WO2015182467A1 - Generator for two-wheeled motor vehicle - Google Patents

Generator for two-wheeled motor vehicle Download PDF

Info

Publication number
WO2015182467A1
WO2015182467A1 PCT/JP2015/064559 JP2015064559W WO2015182467A1 WO 2015182467 A1 WO2015182467 A1 WO 2015182467A1 JP 2015064559 W JP2015064559 W JP 2015064559W WO 2015182467 A1 WO2015182467 A1 WO 2015182467A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
generator
stator teeth
magnet
Prior art date
Application number
PCT/JP2015/064559
Other languages
French (fr)
Japanese (ja)
Inventor
鉄也 刑部
Original Assignee
スズキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スズキ株式会社 filed Critical スズキ株式会社
Priority to CN201580001807.XA priority Critical patent/CN105556811B/en
Publication of WO2015182467A1 publication Critical patent/WO2015182467A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos

Definitions

  • the present invention relates to a generator for a motorcycle in which electric loss is reduced and power generation output and power generation efficiency are improved.
  • the magneto generator 100 includes a stator 103 in which a stator (power generation) coil 102 is wound around each of a plurality of stator teeth 101, and a rotor 106 in which a magnet 105 is installed on an inner peripheral surface of a rotor yoke 104.
  • the rotor 106 generates electric power by inducing an induced current in the power generation coil 102 due to electromagnetic induction generated by rotating around the stator 103 by the driving force of the engine.
  • each magnet 105 is magnetized with three magnetic poles forming a pair of N and S poles. For this reason, the magnetic flux easily leaks to the adjacent magnetic pole in one magnet 105, the magnetic flux flowing to the stator teeth 101 of the stator 103 is reduced, and the magnetic flux is not used effectively. As a result, the power generation output and power generation efficiency of the magneto generator 100 could not be improved.
  • a rotating electrical machine in which a plurality of permanent magnets are arranged on the rotor yoke of the rotor that rotates on the outer periphery of the stator with the auxiliary poles interposed therebetween, and functions as a generator (see, for example, Patent Document 1).
  • a thyristor is provided as a rectifier that rectifies the output of the stator coil by arranging a stator coil composed of a three-phase winding in a vibration damping generator for a vehicle and connecting the stator coil to a battery via a rectifier (rectifier).
  • a technique using a rectifier is also disclosed. (For example, refer to Patent Document 2).
  • Patent Document 2 only includes a thyristor provided in the rectifier to control the output of the stator coil, thereby reducing the electrical loss of the generator and reducing the total rotation of the engine. There is no description that suggests or suggests a technique for reducing the output loss in the region.
  • An object of the present invention is made in consideration of the above-described circumstances, and is provided in a power unit of a motorcycle and effectively guides magnetic flux from a magnet of a rotor to stator teeth of a stator, thereby generating power and generating power.
  • An object is to provide a generator for a motorcycle that can improve efficiency.
  • Another object of the present invention is to provide a generator for a motorcycle that can reduce the electric loss of the generator, reduce the output loss of the entire engine rotation range, and improve the fuel efficiency of the vehicle.
  • a generator for a motorcycle includes: a stator having a stator coil wound around each of a plurality of stator teeth extending radially from the center;
  • a generator for a motorcycle provided in a power unit of a motorcycle, having a magnet installed on an inner peripheral surface of a rotor yoke and rotating around the stator about the center, wherein the magnet is A plurality of coils are installed adjacent to each other with a gap in the circumferential direction of the rotor, and the stator teeth are formed by stacking a plurality of core sheets of thin steel plates, and the coil winding around which the stator coils are wound
  • a front end portion of the stator teeth extending from the mounting portion toward the rotation direction side and the counter rotation direction side of the rotor, and extending toward the rotation direction side of the rotor. Rectangular side portion, when the rotation direction front end of the magnet is substantially aligned with the center line of the coil winding portion, characterized in that it is configured to
  • the tip of the stator teeth is formed such that one side portion extending in the rotation direction side of the rotor is longer than the other side portion extending in the counter rotation direction side of the rotor.
  • a motorcycle generator provided to achieve the above object is provided with a stator coil wound around each of a plurality of stator teeth extending radially from the center.
  • a generator for a motorcycle provided in a power unit of a motorcycle, having a stator and a rotor installed around the stator and having a magnet installed on an inner peripheral surface of the rotor yoke, and rotating around the stator, A plurality of magnets are installed adjacent to each other with a gap in the circumferential direction of the rotor, the stator teeth are configured by laminating a plurality of thin steel plate core sheets, and the stator coil is wound thereon.
  • a leading end portion extending from the coil winding portion to the rotation direction side and the counter-rotation direction side of the rotor.
  • the one side portion extending in the rotational direction of the rotor in the stator teeth is the rear portion. It is desirable to be configured to overlap with the magnet adjacent to the front end side in the rotation direction of the row magnet.
  • the ratio of the circumferential angle between the magnet provided in the rotor and the gap between the magnets is 7/3: 1.
  • a plurality of magnets provided in the rotor are installed corresponding to 1: 1 on a plurality of stator teeth of the stator.
  • stator teeth of the stator and 12 magnets of the rotor are provided along the circumferential direction.
  • a metal cover having an opening exposing a part of the magnet is attached to the inner peripheral surface of the rotor magnet.
  • stator teeth are preferably configured by laminating a plurality of rolled steel plates or electromagnetic steel plates made of a core sheet of a thin steel plate having a thickness of less than 1 mm.
  • stator teeth are provided with an assembly through-hole that penetrates a plurality of laminated thin steel sheet core sheets.
  • a motorcycle generator provided to achieve the above object is provided with a stator coil wound around each of a plurality of stator teeth extending radially from the center.
  • a generator for a motorcycle provided in a power unit of a motorcycle, having a stator and a rotor installed around the stator and having a magnet installed on an inner peripheral surface of the rotor yoke, and rotating around the stator, A plurality of magnets are installed adjacent to each other via a gap in the circumferential direction of the rotor, and the stator teeth are arranged on the rotor rotation direction side and the counter rotation direction side from the coil winding portion around which the stator coil is wound.
  • the stator coil is connected to a thyristor via a regulator / actuator (regulator rectifier).
  • the retreater / actuator is connected to a battery, and the gate of the thyristor is connected to a voltage control circuit.
  • the voltage control circuit turns off the thyristor when the charging voltage of the battery reaches a predetermined voltage.
  • the reregulator / actuator is controlled open.
  • the stator teeth of the stator may be formed by laminating a plurality of rolled steel sheets or electromagnetic steel sheets made of a thin steel sheet core sheet having a thickness of 0.2 mm to less than 1 mm.
  • stator teeth are configured by laminating a plurality of rolled steel plates made of a core sheet of a thin steel plate having a thickness of less than 1 mm, and each of the rolled steel plates is coated with an insulating resin material, or one rolled steel plate is provided.
  • the stator teeth may be configured by sandwiching a paper or resin insulating sheet between one sheet or applying an insulating paint.
  • stator teeth are made of a thin steel plate core sheet having a thickness of less than 1 mm made of an electromagnetic steel plate.
  • the electromagnetic steel plate of the stator teeth is a non-oriented electrical steel plate.
  • the generator for a motorcycle of the present invention, is provided in the power unit of the motorcycle, and a plurality of magnets are installed adjacent to each other with a gap in the circumferential direction of the rotor. Leakage of magnetic flux between the magnets can be suppressed, and the magnetic flux flowing from the magnets to the stator teeth can be increased. As a result, since the magnetic flux from the magnet of the rotor can be effectively guided to the stator teeth of the stator, the power generation output and the power generation efficiency can be improved.
  • the one end portion of the stator teeth leading end portion extending in the rotor rotating direction side at the stator tooth leading end portion is substantially coincident with the center line of the coil winding portion of the stator teeth. Then, it is configured to overlap with the preceding magnet adjacent to the front end in the rotational direction. Therefore, the time for the magnets and the stator teeth to face each other, that is, the time for the stator teeth to collect the magnetic flux of the magnets becomes longer, and the magnetic flux flows through each stator tooth for a long time. As a result, since the magnetic flux from the magnet of the rotor can be effectively guided to the stator teeth of the stator, the power generation output and the power generation efficiency can be improved.
  • the stator coil of the generator for a motorcycle is connected to the battery via a regulated rectifier (regulator / rectifier) having a rectifying function controlled by a thyristor, and the charging voltage of the battery is
  • a regulated rectifier regulator / rectifier
  • the voltage control circuit controls the thyristor to OFF and the regulator rectifier is controlled to open, so when the battery voltage reaches the specified voltage, no current flows through the stator coil, reducing copper loss.
  • the electric loss can be reduced, and the electric loss can be reduced in the entire rotation region of the engine, so that the fuel efficiency of the vehicle can be improved.
  • the left side view showing the engine unit of the motorcycle to which one embodiment of the generator for motorcycles concerning the present invention was applied.
  • Sectional drawing which follows the II-II line
  • the front view which shows the magneto generator as a generator visually observed from the III-III line direction of FIG.
  • the schematic front view which shows typically the magnet and stator teeth of FIG.
  • FIG. 3 shows the flow of the magnetic flux in the 3rd rotation position of a magnet and stator teeth.
  • the graph which shows the relationship between the gap
  • FIG. The graph which shows the relationship between the relative length with respect to the other side part of the one side part in the front-end
  • FIG. The operation
  • FIG. 3 is a side view showing a rotor cover that covers the rotor of the magneto generator from the magnet side.
  • FIG. 14B is a cross-sectional view taken along the line XIVB-XIVB in FIG. 14A.
  • FIG. 13 is a power generation circuit diagram showing a three-phase short regulator rectifier (regulator / rectifier) combined with the magneto generator shown in FIG. 12.
  • FIG. 13 is a power generation circuit diagram showing a three-phase open regulated rectifier combined with the magneto generator shown in FIG. 12.
  • FIG. 17 is a configuration diagram showing a voltage control circuit provided in the regulate rectifier shown in FIGS. 15 and 16.
  • FIG. 20 is an enlarged view showing an I part in FIG. 20A.
  • FIG. 4 is a power generation circuit diagram showing a single-phase full charge generator combined with a magneto generator.
  • FIG. 3 is a power generation circuit diagram showing a single-phase AC-DC generator combined with a magneto generator.
  • FIG. 1 is a left side view showing a power unit of a motorcycle to which a first embodiment of a motorcycle generator according to the present invention is applied.
  • a power unit 10 is an air-cooled four-cycle single-cylinder engine.
  • the engine 11 mainly includes a crankcase 12 that rotatably supports and accommodates a crankshaft 19, a cylinder block 13 that is coupled to an end of the crankcase 12, and a cylinder block 13 that is coupled to the cylinder block 13.
  • a cylinder head 14 and a head cover 15 coupled to the cylinder head 14 are provided.
  • the generator for a motorcycle according to the present invention is provided in the power unit of the motorcycle.
  • the crankcase 12 is divided into left and right parts.
  • the crankcase 12 is formed by connecting a right crankcase 12 ⁇ / b> R and a left crankcase 12 ⁇ / b> L, which are paired on the left and right sides, and integrated with each other.
  • a crankshaft 19 and a pair of left and right crank webs 19 ⁇ / b> A integrated with the crankshaft 19 are rotatably supported in the crank chamber 18 via a pair of bearings 20.
  • the base end side of the connecting rod 22 is connected between the crank webs 19A via the crank pins 21. Further, a piston 23 is accommodated in the cylinder block 13 so as to be able to reciprocate, and the piston 23 is connected to the distal end side of the connecting rod 22 via a piston pin 24. Accordingly, the crankshaft 19 rotates as the piston 23 reciprocates in the axial direction of the cylinder block 13.
  • a clutch chamber 27 is arranged on the right side and a magnet chamber 28 is arranged on the left side of the case partition wall.
  • a clutch device 29 disposed at the right shaft end of the crankshaft 19 is accommodated in the clutch chamber 27, and the clutch chamber 27 is covered with a clutch cover 30.
  • a magneto device 31 disposed at the left shaft end of the crankshaft 19 is accommodated in the magneto chamber 28, and the magneto chamber 28 is covered with a magnet cover 32 (crankcase cover).
  • the magneto device 31 is a single-phase or three-phase magneto alternator for a motorcycle.
  • the magneto device 31 is coaxial with the rotation shaft of the crankshaft 19 and is arranged around the crankshaft 19 and on the left side of the crankshaft 19.
  • the rotor 34 is fixed to the shaft end and rotates around the stator 33 coaxially with the rotation shaft of the crankshaft 19. The direction of rotation of the rotor 34 is indicated by an arrow P in FIG.
  • the stator 33 has a plurality of (12 in the present embodiment) stator teeth 35 radially (from the center O (coaxial with the rotation center axis of the crankshaft 19)).
  • the stator coils 37 are wound around the coil winding portions 36 of the respective stator teeth 35.
  • FIGS. 3 to 5 which are views seen from the direction of the rotation axis of the crankshaft 19, both ends of the stator 33 in the circumferential direction of the stator 33 (rotation direction of the rotor 34)
  • the tip portion 38 is formed extending to the side and the counter-rotating direction side of the rotor 34.
  • the stator 33 is attached and fixed to the inner surface of the magnet cover 32 using attachment bolts 39.
  • the rotor 34 is formed in a bottomed cylindrical shape as shown in FIGS. 2 and 3, and the stator 33 is disposed in the internal space thereof. Further, a plurality of magnets 41 are fixedly installed on the inner peripheral surface of the rotor yoke 40 so as to surround the stator 33, and the magnets 41 are arranged so as to face the tip end portions 38 of the stator teeth 35 in the stator 33.
  • the magnet 41 passes through the outside of the front end portion 38 of the stator tooth 35 with an appropriate gap. Composed. As shown in FIGS.
  • a plurality of (for example, twelve) magnets 41 correspond to a plurality of (for example, twelve) stator teeth 35 via a gap 42 where no magnet is present. Installed next to each other. And it arrange
  • the rotor 34 having a plurality of magnets 41 rotates around the stator 33 in the direction of the arrow P around the center O of the stator 33 by the rotation of the crankshaft 19, so that the stator coil 37 of the stator 33 is moved by electromagnetic induction. An induced current is induced to generate power. 5 to 7 indicate the magnetic flux flowing from the magnet 41 to the stator 35, or the flow of magnetic flux flowing from the stator 35 to the magnet 41.
  • the plurality of magnets 41 of the rotor 34 are protected by mounting a rotor cover 43 made of a thin metal plate on the side opposite to the rotor yoke 40 (side on which the stator 33 is disposed). 2 and 3, reference numeral 48 denotes an ignition timing signal generating coil, and reference numeral 49 denotes a protrusion provided on the outer peripheral side of the rotor yoke 40.
  • the gap 42 between the plurality of magnets 41 is a view seen from the direction of the rotation axis of the crankshaft 19. 35 at a second rotational position substantially coincident with the center line N of the coil winding part 36 (a virtual line connecting the center of the rotation axis and the center of the coil winding part 36 in the cross section perpendicular to the rotation axis of the crankshaft 19).
  • the rotation direction rear end 44B having the rotation direction front end 44A opposed thereto
  • the front end portion 38 of the stator tooth 35 (the other side portion of the front end portion 38 described later). 38B) is set so as not to overlap.
  • the front end 44 ⁇ / b> A in the rotational direction is set so as not to overlap with the front end portion 38 of the stator tooth 35 (the angular position differs in the circumferential position).
  • the stator teeth 35 are configured by laminating a plurality (12 in this embodiment) of core sheets of thin steel plates having a thickness of 1 mm or less, preferably less than 1 mm.
  • the mechanical input (the load for turning the generator, which in this case is a load acting on the engine 11.
  • This load is divided into a power generation output and an electric loss.
  • the power generation output (generated power generated by the magneto device 31) is indicated by Y1
  • the power generation efficiency (ratio obtained by dividing the power generation output by the machine input) is indicated by Z1. ing. Since one pole is magnetized in one magnet 41 and the gap 42 is provided between the magnets 41, leakage of magnetic flux between the magnets 41 is suppressed, and the magnetic flux flowing from the magnet 41 to the stator teeth 35 increases.
  • the power generation output and power generation efficiency, particularly power generation efficiency are improved. As shown in FIG. 8, since the power generation efficiency Z1 is highest when the circumferential angle ⁇ b of the gap 42 is 9 °, the circumferential angle ⁇ b is set to 9 °.
  • the tip end portion 38 of each stator tooth 35 of the stator 33 has a circumferential length L of the one side portion 38 ⁇ / b> A extending in the rotation direction P of the rotor 34 (perpendicular to the rotation axis of the crankshaft 19).
  • the protrusion height of the coil winding portion 36 with respect to the center line N) extends in the opposite direction to the rotation direction P of the rotor 34 (extends toward the rotation direction P).
  • the circumferential length M of the other side portion 38B at the tip 38 of the stator teeth 35 is such that the circumferential center position K of the magnet 41 is the center line N of the coil winding portion 36 of the stator teeth 35 as the rotor 34 rotates.
  • the first rotational position FIG. 5
  • the other side of the tip portion 38 of the stator tooth 35 is substantially coincident with (a circumferential position with respect to the rotation axis center of the crankshaft 19 and substantially the same angular position).
  • the edge 46 of the portion 38B is set to a length that substantially coincides with the rotation direction rear end 44B of the magnet 41 (a circumferential position with respect to the rotation axis center of the crankshaft 19 and substantially the same angular position). . Further, in the present embodiment, as described above, the circumferential length M of the other side portion 38B at the tip portion 38 of the stator teeth 35 is set to a length that substantially matches the circumferential length of the gap 42.
  • the circumferential length L of the one side portion 38A at the tip portion 38 of the stator tooth 35 As described above, the time during which the magnet 41 and the tip portion 38 of the stator tooth 35 face each other, in particular, the rotation of the magnet 41.
  • the rear end 44B of the direction passes through the outside of the front end portion 38 of the stator teeth 35 and then moves away, the facing time becomes longer, and the time for the stator teeth 35 to recover the magnetic flux from the magnet 41 becomes longer. Therefore, since the magnetic flux from the magnet 41 can be effectively passed through the stator teeth 35 for a long time, the power generation output and power generation efficiency of the magneto device 31 are improved.
  • the circumferential length L of the one side portion 38A at the distal end portion 38 of the stator teeth 35 is set to be longer by 3.0 mm (corresponding to the above ⁇ ) than the circumferential length M of the other side portion 38B at the distal end portion 38. It is preferable. The reason will be described with reference to FIG. In FIG. 9, the machine input is indicated by X2, the power generation output is indicated by Y2, and the power generation efficiency is indicated by Z2.
  • the relative length of the one side portion 38A with respect to the other side portion 38B in the tip portion 38 of the stator teeth 35 is such that the power generation efficiency Z2 increases as the one side portion 38A increases.
  • the height is increased, and it is optimal to increase the length by about +3.0 mm. That is, when the third rotation position shown in FIG. 7 is reached, if the one side portion 38A of the front end portion 38 of the stator teeth 35 and the rear end 44B in the rotation direction of the magnet 41 overlap with each other by about 3.0 mm, the power generation efficiency Z2 Is optimal.
  • the circumferential center position K of the magnet 41 of the rotor 34 is substantially the same as the central axis N of the coil winding portion 36 of the stator tooth 35.
  • the edge 45 of the one side portion 38A of the stator teeth tip 38 has a circumferential length L that substantially coincides with the rotation direction front end 44A of the magnet 41, and Even if the circumferential length M of the other side portion 38B at the tip 38 of the stator teeth 35 is set longer or shorter than the circumferential length L of the one side portion 38A (in FIG. It does not contribute to the improvement of power generation efficiency.
  • the relative length of the other side portion 38B with respect to the one side portion 38A at the tip portion 38 of the stator teeth 35 is shown. Is too long (for example, when the other side portion 38B is as long as +2 mm with respect to the one side portion 38A) or short (for example, when the other side portion 38B is as short as -3 mm with respect to the one side portion 38A) In addition, it can be seen that the power generation efficiency Z3 is decreased.
  • the circumferential length M of the other side portion 38B at the tip 38 of the stator teeth 35 is such that the circumferential center position K of the magnet 41 is rotated by the rotation of the rotor 34 as shown in FIGS.
  • the end edge 46 of the other side portion 38B of the tip portion 38 of the stator tooth 35 is in the rotational direction of the magnet 41. It is optimal in terms of power generation efficiency to be set to a length that substantially matches the rear end 44B. Further, when the end edge 46 of the other side portion 38B at the tip end portion 38 of the stator teeth 35 is set to a length that substantially coincides with the rotation direction front end 44A when the second rotation position shown in FIG. Can be improved.
  • a plurality of magnets 41 included in the rotor 34 are installed adjacent to each other at regular intervals via the gap 42 in the circumferential direction of the rotor 34.
  • the leakage of magnetic flux between the magnets 41 can be suppressed, and the magnetic flux flowing from the magnet 41 to the stator teeth 35 of the stator 33 can be increased.
  • the power generation output and power generation efficiency of the magneto device 31 can be improved.
  • one side portion 38 ⁇ / b> A that extends in the rotation direction P side of the rotor 34 at the tip portion 38 of the stator tooth 35 of the stator 33 is arranged on the center line N of the coil winding portion 36 of the stator tooth 35.
  • the rotation direction front end 44A substantially coincides with the rotation direction front end 44A
  • the rotation direction front end 44A is configured to overlap the adjacent magnet 41 having the rotation direction rear end 44B. Therefore, the time for the magnet 41 and the stator teeth 35 to face each other, that is, the time for the stator teeth 35 to collect the magnetic flux of the magnet 41 becomes longer, and the magnetic flux flows through each stator tooth 35 for a long time.
  • the power generation output and power generation efficiency of the magneto device 31 can be improved.
  • the motorcycle generator according to the second embodiment is provided in the power unit of the motorcycle according to the first embodiment, and is shown in FIG. 1 to FIG. 3 shown in the motorcycle generator in the first embodiment. Since the configuration of the magneto device 31 is the same, the same components are denoted by the same reference numerals, and redundant description is omitted or simplified.
  • the motorcycle generator according to the second embodiment has a single-phase or three-phase magneto alternator 31A as a magneto device.
  • the magneto generator 31 ⁇ / b> A is coaxial with the crankshaft 19, and rotates around the stator 33 integrally with the rotation shaft of the crankshaft 19 around the stator 33.
  • a rotor 34 is fixed to the left shaft end of the crankshaft 19, and the rotation direction of the rotor 34 is indicated by an arrow P in FIG.
  • the stator 33 includes a plurality of stator teeth 35 (12 in the second embodiment) from the center O (coaxial with the rotation center axis of the crankshaft 19).
  • a stator coil 37 is wound around the coil winding portion 36 of each stator tooth 35 as a power generating coil.
  • a tip portion 38 is formed extending on both sides in the circumferential direction of the stator 33 (rotation direction side and counter-rotation direction side of the rotor 34).
  • the length L 1 of the one side portion extending in the rotational direction of the rotor 34 is formed longer than the length M 1 of the other side portion extending in the counter-rotational direction of the rotor 34.
  • L 1 M 1 + ⁇ (where ⁇ is an integer).
  • the stator 33 is fixedly attached to the inner surface of the magnet cover 32 using mounting bolts 39.
  • the rotor 34 is formed in a bottomed cylindrical shape, and the stator 33 is disposed in the internal space thereof.
  • the stator 33 and the rotor 34 constitute a magneto AC generator 31A.
  • a plurality of magnets 41 are arranged at equal intervals along the circumferential direction so as to surround the stator 33 on the inner peripheral surface of the rotor yoke 40 constituting the flywheel. These magnets 41 are disposed so as to be able to face the front end portions 38 of the stator teeth 35 in the stator 33.
  • the rotor yoke 40 of the rotor 34 also serves as a flywheel.
  • the magnets 41 pass through the outside of the front end portion 38 of the stator teeth 35 with an appropriate interval.
  • a plurality of magnets 41 (for example, twelve in the second embodiment) corresponding to a plurality of (for example, twelve) stator teeth 35 are sequentially installed via gaps 42 where no magnet is present. And it arrange
  • the rotor 34 rotates around the stator 33 in the direction of the arrow P as the crankshaft 19 rotates, so that an induction current is induced in the stator (electrical) coil 37 of the stator 33 by the action of electromagnetic induction to generate power. It is.
  • a rotor cover 43 is attached to the plurality of magnets 41 of the rotor 34 so as to cover each magnet 41 from the inner peripheral side.
  • the rotor cover 43 is formed, for example, by a metal thin plate having a thickness of 0.3 mm in a hooked sleeve shape, and protects each magnet 41 disposed on the inner peripheral side of the rotor yoke 40.
  • the rotor cover 43 has a window hole 51 that covers and closes the gap 42 where the magnet 41 does not exist, and exposes each magnet 41 to the tip portion 38 of the stator tooth 35 in a one-to-one correspondence.
  • the circumferential angle of the magnet 41 in the second embodiment (a central angle formed by straight lines connecting the end lines 44A and 44B of the magnet 41 and the rotation center O of the crankshaft 19) is ⁇ a, and the gap 42 between the magnets 41 is set.
  • ⁇ a 21 °
  • the rotor cover 43 is formed such that the pitch interval of the window holes 51 forms a center angle ⁇ c as shown in FIG. 14B, and the center angle of the window holes 51 (the circumferential direction formed by the front end and the rear end of the rotation direction of the window holes 51). Angle) is formed by ⁇ d.
  • the central angle ⁇ c is 30 °, for example, and the central angle ⁇ d is 16 °, for example.
  • the stator 33 has a stator coil 37 composed of a three-phase winding on a coil winding portion 36 of a stator tooth 35. It is arranged as.
  • the stator coil 37 is Y-connected, and its output is passed through a regulator / rectifier (hereinafter referred to as a regulated rectifier) 55 or 56 having a rectifying function controlled as a power generation circuit, as shown in FIG. 15 or FIG.
  • a regulator / rectifier hereinafter referred to as a regulated rectifier
  • a power generation circuit as shown in FIG. 15 or FIG.
  • Reference numeral 59 denotes an ignition switch.
  • the regulator rectifier 55 shown in FIG. 15 is a combination of a rectifier 60 formed of a diode 62 that rectifies the AC output of a generator and a regulator 61 that adjusts the voltage so that the voltage becomes a certain value or more.
  • This is a short phase regulated rectifier.
  • the rectifier 60 forms a rectifier bridge circuit with a pair of diodes 62 (62a, 62b, 62c; 62d, 62e, 62f), and the stator coil 37 of the magneto generator 31A has windings 37a, 37b of each phase.
  • the regulated rectifier 55 constitutes a charging circuit for connecting the generator from the magneto generator 31 ⁇ / b> A to the battery 57 via the rectifier 60 and charging the battery 57.
  • the regulator 61 includes thyristors 63a, 63b, and 63c connected to the windings 37a, 37b, and 37c of each phase of the stator coil 37, and a voltage control circuit 64 connected to the gates of the thyristors 63a, 63b, and 63c.
  • the voltage control circuit 64 monitors the battery voltage, and when the battery voltage reaches a predetermined voltage, performs the gate control of the thyristor 63 (63a, 63b, 63c) of the regulator 61, and generates power by short-circuiting the generated current. Short control to return to the machine 31A is performed.
  • the voltage control circuit 64 of the regulator 61 includes a battery voltage detection unit 65 that detects the voltage of the battery 57, a reference voltage generation unit 66, and whether or not the voltage of the battery 57 is equal to or higher than a predetermined voltage. And a gate voltage control unit 68 that gate-controls the thyristor 63 in the regulator 61 when the battery voltage reaches a predetermined voltage based on the determination result.
  • the short regulator rectifier (regulator / rectifier) 55 is a short circuit that shorts excess current that is no longer needed by the thyristor 63 and returns it to the generator 31A when the battery 57 is not fully charged after being fully charged. Control is performed. For this reason, in the short-type regulated rectifier 55, a current always flows through the generator 31A due to the short control, so that the copper loss of the stator coil 37 and the iron loss of the stator 33 occur, and the electric loss occurs. This electrical loss is a burden on the engine and has an adverse effect on fuel consumption.
  • the stator coil 37 of the magneto generator 31A is connected to the battery 57 via the three-phase short regulator rectifier 55 to charge the battery 57. Even when the battery 57 reaches a predetermined voltage and is no longer charged, the surplus current is short-circuited by the gate control of the thyristor 63 (63a, 63b, 63c) of the regulator rectifier 55, and the thyristor. In 63, short-circuit control is performed to return the generated current to the stator coil 37, which is a power generation coil. For this reason, a current always flows through the stator coil 37 of the magneto generator 31A, copper loss is generated in the stator coil 37, and the copper loss of the stator coil 37 becomes a load on the engine.
  • a three-phase open type regulator rectifier (regulator / rectifier) 56 that prevents the surplus current that is no longer required to be charged to the battery 57 from flowing through the stator coil 37 is configured as shown in FIG. Is done.
  • This regulated rectifier 56 is provided with a rectifier 71 by a thyristor 70 without using a rectifier by a diode.
  • the regulated rectifier 56 is a three-phase open combination of a rectifier 71 by a thyristor 70 that rectifies the AC output of the generator and a regulator 72 that controls the voltage so that the voltage does not exceed a certain level using the thyristor 70. It is an expression rectifier.
  • a rectifier bridge circuit is configured by the thyristors 70 (70a, 70b, 70c; 70d, 70e, 70f) paired with the rectifier 71, respectively.
  • the stator coil 37 of the magneto generator 31A is connected to the cathodes of the thyristors 70a, 70b, and 70c and the anodes of the thyristors 70d, 70e, and 70f for the windings 37a, 37b, and 37c of the respective phases to constitute the rectifier 71.
  • the regulated rectifier 56 constitutes a charging circuit for charging the battery 57 by supplying the generated current from the magneto generator 31A to the battery 57 via the rectifier 71 comprising the thyristor 70 during charging.
  • the remaining gates of the thyristors 70 (70a, 70b, 70c) constituting the rectifier 71 are connected to a voltage control circuit 74 to constitute a regulator 72.
  • the voltage control circuit 74 of the regulator 72 is configured in the same manner as the voltage control circuit 64 shown in FIG. 17, and has the same configuration as the voltage control circuit 64 shown in FIG. Therefore, duplicate explanation is omitted.
  • the voltage control circuit 74 gate-controls the thyristor 70 to turn off the thyristor 70 and open control the regulator rectifier 56.
  • the open regulator rectifier 56 performs open control in which the voltage control circuit 74 turns off the thyristor 70 when the battery voltage reaches a predetermined voltage and is not charged. As a result, no current flows through the stator coil 37, which is a power generation coil. The copper loss of the stator coil 37 can be reduced, and the electrical resistance can be reduced. For this reason, when the three-phase open-type regulated rectifier 56 shown in FIG. 16 is used, as shown in FIG. 18, the engine speed is medium / low (the engine speed is, for example, 7000 rpm or less). The loss can be reduced as compared with the case where the short-type regulated rectifier 56 is used.
  • the open-type regulated rectifier 56 of FIG. 16 when the battery voltage reaches a predetermined voltage and the open control for turning off the thyristor 70 is performed, the coil current does not flow through the stator coil 37 that is the power generation coil. Therefore, no coil magnetic flux is generated in the magneto generator 31A, and the iron loss of the stator 33 increases.
  • the iron loss of the stator 33 has a characteristic of increasing in proportion to the square of the frequency that is the rotational speed of the rotor 34. Therefore, as shown in FIG. 18, when the short regulator rectifier 55 is employed in the high engine speed range due to an increase in the iron loss of the stator 33 in the open regulator rectifier 56, There is a reversal phenomenon in which the electrical loss increases rapidly.
  • FIG. 18 shows the relationship between the engine speed and electrical loss.
  • Symbol A shows the electrical loss curve when the three-phase short regulator rectifier 55 is used in the magneto generator of the current specification
  • symbol B is It is an electric loss curve at the time of using the three-phase open type regulated rectifier 56 for the magneto generator of the present specification
  • Reference symbol C denotes an electric loss curve when a three-phase open type rectifier 56 is used in a magneto generator using a magnetic steel sheet, for example, a non-oriented electrical steel sheet, as the stator teeth 35.
  • stator teeth 35 of the stator 33 used in the magneto generator 31A are laminated with core sheets of thin steel plates and assembled integrally with mounting bolts 39 or the like. Is done.
  • the core sheet of the stator teeth 35 is composed of a rolled steel plate (SPCC) or a magnetic steel plate (silicon steel plate) of a thin steel plate having a thickness of 0.2 mm to less than 1.0 mm.
  • the magneto stator of the current-generation magneto generator is manufactured by laminating rolled steel plates (SPCC) with a thickness of 1.0 mm, and twelve rolled steel plates with a thickness of 1.0 mm are stacked and integrally laminated. .
  • SPCC laminating rolled steel plates
  • a rolled steel plate having a thickness of 1.0 mm is used as the magneto stator. Therefore, as shown by a symbol D in FIG. 19, the electrical loss of the magneto generator extends over the entire rotation range of the engine. For this reason, electrical loss is a burden on the engine, making it difficult to improve fuel efficiency.
  • a core sheet having a thickness of less than 1.0 mm is used instead of the rolled sheet steel sheet having a thickness of 1 mm for the stator teeth 35 of the magneto generator 31A.
  • a stator teeth 35 of the stator 33 for example, a 0.5 mm thick rolled steel plate (SPCC) core sheet or a 0.5 mm thick electromagnetic steel plate (silicon steel plate) is used.
  • SPCC 0.5 mm thick rolled steel plate
  • silicon steel plate silicon steel plate
  • the electrical loss of the generator is represented by the curve E, and the thickness
  • the electrical loss of the generator is represented by a curve F.
  • These electric loss curve lines E and F confirm that the electric loss can be reduced over the entire engine speed range as compared with the electric loss curve D using a core sheet of a rolled steel sheet having a thickness of 1.0 mm. Can do. This is because the eddy current loss can be reduced by thinning the core sheet used for the stator teeth 35 of the stator 33, so that the electrical loss of the magneto generator 31A can be reduced. .
  • a stator 33 is manufactured by using a core sheet of a thin rolled steel plate having a thickness of 0.5 mm or a core sheet of an electromagnetic steel plate having a thickness of 0.5 mm for the magneto generator 31A.
  • the iron loss of the stator 33 is reduced using the power generation circuit combined with the open-type regulated rectifier 56 shown in FIG. It is expressed as shown.
  • the electrical loss of the magneto generator 31 ⁇ / b> A is greater when the 0.5 mm thick electromagnetic steel plate is used than when the 0.5 mm thick thin rolled steel plate is used. It was found that the reduction effect was great.
  • the stator sheets 75 and 75 of the rolled steel sheet used for the stator teeth 35 are not sufficiently insulated. For this reason, it is thought that the core sheet of each rolled steel sheet is conducted with a certain electric resistance, and the eddy current generated in the stator teeth 35 is not completely suppressed. From this point, in order to insulate the core sheets 75 and 75 of each rolled steel sheet, the stator sheets 33 are insulated by insulating the core sheets 75 and 75 of the rolled steel sheets as shown in FIG. 20B. The effect of reducing iron loss can be exhibited. Insulating treatment is performed by coating the core sheet 75 of the rolled steel sheet with resin, sandwiching an insulating sheet or paper between the core sheets 75 one by one, or coating the core sheet 75 with an insulating paint.
  • the magneto generator 31A using the rolled steel sheet having a thickness of less than 1 mm can be expected to further reduce the electrical loss as compared with the rolled steel sheet having a thickness of 1 mm. .
  • the 0.1 mm core sheet is too thin to be practical.
  • the stator coil 37 of the magneto generator 31 A is connected to the battery 57 via the regulator rectifier 56 by the thyristor 63, and the regulator rectifier 56 is connected to the battery 57.
  • the voltage is monitored, and when the battery voltage reaches a predetermined voltage, the voltage control circuit 74 controls the thyristor 70 to be OFF by the gate control of the thyristor 70 and controls the regulator rectifier 56 to be open.
  • open control that does not flow the generated current from the magneto generator 31A can reduce the copper loss of the stator coil 37 and reduce the electrical loss, thereby reducing the load on the engine and reducing the fuel consumption. Can be improved.
  • the magneto generator 31A uses an open-type regulated rectifier that reduces copper loss, while selecting a stator core material that reduces iron loss of the stator 33 or combining it with the thinning of the core sheet of the stator teeth. As a result, it is possible to achieve a loss reduction effect of electric loss in the entire engine speed range, and improve the fuel efficiency of the vehicle.
  • the magneto generator 31A can reduce the electrical loss of the generator over the entire rotation region of the engine by thinning the core sheet of the stator teeth in the stator 33 or by performing insulation treatment between the core sheets.
  • the power generation output and the power generation efficiency can be improved, and the fuel efficiency of the vehicle can be improved.
  • FIG. 21A Or a single-phase AC-DC generator shown in FIG. 21B.
  • the single-phase full-charge generator shown in FIG. 21A is used in combination with a single-phase full-wave open-type regulated rectifier 80 and a single-phase generator 31B.
  • the single-phase AC-DC generator shown in FIG. 21B is used in combination with the single-phase open-type regulated rectifier 90 and the single-phase generator 31B.
  • the single-phase open regulator rectifier 90 includes a voltage control circuit 92 that controls the voltage of the battery 57 by controlling the thyristor 91a for positive voltage, and a lamp that controls the voltage of the lamp 94 by controlling the thyristor 91b for negative voltage.
  • a voltage control circuit 93 is provided.

Abstract

A generator for a two-wheeled motor vehicle is disposed within the power unit of the vehicle and has: a stator configured by winding stator coils around stator teeth, respectively, the stator teeth extending radially from the center; and a rotor configured by arranging magnets on the inner peripheral surface of a rotor yoke and rotating about the center, i.e., around the stator. The generator for a two-wheeled motor vehicle is configured in such a manner that: the magnets are arranged in the circumferential direction of the rotor so as to be adjacent to each other with gaps therebetween; the stator teeth are formed by stacking core sheets on each other, the core sheets being thin sheets of steel; the stator teeth each have tip sections extending in the rotational direction of the rotor and in the direction opposite the rotational direction, from the coil-wound section of the stator tooth, the coil-wound section being that around which the stator coil is wound; and when the leading end of a magnet in the rotational direction substantially coincides with the centerline of the coil-wound section, one of the tip sections of each of the stator teeth, said tip section extending in the rotational direction of the rotor, overlaps the preceding magnet adjacent to the leading end of the magnet in the rotational direction.

Description

自動二輪車用発電機Generator for motorcycle
 本発明は、電気損失を低減させて発電出力および発電効率を向上させた自動二輪車用発電機に関する。 The present invention relates to a generator for a motorcycle in which electric loss is reduced and power generation output and power generation efficiency are improved.
 自動二輪車用発電機としての図22に示すようにマグネト発電機100を用いたものがある。このマグネト発電機100は、複数本のステータティース101のそれぞれにステータ(発電)コイル102が巻装されたステータ103と、ロータヨーク104の内周面に磁石105が設置されたロータ106とを有する。ロータ106は、エンジンの駆動力によりステータ103周りを回転することにより発生する電磁誘導作用により、発電コイル102に誘導電流が誘起されて発電がなされる。 As a generator for a motorcycle, there is one using a magneto generator 100 as shown in FIG. The magneto generator 100 includes a stator 103 in which a stator (power generation) coil 102 is wound around each of a plurality of stator teeth 101, and a rotor 106 in which a magnet 105 is installed on an inner peripheral surface of a rotor yoke 104. The rotor 106 generates electric power by inducing an induced current in the power generation coil 102 due to electromagnetic induction generated by rotating around the stator 103 by the driving force of the engine.
 マグネト発電機100では、磁石105はロータヨーク104の内周面に例えば4枚設置される。各磁石105に、図23に示すように、N極及びS極の対をなす磁極が3極着磁されている。このため、1枚の磁石105において隣の磁極へ磁束が漏れ易く、ステータ103のステータティース101へ流れる磁束が減少して磁束が有効に使われていない。この結果、マグネト発電機100の発電出力及び発電効率の向上を図ることができなかった。 In the magneto generator 100, for example, four magnets 105 are installed on the inner peripheral surface of the rotor yoke 104. As shown in FIG. 23, each magnet 105 is magnetized with three magnetic poles forming a pair of N and S poles. For this reason, the magnetic flux easily leaks to the adjacent magnetic pole in one magnet 105, the magnetic flux flowing to the stator teeth 101 of the stator 103 is reduced, and the magnetic flux is not used effectively. As a result, the power generation output and power generation efficiency of the magneto generator 100 could not be improved.
 また、ステータの外周を回転するロータのロータヨークに、複数の永久磁石が補極を挟んで配置され、発電機として機能する回転電機が開示されている(例えば、特許文献1参照)。 Also, a rotating electrical machine is disclosed in which a plurality of permanent magnets are arranged on the rotor yoke of the rotor that rotates on the outer periphery of the stator with the auxiliary poles interposed therebetween, and functions as a generator (see, for example, Patent Document 1).
 また、車両用制振発電発動機に三相巻線からなるステータコイルを配置し、このステータコイルをレクチファイア(整流器)を介してバッテリに接続し、ステータコイルの出力を整流するレクチファイアとしてサイリスタによるレクチファイアを用いた技術も開示されている。(例えば、特許文献2参照)。 Further, a thyristor is provided as a rectifier that rectifies the output of the stator coil by arranging a stator coil composed of a three-phase winding in a vibration damping generator for a vehicle and connecting the stator coil to a battery via a rectifier (rectifier). A technique using a rectifier is also disclosed. (For example, refer to Patent Document 2).
特開2002-153095号公報JP 2002-153095 A 特開2002-95214号公報JP 2002-95214 A
 上記の特許文献1に記載の回転電機では、ロータの永久磁石間に補極が配置されているので、これらの永久磁石と補極間で磁束の漏れが生じ、ロータの永久磁石からステータのステータティース(ステータ突極)へ流れる磁束が減少してしまう。従って、この場合にも、永久磁石の磁束が有効に使われず、発電出力及び発電効率が低下する恐れがある。 In the rotating electrical machine described in Patent Document 1, since the supplementary poles are arranged between the permanent magnets of the rotor, magnetic flux leaks between the permanent magnets and the supplementary poles, and the stator permanent magnet of the stator The magnetic flux flowing to the teeth (stator salient poles) will decrease. Therefore, in this case as well, the magnetic flux of the permanent magnet is not used effectively, and the power generation output and power generation efficiency may be reduced.
 また、上記の特許文献2に記載の技術には、レクチファイアにサイリスタを備えてステータコイルの出力を制御することが示されているだけで、発電機の電気損失を低減させ、エンジンの全回転域の出力損失を低減させる技術を示したり、示唆する記載は存在しない。 In addition, the technique described in Patent Document 2 described above only includes a thyristor provided in the rectifier to control the output of the stator coil, thereby reducing the electrical loss of the generator and reducing the total rotation of the engine. There is no description that suggests or suggests a technique for reducing the output loss in the region.
 本発明の目的は、上述の事情を考慮してなされたものであり、自動二輪車のパワーユニット内に設けられ、ロータの磁石からの磁束をステータのステータティースに有効に導くことで、発電出力及び発電効率を向上させることができる自動二輪車用発電機を提供することにある。 An object of the present invention is made in consideration of the above-described circumstances, and is provided in a power unit of a motorcycle and effectively guides magnetic flux from a magnet of a rotor to stator teeth of a stator, thereby generating power and generating power. An object is to provide a generator for a motorcycle that can improve efficiency.
 本発明の他の目的は、発電機の電気損失を低減させるとともに、エンジンの全回転域の出力損失を低減させ、車両の燃費向上を図ることができる自動二輪車用発電機を提供するにある。 Another object of the present invention is to provide a generator for a motorcycle that can reduce the electric loss of the generator, reduce the output loss of the entire engine rotation range, and improve the fuel efficiency of the vehicle.
 上記の目的を達成するために提供される本発明の一実施例による自動二輪車用発電機は、中心から放射状に延びる複数のステータティースのそれぞれにステータコイルが巻装されて設けられたステータと、ロータヨークの内周面に磁石が設置され、前記中心を中心として前記ステータ周りを回転するロータと、を有する自動二輪車のパワーユニット内に設けられた、自動二輪車用発電機であって、前記磁石は、複数個が前記ロータの周方向に間隙を介して隣接して設置され、前記ステータティースは、薄板鋼板のコアシートを複数枚積層して構成され、かつ、前記ステータコイルが巻装されるコイル巻装部からロータの回転方向側および反回転方向側へ延びる先端部を有し、前記ロータの回転方向側に延びる前記ステータティース先端部の一方側部分は、前記磁石の回転方向前端が前記コイル巻装部の中心線に略一致したとき、この回転方向前端側に隣接する先行磁石と重なるよう構成されたことを特徴とする。 A generator for a motorcycle according to an embodiment of the present invention provided to achieve the above object includes: a stator having a stator coil wound around each of a plurality of stator teeth extending radially from the center; A generator for a motorcycle, provided in a power unit of a motorcycle, having a magnet installed on an inner peripheral surface of a rotor yoke and rotating around the stator about the center, wherein the magnet is A plurality of coils are installed adjacent to each other with a gap in the circumferential direction of the rotor, and the stator teeth are formed by stacking a plurality of core sheets of thin steel plates, and the coil winding around which the stator coils are wound A front end portion of the stator teeth extending from the mounting portion toward the rotation direction side and the counter rotation direction side of the rotor, and extending toward the rotation direction side of the rotor. Rectangular side portion, when the rotation direction front end of the magnet is substantially aligned with the center line of the coil winding portion, characterized in that it is configured to overlap the preceding magnet adjacent to the rotation direction front end side.
 また、上記実施例において、前記ステータティースの先端部は、ロータの回転方向側に延びる一方側部分が、ロータの反回転方向側に延びる他方側部分よりも長く形成されることが望ましい。 In the above-described embodiment, it is desirable that the tip of the stator teeth is formed such that one side portion extending in the rotation direction side of the rotor is longer than the other side portion extending in the counter rotation direction side of the rotor.
 また、上記の目的を達成するために提供される本発明の他の実施例による自動二輪車用発電機は、中心から放射状に延びる複数のステータティースのそれぞれにステータコイルが巻装されて設けられたステータと、ロータヨークの内周面に磁石が設置され、前記中心を中心として前記ステータ周りを回転するロータと、を有する自動二輪車のパワーユニット内に設けられた、自動二輪車用発電機であって、前記磁石は、複数個が前記ロータの周方向に間隙を介して隣接して設置され、前記ステータティースは、薄板鋼板のコアシートを複数枚積層して構成され、かつ、前記ステータコイルが巻装されるコイル巻装部からロータの回転方向側および反回転方向側へ延びる先端部を有し、前記磁石の回転方向後端が前記コイル巻装部の中心線に略一致したとき、前記回転方向後端側に隣接する後行磁石回転方向前端が、前記ステータティースの先端部と重ならないように、前記磁石間に間隙が設定されたことを特徴とする。 In addition, a motorcycle generator according to another embodiment of the present invention provided to achieve the above object is provided with a stator coil wound around each of a plurality of stator teeth extending radially from the center. A generator for a motorcycle, provided in a power unit of a motorcycle, having a stator and a rotor installed around the stator and having a magnet installed on an inner peripheral surface of the rotor yoke, and rotating around the stator, A plurality of magnets are installed adjacent to each other with a gap in the circumferential direction of the rotor, the stator teeth are configured by laminating a plurality of thin steel plate core sheets, and the stator coil is wound thereon. A leading end portion extending from the coil winding portion to the rotation direction side and the counter-rotation direction side of the rotor. When matched, the row magnet rotating forward end after adjacent the rotation direction rear side, so as not to overlap with the tip of the stator teeth, wherein the gap is set between the magnet.
 尚、上記実施例において、前記後行磁石の回転方向前端がステータティースにおけるコイル巻装部の中心線と略一致したとき、前記ステータティースにおけるロータの回転方向側に延びる一方側部分が、前記後行磁石の回転方向前端側に隣接する前記磁石と重なるよう構成されることが望ましい。 In the above embodiment, when the front end in the rotational direction of the trailing magnet substantially coincides with the center line of the coil winding portion in the stator teeth, the one side portion extending in the rotational direction of the rotor in the stator teeth is the rear portion. It is desirable to be configured to overlap with the magnet adjacent to the front end side in the rotation direction of the row magnet.
 また、上記両実施例において、前記ロータが備える磁石とこの磁石間の間隙との周方向角度の比が7/3:1であることが望ましい。 In both the above embodiments, it is desirable that the ratio of the circumferential angle between the magnet provided in the rotor and the gap between the magnets is 7/3: 1.
 また、前記ロータが備える磁石は、ステータの複数のステータティースに1:1に対応して複数個設置されることが望ましい。 Further, it is desirable that a plurality of magnets provided in the rotor are installed corresponding to 1: 1 on a plurality of stator teeth of the stator.
 また、前記ステータのステータティースと前記ロータの磁石とはそれぞれ12個ずつ周方向に沿って設けられることが望ましい。 Further, it is preferable that 12 stator teeth of the stator and 12 magnets of the rotor are provided along the circumferential direction.
 また、前記ロータの磁石の内周面には、前記磁石の一部を露出する開口を有する金属カバーが装着されることが望ましい。 Further, it is preferable that a metal cover having an opening exposing a part of the magnet is attached to the inner peripheral surface of the rotor magnet.
 また、前記ステータティースは、厚さ1mm未満の薄肉鋼板のコアシートからなる圧延鋼板あるいは電磁鋼板を複数枚積層して構成されることが望ましい。 Further, the stator teeth are preferably configured by laminating a plurality of rolled steel plates or electromagnetic steel plates made of a core sheet of a thin steel plate having a thickness of less than 1 mm.
 また、前記ステータティースは積層された複数枚の薄肉鋼板のコアシートを貫通する組立用貫通孔が設けられることが望ましい。 Also, it is desirable that the stator teeth are provided with an assembly through-hole that penetrates a plurality of laminated thin steel sheet core sheets.
 さらに、上記目的を達成するために提供される本発明の更に他の実施例による自動二輪車用発電機は、中心から放射状に延びる複数のステータティースのそれぞれにステータコイルが巻装されて設けられたステータと、ロータヨークの内周面に磁石が設置され、前記中心を中心として前記ステータ周りを回転するロータと、を有する自動二輪車のパワーユニット内に設けられた、自動二輪車用発電機であって、前記磁石は、複数個が前記ロータの周方向に間隙を介して隣接して設置され、前記ステータティースは、前記ステータコイルが巻装されるコイル巻装部からロータの回転方向側および反回転方向側へ延びる先端部を有し、前記ステータコイルはサイリスタによるレグレータ/アクチュエータ(レギュレートレクチファイア)を介してバッテリに接続されるとともに、前記レグレータ/アクチュエータは前記サイリスタのゲートが電圧制御回路に接続されて構成され、前記電圧制御回路は、前記バッテリの充電電圧が所定電圧に達したとき、前記サイリスタをOFFにして前記レグレータ/アクチュエータをオープン制御することを特徴とする。 Furthermore, a motorcycle generator according to still another embodiment of the present invention provided to achieve the above object is provided with a stator coil wound around each of a plurality of stator teeth extending radially from the center. A generator for a motorcycle, provided in a power unit of a motorcycle, having a stator and a rotor installed around the stator and having a magnet installed on an inner peripheral surface of the rotor yoke, and rotating around the stator, A plurality of magnets are installed adjacent to each other via a gap in the circumferential direction of the rotor, and the stator teeth are arranged on the rotor rotation direction side and the counter rotation direction side from the coil winding portion around which the stator coil is wound. The stator coil is connected to a thyristor via a regulator / actuator (regulator rectifier). The retreater / actuator is connected to a battery, and the gate of the thyristor is connected to a voltage control circuit. The voltage control circuit turns off the thyristor when the charging voltage of the battery reaches a predetermined voltage. Thus, the reregulator / actuator is controlled open.
 上記実施例において、前記ステータのステータティースは、厚さ0.2mm~1mm未満の薄肉鋼板のコアシートからなる圧延鋼板あるいは電磁鋼板を複数枚積層して構成しても良い。 In the above embodiment, the stator teeth of the stator may be formed by laminating a plurality of rolled steel sheets or electromagnetic steel sheets made of a thin steel sheet core sheet having a thickness of 0.2 mm to less than 1 mm.
 また、前記ステータティースは、厚さ1mm未満の薄肉鋼板のコアシートからなる圧延鋼板が複数枚積層して構成され、前記各圧延鋼板を絶縁樹脂材料で樹脂コーティングしたり、前記圧延鋼板が1枚1枚の間に紙あるいは樹脂の絶縁シートを挟持したり、あるいは絶縁塗料を塗布して前記ステータティースを構成しても良い。 Further, the stator teeth are configured by laminating a plurality of rolled steel plates made of a core sheet of a thin steel plate having a thickness of less than 1 mm, and each of the rolled steel plates is coated with an insulating resin material, or one rolled steel plate is provided. The stator teeth may be configured by sandwiching a paper or resin insulating sheet between one sheet or applying an insulating paint.
 さらに前記ステータティースは、厚さ1mm未満の薄肉鋼板のコアシートが電磁鋼板で構成することが望ましい。 Furthermore, it is desirable that the stator teeth are made of a thin steel plate core sheet having a thickness of less than 1 mm made of an electromagnetic steel plate.
 さらに、前記ステータティースの電磁鋼板は、無方向性電磁鋼板であることが望ましい。 Furthermore, it is desirable that the electromagnetic steel plate of the stator teeth is a non-oriented electrical steel plate.
 本発明自動二輪車用の発電機によれば、該発電機は自動二輪車のパワーユニット内に設けられ、その磁石は、複数個がロータの周方向に間隙を介して隣接して設置されたので、各磁石間で磁束が漏れることを抑制でき、磁石からステータティースへ流れる磁束を増大できる。この結果、ロータの磁石からの磁束をステータのステータティースに有効に導くことができるので、発電出力及び発電効率を向上させることができる。 According to the generator for a motorcycle of the present invention, the generator is provided in the power unit of the motorcycle, and a plurality of magnets are installed adjacent to each other with a gap in the circumferential direction of the rotor. Leakage of magnetic flux between the magnets can be suppressed, and the magnetic flux flowing from the magnets to the stator teeth can be increased. As a result, since the magnetic flux from the magnet of the rotor can be effectively guided to the stator teeth of the stator, the power generation output and the power generation efficiency can be improved.
 また、本発明によれば、ステータティースの先端部におけるロータの回転方向側に延びるステータティース先端部の一方側部分は、磁石の回転方向前端がステータティースのコイル巻装部の中心線に略一致したとき、この回転方向前端に隣接する先行磁石と重なるよう構成されている。従って、磁石とステータティースとの対向する時間、即ちステータティースが磁石の磁束を回収する時間が長くなって、各ステータティースに磁束が長時間流れることになる。この結果、ロータの磁石からの磁束をステータのステータティースに有効に導くことができるので、発電出力及び発電効率を向上させることができる。 Further, according to the present invention, the one end portion of the stator teeth leading end portion extending in the rotor rotating direction side at the stator tooth leading end portion is substantially coincident with the center line of the coil winding portion of the stator teeth. Then, it is configured to overlap with the preceding magnet adjacent to the front end in the rotational direction. Therefore, the time for the magnets and the stator teeth to face each other, that is, the time for the stator teeth to collect the magnetic flux of the magnets becomes longer, and the magnetic flux flows through each stator tooth for a long time. As a result, since the magnetic flux from the magnet of the rotor can be effectively guided to the stator teeth of the stator, the power generation output and the power generation efficiency can be improved.
 さらに、本発明によれば、自動二輪車用発電機のステータコイルはサイリスタによる制御された整流機能を持つレギュレートレクチファイア(レギュレータ/レクチファイア)を介してバッテリに接続され、前記バッテリの充電電圧が所定電圧に達したとき、電圧制御回路がサイリスタをOFF制御してレギュレートレクチファイアをオープン制御したので、バッテリ電圧が所定電圧に達したときは、ステータコイルに電流が流れなくなって銅損失を低減でき、電気損失を低減させて、エンジンの全回転領域で電気損失低減効果が図れ、車両の燃費を向上させることができる。 Further, according to the present invention, the stator coil of the generator for a motorcycle is connected to the battery via a regulated rectifier (regulator / rectifier) having a rectifying function controlled by a thyristor, and the charging voltage of the battery is When the voltage reaches the specified voltage, the voltage control circuit controls the thyristor to OFF and the regulator rectifier is controlled to open, so when the battery voltage reaches the specified voltage, no current flows through the stator coil, reducing copper loss. The electric loss can be reduced, and the electric loss can be reduced in the entire rotation region of the engine, so that the fuel efficiency of the vehicle can be improved.
 本発明によるさらなる特徴、及び作用効果は添付図面を参照して説明する以下の記載からより明確になる。 Further features and operational effects of the present invention will become clearer from the following description that will be described with reference to the accompanying drawings.
本発明に係る自動二輪車用発電機の一実施形態が適用された自動二輪車のエンジンユニットを示す左側面図。The left side view showing the engine unit of the motorcycle to which one embodiment of the generator for motorcycles concerning the present invention was applied. 図1のII-II線に沿う断面図。Sectional drawing which follows the II-II line | wire of FIG. 図2のIII-III線方向から目視した発電機としてのマグネト発電機を示す正面図。The front view which shows the magneto generator as a generator visually observed from the III-III line direction of FIG. 図3の磁石とステータティースを模式的に示す概略正面図。The schematic front view which shows typically the magnet and stator teeth of FIG. 図3の一部を拡大し、磁石とステータティースとの第1回転位置における磁束の流れを示す動作図。The operation | movement figure which expands a part of FIG. 3 and shows the flow of the magnetic flux in the 1st rotation position of a magnet and stator teeth. 図3の一部を拡大し、磁石とステータティースとの第2回転位置における磁束の流れを示す動作図。The operation | movement figure which expands a part of FIG. 3 and shows the flow of the magnetic flux in the 2nd rotation position of a magnet and stator teeth. 図3の一部を拡大し、磁石とステータティースとの第3回転位置における磁束の流れを示す動作図。The operation | movement figure which expands a part of FIG. 3 and shows the flow of the magnetic flux in the 3rd rotation position of a magnet and stator teeth. 磁石間の間隙と発電出力及び発電効率等との関係を示すグラフ。The graph which shows the relationship between the gap | interval between magnets, a power generation output, power generation efficiency, etc. FIG. ステータティースの先端部における一方側部分の他方側部分に対する相対長さと発電出力及び発電効率等との関係を示すグラフ。The graph which shows the relationship between the relative length with respect to the other side part of the one side part in the front-end | tip part of stator teeth, a power generation output, power generation efficiency, etc. FIG. ステータティースの先端部における他方側部分を一方側部分に対して長くした場合を示す図6に対応する作動図。The operation | movement figure corresponding to FIG. 6 which shows the case where the other side part in the front-end | tip part of stator teeth is lengthened with respect to the one side part. ステータティースの先端部における他方側部分の一方側部分に対する相対長さと発電出力及び発電効率等との関係を示すグラフ。The graph which shows the relationship between the relative length with respect to the one side part of the other side part in the front-end | tip part of stator teeth, and a power generation output, power generation efficiency, etc. 自動二輪車用発電機の第2の実施形態を示す側断面図。The sectional side view which shows 2nd Embodiment of the generator for motorcycles. 自動二輪車用発電機のマグネト発電機を示す部分断面図。The fragmentary sectional view which shows the magneto generator of the generator for motorcycles. はマグネト発電機のロータを磁石側から覆うロータカバーを示す側面図。FIG. 3 is a side view showing a rotor cover that covers the rotor of the magneto generator from the magnet side. は図14AのXIVB-XIVB線に沿う断面図。FIG. 14B is a cross-sectional view taken along the line XIVB-XIVB in FIG. 14A. 図12に示されるマグネト発電機に組み合される三相ショート式レギュレートレクチファイア(レギュレータ/レクチファイア)を示す発電回路図。FIG. 13 is a power generation circuit diagram showing a three-phase short regulator rectifier (regulator / rectifier) combined with the magneto generator shown in FIG. 12. 図12に示されるマグネト発電機に組み合される三相オープン式レギュレートレクチファイアを示す発電回路図。FIG. 13 is a power generation circuit diagram showing a three-phase open regulated rectifier combined with the magneto generator shown in FIG. 12. 図15および図16に示されたレギュレートレクチファイアに備えられる電圧制御回路を示す構成図。FIG. 17 is a configuration diagram showing a voltage control circuit provided in the regulate rectifier shown in FIGS. 15 and 16. ショート式あるいはオープン式レギュレートレクチファイアを組み合せたマグネト発電機による電気損失低減効果を示す図。The figure which shows the electrical loss reduction effect by the magneto generator which combined the short type or the open type regulated rectifier. ステータ仕様別のマグネト発電機による電気損失およびその低減効果を示す図。The figure which shows the electrical loss by the magneto generator according to stator specification, and its reduction effect. はマグネト発電機を構成するステータティースのコアシートの積層構成例を示す部分断面図。These are the fragmentary sectional views which show the laminated structural example of the core sheet | seat of the stator teeth which comprises a magneto generator. は図20AのI部を拡大して示す図。FIG. 20 is an enlarged view showing an I part in FIG. 20A. はマグネト発電機に組み合される単相全充電発電機を示す発電回路図。FIG. 4 is a power generation circuit diagram showing a single-phase full charge generator combined with a magneto generator. はマグネト発電機に組み合される単相AC-DC発電機を示す発電回路図。FIG. 3 is a power generation circuit diagram showing a single-phase AC-DC generator combined with a magneto generator. 従来の発電機としてのマグネト装置を示す正面図。The front view which shows the magneto apparatus as a conventional generator. 図22の磁石を模式的に示す概略正面図。The schematic front view which shows the magnet of FIG. 22 typically.
 以下、本発明を実施するための実施形態を添付図面に基づき説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.
 [第1の実施形態]
 図1は、本発明に係る自動二輪車用発電機の第1の実施形態が適用された自動二輪車のパワーユニットを示す左側面図であり、この図1において、パワーユニット10は空冷式4サイクル単気筒エンジン11を有し、このエンジン11は主に、クランクシャフト19を回転自在に支持し収容するクランクケース12と、クランクケース12の端部に結合されたシリンダブロック13と、シリンダブロック13に結合されたシリンダヘッド14と、シリンダヘッド14に結合されたヘッドカバー15と、を備えて構成される。尚、本発明に係る自動二輪車用発電機はこの自動二輪車のパワーユニット内に設けられる。
[First Embodiment]
FIG. 1 is a left side view showing a power unit of a motorcycle to which a first embodiment of a motorcycle generator according to the present invention is applied. In FIG. 1, a power unit 10 is an air-cooled four-cycle single-cylinder engine. The engine 11 mainly includes a crankcase 12 that rotatably supports and accommodates a crankshaft 19, a cylinder block 13 that is coupled to an end of the crankcase 12, and a cylinder block 13 that is coupled to the cylinder block 13. A cylinder head 14 and a head cover 15 coupled to the cylinder head 14 are provided. The generator for a motorcycle according to the present invention is provided in the power unit of the motorcycle.
 本実施形態では、クランクケース12は左右2つ割りに構成される。図2において、クランクケース12は左右で対をなす右側クランクケース12Rと左側クランクケース12Lとが相互に結合され、一体化してクランク室18が形成される。このクランク室18内にクランクシャフト19、及びこのクランクシャフト19と一体化された左右一対のクランクウェブ19Aが、一対のベアリング20を介して回転自在に軸支される。 In the present embodiment, the crankcase 12 is divided into left and right parts. In FIG. 2, the crankcase 12 is formed by connecting a right crankcase 12 </ b> R and a left crankcase 12 </ b> L, which are paired on the left and right sides, and integrated with each other. A crankshaft 19 and a pair of left and right crank webs 19 </ b> A integrated with the crankshaft 19 are rotatably supported in the crank chamber 18 via a pair of bearings 20.
 クランクウェブ19A相互間には、クランクピン21を介してコンロッド22の基端側が連結される。また、シリンダブロック13内にはピストン23が往復動可能に収容されており、ピストン23はピストンピン24を介してコンロッド22の先端側と連結される。従って、ピストン23がシリンダブロック13の軸線方向に往復動することで、クランクシャフト19が回転する。 The base end side of the connecting rod 22 is connected between the crank webs 19A via the crank pins 21. Further, a piston 23 is accommodated in the cylinder block 13 so as to be able to reciprocate, and the piston 23 is connected to the distal end side of the connecting rod 22 via a piston pin 24. Accordingly, the crankshaft 19 rotates as the piston 23 reciprocates in the axial direction of the cylinder block 13.
 クランク室18の周囲においてケース隔壁を隔ててその右側にクラッチ室27が、また左側にはマグネト室28がそれぞれ配置される。クラッチ室27内にはクランクシャフト19の右側軸端部に配置されたクラッチ装置29が収容され、クラッチ室27はクラッチカバー30によって覆われる。一方、マグネト室28内にはクランクシャフト19の左側軸端部に配置されたマグネト装置31が収容され、マグネト室28はマグネトカバー32(クランクケースカバー)によって覆われる。 Around the crank chamber 18, a clutch chamber 27 is arranged on the right side and a magnet chamber 28 is arranged on the left side of the case partition wall. A clutch device 29 disposed at the right shaft end of the crankshaft 19 is accommodated in the clutch chamber 27, and the clutch chamber 27 is covered with a clutch cover 30. On the other hand, a magneto device 31 disposed at the left shaft end of the crankshaft 19 is accommodated in the magneto chamber 28, and the magneto chamber 28 is covered with a magnet cover 32 (crankcase cover).
 マグネト装置31は、自動二輪車用の単相式または三相式マグネト交流発電機であり、クランクシャフト19の回転軸と同軸に、クランクシャフト19周囲に配置されるステータ33と、クランクシャフト19の左側軸端部に固定され、ステータ33周りをクランクシャフト19の回転軸と同軸に回転するロータ34とを有して構成される。ロータ34の回転方向を図3に矢印Pで示す。 The magneto device 31 is a single-phase or three-phase magneto alternator for a motorcycle. The magneto device 31 is coaxial with the rotation shaft of the crankshaft 19 and is arranged around the crankshaft 19 and on the left side of the crankshaft 19. The rotor 34 is fixed to the shaft end and rotates around the stator 33 coaxially with the rotation shaft of the crankshaft 19. The direction of rotation of the rotor 34 is indicated by an arrow P in FIG.
 ステータ33は、図2及び図3に示すように、その中心O(クランクシャフト19の回転中心軸芯と同軸)から複数本(本実施形態では12本)のステータティース35が放射状(クランクシャフト19の回転中心軸に対して垂直方向)に延び、それぞれのステータティース35のコイル巻装部36に発電コイルとしてのステータコイル37が巻装されて構成される。クランクシャフト19の回転軸方向から目視した図である図3~図5に示すように、各ステータティース35におけるコイル巻装部36の先端側に、ステータ33の周方向両側(ロータ34の回転方向側及びロータ34の反回転方向側)に延びる先端部38が形成されている。このステータ33は、図2に示すように、取付ボルト39を用いてマグネトカバー32の内面に取り付けられて固定される。 As shown in FIGS. 2 and 3, the stator 33 has a plurality of (12 in the present embodiment) stator teeth 35 radially (from the center O (coaxial with the rotation center axis of the crankshaft 19)). The stator coils 37 are wound around the coil winding portions 36 of the respective stator teeth 35. As shown in FIGS. 3 to 5 which are views seen from the direction of the rotation axis of the crankshaft 19, both ends of the stator 33 in the circumferential direction of the stator 33 (rotation direction of the rotor 34) The tip portion 38 is formed extending to the side and the counter-rotating direction side of the rotor 34. As shown in FIG. 2, the stator 33 is attached and fixed to the inner surface of the magnet cover 32 using attachment bolts 39.
 ロータ34は、図2及び図3に示すように有底円筒形状に形成され、その内部空間にステータ33が配置される。さらに、ロータヨーク40の内周面にステータ33を取り囲むように複数の磁石41が固定して設置され、この磁石41がステータ33におけるステータティース35の先端部38と対向するように配置されている。そして、ロータヨーク40がクランクシャフト19に回転一体に取り付けられてクランクシャフト19とともに回転するときに、この磁石41が、ステータティース35の先端部38の外側を適度な間隙を有して通過するように構成される。磁石41は、図3~図5に示すように、複数本(例えば12本)のステータティース35に対応して複数個(本実施形態では12個)が、磁石の存在しない間隙42を介して隣接して設置される。そして、1個の磁石41に、一極着磁されると共に、隣り合う磁石41の極が交互となるように配置されている。 The rotor 34 is formed in a bottomed cylindrical shape as shown in FIGS. 2 and 3, and the stator 33 is disposed in the internal space thereof. Further, a plurality of magnets 41 are fixedly installed on the inner peripheral surface of the rotor yoke 40 so as to surround the stator 33, and the magnets 41 are arranged so as to face the tip end portions 38 of the stator teeth 35 in the stator 33. When the rotor yoke 40 is attached to the crankshaft 19 so as to rotate together with the crankshaft 19, the magnet 41 passes through the outside of the front end portion 38 of the stator tooth 35 with an appropriate gap. Composed. As shown in FIGS. 3 to 5, a plurality of (for example, twelve) magnets 41 (12 in this embodiment) correspond to a plurality of (for example, twelve) stator teeth 35 via a gap 42 where no magnet is present. Installed next to each other. And it arrange | positions so that the pole of the adjacent magnet 41 may be alternated while being magnetized by one magnet 41 by one pole.
 複数個の磁石41を備えるロータ34がクランクシャフト19の回転によって、ステータ33の中心Oを中心としてステータ33周りを矢印P方向に回転することで、電磁誘導の作用でステータ33のステータコイル37に誘導電流が誘起されて発電がなされる。尚、図5~図7中の矢印Aaは、磁石41からステータ35へ流れる磁束、あるいはステータ35から磁石41へ流れる磁束の流れを示す。また、ロータ34の複数個の磁石41は、反ロータヨーク40側(ステータ33が配置される側)に金属製の薄板からなるロータカバー43が装着されて保護される。なお、図2および図3において、符号48は点火時期信号発生コイルであり、符号49はロータヨーク40の外周側に設けられた突起である。 The rotor 34 having a plurality of magnets 41 rotates around the stator 33 in the direction of the arrow P around the center O of the stator 33 by the rotation of the crankshaft 19, so that the stator coil 37 of the stator 33 is moved by electromagnetic induction. An induced current is induced to generate power. 5 to 7 indicate the magnetic flux flowing from the magnet 41 to the stator 35, or the flow of magnetic flux flowing from the stator 35 to the magnet 41. The plurality of magnets 41 of the rotor 34 are protected by mounting a rotor cover 43 made of a thin metal plate on the side opposite to the rotor yoke 40 (side on which the stator 33 is disposed). 2 and 3, reference numeral 48 denotes an ignition timing signal generating coil, and reference numeral 49 denotes a protrusion provided on the outer peripheral side of the rotor yoke 40.
 複数個の磁石41間の間隙42は、クランクシャフト19の回転軸方向から目視した図である図6に示すように、ロータ34の回転によって磁石41の回転方向後端44Bがステータ33のステータティース35におけるコイル巻装部36の中心線N(クランクシャフト19の回転軸に垂直な断面において、前記回転軸中心とコイル巻装部36の中心を結ぶ仮想線)と略一致する第2回転位置にきたとき、前記回転方向後端44B(に対向する回転方向前端44Aを有する)隣接する後行磁石41の回転方向前端44Aが、ステータティース35の先端部38(先端部38の後述の他方側部分38B)と重ならないように設定される。つまり、クランクシャフト19の回転軸に垂直な断面において、磁石41の回転方向後端44Bがコイル巻装部36の中心線Nと略一致する第2回転位置にきたとき、後続する後行磁石41の回転方向前端44Aがステータティース35の先端部38と重ならない(周方向の位置で異なる角度位置となる)ように設定される。ステータティース35は厚さ1mm以下、好ましくは1mm未満の薄板鋼板のコアシートの複数枚(本実施形態では12枚)積層して構成される。 As shown in FIG. 6, the gap 42 between the plurality of magnets 41 is a view seen from the direction of the rotation axis of the crankshaft 19. 35 at a second rotational position substantially coincident with the center line N of the coil winding part 36 (a virtual line connecting the center of the rotation axis and the center of the coil winding part 36 in the cross section perpendicular to the rotation axis of the crankshaft 19). When the rotation direction rear end 44B (having the rotation direction front end 44A opposed thereto) is adjacent to the rotation direction front end 44A of the succeeding magnet 41, the front end portion 38 of the stator tooth 35 (the other side portion of the front end portion 38 described later). 38B) is set so as not to overlap. That is, when the rear end 44 </ b> B in the rotation direction of the magnet 41 comes to the second rotation position substantially coincident with the center line N of the coil winding portion 36 in the cross section perpendicular to the rotation axis of the crankshaft 19, the succeeding succeeding magnet 41. The front end 44 </ b> A in the rotational direction is set so as not to overlap with the front end portion 38 of the stator tooth 35 (the angular position differs in the circumferential position). The stator teeth 35 are configured by laminating a plurality (12 in this embodiment) of core sheets of thin steel plates having a thickness of 1 mm or less, preferably less than 1 mm.
 本実施形態では、自動二輪車用発電機はこの自動二輪車のパワーユニット内に設けられ、クランクシャフト19の回転軸方向から目視した図である図4に示すように、磁石41の周方向角度(磁石41の両端縁44A、44Bとクランクシャフト19の回転軸中心を結ぶ直線同士の前記回転軸中心における最大挟角)をθaとし、磁石41間の間隙42の周方向角度(間隙42の両側に配置された磁石41の各端縁44A、44Bとクランクシャフト19の回転軸中心を結ぶ直線同士の前記回転軸中心における最大挟角)をθbとしたとき、θa=21°、θb=9°にそれぞれ設定される。即ち、磁石41が配置される周方向角度と磁石41間の間隙42が配置される周方向角度との比は、
    θa:θb=21:9 = 7/3:1
に設定される。
In the present embodiment, the generator for the motorcycle is provided in the power unit of the motorcycle, and as shown in FIG. 4, which is viewed from the direction of the rotation axis of the crankshaft 19, the circumferential angle of the magnet 41 (the magnet 41 Is the circumferential angle of the gap 42 between the magnets 41 (on both sides of the gap 42), where θa is the maximum included angle between the straight edges connecting the both end edges 44A, 44B and the rotation axis center of the crankshaft 19. Θa = 21 ° and θb = 9 °, respectively, where θb is the maximum included angle between the straight edges connecting the end edges 44A, 44B of the magnet 41 and the rotation shaft center of the crankshaft 19). Is done. That is, the ratio between the circumferential angle at which the magnet 41 is disposed and the circumferential angle at which the gap 42 between the magnets 41 is disposed is
θa: θb = 21: 9 = 7/3: 1
Set to
 磁石41間の間隙42の周方向角度θbを9°に設定した理由を、図8を用いて説明する。この図8では、機械入力(発電機を回す為の負荷であって、この場合エンジン11に作用する負荷。この負荷は発電出力と電気損失に分けられる。尚、この電気損失は、銅損・鉄損・機械損で構成される。)をX1で、発電出力(マグネト装置31が発生する発電電力)をY1で、発電効率(発電出力を機械入力で除した比)をZ1でそれぞれ表示している。1個の磁石41に一極着磁され、各磁石41間に間隙42が設けられたことで、磁石41間で磁束の漏れが抑制され、磁石41からステータティース35へ流れる磁束が増大して発電出力及び発電効率、特に発電効率が向上する。図8に示すように、間隙42の周方向角度θbが9°において発電効率Z1が最も高くなるため、周方向角度θbを9°に設定しているのである。 The reason why the circumferential angle θb of the gap 42 between the magnets 41 is set to 9 ° will be described with reference to FIG. In FIG. 8, the mechanical input (the load for turning the generator, which in this case is a load acting on the engine 11. This load is divided into a power generation output and an electric loss. The power generation output (generated power generated by the magneto device 31) is indicated by Y1, and the power generation efficiency (ratio obtained by dividing the power generation output by the machine input) is indicated by Z1. ing. Since one pole is magnetized in one magnet 41 and the gap 42 is provided between the magnets 41, leakage of magnetic flux between the magnets 41 is suppressed, and the magnetic flux flowing from the magnet 41 to the stator teeth 35 increases. The power generation output and power generation efficiency, particularly power generation efficiency are improved. As shown in FIG. 8, since the power generation efficiency Z1 is highest when the circumferential angle θb of the gap 42 is 9 °, the circumferential angle θb is set to 9 °.
 図4及び図5に示すように、ステータ33の各ステータティース35における先端部38は、ロータ34の回転方向Pへ延びる一方側部分38Aの周方向長さL(クランクシャフト19の回転軸に垂直な断面において、コイル巻装部36の中心線Nに対する突出高さ)が、ロータ34の回転方向Pと反対側へ延びる(回転方向Pに向かって延びる)他方側部分38Bの周方向長さM(クランクシャフト19の回転軸に垂直な断面において、コイル巻装部36の中心線Nに対する突出高さ)よりも長く形成されている。すなわち、L=M+αである。 As shown in FIGS. 4 and 5, the tip end portion 38 of each stator tooth 35 of the stator 33 has a circumferential length L of the one side portion 38 </ b> A extending in the rotation direction P of the rotor 34 (perpendicular to the rotation axis of the crankshaft 19). In a simple cross section, the protrusion height of the coil winding portion 36 with respect to the center line N) extends in the opposite direction to the rotation direction P of the rotor 34 (extends toward the rotation direction P). (In the cross section perpendicular to the rotation axis of the crankshaft 19), the coil winding portion 36 is formed longer than the center line N. That is, L = M + α.
 このとき、ステータティース35の先端部38における他方側部分38Bの周方向長さMは、ロータ34の回転によって磁石41の周方向中央位置Kがステータティース35のコイル巻装部36の中心線Nと略一致する(クランクシャフト19の回転軸中心に対する周方向の位置であって略同一な角度位置となる)第1回転位置にきたとき(図5)、ステータティース35の先端部38における他方側部分38Bの端縁46が、磁石41の回転方向後端44Bと略一致する(クランクシャフト19の回転軸中心に対する周方向の位置であって略同一な角度位置となる)長さに設定される。また、本実施形態では前述したように、ステータティース35の先端部38における他方側部分38Bの周方向長さMは、間隙42の周方向長さと略一致する長さに設定されている。 At this time, the circumferential length M of the other side portion 38B at the tip 38 of the stator teeth 35 is such that the circumferential center position K of the magnet 41 is the center line N of the coil winding portion 36 of the stator teeth 35 as the rotor 34 rotates. When the first rotational position (FIG. 5) is reached, the other side of the tip portion 38 of the stator tooth 35 is substantially coincident with (a circumferential position with respect to the rotation axis center of the crankshaft 19 and substantially the same angular position). The edge 46 of the portion 38B is set to a length that substantially coincides with the rotation direction rear end 44B of the magnet 41 (a circumferential position with respect to the rotation axis center of the crankshaft 19 and substantially the same angular position). . Further, in the present embodiment, as described above, the circumferential length M of the other side portion 38B at the tip portion 38 of the stator teeth 35 is set to a length that substantially matches the circumferential length of the gap 42.
 これに対し、図7に示すように、ステータティース35の先端部38の一方側部分38Aは、ロータ34の回転によって磁石41の回転方向前端44Aがステータ33におけるステータティース35のコイル巻装部36の中心線Nに略一致する(クランクシャフト19の回転軸中心に対する周方向の位置であって略同一な角度位置となる)第3回転位置にきたとき、前記回転方向前端44Aに(対向する回転方向後端44Bを有する)隣接する先行磁石41(このステータティース35から離れていく磁石41)とクランクシャフト19の回転軸中心に対する周方向の位置にて重なるように、その周方向長さL(図4参照)が設定される。ステータティース35の先端部38における一方側部分38Aの周方向長さLが上述のように設定されることで、磁石41とステータティース35の先端部38とが対向する時間、特に磁石41の回転方向後端44Bがステータティース35の先端部38の外方を通過してから離れていくときの対向する時間が長くなって、ステータティース35が磁石41から磁束を回収する時間が長くなり、このため、磁石41からの磁束をステータティース35に長時間有効に流すことができるので、マグネト装置31の発電出力及び発電効率が向上する。 On the other hand, as shown in FIG. 7, in one side portion 38 </ b> A of the tip portion 38 of the stator tooth 35, the front end 44 </ b> A of the rotation direction of the magnet 41 is rotated by the rotation of the rotor 34. Is substantially coincident with the center line N of the rotation axis when it reaches the third rotation position (which is a circumferential position with respect to the rotation axis center of the crankshaft 19 and has substantially the same angular position). A circumferential length L (with a rear end 44B in the direction) adjacent to the adjacent leading magnet 41 (the magnet 41 moving away from the stator teeth 35) at a circumferential position with respect to the rotation shaft center of the crankshaft 19. 4) is set. By setting the circumferential length L of the one side portion 38A at the tip portion 38 of the stator tooth 35 as described above, the time during which the magnet 41 and the tip portion 38 of the stator tooth 35 face each other, in particular, the rotation of the magnet 41. When the rear end 44B of the direction passes through the outside of the front end portion 38 of the stator teeth 35 and then moves away, the facing time becomes longer, and the time for the stator teeth 35 to recover the magnetic flux from the magnet 41 becomes longer. Therefore, since the magnetic flux from the magnet 41 can be effectively passed through the stator teeth 35 for a long time, the power generation output and power generation efficiency of the magneto device 31 are improved.
 ステータティース35の先端部38における一方側部分38Aの周方向長さLは、先端部38における他方側部分38Bの周方向長さMよりも3.0mm(上記のα に相当する)長く設定することが好ましい。その理由を、図9を用いて説明する。この図9では、機械入力をX2で、発電出力をY2で、発電効率をZ2でそれぞれ表示している。ステータティース35の先端部38における一方側部分38Aの他方側部分38Bに対する相対長さ(他方側部分38Bを基準にした一方側部分38Aの長さ)は、一方側部分38Aが長くなるほど発電効率Z2が高くなることが判り、+3.0mm程度長くすることが最適である。つまり、図7に示す第3回転位置にきたときに、ステータティース35の先端部38における一方側部分38Aと磁石41の回転方向後端44Bとが3.0mm程度重なるようにすると、発電効率Z2が最適となる。 The circumferential length L of the one side portion 38A at the distal end portion 38 of the stator teeth 35 is set to be longer by 3.0 mm (corresponding to the above α) than the circumferential length M of the other side portion 38B at the distal end portion 38. It is preferable. The reason will be described with reference to FIG. In FIG. 9, the machine input is indicated by X2, the power generation output is indicated by Y2, and the power generation efficiency is indicated by Z2. The relative length of the one side portion 38A with respect to the other side portion 38B in the tip portion 38 of the stator teeth 35 (the length of the one side portion 38A with respect to the other side portion 38B) is such that the power generation efficiency Z2 increases as the one side portion 38A increases. It is found that the height is increased, and it is optimal to increase the length by about +3.0 mm. That is, when the third rotation position shown in FIG. 7 is reached, if the one side portion 38A of the front end portion 38 of the stator teeth 35 and the rear end 44B in the rotation direction of the magnet 41 overlap with each other by about 3.0 mm, the power generation efficiency Z2 Is optimal.
 尚、図10に示すように、ステータティース35の先端部38における一方側部分38Aを、ロータ34の磁石41の周方向中央位置Kがステータティース35のコイル巻装部36の中心軸Nと略一致する第1回転位置(図5参照)にきたときに、ステータティース先端部38の一方側部分38Aの端縁45が磁石41の回転方向前端44Aと略一致する周方向長さLとし、且つ、ステータティース35の先端部38における他方側部分38Bの周方向長さMを、一方側部分38Aの周方向長さLに対して長くまたは短く設定しても(図10では長く設定したものを図示)、発電効率の向上には何ら寄与しない。 As shown in FIG. 10, the circumferential center position K of the magnet 41 of the rotor 34 is substantially the same as the central axis N of the coil winding portion 36 of the stator tooth 35. When the coinciding first rotational position (see FIG. 5) is reached, the edge 45 of the one side portion 38A of the stator teeth tip 38 has a circumferential length L that substantially coincides with the rotation direction front end 44A of the magnet 41, and Even if the circumferential length M of the other side portion 38B at the tip 38 of the stator teeth 35 is set longer or shorter than the circumferential length L of the one side portion 38A (in FIG. It does not contribute to the improvement of power generation efficiency.
 例えば、ステータティース35の先端部38における他方側部分38Bの一方側部分38に対する相対長さ(一方側部分38Aを基準にした他方側部分38Bの長さ)が図10に示すように長い場合には、ロータ34の回転によって磁石41の回転方向後端44Bがステータティース35のコイル巻装部36の中心線Nと略一致したとき、磁石41からの磁束が矢印Aaの如くステータティース35に流れると共に、ステータティース35の先端部38の他方側部分38Bを通って、矢印Baに示すように隣接する磁石41へ漏れてしまう。また、ステータティース35の先端部38における他方側部分38Bの一方側部分38に対する相対長さが短い場合には、ロータ34の回転時に磁石41からの磁束がステータティース35へ流入するタイミングが遅れてしまう。 For example, when the relative length with respect to the one side portion 38 of the other side portion 38B at the front end portion 38 of the stator teeth 35 (the length of the other side portion 38B with respect to the one side portion 38A) is long as shown in FIG. When the rotor 34 rotates and the rear end 44B of the magnet 41 in the rotational direction substantially coincides with the center line N of the coil winding portion 36 of the stator teeth 35, the magnetic flux from the magnet 41 flows to the stator teeth 35 as indicated by the arrow Aa. At the same time, it passes through the other side portion 38B of the tip 38 of the stator teeth 35 and leaks to the adjacent magnet 41 as shown by the arrow Ba. In addition, when the relative length of the other side portion 38 </ b> B with respect to the one side portion 38 at the front end portion 38 of the stator teeth 35 is short, the timing at which the magnetic flux from the magnet 41 flows into the stator teeth 35 when the rotor 34 rotates is delayed. End up.
 このため、機械入力をX3で、発電出力をY3で、発電効率をZ3でそれぞれ表示した図11に示すように、ステータティース35の先端部38における他方側部分38Bの一方側部分38Aに対する相対長さが長い場合(例えば一方側部分38Aを基準にして他方側部分38Bが+2mmと長い場合)にも、短い場合(例えば一方側部分38Aを基準にして他方側部分38Bが-3mmと短い場合)にも、発電効率Z3が共に低下していることが判る。 Therefore, as shown in FIG. 11 in which the machine input is indicated by X3, the power generation output is indicated by Y3, and the power generation efficiency is indicated by Z3, the relative length of the other side portion 38B with respect to the one side portion 38A at the tip portion 38 of the stator teeth 35 is shown. Is too long (for example, when the other side portion 38B is as long as +2 mm with respect to the one side portion 38A) or short (for example, when the other side portion 38B is as short as -3 mm with respect to the one side portion 38A) In addition, it can be seen that the power generation efficiency Z3 is decreased.
 上述のことから、ステータティース35の先端部38における他方側部分38Bの周方向長さMは、図4~図7に示すように、ロータ34の回転によって磁石41の周方向中央位置Kがステータティース35のコイル巻装部36の中心線Nと略一致する第1回転位置にきたとき(図5)、ステータティース35の先端部38における他方側部分38Bの端縁46が磁石41の回転方向後端44Bと略一致する長さに設定されることが、発電効率上最適である。また、図6に示す第2回転位置にきたとき、ステータティース35の先端部38における他方側部分38Bの端縁46が磁石41の回転方向前端44Aと略一致する長さに設定すると、発電効率を向上させることが出来る。 From the above, the circumferential length M of the other side portion 38B at the tip 38 of the stator teeth 35 is such that the circumferential center position K of the magnet 41 is rotated by the rotation of the rotor 34 as shown in FIGS. When the first rotational position approximately coincident with the center line N of the coil winding portion 36 of the tooth 35 is reached (FIG. 5), the end edge 46 of the other side portion 38B of the tip portion 38 of the stator tooth 35 is in the rotational direction of the magnet 41. It is optimal in terms of power generation efficiency to be set to a length that substantially matches the rear end 44B. Further, when the end edge 46 of the other side portion 38B at the tip end portion 38 of the stator teeth 35 is set to a length that substantially coincides with the rotation direction front end 44A when the second rotation position shown in FIG. Can be improved.
 [第1の実施形態の効果]
 本実施形態によれば、図3及び図5に示すように、ロータ34が備える磁石41は、複数個がロータ34の周方向に間隙42を介して等間隔に隣接して設置されたので、各磁石41間で磁束が漏れることを抑制でき、磁石41からステータ33のステータティース35へ流れる磁束を増大できる。この結果、ロータ34の磁石41からの磁束をステータ33のステータティース35に有効に導くことができるので、マグネト装置31の発電出力及び発電効率を向上させることができる。
[Effect of the first embodiment]
According to the present embodiment, as shown in FIGS. 3 and 5, a plurality of magnets 41 included in the rotor 34 are installed adjacent to each other at regular intervals via the gap 42 in the circumferential direction of the rotor 34. The leakage of magnetic flux between the magnets 41 can be suppressed, and the magnetic flux flowing from the magnet 41 to the stator teeth 35 of the stator 33 can be increased. As a result, since the magnetic flux from the magnet 41 of the rotor 34 can be effectively guided to the stator teeth 35 of the stator 33, the power generation output and power generation efficiency of the magneto device 31 can be improved.
 図7に示すように、ステータ33のステータティース35の先端部38におけるロータ34の回転方向P側へ延びる一方側部分38Aは、ステータティース35のコイル巻装部36の中心線Nに磁石41の回転方向前端44Aが略一致したとき、この回転方向前端44Aに対向する回転方向後端44Bを有する隣接する磁石41と重なるよう構成されている。従って、磁石41とステータティース35との対向する時間、即ちステータティース35が磁石41の磁束を回収する時間が長くなって、各ステータティース35に磁束が長時間流れることになる。この結果、ロータ34の磁石41からの磁束をステータ33のステータティース35に有効に導くことができるので、マグネト装置31の発電出力及び発電効率を向上させることができる。 As shown in FIG. 7, one side portion 38 </ b> A that extends in the rotation direction P side of the rotor 34 at the tip portion 38 of the stator tooth 35 of the stator 33 is arranged on the center line N of the coil winding portion 36 of the stator tooth 35. When the rotation direction front end 44A substantially coincides with the rotation direction front end 44A, the rotation direction front end 44A is configured to overlap the adjacent magnet 41 having the rotation direction rear end 44B. Therefore, the time for the magnet 41 and the stator teeth 35 to face each other, that is, the time for the stator teeth 35 to collect the magnetic flux of the magnet 41 becomes longer, and the magnetic flux flows through each stator tooth 35 for a long time. As a result, since the magnetic flux from the magnet 41 of the rotor 34 can be effectively guided to the stator teeth 35 of the stator 33, the power generation output and power generation efficiency of the magneto device 31 can be improved.
 [第2の実施形態]
 次に、本発明に係る自動二輪車用発電機の第2の実施形態を図12ないし図20を参照して説明する。
[Second Embodiment]
Next, a second embodiment of the motorcycle generator according to the present invention will be described with reference to FIGS.
 第2の実施形態に係る自動二輪車用発電機は、第1の実施形態に係る自動二輪車のパワーユニット内に設けられ、第1の実施例における自動二輪車用発電機に示された図1ないし図3のマグネト装置31の構成を同じくするので、同じ構成には同一符号を付して重複説明を省略ないし簡略化する。 The motorcycle generator according to the second embodiment is provided in the power unit of the motorcycle according to the first embodiment, and is shown in FIG. 1 to FIG. 3 shown in the motorcycle generator in the first embodiment. Since the configuration of the magneto device 31 is the same, the same components are denoted by the same reference numerals, and redundant description is omitted or simplified.
 第2の実施形態に係る自動二輪車用発電機は、マグネト装置として単相式あるいは三相式マグネト交流発電機31Aを有する。マグネト発電機31Aは、図12に示すように、クランクシャフト19と同軸に、クランクシャフト19の周囲に配置されるステータ33と、このステータ33の周りをクランクシャフト19の回転軸と一体に回転するロータ34とを備えて構成される。ロータ34はクランクシャフト19の左側軸端部に固定され、ロータ34の回転方向を図13に矢印Pで示す。 The motorcycle generator according to the second embodiment has a single-phase or three-phase magneto alternator 31A as a magneto device. As shown in FIG. 12, the magneto generator 31 </ b> A is coaxial with the crankshaft 19, and rotates around the stator 33 integrally with the rotation shaft of the crankshaft 19 around the stator 33. And a rotor 34. The rotor 34 is fixed to the left shaft end of the crankshaft 19, and the rotation direction of the rotor 34 is indicated by an arrow P in FIG.
 ステータ33は、図3、図12および図13に示すように、その中心O(クランクシャフト19の回転中心軸芯と同軸)から複数本(第2の実施形態では12本)のステータティース35が放射状に延び、各ステータティース35のコイル巻線部36に発電コイルとしてステータコイル37が巻装されて構成される。各ステータティース35のコイル巻線部36の前端側に、ステータ33の周方向両側(ロータ34の回転方向側および反回転方向側)に延びる先端部38が形成される。ステータティース35の先端部38はロータ34の回転方向側に延びる一方側部分の長さLがロータ34の反回転方向側に延びる他方側部分の長さMより長く形成されている。例えば、L=M+β(但し、βは整数である。)。ステータ33は図12に示すように取付ボルト39を用いてマグネトカバー32の内面に固定状態で取り付けられている。 As shown in FIGS. 3, 12, and 13, the stator 33 includes a plurality of stator teeth 35 (12 in the second embodiment) from the center O (coaxial with the rotation center axis of the crankshaft 19). A stator coil 37 is wound around the coil winding portion 36 of each stator tooth 35 as a power generating coil. On the front end side of the coil winding portion 36 of each stator tooth 35, a tip portion 38 is formed extending on both sides in the circumferential direction of the stator 33 (rotation direction side and counter-rotation direction side of the rotor 34). Tip 38 of the stator teeth 35 the length L 1 of the one side portion extending in the rotational direction of the rotor 34 is formed longer than the length M 1 of the other side portion extending in the counter-rotational direction of the rotor 34. For example, L 1 = M 1 + β (where β is an integer). As shown in FIG. 12, the stator 33 is fixedly attached to the inner surface of the magnet cover 32 using mounting bolts 39.
 また、図3、図12および図13に示すように、ロータ34は有底円筒形状に形成され、その内部空間にステータ33が配置される。ステータ33とロータ34とからマグネト交流発電機31Aが構成される。ロータ34は、フライホイールを構成するロータヨーク40の内周面にステータ33を取り囲むように複数の磁石41が周方向に沿って等間隔に配置される。これらの磁石41は、ステータ33におけるステータティース35の先端部38と対向可能に配置される。ロータ34のロータヨーク40はフライホイールを兼ね、クランクシャフト19に回転一体に取り付けられて回転するとき、これらの磁石41がステータティース35の先端部38の外側を適度な間隔を有して通過するように構成される。磁石41は、複数本(例えば12本)のステータティース35に対応して複数個(第2の実施形態では12個)が磁石の存在しない間隙42を順次介して設置される。そして、1個の磁石41に一極着磁されるとともに隣り合う磁石41の極が交互となるように配置される。 Further, as shown in FIGS. 3, 12, and 13, the rotor 34 is formed in a bottomed cylindrical shape, and the stator 33 is disposed in the internal space thereof. The stator 33 and the rotor 34 constitute a magneto AC generator 31A. In the rotor 34, a plurality of magnets 41 are arranged at equal intervals along the circumferential direction so as to surround the stator 33 on the inner peripheral surface of the rotor yoke 40 constituting the flywheel. These magnets 41 are disposed so as to be able to face the front end portions 38 of the stator teeth 35 in the stator 33. The rotor yoke 40 of the rotor 34 also serves as a flywheel. When the rotor yoke 40 is attached to the crankshaft 19 so as to rotate integrally, the magnets 41 pass through the outside of the front end portion 38 of the stator teeth 35 with an appropriate interval. Configured. A plurality of magnets 41 (for example, twelve in the second embodiment) corresponding to a plurality of (for example, twelve) stator teeth 35 are sequentially installed via gaps 42 where no magnet is present. And it arrange | positions so that the pole of the adjacent magnet 41 may become alternate while being magnetized by one magnet 41 one pole.
 ロータ34は、クランクシャフト19の回転に伴って、ステータ33周りを矢印P方向に回転することで、電磁誘導の作用でステータ33のステータ(電機)コイル37に誘導電流が誘起されて発電が行なわれる。ロータ34の複数個の磁石41には、各磁石41を内周側から覆うように図13および図14Aおよび図14Bに示すように、ロータカバー43が装着される。ロータカバー43は、例えば厚さ0.3mmの金属製薄板で鍔付スリーブ状に構成され、ロータヨーク40の内周側に配置される各磁石41を保護している。ロータカバー43は、磁石41が存在しない間隙42を覆って閉塞する一方、各磁石41をステータティース35の先端部38に1対1で対応可能に露出する窓孔51をそれぞれ有する。 The rotor 34 rotates around the stator 33 in the direction of the arrow P as the crankshaft 19 rotates, so that an induction current is induced in the stator (electrical) coil 37 of the stator 33 by the action of electromagnetic induction to generate power. It is. As shown in FIGS. 13, 14 </ b> A, and 14 </ b> B, a rotor cover 43 is attached to the plurality of magnets 41 of the rotor 34 so as to cover each magnet 41 from the inner peripheral side. The rotor cover 43 is formed, for example, by a metal thin plate having a thickness of 0.3 mm in a hooked sleeve shape, and protects each magnet 41 disposed on the inner peripheral side of the rotor yoke 40. The rotor cover 43 has a window hole 51 that covers and closes the gap 42 where the magnet 41 does not exist, and exposes each magnet 41 to the tip portion 38 of the stator tooth 35 in a one-to-one correspondence.
 また、第2の実施形態における磁石41の周方向角度(磁石41の両端線44A,44Bとクランクシャフト19の回転中心Oを結ぶ直線同士がなす中心角)をθaとし、磁石41間の間隙42の周方向角度(間隙42の両側に配置される磁石41の各端線44A,44Bとクランクシャフト19の回転中心を結ぶ直線同士がなす中心角)をθbとしたとき、例えばθa=21°、θb=9°にそれぞれ設定される。 In addition, the circumferential angle of the magnet 41 in the second embodiment (a central angle formed by straight lines connecting the end lines 44A and 44B of the magnet 41 and the rotation center O of the crankshaft 19) is θa, and the gap 42 between the magnets 41 is set. When the angle in the circumferential direction (center angle formed by straight lines connecting the end lines 44A and 44B of the magnet 41 arranged on both sides of the gap 42 and the rotation center of the crankshaft 19) is θb, for example, θa = 21 °, θb = 9 ° is set.
 さらに、ロータカバー43は、窓孔51のピッチ間隔が図14Bに示すように中心角θcをなして形成され、窓孔51の中心角(窓孔51の回転方向先端とその後端がなす周方向角度)がθdで構成される。第2の実施形態では中心角θcは例えば30°であり、中心角θdは例えば16°である。 Further, the rotor cover 43 is formed such that the pitch interval of the window holes 51 forms a center angle θc as shown in FIG. 14B, and the center angle of the window holes 51 (the circumferential direction formed by the front end and the rear end of the rotation direction of the window holes 51). Angle) is formed by θd. In the second embodiment, the central angle θc is 30 °, for example, and the central angle θd is 16 °, for example.
 ところで、第2の実施形態の自動二輪車用発電機が三相マグネト交流発電機31Aであるとき、ステータ33はステータティース35のコイル巻線部36に三相巻線からなるステータコイル37が発電コイルとして配設される。ステータコイル37はY結線され、その出力は図15または図16に示すように、発電回路として制御された整流機能を有するレギュレータ/レクチファイア(以下、レギュレートレクチファイアと称する)55または56を介してバッテリ57および車両負荷である発電負荷58に接続される。なお、符号59はイグニッションスイッチである。 By the way, when the generator for the motorcycle of the second embodiment is a three-phase magneto-alternator 31A, the stator 33 has a stator coil 37 composed of a three-phase winding on a coil winding portion 36 of a stator tooth 35. It is arranged as. The stator coil 37 is Y-connected, and its output is passed through a regulator / rectifier (hereinafter referred to as a regulated rectifier) 55 or 56 having a rectifying function controlled as a power generation circuit, as shown in FIG. 15 or FIG. Are connected to a battery 57 and a power generation load 58 which is a vehicle load. Reference numeral 59 denotes an ignition switch.
 このうち、図15に示されたレギュレートレクチファイア55は、発電機の交流出力を整流するダイオード62によるレクチファイア60と、電圧が一定値以上になるように調整するレギュレータ61とを組み合せた三相ショート式レギュレートレクチファイアである。レクチファイア60はそれぞれ対をなすダイオード62(62a,62b,62c;62d,62e,62f)で整流ブリッジ回路を構成しており、マグネト発電機31Aのステータコイル37は各相の巻線37a,37b,37c毎にダイオード62a,62b,62cの各アノードおよびダイオード62d,62e,62fの各カソードにそれぞれ接続される。ダイオード62a,62b,62cの各カソードおよびダイオード62d,62e,62fの各アノードはバッテリ57にそれぞれ接続される。レギュレートレクチファイア55はマグネト発電機31Aからの発電機をレクチファイア60を経由してバッテリ57に接続し、バッテリ57を充電させる充電回路を構成している。 Among these, the regulator rectifier 55 shown in FIG. 15 is a combination of a rectifier 60 formed of a diode 62 that rectifies the AC output of a generator and a regulator 61 that adjusts the voltage so that the voltage becomes a certain value or more. This is a short phase regulated rectifier. The rectifier 60 forms a rectifier bridge circuit with a pair of diodes 62 (62a, 62b, 62c; 62d, 62e, 62f), and the stator coil 37 of the magneto generator 31A has windings 37a, 37b of each phase. , 37c are connected to the anodes of the diodes 62a, 62b, 62c and the cathodes of the diodes 62d, 62e, 62f, respectively. The cathodes of the diodes 62a, 62b, and 62c and the anodes of the diodes 62d, 62e, and 62f are connected to the battery 57, respectively. The regulated rectifier 55 constitutes a charging circuit for connecting the generator from the magneto generator 31 </ b> A to the battery 57 via the rectifier 60 and charging the battery 57.
 また、レギュレータ61はステータコイル37の各相の巻線37a,37b,37cに接続されるサイリスタ63a,63b,63cとサイリスタ63a,63b,63cのゲートに接続される電圧制御回路64とから構成される。電圧制御回路64は、バッテリ電圧を監視してバッテリ電圧が所定電圧に達したとき、レギュレータ61のサイリスタ63(63a,63b,63c)のゲート制御を行ない、発電電流を短絡(ショート)して発電機31Aに戻すショート制御を行なっている。 The regulator 61 includes thyristors 63a, 63b, and 63c connected to the windings 37a, 37b, and 37c of each phase of the stator coil 37, and a voltage control circuit 64 connected to the gates of the thyristors 63a, 63b, and 63c. The The voltage control circuit 64 monitors the battery voltage, and when the battery voltage reaches a predetermined voltage, performs the gate control of the thyristor 63 (63a, 63b, 63c) of the regulator 61, and generates power by short-circuiting the generated current. Short control to return to the machine 31A is performed.
 レギュレータ61の電圧制御回路64は、図17に示すように、バッテリ57の電圧を検出するバッテリ電圧検出部65と、基準電圧発生部66と、バッテリ57の電圧が所定の電圧以上であるか否かを判定する判定部67と、この判定結果からバッテリ電圧が所定電圧に達したらレギュレータ61内のサイリスタ63をゲート制御して短絡させるゲート電圧制御部68とを有する。 As shown in FIG. 17, the voltage control circuit 64 of the regulator 61 includes a battery voltage detection unit 65 that detects the voltage of the battery 57, a reference voltage generation unit 66, and whether or not the voltage of the battery 57 is equal to or higher than a predetermined voltage. And a gate voltage control unit 68 that gate-controls the thyristor 63 in the regulator 61 when the battery voltage reaches a predetermined voltage based on the determination result.
 ショート式レギュレートレクチファイア(レギュレータ/レクチファイア)55は、バッテリ57の充電が充分に行なわれた後の非充電時には、不要となった余剰電流をサイリスタ63でショートして発電機31Aに戻すショート制御が行なわれる。このため、ショート式レギュレートレクチファイア55では、ショート制御により発電機31Aに常に電流が流れていてステータコイル37の銅損、ステータ33の鉄損が発生し、電気損失が生じている。この電気損失がエンジンへの負担となり、燃費へ悪影響を及ぼしている。 The short regulator rectifier (regulator / rectifier) 55 is a short circuit that shorts excess current that is no longer needed by the thyristor 63 and returns it to the generator 31A when the battery 57 is not fully charged after being fully charged. Control is performed. For this reason, in the short-type regulated rectifier 55, a current always flows through the generator 31A due to the short control, so that the copper loss of the stator coil 37 and the iron loss of the stator 33 occur, and the electric loss occurs. This electrical loss is a burden on the engine and has an adverse effect on fuel consumption.
 自動二輪車用発電機は、充電時には、マグネト発電機31Aのステータコイル37を、三相ショート式レギュレートレクチファイア55を介してバッテリ57に接続して、バッテリ57を充電させている。バッテリ57が所定電圧に達して充電が不要になった非充電時の場合にも、余剰電流は、レギュレートレクチファイア55のサイリスタ63(63a,63b,63c)がゲート制御されて短絡し、サイリスタ63で発電電流を発電コイルであるステータコイル37に戻すショート制御を行なっている。このため、マグネト発電機31Aのステータコイル37に常時電流が流れることとなり、銅損失がステータコイル37に発生し、ステータコイル37の銅損失がエンジンへの負荷となっている。 In the generator for a motorcycle, when charging, the stator coil 37 of the magneto generator 31A is connected to the battery 57 via the three-phase short regulator rectifier 55 to charge the battery 57. Even when the battery 57 reaches a predetermined voltage and is no longer charged, the surplus current is short-circuited by the gate control of the thyristor 63 (63a, 63b, 63c) of the regulator rectifier 55, and the thyristor. In 63, short-circuit control is performed to return the generated current to the stator coil 37, which is a power generation coil. For this reason, a current always flows through the stator coil 37 of the magneto generator 31A, copper loss is generated in the stator coil 37, and the copper loss of the stator coil 37 becomes a load on the engine.
 この点から、バッテリ57への充電が不要になった余剰電流をステータコイル37に流さないようにする三相オープン式レギュレートレクチファイア(レギュレータ/レクチファイア)56が、図16に示すように構成される。このレギュレートレクチファイア56は、ダイオードによるレクチファイアを不要として、サイリスタ70によるレクチファイア71を設けたものである。 From this point, a three-phase open type regulator rectifier (regulator / rectifier) 56 that prevents the surplus current that is no longer required to be charged to the battery 57 from flowing through the stator coil 37 is configured as shown in FIG. Is done. This regulated rectifier 56 is provided with a rectifier 71 by a thyristor 70 without using a rectifier by a diode.
 レギュレートレクチファイア56は、発電機の交流出力を整流するサイリスタ70によるレクチファイア71と、このサイリスタ70を用いて電圧が一定以上にならないように電圧調節制御するレギュレータ72とを組み合せた三相オープン式レクチファイアである。レクチファイア71にそれぞれ対をなすサイリスタ70(70a,70b,70c;70d,70e,70f)で整流ブリッジ回路を構成している。マグネト発電機31Aのステータコイル37は、各相の巻線37a,37b,37c毎にサイリスタ70a,70b,70cのカソードおよびサイリスタ70d,70e,70fのアノードに接続されてレクチファイア71が構成される。レギュレートレクチファイア56は充電時にサイリスタ70からなるレクチファイア71を経由してマグネト発電機31Aからの発電電流をバッテリ57に供給し、バッテリ57を充電させる充電回路を構成している。 The regulated rectifier 56 is a three-phase open combination of a rectifier 71 by a thyristor 70 that rectifies the AC output of the generator and a regulator 72 that controls the voltage so that the voltage does not exceed a certain level using the thyristor 70. It is an expression rectifier. A rectifier bridge circuit is configured by the thyristors 70 (70a, 70b, 70c; 70d, 70e, 70f) paired with the rectifier 71, respectively. The stator coil 37 of the magneto generator 31A is connected to the cathodes of the thyristors 70a, 70b, and 70c and the anodes of the thyristors 70d, 70e, and 70f for the windings 37a, 37b, and 37c of the respective phases to constitute the rectifier 71. . The regulated rectifier 56 constitutes a charging circuit for charging the battery 57 by supplying the generated current from the magneto generator 31A to the battery 57 via the rectifier 71 comprising the thyristor 70 during charging.
 レクチファイア71を構成するサイリスタ70(70a,70b,70c)の残りのゲートは電圧制御回路74に接続されてレギュレータ72が構成される。このレギュレータ72の電圧制御回路74は、図17に示される電圧制御回路64と同様に構成され、図17に示される電圧制御回路64と構成を同じくするので、同じ構成には同一符号を付して重複説明を省略する。電圧制御回路74は、バッテリ57の電圧が所定値に達したら、サイリスタ70をゲート制御してサイリスタ70をOFF制御し、レギュレートレクチファイア56をオープン制御するようになっている。 The remaining gates of the thyristors 70 (70a, 70b, 70c) constituting the rectifier 71 are connected to a voltage control circuit 74 to constitute a regulator 72. The voltage control circuit 74 of the regulator 72 is configured in the same manner as the voltage control circuit 64 shown in FIG. 17, and has the same configuration as the voltage control circuit 64 shown in FIG. Therefore, duplicate explanation is omitted. When the voltage of the battery 57 reaches a predetermined value, the voltage control circuit 74 gate-controls the thyristor 70 to turn off the thyristor 70 and open control the regulator rectifier 56.
 オープン式レギュレートレクチファイア56は、バッテリ電圧が所定の電圧に達した非充電時には、電圧制御回路74がサイリスタ70をOFFにするオープン制御が行なわれる。これにより発電コイルであるステータコイル37に電流が流れなくなる。ステータコイル37の銅損失を低減でき、電気抵抗を減らすことができる。このため、図16に示す三相オープン式レギュレートレクチファイア56を用いると、図18に示すようにエンジン回転数が中・低速域(エンジン回転数が例えば7000rpmの中速回転域以下)で電気損失を、ショート式レギュレートレクチファイア56を用いた場合に較べ減少させることができる。 The open regulator rectifier 56 performs open control in which the voltage control circuit 74 turns off the thyristor 70 when the battery voltage reaches a predetermined voltage and is not charged. As a result, no current flows through the stator coil 37, which is a power generation coil. The copper loss of the stator coil 37 can be reduced, and the electrical resistance can be reduced. For this reason, when the three-phase open-type regulated rectifier 56 shown in FIG. 16 is used, as shown in FIG. 18, the engine speed is medium / low (the engine speed is, for example, 7000 rpm or less). The loss can be reduced as compared with the case where the short-type regulated rectifier 56 is used.
 しかし、図16のオープン式レギュレートレクチファイア56では、バッテリ電圧が所定電圧に達してサイリスタ70をOFFにするオープン制御が行なわれると、発電コイルであるステータコイル37にコイル電流が流れなくなる。そのため、マグネト発電機31Aにコイル磁束が発生しなくなり、ステータ33の鉄損が増加する。ステータ33の鉄損は、ロータ34の回転数である周波数の2乗に比例して大きくなる特性を備えている。したがって、図18に示すように、オープン式レギュレートレクチファイア56ではステータ33の鉄損の増加により、エンジンの高回転域でショート式レギュレートレクチファイア55を採用すると、符号Bに示すように、電気損失が急激に増大する逆転現象が生じている。 However, in the open-type regulated rectifier 56 of FIG. 16, when the battery voltage reaches a predetermined voltage and the open control for turning off the thyristor 70 is performed, the coil current does not flow through the stator coil 37 that is the power generation coil. Therefore, no coil magnetic flux is generated in the magneto generator 31A, and the iron loss of the stator 33 increases. The iron loss of the stator 33 has a characteristic of increasing in proportion to the square of the frequency that is the rotational speed of the rotor 34. Therefore, as shown in FIG. 18, when the short regulator rectifier 55 is employed in the high engine speed range due to an increase in the iron loss of the stator 33 in the open regulator rectifier 56, There is a reversal phenomenon in which the electrical loss increases rapidly.
 図18はエンジンの回転数と電気損失の関係を示すもので、符号Aは現行仕様のマグネト発電機に三相ショート式レギュレートレクチファイア55を用いた場合の電気損失曲線を示し、符号Bは現行仕様のマグネト発電機に三相オープン式レギュレートレクチファイア56を用いた場合の電気損失曲線である。また、符号Cはステータティース35に電磁鋼板、例えば無方向性電磁鋼板を使用したマグネト発電機に三相オープン式レギュレートレクチファイア56を用いた場合の電気損失曲線である。 FIG. 18 shows the relationship between the engine speed and electrical loss. Symbol A shows the electrical loss curve when the three-phase short regulator rectifier 55 is used in the magneto generator of the current specification, and symbol B is It is an electric loss curve at the time of using the three-phase open type regulated rectifier 56 for the magneto generator of the present specification. Reference symbol C denotes an electric loss curve when a three-phase open type rectifier 56 is used in a magneto generator using a magnetic steel sheet, for example, a non-oriented electrical steel sheet, as the stator teeth 35.
 図18に示すように、ステータ33のステータティース35に電磁鋼板を用いたマグネト発電機31Aを、オープン式レギュレートレクチファイア56と組み合せると、電気損失曲線Cはエンジン回転数の全領域に亘って電気損失が大幅に低減できることを本出願人は知見した。また、三相オープン式レギュレートレクチファイア56に電磁鋼板を用いたマグネト発電機31Aを組み合せて用いると、現行仕様のマグネト発電機に三相ショート式レギュレートレクチファイア55を用いた電気損失曲線Aや電気損失曲線Bに比較しても、エンジン回転数の全領域に亘って電気損失を大幅に低減できることが確認できた。 As shown in FIG. 18, when a magneto generator 31A using a magnetic steel sheet for the stator teeth 35 of the stator 33 is combined with an open-type regulated rectifier 56, the electric loss curve C extends over the entire engine speed range. The present applicant has found that the electrical loss can be greatly reduced. Further, when a magneto generator 31A using a magnetic steel plate is used in combination with the three-phase open regulator rectifier 56, an electric loss curve A using a three-phase short regulator rectifier 55 with the current magneto generator is used. Compared with the electric loss curve B and the electric loss curve B, it was confirmed that the electric loss can be greatly reduced over the entire engine speed range.
 ところで、マグネト発電機31Aに用いられるステータ33のステータティース35には、図12および図18に示すように、薄肉鋼板のコアシートを積層し、取付ボルト39等で一体的に組み立てたものが使用される。ステータティース35のコアシートは、厚さ0.2mm~1.0mm未満の薄肉鋼板の圧延鋼板(SPCC)または電磁鋼板(珪素鋼板)で構成される。 By the way, as shown in FIG. 12 and FIG. 18, the stator teeth 35 of the stator 33 used in the magneto generator 31A are laminated with core sheets of thin steel plates and assembled integrally with mounting bolts 39 or the like. Is done. The core sheet of the stator teeth 35 is composed of a rolled steel plate (SPCC) or a magnetic steel plate (silicon steel plate) of a thin steel plate having a thickness of 0.2 mm to less than 1.0 mm.
 現行仕様のマグネト発電機のマグネトステータは、厚さ1.0mmの圧延鋼板(SPCC)を積層して製造しており、1.0mm厚の圧延鋼板を12枚重ねて一体的に積層している。現行仕様のマグネト発電機では、1.0mm厚の圧延鋼板をマグネトステータとして用いているために、図19に符号Dで示すように、マグネト発電機の電気損失はエンジンの全回転域に亘って大きく、このため、電気損失がエンジンへの負担となり、燃費を良好にすることが困難となっている。 The magneto stator of the current-generation magneto generator is manufactured by laminating rolled steel plates (SPCC) with a thickness of 1.0 mm, and twelve rolled steel plates with a thickness of 1.0 mm are stacked and integrally laminated. . In the magneto generator of the current specification, a rolled steel plate having a thickness of 1.0 mm is used as the magneto stator. Therefore, as shown by a symbol D in FIG. 19, the electrical loss of the magneto generator extends over the entire rotation range of the engine. For this reason, electrical loss is a burden on the engine, making it difficult to improve fuel efficiency.
 これに対し、マグネト発電機31Aのステータティース35に厚さ1mmの圧延鋼板のコアシートに代えて、厚さ1.0mm未満のコアシートを使用する。ステータ33のステータティース35に、例えば厚さ0.5mmの圧延鋼板(SPCC)のコアシート、あるいは、厚さ0.5mmの電磁鋼板(珪素鋼板)を用いる。厚さ0.5mmの薄肉圧延鋼板のコアシートを複数枚(例えば20枚~24枚)重ねたステータティース35使用のマグネト発電機31Aでは、発電機の電気損失が曲線Eで表わされ、厚さ0.5mmの薄肉電磁鋼板のコアシートを複数枚(例えば20枚~24枚)重ねたステータティース35仕様のマグネト発電機31Aでは発電機の電気損失は曲線Fで示すように表わされる。これらの電気損失曲線線EおよびFは、厚さ1.0mmの圧延鋼板のコアシートを用いた電気損失曲線Dに較べ、電気損失をエンジンの回転数全領域に亘って低減できることを確認することができる。これは、ステータ33のステータティース35に用いられるコアシートを薄肉化することにより、渦電流損を低減することができるため、マグネト発電機31Aの電気損失が低減することができたものを理解する。 In contrast, a core sheet having a thickness of less than 1.0 mm is used instead of the rolled sheet steel sheet having a thickness of 1 mm for the stator teeth 35 of the magneto generator 31A. For the stator teeth 35 of the stator 33, for example, a 0.5 mm thick rolled steel plate (SPCC) core sheet or a 0.5 mm thick electromagnetic steel plate (silicon steel plate) is used. In the magneto generator 31A using the stator teeth 35 in which a plurality of core sheets (for example, 20 to 24 sheets) of a thin rolled steel plate having a thickness of 0.5 mm are stacked, the electrical loss of the generator is represented by the curve E, and the thickness In the magnetoelectric generator 31A of the stator teeth 35 specification in which a plurality of core sheets (for example, 20 to 24 sheets) of 0.5 mm thin electromagnetic steel sheets are stacked, the electrical loss of the generator is represented by a curve F. These electric loss curve lines E and F confirm that the electric loss can be reduced over the entire engine speed range as compared with the electric loss curve D using a core sheet of a rolled steel sheet having a thickness of 1.0 mm. Can do. This is because the eddy current loss can be reduced by thinning the core sheet used for the stator teeth 35 of the stator 33, so that the electrical loss of the magneto generator 31A can be reduced. .
 また、マグネト発電機31Aに厚さ0.5mmの薄型圧延鋼板のコアシートを用いたり、厚さ0.5mmの電磁鋼板のコアシートを用いてステータ33を製造し、このマグネト発電機31Aに図16に示されたオープン式レギュレートレクチファイア56を組み合せた発電回路を用いてステータ33の鉄損を低減させたときの発電機の電気損失の低減効果(%表示)は、符号GおよびHで示すように表わされる。図19によると、マグネト発電機31Aの電気損失は、0.5mm厚の電磁鋼板を使用した方が、0.5mm厚の薄型圧延鋼板を使用したものよりエンジンの全回転領域に亘って電気損失低減効果が大きいことを知見した。 Further, a stator 33 is manufactured by using a core sheet of a thin rolled steel plate having a thickness of 0.5 mm or a core sheet of an electromagnetic steel plate having a thickness of 0.5 mm for the magneto generator 31A. When the iron loss of the stator 33 is reduced using the power generation circuit combined with the open-type regulated rectifier 56 shown in FIG. It is expressed as shown. According to FIG. 19, the electrical loss of the magneto generator 31 </ b> A is greater when the 0.5 mm thick electromagnetic steel plate is used than when the 0.5 mm thick thin rolled steel plate is used. It was found that the reduction effect was great.
 これは、図20Aに示すように、ステータ33において、ステータティース35に用いられる圧延鋼板のコアシート75,75は、絶縁が充分でない。このため、1枚1枚の圧延鋼板のコアシートはある電気抵抗を持って導通しており、ステータティース35に発生する渦電流が完全に抑え切れていないものと思料される。この点から、1枚1枚の圧延鋼板のコアシート75,75を絶縁するため、圧延鋼板のコアシート75,75を図20Bで示すように、絶縁材76で絶縁処理することにより、ステータ33の鉄損低減効果を発揮することができる。圧延鋼板のコアシート75に樹脂コーティングしたり、1枚1枚のコアシート75の間に絶縁シートや紙を挟んだり、コアシート75に絶縁塗料で塗装することにより、絶縁処理が施される。 This is because, as shown in FIG. 20A, in the stator 33, the core sheets 75 and 75 of the rolled steel sheet used for the stator teeth 35 are not sufficiently insulated. For this reason, it is thought that the core sheet of each rolled steel sheet is conducted with a certain electric resistance, and the eddy current generated in the stator teeth 35 is not completely suppressed. From this point, in order to insulate the core sheets 75 and 75 of each rolled steel sheet, the stator sheets 33 are insulated by insulating the core sheets 75 and 75 of the rolled steel sheets as shown in FIG. 20B. The effect of reducing iron loss can be exhibited. Insulating treatment is performed by coating the core sheet 75 of the rolled steel sheet with resin, sandwiching an insulating sheet or paper between the core sheets 75 one by one, or coating the core sheet 75 with an insulating paint.
 圧延鋼板のコアシート75に絶縁処理を施すことにより、1mm厚の圧延鋼板を用いたものに較べ、1mm未満の圧延鋼板を用いたマグネト発電機31Aでは、電気損失をより低減させることが期待できる。なお、0.1mmのコアシートは薄肉過ぎて実用的ではない。 By applying insulation treatment to the core sheet 75 of the rolled steel sheet, the magneto generator 31A using the rolled steel sheet having a thickness of less than 1 mm can be expected to further reduce the electrical loss as compared with the rolled steel sheet having a thickness of 1 mm. . The 0.1 mm core sheet is too thin to be practical.
 [第2の実施形態の効果]
 第2の実施形態の自動二輪車用発電機は、マグネト発電機31Aのステータコイル37は、サイリスタ63によるレギュレートレクチファイア56を介してバッテリ57に接続され、レギュレートレクチファイア56は、バッテリ57の電圧を監視し、バッテリ電圧が所定電圧に達したとき、電圧制御回路74がサイリスタ70のゲート制御によりサイリスタ70をOFF制御し、レギュレートレクチファイア56をオープン制御したから、バッテリ電圧が所定電圧に達したときには、マグネト発電機31Aからの発電電流が流れないオープン制御により、ステータコイル37の銅損失を低減でき、電気損失を低減させることができるので、エンジンの負担を軽減させることができ、燃費の向上を図ることができる。
[Effects of Second Embodiment]
In the motorcycle generator of the second embodiment, the stator coil 37 of the magneto generator 31 A is connected to the battery 57 via the regulator rectifier 56 by the thyristor 63, and the regulator rectifier 56 is connected to the battery 57. The voltage is monitored, and when the battery voltage reaches a predetermined voltage, the voltage control circuit 74 controls the thyristor 70 to be OFF by the gate control of the thyristor 70 and controls the regulator rectifier 56 to be open. When it reaches, open control that does not flow the generated current from the magneto generator 31A can reduce the copper loss of the stator coil 37 and reduce the electrical loss, thereby reducing the load on the engine and reducing the fuel consumption. Can be improved.
 また、マグネト発電機31Aは、銅損を低減させるオープン式レギュレートレクチファイアを使用する一方、ステータ33の鉄損を低減させるステータコア材料を選択したり、ステータティースのコアシートの薄肉化と組み合せることにより、エンジンの全回転域で電気損失の損失低減効果を図ることができ、車両の燃費を向上させることができる。 In addition, the magneto generator 31A uses an open-type regulated rectifier that reduces copper loss, while selecting a stator core material that reduces iron loss of the stator 33 or combining it with the thinning of the core sheet of the stator teeth. As a result, it is possible to achieve a loss reduction effect of electric loss in the entire engine speed range, and improve the fuel efficiency of the vehicle.
 さらに、マグネト発電機31Aは、ステータ33におけるステータティースのコアシートを薄肉化したり、コアシート間に絶縁処理を施すことにより、発電機の電気損失をエンジンの全回転領域に亘り低減させることができ、発電出力および発電効率を向上させることができ、車両の燃費向上を図ることができる。 Further, the magneto generator 31A can reduce the electrical loss of the generator over the entire rotation region of the engine by thinning the core sheet of the stator teeth in the stator 33 or by performing insulation treatment between the core sheets. The power generation output and the power generation efficiency can be improved, and the fuel efficiency of the vehicle can be improved.
 なお、第2の実施形態では、自動二輪車用発電機に用いられるマグネト発電機31Aを三相レギュレートレクチファイア(レギュレータ/レクチファイア)55,56と組み合せた例を説明したが、例えば、図21Aに示される単相全充電発電機、または図21Bに示される単相AC-DC発電機であってもよい。図21Aに示される単相全充電発電機は、単相全波オープン式レギュレートレクチファイア80と単相発電機31Bと組み合せて使用される。また、図21Bに示される単相AC-DC発電機は、単相オープン式レギュレートレクチファイア90と単相発電機31Bと組み合せて使用される。単相オープン式レギュレートレクチファイア90は、正電圧用のサイリスタ91aを制御しバッテリ57の電圧を制御する電圧制御回路92と、負電圧用のサイリスタ91bを制御しランプ94の電圧を制御するランプ電圧制御回路93を有している。 In the second embodiment, an example in which a magneto generator 31A used for a generator for a motorcycle is combined with three-phase regulated rectifiers (regulator / rectifier) 55, 56 has been described. For example, FIG. 21A Or a single-phase AC-DC generator shown in FIG. 21B. The single-phase full-charge generator shown in FIG. 21A is used in combination with a single-phase full-wave open-type regulated rectifier 80 and a single-phase generator 31B. The single-phase AC-DC generator shown in FIG. 21B is used in combination with the single-phase open-type regulated rectifier 90 and the single-phase generator 31B. The single-phase open regulator rectifier 90 includes a voltage control circuit 92 that controls the voltage of the battery 57 by controlling the thyristor 91a for positive voltage, and a lamp that controls the voltage of the lamp 94 by controlling the thyristor 91b for negative voltage. A voltage control circuit 93 is provided.
 以上、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。 As mentioned above, although embodiment of this invention was described, this embodiment is shown as an example and is not intending limiting the range of invention. This embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention.
31,31A,31B マグネト装置(発電機)
33 ステータ
34 ロータ
35 ステータティース
36 コイル巻装部
37 コイル
38 ステータティースの先端部
38A ステータティースの先端部の一方側部分
38B ステータティースの先端部の他方側部分
40 ロータヨーク
41 磁石
42 間隙
44A 磁石の回転方向前端
44B 磁石の回転方向後端
55,56,80,90 レギュレータ/アクチュエータ(レギュレートレクチファイア)
57 バッテリ
58 発電負荷
60,71 レクチファイア
61 レギュレータ
62 ダイオード
63,70 サイリスタ
64,92 電圧制御回路
65 バッテリ電圧検出部
66 基準電圧発生部
67 判定部
68 ゲート電圧制御部
93 ランプ電圧制御回路
94 ランプ
L、M 周方向長さ
N 中心線
O 中心
P 回転方向
θa、θb 周方向角度
31, 31A, 31B Magnet device (generator)
33 Stator 34 Rotor 35 Stator Teeth 36 Coil Winding Section 37 Coil 38 Front End 38A of Stator Teeth One Side Portion 38B of Stator Teeth Other Side Portion 40 of Stator Teeth 40 Rotor Yoke 41 Magnet 42 Gap 44A Magnet Rotation Direction front end 44B Magnet rotation direction rear end 55, 56, 80, 90 Regulator / actuator (regulator rectifier)
57 battery 58 power generation load 60, 71 rectifier 61 regulator 62 diode 63, 70 thyristor 64, 92 voltage control circuit 65 battery voltage detection unit 66 reference voltage generation unit 67 determination unit 68 gate voltage control unit 93 lamp voltage control circuit 94 lamp L , M Circumferential length N Center line O Center P Rotational direction θa, θb Circumferential angle

Claims (15)

  1. 中心から放射状に延びる複数のステータティースのそれぞれにステータコイルが巻装されて設けられたステータと、
     ロータヨークの内周面に磁石が設置され、前記中心を中心として前記ステータ周りを回転するロータと、を有する自動二輪車のパワーユニット内に設けられた、自動二輪車用発電機において、
     前記磁石は、複数個が前記ロータの周方向に間隙を介して隣接して設置され、
     前記ステータティースは、薄板鋼板のコアシートを複数枚積層して構成され、かつ、前記ステータコイルが巻装されるコイル巻装部からロータの回転方向側および反回転方向側へ延びる先端部を有し、
     前記ロータの回転方向側に延びる前記ステータティース先端部の一方側部分は、前記磁石の回転方向前端が前記コイル巻装部の中心線に略一致したとき、この回転方向前端側に隣接する先行磁石と重なるよう構成されたことを特徴とする自動二輪車用発電機。
    A stator provided with a stator coil wound around each of a plurality of stator teeth extending radially from the center;
    In a generator for a motorcycle provided in a power unit of a motorcycle having a magnet installed on an inner peripheral surface of a rotor yoke and having a rotor rotating around the stator around the center,
    A plurality of the magnets are installed adjacent to each other with a gap in the circumferential direction of the rotor,
    The stator teeth are configured by laminating a plurality of core sheets of thin steel plates, and have tip portions that extend from the coil winding portion around which the stator coil is wound to the rotation direction side and the counter rotation direction side of the rotor. And
    One portion of the tip end portion of the stator teeth extending in the rotation direction of the rotor is a leading magnet adjacent to the rotation direction front end when the rotation direction front end of the magnet substantially coincides with the center line of the coil winding portion. A generator for a motorcycle, characterized by being configured to overlap with the motor.
  2. 前記ステータティースの先端部は、ロータの回転方向側に延びる一方側部分が、ロータの反回転方向側に延びる他方側部分よりも長く形成された請求項1に記載の自動二輪車用発電機。 2. The generator for a motorcycle according to claim 1, wherein the front end portion of the stator teeth is formed such that one side portion extending in the rotation direction side of the rotor is longer than the other side portion extending in the counter rotation direction side of the rotor.
  3. 中心から放射状に延びる複数のステータティースのそれぞれにステータコイルが巻装されて設けられたステータと、
     ロータヨークの内周面に磁石が設置され、前記中心を中心として前記ステータ周りを回転するロータと、を有する自動二輪車のパワーユニット内に設けられた、自動二輪車用発電機において、
     前記磁石は、複数個が前記ロータの周方向に間隙を介して隣接して設置され、
     前記ステータティースは、薄板鋼板のコアシートを複数枚積層して構成され、かつ、前記ステータコイルが巻装されるコイル巻装部からロータの回転方向側および反回転方向側へ延びる先端部を有し、
     前記磁石の回転方向後端が前記コイル巻装部の中心線に略一致したとき、前記回転方向後端側に隣接する後行磁石回転方向前端が、前記ステータティースの先端部と重ならないように、前記磁石間に間隙が設定されたことを特徴とする自動二輪車用発電機。
    A stator provided with a stator coil wound around each of a plurality of stator teeth extending radially from the center;
    In a generator for a motorcycle provided in a power unit of a motorcycle having a magnet installed on an inner peripheral surface of a rotor yoke and having a rotor rotating around the stator around the center,
    A plurality of the magnets are installed adjacent to each other with a gap in the circumferential direction of the rotor,
    The stator teeth are configured by laminating a plurality of core sheets of thin steel plates, and have tip portions that extend from the coil winding portion around which the stator coil is wound to the rotation direction side and the counter rotation direction side of the rotor. And
    When the rear end in the rotation direction of the magnet substantially coincides with the center line of the coil winding portion, the front end in the rotation direction of the succeeding magnet adjacent to the rear end side in the rotation direction does not overlap the front end of the stator teeth. A generator for a motorcycle, wherein a gap is set between the magnets.
  4. 前記後行磁石の回転方向前端がステータティースにおけるコイル巻装部の中心線と略一致したとき、前記ステータティースにおけるロータの回転方向側に延びる一方側部分が、前記後行磁石の回転方向前端側に隣接する前記磁石と重なるよう構成された請求項3に記載の自動二輪車用発電機。 When the front end in the rotational direction of the trailing magnet substantially coincides with the center line of the coil winding portion in the stator teeth, the one side portion extending in the rotational direction of the rotor in the stator teeth is the front end side in the rotational direction of the trailing magnet The generator for motorcycles according to claim 3 constituted so that it may overlap with said magnet adjacent to.
  5. 前記ロータが備える磁石とこの磁石間の間隙との周方向角度の比が7/3:1である請求項1乃至4のいずれか1項に記載の自動二輪車用発電機。 The generator for a motorcycle according to any one of claims 1 to 4, wherein a ratio of a circumferential angle between a magnet included in the rotor and a gap between the magnets is 7/3: 1.
  6. 前記ロータが備える磁石は、ステータの複数のステータティースに1:1に対応して複数個設置された請求項1乃至5のいずれか1項に記載の自動二輪車用発電機。 The generator for a motorcycle according to any one of claims 1 to 5, wherein a plurality of magnets provided in the rotor are installed corresponding to 1: 1 on a plurality of stator teeth of the stator.
  7. 前記ステータのステータティースと前記ロータの磁石とはそれぞれ12個ずつ周方向に沿って設けられた請求項1乃至6のいずれか1項に記載の自動二輪車用発電機。 The generator for a motorcycle according to any one of claims 1 to 6, wherein twelve stator teeth of the stator and twelve magnets of the rotor are provided along the circumferential direction.
  8. 前記ロータの磁石の内周面には、前記磁石の一部を露出する開口を有する金属カバーが装着されて請求項1乃至7のいずれか1項に記載の自動二輪車用発電機。 The generator for a motorcycle according to any one of claims 1 to 7, wherein a metal cover having an opening exposing a part of the magnet is attached to an inner peripheral surface of the magnet of the rotor.
  9. 前記ステータティースは、厚さ1mm未満の薄肉鋼板のコアシートからなる圧延鋼板あるいは電磁鋼板を複数枚積層して構成された請求項1乃至8のいずれか1項に記載の自動二輪車用発電機。 The generator for a motorcycle according to any one of claims 1 to 8, wherein the stator teeth are configured by laminating a plurality of rolled steel plates or electromagnetic steel plates made of a core sheet of a thin steel plate having a thickness of less than 1 mm.
  10. 前記ステータティースは積層された複数枚の薄肉鋼板のコアシートを貫通する組立用貫通孔が設けられた請求項1乃至9のいずれか1項に記載の自動二輪車用発電機。 The generator for a motorcycle according to any one of claims 1 to 9, wherein the stator teeth are provided with through holes for assembly that penetrate through core sheets of a plurality of laminated thin steel plates.
  11. 中心から放射状に延びる複数のステータティースのそれぞれにステータコイルが巻装されて設けられたステータと、
     ロータヨークの内周面に磁石が設置され、前記中心を中心として前記ステータ周りを回転するロータと、を有する自動二輪車のパワーユニット内に設けられた、自動二輪車用発電機において、
     前記磁石は、複数個が前記ロータの周方向に間隙を介して隣接して設置され、
     前記ステータティースは、前記ステータコイルが巻装されるコイル巻装部からロータの回転方向側および反回転方向側へ延びる先端部を有し、
     前記ステータコイルはサイリスタによるレグレータ/アクチュエータ(レギュレートレクチファイア)を介してバッテリに接続されるとともに、前記レグレータ/アクチュエータは前記サイリスタのゲートが電圧制御回路に接続されて構成され、
     前記電圧制御回路は、前記バッテリの充電電圧が所定電圧に達したとき、前記サイリスタをOFFにして前記レグレータ/アクチュエータをオープン制御することを特徴とする自動二輪車用発電機。
    A stator provided with a stator coil wound around each of a plurality of stator teeth extending radially from the center;
    In a generator for a motorcycle provided in a power unit of a motorcycle having a magnet installed on an inner peripheral surface of a rotor yoke and having a rotor rotating around the stator around the center,
    A plurality of the magnets are installed adjacent to each other with a gap in the circumferential direction of the rotor,
    The stator teeth have a tip portion extending from a coil winding portion around which the stator coil is wound to a rotation direction side and a counter rotation direction side of the rotor,
    The stator coil is connected to a battery via a thyristor regenerator / actuator (regulator rectifier), and the regregator / actuator is configured by connecting a gate of the thyristor to a voltage control circuit,
    The generator for a motorcycle according to claim 1, wherein when the charging voltage of the battery reaches a predetermined voltage, the voltage control circuit turns off the thyristor to open-control the reregulator / actuator.
  12. 前記ステータのステータティースは、厚さ0.2mm~1mm未満の薄肉鋼板のコアシートからなる圧延鋼板あるいは電磁鋼板を複数枚積層して構成された請求項11記載の自動二輪車用発電機。 The generator for a motorcycle according to claim 11, wherein the stator teeth of the stator are configured by laminating a plurality of rolled steel sheets or electromagnetic steel sheets made of a core sheet of a thin steel plate having a thickness of 0.2 mm to less than 1 mm.
  13. 前記ステータティースは、厚さ1mm未満の薄肉鋼板のコアシートからなる圧延鋼板が複数枚積層して構成され、前記各圧延鋼板を絶縁樹脂材料で樹脂コーティングしたり、前記圧延鋼板が1枚1枚の間に紙あるいは樹脂の絶縁シートを挟持したり、あるいは絶縁塗料を塗布して前記ステータティースが構成された請求項11記載の自動二輪車用発電機。 The stator teeth are formed by laminating a plurality of rolled steel plates made of a core sheet of a thin steel plate having a thickness of less than 1 mm. Each of the rolled steel plates is coated with an insulating resin material, or each of the rolled steel plates is one by one. The generator for a motorcycle according to claim 11, wherein the stator teeth are configured by sandwiching an insulating sheet of paper or resin between them, or applying an insulating paint.
  14. 前記ステータティースは、厚さ1mm未満の薄肉鋼板のコアシートが電磁鋼板で構成された請求項11記載の自動二輪車用発電機。 The generator for a motorcycle according to claim 11, wherein the stator teeth are made of a magnetic steel plate as a core sheet of a thin steel plate having a thickness of less than 1 mm.
  15. 前記ステータティースの電磁鋼板は、無方向性電磁鋼板である請求項14記載の自動二輪車用発電機。 The generator for a motorcycle according to claim 14, wherein the electromagnetic steel plate of the stator teeth is a non-oriented electromagnetic steel plate.
PCT/JP2015/064559 2014-05-30 2015-05-21 Generator for two-wheeled motor vehicle WO2015182467A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580001807.XA CN105556811B (en) 2014-05-30 2015-05-21 Motorcyrle generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-111882 2014-05-30
JP2014111882A JP6349972B2 (en) 2014-05-30 2014-05-30 Generator for motorcycle

Publications (1)

Publication Number Publication Date
WO2015182467A1 true WO2015182467A1 (en) 2015-12-03

Family

ID=54698803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064559 WO2015182467A1 (en) 2014-05-30 2015-05-21 Generator for two-wheeled motor vehicle

Country Status (3)

Country Link
JP (1) JP6349972B2 (en)
CN (1) CN105556811B (en)
WO (1) WO2015182467A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210152039A1 (en) * 2018-08-03 2021-05-20 Mitsubishi Electric Corporation Stator, motor, compressor, and refrigerating and air conditioning apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210399595A1 (en) * 2020-06-23 2021-12-23 Richard Shao Wei CHIN Electromagnetic Induction Device for Electric Power Generation
TWI741757B (en) * 2020-08-25 2021-10-01 金紹維 Electric vehicle with electromagnetic induction power generating device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416177U (en) * 1987-07-15 1989-01-26
JPH11215729A (en) * 1998-01-26 1999-08-06 Denso Corp Storage battery charger device
JP2001251828A (en) * 2000-03-02 2001-09-14 Moric Co Ltd Multipole magnet generator for internal combustion engine
JP2002058180A (en) * 2000-08-07 2002-02-22 Denso Corp Rotating electric machine
JP2005027369A (en) * 2003-06-30 2005-01-27 Hitachi Ltd Motor
JP2009148109A (en) * 2007-12-17 2009-07-02 Mitsubishi Electric Corp Three-phase magnetic power generator
US20130214633A1 (en) * 2010-07-29 2013-08-22 Feaam Gmbh Electric machine and stator for same
WO2013150048A2 (en) * 2012-04-03 2013-10-10 Mahle International Gmbh Electric motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011089058A1 (en) * 2011-12-19 2013-06-20 Robert Bosch Gmbh Rotor for brushless permanent magnet electric machine, has two annular portions that are separated by lining structure in which recesses and ridges are provided

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416177U (en) * 1987-07-15 1989-01-26
JPH11215729A (en) * 1998-01-26 1999-08-06 Denso Corp Storage battery charger device
JP2001251828A (en) * 2000-03-02 2001-09-14 Moric Co Ltd Multipole magnet generator for internal combustion engine
JP2002058180A (en) * 2000-08-07 2002-02-22 Denso Corp Rotating electric machine
JP2005027369A (en) * 2003-06-30 2005-01-27 Hitachi Ltd Motor
JP2009148109A (en) * 2007-12-17 2009-07-02 Mitsubishi Electric Corp Three-phase magnetic power generator
US20130214633A1 (en) * 2010-07-29 2013-08-22 Feaam Gmbh Electric machine and stator for same
WO2013150048A2 (en) * 2012-04-03 2013-10-10 Mahle International Gmbh Electric motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210152039A1 (en) * 2018-08-03 2021-05-20 Mitsubishi Electric Corporation Stator, motor, compressor, and refrigerating and air conditioning apparatus

Also Published As

Publication number Publication date
CN105556811A (en) 2016-05-04
JP6349972B2 (en) 2018-07-04
CN105556811B (en) 2018-01-09
JP2015226442A (en) 2015-12-14

Similar Documents

Publication Publication Date Title
US7518278B2 (en) High strength undiffused brushless machine and method
JP4852242B2 (en) AC generator
US7067949B2 (en) Rotary electric machine
JP6446932B2 (en) Rotating electric machine
CN103001423B (en) Internal-external double-stator electro-magnetic double-salient starter generator
JP2010246196A (en) Rotary electric machine
JP2004064942A (en) Rotating electric machine and automobile mounting the same
WO2015093577A1 (en) Engine unit and vehicle
JPWO2003098781A6 (en) Rotating electric machine
US10003225B2 (en) Motor
WO2015182467A1 (en) Generator for two-wheeled motor vehicle
US20130057100A1 (en) Electric rotary machine
JP2009165318A (en) Ac generator for vehicle
TW201509070A (en) Synchronous drive motor
CN110391706B (en) Rotating electrical machine
CN106787558B (en) A kind of magneto that high reliability start stop system is isolated with six
WO2011089797A1 (en) Rotor, rotating electrical machine using same, and power generator
CN102832767A (en) Parallel hybrid excitation brushless direct-current fault-tolerant motor
TWI557313B (en) Engine unit and vehicle
CN102832768B (en) Parallel hybrid excitation brushless direct-current motor
JP2016167897A (en) Synchronous drive motor
JP2017017954A (en) Outboard motor power generation system and outboard motor
CN111357169B (en) Rotating electrical machine for internal combustion engine, stator thereof, method for manufacturing the same, and method for operating the same
TWI802830B (en) straddle vehicle
JP2014100036A (en) Stator of rotary electric machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580001807.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15799536

Country of ref document: EP

Kind code of ref document: A1