WO2015182297A1 - Method for splitting brittle substrate - Google Patents

Method for splitting brittle substrate Download PDF

Info

Publication number
WO2015182297A1
WO2015182297A1 PCT/JP2015/062200 JP2015062200W WO2015182297A1 WO 2015182297 A1 WO2015182297 A1 WO 2015182297A1 JP 2015062200 W JP2015062200 W JP 2015062200W WO 2015182297 A1 WO2015182297 A1 WO 2015182297A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
brittle substrate
film
trench line
crack
Prior art date
Application number
PCT/JP2015/062200
Other languages
French (fr)
Japanese (ja)
Inventor
曽山 浩
Original Assignee
三星ダイヤモンド工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星ダイヤモンド工業株式会社 filed Critical 三星ダイヤモンド工業株式会社
Priority to JP2016523383A priority Critical patent/JP6288259B2/en
Priority to KR1020167033458A priority patent/KR101856556B1/en
Priority to CN201580028857.7A priority patent/CN106458691B/en
Publication of WO2015182297A1 publication Critical patent/WO2015182297A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0011Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0017Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing using moving tools
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/033Apparatus for opening score lines in glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/037Controlling or regulating

Definitions

  • the present invention relates to a method for dividing a brittle substrate, and more particularly, to a method for dividing a brittle substrate provided with a film.
  • a scribe line is formed on the substrate, and then the substrate is divided along the scribe line.
  • the scribe line can be formed by mechanically processing the substrate using a cutter. When the cutter slides or rolls on the substrate, a trench due to plastic deformation is formed on the substrate, and at the same time, a vertical crack is formed immediately below the trench. Thereafter, stress is applied, which is called a break process.
  • the substrate is divided by causing the crack to advance completely in the thickness direction by the break process.
  • a film may be provided on a brittle substrate to be divided.
  • the surface of the brittle substrate is scribed with the film.
  • Japanese Patent Laid-Open No. 2000-280234 discloses a method for cutting a color filter substrate for a flat display panel.
  • This color filter substrate is manufactured by an inkjet method and has an ink receiving layer and a protective layer provided on a glass substrate.
  • the scribe line tends to become unstable.
  • the scribe condition is changed during the formation of the scribe line.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for cutting a brittle substrate that can stably cut a brittle substrate provided with a film. .
  • the brittle substrate cutting method of the present invention includes a step of preparing a brittle substrate having a surface and a thickness direction perpendicular to the surface, a step of pressing a blade edge against the surface of the brittle substrate, and the pressing step. Forming a trench line having a groove shape by causing plastic deformation on the surface of the brittle substrate by sliding the pressed blade edge on the surface of the brittle substrate. The step of forming the trench line is performed so as to obtain a crackless state in which the brittle substrate is continuously connected immediately below the trench line in a direction intersecting the trench line.
  • the method for dividing a brittle substrate of the present invention further includes, after the step of forming the trench line, forming a film that at least partially covers the trench line on the surface of the brittle substrate; and forming the film And a step of forming a crack line by extending a crack of the brittle substrate in the thickness direction along the trench line.
  • the brittle substrate is disconnected continuously in the direction intersecting the trench line immediately below the trench line by the crack line.
  • the method for dividing a brittle substrate of the present invention further includes a step of dividing the brittle substrate along the crack line.
  • pressing the blade edge against the surface means pressing the blade edge at an arbitrary position on the “surface”, and thus it can also mean pressing the blade edge against the edge of the “surface”.
  • a trench line having no crack is formed immediately below the line that defines the position where the brittle substrate is divided.
  • the crack line to be used as a direct trigger for the break is formed after the trench line is formed.
  • the brittle substrate after the formation of the trench line and before the formation of the crack line is in a state in which the position to be divided is defined by the trench line, but the crack line has not yet been formed, so that the division is not easily caused.
  • a film is formed on the trench line, that is, the line that defines the position where the brittle substrate is divided.
  • a crack line to be used as a direct trigger for the division is formed by extending the crack along the trench line in a self-aligning manner. As a result, the crack line can be stably formed without being substantially affected by the presence of the film. Therefore, the brittle substrate can be stably divided.
  • FIG. 2 is a schematic top view (A) showing a method for cutting a brittle substrate in Embodiment 1 of the present invention, and a schematic cross-sectional view (B) along the line IB-IB.
  • FIG. 2 is a schematic top view (A) showing a method for cutting a brittle substrate in Embodiment 1 of the present invention, and a schematic end view (B) along the line IIB-IIB.
  • FIG. 3 is a schematic top view (A) showing a method for cutting a brittle substrate in Embodiment 1 of the present invention, and a schematic cross-sectional view (B) along the line IIIB-IIIB.
  • FIG. 2 is a schematic top view (A) showing a method for cutting a brittle substrate in Embodiment 1 of the present invention, and a schematic cross-sectional view (B) along the line IVB-IVB.
  • FIG. 2 is a schematic top view (A) showing a method for cutting a brittle substrate in Embodiment 1 of the present invention, and a schematic cross-sectional view (B) along the line VB-VB.
  • FIG. 2 is a schematic top view (A) showing a method for cutting a brittle substrate in Embodiment 1 of the present invention, and a schematic cross-sectional view (B) along the line VIB-VIB.
  • FIG. 5 is a schematic top view (A) showing a method for cutting a brittle substrate in Embodiment 2 of the present invention, and a schematic cross-sectional view (B) along the line XIB-XIB.
  • FIG. 5 is a schematic top view (A) showing a method for cutting a brittle substrate in Embodiment 2 of the present invention, and a schematic cross-sectional view (B) along the line XIIB-XIIB.
  • FIG. 4 is a schematic top view (A) showing a method for cutting a brittle substrate in Embodiment 2 of the present invention, and a schematic end view (B) along the line XIIIB-XIIIB.
  • FIG. 6 is a schematic top view (A) showing a method for cutting a brittle substrate in Embodiment 2 of the present invention, and a schematic end view (B) along the line XIVB-XIVB.
  • FIG. 6 is a schematic top view (A) showing a method for dividing a brittle substrate in Embodiment 2 of the present invention, and a schematic end view (B) along the line XVB-XVB.
  • They are a top view (A) showing a method of cutting a brittle substrate in a comparative example, and a cross-sectional view (B) along the line XVIB-XVIB.
  • FIG. 6 is a schematic top view (A) showing a method for dividing a brittle substrate in a comparative example, and an end view (B) along the line XVIIB-XVIIB.
  • FIG. 6 is a schematic top view (A) showing a method for dividing a brittle substrate in a modification of the second embodiment of the present invention, and a schematic end view (B) along the line XVIIIB-XVIIIB.
  • FIG. 6 is a schematic top view (A) showing a method for cutting a brittle substrate in a modification of the second embodiment of the present invention, and a schematic end view (B) along the line XIXB-XIXB.
  • a glass substrate 4 (brittle substrate) is prepared (FIG. 8: Step S10).
  • the glass substrate 4 has an upper surface SF1 (front surface) and an opposite lower surface SF2.
  • the glass substrate 4 has a thickness direction DT perpendicular to the upper surface SF1.
  • a cutting instrument 50 having a cutting edge 51 and a shank 52 is prepared. The blade edge 51 is held by being fixed to a shank 52 as its holder.
  • Step S20 the blade edge 51 is pressed against the upper surface SF1 of the glass substrate 4 (FIG. 8: Step S20). Next, the pressed blade edge 51 is slid on the upper surface SF1 of the glass substrate 4 (see the arrow in FIG. 1A).
  • the crackless state is maintained for the required time.
  • film 21 is formed on surface SF1 of glass substrate 4 while maintaining a crackless state (FIG. 8: step S40).
  • the film 21 is formed so as to at least partially cover the trench line TL.
  • the membrane 21 may be made from an inorganic material, in particular from metal.
  • the glass substrate 4 may be further processed while maintaining a crackless state.
  • the member 11 is provided on the film 21.
  • the member 11 may be separated from the trench line TL.
  • the member 11 may have a portion sandwiching the trench line TL.
  • a member (not shown) may be provided on the lower surface SF2.
  • the step of providing the member can be performed, for example, by bonding a member prepared in advance or by depositing a raw material.
  • the crack of the glass substrate 4 in the thickness direction DT is extended along the trench line TL.
  • the crack line CL is formed in a self-aligned manner with respect to the trench line TL (FIG. 8: Step S50).
  • the glass substrate 4 is continuous in the direction DC intersecting the extending direction of the trench line TL (lateral direction in FIG. 5A) immediately below the trench line TL by the crack line CL.
  • the connection is broken.
  • continuous connection means a connection that is not interrupted by a crack.
  • the portions of the glass substrate 4 may be in contact with each other through the cracks of the crack line CL.
  • the crack line CL is formed by applying a stress that releases strain of internal stress in the vicinity of the trench line TL to the glass substrate 4 at the end XEx or XEt (FIG. 4A) of the trench line TL. Started by.
  • the application of stress can be performed, for example, by applying external stress by pressing the blade edge again on the formed trench line TL, or by heating by laser light irradiation.
  • glass substrate 4 is divided into substrate pieces 4a and 4b along crack line CL (FIG. 8: step S60). That is, a so-called break process is performed.
  • the break process can be performed, for example, by applying an external force FB (FIG. 5B) to the glass substrate 4. Due to the tension applied to the film 21 when the glass substrate 4 is divided, the film 21 together with the glass substrate 4 is divided into portions 21a and 21b. Thereby, the substrate piece 4a provided with the portion 21a of the film 21 and the substrate piece 4b provided with the portion 21b of the film 21 are obtained.
  • the film 21 and the member 11 are provided on the glass substrate 4 without forming the trench line TL.
  • the blade edge 51 is pressed against the upper surface SF ⁇ b> 1 of the glass substrate 4.
  • the pressed blade edge 51 is slid on the upper surface SF1 provided with the film 21 (see the arrow in FIG. 9A).
  • the film 21 is divided into portions 21a and 21b by the sliding of the blade edge 51.
  • a scribe line SL having a crack is formed on the upper surface SF ⁇ b> 1 of the glass substrate 4.
  • the glass substrate 4 is divided along the scribe line SL by a break process.
  • the upper surface SF1 of the glass substrate 4 is scribed together with the film 21.
  • the formation of the scribe line SL that is used as a direct trigger for dividing the glass substrate 4 tends to be unstable.
  • the division of the glass substrate 4 tends to be unstable.
  • the quality of the cut surface of the film 21 is likely to deteriorate.
  • a trench line TL having no crack is formed immediately below the line that defines the position where the glass substrate 4 is divided.
  • the crack line CL to be used as a direct trigger for the division is formed after the formation of the trench line TL.
  • the crack line CL to be used as a direct trigger for the division is formed by extending the crack in a self-aligned manner along the trench line TL.
  • the crack line CL can be stably formed without being substantially affected by the presence of the film 21. Therefore, the glass substrate 4 can be divided stably.
  • the formation process of the crack line CL in the present embodiment is essentially different from a so-called break process.
  • the break process the already formed cracks are further extended in the thickness direction to completely separate the substrate.
  • the formation process of the crack line CL brings about a change from a crackless state obtained by forming the trench line TL to a state having cracks. This change is considered to be caused by the release of internal stress that the crackless state has.
  • the state of the plastic deformation at the time of forming the trench line TL and the magnitude and directionality of the internal stress generated by the formation of the trench line TL are the same as in the case where rolling of the rotary blade is used, as in this embodiment.
  • the film 21 when the glass substrate 4 is divided, the film 21 is divided together with the glass substrate 4. Thereby, the film
  • the film 21 is made of an inorganic material
  • segmentation of the glass substrate 4 arises more reliably.
  • generation of chips of the inorganic material can be avoided.
  • tip 51 scribes an inorganic material can be avoided.
  • the film 21 is made of a metal, a material that is not easily divided, such as a synthetic resin, is not used for the film 21.
  • segmentation of the glass substrate 4 arises more reliably.
  • generation of metal chips can be avoided.
  • tip 51 scribes a metal can be avoided.
  • the film 22 is formed on the surface SF1 of the glass substrate 4 while maintaining the above-described crackless state (FIG. 8: Step S40).
  • the film 22 is formed so as to at least partially cover the trench line TL.
  • the membrane 22 may be made from a synthetic resin.
  • a cutting instrument 50p having a blade edge 51p and a shank 52p is prepared.
  • the blade edge 51p is held by being fixed to a shank 52p as the holder.
  • the cutting instrument 50p is more suitable for processing the membrane 22 than the cutting instrument 50.
  • a cut HL is made in the film 22 along the trench line TL (see the arrow in FIG. 12A).
  • the cut HL is formed by completely cutting the film 22 in the thickness direction DT of the film 22. In other words, the cut HL penetrates the film 22 in the thickness direction DT.
  • the film 22 is divided into the portions 22a and 22b.
  • crack lines CL are formed by the same method as in the first embodiment (FIGS. 5A and 5B).
  • the glass substrate 4 is divided into the substrate pieces 4a and 4b along the crack line CL (FIG. 8: step S60). That is, a so-called break process is performed.
  • the break process can be performed by applying an external force FB to the glass substrate 4 as in the first embodiment (FIG. 5B).
  • a substrate piece 4 a provided with the portion 22 a of the film 22 and a substrate piece 4 b provided with the portion 22 b of the film 22 are obtained.
  • the film 22 is provided on the glass substrate 4 without forming the trench line TL.
  • the blade edge 51 is pressed against the upper surface SF ⁇ b> 1 of the glass substrate 4.
  • the pressed blade edge 51 is slid on the upper surface SF1 provided with the film 22 (see an arrow in FIG. 16A).
  • the film 22 is divided into portions 22a and 22b by the sliding of the blade edge 51.
  • a scribe line SL having a crack is formed on the upper surface SF ⁇ b> 1 of the glass substrate 4.
  • the glass substrate 4 is divided along the scribe line SL by a break process.
  • the upper surface SF1 of the glass substrate 4 is scribed together with the film 22.
  • the formation of the scribe line SL that is used as a direct trigger for dividing the glass substrate 4 tends to be unstable.
  • the division of the glass substrate 4 tends to be unstable.
  • the film 22 is made of a synthetic resin in particular, it is necessary to simultaneously cut the film 22 and form the scribe line SL on the glass substrate 4.
  • the optimum cutting edge 51 and its use conditions are usually greatly different between the cutting of the film 22 and the formation of the scribe line SL. For this reason, it is difficult to optimize the cutting edge 51 and its use conditions, and as a result, the formation of the scribe line SL is likely to be particularly unstable.
  • the crack line CL can be stably formed without being substantially affected by the presence of the film 22. Therefore, the glass substrate 4 can be divided stably.
  • the film 22 is cut along the trench line TL. Thereby, the film
  • the step of cutting the film 22 is performed by completely cutting the film 22 in the thickness direction DT of the film 22. Thereby, the film
  • the film 22 when the film 22 is made of a synthetic resin, the toughness of the film 22 is high, so that the division depending only on the tension application as in the first embodiment can be difficult. Even in such a case, the film 22 can be divided by using the notches.
  • the synthetic resin film 22 is less prone to chipping. Further, the synthetic resin film 22 hardly wears the blade edge 51p.
  • the cutting tool 50 may be used instead of the cutting tool 50p particularly suitable for the membrane 22 (FIG. 12B). In this case, a common cutting tool is used in the two steps. Can be used.
  • FIGS. 13A and 13B described above the film 22 is completely cut in the thickness direction DT, but in this modification, as shown in FIGS. 18A and 18B, the film 22 The film 22 is partially cut in the thickness direction DT. In other words, incomplete cutting is performed in the thickness direction DT. As a result, a cut UL that does not penetrate the film 22 is made in the film 22.
  • a crack line CL is formed next.
  • the membrane 22 is not completely divided at this point.
  • the complete division of the film 22 occurs when the tension applied to the film 22 when the glass substrate 4 is divided completes the above-described incomplete cut in the thickness direction DT. According to this modification, it is possible to avoid damaging the glass substrate 4 when the film 22 is cut.
  • the film 22 is partially cut along the trench line TL.
  • the trench line TL there is a portion where a cut is not formed in a part of the film 22.
  • This notch may be formed intermittently throughout the trench line TL, or may be at one place.
  • the incision may be complete or incomplete in the thickness direction.
  • a cut HL see FIG. 13
  • a cut UL see FIG. 18
  • a crack line CL is formed.
  • the membrane 22 is not completely divided at this point.
  • the complete division of the film 22 occurs when the above-described incomplete cut spreads along the trench line TL due to the tension applied to the film 22 when the glass substrate 4 is divided.
  • the blade edge 51 is provided with a top surface SD1 (first surface) and a plurality of surfaces surrounding the top surface SD1.
  • the plurality of surfaces include a side surface SD2 (second surface) and a side surface SD3 (third surface).
  • the top surface SD1, the side surfaces SD2, and SD3 (first to third surfaces) face different directions and are adjacent to each other.
  • the blade edge 51 has a vertex at which the top surface SD1, the side surfaces SD2 and SD3 merge, and the protrusion PP of the blade edge 51 is configured by this vertex.
  • the side surfaces SD2 and SD3 form ridge lines constituting the side portion PS of the blade edge 51.
  • the side part PS extends linearly from the protrusion part PP.
  • the side part PS is a ridgeline as mentioned above, it has the convex shape extended linearly.
  • the cutting edge 51 is preferably a diamond point. That is, the cutting edge 51 is preferably made of diamond from the viewpoint that the hardness and the surface roughness can be reduced. More preferably, the cutting edge 51 is made of single crystal diamond. More preferably, crystallographically, the top surface SD1 is a ⁇ 001 ⁇ plane, and each of the side surfaces SD2 and SD3 is a ⁇ 111 ⁇ plane. In this case, although the side surfaces SD2 and SD3 have different orientations, they are crystal surfaces that are equivalent to each other in terms of crystallography.
  • Diamond that is not a single crystal may be used.
  • polycrystalline diamond synthesized by a CVD (Chemical Vapor Deposition) method may be used.
  • sintered diamond obtained by bonding polycrystalline diamond particles, which are sintered from fine graphite or non-graphitic carbon without containing a binder such as an iron group element, with a binder such as an iron group element is used. May be.
  • the shank 52 extends along the axial direction AX.
  • the blade edge 51 is preferably attached to the shank 52 so that the normal direction of the top surface SD1 is approximately along the axial direction AX.
  • the protrusion PP and the side PS of the blade edge 51 on the upper surface SF1 of the glass substrate 4 have a thickness that the glass substrate 4 has. Pressed in the direction DT.
  • the blade edge 51 is slid on the upper surface SF1 substantially along the direction in which the side portion PS is projected onto the upper surface SF1.
  • a groove-like trench line TL without a vertical crack is formed on the upper surface SF1.
  • the glass substrate 4 may be slightly shaved at this time. However, since such scraping can generate fine fragments, it is preferable that the amount is as small as possible.
  • the crack line CL is a crack extending in the thickness direction DT from the recess of the trench line TL, and extends linearly on the upper surface SF1. According to the method described later, after only the trench line TL is formed, the crack line CL can be formed along the trench line TL.
  • glass substrate 4 is first prepared in step S10 (FIG. 8).
  • the glass substrate 4 has a flat upper surface SF1.
  • the edge surrounding the upper surface SF1 includes a side ED1 (first side) and a side ED2 (second side) that face each other.
  • the edges are rectangular. Therefore, the sides ED1 and ED2 are sides parallel to each other.
  • the sides ED1 and ED2 are rectangular short sides.
  • the glass substrate 4 has a thickness direction DT (FIG. 20A) perpendicular to the upper surface SF1.
  • step S20 the blade edge 51 is pressed against the upper surface SF1 at the position N1. Details of the position N1 will be described later.
  • the cutting edge 51 is pressed such that the protrusion PP of the cutting edge 51 is disposed between the side ED1 and the side portion PS on the upper surface SF1 of the glass substrate 4 and the cutting edge 51 is pressed.
  • the side PS is arranged between the protrusion PP and the side ED2.
  • step S30 a plurality of trench lines TL (five lines in the figure) are formed on the upper surface SF1.
  • the formation of the trench line TL is performed between the position N1 (first position) and the position N3.
  • a position N2 (second position) is located between the positions N1 and N3. Therefore, trench line TL is formed between positions N1 and N2 and between positions N2 and N3.
  • the positions N1 and N3 may be located away from the edge of the upper surface SF1 of the glass substrate 4 as shown in FIG. 21A, or one or both of them may be located at the edge of the upper surface SF1.
  • the formed trench line TL is separated from the edge of the glass substrate 4 in the former case, and is in contact with the edge of the glass substrate 4 in the latter case.
  • the position N1 is closer to the side ED1, and the position N2 is closer to the side ED2 among the positions N1 and N2.
  • the position N1 is close to the side ED1 of the sides ED1 and ED2
  • the position N2 is close to the side ED2 of the sides ED1 and ED2
  • both the positions N1 and N2 are the sides ED1 or It may be located near either one of ED2.
  • the blade edge 51 is displaced from the position N1 to the position N2, and is further displaced from the position N2 to the position N3. That is, with reference to FIG. 20A, the blade edge 51 is displaced in a direction DA that is a direction from the side ED1 toward the side ED2.
  • the direction DA corresponds to the direction in which the axis AX extending from the blade edge 51 is projected onto the upper surface SF1. In this case, the blade edge 51 is dragged on the upper surface SF ⁇ b> 1 by the shank 52.
  • step S40 the film 21 is formed as in the first embodiment (FIGS. 3A and 3B), or the film 22 is formed as in the second embodiment. (FIGS. 11A and 11B).
  • the film 22 is further cut along the trench line TL (see the arrow in FIG. 12A) (for example, FIG. 13). (See the notch HL in (B)).
  • step S50 after the trench line TL is formed, the position N2 is moved to the position N1 along the trench line TL (see the broken line arrow in the figure).
  • the crack line CL is formed by extending the crack of the glass substrate 4 in the thickness direction DT (FIG. 7B). Formation of the crack line CL is started when the assist line AL and the trench line TL intersect each other at the position N2.
  • the assist line AL is formed after the trench line TL is formed.
  • the assist line AL is a normal scribe line with a crack in the thickness direction DT, and releases internal stress distortion in the vicinity of the trench line TL.
  • the method of forming the assist line AL is not particularly limited, but may be formed using the edge of the upper surface SF1 as a base point as shown in FIG.
  • the crack line CL is less likely to be formed in the direction from the position N2 to the position N3 than in the direction from the position N2 to the position N1. That is, the ease of extension of the crack line CL has a direction dependency. Therefore, the phenomenon that the crack line CL is formed between the positions N1 and N2 but not between the positions N2 and N3 may occur.
  • the present embodiment is intended to divide the glass substrate 4 along the positions N1 and N2, and is not intended to separate the glass substrate 4 along the positions N2 and N3. Therefore, while it is necessary to form the crack line CL between the positions N1 and N2, the difficulty of forming the crack line CL between the positions N2 and N3 is not a problem.
  • step S60 the glass substrate 4 is divided along the crack line CL. Specifically, a break process is performed. Note that, when the crack line CL is completely advanced in the thickness direction DT at the time of formation, the formation of the crack line CL and the division of the glass substrate 4 may occur at the same time. In this case, the break process can be omitted.
  • the glass substrate 4 is divided.
  • the first modified example relates to a case where the intersection of the assist line AL and the trench line TL is insufficient as a trigger for starting the formation of the crack line CL (FIG. 21B). Is. With reference to FIG. 22B, the glass substrate 4 is separated along the assist line AL by applying an external force that generates a bending moment or the like to the glass substrate 4. Thereby, formation of the crack line CL is started.
  • the assist line AL is formed on the upper surface SF1 of the glass substrate 4.
  • the assist line AL for separating the glass substrate 4 may be formed on the lower surface SF2 of the glass substrate 4. Good.
  • the assist line AL and the trench line TL intersect each other at the position N2 in the planar layout, but do not directly contact each other.
  • the assist line AL itself may be a crack line CL formed by applying stress to the trench line TL.
  • the blade edge 51 is pressed against the upper surface SF1 of the glass substrate 4 at the position N3 in step S20 (FIG. 8).
  • step S30 (FIG. 8) when the trench line TL is formed, in the present modification, the blade edge 51 is displaced from the position N3 to the position N2, and is further displaced from the position N2 to the position N1. That is, with reference to FIG. 20, the blade edge 51 is displaced in a direction DB that is a direction from the side ED2 toward the side ED1.
  • the direction DB corresponds to a direction opposite to the direction in which the axis AX extending from the blade edge 51 is projected onto the upper surface SF1. In this case, the blade edge 51 is pushed forward on the upper surface SF 1 by the shank 52.
  • the blade edge 51 is positioned on the upper surface SF1 of the glass substrate 4 as compared with the position N1. Pressed with greater force at N2. Specifically, the load on the blade edge 51 is increased when the position of the trench line TL reaches the position N4 with the position N4 as the position between the positions N1 and N2. In other words, the load on the trench line TL is increased between the positions N4 and N3, which are the end portions of the trench line TL, as compared with the position N1. Thereby, formation of the crack line CL from the position N2 can be easily induced while reducing a load at a portion other than the terminal portion.
  • the crack line CL can be more reliably formed from the trench line TL.
  • the assist line AL has not yet been formed at the time when the trench line TL is formed (FIG. 21A). Therefore, the crackless state can be maintained more stably without being affected by the assist line AL. If the stability in the crackless state does not matter, the crack in the state shown in FIG. 22A where the assist line AL is formed is used instead of the state shown in FIG. 21A where the assist line AL is not formed. The less state may be maintained.
  • assist line AL is formed before formation of trench line TL.
  • the method of forming the assist line AL is the same as that in FIG. 21B (Embodiment 3).
  • step S20 the blade edge 51 is pressed against the upper surface SF1
  • step S30 (FIG. 8)
  • a trench line TL is formed.
  • the method of forming the trench line TL itself is the same as that in FIG. 21A (Embodiment 3).
  • the assist line AL and the trench line TL intersect each other at the position N2.
  • step S40 is the film 21 formed as in the first embodiment (FIGS. 3A and 3B) or the second embodiment and Similarly, a film 22 is formed (FIGS. 11A and 11B). In the latter case, as described in the second embodiment or the modification thereof, the film 22 is further cut along the trench line TL (see the arrow in FIG. 12A) (for example, FIG. 13). (See the notch HL in (B)).
  • step S50 glass substrate 4 is separated along assist line AL by a normal break process in which an external force that generates a bending moment or the like is applied to glass substrate 4.
  • formation of the crack line CL (FIG. 7B) is started as step S50 (FIG. 20) (see broken line arrows in the figure).
  • the assist line AL is formed on the upper surface SF1 of the glass substrate 4.
  • the assist line AL for separating the glass substrate 4 may be formed on the lower surface SF2 of the glass substrate 4.
  • the assist line AL and the trench line TL intersect each other at the position N2 in the planar layout, but do not directly contact each other.
  • the configuration other than the above is substantially the same as the configuration of the third embodiment described above.
  • assist line AL is formed on lower surface SF2 of glass substrate 4.
  • trench line TL is formed from position N3 to position N1.
  • the glass substrate 4 is separated along the assist line AL by applying an external force that generates a bending moment or the like to the glass substrate 4. Thereby, formation of the crack line CL is started (see the broken line arrow in the figure).
  • the blade edge 51 is positioned on the upper surface SF1 of the glass substrate 4 as compared to the position N1. Pressed with greater force at N2. Specifically, the load on the blade edge 51 is increased when the position of the trench line TL reaches the position N4 with the position N4 as the position between the positions N1 and N2. In other words, the load on the trench line TL is increased between the positions N4 and N3, which are the end portions of the trench line TL, as compared with the position N1. Thereby, formation of the crack line CL from the position N2 can be easily induced while reducing a load at a portion other than the terminal portion.
  • step S30 a trench line TL reaching from the position N1 to the side ED2 via the position N2 is formed in step S30 (FIG. 8). Is done.
  • step S40 the film 21 is formed as in the first embodiment (FIGS. 3A and 3B), or the film 22 is formed as in the second embodiment. (FIGS. 11A and 11B). In the latter case, as described in the second embodiment or the modification thereof, the film 22 is further cut along the trench line TL (see the arrow in FIG. 12A) (for example, FIG. 13). (See the notch HL in (B)).
  • a stress is applied between position N2 and side ED2 so as to release the distortion of internal stress in the vicinity of trench line TL. This induces formation of a crack line along the trench line TL (FIG. 8: Step S50).
  • the pressed blade edge 51 is slid between the position N2 and the side ED2 (the region between the broken line and the side ED2 in the drawing) on the upper surface SF1. This sliding is performed until the side ED2 is reached.
  • the cutting edge 51 is preferably slid so as to intersect the track of the trench line TL formed first, and more preferably to overlap the track of the trench line TL formed first.
  • the length of this second sliding is, for example, about 0.5 mm.
  • This re-sliding may be performed on each of the plurality of trench lines TL (FIG. 30A) after they are formed, or the formation and re-sliding of one trench line TL may be performed. The process to be performed may be sequentially performed for each trench line TL.
  • a laser beam is irradiated between the position N2 and the side ED2 on the upper surface SF1 instead of the sliding of the cutting edge 51 described above. May be. Due to the thermal stress generated thereby, the distortion of the internal stress in the vicinity of the trench line TL is released, thereby inducing the start of formation of the crack line.
  • the configuration other than the above is substantially the same as the configuration of the third embodiment described above.
  • step S30 Referring to FIG. 31A, in the brittle substrate cutting method according to the present embodiment, in step S30 (FIG. 8), the cutting edge 51 is displaced from position N1 to position N2 and further to position N3. Thus, a trench line TL separated from the edge of the upper surface SF1 is formed. The formation method itself of the trench line TL is almost the same as that in FIG. 21A (Embodiment 3).
  • step S40 the film 21 is formed as in the first embodiment (FIGS. 3A and 3B), or the film 22 is formed as in the second embodiment. (FIGS. 11A and 11B).
  • the film 22 is further cut along the trench line TL (see the arrow in FIG. 12A) (for example, FIG. 13). (See the notch HL in (B)).
  • FIG. 31 (B) the same stress application as in FIG. 30 (B) (Embodiment 5 or its modification) is performed. This induces formation of a crack line along the trench line TL (FIG. 8: Step S50).
  • cutting edge 51 may be displaced from position N3 to position N2 and from position N2 to position N1.
  • the configuration other than the above is substantially the same as the configuration of the third embodiment described above.
  • blade edge 51v may be used instead of blade edge 51 (FIGS. 20 (A) and (B)).
  • the blade edge 51v has a conical shape having a vertex and a conical surface SC.
  • the protruding part PPv of the blade edge 51v is constituted by a vertex.
  • the side portion PSv of the blade edge is configured along a virtual line (broken line in FIG. 33B) extending from the apex to the conical surface SC. Thereby, the side part PSv has a convex shape extending linearly.
  • the first and second sides of the edge of the glass substrate are rectangular short sides, but the first and second sides may be rectangular long sides.
  • the shape of the edge is not limited to a rectangle, and may be a square, for example. Further, the first and second sides are not limited to being linear, and may be curved. In each of the above embodiments, the surface of the glass substrate is flat, but the surface of the glass substrate may be curved.
  • the brittle substrate is not limited to the glass substrate.
  • the brittle substrate can be made of, for example, ceramics, silicon, compound semiconductors, sapphire, or quartz.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

A cutting edge (51) is slid across the surface (SF1) of a brittle substrate (4) so as to cause plastic deformation and form a trench line (TL). The step in which said trench line (TL) is formed is performed in such a manner so as to produce a crack-free state in which, directly underneath the trench line (TL), the brittle substrate (4) is connected in a continuous fashion in a direction that intersects the trench line (TL). Next, a film (21) that at least partially covers the trench line (TL) is formed on the surface (SF1) of the brittle substrate (4), and a crack is then made to extend along the trench line (TL), forming a crack line (CL).

Description

脆性基板の分断方法Method for dividing brittle substrate
 本発明は脆性基板の分断方法に関し、特に、膜が設けられた脆性基板の分断方法に関するものである。 The present invention relates to a method for dividing a brittle substrate, and more particularly, to a method for dividing a brittle substrate provided with a film.
 フラットディスプレイパネルまたは太陽電池パネルなどの電気機器の製造において、ガラス基板などの脆性基板を分断することがしばしば必要となる。まず基板上にスクライブラインが形成され、次にこのスクライブラインに沿って基板が分断される。スクライブラインは、カッタを用いて基板を機械的に加工することによって形成され得る。カッタが基板上を摺動または転動することで、基板上に塑性変形によるトレンチが形成されると同時に、このトレンチの直下には垂直クラックが形成される。その後、ブレーク工程と称される応力付与がなされる。ブレーク工程によりクラックを厚さ方向に完全に進行させることで、基板が分断される。 In the manufacture of electrical devices such as flat display panels or solar cell panels, it is often necessary to break a brittle substrate such as a glass substrate. First, a scribe line is formed on the substrate, and then the substrate is divided along the scribe line. The scribe line can be formed by mechanically processing the substrate using a cutter. When the cutter slides or rolls on the substrate, a trench due to plastic deformation is formed on the substrate, and at the same time, a vertical crack is formed immediately below the trench. Thereafter, stress is applied, which is called a break process. The substrate is divided by causing the crack to advance completely in the thickness direction by the break process.
 分断されることになる脆性基板上には膜が設けられていることがある。この場合、脆性基板の表面が膜と共にスクライブされる。たとえば、特開2000-280234号公報によれば、フラットディスプレイパネル用のカラーフィルタ基板の切断方法が開示されている。このカラーフィルタ基板は、インクジェット法によって製造されたものであり、ガラス基板上に設けられたインク受容層および保護層を有する。このように基板上に膜が設けられている場合、スクライブラインが不安定になりやすい。この問題に対応するため、上記公報の技術によれば、スクライブラインの形成中に、スクライブ条件が変化させられる。 A film may be provided on a brittle substrate to be divided. In this case, the surface of the brittle substrate is scribed with the film. For example, Japanese Patent Laid-Open No. 2000-280234 discloses a method for cutting a color filter substrate for a flat display panel. This color filter substrate is manufactured by an inkjet method and has an ink receiving layer and a protective layer provided on a glass substrate. When the film is provided on the substrate in this way, the scribe line tends to become unstable. In order to cope with this problem, according to the technique of the above publication, the scribe condition is changed during the formation of the scribe line.
特開2000-280234号公報JP 2000-280234 A
 上記公報の技術のように改善が試みられてはいるものの、膜が設けられた脆性基板にスクライブラインを安定的に形成することには、依然として困難がある。この原因は、スクライブ条件を、膜の材料と脆性基板の材料との両方に最適化することが難しいことによると考えられる。スクライブラインの形成が不安定であれば、それを用いた基板の分断も不安定となる。 Although improvement has been attempted as in the technique of the above publication, it is still difficult to stably form a scribe line on a brittle substrate provided with a film. This is thought to be because it is difficult to optimize the scribe conditions for both the film material and the brittle substrate material. If the formation of the scribe line is unstable, the division of the substrate using the scribe line is also unstable.
 本発明は以上のような課題を解決するためになされたものであり、その目的は、膜が設けられた脆性基板を安定的に分断することができる脆性基板の分断方法を提供することである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for cutting a brittle substrate that can stably cut a brittle substrate provided with a film. .
 本発明の脆性基板の分断方法は、表面を有し、前記表面に垂直な厚さ方向を有する脆性基板を準備する工程と、前記脆性基板の前記表面に刃先を押し付ける工程と、前記押し付ける工程によって押し付けられた前記刃先を前記脆性基板の前記表面上で摺動させることによって前記脆性基板の前記表面上に塑性変形を発生させることで、溝形状を有するトレンチラインを形成する工程とを備える。前記トレンチラインを形成する工程は、前記トレンチラインの直下において前記脆性基板が前記トレンチラインと交差する方向において連続的につながっている状態であるクラックレス状態が得られるように行なわれる。本発明の脆性基板の分断方法はさらに、前記トレンチラインを形成する工程の後、前記脆性基板の前記表面上に、前記トレンチラインを少なくとも部分的に覆う膜を形成する工程と、前記膜を形成する工程の後に、前記トレンチラインに沿って前記厚さ方向における前記脆性基板のクラックを伸展させることによって、クラックラインを形成する工程とを備える。前記クラックラインによって前記トレンチラインの直下において前記脆性基板は前記トレンチラインと交差する方向において連続的なつながりが断たれている。本発明の脆性基板の分断方法はさらに、前記クラックラインに沿って前記脆性基板を分断する工程を備える。 The brittle substrate cutting method of the present invention includes a step of preparing a brittle substrate having a surface and a thickness direction perpendicular to the surface, a step of pressing a blade edge against the surface of the brittle substrate, and the pressing step. Forming a trench line having a groove shape by causing plastic deformation on the surface of the brittle substrate by sliding the pressed blade edge on the surface of the brittle substrate. The step of forming the trench line is performed so as to obtain a crackless state in which the brittle substrate is continuously connected immediately below the trench line in a direction intersecting the trench line. The method for dividing a brittle substrate of the present invention further includes, after the step of forming the trench line, forming a film that at least partially covers the trench line on the surface of the brittle substrate; and forming the film And a step of forming a crack line by extending a crack of the brittle substrate in the thickness direction along the trench line. The brittle substrate is disconnected continuously in the direction intersecting the trench line immediately below the trench line by the crack line. The method for dividing a brittle substrate of the present invention further includes a step of dividing the brittle substrate along the crack line.
 なお上記「表面に刃先を押し付ける」とは、「表面」の任意の位置に刃先を押し付けることを意味するものであり、よって、「表面」の縁に刃先を押し付けることも意味し得る。 The above-mentioned “pressing the blade edge against the surface” means pressing the blade edge at an arbitrary position on the “surface”, and thus it can also mean pressing the blade edge against the edge of the “surface”.
 本発明によれば、脆性基板が分断される位置を規定するラインとして、その直下にクラックを有しないトレンチラインが形成される。分断の直接のきっかけとして用いられることになるクラックラインは、トレンチラインの形成後に形成される。これにより、トレンチラインの形成後かつクラックラインの形成前の脆性基板は、分断される位置がトレンチラインによって規定されつつも、クラックラインが未だ形成されていないので容易に分断は生じない状態にある。この状態において、トレンチライン、すなわち、脆性基板が分断される位置を規定するライン上に膜が形成される。その後、分断の直接のきっかけとして用いられることになるクラックラインが、トレンチラインに沿ってクラックを自己整合的に伸展させることで形成される。これによりクラックラインは、膜の存在にほぼ影響されることなく安定的に形成することができる。よって脆性基板を安定的に分断することができる。 According to the present invention, a trench line having no crack is formed immediately below the line that defines the position where the brittle substrate is divided. The crack line to be used as a direct trigger for the break is formed after the trench line is formed. As a result, the brittle substrate after the formation of the trench line and before the formation of the crack line is in a state in which the position to be divided is defined by the trench line, but the crack line has not yet been formed, so that the division is not easily caused. . In this state, a film is formed on the trench line, that is, the line that defines the position where the brittle substrate is divided. Thereafter, a crack line to be used as a direct trigger for the division is formed by extending the crack along the trench line in a self-aligning manner. As a result, the crack line can be stably formed without being substantially affected by the presence of the film. Therefore, the brittle substrate can be stably divided.
本発明の実施の形態1における脆性基板の分断方法を示す概略上面図(A)と、その線IB-IBに沿う概略断面図(B)である。FIG. 2 is a schematic top view (A) showing a method for cutting a brittle substrate in Embodiment 1 of the present invention, and a schematic cross-sectional view (B) along the line IB-IB. 本発明の実施の形態1における脆性基板の分断方法を示す概略上面図(A)と、その線IIB-IIBに沿う概略端面図(B)である。FIG. 2 is a schematic top view (A) showing a method for cutting a brittle substrate in Embodiment 1 of the present invention, and a schematic end view (B) along the line IIB-IIB. 本発明の実施の形態1における脆性基板の分断方法を示す概略上面図(A)と、その線IIIB-IIIBに沿う概略断面図(B)である。FIG. 3 is a schematic top view (A) showing a method for cutting a brittle substrate in Embodiment 1 of the present invention, and a schematic cross-sectional view (B) along the line IIIB-IIIB. 本発明の実施の形態1における脆性基板の分断方法を示す概略上面図(A)と、その線IVB-IVBに沿う概略断面図(B)である。FIG. 2 is a schematic top view (A) showing a method for cutting a brittle substrate in Embodiment 1 of the present invention, and a schematic cross-sectional view (B) along the line IVB-IVB. 本発明の実施の形態1における脆性基板の分断方法を示す概略上面図(A)と、その線VB-VBに沿う概略断面図(B)である。FIG. 2 is a schematic top view (A) showing a method for cutting a brittle substrate in Embodiment 1 of the present invention, and a schematic cross-sectional view (B) along the line VB-VB. 本発明の実施の形態1における脆性基板の分断方法を示す概略上面図(A)と、その線VIB-VIBに沿う概略断面図(B)である。FIG. 2 is a schematic top view (A) showing a method for cutting a brittle substrate in Embodiment 1 of the present invention, and a schematic cross-sectional view (B) along the line VIB-VIB. 本発明の実施の形態1における脆性基板の分断方法において形成されるトレンチラインの構成を概略的に示す端面図(A)、およびクラックラインの構成を概略的に示す端面図(B)である。It is the end view (A) which shows roughly the structure of the trench line formed in the cutting method of the brittle board | substrate in Embodiment 1 of this invention, and the end view (B) which shows the structure of a crack line roughly. 本発明の実施の形態1における脆性基板の分断方法の構成を概略的に示すフロー図である。It is a flowchart which shows schematically the structure of the brittle board | substrate parting method in Embodiment 1 of this invention. 比較例における脆性基板の分断方法を示す上面図(A)と、その線IXB-IXBに沿う断面図(B)である。They are a top view (A) showing a method for dividing a brittle substrate in a comparative example, and a cross-sectional view (B) along the line IXB-IXB. 比較例における脆性基板の分断方法を示す上面図(A)と、その線XB-XBに沿う端面図(B)である。They are a top view (A) showing a method for cutting a brittle substrate in a comparative example, and an end view (B) along the line XB-XB. 本発明の実施の形態2における脆性基板の分断方法を示す概略上面図(A)と、その線XIB-XIBに沿う概略断面図(B)である。FIG. 5 is a schematic top view (A) showing a method for cutting a brittle substrate in Embodiment 2 of the present invention, and a schematic cross-sectional view (B) along the line XIB-XIB. 本発明の実施の形態2における脆性基板の分断方法を示す概略上面図(A)と、その線XIIB-XIIBに沿う概略断面図(B)である。FIG. 5 is a schematic top view (A) showing a method for cutting a brittle substrate in Embodiment 2 of the present invention, and a schematic cross-sectional view (B) along the line XIIB-XIIB. 本発明の実施の形態2における脆性基板の分断方法を示す概略上面図(A)と、その線XIIIB-XIIIBに沿う概略端面図(B)である。FIG. 4 is a schematic top view (A) showing a method for cutting a brittle substrate in Embodiment 2 of the present invention, and a schematic end view (B) along the line XIIIB-XIIIB. 本発明の実施の形態2における脆性基板の分断方法を示す概略上面図(A)と、その線XIVB-XIVBに沿う概略端面図(B)である。FIG. 6 is a schematic top view (A) showing a method for cutting a brittle substrate in Embodiment 2 of the present invention, and a schematic end view (B) along the line XIVB-XIVB. 本発明の実施の形態2における脆性基板の分断方法を示す概略上面図(A)と、その線XVB-XVBに沿う概略端面図(B)である。FIG. 6 is a schematic top view (A) showing a method for dividing a brittle substrate in Embodiment 2 of the present invention, and a schematic end view (B) along the line XVB-XVB. 比較例における脆性基板の分断方法を示す上面図(A)と、その線XVIB-XVIBに沿う断面図(B)である。They are a top view (A) showing a method of cutting a brittle substrate in a comparative example, and a cross-sectional view (B) along the line XVIB-XVIB. 比較例における脆性基板の分断方法を示す上面図(A)と、その線XVIIB-XVIIBに沿う端面図(B)である。They are a top view (A) showing a method for dividing a brittle substrate in a comparative example, and an end view (B) along the line XVIIB-XVIIB. 本発明の実施の形態2の変形例における脆性基板の分断方法を示す概略上面図(A)と、その線XVIIIB-XVIIIBに沿う概略端面図(B)である。FIG. 6 is a schematic top view (A) showing a method for dividing a brittle substrate in a modification of the second embodiment of the present invention, and a schematic end view (B) along the line XVIIIB-XVIIIB. 本発明の実施の形態2の変形例における脆性基板の分断方法を示す概略上面図(A)と、その線XIXB-XIXBに沿う概略端面図(B)である。FIG. 6 is a schematic top view (A) showing a method for cutting a brittle substrate in a modification of the second embodiment of the present invention, and a schematic end view (B) along the line XIXB-XIXB. 本発明の実施の形態3における脆性基板の分断方法に用いられる器具の構成を概略的に示す側面図(A)、および、上記器具が有する刃先の構成を図20(A)の矢印XXBの視点で概略的に示す平面図(B)である。A side view (A) schematically showing the configuration of the instrument used in the method for cutting a brittle substrate according to Embodiment 3 of the present invention, and the configuration of the cutting edge of the instrument shown in FIG. It is a top view (B) shown roughly by. 本発明の実施の形態3における脆性基板の分断方法を概略的に示す上面図である。It is a top view which shows roughly the cutting method of the brittle board | substrate in Embodiment 3 of this invention. 本発明の実施の形態3の第1の変形例の脆性基板の分断方法を概略的に示す上面図である。It is a top view which shows roughly the division | segmentation method of the brittle board | substrate of the 1st modification of Embodiment 3 of this invention. 本発明の実施の形態3の第2の変形例の脆性基板の分断方法を概略的に示す上面図である。It is a top view which shows roughly the division | segmentation method of the brittle board | substrate of the 2nd modification of Embodiment 3 of this invention. 本発明の実施の形態3の第3の変形例の脆性基板の分断方法を概略的に示す上面図である。It is a top view which shows roughly the division | segmentation method of the brittle board | substrate of the 3rd modification of Embodiment 3 of this invention. 本発明の実施の形態4における脆性基板の分断方法の第1の工程を概略的に示す上面図である。It is a top view which shows roughly the 1st process of the cutting method of the brittle board | substrate in Embodiment 4 of this invention. 本発明の実施の形態4における脆性基板の分断方法の第2の工程を概略的に示す上面図である。It is a top view which shows roughly the 2nd process of the cutting method of a brittle board | substrate in Embodiment 4 of this invention. 本発明の実施の形態4における脆性基板の分断方法の第3の工程を概略的に示す上面図である。It is a top view which shows roughly the 3rd process of the cutting method of a brittle board | substrate in Embodiment 4 of this invention. 本発明の実施の形態4の第1の変形例の脆性基板の分断方法を概略的に示す上面図である。It is a top view which shows roughly the division | segmentation method of the brittle board | substrate of the 1st modification of Embodiment 4 of this invention. 本発明の実施の形態4の第2の変形例の脆性基板の分断方法を概略的に示す上面図である。It is a top view which shows roughly the division | segmentation method of the brittle board | substrate of the 2nd modification of Embodiment 4 of this invention. 本発明の実施の形態5における脆性基板の分断方法を概略的に示す上面図である。It is a top view which shows roughly the cutting method of the brittle board | substrate in Embodiment 5 of this invention. 本発明の実施の形態6における脆性基板の分断方法を概略的に示す上面図である。It is a top view which shows roughly the cutting method of the brittle board | substrate in Embodiment 6 of this invention. 本発明の実施の形態6の変形例の脆性基板の分断方法を概略的に示す上面図である。It is a top view which shows roughly the cutting method of the brittle board | substrate of the modification of Embodiment 6 of this invention. 本発明の実施の形態7における脆性基板の分断方法に用いられる器具の構成を概略的に示す側面図(A)、および、上記器具が有する刃先の構成を図33(A)の矢印XXXIIIBの視点で概略的に示す平面図(B)である。Side view (A) schematically showing the configuration of the instrument used in the brittle substrate cutting method according to Embodiment 7 of the present invention, and the configuration of the cutting edge of the instrument shown in FIG. 33 (A), point of view of arrow XXXIIIB It is a top view (B) shown roughly by.
 以下、図面に基づいて本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (実施の形態1)
 本実施の形態の脆性基板の分断方法について、以下に説明する。
(Embodiment 1)
A method for dividing a brittle substrate according to this embodiment will be described below.
 図1(A)および(B)を参照して、まずガラス基板4(脆性基板)が準備される(図8:ステップS10)。ガラス基板4は、上面SF1(表面)と、その反対の下面SF2とを有する。ガラス基板4は、上面SF1に垂直な厚さ方向DTを有する。また刃先51およびシャンク52を有するカッティング器具50が準備される。刃先51は、そのホルダとしてのシャンク52に固定されることによって保持されている。 1A and 1B, first, a glass substrate 4 (brittle substrate) is prepared (FIG. 8: Step S10). The glass substrate 4 has an upper surface SF1 (front surface) and an opposite lower surface SF2. The glass substrate 4 has a thickness direction DT perpendicular to the upper surface SF1. A cutting instrument 50 having a cutting edge 51 and a shank 52 is prepared. The blade edge 51 is held by being fixed to a shank 52 as its holder.
 次に、ガラス基板4の上面SF1に刃先51が押し付けられる(図8:ステップS20)。次に、押し付けられた刃先51がガラス基板4の上面SF1上で摺動させられる(図1(A)中の矢印参照)。 Next, the blade edge 51 is pressed against the upper surface SF1 of the glass substrate 4 (FIG. 8: Step S20). Next, the pressed blade edge 51 is slid on the upper surface SF1 of the glass substrate 4 (see the arrow in FIG. 1A).
 図2(A)および(B)を参照して、刃先51の上記摺動によってガラス基板4の上面SF1上に塑性変形が発生させられる。これにより上面SF1上に、溝形状を有するトレンチラインTLが形成される(図8:ステップS30)。図7(A)を参照して、トレンチラインTLを形成する工程は、トレンチラインTLの直下においてガラス基板4がトレンチラインTLの延在方向(図2(A)における横方向)と交差する方向DCにおいて連続的につながっている状態であるクラックレス状態が得られるように行なわれる。クラックレス状態においては、塑性変形によるトレンチラインTLは形成されているものの、それに沿ったクラックは形成されていない。よって従来のブレーク工程のようにガラス基板4に単純に曲げモーメントなどを発生させる外力を加えても、トレンチラインTLに沿った分断は容易には生じない。このためクラックレス状態においてはトレンチラインTLに沿った分断工程は行われない。クラックレス状態を得るために、刃先51に加えられる荷重は、クラックが発生しない程度に小さく、かつ塑性変形が発生する程度に大きくされる。 2A and 2B, plastic deformation is generated on the upper surface SF1 of the glass substrate 4 by the sliding of the blade edge 51. As a result, a trench line TL having a groove shape is formed on the upper surface SF1 (FIG. 8: Step S30). Referring to FIG. 7A, in the step of forming trench line TL, the direction in which glass substrate 4 intersects the extending direction of trench line TL (the lateral direction in FIG. 2A) immediately below trench line TL. This is performed so as to obtain a crackless state in which DC are continuously connected. In the crackless state, the trench line TL is formed by plastic deformation, but no crack is formed along the trench line TL. Therefore, even if an external force that simply generates a bending moment or the like is applied to the glass substrate 4 as in the conventional break process, the division along the trench line TL does not easily occur. For this reason, in the crackless state, the dividing step along the trench line TL is not performed. In order to obtain a crackless state, the load applied to the blade edge 51 is so small that cracks do not occur and is large enough to cause plastic deformation.
 クラックレス状態は、必要な時間に渡って維持される。クラックレス状態の維持のためには、トレンチラインTLにおいてガラス基板4に対して過度の応力が加わるような操作、たとえば基板に破損を生じるような大きな外部応力の印加または大きな温度変化を伴う加熱、が避けられればよい。 The crackless state is maintained for the required time. In order to maintain the crackless state, an operation in which excessive stress is applied to the glass substrate 4 in the trench line TL, for example, heating with application of a large external stress that causes damage to the substrate or a large temperature change, Should be avoided.
 図3(A)および(B)を参照して、クラックレス状態が維持されつつ、ガラス基板4の表面SF1上に膜21が形成される(図8:ステップS40)。膜21の形成は、トレンチラインTLを少なくとも部分的に覆うように行なわれる。膜21は無機材料から作られていてもよく、特に金属から作られていてもよい。 Referring to FIGS. 3A and 3B, film 21 is formed on surface SF1 of glass substrate 4 while maintaining a crackless state (FIG. 8: step S40). The film 21 is formed so as to at least partially cover the trench line TL. The membrane 21 may be made from an inorganic material, in particular from metal.
 図4(A)および(B)を参照して、クラックレス状態が維持されつつ、ガラス基板4がさらに加工されてもよい。たとえば、膜21上に部材11が設けられる。部材11はトレンチラインTLから離れていてもよい。部材11は、トレンチラインTLを挟む部分を有してもよい。また下面SF2上に部材(図示せず)が設けられてもよい。部材を設ける工程は、たとえば、予め準備された部材を接合することによって、または、原料を堆積することによって行い得る。 4A and 4B, the glass substrate 4 may be further processed while maintaining a crackless state. For example, the member 11 is provided on the film 21. The member 11 may be separated from the trench line TL. The member 11 may have a portion sandwiching the trench line TL. A member (not shown) may be provided on the lower surface SF2. The step of providing the member can be performed, for example, by bonding a member prepared in advance or by depositing a raw material.
 さらに図5(A)および(B)を参照して、上述したように膜21が形成された後、トレンチラインTLに沿って厚さ方向DTにおけるガラス基板4のクラックが伸展させられる。これにより、トレンチラインTLに対して自己整合的にクラックラインCLが形成される(図8:ステップS50)。図7(B)を参照して、クラックラインCLによってトレンチラインTLの直下においてガラス基板4はトレンチラインTLの延在方向(図5(A)における横方向)と交差する方向DCにおいて連続的なつながりが断たれている。ここで「連続的なつながり」とは、言い換えれば、クラックによって遮られていないつながりのことである。なお、上述したように連続的なつながりが断たれている状態において、クラックラインCLのクラックを介してガラス基板4の部分同士が接触していてもよい。 5A and 5B, after the film 21 is formed as described above, the crack of the glass substrate 4 in the thickness direction DT is extended along the trench line TL. Thereby, the crack line CL is formed in a self-aligned manner with respect to the trench line TL (FIG. 8: Step S50). Referring to FIG. 7B, the glass substrate 4 is continuous in the direction DC intersecting the extending direction of the trench line TL (lateral direction in FIG. 5A) immediately below the trench line TL by the crack line CL. The connection is broken. Here, “continuous connection” means a connection that is not interrupted by a crack. In addition, in the state where the continuous connection is cut as described above, the portions of the glass substrate 4 may be in contact with each other through the cracks of the crack line CL.
 クラックラインCLの形成は、たとえば、トレンチラインTLの端部XExまたはXEt(図4(A))においてガラス基板4に、トレンチラインTL付近の内部応力の歪みを解放するような応力を印加することによって開始される。応力の印加は、たとえば、形成されたトレンチラインTL上に再度刃先を押し付けることによる外部応力の印加、または、レーザ光の照射などによる加熱によって行ない得る。 For example, the crack line CL is formed by applying a stress that releases strain of internal stress in the vicinity of the trench line TL to the glass substrate 4 at the end XEx or XEt (FIG. 4A) of the trench line TL. Started by. The application of stress can be performed, for example, by applying external stress by pressing the blade edge again on the formed trench line TL, or by heating by laser light irradiation.
 さらに図6(A)および(B)を参照して、次に、クラックラインCLに沿ってガラス基板4が基板片4aおよび4bへ分断される(図8:ステップS60)。すなわち、いわゆるブレーク工程が行なわれる。ブレーク工程は、たとえば、ガラス基板4への外力FB(図5(B))の印加によって行ない得る。ガラス基板4が分断される際に膜21に加わる張力によって、ガラス基板4と共に膜21が部分21aおよび21bへ分断される。これにより膜21の部分21aが設けられた基板片4aと、膜21の部分21bが設けられた基板片4bとが得られる。 Further referring to FIGS. 6A and 6B, next, glass substrate 4 is divided into substrate pieces 4a and 4b along crack line CL (FIG. 8: step S60). That is, a so-called break process is performed. The break process can be performed, for example, by applying an external force FB (FIG. 5B) to the glass substrate 4. Due to the tension applied to the film 21 when the glass substrate 4 is divided, the film 21 together with the glass substrate 4 is divided into portions 21a and 21b. Thereby, the substrate piece 4a provided with the portion 21a of the film 21 and the substrate piece 4b provided with the portion 21b of the film 21 are obtained.
 次に比較例におけるガラス基板4の分断方法について、以下に説明する。本比較例においては、通常のスクライブ工程およびブレーク工程が行なわれる。 Next, a method for dividing the glass substrate 4 in the comparative example will be described below. In this comparative example, a normal scribe process and a break process are performed.
 図9(A)および(B)を参照して、本比較例においてはトレンチラインTLが形成されることなく、ガラス基板4上に膜21および部材11が設けられる。次に、ガラス基板4の上面SF1に刃先51が押し付けられる。次に、押し付けられた刃先51が、膜21が設けられた上面SF1上で摺動させられる(図9(A)中の矢印参照)。 9A and 9B, in this comparative example, the film 21 and the member 11 are provided on the glass substrate 4 without forming the trench line TL. Next, the blade edge 51 is pressed against the upper surface SF <b> 1 of the glass substrate 4. Next, the pressed blade edge 51 is slid on the upper surface SF1 provided with the film 21 (see the arrow in FIG. 9A).
 図10(A)および(B)を参照して、刃先51の上記摺動によって、膜21が部分21aおよび21bへ分断される。またそれと同時に、ガラス基板4の上面SF1上に、クラックを有するスクライブラインSLが形成される。次にブレーク工程によってスクライブラインSLに沿ってガラス基板4が分断される。 10A and 10B, the film 21 is divided into portions 21a and 21b by the sliding of the blade edge 51. At the same time, a scribe line SL having a crack is formed on the upper surface SF <b> 1 of the glass substrate 4. Next, the glass substrate 4 is divided along the scribe line SL by a break process.
 本比較例においては、ガラス基板4の上面SF1が膜21と共にスクライブされる。このような場合、ガラス基板4の分断の直接のきっかけとして用いられることになるスクライブラインSLの形成が不安定になりやすい。この結果、ガラス基板4の分断も不安定になりやすい。また、膜21の切断面の品質が低下しやすい。 In this comparative example, the upper surface SF1 of the glass substrate 4 is scribed together with the film 21. In such a case, the formation of the scribe line SL that is used as a direct trigger for dividing the glass substrate 4 tends to be unstable. As a result, the division of the glass substrate 4 tends to be unstable. In addition, the quality of the cut surface of the film 21 is likely to deteriorate.
 これに対して本実施の形態によれば、ガラス基板4が分断される位置を規定するラインとして、その直下にクラックを有しないトレンチラインTLが形成される。分断の直接のきっかけとして用いられることになるクラックラインCLは、トレンチラインTLの形成後に形成される。これにより、トレンチラインTLの形成後かつクラックラインCLの形成前のガラス基板4は、分断される位置がトレンチラインTLによって規定されつつも、クラックラインCLが未だ形成されていないので容易に分断は生じない状態にある。この状態において、トレンチラインTL、すなわち、ガラス基板4が分断される位置を規定するライン上に膜21が形成される。その後、分断の直接のきっかけとして用いられることになるクラックラインCLが、トレンチラインTLに沿ってクラックを自己整合的に伸展させることで形成される。これによりクラックラインCLは、膜21の存在にほぼ影響されることなく安定的に形成することができる。よってガラス基板4を安定的に分断することができる。 On the other hand, according to the present embodiment, a trench line TL having no crack is formed immediately below the line that defines the position where the glass substrate 4 is divided. The crack line CL to be used as a direct trigger for the division is formed after the formation of the trench line TL. Thereby, the glass substrate 4 after the formation of the trench line TL and before the formation of the crack line CL is easily divided because the position to be divided is defined by the trench line TL but the crack line CL is not yet formed. It does not occur. In this state, the film 21 is formed on the trench line TL, that is, the line defining the position where the glass substrate 4 is divided. Thereafter, the crack line CL to be used as a direct trigger for the division is formed by extending the crack in a self-aligned manner along the trench line TL. As a result, the crack line CL can be stably formed without being substantially affected by the presence of the film 21. Therefore, the glass substrate 4 can be divided stably.
 本実施の形態におけるクラックラインCLの形成工程は、いわゆるブレーク工程と本質的に異なっている。ブレーク工程は、既に形成されているクラックを厚さ方向にさらに伸展させ、基板を完全に分離するものである。一方、クラックラインCLの形成工程は、トレンチラインTLの形成によって得られたクラックレス状態から、クラックを有する状態への変化をもたらすものである。この変化は、クラックレス状態が有する内部応力の開放によって生じると考えられる。トレンチラインTLの形成時の塑性変形、およびトレンチラインTLの形成によって生成される内部応力の大きさや方向性などの状態は、回転刃の転動が用いられる場合と、本実施の形態のように刃先の摺動が用いられる場合とでは異なると考えられ、刃先の摺動が用いられる場合には、より広いスクライブ条件においてクラックが発生しやすくなる。また内部応力の開放には何らかのきっかけが必要であり、上述したような外部からの応力印加によるトレンチラインTL上のクラックの発生がそのようなきっかけとして作用すると考えられる。トレンチラインTLおよびクラックラインCLの好適な形成方法の詳細は、以下の実施の形態3~7において説明する。 The formation process of the crack line CL in the present embodiment is essentially different from a so-called break process. In the break process, the already formed cracks are further extended in the thickness direction to completely separate the substrate. On the other hand, the formation process of the crack line CL brings about a change from a crackless state obtained by forming the trench line TL to a state having cracks. This change is considered to be caused by the release of internal stress that the crackless state has. The state of the plastic deformation at the time of forming the trench line TL and the magnitude and directionality of the internal stress generated by the formation of the trench line TL are the same as in the case where rolling of the rotary blade is used, as in this embodiment. This is considered to be different from the case where the sliding of the blade edge is used, and when the sliding of the blade edge is used, cracks are likely to occur in a wider scribe condition. Moreover, some kind of trigger is necessary to release the internal stress, and it is considered that the occurrence of cracks on the trench line TL due to the application of external stress as described above acts as such a trigger. Details of a preferred method of forming the trench line TL and the crack line CL will be described in the following third to seventh embodiments.
 また本実施の形態によれば、ガラス基板4が分断される際に、ガラス基板4と共に膜21が分断される。これにより、ガラス基板4の分断に付随して膜21を分断させることができる。よってカッティング器具を用いて膜21を切断する必要がなくなる。よって膜21の切断による切りくずの発生を避けることができる。また、刃先51が膜21とガラスとを同時にスクライブする場合と比して、刃先51の磨耗を抑えることができる。 Further, according to the present embodiment, when the glass substrate 4 is divided, the film 21 is divided together with the glass substrate 4. Thereby, the film | membrane 21 can be parted accompanying the parting of the glass substrate 4. FIG. Therefore, it is not necessary to cut the membrane 21 using a cutting tool. Therefore, generation of chips due to the cutting of the film 21 can be avoided. Moreover, compared with the case where the blade edge 51 scribes the film 21 and glass at the same time, wear of the blade edge 51 can be suppressed.
 膜21が無機材料から作られている場合、合成樹脂のように分断されにくい材料が膜21に用いられていないことになる。これにより、ガラス基板4の分断に付随した膜21の分断がより確実に生じる。また無機材料の切りくずの発生を避けることができる。また、刃先51が無機材料をスクライブする場合に生じる磨耗を避けることができる。膜21が特に金属から作られている場合、合成樹脂のように分断されにくい材料が膜21に用いられていないことになる。これにより、ガラス基板4の分断に付随した膜21の分断がより確実に生じる。また金属の切りくずの発生を避けることができる。また、刃先51が金属をスクライブする場合に生じる磨耗を避けることができる。 In the case where the film 21 is made of an inorganic material, a material that is difficult to be divided, such as a synthetic resin, is not used for the film 21. Thereby, the division | segmentation of the film | membrane 21 accompanying the division | segmentation of the glass substrate 4 arises more reliably. In addition, generation of chips of the inorganic material can be avoided. Moreover, the abrasion which arises when the blade edge | tip 51 scribes an inorganic material can be avoided. In particular, when the film 21 is made of a metal, a material that is not easily divided, such as a synthetic resin, is not used for the film 21. Thereby, the division | segmentation of the film | membrane 21 accompanying the division | segmentation of the glass substrate 4 arises more reliably. In addition, generation of metal chips can be avoided. Moreover, the abrasion which arises when the blade edge | tip 51 scribes a metal can be avoided.
 (実施の形態2)
 本実施の形態の脆性基板の分断方法においては、まず実施の形態1と同様の工程が図2(A)および(B)の工程まで行なわれる。
(Embodiment 2)
In the method for dividing a brittle substrate according to the present embodiment, the same steps as those in the first embodiment are first performed up to the steps shown in FIGS.
 図11(A)および(B)を参照して、次に、前述したクラックレス状態が維持されつつ、ガラス基板4の表面SF1上に膜22が形成される(図8:ステップS40)。膜22の形成は、トレンチラインTLを少なくとも部分的に覆うように行なわれる。膜22は合成樹脂から作られていてもよい。 11 (A) and 11 (B), next, the film 22 is formed on the surface SF1 of the glass substrate 4 while maintaining the above-described crackless state (FIG. 8: Step S40). The film 22 is formed so as to at least partially cover the trench line TL. The membrane 22 may be made from a synthetic resin.
 図12(A)および(B)を参照して、次に、刃先51pおよびシャンク52pを有するカッティング器具50pが準備される。刃先51pは、そのホルダとしてのシャンク52pに固定されることによって保持されている。カッティング器具50pは、カッティング器具50に比して、膜22の加工により適したものとされる。 12A and 12B, a cutting instrument 50p having a blade edge 51p and a shank 52p is prepared. The blade edge 51p is held by being fixed to a shank 52p as the holder. The cutting instrument 50p is more suitable for processing the membrane 22 than the cutting instrument 50.
 さらに図13(A)および(B)を参照して、刃先51pを用いて、トレンチラインTLに沿って(図12(A)における矢印参照)膜22に切り込みHLが入れられる。切り込みHLは、膜22の厚さ方向DTにおいて膜22を完全に切断することによって形成される。言い換えれば、切り込みHLは厚さ方向DTにおいて膜22を貫通している。切り込みHLが入れられることにより膜22が部分22aおよび22bへ分断される。 Further referring to FIGS. 13A and 13B, using the cutting edge 51p, a cut HL is made in the film 22 along the trench line TL (see the arrow in FIG. 12A). The cut HL is formed by completely cutting the film 22 in the thickness direction DT of the film 22. In other words, the cut HL penetrates the film 22 in the thickness direction DT. By cutting the cut HL, the film 22 is divided into the portions 22a and 22b.
 図14(A)および(B)を参照して、次に、実施の形態1(図5(A)および(B))と同様の方法によりクラックラインCLが形成される。 14A and 14B, next, crack lines CL are formed by the same method as in the first embodiment (FIGS. 5A and 5B).
 さらに図15(A)および(B)を参照して、次に、クラックラインCLに沿ってガラス基板4が基板片4aおよび4bへ分断される(図8:ステップS60)。すなわち、いわゆるブレーク工程が行なわれる。ブレーク工程は、実施の形態1(図5(B))と同様、ガラス基板4への外力FBの印加によって行ない得る。ガラス基板4が分断されることで、膜22の部分22aが設けられた基板片4aと、膜22の部分22bが設けられた基板片4bとが得られる。 Further referring to FIGS. 15A and 15B, next, the glass substrate 4 is divided into the substrate pieces 4a and 4b along the crack line CL (FIG. 8: step S60). That is, a so-called break process is performed. The break process can be performed by applying an external force FB to the glass substrate 4 as in the first embodiment (FIG. 5B). By dividing the glass substrate 4, a substrate piece 4 a provided with the portion 22 a of the film 22 and a substrate piece 4 b provided with the portion 22 b of the film 22 are obtained.
 次に比較例におけるガラス基板4の分断方法について、以下に説明する。本比較例においては、通常のスクライブ工程およびブレーク工程が行なわれる。 Next, a method for dividing the glass substrate 4 in the comparative example will be described below. In this comparative example, a normal scribe process and a break process are performed.
 図16(A)および(B)を参照して、本比較例においてはトレンチラインTLが形成されることなく、ガラス基板4上に膜22が設けられる。次に、ガラス基板4の上面SF1に刃先51が押し付けられる。次に、押し付けられた刃先51が、膜22が設けられた上面SF1上で摺動させられる(図16(A)中の矢印参照)。 16A and 16B, in this comparative example, the film 22 is provided on the glass substrate 4 without forming the trench line TL. Next, the blade edge 51 is pressed against the upper surface SF <b> 1 of the glass substrate 4. Next, the pressed blade edge 51 is slid on the upper surface SF1 provided with the film 22 (see an arrow in FIG. 16A).
 図17(A)および(B)を参照して、刃先51の上記摺動によって、膜22が部分22aおよび22bへ分断される。またそれと同時に、ガラス基板4の上面SF1上に、クラックを有するスクライブラインSLが形成される。次にブレーク工程によってスクライブラインSLに沿ってガラス基板4が分断される。 17A and 17B, the film 22 is divided into portions 22a and 22b by the sliding of the blade edge 51. At the same time, a scribe line SL having a crack is formed on the upper surface SF <b> 1 of the glass substrate 4. Next, the glass substrate 4 is divided along the scribe line SL by a break process.
 本比較例においては、ガラス基板4の上面SF1が膜22と共にスクライブされる。このような場合、ガラス基板4の分断の直接のきっかけとして用いられることになるスクライブラインSLの形成が不安定になりやすい。この結果、ガラス基板4の分断も不安定になりやすい。 In this comparative example, the upper surface SF1 of the glass substrate 4 is scribed together with the film 22. In such a case, the formation of the scribe line SL that is used as a direct trigger for dividing the glass substrate 4 tends to be unstable. As a result, the division of the glass substrate 4 tends to be unstable.
 膜22が特に合成樹脂から作られている場合、膜22を切断することとガラス基板4にスクライブラインSLを形成することとを同時に行なう必要がある。しかしながら、膜22の切断とスクライブラインSLの形成とでは、通常、最適な刃先51およびその使用条件が大きく異なっている。このため刃先51およびその使用条件の最適化が困難であり、この結果、スクライブラインSLの形成が特に不安定になりやすい。 When the film 22 is made of a synthetic resin in particular, it is necessary to simultaneously cut the film 22 and form the scribe line SL on the glass substrate 4. However, the optimum cutting edge 51 and its use conditions are usually greatly different between the cutting of the film 22 and the formation of the scribe line SL. For this reason, it is difficult to optimize the cutting edge 51 and its use conditions, and as a result, the formation of the scribe line SL is likely to be particularly unstable.
 これに対して本実施の形態によれば、実施の形態1と同様、クラックラインCLは、膜22の存在にほぼ影響されることなく安定的に形成することができる。よってガラス基板4を安定的に分断することができる。 On the other hand, according to the present embodiment, as in the first embodiment, the crack line CL can be stably formed without being substantially affected by the presence of the film 22. Therefore, the glass substrate 4 can be divided stably.
 またクラックラインCLが形成される前に、トレンチラインTLに沿って膜22に切り込みが入れられる。これにより膜22がより確実に分断される。膜22に切り込みを入れる工程は、膜22の厚さ方向DTにおいて膜22を完全に切断することによって行なわれる。これにより膜22がさらにより確実に分断される。 Further, before the crack line CL is formed, the film 22 is cut along the trench line TL. Thereby, the film | membrane 22 is parted more reliably. The step of cutting the film 22 is performed by completely cutting the film 22 in the thickness direction DT of the film 22. Thereby, the film | membrane 22 is parted more reliably.
 特に膜22が合成樹脂から作られている場合、膜22の靭性が高いので、実施の形態1のような張力印加にのみ依存した分断は、困難となり得る。そのような場合においても、切り込みを用いることで膜22を分断することができる。また合成樹脂の膜22は切りくずが生じにくい。また合成樹脂の膜22は刃先51pを磨耗させにくい。 In particular, when the film 22 is made of a synthetic resin, the toughness of the film 22 is high, so that the division depending only on the tension application as in the first embodiment can be difficult. Even in such a case, the film 22 can be divided by using the notches. The synthetic resin film 22 is less prone to chipping. Further, the synthetic resin film 22 hardly wears the blade edge 51p.
 なお膜22に特に適したカッティング器具50p(図12(B))の代わりに、カッティング器具50(図1(B))が用いられてもよく、その場合、2つの工程において共通のカッティング器具を用いることができる。 Note that the cutting tool 50 (FIG. 1B) may be used instead of the cutting tool 50p particularly suitable for the membrane 22 (FIG. 12B). In this case, a common cutting tool is used in the two steps. Can be used.
 次に本実施の形態の第1の変形例について説明する。上述した図13(A)および(B)においては膜22が厚さ方向DTに完全に切断されるが、本変形例では、図18(A)および(B)に示すように、膜22の厚さ方向DTにおいて膜22が部分的に切断される。言いかえれば、厚さ方向DTにおいて不完全な切断が行なわれる。これにより、膜22を貫通しない切り込みULが膜22に入れられる。 Next, a first modification of the present embodiment will be described. In FIGS. 13A and 13B described above, the film 22 is completely cut in the thickness direction DT, but in this modification, as shown in FIGS. 18A and 18B, the film 22 The film 22 is partially cut in the thickness direction DT. In other words, incomplete cutting is performed in the thickness direction DT. As a result, a cut UL that does not penetrate the film 22 is made in the film 22.
 図19(A)および(B)を参照して、次にクラックラインCLが形成される。膜22はこの時点では完全に分断されない。膜22の完全な分断は、ガラス基板4が分断される際に膜22に加わる張力が、上述した不完全な切り込みを厚さ方向DTにおける完全なものとすることによって生じる。本変形例によれば、膜22の切断時にガラス基板4を傷つけることが避けられる。 Referring to FIGS. 19A and 19B, a crack line CL is formed next. The membrane 22 is not completely divided at this point. The complete division of the film 22 occurs when the tension applied to the film 22 when the glass substrate 4 is divided completes the above-described incomplete cut in the thickness direction DT. According to this modification, it is possible to avoid damaging the glass substrate 4 when the film 22 is cut.
 次に本実施の形態の第2の変形例について説明する。本変形例では、トレンチラインTLに沿って膜22が部分的に切断される。言い換えれば、トレンチラインTLに沿って、膜22の一部に切り込みが形成されていない部分が存在する。この切り込みはトレンチラインTLに沿って全体に断続的に形成されてもよく、1箇所でもよい。切り込みは厚さ方向で完全なものでもよく、不完全な物でもよい。これにより、膜22のトレンチラインTLに沿った一部に切り込みHL(図13参照)または切り込みUL(図18参照)が入れられる。 Next, a second modification of the present embodiment will be described. In the present modification, the film 22 is partially cut along the trench line TL. In other words, along the trench line TL, there is a portion where a cut is not formed in a part of the film 22. This notch may be formed intermittently throughout the trench line TL, or may be at one place. The incision may be complete or incomplete in the thickness direction. Thereby, a cut HL (see FIG. 13) or a cut UL (see FIG. 18) is made in a part of the film 22 along the trench line TL.
 次にクラックラインCLが形成される。膜22はこの時点では完全に分断されない。膜22の完全な分断は、ガラス基板4が分断される際に膜22に加わる張力により、上述した不完全な切り込みがトレンチラインTLに沿って広がり連続したものとなることによって生じる。膜の種類によっては、特定の方向に容易に裂くことができるものがあり、本変形例によれば、分断の際に膜22が切り込みを起点として裂けることにより容易に膜22を切断することができるとともに、ガラス基板4を傷つけるおそれを小さくすることができる。 Next, a crack line CL is formed. The membrane 22 is not completely divided at this point. The complete division of the film 22 occurs when the above-described incomplete cut spreads along the trench line TL due to the tension applied to the film 22 when the glass substrate 4 is divided. Depending on the type of film, there is a film that can be easily torn in a specific direction. According to this modification, the film 22 can be easily cut when the film 22 is split from the notch as a starting point. In addition, the risk of damaging the glass substrate 4 can be reduced.
 (実施の形態3)
 はじめに、本実施の形態における脆性基板の分断方法において用いられる刃先について、以下に説明する。
(Embodiment 3)
First, the cutting edge used in the brittle substrate cutting method according to the present embodiment will be described below.
 図20(A)および(B)を参照して、刃先51には、天面SD1(第1の面)と、天面SD1を取り囲む複数の面とが設けられている。これら複数の面は側面SD2(第2の面)および側面SD3(第3の面)を含む。天面SD1、側面SD2およびSD3(第1~第3の面)は、互いに異なる方向を向いており、かつ互いに隣り合っている。刃先51は、天面SD1、側面SD2およびSD3が合流する頂点を有し、この頂点によって刃先51の突起部PPが構成されている。また側面SD2およびSD3は、刃先51の側部PSを構成する稜線をなしている。側部PSは突起部PPから線状に延びている。また側部PSは、上述したように稜線であることから、線状に延びる凸形状を有する。 20A and 20B, the blade edge 51 is provided with a top surface SD1 (first surface) and a plurality of surfaces surrounding the top surface SD1. The plurality of surfaces include a side surface SD2 (second surface) and a side surface SD3 (third surface). The top surface SD1, the side surfaces SD2, and SD3 (first to third surfaces) face different directions and are adjacent to each other. The blade edge 51 has a vertex at which the top surface SD1, the side surfaces SD2 and SD3 merge, and the protrusion PP of the blade edge 51 is configured by this vertex. Further, the side surfaces SD2 and SD3 form ridge lines constituting the side portion PS of the blade edge 51. The side part PS extends linearly from the protrusion part PP. Moreover, since the side part PS is a ridgeline as mentioned above, it has the convex shape extended linearly.
 刃先51はダイヤモンドポイントであることが好ましい。すなわち刃先51は、硬度および表面粗さを小さくすることができる点からダイヤモンドから作られていることが好ましい。より好ましくは刃先51は単結晶ダイヤモンドから作られている。さらに好ましくは結晶学的に言って、天面SD1は{001}面であり、側面SD2およびSD3の各々は{111}面である。この場合、側面SD2およびSD3は、異なる向きを有するものの、結晶学上、互いに等価な結晶面である。 The cutting edge 51 is preferably a diamond point. That is, the cutting edge 51 is preferably made of diamond from the viewpoint that the hardness and the surface roughness can be reduced. More preferably, the cutting edge 51 is made of single crystal diamond. More preferably, crystallographically, the top surface SD1 is a {001} plane, and each of the side surfaces SD2 and SD3 is a {111} plane. In this case, although the side surfaces SD2 and SD3 have different orientations, they are crystal surfaces that are equivalent to each other in terms of crystallography.
 なお単結晶でないダイヤモンドが用いられてもよく、たとえば、CVD(Chemical Vapor Deposition)法で合成された多結晶体ダイヤモンドが用いられてもよい。あるいは、微粒のグラファイトや非グラファイト状炭素から、鉄族元素などの結合材を含まずに焼結された多結晶体ダイヤモンド粒子を鉄族元素などの結合材によって結合させた焼結ダイヤモンドが用いられてもよい。 Diamond that is not a single crystal may be used. For example, polycrystalline diamond synthesized by a CVD (Chemical Vapor Deposition) method may be used. Alternatively, sintered diamond obtained by bonding polycrystalline diamond particles, which are sintered from fine graphite or non-graphitic carbon without containing a binder such as an iron group element, with a binder such as an iron group element is used. May be.
 シャンク52は軸方向AXに沿って延在している。刃先51は、天面SD1の法線方向が軸方向AXにおおよそ沿うようにシャンク52に取り付けられることが好ましい。 The shank 52 extends along the axial direction AX. The blade edge 51 is preferably attached to the shank 52 so that the normal direction of the top surface SD1 is approximately along the axial direction AX.
 カッティング器具50を用いてトレンチラインTL(図7(A))を形成するためには、ガラス基板4の上面SF1に、刃先51の突起部PPおよび側部PSが、ガラス基板4が有する厚さ方向DTへ押し付けられる。次に側部PSを上面SF1上に射影した方向におおよそ沿って、刃先51が上面SF1上を摺動させられる。これにより上面SF1上に、垂直クラックを伴わない溝状のトレンチラインTLが形成される。トレンチラインTLはガラス基板4の塑性変形によって生じるが、この際にガラス基板4が若干削れてもよい。ただしこのような削れは微細な破片を生じ得ることから、なるべく少ないことが好ましい。 In order to form the trench line TL (FIG. 7A) using the cutting tool 50, the protrusion PP and the side PS of the blade edge 51 on the upper surface SF1 of the glass substrate 4 have a thickness that the glass substrate 4 has. Pressed in the direction DT. Next, the blade edge 51 is slid on the upper surface SF1 substantially along the direction in which the side portion PS is projected onto the upper surface SF1. As a result, a groove-like trench line TL without a vertical crack is formed on the upper surface SF1. Although the trench line TL is generated by plastic deformation of the glass substrate 4, the glass substrate 4 may be slightly shaved at this time. However, since such scraping can generate fine fragments, it is preferable that the amount is as small as possible.
 刃先51の摺動によって、トレンチラインTLおよびクラックラインCL(図7(B))が同時に形成される場合と、トレンチラインTLのみが形成される場合とがある。クラックラインCLは、トレンチラインTLのくぼみから厚さ方向DTに伸展したクラックであり、上面SF1上においては線状に延びている。後述する方法によれば、トレンチラインTLのみが形成された後、それに沿ってクラックラインCLを形成することができる。 There are cases where the trench line TL and the crack line CL (FIG. 7B) are formed simultaneously by sliding of the blade edge 51, or only the trench line TL is formed. The crack line CL is a crack extending in the thickness direction DT from the recess of the trench line TL, and extends linearly on the upper surface SF1. According to the method described later, after only the trench line TL is formed, the crack line CL can be formed along the trench line TL.
 次に、ガラス基板4の分断方法について、以下に説明する。 Next, a method for dividing the glass substrate 4 will be described below.
 図21(A)を参照して、ステップS10(図8)にて、まずガラス基板4が準備される。ガラス基板4は平坦な上面SF1を有する。上面SF1を囲む縁は、互いに対向する辺ED1(第1の辺)および辺ED2(第2の辺)を含む。図21(A)で示す例においては、縁は長方形状である。よって辺ED1およびED2は互いに平行な辺である。また図21(A)で示す例においては辺ED1およびED2は長方形の短辺である。またガラス基板4は、上面SF1に垂直な厚さ方向DT(図20(A))を有する。 Referring to FIG. 21A, glass substrate 4 is first prepared in step S10 (FIG. 8). The glass substrate 4 has a flat upper surface SF1. The edge surrounding the upper surface SF1 includes a side ED1 (first side) and a side ED2 (second side) that face each other. In the example shown in FIG. 21A, the edges are rectangular. Therefore, the sides ED1 and ED2 are sides parallel to each other. In the example shown in FIG. 21A, the sides ED1 and ED2 are rectangular short sides. The glass substrate 4 has a thickness direction DT (FIG. 20A) perpendicular to the upper surface SF1.
 次に、ステップS20(図8)にて、上面SF1に刃先51が位置N1で押し付けられる。位置N1の詳細は後述する。刃先51の押し付けは、図20(A)を参照して、ガラス基板4の上面SF1上で刃先51の突起部PPが辺ED1および側部PSの間に配置されるように、かつ刃先51の側部PSが突起部PPと辺ED2の間に配置されるように行なわれる。 Next, in step S20 (FIG. 8), the blade edge 51 is pressed against the upper surface SF1 at the position N1. Details of the position N1 will be described later. With reference to FIG. 20A, the cutting edge 51 is pressed such that the protrusion PP of the cutting edge 51 is disposed between the side ED1 and the side portion PS on the upper surface SF1 of the glass substrate 4 and the cutting edge 51 is pressed. The side PS is arranged between the protrusion PP and the side ED2.
 次に、ステップS30(図8)にて、上面SF1上に複数のトレンチラインTL(図中では5つのライン)が形成される。トレンチラインTLの形成は、位置N1(第1の位置)および位置N3の間で行なわれる。位置N1およびN3の間には位置N2(第2の位置)が位置する。よってトレンチラインTLは、位置N1およびN2の間と、位置N2およびN3の間とに形成される。 Next, in step S30 (FIG. 8), a plurality of trench lines TL (five lines in the figure) are formed on the upper surface SF1. The formation of the trench line TL is performed between the position N1 (first position) and the position N3. A position N2 (second position) is located between the positions N1 and N3. Therefore, trench line TL is formed between positions N1 and N2 and between positions N2 and N3.
 位置N1およびN3は、図21(A)に示すようにガラス基板4の上面SF1の縁から離れて位置してもよく、あるいは、その一方または両方が上面SF1の縁に位置してもよい。形成されるトレンチラインTLは、前者の場合はガラス基板4の縁から離れており、後者の場合はガラス基板4の縁に接している。 The positions N1 and N3 may be located away from the edge of the upper surface SF1 of the glass substrate 4 as shown in FIG. 21A, or one or both of them may be located at the edge of the upper surface SF1. The formed trench line TL is separated from the edge of the glass substrate 4 in the former case, and is in contact with the edge of the glass substrate 4 in the latter case.
 位置N1およびN2のうち位置N1の方が辺ED1により近く、また位置N1およびN2のうち位置N2の方が辺ED2により近い。なお図21(A)に示す例では、位置N1は辺ED1およびED2のうち辺ED1に近く、位置N2は辺ED1およびED2のうち辺ED2に近いが、位置N1およびN2の両方が辺ED1またはED2のいずれか一方の近くに位置してもよい。 Among the positions N1 and N2, the position N1 is closer to the side ED1, and the position N2 is closer to the side ED2 among the positions N1 and N2. In the example shown in FIG. 21A, the position N1 is close to the side ED1 of the sides ED1 and ED2, and the position N2 is close to the side ED2 of the sides ED1 and ED2, but both the positions N1 and N2 are the sides ED1 or It may be located near either one of ED2.
 トレンチラインTLが形成される際には、本実施の形態においては、位置N1から位置N2へ刃先51が変位させられ、さらに位置N2から位置N3へ変位させられる。すなわち、図20(A)を参照して、刃先51が、辺ED1から辺ED2へ向かう方向である方向DAへ変位させられる。方向DAは、刃先51から延びる軸AXを上面SF1上へ射影した方向に対応している。この場合、刃先51はシャンク52によって上面SF1上を引き摺られる。 When the trench line TL is formed, in the present embodiment, the blade edge 51 is displaced from the position N1 to the position N2, and is further displaced from the position N2 to the position N3. That is, with reference to FIG. 20A, the blade edge 51 is displaced in a direction DA that is a direction from the side ED1 toward the side ED2. The direction DA corresponds to the direction in which the axis AX extending from the blade edge 51 is projected onto the upper surface SF1. In this case, the blade edge 51 is dragged on the upper surface SF <b> 1 by the shank 52.
 次に、実施の形態1で説明したクラックレス状態(図7(A))が所望の時間に渡って維持される。その間に、ステップS40(図8)として、実施の形態1と同様に膜21が形成されるか(図3(A)および(B))、または実施の形態2と同様に膜22が形成される(図11(A)および(B))。後者の場合は上記の間にさらに、実施の形態2またはその変形例で説明したように、トレンチラインTLに沿って(図12(A)中の矢印参照)膜22に切り込み(たとえば、図13(B)中の切り込みHL参照)が入れられる。 Next, the crackless state (FIG. 7A) described in the first embodiment is maintained for a desired time. Meanwhile, as step S40 (FIG. 8), the film 21 is formed as in the first embodiment (FIGS. 3A and 3B), or the film 22 is formed as in the second embodiment. (FIGS. 11A and 11B). In the latter case, as described in the second embodiment or the modification thereof, the film 22 is further cut along the trench line TL (see the arrow in FIG. 12A) (for example, FIG. 13). (See the notch HL in (B)).
 図21(B)を参照して、ステップS50(図8)にて、トレンチラインTLが形成された後に、トレンチラインTLに沿って位置N2から位置N1の方へ(図中、破線矢印参照)、厚さ方向DT(図7(B))におけるガラス基板4のクラックを伸展させることによってクラックラインCLが形成される。クラックラインCLの形成は、アシストラインALおよびトレンチラインTLが位置N2で互いに交差することによって開始される。この目的で、トレンチラインTLを形成した後にアシストラインALが形成される。アシストラインALは、厚さ方向DTにおけるクラックをともなう通常のスクライブラインであり、トレンチラインTL付近の内部応力の歪みを解放するものである。アシストラインALの形成方法は、特に限定されないが、図21(B)に示すように、上面SF1の縁を基点として形成されてもよい。 Referring to FIG. 21B, in step S50 (FIG. 8), after the trench line TL is formed, the position N2 is moved to the position N1 along the trench line TL (see the broken line arrow in the figure). The crack line CL is formed by extending the crack of the glass substrate 4 in the thickness direction DT (FIG. 7B). Formation of the crack line CL is started when the assist line AL and the trench line TL intersect each other at the position N2. For this purpose, the assist line AL is formed after the trench line TL is formed. The assist line AL is a normal scribe line with a crack in the thickness direction DT, and releases internal stress distortion in the vicinity of the trench line TL. The method of forming the assist line AL is not particularly limited, but may be formed using the edge of the upper surface SF1 as a base point as shown in FIG.
 なお位置N2から位置N1への方向に比して、位置N2から位置N3への方向へは、クラックラインCLが形成されにくい。つまりクラックラインCLの伸展のしやすさには方向依存性が存在する。よってクラックラインCLが位置N1およびN2の間には形成され位置N2およびN3の間には形成されないという現象が生じ得る。本実施の形態は位置N1およびN2間に沿ったガラス基板4の分断を目的としており、位置N2およびN3間に沿ったガラス基板4の分離は目的としていない。よって位置N1およびN2間でクラックラインCLが形成されることが必要である一方で、位置N2およびN3間でのクラックラインCLの形成されにくさは問題とはならない。 Note that the crack line CL is less likely to be formed in the direction from the position N2 to the position N3 than in the direction from the position N2 to the position N1. That is, the ease of extension of the crack line CL has a direction dependency. Therefore, the phenomenon that the crack line CL is formed between the positions N1 and N2 but not between the positions N2 and N3 may occur. The present embodiment is intended to divide the glass substrate 4 along the positions N1 and N2, and is not intended to separate the glass substrate 4 along the positions N2 and N3. Therefore, while it is necessary to form the crack line CL between the positions N1 and N2, the difficulty of forming the crack line CL between the positions N2 and N3 is not a problem.
 次に、ステップS60(図8)にて、クラックラインCLに沿ってガラス基板4が分断される。具体的にはブレーク工程が行なわれる。なおクラックラインCLがその形成時に厚さ方向DTに完全に進行した場合は、クラックラインCLの形成とガラス基板4の分断とが同時に生じ得る。この場合、ブレーク工程を省略し得る。 Next, in step S60 (FIG. 8), the glass substrate 4 is divided along the crack line CL. Specifically, a break process is performed. Note that, when the crack line CL is completely advanced in the thickness direction DT at the time of formation, the formation of the crack line CL and the division of the glass substrate 4 may occur at the same time. In this case, the break process can be omitted.
 以上によりガラス基板4の分断が行なわれる。 Thus, the glass substrate 4 is divided.
 次に、上記分断方法の第1~第3の変形例について、以下に説明する。 Next, first to third modifications of the above dividing method will be described below.
 図22(A)を参照して、第1の変形例は、アシストラインALとトレンチラインTLとの交差が、クラックラインCL(図21(B))の形成開始のきっかけとして不十分な場合に関するものである。図22(B)を参照して、ガラス基板4へ、曲げモーメントなどを発生させる外力を加えることで、アシストラインALに沿ってガラス基板4が分離される。これによりクラックラインCLの形成が開始される。 Referring to FIG. 22A, the first modified example relates to a case where the intersection of the assist line AL and the trench line TL is insufficient as a trigger for starting the formation of the crack line CL (FIG. 21B). Is. With reference to FIG. 22B, the glass substrate 4 is separated along the assist line AL by applying an external force that generates a bending moment or the like to the glass substrate 4. Thereby, formation of the crack line CL is started.
 なお、図22(A)においてはアシストラインALがガラス基板4の上面SF1上に形成されるが、ガラス基板4を分離するためのアシストラインALはガラス基板4の下面SF2上に形成されてもよい。この場合、アシストラインALおよびトレンチラインTLは、平面レイアウト上、位置N2で互いに交差するが、互いに直接接触はしない。 In FIG. 22A, the assist line AL is formed on the upper surface SF1 of the glass substrate 4. However, the assist line AL for separating the glass substrate 4 may be formed on the lower surface SF2 of the glass substrate 4. Good. In this case, the assist line AL and the trench line TL intersect each other at the position N2 in the planar layout, but do not directly contact each other.
 また第1の変形例においては、ガラス基板4の分離によりトレンチラインTL付近の内部応力の歪みが解放され、それによりクラックラインCLの形成が開始される。したがってアシストラインAL自身が、トレンチラインTLに応力を加えることで形成されたクラックラインCLであってもよい。 In the first modification, the internal stress distortion in the vicinity of the trench line TL is released by the separation of the glass substrate 4, thereby starting the formation of the crack line CL. Therefore, the assist line AL itself may be a crack line CL formed by applying stress to the trench line TL.
 図23を参照して、第2の変形例においては、ステップS20(図8)にて、ガラス基板4の上面SF1に刃先51が位置N3で押し付けられる。ステップS30(図8)にて、トレンチラインTLが形成される際には、本変形例においては、位置N3から位置N2へ刃先51が変位させられ、さらに位置N2から位置N1へ変位させられる。すなわち、図20を参照して、刃先51が、辺ED2から辺ED1へ向かう方向である方向DBへ変位させられる。方向DBは、刃先51から延びる軸AXを上面SF1上へ射影した方向と反対方向に対応している。この場合、刃先51はシャンク52によって上面SF1上を押し進められる。 Referring to FIG. 23, in the second modification, the blade edge 51 is pressed against the upper surface SF1 of the glass substrate 4 at the position N3 in step S20 (FIG. 8). In step S30 (FIG. 8), when the trench line TL is formed, in the present modification, the blade edge 51 is displaced from the position N3 to the position N2, and is further displaced from the position N2 to the position N1. That is, with reference to FIG. 20, the blade edge 51 is displaced in a direction DB that is a direction from the side ED2 toward the side ED1. The direction DB corresponds to a direction opposite to the direction in which the axis AX extending from the blade edge 51 is projected onto the upper surface SF1. In this case, the blade edge 51 is pushed forward on the upper surface SF 1 by the shank 52.
 図24を参照して、第3の変形例においては、ステップS30(図8)にてトレンチラインTLが形成される際に、刃先51はガラス基板4の上面SF1に位置N1に比して位置N2でより大きな力で押し付けられる。具体的には、位置N4を位置N1およびN2の間の位置として、トレンチラインTLの形成が位置N4に至った時点で、刃先51の荷重が高められる。言い換えれば、トレンチラインTLの荷重が、位置N1に比して、トレンチラインTLの終端部である位置N4およびN3の間で高められる。これにより、終端部以外での荷重を軽減しつつ、位置N2からのクラックラインCLの形成を誘起されやすくすることができる。 Referring to FIG. 24, in the third modification, when the trench line TL is formed in step S30 (FIG. 8), the blade edge 51 is positioned on the upper surface SF1 of the glass substrate 4 as compared with the position N1. Pressed with greater force at N2. Specifically, the load on the blade edge 51 is increased when the position of the trench line TL reaches the position N4 with the position N4 as the position between the positions N1 and N2. In other words, the load on the trench line TL is increased between the positions N4 and N3, which are the end portions of the trench line TL, as compared with the position N1. Thereby, formation of the crack line CL from the position N2 can be easily induced while reducing a load at a portion other than the terminal portion.
 本実施の形態によれば、トレンチラインTLからクラックラインCLを、より確実に形成することができる。 According to the present embodiment, the crack line CL can be more reliably formed from the trench line TL.
 また、後述する実施の形態4と異なり本実施の形態においては、トレンチラインTLが形成された時点(図21(A))ではアシストラインALは未だ形成されていない。よってクラックレス状態を、アシストラインALからの影響なく、より安定的に維持することができる。なお、クラックレス状態の安定性が問題とならない場合は、アシストラインALが形成されていない図21(A)の状態の代わりに、アシストラインALが形成された図22(A)の状態でクラックレス状態が維持されてもよい。 Further, unlike the fourth embodiment described later, in the present embodiment, the assist line AL has not yet been formed at the time when the trench line TL is formed (FIG. 21A). Therefore, the crackless state can be maintained more stably without being affected by the assist line AL. If the stability in the crackless state does not matter, the crack in the state shown in FIG. 22A where the assist line AL is formed is used instead of the state shown in FIG. 21A where the assist line AL is not formed. The less state may be maintained.
 (実施の形態4)
 本実施の形態における脆性基板の分断方法について、図25~図27を用いつつ、以下に説明する。
(Embodiment 4)
A method for dividing a brittle substrate in the present embodiment will be described below with reference to FIGS.
 図25を参照して、本実施の形態においてはアシストラインALがトレンチラインTLの形成前に形成される。アシストラインALの形成方法自体は、図21(B)(実施の形態3)と同様である。 Referring to FIG. 25, in the present embodiment, assist line AL is formed before formation of trench line TL. The method of forming the assist line AL is the same as that in FIG. 21B (Embodiment 3).
 図26を参照して、次に、ステップS20(図8)にて上面SF1に刃先51が押し付けられ、そしてステップS30(図8)にて、トレンチラインTLが形成される。トレンチラインTLの形成方法自体は、図21(A)(実施の形態3)と同様である。アシストラインALおよびトレンチラインTLは位置N2で互いに交差する。次に、実施の形態3と同様、ステップS40(図8)として、実施の形態1と同様に膜21が形成されるか(図3(A)および(B))、または実施の形態2と同様に膜22が形成される(図11(A)および(B))。後者の場合は上記の間にさらに、実施の形態2またはその変形例で説明したように、トレンチラインTLに沿って(図12(A)中の矢印参照)膜22に切り込み(たとえば、図13(B)中の切り込みHL参照)が入れられる。 Referring to FIG. 26, next, in step S20 (FIG. 8), the blade edge 51 is pressed against the upper surface SF1, and in step S30 (FIG. 8), a trench line TL is formed. The method of forming the trench line TL itself is the same as that in FIG. 21A (Embodiment 3). The assist line AL and the trench line TL intersect each other at the position N2. Next, as in the third embodiment, in step S40 (FIG. 8), is the film 21 formed as in the first embodiment (FIGS. 3A and 3B) or the second embodiment and Similarly, a film 22 is formed (FIGS. 11A and 11B). In the latter case, as described in the second embodiment or the modification thereof, the film 22 is further cut along the trench line TL (see the arrow in FIG. 12A) (for example, FIG. 13). (See the notch HL in (B)).
 図27を参照して、次に、ガラス基板4へ曲げモーメントなどを発生させる外力を加える通常のブレーク工程によって、アシストラインALに沿ってガラス基板4が分離される。これにより、ステップS50(図20)として、クラックラインCL(図7(B))の形成が開始される(図中、破線矢印参照)。なお、図25においてはアシストラインALがガラス基板4の上面SF1上に形成されるが、ガラス基板4を分離するためのアシストラインALはガラス基板4の下面SF2上に形成されてもよい。この場合、アシストラインALおよびトレンチラインTLは、平面レイアウト上、位置N2で互いに交差するが、互いに直接接触はしない。 Referring to FIG. 27, next, glass substrate 4 is separated along assist line AL by a normal break process in which an external force that generates a bending moment or the like is applied to glass substrate 4. Thereby, formation of the crack line CL (FIG. 7B) is started as step S50 (FIG. 20) (see broken line arrows in the figure). In FIG. 25, the assist line AL is formed on the upper surface SF1 of the glass substrate 4. However, the assist line AL for separating the glass substrate 4 may be formed on the lower surface SF2 of the glass substrate 4. In this case, the assist line AL and the trench line TL intersect each other at the position N2 in the planar layout, but do not directly contact each other.
 なお、上記以外の構成については、上述した実施の形態3の構成とほぼ同じである。 The configuration other than the above is substantially the same as the configuration of the third embodiment described above.
 図28(A)を参照して、第1の変形例においては、アシストラインALはガラス基板4の下面SF2上に形成される。そして、図23(実施の形態3)と同様に、トレンチラインTLの形成が位置N3から位置N1へ行なわれる。図28(B)を参照して、ガラス基板4へ曲げモーメントなどを発生させる外力を加えることでアシストラインALに沿ってガラス基板4が分離される。これによりクラックラインCLの形成が開始される(図中、破線矢印参照)。 Referring to FIG. 28A, in the first modification, assist line AL is formed on lower surface SF2 of glass substrate 4. Then, as in FIG. 23 (Embodiment 3), trench line TL is formed from position N3 to position N1. Referring to FIG. 28B, the glass substrate 4 is separated along the assist line AL by applying an external force that generates a bending moment or the like to the glass substrate 4. Thereby, formation of the crack line CL is started (see the broken line arrow in the figure).
 図29を参照して、第2の変形例においては、ステップS30(図8)にてトレンチラインTLが形成される際に、刃先51はガラス基板4の上面SF1に位置N1に比して位置N2でより大きな力で押し付けられる。具体的には、位置N4を位置N1およびN2の間の位置として、トレンチラインTLの形成が位置N4に至った時点で、刃先51の荷重が高められる。言い換えれば、トレンチラインTLの荷重が、位置N1に比して、トレンチラインTLの終端部である位置N4およびN3の間で高められる。これにより、終端部以外での荷重を軽減しつつ、位置N2からのクラックラインCLの形成を誘起されやすくすることができる。 Referring to FIG. 29, in the second modified example, when the trench line TL is formed in step S30 (FIG. 8), the blade edge 51 is positioned on the upper surface SF1 of the glass substrate 4 as compared to the position N1. Pressed with greater force at N2. Specifically, the load on the blade edge 51 is increased when the position of the trench line TL reaches the position N4 with the position N4 as the position between the positions N1 and N2. In other words, the load on the trench line TL is increased between the positions N4 and N3, which are the end portions of the trench line TL, as compared with the position N1. Thereby, formation of the crack line CL from the position N2 can be easily induced while reducing a load at a portion other than the terminal portion.
 (実施の形態5)
 図30(A)を参照して、本実施の形態における脆性基板の分断方法においては、ステップS30(図8)にて、位置N1から位置N2を経由して辺ED2へ達するトレンチラインTLが形成される。次に、実施の形態1で説明したクラックレス状態(図7(A))が所望の時間に渡って維持される。その間に、ステップS40(図8)として、実施の形態1と同様に膜21が形成されるか(図3(A)および(B))、または実施の形態2と同様に膜22が形成される(図11(A)および(B))。後者の場合は上記の間にさらに、実施の形態2またはその変形例で説明したように、トレンチラインTLに沿って(図12(A)中の矢印参照)膜22に切り込み(たとえば、図13(B)中の切り込みHL参照)が入れられる。
(Embodiment 5)
Referring to FIG. 30A, in the method for dividing a brittle substrate in the present embodiment, a trench line TL reaching from the position N1 to the side ED2 via the position N2 is formed in step S30 (FIG. 8). Is done. Next, the crackless state (FIG. 7A) described in Embodiment 1 is maintained over a desired time. Meanwhile, as step S40 (FIG. 8), the film 21 is formed as in the first embodiment (FIGS. 3A and 3B), or the film 22 is formed as in the second embodiment. (FIGS. 11A and 11B). In the latter case, as described in the second embodiment or the modification thereof, the film 22 is further cut along the trench line TL (see the arrow in FIG. 12A) (for example, FIG. 13). (See the notch HL in (B)).
 図30(B)を参照して、次に位置N2と辺ED2との間に、トレンチラインTL付近の内部応力の歪みを解放させるような応力が加えられる。これによりトレンチラインTLに沿ったクラックラインの形成が誘起される(図8:ステップS50)。 Referring to FIG. 30B, next, a stress is applied between position N2 and side ED2 so as to release the distortion of internal stress in the vicinity of trench line TL. This induces formation of a crack line along the trench line TL (FIG. 8: Step S50).
 応力の印加として具体的には、上面SF1上において位置N2と辺ED2との間(図中、破線および辺ED2の間の領域)で、押し付けられた刃先51が摺動させられる。この摺動は辺ED2に達するまで行なわれる。刃先51は好ましくは最初に形成されたトレンチラインTLの軌道に交差するように、より好ましくは最初に形成されたトレンチラインTLの軌道に重なるように摺動される。この再度の摺動の長さは、たとえば0.5mm程度である。またこの再度の摺動は、複数のトレンチラインTL(図30(A))が形成された後にそれぞれに対して行なわれてもよく、あるいは、1つのトレンチラインTLの形成および再度の摺動を行なう工程がトレンチラインTLごとに順次行なわれてもよい。 Specifically, as the application of stress, the pressed blade edge 51 is slid between the position N2 and the side ED2 (the region between the broken line and the side ED2 in the drawing) on the upper surface SF1. This sliding is performed until the side ED2 is reached. The cutting edge 51 is preferably slid so as to intersect the track of the trench line TL formed first, and more preferably to overlap the track of the trench line TL formed first. The length of this second sliding is, for example, about 0.5 mm. This re-sliding may be performed on each of the plurality of trench lines TL (FIG. 30A) after they are formed, or the formation and re-sliding of one trench line TL may be performed. The process to be performed may be sequentially performed for each trench line TL.
 変形例として、位置N2と辺ED2との間に応力を加えるために、上述した刃先51の再度の摺動に代えて、上面SF1上において位置N2と辺ED2との間にレーザ光が照射されてもよい。これにより生じた熱応力によっても、トレンチラインTL付近の内部応力の歪みが解放され、それによりクラックラインの形成開始を誘起することができる。 As a modification, in order to apply a stress between the position N2 and the side ED2, a laser beam is irradiated between the position N2 and the side ED2 on the upper surface SF1 instead of the sliding of the cutting edge 51 described above. May be. Due to the thermal stress generated thereby, the distortion of the internal stress in the vicinity of the trench line TL is released, thereby inducing the start of formation of the crack line.
 なお、上記以外の構成については、上述した実施の形態3の構成とほぼ同じである。 The configuration other than the above is substantially the same as the configuration of the third embodiment described above.
 (実施の形態6)
 図31(A)を参照して、本実施の形態における脆性基板の分断方法においては、ステップS30(図8)にて、位置N1から位置N2へ、そしてさらに位置N3へ刃先51を変位させることによって、上面SF1の縁から離れたトレンチラインTLが形成される。トレンチラインTLの形成方法自体は図21(A)(実施の形態3)とほぼ同様である。
(Embodiment 6)
Referring to FIG. 31A, in the brittle substrate cutting method according to the present embodiment, in step S30 (FIG. 8), the cutting edge 51 is displaced from position N1 to position N2 and further to position N3. Thus, a trench line TL separated from the edge of the upper surface SF1 is formed. The formation method itself of the trench line TL is almost the same as that in FIG. 21A (Embodiment 3).
 次に、実施の形態1で説明したクラックレス状態(図7(A))が所望の時間に渡って維持される。その間に、ステップS40(図8)として、実施の形態1と同様に膜21が形成されるか(図3(A)および(B))、または実施の形態2と同様に膜22が形成される(図11(A)および(B))。後者の場合は上記の間にさらに、実施の形態2またはその変形例で説明したように、トレンチラインTLに沿って(図12(A)中の矢印参照)膜22に切り込み(たとえば、図13(B)中の切り込みHL参照)が入れられる。 Next, the crackless state (FIG. 7A) described in the first embodiment is maintained for a desired time. Meanwhile, as step S40 (FIG. 8), the film 21 is formed as in the first embodiment (FIGS. 3A and 3B), or the film 22 is formed as in the second embodiment. (FIGS. 11A and 11B). In the latter case, as described in the second embodiment or the modification thereof, the film 22 is further cut along the trench line TL (see the arrow in FIG. 12A) (for example, FIG. 13). (See the notch HL in (B)).
 図31(B)を参照して、図30(B)(実施の形態5またはその変形例)と同様の応力印加が行なわれる。これによりトレンチラインTLに沿ったクラックラインの形成が誘起される(図8:ステップS50)。 Referring to FIG. 31 (B), the same stress application as in FIG. 30 (B) (Embodiment 5 or its modification) is performed. This induces formation of a crack line along the trench line TL (FIG. 8: Step S50).
 図32を参照して、図31(A)の工程の変形例として、トレンチラインTLの形成において、刃先51が位置N3から位置N2へそして位置N2から位置N1へ変位させられてもよい。 Referring to FIG. 32, as a modification of the process of FIG. 31A, in forming trench line TL, cutting edge 51 may be displaced from position N3 to position N2 and from position N2 to position N1.
 なお、上記以外の構成については、上述した実施の形態3の構成とほぼ同じである。 The configuration other than the above is substantially the same as the configuration of the third embodiment described above.
 (実施の形態7)
 図33(A)および(B)を参照して、上記各実施の形態において、刃先51(図20(A)および(B))に代わり、刃先51vが用いられてもよい。刃先51vは、頂点と、円錐面SCとを有する円錐形状を有する。刃先51vの突起部PPvは頂点で構成されている。刃先の側部PSvは頂点から円錐面SC上に延びる仮想線(図33(B)における破線)に沿って構成されている。これにより側部PSvは、線状に延びる凸形状を有する。
(Embodiment 7)
Referring to FIGS. 33 (A) and (B), in each of the above embodiments, blade edge 51v may be used instead of blade edge 51 (FIGS. 20 (A) and (B)). The blade edge 51v has a conical shape having a vertex and a conical surface SC. The protruding part PPv of the blade edge 51v is constituted by a vertex. The side portion PSv of the blade edge is configured along a virtual line (broken line in FIG. 33B) extending from the apex to the conical surface SC. Thereby, the side part PSv has a convex shape extending linearly.
 上記各実施の形態においてはガラス基板の縁の第1および第2の辺が長方形の短辺であるが、第1および第2の辺は長方形の長辺であってもよい。また縁の形状は長方形に限定されるものではなく、たとえば正方形であってもよい。また第1および第2の辺は直線状のものに限定されるものではなく曲線状であってもよい。また上記各実施の形態においてはガラス基板の面が平坦であるが、ガラス基板の面は湾曲していてもよい。 In the above-described embodiments, the first and second sides of the edge of the glass substrate are rectangular short sides, but the first and second sides may be rectangular long sides. The shape of the edge is not limited to a rectangle, and may be a square, for example. Further, the first and second sides are not limited to being linear, and may be curved. In each of the above embodiments, the surface of the glass substrate is flat, but the surface of the glass substrate may be curved.
 上述した分断方法に特に適した脆性基板としてガラス基板が用いられるが、脆性基板はガラス基板に限定されるものではない。脆性基板は、ガラス以外に、たとえば、セラミックス、シリコン、化合物半導体、サファイア、または石英から作られ得る。 Although a glass substrate is used as the brittle substrate particularly suitable for the above-described cutting method, the brittle substrate is not limited to the glass substrate. In addition to glass, the brittle substrate can be made of, for example, ceramics, silicon, compound semiconductors, sapphire, or quartz.
 本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 In the present invention, it is possible to freely combine the respective embodiments within the scope of the invention, and to appropriately modify and omit the respective embodiments.
 4 ガラス基板(脆性基板)
 21,22 膜
 51,51v 刃先
 AL アシストライン
 CL クラックライン
 ED1 辺(第1の辺)
 ED2 辺(第2の辺)
 N1 位置(第1の位置)
 N2 位置(第2の位置)
 SF1 上面(表面)
 TL トレンチライン
 PP,PPv 突起部
 PS,PSv 側部
4 Glass substrate (brittle substrate)
21, 22 Membrane 51, 51v Cutting edge AL assist line CL crack line ED1 side (first side)
ED2 side (second side)
N1 position (first position)
N2 position (second position)
SF1 Upper surface (surface)
TL trench line PP, PPv Protrusion PS, PSv Side

Claims (10)

  1.  表面を有し、前記表面に垂直な厚さ方向を有する脆性基板を準備する工程と、
     前記脆性基板の前記表面に刃先を押し付ける工程と、
     前記押し付ける工程によって押し付けられた前記刃先を前記脆性基板の前記表面上で摺動させることによって前記脆性基板の前記表面上に塑性変形を発生させることで、溝形状を有するトレンチラインを形成する工程とを備え、前記トレンチラインを形成する工程は、前記トレンチラインの直下において前記脆性基板が前記トレンチラインと交差する方向において連続的につながっている状態であるクラックレス状態が得られるように行なわれ、さらに
     前記トレンチラインを形成する工程の後、前記脆性基板の前記表面上に、前記トレンチラインを少なくとも部分的に覆う膜を形成する工程と、
     前記膜を形成する工程の後に、前記トレンチラインに沿って前記厚さ方向における前記脆性基板のクラックを伸展させることによって、クラックラインを形成する工程とを備え、前記クラックラインによって前記トレンチラインの直下において前記脆性基板は前記トレンチラインと交差する方向において連続的なつながりが断たれており、さらに
     前記クラックラインに沿って前記脆性基板を分断する工程を備える、脆性基板の分断方法。
    Providing a brittle substrate having a surface and having a thickness direction perpendicular to the surface;
    Pressing the blade edge against the surface of the brittle substrate;
    Forming a trench line having a groove shape by causing plastic deformation on the surface of the brittle substrate by sliding the blade edge pressed by the pressing step on the surface of the brittle substrate; The step of forming the trench line is performed so as to obtain a crackless state in which the brittle substrate is continuously connected in a direction intersecting the trench line immediately below the trench line, Further, after the step of forming the trench line, forming a film at least partially covering the trench line on the surface of the brittle substrate;
    Forming a crack line by extending a crack of the brittle substrate in the thickness direction along the trench line after the step of forming the film, and forming a crack line directly below the trench line by the crack line In the method for dividing a brittle substrate, the continuous brittle substrate is disconnected in a direction intersecting with the trench line, and the brittle substrate is further divided along the crack line.
  2.  前記脆性基板を分断する工程は、前記脆性基板と共に前記膜を分断する工程を含む、請求項1に記載の脆性基板の分断方法。 The method for dividing a brittle substrate according to claim 1, wherein the step of dividing the brittle substrate includes a step of dividing the film together with the brittle substrate.
  3.  前記膜は無機材料から作られている、請求項2に記載の脆性基板の分断方法。 The method for dividing a brittle substrate according to claim 2, wherein the film is made of an inorganic material.
  4.  前記膜は金属から作られている、請求項2に記載の脆性基板の分断方法。 The method for cutting a brittle substrate according to claim 2, wherein the film is made of metal.
  5.  前記クラックラインを形成する工程の前に、前記トレンチラインに沿って前記膜に切り込みを入れる工程をさらに備える、請求項1に記載の脆性基板の分断方法。 The method for cutting a brittle substrate according to claim 1, further comprising a step of cutting the film along the trench line before the step of forming the crack line.
  6.  前記切り込みを入れる工程は、前記膜の厚さ方向において前記膜を完全に切断することによって行なわれる、請求項5に記載の脆性基板の分断方法。 6. The method for cutting a brittle substrate according to claim 5, wherein the step of cutting is performed by completely cutting the film in the thickness direction of the film.
  7.  前記切り込みを入れる工程は、前記膜の厚さ方向において前記膜を部分的に切断することによって行なわれる、請求項5に記載の脆性基板の分断方法。 6. The method for dividing a brittle substrate according to claim 5, wherein the step of cutting is performed by partially cutting the film in a thickness direction of the film.
  8.  前記膜は合成樹脂から作られている、請求項5から7のいずれか1項に記載の脆性基板の分断方法。 The brittle substrate cutting method according to any one of claims 5 to 7, wherein the film is made of a synthetic resin.
  9.  前記脆性基板はガラスから作られている、請求項1から8のいずれか1項に記載の脆性基板の分断方法。 The method for dividing a brittle substrate according to any one of claims 1 to 8, wherein the brittle substrate is made of glass.
  10.  前記脆性基板を準備する工程において、前記表面は、互いに対向する第1および第2の辺を含む縁に囲まれており、
     前記刃先を押し付ける工程において、前記刃先は、突起部と、前記突起部から延びかつ凸形状を有する側部とを有し、前記刃先を押し付ける工程は前記脆性基板の前記表面上で前記刃先の前記側部が前記突起部と前記第2の辺の間に配置されるように行なわれ、
     前記トレンチラインを形成する工程において、前記トレンチラインは、第1の位置と、前記第1の位置より前記第2の辺に近い第2の位置との間で形成され、
     前記クラックラインを形成する工程は、前記トレンチラインに沿って前記第2の位置から前記第1の位置の方へ、前記厚さ方向における前記脆性基板のクラックを伸展させることによって行なわれる、
    請求項1から9のいずれか1項に記載の脆性基板の分断方法。
    In the step of preparing the brittle substrate, the surface is surrounded by edges including first and second sides facing each other,
    In the step of pressing the blade edge, the blade edge has a protrusion and a side portion extending from the protrusion and having a convex shape, and the step of pressing the blade edge includes the step of pressing the blade edge on the surface of the brittle substrate. A side portion is disposed between the protrusion and the second side;
    In the step of forming the trench line, the trench line is formed between a first position and a second position closer to the second side than the first position;
    The step of forming the crack line is performed by extending a crack of the brittle substrate in the thickness direction from the second position toward the first position along the trench line.
    The method for dividing a brittle substrate according to any one of claims 1 to 9.
PCT/JP2015/062200 2014-05-30 2015-04-22 Method for splitting brittle substrate WO2015182297A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016523383A JP6288259B2 (en) 2014-05-30 2015-04-22 Method for dividing brittle substrate
KR1020167033458A KR101856556B1 (en) 2014-05-30 2015-04-22 Method for splitting brittle substrate
CN201580028857.7A CN106458691B (en) 2014-05-30 2015-04-22 Method for dividing brittle substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-112647 2014-05-30
JP2014112647 2014-05-30

Publications (1)

Publication Number Publication Date
WO2015182297A1 true WO2015182297A1 (en) 2015-12-03

Family

ID=54698638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062200 WO2015182297A1 (en) 2014-05-30 2015-04-22 Method for splitting brittle substrate

Country Status (5)

Country Link
JP (1) JP6288259B2 (en)
KR (1) KR101856556B1 (en)
CN (1) CN106458691B (en)
TW (1) TWI647081B (en)
WO (1) WO2015182297A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110665551B (en) * 2019-09-05 2021-10-01 嘉兴博创智能传感科技有限公司 Micro-fluidic chip structure based on ultraviolet laser mask etching

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331983A (en) * 2006-06-15 2007-12-27 Sony Corp Scribing method for glass
JP2008201629A (en) * 2007-02-21 2008-09-04 Epson Imaging Devices Corp Manufacturing method of electrooptical device, separating method of substrate, and substrate separating device
JP2012000793A (en) * 2010-06-14 2012-01-05 Mitsuboshi Diamond Industrial Co Ltd Method for scribing brittle material substrate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000280234A (en) 1999-01-28 2000-10-10 Canon Inc Method for cutting of substrate
CN1970266B (en) * 2001-03-16 2010-09-01 三星宝石工业株式会社 Cutter wheel, scribing device using the cutter wheel, and cutter wheel manufacturing device for manufacturing the cutter wheel
KR100657197B1 (en) * 2002-11-22 2006-12-14 미쓰보시 다이야몬도 고교 가부시키가이샤 Method for dividing substrate and method for manufacturing substrate using such method
CN101610870B (en) * 2007-10-16 2013-09-11 三星钻石工业股份有限公司 Method of machining u-shaped groove of substrate of fragile material, removal method, boring method and chamfering method using the same method
TWI494284B (en) * 2010-03-19 2015-08-01 Corning Inc Mechanical scoring and separation of strengthened glass
KR101247571B1 (en) * 2010-06-14 2013-03-26 미쓰보시 다이야몬도 고교 가부시키가이샤 Method for scribing brittle material substrate
JP5244202B2 (en) * 2011-01-27 2013-07-24 三星ダイヤモンド工業株式会社 Method for scribing a brittle material substrate
TWI498293B (en) * 2011-05-31 2015-09-01 Mitsuboshi Diamond Ind Co Ltd Scribe method, diamond point and scribe apparatus
JP5688782B2 (en) * 2012-04-24 2015-03-25 株式会社東京精密 Dicing blade

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331983A (en) * 2006-06-15 2007-12-27 Sony Corp Scribing method for glass
JP2008201629A (en) * 2007-02-21 2008-09-04 Epson Imaging Devices Corp Manufacturing method of electrooptical device, separating method of substrate, and substrate separating device
JP2012000793A (en) * 2010-06-14 2012-01-05 Mitsuboshi Diamond Industrial Co Ltd Method for scribing brittle material substrate

Also Published As

Publication number Publication date
TW201601890A (en) 2016-01-16
CN106458691B (en) 2020-01-14
CN106458691A (en) 2017-02-22
KR20160147981A (en) 2016-12-23
JP6288259B2 (en) 2018-03-07
JPWO2015182297A1 (en) 2017-04-20
TWI647081B (en) 2019-01-11
KR101856556B1 (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP6288258B2 (en) Method for dividing brittle substrate
JP6493456B2 (en) Method for forming crack line in brittle material substrate
JP6555354B2 (en) Method for dividing brittle substrate
JP6288260B2 (en) Method for dividing brittle substrate
JP6288259B2 (en) Method for dividing brittle substrate
JP6350669B2 (en) Method for dividing brittle substrate
TW201741106A (en) Segmentation method for brittle substrate
KR102205786B1 (en) Method of dividing brittle substrate
JP2017065007A (en) Method of segmenting brittle substrate
JP2017065006A (en) Method of segmenting brittle substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800050

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523383

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167033458

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15800050

Country of ref document: EP

Kind code of ref document: A1