis of high molecular weight collagen as described above.
고압과 고온에 의해 생성되는 아임계 수(subcritical water hydrolysis: 'SWH'로 지칭되기도 함)를 이용하는 가수분해법은 친환경적이며 가수분해 속도가 빠른 방법이다. 물의 비점은 0.1 MPa, 100℃이고, 임계점은 22 MPa, 374℃이며, 아임계 수는 물의 임계점 부근에서 존재한다. 아임계 상태의 물은 상온, 상압 또는 비점 부근에서 물이 가지는 물성과는 다른 특성, 즉 낮은 유전 상수와 높은 이온성을 나타낸다. 낮은 유전 상수는 유기물에 대한 높은 용해성을 가지도록 하며, 높은 이온성은 산 또는 염기성을 띠는 촉매 역할을 하여 가수분해를 촉진할 수 있다. 아임계 수 가수분해 공정은 환경 오염과 부산물을 발생시키지 않아 친환경적이다. Hydrolysis using subcritical water hydrolysis (also called 'SWH') generated by high pressure and high temperature is an environmentally friendly and fast hydrolysis method. The boiling point of water is 0.1 MPa, 100 ° C., the critical points are 22 MPa, 374 ° C. and the subcritical water is near the critical point of water. Subcritical water exhibits different properties from those of water at room temperature, atmospheric pressure, or near boiling point, that is, low dielectric constant and high ionicity. Low dielectric constants have high solubility in organics, and high ionicity can act as an acid or basic catalyst to promote hydrolysis. Subcritical water hydrolysis processes are environmentally friendly because they do not generate environmental pollution and by-products.
이에, 본 발명에서 고분자량의 콜라겐을 가수분해하여 저분자량의 콜라겐을 수득함에 있어서는 고온, 고압의 물을 이용한 가압 열수 가수분해 반응을 이용한다. 순수한 물은 대기압에서 100℃의 끓는점을 가지고 있으며, 이 영역에서 열수 추출을 수행하고 있으나, 압력의 변화 없이 온도 변화에 대한 실험 범위가 제한적이다. 그러나 물의 임계점(critical point)은 온도 374℃, 압력 22 MPa로, 그 이하에서 물은 아임계 상태를 유지하는데, 아임계 상태에서 물은 높은 압력으로 인하여 액상을 유지한다. 즉, 아임계 상태에서 물은 기체 상태와 액체 상태의 영역으로 구분되지 않고, 다양한 온도와 압력 변화에 따라 서로 상이한 공정 조건이 형성될 수 있으며, 다양한 영역의 아임계 수는 물리적 특성이 서로 상이한 상태로 존재한다. Accordingly, in the present invention, in order to obtain high molecular weight collagen by hydrolyzing high molecular weight collagen, a pressurized hydrothermal hydrolysis reaction using high temperature and high pressure water is used. Pure water has a boiling point of 100 ° C at atmospheric pressure and hot water extraction is performed in this area, but the experimental range for temperature change without changing the pressure is limited. However, the critical point of water is at a temperature of 374 ° C. and a pressure of 22 MPa, below which water maintains a subcritical state, in which water maintains a liquid phase due to high pressure. That is, in the subcritical state, water is not divided into gas and liquid regions, and different process conditions may be formed according to various temperature and pressure changes, and the subcritical water in various regions may have different physical properties. Exists as.
이처럼 아임계 수의 높은 용해력, 낮은 유전율, 작은 계면 장력, 빠른 침투성, 낮은 점성 등의 독특한 물리적 특성을 이용하여 고분자 물질을 가수분해시키는 경우, 가수분해 반응을 효율적으로 진행시킬 수 있다. 예를 들어, 다양한 조건에서의 아임계 수(sub-critical water)를 이용한 수열 반응은 상온 대기압 상태보다 훨씬 많은 이온들을 가지고 있어, 이 이온들이 산 또는 염기와 같은 촉매 작용을 한다. 또한, 예를 들어, 아임계 상태의 물은 낮은 유전상수로 인하여 광범위한 유기 화합물의 용해에 적절한 용매로 기능할 수 있다. 이처럼, 초임계 조건 이하, 즉 임계 온도 및 임계 압력 이하에서의 아임계 수는 독특한 물리적 및 화학적 특성으로 인하여 다양한 화학 반응에서 새로운 반응 매질로 기능할 수 있다. When hydrolyzing the polymer material using unique physical properties such as high solubility of subcritical water, low dielectric constant, small interfacial tension, fast permeability, and low viscosity, the hydrolysis reaction can be efficiently proceeded. For example, hydrothermal reactions with sub-critical water at various conditions have much more ions than at ambient atmospheric pressure, and these ions catalyze as acids or bases. In addition, subcritical water, for example, can function as a solvent suitable for the dissolution of a wide range of organic compounds due to its low dielectric constant. As such, subcritical water below supercritical conditions, i.e. below critical temperature and critical pressure, may function as a new reaction medium in a variety of chemical reactions due to its unique physical and chemical properties.
특히, 아임계 상태에서의 가수 분해 공정(hydrothermal hydrolysis process)은 짧은 반응 시간, 높은 가수 분해율, 가수분해물의 안전성, 공정의 단순성, 환경 친화적 공정 등으로 기존의 가수분해 공정의 대체기술로 인정받고 있다. 이에, 본 발명에서는 아임계 상태인 고온, 고압의 물을 이용한 가수 열수 가수분해 반응을 이용하여, 아임계수가 포화기체 영역에서 벗어나 액체 상태가 되면, 고분자 물질이 탄화되지 않고 액상의 가압 수열 가수분해(pressurized hydrothermal hydrolysis) 반응이 진행되어 기능적 특성을 가진 생성물을 수득하는 특징을 나타낸다. 아임계수 가수분해 공정은 사전 처리(pre-treatment) 작업이 필요 없고, 반응 시간이 상대적으로 짧으며, 반응에 의한 부식이나 잔여물 생성이 적으며, 독성 용매를 사용할 필요도 없고, 분해 상물의 형성이 작은 이점을 가지고 있어서 기존의 산이나 염기를 사용하는 화학적 방법이나 촉매적 방법의 대안으로서 이용될 수 있는, 환경 친화적이고 신속한 생물질(biomass)의 가수분해 방법이다. In particular, the hydrothermal hydrolysis process in the subcritical state is recognized as an alternative to the conventional hydrolysis process due to the short reaction time, high hydrolysis rate, the safety of the hydrolyzate, the simplicity of the process, and the environmentally friendly process. . Therefore, in the present invention, by using hydrothermal hydrolysis using high-temperature and high-pressure water in a subcritical state, when the subcritical water is out of the saturated gas region and becomes a liquid state, the polymeric material is not carbonized and the liquid hydrothermal hydrolysis is performed. (pressurized hydrothermal hydrolysis) is characterized in that the reaction proceeds to obtain a product having functional properties. Subcritical water hydrolysis process requires no pre-treatment, relatively short reaction time, less corrosion or residue generation by reaction, no need for toxic solvents, and formation of decomposition products This small advantage is an environmentally friendly and rapid biomass hydrolysis method that can be used as an alternative to chemical or catalytic methods using existing acids or bases.
예시적으로 본 발명에 따라 어류 유래의 고분자량 콜라겐, 예를 들어 펩신 가용성 콜라겐의 가수분해 생성물, 즉 저분자량의 콜라겐을 수득하기 위하여 사용되는 고온, 고압의 물은 150 - 350℃의 온도와 4 - 400 bar의 압력, 바람직하게는 200 - 300℃의 온도와 20 - 100 bar의 압력, 더욱 바람직하게는 220 - 260℃의 온도와 30 - 70 bar의 압력 범위의 아임계 조건으로 조정된다. 온도가 350℃를 초과하거나 압력이 400 bar를 넘는 조건에서는 회수되는 가수분해물의 부정적인 관능적 특성이 유발되며, 에너지 및 경제성 측면에서 경쟁력이 없기 때문에 바람직하지 않다.Illustratively, the high temperature, high pressure water used to obtain the hydrolyzate of fish-derived high molecular weight collagen, eg pepsin soluble collagen, ie low molecular weight collagen, according to the present invention has a temperature of 150-350 ° C. and 4 A subcritical condition with a pressure of 400 bar, preferably at a temperature of 200-300 ° C. and a pressure of 20-100 bar, more preferably at a temperature of 220-260 ° C. and a pressure range of 30-70 bar. At temperatures above 350 ° C. or pressures above 400 bar, the negative organoleptic properties of the hydrolyzate recovered are induced and are undesirable because they are not competitive in terms of energy and economy.
본 발명에 따른 저분자량 콜라겐의 수득 방법 또는 저분자량 콜라겐의 제조 방법에서는 고분자량의 콜라겐 분말을 가압 수열 가수분해 반응시키는 단계 이전에, 건조 및 분쇄된 어류 가공 부산물 시료로부터 고분자량의 콜라겐 분말을 추출하는 단계를 더 포함하고, 여기서 얻은 고분자량의 콜라겐 분말을 가압 수열 가수분해 반응시키는 단계의 출발 물질로 사용할 수도 있다. In the method for obtaining low molecular weight collagen or the method for producing low molecular weight collagen according to the present invention, the high molecular weight collagen powder is extracted from dried and ground fish processing by-product samples before the step of hydrothermal hydrolysis of high molecular weight collagen powder. It further comprises a step, and may be used as a starting material of the step of hydrothermal hydrolysis of the high molecular weight collagen powder obtained here.
본 발명의 한 예시적인 실시 형태에서, 고분자량의 콜라겐 분말을 추출하는 단계는, 분쇄된 어류의 뼈를 1:5 - 1:20 (w/v)의 비율로 희석한 알칼리 용액으로 처리하는 단계와, 알칼리 용액의 처리에 의해 얻어진 불용성 어류 뼈에 1:5 - 1:20 (w/v)의 비율의 탈회제를 가하여 어류 뼈를 탈석회화 하는 단계와, 상기 탈석회화된 어류 뼈에 1:5 - 1:20 (w/v)의 알코올을 가하여 탈지 처리하는 단계와, 탈지 처리된 어류 뼈 잔여물에 펩신을 가하여 가수분해하는 단계를 포함할 수 있다. In one exemplary embodiment of the present invention, the step of extracting the high molecular weight collagen powder comprises the steps of treating the ground fish bone with an alkaline solution diluted at a ratio of 1: 5-1:20 (w / v). And demineralizing the fish bone by adding a demineralizing agent in a ratio of 1: 5-1:20 (w / v) to the insoluble fish bone obtained by the treatment of the alkaline solution, and adding the demineralized fish bone to the 1: 5-1:20 (w / v) of alcohol to degreasing and adding pepsin to the degreased fish bone residue may comprise hydrolysis.
본 발명의 다른 예시적인 실시 형태에서, 고분자량의 콜라겐 분말을 추출하는 단계는, 분쇄된 어류의 껍질을 1:20 - 1:50 (w/v)의 비율로 희석한 알칼리 용액으로 처리하는 단계와, 알칼리 용액의 처리에 의해 얻어진 불용성 어류 껍질에 1:20 - 1:50 (w/v)의 알코올을 가하여 탈지 처리하는 단계와, 탈지 처리된 어류 껍질 잔여물에 펩신을 가하여 가수분해하는 단계를 포함할 수 있다. In another exemplary embodiment of the present invention, the extracting of the high molecular weight collagen powder is performed by treating the ground fish skin with an alkaline solution diluted at a ratio of 1:20-1:50 (w / v). And degreasing by adding 1:20-1:50 (w / v) alcohol to the insoluble fish shell obtained by treating the alkaline solution, and hydrolyzing by adding pepsin to the degreased fish shell residue. It may include.
이하에서는, 본 발명을 첨부 도면을 참조하여 설명한다. EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated with reference to an accompanying drawing.
도 1은 본 발명의 한 가지 예시적인 실시 형태에 따라 어류 유래의 콜라겐 가수분해물을 회수, 수득하고 이들을 분석하는 방법을 개략적으로 도시한 공정도이다. 어류 가공 부산물로부터 고분자량의 콜라겐을 직접 추출하고, 이를 가수분해 반응 원료로 사용하는 경우에는, 도 1에 도시된 것과 같이, 어류의 뼈, 껍질, 내장 등 적어도 하나의 어류 가공 부산물 샘플을 준비하고, 이를 물로 깨끗이 세척한 뒤, 건조한다. 바람이 통하는 그늘에서 자연적으로 건조시킬 수도 있고, 저온에서 동결 건조(freeze-dry)시킬 수도 있다. 동결 건조 방식을 채택하면 특히 어류의 뼈와 껍질에 함유되어 있는 콜라겐이 열에 의하여 변형되지 않으므로 특히 유용할 수 있다. 어류 샘플로서의 어류의 뼈와 껍질을 동결 건조 방식을 이용하여 건조하고자 하는 경우, 동결 건조 온도는 대략 -20 내지 10℃, 바람직하게는 -5 내지 10℃이며, 건조 시간은 48 - 96 시간 범위일 수 있다. 이러한 조건에서 동결 건조시키면 완전히 건조된 샘플을 얻을 수 있다. 준비된 어류 가공 부산물의 상태에 따라 동결 건조 온도 및 건조 시간은 달리 선택될 수 있다. 1 is a process diagram schematically illustrating a method for recovering, obtaining and analyzing collagen hydrolysates derived from fish in accordance with one exemplary embodiment of the present invention. When directly extracting high molecular weight collagen from fish processing by-product and using it as a hydrolysis reaction raw material, as shown in FIG. 1, at least one fish processing by-product sample such as bones, skin and intestines of fish is prepared. Wash it thoroughly with water and dry it. It can be dried naturally in a windy shade or freeze-dried at low temperatures. The freeze-drying method is particularly useful because the collagen contained in fish bones and shells is not modified by heat. If the bone and skin of the fish as a fish sample are to be dried using a freeze drying method, the freeze drying temperature is approximately -20 to 10 ° C, preferably -5 to 10 ° C, and the drying time is in the range of 48-96 hours. Can be. Lyophilization under these conditions yields a completely dried sample. The freeze drying temperature and drying time may be chosen differently depending on the state of the prepared fish processing by-product.
그 다음, 건조된 샘플을 적절한 크기로 절단, 분쇄한다. 예시적인 실시 형태에서 기계 블렌더(mechanical blend)를 사용하여 건조된 샘플을 대략 0.1 - 3 ㎝의 크기로 절단한 뒤, 분말 형태로 분쇄할 수 있다. 또는 건조된 샘플을 균질기를 사용하여 분말 형태로 분쇄할 수 있다.The dried sample is then cut and ground to the appropriate size. In an exemplary embodiment, the dried sample may be cut to a size of approximately 0.1-3 cm using a mechanical blend and then ground into powder form. Alternatively, the dried sample may be ground into a powder form using a homogenizer.
그 다음, 분쇄된 샘플로부터 콜라겐을 분리한다. 예시적으로 분쇄된 샘플에 적절한 단백질 분해 효소(protease), 예를 들어 콜라겐을 완전히 분해시키는 콜라게나아제 이외의 단백질 분해 효소로서 펩신 등을 사용할 수 있다. 일예로서 펩신을 사용하여 어류 샘플로부터 펩신 가용성 콜라겐(pepsin-solubilized collagen, PSC)을 분리하고, 이를 분말 형태로 회수할 수 있다. The collagen is then separated from the milled sample. Exemplary proteases, such as pepsin, may be used as proteolytic enzymes other than collagenase that completely degrades collagen, for example in milled samples. As an example, pepsin can be used to isolate pepsin-solubilized collagen (PSC) from fish samples and recover it in powder form.
본 발명의 한 가지 실시예로서 어류의 뼈를 출발 물질로 사용하는 경우, 콜라겐이 없는 부분을 제거하기 위하여, 분쇄된 어류의 뼈를 알칼리 용액과 1:5 - 1:20 (w/v)의 비율로 혼합하여 처리하고, 알칼리 용액으로 처리하여 얻은 불용성 어류 뼈에 1:5 - 1:20 (w/v)의 비율로 탈회제를 가하여 탈석회화한 다음, 탈석회화된 어류 뼈에 1:5 - 1:20 (w/v)의 비율로 알코올을 가하여 탈지하고, 탈지 처리된 어류 뼈 잔여물에 펩신을 가하여 가수분해하는 단계를 포함할 수 있다. 알칼리 용액의 예로는 0.01 - 1.0 M 농도의 수산화나트륨 또는 수산화칼슘 용액을 사용할 수 있다. 탈회제로는 1 - 20% 농도의 포름산, 아세트산, 피크르산(picric acid), 트리클로로아세트산 등의 산(acid) 용액, 시트르산-시트르산 버퍼 등의 완충액, 금속과 착염(chelate)을 형성하는 물질, 예를 들어 0.1 - 1.0 M 농도의 에틸렌디아민테트라아세트산(ethylene diamine tetra acetic acid, EDTA)의 착염을 이용하는 것과 같은 조직화학적 탈회 방법을 사용할 수 있다. 탈지 처리 단계에서는 탄소 수 1 - 4개의 알코올, 예를 들어 부틸알코올을 사용할 수 있으며, 펩신은 예를 들어 아세트산과 같은 산에 희석된 형태로 사용될 수 있다. In one embodiment of the present invention, when the fish bone is used as a starting material, the ground fish bone is mixed with an alkaline solution of 1: 5-1:20 (w / v) to remove the collagen free portion. To insoluble fish bones obtained by treatment with an alkaline solution, demineralized by adding a deliming agent at a ratio of 1: 5-1:20 (w / v), and then 1: 5 to decalcified fish bones. -Degreasing by adding alcohol at a ratio of 1:20 (w / v) and hydrolyzing by adding pepsin to the degreased fish bone residue. Examples of alkaline solutions may be sodium hydroxide or calcium hydroxide solutions in concentrations of 0.01-1.0 M. Examples of deliming agents include formic acid, acetic acid, picric acid, and acid solutions such as trichloroacetic acid, buffers such as citric acid and citric acid buffer, and metals that form chelates. For example, histochemical deliming methods such as using a complex salt of ethylene diamine tetra acetic acid (EDTA) at a concentration of 0.1-1.0 M may be used. In the degreasing treatment step, alcohols having 1 to 4 carbon atoms, for example butyl alcohol, can be used, and pepsin can be used, for example, in a form diluted in an acid such as acetic acid.
필요하다면, 알칼리 용액으로 처리한 뒤, 알칼리를 제거하기 위하여 증류수 등으로 수세하거나 중화하는 단계, 탈석회화 단계 이후에 탈회제를 제거하기 위하여 증류수 등으로 수세하거나 중화하는 단계, 또는 탈지 단계 이후에 알코올 등을 제거하기 위하여 증류수로 수세하는 단계 중의 어느 하나를 더 포함할 수도 있다. If necessary, after treating with alkaline solution, washing or neutralizing with distilled water or the like to remove alkali, washing or neutralizing with distilled water, etc. to remove the deliming agent after decalcification, or degreasing It may further comprise any one of the steps of washing with distilled water in order to remove.
또한, 예를 들어 아세트산과 같은 산에 희석한 펩신을 사용한 경우라면, 그 이후에 염화나트륨과 같은 염을 첨가하여 용액의 농도를 조절하는 단계, 침전물을 원심분리하고 아세트산 등의 산으로 용해하는 단계, 아세트산/증류수를 이용하여 투석하는 단계, 및 투석에 의해 얻어진 시료를 동결 건조(예를 들어 -20 내지 10℃)하는 단계를 더 포함할 수 있다. In addition, for example, in the case of using pepsin diluted in an acid such as acetic acid, thereafter, adding a salt such as sodium chloride to adjust the concentration of the solution, centrifuging the precipitate and dissolving it with an acid such as acetic acid, Dialysis using acetic acid / distilled water, and freeze-drying (eg, -20 to 10 ° C) the sample obtained by dialysis.
한편, 어류의 껍질을 출발 물질로 사용하는 경우, 콜라겐을 분리하는 단계는, 분쇄된 어류의 껍질을 0.01 - 1.0 M 농도의 수산화나트륨 또는 수산화칼슘 용액과 같은 알칼리 용액과 1:20 - 1:50(w/v)의 비율로 혼합하여 처리하는 단계, 알칼리 용액의 처리에 의해 얻어진 불용성 어류 껍질에, 예를 들면 부틸알코올과 같은 탄소 수 1 - 4개의 알코올을 1:20 - 1:50 (w/v)의 비율로 첨가하여 탈지 처리하는 단계, 탈지 처리된 어류 껍질 잔여물에 펩신을 가하여 가수분해하는 단계를 포함할 수 있다. 어류 뼈와 마찬가지로 펩신은 예를 들어 아세트산과 같은 산에 희석된 형태로 사용될 수 있다. On the other hand, when using the shell of the fish as a starting material, the step of separating the collagen, the shell of the pulverized fish with an alkaline solution such as sodium hydroxide or calcium hydroxide solution of 0.01-1.0 M concentration 1:20-1:50 ( mixing and treating at a ratio of w / v), insoluble fish shell obtained by treatment of an alkaline solution, such as for example butyl alcohol, having 1 to 4 carbon atoms such as butyl alcohol, 1:20 to 1:50 (w / and degreasing by adding in a proportion of v), and hydrolyzing by adding pepsin to the degreased fish shell residue. Like fish bones, pepsin can be used, for example, in diluted form with an acid such as acetic acid.
필요하다면, 알칼리 용액으로 처리한 뒤, 알칼리를 제거하기 위하여 증류수 등을 이용하여 수세/중화하는 단계와, 탈지 처리하는 단계 이후에 알코올 등을 제거하기 위하여 증류수로 수세하는 단계를 포함할 수 있다. 또한, 예를 들어 아세트산과 같은 산에 희석한 펩신을 사용한 경우라면, 그 이후에 NaCl과 같은 염을 첨가하여 용액의 농도를 조절하는 단계와, 침전물을 원심분리하고 아세트산 등의 산으로 용해하는 단계, 아세트산/증류수를 이용하여 투석하는 단계와, 투석에 의해 얻어진 시료를 동결 건조(예를 들어 -20 내지 10℃)하는 단계를 포함할 수 있다. If necessary, after the treatment with an alkaline solution, washing and neutralizing with distilled water or the like to remove the alkali, and after the step of degreasing treatment may include the step of washing with distilled water to remove alcohol and the like. In addition, for example, in the case of using pepsin diluted in an acid such as acetic acid, thereafter, adding a salt such as NaCl to adjust the concentration of the solution, centrifuging the precipitate and dissolving it with an acid such as acetic acid. Dialysis using acetic acid / distilled water, and freeze-drying (eg, -20 to 10 ° C) the sample obtained by dialysis.
콜라겐 타입 Ⅰ을 포함하는 콜라겐은 3개의 폴리펩타이드 체인이 3가닥 묶여 나선(helix) 구조를 형성하고 있으며, 분자의 양 말단에는 나선 구조를 가지지 않는 텔로펩타이드(telopeptide) 구조를 가지고 있다. 콜라겐 분자 구조에서 텔로펩타이드는 분자내(intra-molecule) 및 분자간(inter-molecule) 가교가 이루어지는 부분이다. 즉, 생체 내에서 콜라겐은 텔로펩타이드 부분에서 분자가 가교되어 불용화된다. 이 불용성 콜라겐을 펩신 등의 프로테아제로 처리하면 가교 부분의 텔로펩타이드가 제거, 소화되어 가용화된 아테로콜라겐을 얻을 수 있다. Collagen including collagen type I has three polypeptide chains bound together to form a helix structure, and has a telopeptide structure having no helix structure at both ends of the molecule. In the collagen molecular structure, telopeptide is the part where intra-molecule and inter-molecule crosslinking takes place. That is, in vivo, collagen is insoluble by crosslinking of molecules in the telopeptide moiety. When this insoluble collagen is treated with a protease such as pepsin, the telopeptide of the crosslinked moiety can be removed and digested to obtain a solubilized atherocollagen.
이어서, 어류 유래의 펩신 가용성 콜라겐에 고온, 고압의 물을 가하는 가압 수열 가수분해 반응에 의하여 콜라겐 가수분해물을 회수, 수득한다. Subsequently, collagen hydrolyzate is recovered and obtained by a pressurized hydrothermal hydrolysis reaction in which high-temperature, high-pressure water is added to pepsin soluble collagen derived from fish.
예를 들어, 본 발명에 따른 고온, 고압의 물을 이용한 가압 열수 가수분해 공정은 도 2에 도시되어 있는 가수분해 장비를 이용하여 수행될 수 있다. 예를 들어, 어류와 같은 어류 유래의 뼈 및/또는 껍질로부터 얻어진 콜라겐 샘플을 샘플 수집기(8)에서 반응기(5)로 옮기고, 증류수와 같은 물로 반응기를 채운다. 본 발명의 한 가지 예시적인 실시 형태에서, 콜라겐 샘플과 아임계 상태로 전환될 수 있는 물을 1:100 - 1:300 w/v의 비율로 반응기(5) 내에서 혼합하여 반응시킬 수 있다. 이어서, 가압 수열 반응에 의한 콜라겐의 가수분해를 위하여 온도 컨트롤러(7) 및 압력 게이지(2)를 작동시켜 반응기(5) 내부를 소정의 온도와 압력으로 조정한다. 동시에 반응기(5) 내부에 부착된 교반기(6)를 사용하여 반응기(5) 내로 주입된 콜라겐과 아임계수 혼합물의 균일성을 유지하는 동시에 소정의 압력과 열이 시료 전체에 걸쳐 균일하게 분포되도록 유도할 수 있다. For example, the pressurized hydrothermal hydrolysis process using high temperature and high pressure water according to the present invention may be performed using the hydrolysis equipment shown in FIG. 2. For example, collagen samples obtained from fish-derived bones and / or shells, such as fish, are transferred from sample collector 8 to reactor 5 and filled with water, such as distilled water. In one exemplary embodiment of the present invention, the collagen sample and water that can be converted into a subcritical state can be reacted by mixing in the reactor 5 at a ratio of 1: 100-1: 300 w / v. Then, the temperature controller 7 and the pressure gauge 2 are operated to hydrolyze the collagen by the pressurized hydrothermal reaction to adjust the inside of the reactor 5 to a predetermined temperature and pressure. At the same time, using a stirrer 6 attached inside the reactor 5 to maintain uniformity of the collagen and subcritical water mixture injected into the reactor 5 while inducing a uniform pressure and heat distribution throughout the sample. can do.
본 발명의 예시적인 실시예에 따라 상술한 과정을 통하여 어류의 뼈, 껍질 및/또는 내장과 같은 어류 가공 부산물로부터 분리된 펩신 가용성 콜라겐에 대한 SDS-PAGE 분석 결과 3개의 사슬(2개의 α-체인 및 1개의 β-체인)이 결합되어 있는 콜라겐 타입 Ⅰ이었으며(도 3 내지 5 참조), 열 변성 특성이나 점도도 양호한 것으로 나타났다(실시예 5 참조). 열 변성 특성은 콜라겐의 열적 안정성에 관여하는 이미노산은 물론, 콜라겐의 주요 아미노산인 프롤린과 하이드록시프롤린의 함량과도 연관이 있을 수 있다. SDS-PAGE analysis of pepsin soluble collagen isolated from fish processing by-products such as bone, shell and / or intestine of fish through the process described above according to an exemplary embodiment of the present invention resulted in three chains (two α-chains). And 1 β-chain) to which collagen type I was bound (see FIGS. 3 to 5), and the heat denaturation characteristics and viscosity were also shown to be good (see Example 5). Thermal denaturation properties may be related to the content of proline and hydroxyproline, which are the major amino acids of collagen, as well as the imino acids involved in the thermal stability of collagen.
본 발명에서는 전술한 공정을 통하여 회수한 어류의 뼈 및/또는 껍질에서 유래된 콜라겐 가수분해물에 대하여 MALDI-TOF-MS 분석으로 분자량 측정, 아미노산 조성 분석 및 항산화 활성을 측정하였다. 본 발명의 실시예에 따르면, 가압 열수 가수분해 반응으로 얻은 콜라겐 가수분해물의 분자량은 모두 2000 Da 이하로서, 일반적인 콜라겐의 분자량인 수백 kDa에 비하여 크게 감소하였음이 확인되었다(도 7 내지 9 및 실시예 7 참조). 이러한 분석 결과는 본 발명에 따라 최종적으로 회수, 수득된 어류 뼈 및/또는 껍질 유래의 콜라겐 가수분해물이 인체 내로 신속하게 유입될 수 있다는 것을 의미한다. In the present invention, the collagen hydrolyzate derived from the bone and / or shell of the fish recovered through the above-described process was measured by molecular weight measurement, amino acid composition analysis and antioxidant activity by MALDI-TOF-MS analysis. According to the embodiment of the present invention, all of the molecular weight of the collagen hydrolyzate obtained by the hydrothermal hydrolysis reaction was 2000 Da or less, it was confirmed that significantly reduced compared to the molecular weight of several hundred kDa of the general collagen (Figs. 7 to 9 and Examples) 7). This analysis means that collagen hydrolysates derived from fish bones and / or shells finally recovered and obtained according to the present invention can be rapidly introduced into the human body.
또한, 본 발명의 예시적인 실시예에 따라 얻어진 콜라겐 가수분해물에는 식욕 부진과 빈혈로 고생하는 사람들에게 도움이 되는 아미노산인 리신의 함량이 상대적으로 많을 뿐만 아니라, 신체의 결합 조직의 형성에 중요한 기능을 수행하는 글리신, 프롤린과 하이드록시프롤린이 많이 함유되어 있다(실시예 8의 표 7 참조). 아울러, 본 발명의 예시적인 실시예에 따르면 본 발명의 공정에 따라 회수된 콜라겐 가수분해물은 항산화 활성을 가지고 있다(표 8 및 도 10 내지 13 참조).In addition, the collagen hydrolyzate obtained according to an exemplary embodiment of the present invention has a relatively high content of lysine, an amino acid that helps people suffering from anorexia and anemia, and also has an important function in forming connective tissue of the body. It contains a lot of glycine, proline and hydroxyproline to be performed (see Table 7 in Example 8). In addition, according to an exemplary embodiment of the present invention, the collagen hydrolyzate recovered according to the process of the present invention has antioxidant activity (see Table 8 and FIGS. 10 to 13).
본 발명의 실시예에서는 어류의 뼈나 껍질을 출발물질로 사용하여 고분자량의 콜라겐을 분리하고, 가압 수열 가수분해 반응으로 콜라겐 가수분해물, 즉 저분자량의 콜라겐을 수득하였다. 그러나, 어류의 뼈, 껍질, 내장 등을 포함하는 어류 가공 부산물로부터 추출된 고분자량 콜라겐 시판 제품을 출발 물질로 사용하여 가압 수열 가수분해 반응으로 저분자량의 콜라겐을 수득하는 것도 가능하다. In the embodiment of the present invention, the high molecular weight collagen was isolated using the bone or shell of the fish as a starting material, and collagen hydrolyzate, that is, low molecular weight collagen, was obtained by the hydrothermal hydrolysis. However, it is also possible to obtain low molecular weight collagen by press hydrothermal hydrolysis using commercially available high molecular weight collagen products extracted from fish processing by-products including fish bones, shells, guts and the like as starting materials.
상술한 바와 같이, 본 발명에 따라 어류 가공 부산물로부터 콜라겐을 분리하고, 이를 가압 수열 가수분해 반응을 통하여 콜라겐 펩타이드와 아미노산이 함유된 가수분해물을 수득할 수 있다. 본 발명에 따라 회수된 콜라겐 가수분해물은 항산화 활성을 가질 뿐만 아니라, 인체에 상대적으로 쉽게 투여될 수 있기 때문에, 화장품, 약품 및/또는 식품의 기능성 성분으로 첨가될 수 있어서 다양한 산업에 활용될 수 있을 것으로 기대된다. As described above, according to the present invention, collagen may be separated from fish processing by-products, and hydrolysates containing collagen peptides and amino acids may be obtained through pressure hydrothermal hydrolysis. Since the collagen hydrolyzate recovered according to the present invention not only has an antioxidant activity but can be relatively easily administered to the human body, it can be added as a functional ingredient of cosmetics, drugs and / or foods, and thus can be utilized in various industries. It is expected to be.
실시예Example
이하에서는, 예시적인 실시예를 통하여 본 발명을 더욱 상세하게 설명하지만, 본 발명이 하기 기재된 실시예에 기재된 발명으로 결코 한정되지 않는다. In the following, the present invention will be described in more detail by way of exemplary examples, but the present invention is in no way limited to the invention described in the examples described below.
재료material
고등어(Scomber japonicus) 가공 부산물은 부산 소재의 수산물 가공회사((주)동원해사랑)에서 제공받았다. 사용된 시약(펩신, protein marker, 육상 동물 콜라겐, 2,2-diphenyl-1-picrylhydrzyl(DPPH), 2,2-azino-bis(3-ethylbeznothiazoline-6-sulfonic acd) diammonium salt(ABTS), potassisum ferricyanide, 3-(2-pyridyl)-5,6-bis(4-phenyl-sulfonic acid)-1,2,4-triazine(ferrozine), 6-hydroxy-2,5,7,8-tetramethyl chroman-2-carboxylic acid(trolox)은 Sigma Aldrich(St. Louis, MO., USA)에서 구입하였으며, 그 외 다른 시약과 용매는 분석용 또는 HPLC 등급을 사용하였다. The mackerel (Scomber japonicus ) processing by-product was provided by a seafood processing company in Dongwonhae Sarang Co., Ltd. in Busan. Reagents used (pepsin, protein marker, terrestrial collagen, 2,2-diphenyl-1-picrylhydrzyl (DPPH), 2,2-azino-bis (3-ethylbeznothiazoline-6-sulfonic acd) diammonium salt (ABTS), potassisum ferricyanide, 3- (2-pyridyl) -5,6-bis (4-phenyl-sulfonic acid) -1,2,4-triazine (ferrozine), 6-hydroxy-2,5,7,8-tetramethyl chroman- 2-carboxylic acid (trolox) was purchased from Sigma Aldrich (St. Louis, MO., USA), and other reagents and solvents were used for analytical or HPLC grade.
실시예 1: 고등어 뼈와 껍질의 성분 분석Example 1 Component Analysis of Mackerel Bones and Shells
고등어의 뼈와 껍질을 차가운 물에서 수세한 후 시료를 72시간 동안 동결 건조하였다. 건조된 시료를 균질기에서 분쇄한 후 -20℃에서 보관하였다. 고등어 뼈와 껍질에 대한 일반 조성을 분석하기 위하여 Association of Official Analytical Chemists (AOAC) 방법에 따라 수분, 회분, 조지방 및 단백질의 함량을 측정하였다. 비-단백질 함량은 수분, 회분, 지방 및 단백질의 총 함량에서 뺀 값으로 계산하였다. 본 실시예에서는 동결 건조된 고등어 뼈와 껍질 시료를 사용하였다. 하기 표 1은 건조된 고등어 뼈와 껍질에서의 주요 구성 성분의 함량 분석 결과로서, 건조된 고등어 껍질은 건조된 고등어 뼈에 비하여 단백질과 지질의 함량이 상대적으로 높다는 것을 알 수 있다. The bones and shells of the mackerel were washed in cold water and the samples were freeze dried for 72 hours. The dried sample was ground in a homogenizer and stored at -20 ° C. In order to analyze the general composition of mackerel bone and skin, water, ash, crude fat and protein content were measured according to the Association of Official Analytical Chemists (AOAC) method. Non-protein content was calculated by subtracting the total content of moisture, ash, fat and protein. In this example, freeze-dried mackerel bone and skin samples were used. Table 1 is a result of the analysis of the content of the major components in the dried mackerel bone and shell, it can be seen that the dried mackerel shell is relatively higher in the content of protein and lipid than the dried mackerel bone.
표 1 건조된 고등어 뼈와 껍질의 주요 구성 성분
시료 수분 (%) 회분 (%) 조지방 (%) 조단백(%) 비-단백질(%)
건조 고등어 뼈 6.68±0.07 6.89±0.06 17.59±1.10 47.25±1.25 21.59±1.28
건조 고등어 껍질 4.60±0.06 4.50±0.05 29.47±1.26 49.49±1.52 11.94±0.76
Table 1 Main Components of Dried Mackerel Bones and Shells
sample moisture (%) Ash content (%) Crude fat (%) Crude Protein (%) Non-protein (%)
Dry mackerel bone 6.68 ± 0.07 6.89 ± 0.06 17.59 ± 1.10 47.25 ± 1.25 21.59 ± 1.28
Dry mackerel shells 4.60 ± 0.06 4.50 ± 0.05 29.47 ± 1.26 49.49 ± 1.52 11.94 ± 0.76
실시예 2: 고등어 뼈와 껍질에서 펩신 가용성 콜라겐 분리Example 2: Pepsin Soluble Collagen Isolation from Mackerel Bones and Shells
고등어 뼈와 껍질에 있는 펩신 가용성 콜라겐(pepsin-solubilized collagen, PSC)을 -4℃에서 아래와 같은 방법으로 분리하였다. Pepsin-solubilized collagen (PSC) in the mackerel bones and shells was isolated at -4 ° C as follows.
콜라겐이 없는 부분을 제거하기 위하여, 분쇄된 고등어 뼈를 0.1M NaOH와 1:10 (w/v) 비율로 혼합하였다. 혼합물을 자석 교반기로 250 rpm에서 24시간 동안 지속적으로 교반하였다. 이때 알칼리 용액을 6시간마다 교환하였다. 그 다음, 시료의 pH가 중성에 도달할 때까지 시료를 차가운 증류수로 수세하고, 동결 건조시켰다(EYELA FDV-2100, Rikakikai Co. Ltd., Tokyo, Japan). 그 후, 시료에 0.5M 에틸렌디아민테트라아세트산(EDTA, pH 7.5)을 1:10 (w/v) 비율로 첨가하고, 4일 동안 탈석회화하였다. EDTA 용액은 매일 교환하였다. 잔여물을 차가운 증류수로 수세하고, 지방을 제거하기 위해, 회수된 잔여물을 10%(v/v) butyl alcohol 수용액과 1:10 (w/v) 비율로 혼합하여 24시간 동안 처리하였다. 그리고 다시 증류수로 씻은 다음, 그 잔여물을 0.1%(w/v) 펩신이 함유된 0.57M 아세트산 용액에 1:10 (w/v)으로 혼합시켜 3일 동안 처리하고, 12,000 rpm으로 50분 동안 원심분리 하였다. 잔여물을 앞과 같은 용액으로 3일 동안 다시 추출하고, 동일한 조건으로 원심분리 하였다. 점성이 있는 용액에 NaCl을 첨가하여 최종적으로 농도를 2.0M로 조정하였다. 이 용액을 24시간 동안 배양하고, 생성된 침전물을 20분간 12,000 rpm으로 원심분리한 후, 0.57M 아세트산에 용해시켰다. 이 용액을 0.1M 아세트산과 증류수로 투석시키고, 투석 백에 넣어 2시간 동안 보관한 다음, 동결 건조하여 펩신 가용성 콜라겐 분말을 수득하였다.To remove the collagen free portion, the ground mackerel bone was mixed with 0.1 M NaOH in a 1:10 (w / v) ratio. The mixture was continuously stirred at 250 rpm for 24 hours with a magnetic stirrer. At this time, the alkaline solution was exchanged every 6 hours. The sample was then washed with cold distilled water and lyophilized until the pH of the sample reached neutrality (EYELA FDV-2100, Rikakikai Co. Ltd., Tokyo, Japan). Thereafter, 0.5 M ethylenediaminetetraacetic acid (EDTA, pH 7.5) was added to the sample in a 1:10 (w / v) ratio and decalcified for 4 days. EDTA solution was changed daily. The residue was washed with cold distilled water and the recovered residue was mixed with 10% (v / v) butyl alcohol aqueous solution at a ratio of 1:10 (w / v) and treated for 24 hours. After washing again with distilled water, the residue was mixed with 0.5% M acetic acid solution containing 0.1% (w / v) pepsin at 1:10 (w / v) for 3 days and treated at 12,000 rpm for 50 minutes. Centrifugation was performed. The residue was extracted again with the same solution for 3 days and centrifuged under the same conditions. NaCl was added to the viscous solution to finally adjust the concentration to 2.0M. The solution was incubated for 24 hours and the resulting precipitate was centrifuged at 12,000 rpm for 20 minutes and then dissolved in 0.57M acetic acid. The solution was dialyzed with 0.1 M acetic acid and distilled water, placed in a dialysis bag and stored for 2 hours, and then lyophilized to obtain pepsin soluble collagen powder.
고등어 껍질로부터는 다음과 같은 방법으로 콜라겐을 분리하였다. 분쇄된 고등어 껍질에 0.1M NaOH를 1:35 (w/v) 비율로 혼합한 다음, 자석 교반기를 이용하여 교반하면서 24시간 동안 처리하였다. 이때 알칼리 용액을 하루에 4번 교체하였다. 그리고 차가운 증류수로 수세한 다음, 동결 건조하였다. 동결 건조한 시료를 10%(w/v) butyl alcohol 수용액과 1:35 (w/v) 비율로 혼합하여, 24시간 동안 탈지하였다. 탈지된 잔여물을 차가운 증류수로 수세한 후, 잔여물을 0.1%(w/v) 펩신이 함유된 0.57M 아세트산 용액에 1:35 (w/v)로 혼합시켜 3일 동안 처리하였다. 그 다음, 고등어 뼈에서 콜라겐을 분리할 때와 동일한 과정을 수행하여 펩신 가용성 콜라겐 분말을 수득하였다. Collagen was isolated from the mackerel shell as follows. 0.1M NaOH was mixed at a ratio of 1:35 (w / v) in the ground mackerel shell, and then treated with a magnetic stirrer for 24 hours while stirring. The alkaline solution was then replaced four times a day. And washed with cold distilled water, and then lyophilized. The freeze-dried sample was mixed with 10% (w / v) butyl alcohol aqueous solution at a ratio of 1:35 (w / v) and degreased for 24 hours. The degreased residue was washed with cold distilled water, and the residue was then treated for 3 days by mixing 1:35 (w / v) in 0.57M acetic acid solution containing 0.1% (w / v) pepsin. Then, the same procedure as when separating collagen from mackerel bone was performed to obtain pepsin soluble collagen powder.
고등어 뼈 및 껍질로부터 얻은 펩신 가용성 콜라겐 분말 중의 콜라겐 함량은 문헌에 기재된 방법(D.E. Goll et al., 1963 J. Food Science, 28(5):503-509)에 따라 히드록시프롤린을 정량한 다음, 환산계수를 곱하여 구하였다. 히드록시프롤린의 함량은 문헌에 기재된 방법(I. Bergman et al., 1963, Analytical Chemistry, 35(12):1961-65)을 약간 변형하여 정량하였다. The collagen content in pepsin soluble collagen powder obtained from mackerel bone and skin was determined by hydroxyproline according to the method described in the literature (DE Goll et al., 1963 J. Food Science , 28 (5): 503-509), Obtained by multiplying the conversion factor. The content of hydroxyproline was quantified by slightly modifying the method described in the literature (I. Bergman et al., 1963, Analytical Chemistry , 35 (12): 1961-65).
하기 표 2는 고등어 뼈와 껍질에서 각각 얻은 펩신 가용성 콜라겐 분말 중의 콜라겐 (단백질) 및 일반 성분 함량 분석 결과를 나타낸다. 고등어 뼈에 비하여 껍질의 펩신 가용성 콜라겐 함량이 높게 나타났다. 고등어 뼈와 껍질의 단백질 함량은 각각 90.05±2.34 및 86.89±2.48%이었다. 또한, 고등어 뼈와 껍질의 수분 함량은 6.28±0.12 및 7.48±0.10%, 회분 함량은 3.48±0.09 및 5.37±0.06%, 지방 함량은 0.19±0.02 및 0.26±0.03%이었다. Table 2 below shows the results of collagen (protein) and general ingredient contents in pepsin soluble collagen powder obtained from mackerel bone and skin, respectively. The skin content of pepsin soluble collagen was higher than that of mackerel bone. Mackerel bone and skin protein contents were 90.05 ± 2.34 and 86.89 ± 2.48%, respectively. The mackerel bone and skin moisture content was 6.28 ± 0.12 and 7.48 ± 0.10%, the ash content was 3.48 ± 0.09 and 5.37 ± 0.06%, and the fat content was 0.19 ± 0.02 and 0.26 ± 0.03%.
표 2 건조된 고등어 뼈와 껍질에서 수득한 펩신 가용성 콜라겐 분말 중의 단백질(콜라겐) 및 일반 성분 함량
조성(%) 펩신 가용성 콜라겐 분말
껍질
수율 1.75±0.07 8.10±0.12
단백질 90.05±2.34 86.89±2.48
수분 6.28±0.12 7.48±0.10
회분 3.48±0.09 5.37±0.06
지질 0.19±0.02 0.26±0.03
TABLE 2 Protein (collagen) and general ingredient content in pepsin soluble collagen powder obtained from dried mackerel bone and skin
Furtherance(%) Pepsin Soluble Collagen Powder
bone skin
yield 1.75 ± 0.07 8.10 ± 0.12
protein 90.05 ± 2.34 86.89 ± 2.48
moisture 6.28 ± 0.12 7.48 ± 0.10
Ash 3.48 ± 0.09 5.37 ± 0.06
Geology 0.19 ± 0.02 0.26 ± 0.03
실시예 3: 펩신 가용성 콜라겐의 분자량 측정Example 3: Determination of Molecular Weight of Pepsin Soluble Collagen
실시예 2에서 얻은 펩신 가용성 콜라겐 분말의 분자량을 SDS-PAGE를 이용하여 측정하였다. 단백질을 3.0% stacking gel 및 5.0% resolving gel을 이용하는 Laemmli의 수정된 방법으로 분석하였다. 실시예 2에서 얻은 펩신 가용성 콜라겐(PSC) 분말 시료 2g을 1.0 mL의 0.02M sodium phosphate 완충제(pH 7.2)에 용해시킨 후, 용해된 시료를 완충제(1M Tris-HCl, pH 6.8, 10% SDS, 25% glycerol, 2% bromophenol blue, 5% 2-mercaptoethanol 포함)와 1:1(v/v)비율로 혼합하였다. 앞에서 준비된 혼합 시료 20 μL을 polyacrylamide gels에 부착시키고, 30 mA 전류로 지속적인 전기영동으로 분리시켰다. 동일한 방법으로 송아지 껍질과 소의 힘줄로부터 분리된 콜라겐을 표준물질로 사용하여, 실시예 2에서 고등어의 뼈와 껍질에서 분리한 펩신 가용성 콜라겐과 비교 분석하였다. 또한 분자량(MW)이 높은 markers를 단백질의 분자량을 특정하기 위해 사용하였다. The molecular weight of the pepsin soluble collagen powder obtained in Example 2 was measured using SDS-PAGE. Proteins were analyzed by Laemmli's modified method using 3.0% stacking gel and 5.0% resolving gel. After dissolving 2 g of the pepsin soluble collagen (PSC) powder sample obtained in Example 2 in 1.0 mL of 0.02 M sodium phosphate buffer (pH 7.2), the dissolved sample was buffered (1M Tris-HCl, pH 6.8, 10% SDS, 25% glycerol, 2% bromophenol blue, 5% 2-mercaptoethanol) and 1: 1 (v / v) ratio was mixed. 20 μL of the mixed sample prepared above was attached to polyacrylamide gels and separated by continuous electrophoresis at 30 mA current. In the same manner, collagen isolated from calf crust and bovine tendon was used as a standard, and compared with pepsin soluble collagen isolated from bone and skin of mackerel in Example 2. In addition, markers with high molecular weight (MW) were used to specify the molecular weight of the protein.
고등어 뼈와 껍질에서 분리된 펩신 가용성 콜라겐(PSC)의 분자량 크기에 대한 SDS-PAGE 패턴 결과를 도 3에 도시하였다. 2개의 α-체인(α1 and α2) 콜라겐은 분자량이 각각 116 kDa(α1) 및 126 kDa(α2)이었고, 표준 콜라겐의 분자량과 유사한 값을 보이고 있다. 고등어의 뼈와 껍질로부터 분리된 β-체인 콜라겐은 분자량이 205 kDa이었다. 이러한 결과는 고등어의 뼈와 껍질에서 분리된 콜라겐은 동물 유래 콜라겐과 유사한 크기의 분자량을 가지고 있다는 것을 의미한다. SDS-PAGE pattern results for the molecular weight size of pepsin soluble collagen (PSC) isolated from mackerel bone and skin are shown in FIG. 3. The two α-chain (α 1 and α 2 ) collagens had molecular weights of 116 kDa (α 1 ) and 126 kDa (α 2 ), respectively, and showed similar values to those of standard collagen. The β-chain collagen isolated from the bones and shells of the mackerel had a molecular weight of 205 kDa. These results indicate that the collagen isolated from the bones and shells of the mackerel has a molecular weight similar to that of animal-derived collagen.
실시예 4: 펩신 가용성 콜라겐의 FT-IR 분석Example 4 FT-IR Analysis of Pepsin Soluble Collagen
실시예 2에서 고등어의 뼈와 껍질에서 각각 얻은 펩신 가용성 콜라겐(PSC) 분말에 대해 FT-IR 분석을 수행하였다. 동결 건조된 고등어의 뼈와 껍질의 PSCs FT-IR 스펙트럼은 Perkin Elmer (USA), Spectrum X를 사용하여 얻을 수 있었고, 스펙트럼은 4000 - 650 cm-1,4 cm-1의 해상도에서 측정하였다. 고등어 뼈와 껍질에서 분리된 콜라겐에 대한 FT-IR 스펙트럼 분석 결과를 도 4 및 5에 각각 도시하였다. 이들 도면에서 보는 것과 같이 고등어 뼈와 껍질에서 분리된 콜라겐의 밴드가 3283 cm-1 3285 cm-1에서 나타났다. 이들 도면에 표시된 amide Ⅰ, amide Ⅱ, amide Ⅲ band에 대한 파장은 콜라겐의 성상과 직접적인 관련이 있고, amide Ⅰ 밴드(1600 - 1660 cm-1)는 폴리펩타이드에 있는 carbonyl groups (C=O)의 진동과 관련이 있다. Amide Ⅱ band(~1550 cm-1)는 N-H bending 및 C-N stretching 진동과 연관되며, amide Ⅲ band(1220 - 1320 cm-1)는 C-N stretching 진동과 N-H 변형과 연관된다. 이러한 FT-IR 스펙트럼 분석 결과로부터 실시예 2에서 얻은 물질이 콜라겐임을 확인할 수 있었다. FT-IR analysis was performed on pepsin soluble collagen (PSC) powders obtained from bone and skin of mackerel respectively in Example 2. PSCs FT-IR spectra of freeze-dried mackerel bone and skin were obtained using Perkin Elmer (USA), Spectrum X, and the spectra were measured at resolutions of 4000-650 cm -1 and 4 cm -1 . FT-IR spectra of collagen isolated from mackerel bone and skin are shown in FIGS. 4 and 5, respectively. As can be seen in these figures, the band of collagen isolated from the mackerel bone and skin was 3283 cm -1 and It appeared at 3285 cm -1 . The wavelengths for the amide I, amide II, and amide III bands shown in these figures are directly related to the properties of the collagen, and the amide I band (1600-1660 cm -1 ) is derived from the carbonyl groups (C = O) in the polypeptide. It is related to vibration. Amide II bands (~ 1550 cm -1 ) are associated with NH bending and CN stretching vibrations, while amide III bands (1220-1320 cm -1 ) are associated with CN stretching vibrations and NH deformation. From the results of the FT-IR spectrum analysis, it was confirmed that the material obtained in Example 2 was collagen.
실시예 5: 펩신 가용성 콜라겐의 점도 및 변성 온도 측정Example 5: Determination of viscosity and denaturation temperature of pepsin soluble collagen
실시예 2에서 얻은 펩신 가용성 콜라겐 분말의 점도 및 변성 온도를 측정하였다. The viscosity and denaturation temperature of the pepsin soluble collagen powder obtained in Example 2 were measured.
Brookfield DVⅡ + Pro viscometer (Brookfield Engineering Laboratories, Inc., Middleboro, MA 02346 USA)를 사용하여 고등어의 뼈와 껍질의 점성을 다음과 같이 측정하였다. 0.1% (w/v) PSC가 함유된 0.1M 아세트산 8 mL를 20분간 10℃에서 배양한 후 용기에 두었다. 그 다음 점도 측정 장치 부품인 SC4-18을 사용하여 150 rpm에서 회전시켜 시료의 점성을 측정하였고, 점도의 단위는 centipose (cP) 단위로 표시하였다. 콜라겐은 점도가 높은 것이 중요한 특징인데, 본 실시예에 따라 고등어 뼈와 껍질로부터 분리된 콜라겐(PSC)의 점도를 표 3에 표시하였다. 점도 범위는 18.34±0.25 및 20.26±0.21 cP이었다. The viscosity of the bone and skin of the mackerel was measured using a Brookfield DVII + Pro viscometer (Brookfield Engineering Laboratories, Inc., Middleboro, MA 02346 USA) as follows. 8 mL of 0.1M acetic acid containing 0.1% (w / v) PSC was incubated at 10 ° C. for 20 minutes and then placed in a container. Then, the viscosity of the sample was measured by rotating at 150 rpm using a viscosity measuring device component SC4-18, and the unit of viscosity was expressed in centipose (cP). Collagen has a high viscosity is an important feature, the viscosity of collagen (PSC) separated from the mackerel bone and shell according to the present embodiment is shown in Table 3. The viscosity ranges were 18.34 ± 0.25 and 20.26 ± 0.21 cP.
또한, 변성 온도(Td)를 다음과 같이 측정하였다. 0.1% (w/v) PSC가 함유된 0.1M 아세트산 8 mL를 10℃에서 40℃까지 가열하면서 3℃ 간격으로 시료를 채취하였다. 채취한 용액을 채취한 온도에서 20분 동안 보관한 후에 점성을 측정하였다. PSC의 열 변성 곡선에 의하면 온도에 따라 점도가 약간 변화하는 것으로 나타났다(도 6 참조). 최대 점도를 각 온도에서 측정된 점도로 나누어 fractional viscosity를 계산하고, fractional viscosity가 0.5에 근접하였을 때의 온도를 변성 온도로 결정하였다. 하기 표 3은 고등어의 뼈와 껍질에서 각각 분리된 콜라겐의 점도와 변성 온도를 나타낸 것이다.In addition, denaturation temperature (Td) was measured as follows. Samples were taken at 3 ° C intervals while heating 8 mL of 0.1M acetic acid containing 0.1% (w / v) PSC from 10 ° C to 40 ° C. Viscosity was measured after the collected solution was stored at the collected temperature for 20 minutes. The heat denaturation curve of the PSC showed a slight change in viscosity with temperature (see FIG. 6). The fractional viscosity was calculated by dividing the maximum viscosity by the viscosity measured at each temperature, and the temperature at which the fractional viscosity approached 0.5 was determined as the denaturation temperature. Table 3 below shows the viscosity and denaturation temperature of the collagen isolated from the bone and shell of the mackerel.
표 3 고등어의 뼈와 고등어의 껍질에서 분리된 콜라겐의 점도와 변성 온도
물성 콜라겐
껍질
점도(cP) 18.34±0.25 20.26±0.21
변성 온도(℃) 27 30
TABLE 3 Viscosity and Denaturation Temperature of Collagen Isolated from Mackerel Bones and Mackerel Shells
Properties Collagen
bone skin
Viscosity (cP) 18.34 ± 0.25 20.26 ± 0.21
Denaturation temperature (℃) 27 30
실시예 6: 가압 수열 가수분해를 이용한 콜라겐 가수분해물 수득Example 6: Obtaining Collagen Hydrolyzate Using Pressurized Hydrothermal Hydrolysis
도 2에 도시된 것과 같은 고온, 고압용 회분식 반응기를 사용하여 실시예 2에서 얻은 펩신 가용성 콜라겐을 가수분해하였다. 가수분해 반응기로서 온도 제어기와 압력게이지가 부착되어 있는 고압반응기(재질: Hastelloy 276, ㈜일신오토클레이브)를 사용하여, 200 mL의 회분식 반응으로 아래에 설명하는 방법으로 가수분해 반응을 진행하였다. The pepsin soluble collagen obtained in Example 2 was hydrolyzed using a high temperature, high pressure batch reactor such as that shown in FIG. 2. As a hydrolysis reactor, a hydrolysis reaction was carried out using a high-pressure reactor (material: Hastelloy 276, Ilshin Autoclave Co., Ltd.) equipped with a temperature controller and a pressure gauge as described below in a batch reaction of 200 mL.
실시예 2에서 얻은 콜라겐(0.5 g)과 물을 1:200 (w/v)의 비율로 혼합하여 반응기에 주입하였다. 전기 가열기를 사용하여 200 - 250℃의 온도와 30 - 70bar의 압력 범위로 가열하고, 실험을 진행하는 동안 반응기의 온도와 압력을 온도 조절기와 압력 게이지를 사용하여 측정하였다. 150 rpm에서 자석 교반기를 사용하여 교반하였다. 26 - 54분 가열 후에 원하는 온도에 도달하였고, 이 온도에서 3분 동안 유지하였다. 반응기에 냉각 순환 자켓을 연결하여 냉각한 후, 가수분해물을 반응기로부터 회수하고, 여과지를 사용하여 여과하였다.Collagen (0.5 g) and water obtained in Example 2 were mixed at a ratio of 1: 200 (w / v) and injected into the reactor. The heater was heated to a temperature of 200-250 ° C. and a pressure range of 30-70 bar using an electric heater, and the temperature and pressure of the reactor were measured using a thermostat and a pressure gauge during the experiment. Stirred using a magnetic stirrer at 150 rpm. The desired temperature was reached after 26-54 minutes heating and held at this temperature for 3 minutes. After cooling by connecting a cooling circulation jacket to the reactor, the hydrolyzate was recovered from the reactor and filtered using filter paper.
실시예 7: 콜라겐 가수분해물에 대한 MALDI-TOF 질량 분석Example 7: MALDI-TOF Mass Spectrometry on Collagen Hydrolysates
실시예 6에서 얻은 콜라겐 가수분해물의 분자량을 결정하기 위하여, 회수된 콜라겐 가수분해물에 대하여 MALDI-TOF-MS(Matrix Assisted Laser Desorption/Ionization-Time Of Flight-Mass Spectrometry) 분석을 수행하였다. 실시예 6에서 고등어의 뼈와 껍질로부터 분리된 펩신 가용성 콜라겐(PSC) 가수분해물 샘플 1 μL을 광택 스틸 384 표적 판에 붙였다. 2,5-dihydroxybenzoic acid (DHB) 1 μL와 1% THF가 혼합된 용액을 혼합하고 건조시켰다. 각 샘플을 377 nm의 펄스 질소 레이저가 탑재된 Ultraflex Ⅲ 질량분석기(Bruker Daltonics, 독일)의 MALDI TOF MS를 이용하여 분석하였다. 700 - 6000 m/z에서 양이온화 및 반사 모드에서 200 레이저 샷으로부터 데이터를 축적하여 획득하였다. In order to determine the molecular weight of the collagen hydrolyzate obtained in Example 6, Matrix Assisted Laser Desorption / Ionization-Time Of Flight-Mass Spectrometry (MALDI-TOF-MS) analysis was performed on the recovered collagen hydrolyzate. In Example 6 1 μL of a sample of pepsin soluble collagen (PSC) hydrolyzate isolated from the bone and shell of the mackerel was attached to a polished steel 384 target plate. 1 μL of 2,5-dihydroxybenzoic acid (DHB) and 1% THF were mixed and dried. Each sample was analyzed using a MALDI TOF MS from an Ultraflex III mass spectrometer (Bruker Daltonics, Germany) equipped with a pulsed nitrogen laser of 377 nm. Data were obtained by accumulating data from 200 laser shots in cationization and reflection mode at 700-6000 m / z.
실시예 7의 분석 결과를 도 7 내지 도 9 및 하기 표 4 내지 6에 나타내었다. 이들 도면 및 표에 나타낸 것과 같이, 고등어 뼈에서 분리된 콜라겐을 200℃, 30 bar조건에서 가수분해한 경우 펩타이드의 분자량 범위는 약 759 - 988 Da이었고, 같은 조건에서 처리한 고등어의 껍질의 콜라겐 가수분해물의 펩타이드 분자량은 789 - 1632 Da 범위이었다. 가수분해 반응 조건 250℃, 70 bar에서 처리된 고등어 껍질의 콜라겐 가수분해물에 존재하는 펩타이드의 분자량은 952 - 1638 Da 범위를 보였다. 이들 결과로부터 콜라겐 가수분해물의 분자량은 가수분해되지 않은 콜라겐의 분자량 범위 116 - 126 kDa에 비해 크게 감소한 것을 알 수 있다. 가수분해물에 존재하는 펩타이드를 Mascot Database를 사용하여 동정하고, 예상되는 펩타이드를 표 4 내지 6에 나타내었다. The analysis results of Example 7 are shown in FIGS. 7 to 9 and Tables 4 to 6 below. As shown in these figures and tables, when the collagen isolated from the mackerel bone was hydrolyzed at 200 ° C. and 30 bar, the molecular weight range of the peptide was about 759-988 Da, and the collagen singer of the shell of the mackerel treated under the same conditions Peptide molecular weights of the digests ranged from 789-1632 Da. Hydrolysis reaction conditions The molecular weight of the peptide present in the collagen hydrolyzate of the mackerel shell treated at 250 ° C. and 70 bar showed a range of 952-1638 Da. From these results, it can be seen that the molecular weight of the collagen hydrolyzate is significantly reduced compared to the molecular weight range 116-126 kDa of the non-hydrolyzed collagen. Peptides present in the hydrolyzate were identified using the Mascot Database, and the expected peptides are shown in Tables 4-6.
표 4는 고등어 뼈 콜라겐 가수분해물의 MALDI-TOF 질량 분석(200℃, 30 bar) 결과를, 표 5는 고등어 껍질 콜라겐 가수분해물에 대한 MALDI-TOF 질량 분석(200℃, 30 bar) 결과를, 표 6은 고등어 뼈 콜라겐 가수분해물에 대한 MALDI-TOF 질량 분석(250℃, 70 bar) 결과를 각각 보여준다. (표 4 내지 6에 표시된 약어: A-알라닌, C-시스테인, D-아스파르트산, E-글루탐산, F-페닐알라닌, G-글리신, H-히스티딘, I-이소류신, K-리신, M-메티오닌, N-아스파라진, P-프롤린, Q-글루타민, R-아르기닌, S-세린, T-트레오닌, V-발린, W-트립토판, Y-티로신; *예상 펩타이드는 mascot 데이터베이스(http://www.matrixscience.comd에서 확인 가능)Table 4 shows the results of MALDI-TOF mass spectrometry (200 ° C., 30 bar) of mackerel bone collagen hydrolyzate, and Table 5 shows the results of MALDI-TOF mass analysis (200 ° C., 30 bar) for mackerel skin collagen hydrolyzate. 6 shows the results of MALDI-TOF mass spectrometry (250 ° C., 70 bar) on mackerel bone collagen hydrolysates, respectively. (Abbreviations shown in Tables 4-6: A-alanine, C-cysteine, D-aspartic acid, E-glutamic acid, F-phenylalanine, G-glycine, H-histidine, I-isoleucine, K-lysine, M-methionine, N-asparagine, P-proline, Q-glutamine, R-arginine, S-serine, T-threonine, V-valine, W-tryptophan, Y-tyrosine; * Predicted peptides are mascot databases (http: // www. available at matrixscience.comd)
표 4 고등어 뼈 콜라겐 가수분해물의 MALDI-TOF 질량 분석(200℃, 30 bar)
m/z Molecular weight (dalton) Predicted peptide* Intensity
760.13 759.12 K.TKATLAR.M 144.83
762.12 761.11 K.RMDLAR.I 212.60
764.14 763.14 K.VTFNRK.Q 129.75
889.63 888.62 K.ATLARMAR.G 181.04
891.62 890.61 R.MARGAMVR.F 178.46
953.29 952.29 R.FVFIYQH.- 282.55
985.22 984.21 -.MKIIIAPAK.K 3335.74
987.21 986.21 M.ADAELEAIR.Q 2814.04
989.21 988.20 K.TLWHCSDK.L 987.93
Table 4 MALDI-TOF Mass Spectrometry of Mackerel Bone Collagen Hydrolysates (200 ° C, 30 bar)
m / z Molecular weight (dalton) Predicted peptide * Intensity
760.13 759.12 K.TKATLAR.M 144.83
762.12 761.11 K.RMDLAR.I 212.60
764.14 763.14 K.VTFNRK.Q 129.75
889.63 888.62 K.ATLARMAR.G 181.04
891.62 890.61 R.MARGAMVR.F 178.46
953.29 952.29 R.FVFIYQH.- 282.55
985.22 984.21 -.MKIIIAPAK.K 3335.74
987.21 986.21 M.ADAELEAIR.Q 2814.04
989.21 988.20 K.TLWHCSDK.L 987.93
표 5 고등어 껍질 콜라겐 가수분해물의 MALDI-TOF 질량 분석(200℃, 30 bar)
m/z Molecular weight (dalton) Predicted peptide* Intensity
790.36 789.36 R.SDGSRIR.F 114.43
1121.27 1120.26 -.MIQMQTKLK.- 91.13
1133.11 1132.10 K.DAAADKAEDVK.D 150.02
1146.10 1145.09 K.EGLGKLTGNEK.L 138.77
1148.09 1147.08 R.RYANIGDVIK.Y 70.98
1217.12 1216.11 K.QLDTLGNDKGR.L 2173.88
1219.12 1218.11 K.DAVEDKVEDAK.E 1036.45
1221.11 1220.10 K.KGDVYDAVVVR.T 169.52
1633.92 1632.92 R.SAQFMKIVSLAPEVL.- 120.54
Table 5 MALDI-TOF Mass Spectrometry of Mackerel Shell Collagen Hydrolysates (200 ° C, 30 bar)
m / z Molecular weight (dalton) Predicted peptide * Intensity
790.36 789.36 R.SDGSRIR.F 114.43
1121.27 1120.26 -.MIQMQTKLK.- 91.13
1133.11 1132.10 K.DAAADKAEDVK.D 150.02
1146.10 1145.09 K.EGLGKLTGNEK.L 138.77
1148.09 1147.08 R.RYANIGDVIK.Y 70.98
1217.12 1216.11 K.QLDTLGNDKGR.L 2173.88
1219.12 1218.11 K.DAVEDKVEDAK.E 1036.45
1221.11 1220.10 K.KGDVYDAVVVR.T 169.52
1633.92 1632.92 R.SAQFMKIVSLAPEVL.- 120.54
표 6 고등어 뼈 콜라겐 가수분해물의 MALDI-TOF 질량 분석(250℃, 70 bar)
m/z Molecular weight (dalton) Predicted peptide* Intensity
953.30 952.30 R.HAEVVASIK.A 5328.47
955.30 954.29 R.SVDPGSPAAR.S 1027.45
976.27 975.27 -.MKTAQELR.V 398.92
1369.13 1368.13 K.NLLTGSASESVYK.A 163.41
Table 6 MALDI-TOF Mass Spectrometry of Mackerel Bone Collagen Hydrolyzate (250 ° C, 70 bar)
m / z Molecular weight (dalton) Predicted peptide * Intensity
953.30 952.30 R.HAEVVASIK.A 5328.47
955.30 954.29 R.SVDPGSPAAR.S 1027.45
976.27 975.27 -.MKTAQELR.V 398.92
1369.13 1368.13 K.NLLTGSASESVYK.A 163.41
실시예 8: 콜라겐 가수분해물에 대한 아미노산 조성 분석Example 8: Amino Acid Composition Analysis for Collagen Hydrolysate
실시예 7에서 얻은 콜라겐 가수분해물의 분자량을 측정하기 위하여, 회수된 가수분해물의 아미노산 조성을 분석하였다. 아미노산 함량 분석을 위해 S430(SYKAM) 아미노산 자동 분석기를 사용하였다. 양이온 분리 컬럼 LCA K07/Li (4.6 x 150 mm)의 온도는 37 - 74℃로, 완충제 pH 범위는 2.90 - 7.95로 하였다. 이동상은 1분당 0.45 mL의 유량에서 5 mM p-toluenesulphonic acid 용액을 사용하였고, 5 mM p-toluenesulphonic acid와, 20 mM of Bis-Tris, EDTA 100 m의 혼합물을 분당 0.25 mL의 유량으로 포스트 컬럼 시약으로 사용하였다. 방출 파장은 440 및 570 nm이었다. 고등어 뼈와 껍질에서 분리한 콜라겐의 가수분해물 중의 아미노산의 조성 및 함량을 표 7에 나타내었다. 적용된 온도 및 압력 조건에 따라 아미노산의 함량이 달라진 것에 비추어, 수열 반응의 온도와 압력이 가수분해 반응에서 중요한 변수임을 알 수 있다. 가수분해물에 존재하는 아미노산 중에 글리신(glycine)의 함량이 높았는데, 고등어 뼈의 가수분해물에는 약 27.90 - 29.44%, 고등어 껍질의 가수분해물에는 약 32.38 - 35.25%이었다. In order to measure the molecular weight of the collagen hydrolyzate obtained in Example 7, the amino acid composition of the recovered hydrolyzate was analyzed. S430 (SYKAM) amino acid automated analyzer was used for amino acid content analysis. The cation separation column LCA K07 / Li (4.6 × 150 mm) had a temperature of 37-74 ° C. and a buffer pH range of 2.90-7.95. The mobile phase was 1, was used a flow rate 5 mM p-toluenesulphonic acid solution per minute at 0.45 mL, 5 mM p -toluenesulphonic acid and, 20 mM of Bis-Tris, post-column reagent a mixture of EDTA 100 m at a flow rate of 0.25 mL per minute Used as. The emission wavelength was 440 and 570 nm. The composition and content of amino acids in the hydrolyzate of collagen isolated from mackerel bone and skin are shown in Table 7. In view of the change in amino acid content depending on the applied temperature and pressure conditions, it can be seen that the temperature and pressure of the hydrothermal reaction are important variables in the hydrolysis reaction. The glycine content was high in the amino acids present in the hydrolyzate, about 27.90-29.44% for the hydrolyzate of mackerel and about 32.38-35.25% for the hydrolyzate of the mackerel shell.
표 7 콜라겐 가수분해물의 아미노산 조성
(mg/g)
아미노산 조성 Bone collagen hydrolyzate Skin collagen hydrolyzate
Temperature (℃)/Pressure(bar)
200/30 250/70 200/30 250/70
포스포세린 0.32±0.03a 0.27±0.02a 0.20±0.01b 0.16±0.01b
타우린 0.40±0.02a 0.48±0.03a 0.18±0.01b 0.26±0.02b
아스파르트산 2.28±0.05a 1.89±0.04a 0.99±0.04b 1.01±0.03b
하이드록시프롤린 5.99±0.09a 5.33±0.07b 5.37±0.08b 4.71±0.06c
세린 1.67±0.06a ND 1.08±0.04b ND
글루탐산 1.17±0.04a 1.24±0.04a 0.73±0.02b 0.64±0.03b
프롤린 13.20±0.12b 11.52±0.17c 15.36±0.11a 11.92±0.15c
글리신 40.86±1.80a 35.26±1.12b 38.56±1.15a 33.59±1.25b
알라닌 24.82±0.88a 21.19±0.82b 24.83±0.92a 19.36±0.78c
α-아미노부티르산 1.09±0.04a 1.15±0.03a 0.59±0.03b 0.31±0.02b
발린 4.44±0.15b 4.07±0.18c 5.27±0.16a 3.89±0.11c
시스테인 2.61±0.09a 2.28±0.08a 1.70±0.08b 1.36±0.07b
메티오닌 2.29±0.07a 1.35±0.08b 0.64±0.03c 0.59±0.02c
시스타티온 3.34±0.10a 2.80±0.07b 1.42±0.06c 0.88±0.04d
이소류신 4.36±0.15a 3.77±0.12a 1.78±0.09b 1.42±0.08b
류신 8.05±0.18a 4.07±0.11c 5.33±0.15b 4.47±0.12c
티로신 5.34±0.16a 4.53±0.11b 1.90±0.08c 1.63±0.09c
페닐알라닌 6.03±0.13a 5.89±0.11a 2.30±0.10b 2.02±0.08b
β-알라닌 0.01±0.01 0.04±0.01 0.02±0.01 0.01±0.01
β-아미노부티르산 0.18±0.02 0.12±0.02 0.10±0.01 0.11±0.01
γ-아미노-n-부티르산 0.03±0.01 0.05±0.01 0.03±0.01 0.03±0.01
히스티딘 5.46±0.11a 3.50±0.10b 1.93±0.08c 1.73±0.07c
히드록시리신 0.13±0.01b 0.55±0.02a 0.06±0.01b 0.43±0.02a
오르니틴 1.09±0.05b 1.01±0.06b 1.91±0.06a 0.83±0.04b
리신 7.08±0.12a 6.79±0.10a 4.21±0.11b 3.64±0.09b
에탄올아민 0.79±0.03a 0.62±0.02b 0.46±0.04c 0.28±0.01d
아르기닌 3.42±0.09a ND  2.11±0.08b ND
TABLE 7 Amino Acid Composition of Collagen Hydrolyzate
(mg / g)
Amino acid composition Bone collagen hydrolyzate Skin collagen hydrolyzate
Temperature (℃) / Pressure (bar)
200/30 250/70 200/30 250/70
Phosphoserine 0.32 ± 0.03 a 0.27 ± 0.02 a 0.20 ± 0.01 b 0.16 ± 0.01 b
Taurine 0.40 ± 0.02 a 0.48 ± 0.03 a 0.18 ± 0.01 b 0.26 ± 0.02 b
Aspartic acid 2.28 ± 0.05 a 1.89 ± 0.04 a 0.99 ± 0.04 b 1.01 ± 0.03 b
Hydroxyproline 5.99 ± 0.09 a 5.33 ± 0.07 b 5.37 ± 0.08 b 4.71 ± 0.06 c
Serine 1.67 ± 0.06 a ND 1.08 ± 0.04 b ND
Glutamic acid 1.17 ± 0.04 a 1.24 ± 0.04 a 0.73 ± 0.02 b 0.64 ± 0.03 b
Proline 13.20 ± 0.12 b 11.52 ± 0.17 c 15.36 ± 0.11 a 11.92 ± 0.15 c
Glycine 40.86 ± 1.80 a 35.26 ± 1.12 b 38.56 ± 1.15 a 33.59 ± 1.25 b
Alanine 24.82 ± 0.88 a 21.19 ± 0.82 b 24.83 ± 0.92 a 19.36 ± 0.78 c
α-aminobutyric acid 1.09 ± 0.04 a 1.15 ± 0.03 a 0.59 ± 0.03 b 0.31 ± 0.02 b
Valine 4.44 ± 0.15 b 4.07 ± 0.18 c 5.27 ± 0.16 a 3.89 ± 0.11 c
Cysteine 2.61 ± 0.09 a 2.28 ± 0.08 a 1.70 ± 0.08 b 1.36 ± 0.07 b
Methionine 2.29 ± 0.07 a 1.35 ± 0.08 b 0.64 ± 0.03 c 0.59 ± 0.02 c
Cystation 3.34 ± 0.10 a 2.80 ± 0.07 b 1.42 ± 0.06 c 0.88 ± 0.04 d
Isoleucine 4.36 ± 0.15 a 3.77 ± 0.12 a 1.78 ± 0.09 b 1.42 ± 0.08 b
Leucine 8.05 ± 0.18 a 4.07 ± 0.11 c 5.33 ± 0.15 b 4.47 ± 0.12 c
Tyrosine 5.34 ± 0.16 a 4.53 ± 0.11 b 1.90 ± 0.08 c 1.63 ± 0.09 c
Phenylalanine 6.03 ± 0.13 a 5.89 ± 0.11 a 2.30 ± 0.10 b 2.02 ± 0.08 b
β-alanine 0.01 ± 0.01 0.04 ± 0.01 0.02 ± 0.01 0.01 ± 0.01
β-aminobutyric acid 0.18 ± 0.02 0.12 ± 0.02 0.10 ± 0.01 0.11 ± 0.01
γ-amino-n-butyric acid 0.03 ± 0.01 0.05 ± 0.01 0.03 ± 0.01 0.03 ± 0.01
Histidine 5.46 ± 0.11 a 3.50 ± 0.10 b 1.93 ± 0.08 c 1.73 ± 0.07 c
Hydroxylysine 0.13 ± 0.01 b 0.55 ± 0.02 a 0.06 ± 0.01 b 0.43 ± 0.02 a
Ornithine 1.09 ± 0.05 b 1.01 ± 0.06 b 1.91 ± 0.06 a 0.83 ± 0.04 b
Lee Sin 7.08 ± 0.12 a 6.79 ± 0.10 a 4.21 ± 0.11 b 3.64 ± 0.09 b
Ethanolamine 0.79 ± 0.03 a 0.62 ± 0.02 b 0.46 ± 0.04 c 0.28 ± 0.01 d
Arginine 3.42 ± 0.09 a ND 2.11 ± 0.08 b ND
실시예 9 : 콜라겐 가수분해물의 항산화 활성 분석Example 9 Analysis of Antioxidant Activity of Collagen Hydrolysates
실시예 6에서 얻은 콜라겐 가수분해물의 항산화 활성을, DPPH 자유 라디컬 소거능, ABTS 자유 라디컬 소거능, 철 환원력(Ferric reducing power activity), Fe2+ 킬레이팅 활성법으로 확인하였다.The antioxidant activity of the collagen hydrolyzate obtained in Example 6 was confirmed by DPPH free radical scavenging ability, ABTS free radical scavenging ability, Ferric reducing power activity, Fe 2+ chelating activity method.
DPPH 자유 라디컬 소거 분석법DPPH Free Radical Scavenging Assay
DPPH 자유 라디컬 소거 분석을 위하여, 가수분해 전과 후에 다양한 농도에서 0.1 mL의 콜라겐 샘플이 담긴 Test tubes에 0.1mM DPPH 메탄올 용액 3.95mL를 첨가했다. 혼합물들을 각각 10초 동안 혼합하고, 암실에서 30분 동안 상온에서 배양하였다. 517 nm에서 모든 샘플의 흡광도를 측정하였다. DPPH 자유 radical 소거능은 다음 수식으로 계산되었다.For DPPH free radical scavenging analysis, 3.95 mL of 0.1 mM DPPH methanol solution was added to Test tubes containing 0.1 mL of collagen samples at various concentrations before and after hydrolysis. Mix the mixtures for 10 seconds each, in the dark Incubated at room temperature for 30 minutes. Absorbance of all samples was measured at 517 nm. DPPH free radical scavenging ability was calculated by the following equation.
DPPH 라디칼 소거능(%) = (1 - [As/Ac])x100%DPPH radical scavenging activity (%) = (1-[ As / Ac ]) x 100%
(As는 517 nm에서 측정된 샘플의 흡광도; Ac는 517 nm에의 공실험 흡광도)(As is the absorbance of the sample measured at 517 nm; Ac is the experimental absorbance at 517 nm)
공실험과 실측된 실험은(메탄올에 trolox의 다양한 농도) 앞에서 설명한 것과 같은 절차를 통해 분석되었다. Experimental and measured experiments (variable concentrations of trolox in methanol) were analyzed using the same procedure described above.
ABTS+ 자유 라디컬 제거 분석법ABTS + Free Radical Removal Assay
ABTS+ 자유 라디컬 제거 분석법을 다음과 같이 수행하였다. 7mM ABTS 수용액과, 2.45mM 황산칼륨 수용액을 1:1의 부피비로 혼합하고, 암실에서 상온 조건에서 반응시켜 ABTS+ 용액을 제조하고, 사용 전에 12 - 16시간 동안 보관하였다. The ABTS + free-radical-removing method was performed as follows. A 7 mM ABTS aqueous solution and a 2.45 mM potassium sulfate aqueous solution were mixed at a volume ratio of 1: 1, and reacted at room temperature in a dark room to prepare an ABTS + solution, and stored for 12-16 hours before use.
ABTS+ 용액을 734nm에서 흡광도가 0.70±0.02가 되도록 80% 메탄올에 희석하고, 희석된 ABTS+ 용액 3.95 mL에 PSC 및 그 가수분해물 샘플 0.05 mL를 각각 첨가한 다음, 혼합물을 어두운 환경에서 6분 동안 상온 상태로 유지하였다. 모든 샘플의 흡광도를 734 nm에서 측정하였다. 자유 radical 소거 활성 ABTS+ 퍼센트를 다음과 같은 공식으로 계산하였다.ABTS + solution was diluted to 80% methanol such that the absorbance 0.70 ± 0.02 at 734nm, diluted with ABTS + solution 3.95 mL to PSC and its hydrolyzate samples in a respective addition of 0.05 mL, and then, the mixture was a dark environment 6 minutes It was kept at room temperature. Absorbance of all samples was measured at 734 nm. The free radical scavenging activity ABTS + percent was calculated by the following formula.
ABTS+ 라디칼 소거능(%) = (1 - [As/Ac])x100%ABTS + radical scavenging activity (%) = (1-[ As / Ac ]) x 100%
(여기서, As는 734 nm에서 제어된 샘플의 흡광도이고, Ac는 734 nm에서 공실험 흡광도임) (Where As is the absorbance of the sample controlled at 734 nm and Ac is the experimental absorbance at 734 nm)
공실험과 실측된 실험은(80% 메탄올에 trolox의 다양한 농도) 위에서 설명한 것과 같이 분석하였다. The blank and measured experiments (variable concentrations of trolox in 80% methanol) were analyzed as described above.
철 환원력 분석법(Ferric reducing power assay)Ferric reducing power assay
PSC 샘플 및 가수분해물의 Fe3+ 환원력을 다음과 같은 방법으로 각각 결정하였다. 가수분해 전후에 다양한 농도로 0.125 mL의 PSC 샘플을, pH 6.6인 0.2M 인산 완충용액 0.625 mL, 1% 페리시안화칼륨 0.625 mL와 혼합하였다. 이 혼합물을 50℃에서 20분 동안 배양하였다. 10분 동안 3,000 rpm에서 원심분리 후 10% 트리클로로아세트산 0.625 mL를 첨가 하였다. 용액의 상층 부분 1.0 mL을 증류수 1.0 mL 및 0.1% 염화제2철 1.0 mL와 혼합하였다. 그리고 700 nm에서 흡광도를 판독하였다. 흡광도의 상승은 환원력 증가와 관련이 있는 것으로 나타났다.The Fe 3+ reducing power of the PSC sample and the hydrolyzate was determined in the following manner, respectively. Before and after hydrolysis, 0.125 mL of PSC samples were mixed with 0.625 mL of 0.2M phosphate buffer, pH 6.6, 0.625 mL of 1% potassium ferricyanide at various concentrations. This mixture was incubated at 50 ° C. for 20 minutes. After centrifugation at 3,000 rpm for 10 minutes, 0.625 mL of 10% trichloroacetic acid was added. 1.0 mL of the upper portion of the solution was mixed with 1.0 mL of distilled water and 1.0 mL of 0.1% ferric chloride. And absorbance was read at 700 nm. The increase in absorbance was found to be associated with an increase in reducing power.
FeFe 2+2+ 의 킬레이트화 분석법Chelation Assay
샘플의 Fe2+ 킬레이트 능력을 다음과 같은 방법으로 결정하였다. 가수분해 전후의 다양한 농도에서 PSC 샘플 (0.1 mL)을 증류수 3.0 mL와 혼합하였다. 또한 2 mM의 FeCl2 50μL와 5mM ferrozine 0.1 mL를 가수 분해 전후의 PSC 샘플에 각각 첨가하고, 실온에서 20분 동안 배양하였다. 이후에 562 nm에서 흡광도를 측정하였다. 다양한 농도의 EDTA를 관리 시료로 사용하였다. 증류수를 음성 대조군으로 사용하였다. Chelating activity (%)를 하기 식을 이용하여 계산하였다.The Fe 2+ chelate capacity of the samples was determined in the following manner. PSC samples (0.1 mL) were mixed with 3.0 mL of distilled water at various concentrations before and after hydrolysis. In addition, 50 μL of 2 mM FeCl 2 and 0.1 mL of 5 mM ferrozine were added to PSC samples before and after hydrolysis, and incubated at room temperature for 20 minutes. The absorbance was then measured at 562 nm. Various concentrations of EDTA were used as control samples. Distilled water was used as a negative control. Chelating activity (%) was calculated using the following formula.
Chelating activity (%) = 1 - [As/Ac])x100%Chelating activity (%) = 1-[ As / Ac ]) x 100%
(여기서 As는 562 nm에서 제어된 샘플의 흡광도; Ac는 562 nm에서 음성 대조군 흡광도) (Where As is the absorbance of the controlled sample at 562 nm; Ac is the negative control absorbance at 562 nm)
본 실시예의 분석 결과를 도 10 내지 13 및 하기 표 8에 나타내었다. 도 10은 고등어 뼈와 껍질에서 분리된 콜라겐을 수열 반응을 통해 회수된 가수분해물의 DPPH 라디칼 소거능을 나타낸 것으로 농도 10 mg/mL에서 비교적 높은 항산화성을 보이고 있다. 도 11은 고등어 뼈와 껍질에서 분리된 콜라겐(PCS)와 가수분해물에 대한 ABTS 소거능 측정을 비교한 결과, 가수분해물의 항산화성이 가수분해전의 콜라겐 보다 높게 나타났다. 도 12 및 13은 가수분해전의 콜라겐과 가수분해 후의 콜라겐 펩타이드 함유 가수분해물의 Fe3+ 환원력과 Fe2+ 킬레이트 활성에 대한 결과를 나타낸 것으로 어류 콜라겐의 가수분해 전보다 수열반응 후의 가수분해물에서 높은 활성을 보이고 있다. 가수분해 반응 조건 250℃와 70 bar에서 얻은 고등어 껍질에서 분리된 콜라겐의 가수분해물은 다양한 농도에서 고등어 뼈에서 분리된 콜라겐 가수분해물보다 Fe3+ 환원력이 크게 나타냈다. 고등어 뼈와 껍질의 콜라겐 가수분해물은 비슷한 Fe2+ 킬레이팅 효과를 나타내고 있으므로, 고등어 뼈와 껍질에서 분리된 콜라겐의 가수분해물은 Fe2+ 킬레이터 기능을 할 수 있음을 보여주고 있다. 고등어 뼈에서의 PSCs IC50 값은 200℃, 30 bar 조건에서 가수분해된 샘플에서 8.21±0.15 mg/mL, 250℃와 70 bar 조건에서 가수분해된 샘플에서 7.27±0.14 mg/mL이었으며, 고등어 껍질의 경우, 200℃, 30 bar 조건에서 가수분해된 샘플은 7.91±0.11 mg/mL, 250℃, 70 bar 조건에서 가수분해된 샘플은 7.01±0.12 mg/mL의 IC50 값을 보이고 있다. 아래 표 8은 콜라겐 가수분해물의 DPPH, ABTS 라디컬 소거능 및 Fe2+ 킬레이팅 활성(IC50)을 보여주는 것으로서, 이 값들은 reference 값보다 높다는 것을 알 수 있다.The analysis results of this example are shown in FIGS. 10 to 13 and Table 8 below. Figure 10 shows the DPPH radical scavenging ability of the hydrolyzate of collagen separated from the mackerel bone and skin by hydrothermal reaction, showing a relatively high antioxidant activity at a concentration of 10 mg / mL. 11 is a comparison of the ABTS scavenging ability of the collagen (PCS) and the hydrolyzate isolated from the mackerel bone and skin, the antioxidant properties of the hydrolyzate was higher than the collagen before hydrolysis. 12 and 13 show the results of Fe 3+ reducing power and Fe 2+ chelate activity of the collagen before hydrolysis and the collagen peptide-containing hydrolysate after hydrolysis, and showed higher activity in hydrolyzate after hydrothermal reaction than before hydrolysis of fish collagen. It is showing. The hydrolyzate of collagen isolated from the mackerel shell obtained at 250 ° C and 70 bar showed higher Fe 3+ reducing power than the collagen hydrolyzate from mackerel bone at various concentrations. The collagen hydrolyzate of mackerel bone and skin shows a similar Fe 2+ chelating effect, indicating that the hydrolyzate of collagen isolated from mackerel bone and skin can function as a Fe 2+ chelator. PSCs IC 50 values in mackerel bone were 8.21 ± 0.15 mg / mL in samples hydrolyzed at 200 ° C and 30 bar, and 7.27 ± 0.14 mg / mL in samples hydrolyzed at 250 ° C and 70 bar. In the case of the sample hydrolyzed at 200 ℃, 30 bar condition is 7.91 ± 0.11 mg / mL, the sample hydrolyzed at 250 ℃, 70 bar condition shows an IC 50 value of 7.01 ± 0.12 mg / mL. Table 8 below shows the DPPH, ABTS radical scavenging activity and Fe 2+ chelating activity (IC 50 ) of the collagen hydrolyzate, and these values are higher than the reference value.
표 8 콜라겐 가수분해물의 DPPH, ABTS 라디컬 소거능 및 Fe2+ 킬레이팅 활성(IC50)
Activity Collagen/Reference IC50(mg/mL)
DPPH 자유 라디칼 소거능 뼈의 콜라겐 가수분해물(200℃, 30 bar) 8.71±0.14c
뼈의 콜라겐 가수분해물(250℃, 70bar) 8.38±0.13c
껍질의 콜라겐 가수분해물(200℃, 30 bar) 9.57±0.12d
껍질의 콜라겐 가수분해물(250℃, 70bar) 7.58±0.10b
Trolox (reference) 0.35±0.05a
ABTS free radicalscavenging 뼈에서 분리된 콜라겐 10.77 ± 0.11d
뼈의 콜라겐 가수분해물(200℃, 30bar) 4.18 ± 0.07c
뼈의 콜라겐 가수분해물(250℃, 70bar) 2.61 ± 0.05b
껍질에서 분리된 콜라겐 12.12 ± 0.13d
껍질의 콜라겐 가수분해물(200℃, 30bar) 4.05 ± 0.08c
껍질의 콜라겐 가수분해물(250℃, 70bar) 2.50 ± 0.05b
Trolox (reference) 0.25 ± 0.03a
Fe2+chelating 뼈의 콜라겐 가수분해물(200℃, 30bar) 8.21 ± 0.15c
뼈의 콜라겐 가수분해물(250℃, 70bar) 7.27 ± 0.14b
껍질의 콜라겐 가수분해물 (200℃, 30bar) 7.91 ± 0.11c
껍질의 콜라겐 가수분해물(250℃, 70 bar) 7.01 ± 0.12b
EDTA (reference) 0.34 ± 0.06a
Table 8 DPPH, ABTS radical scavenging activity and Fe <sup> 2 + </ sup> chelating activity of collagen hydrolysates (IC <sub> 50 </ sub>)
Activity Collagen / Reference IC 50 (mg / mL)
DPPH free radical scavenging activity Collagen hydrolyzate of bone (200 ℃, 30 bar) 8.71 ± 0.14 c
Collagen hydrolyzate of bone (250 ℃, 70bar) 8.38 ± 0.13 c
Collagen hydrolyzate of skin (200 ℃, 30 bar) 9.57 ± 0.12 d
Collagen Hydrolyzate of Skin (250 ℃, 70bar) 7.58 ± 0.10 b
Trolox (reference) 0.35 ± 0.05 a
ABTS free radicalscavenging Collagen Isolated From Bone 10.77 ± 0.11 d
Collagen hydrolyzate of bone (200 ℃, 30bar) 4.18 ± 0.07 c
Collagen hydrolyzate of bone (250 ℃, 70bar) 2.61 ± 0.05 b
Collagen Isolated from Peel 12.12 ± 0.13 d
Collagen hydrolyzate of skin (200 ℃, 30bar) 4.05 ± 0.08 c
Collagen Hydrolyzate of Skin (250 ℃, 70bar) 2.50 ± 0.05 b
Trolox (reference) 0.25 ± 0.03 a
Fe 2+ chelating Collagen hydrolyzate of bone (200 ℃, 30bar) 8.21 ± 0.15 c
Collagen hydrolyzate of bone (250 ℃, 70bar) 7.27 ± 0.14 b
Collagen Hydrolyzate of Skin (200 ℃, 30bar) 7.91 ± 0.11 c
Collagen hydrolyzate of skin (250 ℃, 70 bar) 7.01 ± 0.12 b
EDTA (reference) 0.34 ± 0.06 a
실시예 10: 휘발성 물질(VOCs) 분석Example 10 Analysis of Volatile Materials (VOCs)
고등어 뼈와 껍질에서 회수된 콜라겐으로부터 발생되는 다양한 휘발성 유기 물질을 표 9 및 10에 나타내었다. 아임계 수의 가압 수열 반응에 의해 생산된 고등어 뼈와 껍질의 가수분해물에는 일부 휘발성 유기 물질들이 없어지거나 새로운 휘발성 유기 물질이 생성되었다. 고등어 뼈와 껍질에서 생산된 콜라겐 펩타이드와 아미노산이 함유된 가수분해물에서 동정된 휘발성 유기 물질 중에서 methylene chloride, methyl ethyl ketone, 3-methylbutanal and 2-methylbutanal은 품질에 좋은 영향을 주는 성분들이다. 이 휘발성 유기 물질은 아임계 수에 의한 가수분해반응 처리 전의 고등어 뼈와 껍질의 콜라겐에서 발생되는 휘발성 유기 물질보다 냄새에 대한 관능성이 우수하였다. 하기 표 9는 고등어 뼈 콜라겐과 가수분해물의 휘발성 물질(VOCs) 조성을 각각 보여주는 것이다. Various volatile organics resulting from collagen recovered from mackerel bone and skin are shown in Tables 9 and 10. The hydrolyzate of mackerel bone and skin produced by subcritical water pressurized hydrolysis has either lost some volatile organics or produced new volatile organics. Among the volatile organic compounds identified in the collagen peptides and amino acid-containing hydrolysates produced in the mackerel bones and shells, methylene chloride, methyl ethyl ketone, 3-methylbutanal and 2-methylbutanal are the components that have a good effect on quality. This volatile organic substance was superior to the odor sensor than the volatile organic substance generated from the collagen of mackerel bone and skin before hydrolysis by subcritical water. Table 9 shows the volatiles (VOCs) composition of mackerel bone collagen and hydrolyzate, respectively.
표 9 고등어 뼈 콜라겐과 가수분해물에 대한 휘발성 물질(VOCs) 조성
Volatile organic compounds Area (%)
Mackerel bone Mackerel bone collagen Bone collagen hydrolyzate (200℃,30bar) Bone collagen hydrolyzate (250℃,70bar)
Ethanal 3.50 ND ND ND
Parapropionaldehyde 15.57 7.53 ND ND
Furan 2.21 ND ND ND
Methylene chloride ND 1.89 3.04 2.11
Isobutanal ND ND 14.42 14.90
Propanal, 2-methyl- 3.14 ND ND ND
Propanol 2.52 ND ND ND
Butanal 9.85 3.58 2.50 2.16
Methyl ethyl ketone 2.75 ND 5.50 6.76
Furan, 2-methyl- 1.50 ND ND ND
2-Butenal 1.60 ND ND ND
3-Methylbutanal 5.67 ND 26.61 23.11
2-Methylbutanal 2.89 ND 17.01 16.03
1-Penten-3-one 3.40 ND ND ND
2-pentanone ND ND 1.18 1.44
2-Ethylfuran 4.01 ND ND ND
Furan, 2-ethyl- 9.44 ND ND ND
Heptane 2.17 ND ND ND
2-Pentenal, (E)- 1.69 ND ND ND
1-Pentanol 2.51 ND ND ND
n-Hexanal 9.65 5.03 1.26 ND
Heptane, 2,4-dimethyl- 2.09 ND ND ND
Heptanal 3.93 2.02 ND ND
Octanal 2.70 2.07 ND ND
Table 9 Composition of Volatile Compounds (VOCs) for Mackerel Bone Collagen and Hydrolysates
Volatile organic compounds Area (%)
Mackerel bone Mackerel bone collagen Bone collagen hydrolyzate (200 ℃, 30bar) Bone collagen hydrolyzate (250 ℃, 70bar)
Ethanal 3.50 ND ND ND
Parapropionaldehyde 15.57 7.53 ND ND
Furan 2.21 ND ND ND
Methylene chloride ND 1.89 3.04 2.11
Isobutanal ND ND 14.42 14.90
Propanal, 2-methyl- 3.14 ND ND ND
Propanol 2.52 ND ND ND
Butanal 9.85 3.58 2.50 2.16
Methyl ethyl ketone 2.75 ND 5.50 6.76
Furan, 2-methyl- 1.50 ND ND ND
2-Butenal 1.60 ND ND ND
3-Methylbutanal 5.67 ND 26.61 23.11
2-Methylbutanal 2.89 ND 17.01 16.03
1-Penten-3-one 3.40 ND ND ND
2-pentanone ND ND 1.18 1.44
2-Ethylfuran 4.01 ND ND ND
Furan, 2-ethyl- 9.44 ND ND ND
Heptane 2.17 ND ND ND
2-Pentenal, (E)- 1.69 ND ND ND
1-Pentanol 2.51 ND ND ND
n-Hexanal 9.65 5.03 1.26 ND
Heptane, 2,4-dimethyl- 2.09 ND ND ND
Heptanal 3.93 2.02 ND ND
Octanal 2.70 2.07 ND ND
아래 표 10은 고등어 껍질 콜라겐과 가수분해물의 휘발성 물질(VOCs) 조성을 각각 보여주는 것이다.Table 10 below shows the composition of volatiles (VOCs) of mackerel shell collagen and hydrolyzate, respectively.
표 10 고등어 껍질 콜라겐과 가수분해물에 대한 휘발성 물질(VOCs) 조성
Volatile organic compounds (VOCs) Area (%)
Mackerel skin Mackerel skin collagen Skin collagen hydrolyzate (200℃,30bar) Skin collagen hydrolyzate (250℃,70bar)
Diethoxyethane 16.66 ND ND ND
Propionaldehyde 22.37 8.13 ND ND
Ethyl formate 4.48 ND ND ND
Methylene chloride ND ND 5.15 3.09
Isobutanal 1.48 ND 14.13 14.09
Butanal 7.78 2.64 1.85 2.36
2-Butanone 2.22 ND ND ND
Methyl ethyl ketone ND ND 6.03 6.61
Chloroform 1.91 ND ND ND
2-Butenal 2.58 ND ND ND
3-Methylbutanal 2.08 ND 19.18 20.05
2-Methylbutanal ND ND 12.49 14.48
1-Penten-3-one 3.11 ND ND ND
Hydroxycyclopentane 8.90 ND ND ND
Furan, 2-ethyl- 2.58 1.32 ND ND
n-Heptane 1.58 ND ND ND
n-Hexanal 6.92 5.27 ND ND
1,2-Butylene glycol 1.38 ND ND ND
Heptane, 2,4-dimethyl- 2.01 ND ND ND
Cyclotrisiloxane, hexamethyl- ND 1.34 ND ND
Allyl Isothiocyanate ND 1.29 ND ND
Heptanal 2.44 4.72 ND ND
Octanal 1.31 3.90 ND ND
Nonane, 3-methyl-5-propyl- 1.53 ND ND ND
Table 10 Composition of Volatile Compounds (VOCs) for Mackerel Shell Collagen and Hydrolysates
Volatile organic compounds (VOCs) Area (%)
Mackerel skin Mackerel skin collagen Skin collagen hydrolyzate (200 ℃, 30bar) Skin collagen hydrolyzate (250 ℃, 70bar)
Diethoxyethane 16.66 ND ND ND
Propionaldehyde 22.37 8.13 ND ND
Ethyl formate 4.48 ND ND ND
Methylene chloride ND ND 5.15 3.09
Isobutanal 1.48 ND 14.13 14.09
Butanal 7.78 2.64 1.85 2.36
2-Butanone 2.22 ND ND ND
Methyl ethyl ketone ND ND 6.03 6.61
Chlororoform 1.91 ND ND ND
2-Butenal 2.58 ND ND ND
3-Methylbutanal 2.08 ND 19.18 20.05
2-Methylbutanal ND ND 12.49 14.48
1-Penten-3-one 3.11 ND ND ND
Hydroxycyclopentane 8.90 ND ND ND
Furan, 2-ethyl- 2.58 1.32 ND ND
n-Heptane 1.58 ND ND ND
n-Hexanal 6.92 5.27 ND ND
1,2-Butylene glycol 1.38 ND ND ND
Heptane, 2,4-dimethyl- 2.01 ND ND ND
Cyclotrisiloxane, hexamethyl- ND 1.34 ND ND
Allyl Isothiocyanate ND 1.29 ND ND
Heptanal 2.44 4.72 ND ND
Octanal 1.31 3.90 ND ND
Nonane, 3-methyl-5-propyl- 1.53 ND ND ND
이상과 같이, 본 발명의 바람직한 실시예에 기초하여 본 발명을 설명하였다. 전술한 실시예는 본 발명의 예시에 불과한 것으로서, 본 발명의 범위가 전술한 실시예의 범위로 한정되는 것은 아니다. 오히려 본 발명이 속하는 기술분야에서 통상의 기술자라면 전술한 실시예에 기초하여 다양한 변형과 변경을 용이하게 추고할 수 있을 것이다. 하지만, 그러한 변형과 변경은 모두 본 발명의 권리범위에 속한다는 사실은 첨부하는 청구의 범위를 통하여 더욱 분명해질 것이다. As mentioned above, this invention was demonstrated based on the preferable Example of this invention. The above embodiments are merely examples of the present invention, and the scope of the present invention is not limited to the above-described embodiments. Rather, those skilled in the art to which the present invention pertains will be able to easily make various modifications and changes based on the above-described embodiments. However, it will be more apparent from the appended claims that such variations and modifications are all within the scope of the present invention.
본 발명에 따라 어류 가공 과정에서 발생하는 부산물인 어류 뼈, 껍질, 내장 등로부터 가압 수열 반응을 이용하여 생산된 저분자 콜라겐 펩타이드 가수분해물은 분자량이 3 kDa 이하로 작아서 생체 내부로 흡수될 수 있으며, 골 조직 재생에 중요한 소재인 glycine과 proline을 함유하고 있고, 항산화 작용을 나타내므로, 의약품, 건강 보조 식품, 화장품 등을 비롯한 다양한 산업 분야에서 유용하게 활용될 수 있다. According to the present invention, the low molecular weight collagen peptide hydrolyzate produced by using a pressurized hydrothermal reaction from fish bones, shells, intestines, etc. generated by the processing of fish can be absorbed into the living body due to its molecular weight of 3 kDa or less. It contains glycine and proline, which are important materials for tissue regeneration, and exhibits antioxidant activity, so it can be usefully used in various industrial fields, including medicines, dietary supplements, and cosmetics.

Claims (8)

  1. 어류 뼈, 껍질 및 내장으로 구성된 군에서 선택되는 하나 이상의 어류 가공 부산물로부터 추출된 고분자량의 콜라겐 분말을 가압 수열 가수분해 반응시키는 단계를 포함하는, 어류 유래의 저분자량 콜라겐을 수득하는 방법.A method of obtaining low molecular weight collagen derived from fish, comprising the step of hydrothermally hydrolyzing a high molecular weight collagen powder extracted from at least one fish processing by-product selected from the group consisting of fish bones, shells and intestines.
  2. 제1항에 있어서, The method of claim 1,
    상기 저분자량 콜라겐은 3,000 Da 이하의 분자량을 가지는 것인, 어류 유래의 저분자량 콜라겐을 수득하는 방법. The low molecular weight collagen has a molecular weight of less than 3,000 Da, a method for obtaining a low molecular weight collagen derived from fish.
  3. 제1항에 있어서, The method of claim 1,
    상기 가압 수열 가수분해 반응에는 150 - 370℃의 온도 및 5 - 400 bar 압력의 물이 사용되는 것을 특징으로 하는, 어류 유래의 저분자량 콜라겐을 수득하는 방법.The method for obtaining low molecular weight collagen derived from fish, characterized in that the pressurized hydrothermal hydrolysis reaction is used water at a temperature of 150-370 ℃ and 5-400 bar pressure.
  4. 제1항에 있어서, The method of claim 1,
    고분자량의 콜라겐 분말을 가압 수열 가수분해 반응시키는 단계 이전에, 건조 및 분쇄된 어류 가공 부산물 시료로부터 고분자량의 콜라겐 분말을 추출하는 단계를 더 포함하고, 여기서 얻은 고분자량의 콜라겐 분말을 가압 수열 가수분해 반응시키는 단계의 출발 물질로 사용하는 것인, 어류 유래의 저분자량 콜라겐을 수득하는 방법. Before the step of hydrothermal hydrolysis of the high molecular weight collagen powder, further comprising the step of extracting a high molecular weight collagen powder from the dried and ground fish processing by-product sample, wherein the high molecular weight collagen powder A method for obtaining low molecular weight collagen derived from fish, which is used as a starting material for the decomposition reaction step.
  5. 제1항에 있어서, The method of claim 1,
    고분자량의 콜라겐 분말을 추출하는 단계는 분쇄된 고등어의 뼈를 1:5 - 1:20 (w/v)의 비율로 희석한 알칼리 용액으로 처리하는 단계; 알칼리 용액의 처리에 의해 얻어진 불용성 고등어 뼈에 산을 1:5 - 1:20 (w/v)의 비율로 혼합하여 탈석회화 하는 단계; 탈석회화된 고등어 뼈에 알코올을 1:5 - 1:20 (w/v)의 비율로 가하여 탈지 처리하는 단계; 및 탈지 처리된 고등어 뼈 잔여물에 펩신을 가하여 가수분해하는 단계를 포함하는 것인, 어류 유래의 저분자량 콜라겐을 수득하는 방법. Extracting high molecular weight collagen powder may include treating the ground mackerel bone with an alkaline solution diluted in a ratio of 1: 5-1:20 (w / v); Decalcification by mixing acid in an insoluble mackerel bone obtained by treatment of an alkaline solution in a ratio of 1: 5-1:20 (w / v); Degreasing treatment by adding alcohol to the decalcified mackerel bone in a ratio of 1: 5-1:20 (w / v); And hydrolyzing by adding pepsin to the degreased mackerel bone residue.
  6. 제1항에 있어서, The method of claim 1,
    고분자량의 콜라겐 분말을 추출하는 단계는 분쇄된 고등어의 껍질을 1:20 - 1:50 (w/v)의 비율로 희석한 알칼리 용액으로 처리하는 단계; 알칼리 용액의 처리에 의해 얻어진 불용성 고등어 껍질에 알코올을 1:20 - 1:50 (w/v)의 비율로 혼합하여 탈지 처리하는 단계; 및 탈지 처리된 고등어 껍질 잔여물에 펩신을 가하여 가수분해하는 단계를 포함하는 것인, 어류 유래의 저분자량 콜라겐을 수득하는 방법. Extracting the high molecular weight collagen powder may include treating the ground mackerel with an alkaline solution diluted in a ratio of 1:20-1:50 (w / v); Degreasing treatment by mixing alcohol in an insoluble mackerel shell obtained by treatment of an alkaline solution in a ratio of 1:20-1:50 (w / v); And hydrolyzing by adding pepsin to the degreased mackerel shell residue.
  7. 어류 뼈, 껍질 및 내장으로 구성된 군에서 선택되는 하나 이상의 어류 가공 부산물로부터 추출된 고분자량의 콜라겐 분말을 고온 및 고압의 물로 가수분해하는 것을 포함하는, 어류 유래의 저분자량 콜라겐의 제조 방법. A method for producing low molecular weight collagen derived from fish, comprising hydrolyzing high molecular weight collagen powder extracted from at least one fish processing by-product selected from the group consisting of fish bones, shells and intestines with high temperature and high pressure water.
  8. 제7항에 있어서, The method of claim 7, wherein
    상기 저분자량 콜라겐은 3,000 Da 이하의 분자량을 가지는 것인, 어류 유래의 저분자량 콜라겐의 제조 방법. The low molecular weight collagen has a molecular weight of less than 3,000 Da, a method for producing low molecular weight collagen derived from fish.
PCT/KR2015/002571 2014-05-28 2015-03-17 Method for obtaining low-molecular weight collagen peptides from fish bones and shells using pressurized hydrothermal hydrolysis WO2015182859A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0064270 2014-05-28
KR1020140064270A KR20150136802A (en) 2014-05-28 2014-05-28 Recovery of collagen peptide derived from fish bone and skin using pressurized hydrothermal hydrolysis

Publications (1)

Publication Number Publication Date
WO2015182859A1 true WO2015182859A1 (en) 2015-12-03

Family

ID=54699157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002571 WO2015182859A1 (en) 2014-05-28 2015-03-17 Method for obtaining low-molecular weight collagen peptides from fish bones and shells using pressurized hydrothermal hydrolysis

Country Status (2)

Country Link
KR (1) KR20150136802A (en)
WO (1) WO2015182859A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109924508A (en) * 2017-12-16 2019-06-25 昆山瑞欣健康管理有限公司 A kind of nutrition and health care complex peptides powder and its preparation method and application
KR20200108265A (en) * 2020-09-07 2020-09-17 종근당건강 주식회사 Granule composition with improved off flavor and method for producing the same
CN114214384A (en) * 2021-12-22 2022-03-22 海南三元星生物科技股份有限公司 Marine organism-derived collagen peptide, and extraction method and application thereof
CN114480547A (en) * 2022-03-09 2022-05-13 山东智鼎食品科技有限公司 Method for producing micromolecule hydrolyzed animal protein peptide by utilizing animal fat wet-process refining by-product
CN114794361A (en) * 2022-05-31 2022-07-29 中国农业科学院农产品加工研究所 Method for removing foreign odor substances in bone collagen peptide powder
CN116746668A (en) * 2023-07-04 2023-09-15 中国海洋大学 Compound fish glue for resisting iron deficiency anemia and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102160726B1 (en) * 2019-06-26 2020-09-28 주식회사 팜스메틱 Uv-blocking and skin-moisturizing cosmetic composition containing nano collagen peptide chelate zinc
KR102240111B1 (en) * 2019-06-26 2021-04-14 주식회사 팜스메틱 Cosmetic composition for moisturizing skin and improving skin wrinkles containing nano collagen peptide chelate mineral
KR102406037B1 (en) * 2019-06-27 2022-06-10 강릉원주대학교산학협력단 Composition for antiaging comprising hydrolysates from Scomberomorus niphonius
KR102204369B1 (en) * 2020-05-19 2021-01-19 주식회사 뷰티콜라겐 Method for manufacturing collagen with improved odor and viscosity and food composition and cosmetic composition using the same
CN112608968B (en) * 2021-01-14 2022-03-18 山东恒鑫生物科技有限公司 Method for producing fish collagen peptide by using tilapia mossambica scale as raw material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040108147A (en) * 2003-06-16 2004-12-23 주식회사 이제 producing method of protein hydrolysates from fish scale
KR20100036359A (en) * 2007-07-06 2010-04-07 후지필름 가부시키가이샤 Cosmetic composition
KR101341704B1 (en) * 2013-05-02 2013-12-16 황재호 Manufacturing process of collagen by using by-products
KR20140015876A (en) * 2012-07-26 2014-02-07 영산홍어(주) Production method of collagen peptide derived from fishskin and roduction method of oil soluble collagen peptide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040108147A (en) * 2003-06-16 2004-12-23 주식회사 이제 producing method of protein hydrolysates from fish scale
KR20100036359A (en) * 2007-07-06 2010-04-07 후지필름 가부시키가이샤 Cosmetic composition
KR20140015876A (en) * 2012-07-26 2014-02-07 영산홍어(주) Production method of collagen peptide derived from fishskin and roduction method of oil soluble collagen peptide
KR101341704B1 (en) * 2013-05-02 2013-12-16 황재호 Manufacturing process of collagen by using by-products

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109924508A (en) * 2017-12-16 2019-06-25 昆山瑞欣健康管理有限公司 A kind of nutrition and health care complex peptides powder and its preparation method and application
KR20200108265A (en) * 2020-09-07 2020-09-17 종근당건강 주식회사 Granule composition with improved off flavor and method for producing the same
KR102191621B1 (en) 2020-09-07 2020-12-15 종근당건강 주식회사 Granule composition with improved off flavor and method for producing the same
CN114214384A (en) * 2021-12-22 2022-03-22 海南三元星生物科技股份有限公司 Marine organism-derived collagen peptide, and extraction method and application thereof
CN114480547A (en) * 2022-03-09 2022-05-13 山东智鼎食品科技有限公司 Method for producing micromolecule hydrolyzed animal protein peptide by utilizing animal fat wet-process refining by-product
CN114794361A (en) * 2022-05-31 2022-07-29 中国农业科学院农产品加工研究所 Method for removing foreign odor substances in bone collagen peptide powder
CN114794361B (en) * 2022-05-31 2024-03-19 中国农业科学院农产品加工研究所 Method for removing foreign odor substances from collagen peptide powder
CN116746668A (en) * 2023-07-04 2023-09-15 中国海洋大学 Compound fish glue for resisting iron deficiency anemia and preparation method thereof
CN116746668B (en) * 2023-07-04 2024-02-09 中国海洋大学 Compound fish glue and preparation method thereof

Also Published As

Publication number Publication date
KR20150136802A (en) 2015-12-08

Similar Documents

Publication Publication Date Title
WO2015182859A1 (en) Method for obtaining low-molecular weight collagen peptides from fish bones and shells using pressurized hydrothermal hydrolysis
Hong et al. Preparation of low-molecular-weight, collagen hydrolysates (peptides): Current progress, challenges, and future perspectives
Ideia et al. Fish processing industry residues: A review of valuable products extraction and characterization methods
Song et al. Characterization and comparison of collagen extracted from the skin of the Nile tilapia by fermentation and chemical pretreatment
Jin et al. Preparation of antioxidative corn protein hydrolysates, purification and evaluation of three novel corn antioxidant peptides
Ahmed et al. Subcritical water hydrolysis for the production of bioactive peptides from tuna skin collagen
Halim et al. Functional and bioactive properties of fish protein hydolysates and peptides: A comprehensive review
Nimalaratne et al. Purification and characterization of antioxidant peptides from enzymatically hydrolyzed chicken egg white
Pal et al. Comparative assessment of physico-chemical characteristics and fibril formation capacity of thermostable carp scales collagen
Zhang et al. Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes
Benjakul et al. Characteristics of gelatin from the skins of bigeye snapper, Priacanthus tayenus and Priacanthus macracanthus
KR101020312B1 (en) Preparation method of collagen peptides from fish scale
US8173174B2 (en) Solubilized protein composition obtained from avian eggshell membrane
Esteban et al. Sub-critical water hydrolysis of hog hair for amino acid production
Jamilah et al. Properties of collagen from barramundi (Lates calcarifer) skin.
Asaduzzaman et al. Characterization of pepsin-solubilised collagen recovered from mackerel (Scomber japonicus) bone and skin using subcritical water hydrolysis
Mahmoodani et al. ACE inhibitory activity of pangasius catfish (Pangasius sutchi) skin and bone gelatin hydrolysate
Zou et al. Effect of ultrasound pre-treatment on the characterization and properties of collagen extracted from soft-shelled turtle (Pelodiscus sinensis)
Sampath Kumar et al. Wound healing properties of collagen from the bone of two marine fishes
Mirzapour-Kouhdasht et al. Optimization of gelatin production from Barred mackerel by-products: Characterization and hydrolysis using native and commercial proteases
EP2832237A1 (en) Method for producing hydrolysed keratinaceous material
Song et al. Extraction optimization and characterization of collagen from the lung of soft-shelled turtle Pelodiscus sinensis
Xia et al. Characteristics of Bellamya purificata snail foot protein and enzymatic hydrolysates
Haq et al. Biofunctional properties of bacterial collagenolytic protease-extracted collagen hydrolysates obtained using catalysts-assisted subcritical water hydrolysis
Rasli et al. Preparation and physicochemical characterization of fish skin gelatine hydrolysate from shortfin scad (Decapterus macrosoma).

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15799935

Country of ref document: EP

Kind code of ref document: A1