WO2015182224A1 - Method and system for pattern dimension measurement using charged particle beam - Google Patents

Method and system for pattern dimension measurement using charged particle beam Download PDF

Info

Publication number
WO2015182224A1
WO2015182224A1 PCT/JP2015/058235 JP2015058235W WO2015182224A1 WO 2015182224 A1 WO2015182224 A1 WO 2015182224A1 JP 2015058235 W JP2015058235 W JP 2015058235W WO 2015182224 A1 WO2015182224 A1 WO 2015182224A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
image
charged particle
particle beam
contrast
Prior art date
Application number
PCT/JP2015/058235
Other languages
French (fr)
Japanese (ja)
Inventor
慎弥 村上
宍戸 千絵
田中 麻紀
二大 笹嶋
仁 生井
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Publication of WO2015182224A1 publication Critical patent/WO2015182224A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons

Definitions

  • the present invention relates to a pattern dimension measuring method using a charged particle beam that irradiates a pattern formed on a semiconductor wafer with a charged particle beam to acquire an image and measure the dimension, and a system thereof.
  • Via a deep hole (hereinafter referred to as Via) formed in a trench in a dual damascene process can be said to be a representative example.
  • Via is small in size (diameter) and deeply formed, and has a high aspect ratio.
  • the contrast of the Via bottom in the SEM image is insufficient, and there is a problem that it is difficult to visually confirm the measurement location of the Via on the SEM image, to set the measurement conditions, and to measure itself.
  • Patent Document 1 uses a BSE (BackScattered Electron) image for region division to improve the contrast in the divided region.
  • BSE BackScattered Electron
  • Patent Document 2 discloses a pattern imaging method for setting a gain value which is an imaging condition for increasing the contrast in the ROI by setting an ROI (Region of Interest) on the pattern image.
  • the present invention envisions a low-contrast measurement target that is difficult to visually check and measure edges, which occurs in a circuit pattern having a height difference formed on a semiconductor wafer.
  • Patent Document 1 is an invention intended to improve the contrast of a local region of a secondary electron image by performing contrast correction based on the result of region classification using a reflected electron image.
  • it is necessary to extract a local area inside the pattern, and it is not sufficient to classify the area only by the reflected electron image.
  • gain adjustment or gamma conversion is performed based on luminance information in a local area, but there is a detailed description of a local area extraction method inside a pattern and a contrast correction method by image processing. In other words, it is insufficient to enhance the contrast of the bottom edge of the measurement target.
  • a system for measuring the dimension of a pattern including a hole or groove formed on a sample using a charged particle beam is used as a pattern including a hole or groove formed on the sample.
  • a charged particle beam image acquisition unit for acquiring a charged particle beam image of a pattern including holes or grooves by irradiating with charged particles and scanning the charged particle beam image acquired by the charged particle beam image acquisition unit
  • a signal processing unit for measuring a dimension of a pattern including a hole or a groove, and a display unit having a screen for displaying a result processed by the signal processing unit.
  • the signal processing unit is a charged particle beam image acquisition unit.
  • a method for measuring the dimension of a pattern including a hole or groove formed on a sample using a charged particle beam is used. Irradiate and scan the pattern containing the charged particles to obtain a charged particle beam image of the pattern including the hole or groove, process the acquired charged particle beam image to measure the size of the pattern including the hole or groove, This includes displaying the processed results on the screen, and measuring the dimensions of the pattern including the holes or grooves, and setting the pattern area including the holes or grooves to measure the dimensions in the acquired charged particle beam image. , By correcting the contrast of the charged particle beam image in the pattern area including the hole or groove to measure the set dimension, and processing the image with the corrected contrast The dimensions of the pattern including the so measured.
  • a method for measuring a dimension of a pattern including a hole or a groove formed on a sample using a charged particle beam, a hole or a groove formed on the sample is measured. Irradiate and scan the pattern containing the charged particles to obtain a charged particle beam image of the pattern including the hole or groove, process the acquired charged particle beam image to measure the size of the pattern including the hole or groove, This includes displaying the processed result on the screen, and measuring the size of the pattern including the hole or groove, and displaying the acquired charged particle beam image and the contrast corrected image on the screen. Correct the contrast correction conditions of the image on the displayed screen, and measure the dimensions of the pattern including holes or grooves by processing the image with the corrected contrast under the corrected correction conditions. Was to so that.
  • the present invention improves the contrast of images of low-contrast measurement objects that are difficult to visually check for edges that occur in circuit patterns with different heights, especially hole bottoms and deep groove patterns, and has high reproducibility and high reliability. Enables setting of conditions and measurement.
  • FIG. 1 is a block diagram showing a schematic configuration of a pattern dimension measuring system according to Embodiment 1 of the present invention. It is a figure which shows the SEM image of the pattern of the measuring object which concerns on Example 1 of this invention. It is sectional drawing (upper side) of the pattern of the measurement object which concerns on Example 1 of this invention, and the graph (lower side) which shows the luminance signal of the SEM image which the cross section can go. It is a flowchart which shows the flow of the process which performs the contrast correction
  • the present invention can extract an inner region of a hole or groove pattern in a charged particle beam image acquired by a scanning electron microscope (SEM), and can visually recognize the edge of the hole or groove pattern based on the luminance information of the extracted inner region. In this way, the contrast of the charged particle beam image is corrected and displayed, and the dimension of the hole or groove pattern can be accurately measured using the image with the corrected contrast.
  • SEM scanning electron microscope
  • a circuit pattern with a height difference formed on a semiconductor wafer in particular, a trench (deep groove) or via (deep hole), or a pattern called Via-in-Trench in which Via exists in the trench is obtained by SEM.
  • the present invention relates to a system for improving visibility inside a pattern in an image obtained by imaging.
  • FIG. 1 shows an overall configuration diagram of an apparatus for realizing a pattern dimension measurement system according to the present embodiment.
  • the length measuring SEM 100 according to the present embodiment is configured to include a SEM main body 120 and a signal processing system 130.
  • the SEM main body 120 includes an XY stage 107 on which a silicon wafer (sample) 106 on which a circuit pattern to be measured is formed, an irradiation optical system 140 for controlling the electron beam 101 emitted from the electron gun 102, and emitted from above the sample.
  • the detector 108 for detecting the electrons to be detected is provided.
  • the irradiation optical system 140 includes an electron gun 102, a condenser lens 103, a deflector 104, and an objective lens 105 on the path of the electron beam 101.
  • the signal processing system 130 for the detection signal includes an A / D converter 109 that converts an analog signal output from the detector 108 that has detected secondary electrons generated from the sample 106 irradiated with the electron beam 101 into a digital signal, and A Controls the CPU 113, the LSI 114, the arithmetic unit 110 having the image memory 115, and the arithmetic unit 110, which input and processes the signal converted by the / D converter 109, and the SEM main body 120 via the arithmetic unit 110.
  • a terminal 111 and a storage terminal 112 for storing data are provided.
  • the electron beam 101 emitted from the electron gun 102 is irradiated onto the silicon wafer 106 under the control of the condenser lens 103, the deflector 104, and the objective lens 105 of the irradiation optical system 140. Secondary electrons are emitted from the region irradiated with the electron beam 101 on the silicon wafer 106, and a part thereof is incident on the detector 108 and detected. An analog signal output from the detector 108 that has detected secondary electrons is converted into a digital signal by the A / D converter 109 and input to the arithmetic unit 110.
  • the calculation unit 110 receives the signal data from the detector 108 converted into a digital signal by the A / D converter 109 and stores the signal data in the image memory 115. In addition, it also has a function as an observation image acquisition unit that generates a detection electronic image based on the result detected by the detector 108.
  • the data stored in the image memory 115 may be stored again in the external storage device 112.
  • the control terminal 111 controls the coordinates of the XY stage 107 and the measurement sequence via the calculation unit 110.
  • the control terminal 111 has a GUI (Graphical User Interface) that displays an observation image, a dimensional measurement result, and the like on the screen 116 for the user.
  • the user can change the coordinates of the pattern on the silicon wafer and the pattern required for the dimensional measurement.
  • Imaging recipe data including a pattern matching template used for positioning, imaging conditions, and the like can be created.
  • FIG. 2A is a pattern image 201 showing an example of a so-called Via-in-Trench structure in which a Via pattern that is a deep hole pattern is formed on the bottom surface of a trench pattern on a silicon wafer 106 to be measured as an example of a measurement target. It is.
  • Reference numeral 204 denotes a mask region on the silicon wafer 106
  • 205 denotes a trench formed by removing a part of the mask region 204
  • 206 denotes a hole (Via) processed in the trench 205.
  • FIG. 2B shows a cross-sectional structure 202 corresponding to the straight line 207 between point A and point B in the pattern image 201 in FIG. 2A and the luminance profile 203 acquired from the pattern image 201 in the region on the straight line 207.
  • the mask 208, the trench bottom 209, and the Via bottom 210 are arranged in this order from the top, and the side wall 211 is tapered.
  • the measurement target includes the top edge interval 212 and the bottom edge interval 213.
  • the horizontal axis represents the position on the sample
  • the vertical axis represents the luminance of the detection signal.
  • the measurement of the top edge interval 212 of the via 206 formed on the bottom surface 209 of the trench 205 from the luminance profile 203 can be performed relatively easily because the luminance of the top edge 215 is sufficiently obtained.
  • the luminance range 214 corresponding to the side wall 211 is very small and dark, so that the user cannot determine whether the measurement is properly performed from the measurement result. Occurs.
  • FIG. 3 is an operation flow of the pattern dimension measurement system according to the first embodiment of the present invention. Hereinafter, a specific processing method for the steps in FIG. 3 will be described.
  • step S301 an image of a pattern on a silicon wafer is taken by the length measuring SEM 100 in FIG. An image obtained at this time is 201 in FIG.
  • step S ⁇ b> 302 the calculation unit 110 displays the captured image 201 in FIG. 2A on the GUI of the control terminal 111.
  • step S303 the user sets a measurement cursor on the measurement target pattern by operating the mouse on the image 201 in FIG. 2A of the GUI displayed on the display screen 116 in the control terminal 111. This is a pattern outline. This is an area. (Details of this step will be described in FIG. 4)
  • step S304 the calculation unit 110 reduces the cursor, which is a schematic area set on the GUI, and calculates an internal area of the pattern.
  • step S305 the calculation unit 110 calculates a luminance range within the reduced cursor area.
  • step S306 the calculation unit 110 performs contrast correction by contrast correction processing that increases the luminance range obtained in step S305.
  • step S ⁇ b> 307 the calculation unit 110 displays the images before and after contrast correction and the intermediate processed image on the GUI in the control terminal 111. (Details of the GUI in this step will be described in FIG. 7)
  • step S308 if the user wants to correct the correction result, the user proceeds to contrast correction parameter adjustment in step S309, and adjusts the contrast correction parameter. If there is no problem, the process proceeds to step S310.
  • step S309 the user adjusts the contrast correction parameter on the GUI. After parameter adjustment, the process returns to step S306 (details of parameter adjustment will be described with reference to FIG. 20).
  • step S310 measurement is performed using the image after contrast correction and the measurement cursor input in step S303.
  • FIG. 4 is a diagram showing a GUI for performing measurement cursor setting in step S303 of FIG.
  • a captured image 402 is displayed on the GUI screen 401.
  • the user operates the mouse cursor 403 and drags the mouse cursor 403 from, for example, a point 404 to a point 405 to set a rectangular area 406 including the via 206 to be measured inside the trench 205 as a measurement cursor.
  • This measurement cursor can be registered by moving and clicking.
  • the registered measurement cursor can also be corrected by moving the mouse cursor 403 to the reset button 408 and clicking.
  • FIG. 5A is a diagram showing a method for calculating the internal area of the pattern in step S304 of FIG.
  • the image 501 is an enlarged view of the vicinity of the measurement cursor 506 (corresponding to the measurement cursor 406 described in FIG. 4) set in step S303 in the pattern image 201 shown in FIG. 2A.
  • the measurement cursors 507, 508, and 509 are areas obtained by reducing the area surrounding the measurement cursor 506 in order at the same ratio.
  • 5B is a graph 510 in which the average luminance in each region from the measurement cursors 506 to 509 is plotted as the vertical axis, and the number of times the cursor is reduced as the points 506p to 509p along the horizontal axis.
  • the cursor in front of which the change becomes small is set as the internal area 502 of the Via 206.
  • the surrounding area of the measurement cursors 506 to 508 is reduced, the bright area of the mask 503, the trench 504, and the top edge 505 of the Via 206 included in the measurement cursor is decreased, and the ratio of the dark area that is the internal area 502 of the Via 206 is occupied. Therefore, the average luminance greatly decreases as indicated by plot points 506p to 508p.
  • the measurement cursor 508 and the cursor 509 both include the entire measurement cursor in the internal area 502 of the Via 206. Since the contrast of the internal region 502 of the Via 206 is low, the change in average luminance in the measurement cursor is small as indicated by plot points 508p and 509p. Thereby, the measurement cursor 508 is applied as the internal region 502 of the Via 206.
  • FIG. 6A and 6B are diagrams showing the contrast correction method in step S306 of FIG.
  • the contrast correction is processed using the tone curve 601 shown in FIG. 6A.
  • the x-axis of the tone curve 601 is an input luminance value, and the y-axis is an output luminance value after conversion, both of which are expressed in 256 gradations.
  • the tone curve 601 includes a minimum brightness value x min and a maximum brightness value x max of the inner area 502 of the via 206 acquired using the measurement cursor 508 in step S305, and a contrast enhancement level slider value r input in step S309 described later.
  • the offset slider value b is used to obtain the output values y min and y max of x min and x max after contrast correction.
  • the output luminance values y min and y max can be calculated by the following (Equation 1) and (Equation 2).
  • r is a parameter for adjusting the ratio of the size of the input luminance range (x max -x min ) to the size of the output luminance range (y max -y min ) (the slopes of the line segments 606, 607, and 608 in FIG. 6A).
  • b is a parameter for adjusting the offset of the output luminance of the internal region 502 (y intercept of the line segments 607 and 608 in FIG. 6A).
  • the point (x min, y min), a point (x max, y max) constitutes a tone curve 601 at segment 606, 607 and 608 connecting the.
  • the tone curve may be composed of a smooth curve such as a Bezier curve in addition to the line segment.
  • FIG. 6B shows a profile 602 around the region of Via 206 in the image 201 which is the original image.
  • the horizontal axis indicates the position, and the vertical axis indicates the luminance value.
  • 609 is a trench
  • 610 is a top edge of the Via 206
  • 611 is a side wall of the Via 206
  • 612 is a luminance value of a secondary electron detection signal from a portion corresponding to the bottom surface of the Via 206.
  • the input luminance range 613 is a range including the bottom surface of the via 206 and the side wall of the via 206.
  • a profile 603 as shown on the lower side of FIG. 6B is obtained.
  • the input luminance range 613 extends to the output luminance range 614, and the contrast between the bottom surface 210 of the via 206 and the image on the side wall 211 can be enhanced.
  • FIG. 7 is a diagram showing a GUI for displaying the image after the contrast correction in step S307 in FIG.
  • a captured original image 702 including the images of the trench 205 and Via 206 (corresponding to the pattern image 201 in FIG. 2A), a mask region 7031 with corrected contrast, and a contrast corrected image 703 including images of the trench 7032 and Via 7033 are displayed. Is displayed.
  • a measurement area information image 704 indicating the setting area of the measurement cursor 406 set in step S303 and an internal area information image 705 indicating the setting area of the pattern internal area measurement cursor 508 calculated in step S304 are displayed as intermediate results.
  • the user confirms the contrast correction image 703, and if the correction of the contrast correction parameter is necessary, the user clicks the correction button 711 and proceeds to step S309. If it is not necessary to correct the contrast correction parameter, the user clicks the OK button 712 and proceeds to step S310.
  • FIG. 8 is a diagram showing a GUI for performing the contrast correction parameter adjustment in step S309 of FIG.
  • the user operates a contrast enhancement level slider 802 that adjusts the degree of strength of contrast correction and an offset slider 803 that adjusts the luminance offset of a region in which contrast is enhanced on the GUI 801, and presses a setting button 804.
  • the input parameters are used in step S306 as a contrast enhancement level slider value r and an offset slider value b.
  • the contrast enhancement level slider value r and the offset slider value b use preset initial values.
  • FIG. 9A is a diagram showing a measurement method in the measurement process of step S310 of FIG.
  • the pattern image 901 is an image obtained by enlarging the area displayed on the contrast-corrected image 703 corresponding to the area surrounded by the measurement cursor 406 displayed on the measurement area information display unit 704 in FIG.
  • a case will be described in which a bottom edge that is a measurement target is detected for the pattern image 901.
  • a line segment 904 is set in the measurement cursor 903 (corresponding to the measurement cursor 406 in FIG. 4 and the measurement cursor 506 in FIG. 5) set in step S303, and the image signal on the line segment 904 is displayed as shown in FIG. 9B.
  • the profile 902 is acquired.
  • bottom edge points are converted into a plurality of horizontal straight lines 9071 to 9075 as indicated by dotted lines in the image 907 in FIG. 9C, or straight lines 9081 to 9081 in each direction passing through the center of the pattern as indicated by dotted lines in the image 908 in FIG. 9D.
  • a plurality of 9084 profiles are obtained, and an average value of distances between edge points on each straight line (for example, a distance between points 905p and 906p in FIG. 9B) is used as a measurement value.
  • the user can confirm whether or not the measurement is correctly performed by confirming the calculated plurality of bottom edge points on the pattern image 901 after the contrast correction.
  • FIG. 10A is a diagram showing a threshold method for calculating the edge position from the luminance profile
  • FIG. 10B is a diagram showing a linear method for calculating the edge position from the luminance profile.
  • the edge calculation method by the threshold method in FIG. 10A is based on a profile defined by a threshold 1005 by percentage when the maximum peak 1003 of the profile is 100% and the minimum peak 1004 is 0% with respect to the luminance profile 1001.
  • the point 1006 is the edge.
  • the position of the intersection 1009 of the straight line 1007 that touches the luminance profile 1002 at the point where the profile slope is maximum and the straight line 1008 that touches the minimum peak of the profile is the edge.
  • FIG. 11 is a diagram showing a GUI for displaying measurement results and image quality improvement results used when setting measurement parameters in step S310.
  • GUI screen 1101 measurement points that are measurement results are displayed on the contrast-corrected image 1102. 1103 is displayed in an overlapping manner. Thereby, the user can compare the image quality improvement result and the measurement result, and can easily confirm whether the measurement is performed correctly.
  • Check boxes 1104 and 1105 can be used to switch between an image measurement result before contrast correction and an image measurement result after contrast correction processing.
  • the contrast inside the Via that is a deep hole can be improved to the extent that it can be easily visually confirmed, so that the measurement is correctly performed.
  • measurement conditions can be set easily and accurately, and measurement can be performed more accurately.
  • Modification 1 As a first modification of the first embodiment, a method of extracting a region inside the pattern by using the design data of the semiconductor pattern for the measurement cursor setting in S303 of the processing flow diagram of FIG. 3 described in the first embodiment will be described. .
  • FIG. 12 is an operation flow of the pattern dimension measurement system according to the first modification. Hereinafter, a specific processing method for the steps in FIG. 12 will be described.
  • step S1201 an image of a pattern on a silicon wafer is taken by the length measuring SEM 100.
  • step S ⁇ b> 1202 the calculation unit 110 displays the captured image on the GUI of the control terminal 111.
  • step S1203 the calculation unit 110 reads design data having the same coordinates as the captured image from the storage device 112.
  • step S1204 the arithmetic unit 110 aligns the captured image and the design data, and calculates a schematic region (measurement cursor setting region) of the measurement target pattern from the design data after the alignment. (Details of this step will be described in FIG. 14) Thereafter, the steps after step S304 in FIG. 3 are processed.
  • FIGS. 13A to 13C are diagrams showing the alignment of the design data in step S1204 of FIG.
  • FIG. 13A is a captured image 1301 obtained by imaging the Via-in-Trench formed on the semiconductor wafer 106 as a sample with the SEM 120.
  • FIG. 13B shows a measurement cursor area 1302 set from design data in the Via pattern layer stored in the storage device 112. Since a positional deviation occurs between the captured image 1301 and the design data 1302, a measurement cursor area 1303 on the design data is set as shown in FIG. 13C in which the positional deviation is corrected by pattern matching. A measurement cursor area 1303 on the design data in which the positional deviation is corrected is used as the approximate area of Via.
  • the burden of the user's setting operation can be reduced as compared with the case of the first embodiment.
  • the measurement cursor setting in step S303 of the processing flow diagram of FIG. 3 described in the first embodiment is not performed using a rectangular cursor, but using the point data input by the user as the center point of the pattern. A case where region extraction is performed will be described.
  • FIG. 14 is an operation flow of the pattern dimension measurement system according to the second modification. Hereinafter, a specific processing method for the steps in FIG. 14 will be described.
  • step S1401 an image of a pattern on a silicon wafer is taken by the length measuring SEM 100.
  • step S ⁇ b> 1402 the calculation unit 110 displays the captured image on the GUI of the control terminal 111.
  • step S1403 the user sets the center position of the measurement pattern as point data by operating the mouse in the captured image displayed on the GUI in the control terminal 111.
  • step S1404 the calculation unit 110 arranges an elliptical approximate area centered on the point data, obtains the average average brightness while enlarging the elliptical area according to the same principle as in FIG. 5, and when the change in average brightness becomes small Is calculated as an inner region. Thereafter, the steps after step S305 in FIG. 3 are processed.
  • step S1404 the inside of the ellipse centered on the coordinates of the point data is calculated as the inner area of the pattern using fixed parameters set in advance for the major axis and minor axis.
  • the input operation on the GUI is reduced by using the point data, so that the burden of the user's setting operation can be reduced as compared with the first embodiment.
  • the bottom edge vicinity area shown in FIG. 15 is used in this modification.
  • the pattern image 1501 bottom edge detection similar to the method shown in the image 908 of FIG. 9 described in the first embodiment is performed, and a bottom edge point 1502 in the approximate region is calculated.
  • a circular area 1503 centered on the bottom edge point is obtained, and this area is set as an internal area of the pattern.
  • the luminance range in the region near the bottom edge to be measured can be obtained, contrast correction near the bottom edge can be effectively performed.
  • the pattern inner area calculation in step S304 of the first embodiment and the pattern inner area calculation in step S1404 in the second modification are secondarily performed at a position where the pattern cross section as shown by 215 in FIG. The calculation is made by using the top edge that becomes bright because many electrons are emitted.
  • FIG. 16 is a diagram showing a method for calculating the pattern internal region using the top edge.
  • a top edge image 1602 in the approximate area 1605 is calculated for the pattern image 1601 using edge detection processing.
  • a closed region 1604 surrounded by the top edge 1603 is set as an internal region of the pattern.
  • This embodiment can extract an internal region along the pattern shape, and is effective in calculating a sufficiently large internal region for obtaining luminance information when the pattern to be measured is small.
  • the pattern approximate area setting method in the first embodiment and the first and second modification examples and the pattern internal area calculation method in the first and third modification examples are used in any combination.
  • the calculation unit 110 in FIG. 1 holds all the internal area calculation methods in the first embodiment and the third and fourth modifications as functions, and the internal area calculation is performed by the internal area setting method selection GUI 1700 shown in FIG. The user can select the method.
  • This modification allows the user to select an effective internal area setting method according to the measurement pattern.
  • FIG. 18 is a diagram illustrating a measurement recipe setting flow used when automatic measurement is performed.
  • the processing method of the step of FIG. 18 will be described.
  • step S1801 the wafer to be measured is loaded into the apparatus.
  • step S1802 measurement target wafer information such as chip size and chip arrangement is input.
  • step S1803 a wafer alignment point used for matching for correcting a shift during movement of the XY stage is registered.
  • step S1804 registration of measurement points, setting of FOV (Field of View), and registration of addressing points used for matching for correcting displacement due to beam shift are performed.
  • an image of the measurement point after the contrast correction at the measurement point is acquired by performing the processing of steps S302 to S310 in FIG.
  • step S1806 a measurement method and measurement parameters are set using the contrast-corrected image.
  • step S1807 the parameters set in steps S1802, S1803, S1804, and S1806 and the contrast correction parameters set in the flow of FIG. 3 are stored as recipe data. Using the stored recipe, automatic measurement is performed on another chip on the same wafer or a patterned wafer having the same design.
  • the contrast correction parameter in the recipe data, it is possible to perform the measurement by performing the contrast correction even in the automatic measurement.
  • FIG. 2219 shows an example of a pattern acquired with the same brightness of the trench and the Via in the Via-in-Trench structure of the first embodiment.
  • the region inside both the trench and via regions may be extracted to perform local contrast correction.
  • FIG. 20A is a diagram illustrating an example in which the bottom edge of the groove pattern is a measurement target.
  • the contrast of the side wall profile 2006 is very low, so that it is difficult to visually recognize 2005 between the bottom edges.
  • an image 2002 shown in FIG. 20B is an image according to this modification, and is an image obtained by extracting the inner region of the groove by the flow of FIG. 3 and performing local contrast correction.
  • the brightness range of the side wall profile 2007 is widened, so that the 2008 between the bottom edges can be easily visually recognized.
  • the method of extracting the region inside the pattern using the sample image acquired by the length measuring SEM 100 has been described.
  • the image is picked up by a detector different from the pattern image to be measured. A case will be described in which an area inside a pattern is extracted using the pattern image thus obtained.
  • FIG. 21 shows an overall configuration diagram of an apparatus for realizing a pattern dimension measurement system according to the second embodiment.
  • a length measurement SEM 2100 according to the present embodiment includes a SEM body 2120 and a signal processing system 2130.
  • the same number is attached
  • the SEM main body 2120 includes an XY stage 107 on which a silicon wafer (sample) 106 on which a circuit pattern to be measured is formed, an irradiation optical system 2140 for controlling the electron beam 101 emitted from the electron gun 102, and an angle with respect to the sample.
  • Reflector 2102 that receives electrons emitted in the direction
  • oblique detector 2103 that detects secondary electrons emitted from the reflector 2102
  • reflector 2101 that receives electrons emitted in a direction substantially perpendicular to the sample
  • An upper detector 2104 for detecting secondary electrons emitted from 2101 is provided.
  • the irradiation optical system 2140 includes an electron gun 102, a condenser lens 103, a deflector 104, and an objective lens 105 on the path of the electron beam 101.
  • a signal processing system 2130 for detection signals converts an analog signal output from the oblique detector 2103 into a digital signal, an A / D converter 2105, and converts an analog signal output from the upper detector 2104 into a digital signal A.
  • the CPU 2113, the LSI 2114, and the image memory 2115 each of which receives and processes the signals converted by the A / D converter 2106, A / D converters 2105 and 2106, respectively, and controls the arithmetic unit 2110 and the arithmetic unit 2110 A control terminal 2111 for controlling the SEM 2120 and a storage terminal 2112 for storing data.
  • the electron beam 101 emitted from the electron gun 102 is controlled by the condenser lens 103, the deflector 104, and the objective lens 105 of the illumination optical system 2140, and irradiated onto the silicon wafer 106. Electrons are emitted from the region irradiated with the electron beam 101 on the silicon wafer 106. At this time, electrons emitted in an oblique direction with respect to the silicon wafer 106 collide with the reflection plate 2102, emit secondary electrons, and are detected by the oblique detector 2103.
  • the electrons emitted in the substantially vertical direction with respect to the silicon wafer 106 collide with the reflection plate 2101, emit secondary electrons, and are detected by the upper detector 2104.
  • the electrons detected by the oblique detector 2103 are converted into digital signals by the A / D converter 2105, and the electrons detected by the upper detector 2104 are converted into digital signals by the A / D converter 2106, respectively. Entered.
  • the calculation unit 2110 receives the detection results of the detectors 2103 and 2104 converted into digital signals, and stores the detection results in the image memory 2115. In addition, it also has a function as an observation image acquisition unit that generates a detection electronic image based on the detection results of the detectors 2103 and 2104.
  • the data stored in the image memory 2115 may be stored again in the external storage device 2112.
  • the control terminal 2111 controls the coordinates of the XY stage 107 and the measurement sequence via the calculation unit 2110.
  • the control terminal 2111 has a GUI (Graphical User Interface) for displaying an observation image, a dimension measurement result, and the like on the screen 2116 for the user.
  • GUI Graphic User Interface
  • the user can coordinate the pattern on the silicon wafer and the pattern required for the dimension measurement.
  • Imaging recipe data including a pattern matching template used for positioning, imaging conditions, and the like can be created.
  • control terminal 2111 creates imaging recipe data including pattern coordinates on the silicon wafer 106 required for dimension measurement, a pattern matching template used for pattern positioning, imaging conditions, and the like.
  • FIG. 22 is an operation flow of the pattern dimension measurement system according to the second embodiment.
  • a specific processing method for the steps of FIG. 22 will be described.
  • step S2201 an upper detection image by the upper detector on the silicon wafer and an oblique detection image by the oblique detector are acquired by the length measurement SEM 2100.
  • step S2202 the calculation unit 2110 displays the upper detection image and the oblique detection image on the GUI of the control terminal 2111.
  • the calculation unit 2110 extracts a dark area from the oblique detection image, and sets this as a schematic area of the pattern. (Details of this step will be described with reference to FIG.
  • step S2204 the calculation unit 2110 calculates the inner area while changing the size of the approximate area of the upper detection image (the details of this step are the processing in step S304 of the flowchart of FIG. 3 described in the first embodiment). That is, it is the same as the processing described with reference to FIG.
  • step S2205 the calculation unit 2110 calculates a luminance range in the inner region of the upper detection image.
  • step S2206 the calculation unit 2110 corrects the contrast of the upper detection image by contrast correction processing that increases the luminance range obtained in step S2205. (This step is the same as FIG. 6)
  • step S ⁇ b> 2207 the calculation unit 2110 displays the upper detection image after contrast correction on the GUI in the control terminal 2111.
  • step S2208 the user confirms the contrast correction image displayed on the GUI of the control terminal 2111. If the user wants to correct the correction result, the process proceeds to contrast correction parameter setting in step S2209. If there is no problem, the process proceeds to step S2210.
  • step S2209 the user sets the contrast correction parameters in the method described with reference to FIG. 8 in the first embodiment, that is, in the GUI 801, the contrast enhancement level slider 802 for adjusting the degree of contrast correction strength, and the contrast.
  • the user can input parameters by operating the offset slider 803 on the GUI 801 for adjusting the luminance offset of the region where the emphasis is emphasized and pressing the setting button 804.
  • step S2206 The input parameters are used in step S2206 as a contrast enhancement level slider value r and an offset slider value b. However, in the first step S2206, the contrast enhancement level slider value r and the offset slider value b use preset initial values. After setting the parameters, the process returns to step S2206 and re-executes up to S2208. In step S2210, measurement is performed on the image after contrast correction.
  • FIG. 23A to FIG. 23C are diagrams showing the extraction of the dark area by the oblique detection image in step S2203 of FIG.
  • the electrons 2305 to 2309 emitted from the hole bottom 2311 when the electron beam 101 emitted from the electron gun 102 is irradiated to the pattern 2301 formed on the silicon wafer 106 2305 and 2309 collide with the side wall 2312 of the pattern 2301, and are not detected.
  • Electrons 2306 and 2308 are obliquely emitted from the holes and collide with the reflector 2102 in FIG. 21, and secondary electrons incident on the oblique detector 2103 among the secondary electrons generated from the reflector 2102 due to the collision are detected.
  • the electrons 2307 are emitted almost vertically from the hole and collide with the reflector 2101 in FIG. Of the secondary electrons generated from the reflector 2101 due to this collision, the secondary electrons incident on the upper detector 2104 are detected by the upper detector 2104.
  • the oblique detection image clearly shows the brightness and darkness according to the area of each pattern. Become an image.
  • the upper detection image is noisy, but a signal is returned from the deep hole bottom, so it is used to measure and inspect the hole bottom pattern.
  • the histogram 2302 of the upper detection image and the histogram 2303 of the oblique detection image obtained from the Via-in-Trench pattern are shown.
  • 2310u and 2310t are distributions of Via regions
  • 2311u and 2311t are distributions of trench regions
  • 2312u and 2312t are distributions of mask regions. Since the histogram 2302 of the upper detection image has a lot of noise, the distributions of the respective regions are overlapped, and the region division is difficult.
  • the diagonal detection image histogram 2303 has a high S / N, the distribution of the histogram of each region can be easily divided into regions by performing threshold processing on the oblique detection image.
  • the outline area setting of the pattern can be automatically performed by using the oblique detection image, the burden of the user's setting operation can be reduced as compared with the first embodiment.
  • an SEM 2400 shown in FIG. 24 may be used instead of the length measurement SEM 2100 of FIG. 21, instead of the length measurement SEM 2100 of FIG. 21, an SEM 2400 shown in FIG. 24 may be used.
  • the irradiation optical system 2440 includes a secondary electron detector 2404 and two backscattered electron detectors 2402 and 2403 as detectors.
  • a signal processing system 2430 for detection signals includes A / D converters 2405, 2406, and 2407 for converting analog signals output from the secondary electron detector 2404 and the two backscattered electron detectors 2402 and 2403 into digital signals.
  • the CPU 2413 for processing the signals converted by the A / D converters 2405, 2406, and 2407, the LSI 2414, and the arithmetic unit 2410 having the image memory 2415 are controlled, and the SEM 2420 is controlled via the arithmetic unit 2410.
  • a control terminal 2411 for controlling and a storage terminal 2412 for storing data are provided.
  • the backscattered electron image (BSE image) is effective when the wiring of each layer is divided into regions because the wiring regions of each layer are clearly separated in a multilayer wiring pattern.
  • BSE image The backscattered electron image
  • the contrast correction of the multilayer wiring pattern can be easily performed. Note that the modifications 1 to 8 described in the first embodiment can also be applied to this embodiment.
  • the contrast inside the Via that is a deep hole can be improved to the extent that it can be easily visually confirmed, so that the measurement is correctly performed.
  • measurement conditions can be set easily and accurately, and measurement can be performed more accurately.
  • FIG. 25 a GUI for setting contrast correction parameters using presets will be described.
  • an original image 2502 in which a measurement target pattern part is cut out from the upper detection image based on the approximate area calculated in step S2203 shown in FIG. 22 is displayed.
  • Images 2503 to 2508 are images obtained by sequentially performing contrast correction on the original image 2502 with a plurality of preset contrast correction parameters.
  • Contrast correction images 2503 to 2508 are displayed side by side on the GUI 2501, and the user selects an appropriate correction result image and clicks the selection button 2510, whereby the preset used for the selected image 2509 is used as a parameter for contrast correction. Can be set. The user can easily adjust the parameters by adjusting the parameters for the contrast correction by the preset.

Abstract

In semiconductor-device production-process management using a CD-SEM, when a measurement position has been at the bottom of a hole pattern or groove pattern, the signal level from the bottom of the pattern has been relatively diminished as a result of pattern refinement and structural complexity, the pattern edge contrast of an obtained image has been insufficient, and visual confirmation and measurement of the measurement position has been difficult. In the present invention, the dimensions of a pattern including a hole or groove is measured through the setting of an area of the pattern including the hole or groove in an acquired charged particle beam image that is to have the dimensions thereof measured, the correction of the contrast of the charged particle beam image of the set area of the pattern including the hole or groove that is to have the dimensions thereof measured, and the processing of the image that has had the contrast thereof corrected.

Description

荷電粒子線を用いたパターン寸法計測方法及びそのシステムPattern dimension measuring method and system using charged particle beam
 本発明は、半導体ウェーハ上に形成されたパターンに対して、荷電粒子線を照射して画像を取得し、寸法を計測する荷電粒子線を用いたパターン寸法計測方法及びそのシステムに関するものである。 The present invention relates to a pattern dimension measuring method using a charged particle beam that irradiates a pattern formed on a semiconductor wafer with a charged particle beam to acquire an image and measure the dimension, and a system thereof.
 半導体製造プロセスにおいて、半導体ウェーハ上に形成されたパターンの寸法を、寸法計測用の走査型電子顕微鏡(Scanning Electron Microscope:SEM)である測長SEMを用いたプロセス管理が行われているが、近年のデバイスの微細化、複雑化により、寸法計測の難易度が増している。特に、デュアル・ダマシン・プロセスにおける、トレンチ内に形成された微小な径の深穴(以下、Viaと記す)はその代表ともいえる。Viaは、サイズ(直径)が小さい上に深く形成され、アスペクト比が高いため、このようなViaの穴の内部を測長SEMで観察した場合、Viaの底からの信号量が小さくなってしまう。このため、SEM画像におけるVia底のコントラストが不足し、SEM画像上でViaの計測箇所の目視確認、計測条件の設定、及び計測そのものが困難になる問題が発生している。 In the semiconductor manufacturing process, process control using a length measuring SEM, which is a scanning electron microscope (SEM) for dimension measurement, is performed on the dimensions of a pattern formed on a semiconductor wafer in recent years. The difficulty of dimensional measurement is increasing due to the miniaturization and complexity of devices. In particular, a deep hole (hereinafter referred to as Via) formed in a trench in a dual damascene process can be said to be a representative example. Via is small in size (diameter) and deeply formed, and has a high aspect ratio. When the inside of such a via hole is observed with a length measurement SEM, the amount of signal from the bottom of the via becomes small. . For this reason, the contrast of the Via bottom in the SEM image is insufficient, and there is a problem that it is difficult to visually confirm the measurement location of the Via on the SEM image, to set the measurement conditions, and to measure itself.
 SEMで得られる画像内の局所領域においてコントラストが不十分なパターン画像に対し、特許文献1では、BSE(BackScattered Electron)像を領域分割に利用し、分割した領域内のコントラストを向上することで、検査対象パターン画像の局所コントラストを向上する処理が開示されている。また、特許文献2では、パターン画像上にROI(Region of Interest)を設定することでROI内のコントラストを大きくするような撮像条件であるゲイン値を設定するパターンの撮像方法が開示されている。 In contrast to a pattern image with insufficient contrast in a local region in an image obtained by SEM, Patent Document 1 uses a BSE (BackScattered Electron) image for region division to improve the contrast in the divided region. A process for improving the local contrast of a pattern image to be inspected is disclosed. Patent Document 2 discloses a pattern imaging method for setting a gain value which is an imaging condition for increasing the contrast in the ROI by setting an ROI (Region of Interest) on the pattern image.
特許第5313939号公報Japanese Patent No. 5313939 特開2002-319366号公報JP 2002-319366 A
 本発明が想定しているのは、半導体ウェーハ上に形成された高低差のある回路パターンにおいて発生する、エッジの目視確認や計測が困難な低コントラストな計測対象である。 The present invention envisions a low-contrast measurement target that is difficult to visually check and measure edges, which occurs in a circuit pattern having a height difference formed on a semiconductor wafer.
 特許文献1は、反射電子像を用いた領域区分結果に基づいたコントラスト補正を行う事で、2次電子像の局所領域のコントラストを向上させることを意図した発明である。しかし、計測対象のボトムエッジのコントラストを強調するには、パターン内部の局所領域を抽出する必要があり、反射電子像による領域区分だけでは不十分である。 
 特許文献2では局所領域内の輝度情報に基づき撮像時のゲイン調整、あるいは、ガンマ変換を行うものであるが、詳細なパターン内部の局所領域抽出方法、および画像処理によるコントラスト補正方法についての記載がなく、計測対象のボトムエッジのコントラストを強調するには不十分である。
Patent Document 1 is an invention intended to improve the contrast of a local region of a secondary electron image by performing contrast correction based on the result of region classification using a reflected electron image. However, in order to enhance the contrast of the bottom edge to be measured, it is necessary to extract a local area inside the pattern, and it is not sufficient to classify the area only by the reflected electron image.
In Patent Document 2, gain adjustment or gamma conversion is performed based on luminance information in a local area, but there is a detailed description of a local area extraction method inside a pattern and a contrast correction method by image processing. In other words, it is insufficient to enhance the contrast of the bottom edge of the measurement target.
 上記課題を解決するために、本発明では、荷電粒子線を用いて試料上に形成された穴もしくは溝を含むパターンの寸法を計測するシステムを、試料上に形成された穴もしくは溝を含むパターンに荷電粒子を照射し走査して穴もしくは溝を含むパターンの荷電粒子線の画像を取得する荷電粒子線画像取得ユニットと、荷電粒子線画像取得ユニットで取得した荷電粒子線の画像を処理して穴もしくは溝を含むパターンの寸法を計測する信号処理ユニットと、該信号処理ユニットで処理した結果を表示する画面を有する表示ユニットとを備えて構成し、信号処理ユニットは、荷電粒子線画像取得ユニットで取得した荷電粒子線の画像において寸法を計測する穴もしくは溝を含むパターンの領域を設定する計測領域設定部と、計測領域設定部で設定した寸法を計測する穴もしくは溝を含むパターンの領域の荷電粒子線の画像のコントラストを補正するコントラスト補正部とを有し、信号処理ユニットは、信号処理ユニットでコントラストが補正された画像を処理して穴もしくは溝を含むパターンの寸法を計測するようにした。 In order to solve the above problems, in the present invention, a system for measuring the dimension of a pattern including a hole or groove formed on a sample using a charged particle beam is used as a pattern including a hole or groove formed on the sample. A charged particle beam image acquisition unit for acquiring a charged particle beam image of a pattern including holes or grooves by irradiating with charged particles and scanning the charged particle beam image acquired by the charged particle beam image acquisition unit A signal processing unit for measuring a dimension of a pattern including a hole or a groove, and a display unit having a screen for displaying a result processed by the signal processing unit. The signal processing unit is a charged particle beam image acquisition unit. Set in the measurement area setting unit that sets the pattern area including the holes or grooves whose dimensions are to be measured in the charged particle beam image acquired in step 1, and the measurement area setting unit And a contrast correction unit for correcting the contrast of the charged particle beam image in the pattern area including the hole or groove for measuring the measured dimension, and the signal processing unit processes the image whose contrast has been corrected by the signal processing unit. The dimensions of patterns including holes or grooves were measured.
 また、上記課題を解決するために、本発明では、荷電粒子線を用いて試料上に形成された穴もしくは溝を含むパターンの寸法を計測する方法を、試料上に形成された穴もしくは溝を含むパターンに荷電粒子を照射し走査して穴もしくは溝を含むパターンの荷電粒子線の画像を取得し、取得した荷電粒子線の画像を処理して穴もしくは溝を含むパターンの寸法を計測し、処理した結果を画面上に表示することを含み、穴もしくは溝を含むパターンの寸法を計測することを、取得した荷電粒子線の画像において寸法を計測する穴もしくは溝を含むパターンの領域を設定し、設定した寸法を計測する穴もしくは溝を含むパターンの領域の荷電粒子線の画像のコントラストを補正し、コントラストが補正された画像を処理することにより穴もしくは溝を含むパターンの寸法を計測するようにした。 In order to solve the above problems, in the present invention, a method for measuring the dimension of a pattern including a hole or groove formed on a sample using a charged particle beam is used. Irradiate and scan the pattern containing the charged particles to obtain a charged particle beam image of the pattern including the hole or groove, process the acquired charged particle beam image to measure the size of the pattern including the hole or groove, This includes displaying the processed results on the screen, and measuring the dimensions of the pattern including the holes or grooves, and setting the pattern area including the holes or grooves to measure the dimensions in the acquired charged particle beam image. , By correcting the contrast of the charged particle beam image in the pattern area including the hole or groove to measure the set dimension, and processing the image with the corrected contrast The dimensions of the pattern including the so measured.
 更に、上記課題を解決するために、本発明では、荷電粒子線を用いて試料上に形成された穴もしくは溝を含むパターンの寸法を計測する方法を、試料上に形成された穴もしくは溝を含むパターンに荷電粒子を照射し走査して穴もしくは溝を含むパターンの荷電粒子線の画像を取得し、取得した荷電粒子線の画像を処理して穴もしくは溝を含むパターンの寸法を計測し、処理した結果を画面上に表示することを含み、穴もしくは溝を含むパターンの寸法を計測することを、取得した荷電粒子線の画像とこの画像のコントラストを補正した画像とを画面上に表示し、表示された画面上で画像のコントラストの補正条件を修正し、修正した補正条件でコントラストが補正された画像を処理することにより穴もしくは溝を含むパターンの寸法を計測するようにした。 Furthermore, in order to solve the above problems, in the present invention, a method for measuring a dimension of a pattern including a hole or a groove formed on a sample using a charged particle beam, a hole or a groove formed on the sample is measured. Irradiate and scan the pattern containing the charged particles to obtain a charged particle beam image of the pattern including the hole or groove, process the acquired charged particle beam image to measure the size of the pattern including the hole or groove, This includes displaying the processed result on the screen, and measuring the size of the pattern including the hole or groove, and displaying the acquired charged particle beam image and the contrast corrected image on the screen. Correct the contrast correction conditions of the image on the displayed screen, and measure the dimensions of the pattern including holes or grooves by processing the image with the corrected contrast under the corrected correction conditions. Was to so that.
 本発明により、高低差のある回路パターン、特に穴底や深溝パターンにおいて発生するエッジの目視確認が困難な低コントラストの計測対象の画像のコントラストを改善し、再現性が良く、信頼性の高い計測条件の設定、及び計測を可能とする。 The present invention improves the contrast of images of low-contrast measurement objects that are difficult to visually check for edges that occur in circuit patterns with different heights, especially hole bottoms and deep groove patterns, and has high reproducibility and high reliability. Enables setting of conditions and measurement.
本発明の実施例1に係るパターン寸法計測システムの概略の構成を示すブロック図である。1 is a block diagram showing a schematic configuration of a pattern dimension measuring system according to Embodiment 1 of the present invention. 本発明の実施例1に係る計測対象のパターンのSEM画像を示す図である。It is a figure which shows the SEM image of the pattern of the measuring object which concerns on Example 1 of this invention. 本発明の実施例1に係る計測対象のパターンの断面図(上側)と、その断面の行けるSEM画像の輝度信号を示すグラフ(下側)である。It is sectional drawing (upper side) of the pattern of the measurement object which concerns on Example 1 of this invention, and the graph (lower side) which shows the luminance signal of the SEM image which the cross section can go. 本発明の実施例1に係る計測パターン内部のコントラスト補正を行う処理の流れを示すフロー図である。It is a flowchart which shows the flow of the process which performs the contrast correction | amendment inside the measurement pattern which concerns on Example 1 of this invention. 本発明の実施例1に係る計測カーソル設定を行うためのGUI画面の図である。It is a figure of the GUI screen for performing the measurement cursor setting which concerns on Example 1 of this invention. 本発明の実施例1に係る計測パターンの内部領域の算出方法を示すSEM画像の拡大図である。It is an enlarged view of the SEM image which shows the calculation method of the internal area | region of the measurement pattern which concerns on Example 1 of this invention. 本発明の実施例1に係る計測パターンの内部領域ごとの平均輝度の変化を示すグラフである。It is a graph which shows the change of the average brightness | luminance for every internal area | region of the measurement pattern which concerns on Example 1 of this invention. 本発明の実施例1に係るコントラスト補正に用いるトーンカーブを示すグラフである。It is a graph which shows the tone curve used for the contrast correction which concerns on Example 1 of this invention. 本発明の実施例1に係るコントラスト補正におけるトーンカーブの傾きの違いによるSEM画像の輝度値の分布の変化を示すグラフである。It is a graph which shows the change of the luminance value distribution of the SEM image by the difference in the inclination of the tone curve in the contrast correction which concerns on Example 1 of this invention. 本発明の実施例1に係るコントラスト補正結果を表示するGUI画面の図である。It is a figure of the GUI screen which displays the contrast correction result which concerns on Example 1 of this invention. 本発明の実施例1に係るコントラスト補正用のパラメータ調整の機能を有するGUI画面の図である。It is a figure of the GUI screen which has the function of the parameter adjustment for contrast correction which concerns on Example 1 of this invention. 本発明の実施例1に係る計測処理を説明する図で、SEM画像上に計測カーソルと寸法計測点を表示した図である。It is a figure explaining the measurement process which concerns on Example 1 of this invention, and is the figure which displayed the measurement cursor and the dimension measurement point on the SEM image. 本発明の実施例1に係る計測処理を説明する図で、図9AのA-B断面におけるSEM画像信号のプロファイルを示すグラフである。It is a figure explaining the measurement process which concerns on Example 1 of this invention, and is a graph which shows the profile of the SEM image signal in the AB cross section of FIG. 9A. 本発明の実施例1に係る計測処理を説明する図で、Viaのボトムエッジ点を複数の水平な直線で設定した状態を示すSEM画像の図である。It is a figure explaining the measurement process which concerns on Example 1 of this invention, and is a figure of the SEM image which shows the state which set the bottom edge point of Via with the some horizontal straight line. 本発明の実施例1に係る計測処理を説明する図で、Viaのボトムエッジ点をパターンの中心をとおる複数の直線で設定した状態を示すSEM画像の図である。It is a figure explaining the measurement process which concerns on Example 1 of this invention, and is a figure of the SEM image which shows the state which set the bottom edge point of Via by the some straight line which goes through the center of a pattern. 本発明の実施例1に係るしきい値法によりボトムエッジを算出する方法を説明するSEM画像信号のプロファイルを示すグラフである。It is a graph which shows the profile of the SEM image signal explaining the method of calculating a bottom edge by the threshold value method which concerns on Example 1 of this invention. 本発明の実施例1に係るリニア法によりボトムエッジを算出する方法を説明するSEM画像信号のプロファイルを示すグラフである。It is a graph which shows the profile of the SEM image signal explaining the method of calculating a bottom edge by the linear method which concerns on Example 1 of this invention. 本発明の実施例1に係るコントラスト補正画像と計測結果を確認するためのGUI画面の図である。It is a figure of the GUI screen for confirming the contrast correction image and measurement result which concern on Example 1 of this invention. 本発明の実施例1の変形例1に係る設計データを用いた計測パターン内部のコントラスト補正を行う処理の流れを示すフロー図である。It is a flowchart which shows the flow of the process which performs the contrast correction | amendment inside the measurement pattern using the design data which concerns on the modification 1 of Example 1 of this invention. 本発明の実施例1の変形例1に係る設計データによる概略領域設定を説明する図で、SEMで撮像した画像を示す図である。It is a figure explaining the schematic area | region setting by the design data which concerns on the modification 1 of Example 1 of this invention, and is a figure which shows the image imaged by SEM. 本発明の実施例1の変形例1に係る設計データによる概略領域設定を説明する図で、設計データ上で計測カーソルを設定した状態を示す図である。It is a figure explaining the schematic area | region setting by the design data which concerns on the modification 1 of Example 1 of this invention, and is a figure which shows the state which set the measurement cursor on design data. 本発明の実施例1の変形例1に係る設計データによる概略領域設定を説明する図で、設計データ上設定した計測カーソルの位置を撮像画像に合わせた状態を示す図である。It is a figure explaining the schematic area | region setting by the design data which concerns on the modification 1 of Example 1 of this invention, and is a figure which shows the state which match | combined the position of the measurement cursor set on design data with the captured image. 本発明の実施例1の変形例2に係るポイントデータを用いた計測パターン内部のコントラスト補正を行う処理の流れを示すフロー図である。It is a flowchart which shows the flow of the process which performs contrast correction | amendment inside the measurement pattern using the point data which concern on the modification 2 of Example 1 of this invention. 本発明の実施例1の変形例3に係るボトムエッジを利用した計測パターン内部領域の算出方法を説明するSEM画像の拡大図である。It is an enlarged view of the SEM image explaining the calculation method of the measurement pattern internal area | region using the bottom edge which concerns on the modification 3 of Example 1 of this invention. 本発明の実施例1の変形例4に係るトップエッジを利用した計測パターン内部領域の算出方法を説明する図で、パターンのSEM画像である。It is a figure explaining the calculation method of the measurement pattern internal area | region using the top edge which concerns on the modification 4 of Example 1 of this invention, and is a SEM image of a pattern. 本発明の実施例1の変形例4に係るトップエッジを利用した計測パターン内部領域の算出方法を説明する図で、パターンのSEM画像からエッジ抽出処理を施して抽出したトップエッジ画像である。It is a figure explaining the calculation method of the measurement pattern internal area | region using the top edge which concerns on the modification 4 of Example 1 of this invention, It is a top edge image extracted by performing an edge extraction process from the SEM image of a pattern. 本発明の実施例1の変形例5に係る内部領域算出方法を切り替えるための機能を提供するGUI画面の図である。It is a figure of the GUI screen which provides the function for switching the internal area | region calculation method which concerns on the modification 5 of Example 1 of this invention. 本発明の実施例1の変形例6に係る計測レシピ設置の処理の流れを示すフロー図である。It is a flowchart which shows the flow of a process of the measurement recipe installation which concerns on the modification 6 of Example 1 of this invention. 本発明の実施例1の変形例7に係るトレンチパターンのSEM画像(上側)とこの断面におけるSEM画像信号のプロファイルを示すグラフ(下側)である。It is the graph (lower side) which shows the SEM image (upper side) of the trench pattern which concerns on the modification 7 of Example 1 of this invention, and the profile of the SEM image signal in this cross section. 本発明の実施例1の変形例8に係る溝パターンのSEM画像(上側)とこの溝パターンにおけるSEM画像信号のプロファイルを示すグラフ(下側)である。It is a graph (lower side) which shows the SEM image (upper side) of the groove pattern which concerns on the modification 8 of Example 1 of this invention, and the profile of the SEM image signal in this groove pattern. 本発明の実施例1の変形例8に係る溝パターンのSEM画像に対して輝度コントラスト補正を行った状態のSEM(上側)と、この溝パターンにおけるSEM画像信号のプロファイルを示すグラフ(下側)である。SEM (upper side) in a state where brightness contrast correction is performed on the SEM image of the groove pattern according to the modified example 8 of Example 1 of the present invention, and a graph showing the profile of the SEM image signal in this groove pattern (lower side) It is. 本発明の実施例2に係るパターン寸法計測システムの概略の構成を示すブロック図である。It is a block diagram which shows the schematic structure of the pattern dimension measurement system which concerns on Example 2 of this invention. 本発明の実施例2に係る計測パターン内部のコントラスト補正を行う処理の流れを示すフロー図である。It is a flowchart which shows the flow of the process which performs contrast correction | amendment inside the measurement pattern which concerns on Example 2 of this invention. 本発明の実施例2に係るVia-in Trenchパターン(深穴パターン)の底で発生した電子の放出方向を示す穴パターンが形成された試料の断面図である。It is sectional drawing of the sample in which the hole pattern which shows the emission direction of the electron generated in the bottom of the Via-in Trench pattern (deep hole pattern) based on Example 2 of this invention was formed. 本発明の実施例2に係るVia-in Trenchパターン(深穴パターン)の底で発生した電子による上方検出像の輝度値の分布を示すヒストグラムである。It is a histogram which shows distribution of the luminance value of the upper detection image by the electron which generate | occur | produced at the bottom of the Via-in Trench pattern (deep hole pattern) which concerns on Example 2 of this invention. 本発明の実施例2に係るVia-in Trenchパターン(深穴パターン)の底で発生した電子による斜方検出像の輝度値の分布を示すヒストグラムである。It is a histogram which shows distribution of the luminance value of the oblique detection image by the electron which generate | occur | produced in the bottom of the Via-in Trench pattern (deep hole pattern) which concerns on Example 2 of this invention. 本発明の実施例2に係るパターン寸法計測システムの別の例の概略の構成を示すブロック図である。It is a block diagram which shows the schematic structure of another example of the pattern dimension measuring system which concerns on Example 2 of this invention. 本発明の実施例2の変形例に係るプリセットによるコントラスト補正パラメータ設定を行うためのGUI画面の図である。It is a figure of the GUI screen for performing the contrast correction parameter setting by the preset which concerns on the modification of Example 2 of this invention.
 本発明は、走査電子顕微鏡(SEM)で取得した荷電粒子線像において穴もしくは溝パターンの内部領域を抽出して、この抽出した内部領域の輝度情報に基づいて穴もしくは溝パターンのエッジを視認できるように荷電粒子線像のコントラストを補正して表示するようにし、このコントラストが補正された画像を用いて穴もしくは溝パターンの寸法を精度よく計測できるようにしたものである。 
以下に、図を用いて本発明の実施例を説明する。
The present invention can extract an inner region of a hole or groove pattern in a charged particle beam image acquired by a scanning electron microscope (SEM), and can visually recognize the edge of the hole or groove pattern based on the luminance information of the extracted inner region. In this way, the contrast of the charged particle beam image is corrected and displayed, and the dimension of the hole or groove pattern can be accurately measured using the image with the corrected contrast.
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本実施例は、半導体ウェーハ上に形成された高低差のある回路パターン、特にトレンチ(深溝)やVia(深穴)や、トレンチ内にViaが存在するVia-in-Trenchと呼ばれるパターンをSEMで撮像して得た画像において、パターン内部の視認性を向上させるシステムに関するものである。 In this example, a circuit pattern with a height difference formed on a semiconductor wafer, in particular, a trench (deep groove) or via (deep hole), or a pattern called Via-in-Trench in which Via exists in the trench is obtained by SEM. The present invention relates to a system for improving visibility inside a pattern in an image obtained by imaging.
 以下、SEMを用いたパターン寸法計測装置(測長SEM)に適用した場合の実施例について、図面を用いて説明する。 Hereinafter, an embodiment when applied to a pattern dimension measuring apparatus (length measuring SEM) using an SEM will be described with reference to the drawings.
 図1に本実施例に関わるパターン寸法計測システムを実現する装置の全体の構成図を示す。本実施例に係る測長SEM100は、SEM本体120と、信号処理系130を備えて構成される。 FIG. 1 shows an overall configuration diagram of an apparatus for realizing a pattern dimension measurement system according to the present embodiment. The length measuring SEM 100 according to the present embodiment is configured to include a SEM main body 120 and a signal processing system 130.
 SEM本体120は、計測対象である回路パターンが形成されたシリコンウェーハ(試料)106を設置するXYステージ107、電子銃102より放出された電子線101を制御する照射光学系140、試料上から放出される電子を検出する検出器108を備えている。照射光学系140は、電子銃102、および、電子線101の経路上にあるコンデンサレンズ103、偏向器104、対物レンズ105を備えて構成される。 The SEM main body 120 includes an XY stage 107 on which a silicon wafer (sample) 106 on which a circuit pattern to be measured is formed, an irradiation optical system 140 for controlling the electron beam 101 emitted from the electron gun 102, and emitted from above the sample. The detector 108 for detecting the electrons to be detected is provided. The irradiation optical system 140 includes an electron gun 102, a condenser lens 103, a deflector 104, and an objective lens 105 on the path of the electron beam 101.
 検出信号の信号処理系130は、電子線101が照射された試料106から発生した2次電子を検出した検出器108から出力されるアナログ信号をデジタル信号に変換するA/D変換器109、A/D変換器109で変換された信号を入力して処理するCPU113,LSI114,画像メモリ115を備えた演算部110、演算部110を制御するとともに演算部110を介してSEM本体120を制御する制御端末111、データを記憶する記憶端末112を備えている。 The signal processing system 130 for the detection signal includes an A / D converter 109 that converts an analog signal output from the detector 108 that has detected secondary electrons generated from the sample 106 irradiated with the electron beam 101 into a digital signal, and A Controls the CPU 113, the LSI 114, the arithmetic unit 110 having the image memory 115, and the arithmetic unit 110, which input and processes the signal converted by the / D converter 109, and the SEM main body 120 via the arithmetic unit 110. A terminal 111 and a storage terminal 112 for storing data are provided.
 電子銃102から発射された電子線101は、照射光学系140のコンデンサレンズ103、偏向器104、対物レンズ105で制御されてシリコンウェーハ106上に照射される。シリコンウェーハ106上の電子線101が照射された領域からは2次電子が放出され、その一部が検出器108に入射して検出される。2次電子を検出した検出器108から出力されるアナログ信号は、A/D変換機109でデジタル信号に変換されて演算部110に入力される。 The electron beam 101 emitted from the electron gun 102 is irradiated onto the silicon wafer 106 under the control of the condenser lens 103, the deflector 104, and the objective lens 105 of the irradiation optical system 140. Secondary electrons are emitted from the region irradiated with the electron beam 101 on the silicon wafer 106, and a part thereof is incident on the detector 108 and detected. An analog signal output from the detector 108 that has detected secondary electrons is converted into a digital signal by the A / D converter 109 and input to the arithmetic unit 110.
 演算部110は、A/D変換機109でデジタル信号に変換された検出器108からの信号データを受け取り、画像メモリ115にその信号データを格納する。その他、検出器108で検出した結果に基づき検出電子像を生成する観察像取得部としての機能も有する。 The calculation unit 110 receives the signal data from the detector 108 converted into a digital signal by the A / D converter 109 and stores the signal data in the image memory 115. In addition, it also has a function as an observation image acquisition unit that generates a detection electronic image based on the result detected by the detector 108.
 CPU(Central Processing Unit)113、画像処理ソフトウェアを格納したLSI114等は、寸法計測の目的に応じた画像処理を実行し、パターンの寸法を計測する。画像メモリ115に格納されたデータは、外部の記憶装置112に改めて格納してもよい。 A CPU (Central Processing Unit) 113, an LSI 114 storing image processing software, etc. execute image processing according to the purpose of dimension measurement, and measure the dimension of the pattern. The data stored in the image memory 115 may be stored again in the external storage device 112.
 制御端末111は、演算部110を介して、XYステージ107の座標の制御や、計測シーケンスの制御を行う。 
制御端末111では、ユーザ対して観察画像や寸法計測結果等を画面116に表示するGUI(Graphical User Interface)を有し、ユーザは寸法計測に必要とされるシリコンウェーハ上のパターンの座標、パターンの位置決めに利用するパターンマッチング用のテンプレート、撮像条件等を含む撮像レシピデータを作成することができる。
The control terminal 111 controls the coordinates of the XY stage 107 and the measurement sequence via the calculation unit 110.
The control terminal 111 has a GUI (Graphical User Interface) that displays an observation image, a dimensional measurement result, and the like on the screen 116 for the user. The user can change the coordinates of the pattern on the silicon wafer and the pattern required for the dimensional measurement. Imaging recipe data including a pattern matching template used for positioning, imaging conditions, and the like can be created.
 図2Aは、計測対象の一例として、計測対象のシリコンウェーハ106上でトレンチパターンの底面に深穴パターンであるViaパターンが形成された、いわゆるVia-in-Trenchの構造の例を示すパターン画像201である。204はシリコンウェーハ106上のマスク領域、205はマスク領域204の一部を除去して形成されたトレンチ、206はトレンチ205の内部に加工された穴部(Via)を示している。 FIG. 2A is a pattern image 201 showing an example of a so-called Via-in-Trench structure in which a Via pattern that is a deep hole pattern is formed on the bottom surface of a trench pattern on a silicon wafer 106 to be measured as an example of a measurement target. It is. Reference numeral 204 denotes a mask region on the silicon wafer 106, 205 denotes a trench formed by removing a part of the mask region 204, and 206 denotes a hole (Via) processed in the trench 205.
 図2Bは,図2Aにおけるパターン画像201中の点Aから点B間の直線207に対応する断面構造202と、直線207上の領域のパターン画像201のから取得される輝度プロファイル203を示す。断面構造202において上から順にマスク208、トレンチ底209、Via底210であり、側壁211にはテーパーがついている。計測対象としてトップエッジの間隔212やボトムエッジの間隔213があげられる。 2B shows a cross-sectional structure 202 corresponding to the straight line 207 between point A and point B in the pattern image 201 in FIG. 2A and the luminance profile 203 acquired from the pattern image 201 in the region on the straight line 207. In the cross-sectional structure 202, the mask 208, the trench bottom 209, and the Via bottom 210 are arranged in this order from the top, and the side wall 211 is tapered. The measurement target includes the top edge interval 212 and the bottom edge interval 213.
 輝度プロファイル203において、横軸は試料上の位置、縦軸は検出信号の輝度を表している。この輝度プロファイル203から、トレンチ205の底面209に形成されたVia206のトップエッジの間隔212の計測は、トップエッジ215の輝度が十分に得られるため比較的容易に行うことができる。しかし、Via206の底面210のボトムエッジの間隔213の計測は、側壁211に対応する輝度のレンジ214が非常に小さく暗いため、計測結果から計測が適切に行われているかをユーザが判断できないという問題が生じる。 In the luminance profile 203, the horizontal axis represents the position on the sample, and the vertical axis represents the luminance of the detection signal. The measurement of the top edge interval 212 of the via 206 formed on the bottom surface 209 of the trench 205 from the luminance profile 203 can be performed relatively easily because the luminance of the top edge 215 is sufficiently obtained. However, in the measurement of the bottom edge interval 213 of the bottom surface 210 of the Via 206, the luminance range 214 corresponding to the side wall 211 is very small and dark, so that the user cannot determine whether the measurement is properly performed from the measurement result. Occurs.
 図3は、本発明の実施の形態1に係るパターン寸法計測システムの動作フローである。以下、図3のステップについて具体的な処理方法を説明する。 FIG. 3 is an operation flow of the pattern dimension measurement system according to the first embodiment of the present invention. Hereinafter, a specific processing method for the steps in FIG. 3 will be described.
 まず、ステップS301において、図1の測長SEM100によりシリコンウェーハ上のパターンの画像を撮像する。このとき撮像して得られた画像を図2の201とする。
ステップS302において、演算部110は図2Aの撮像画像201を制御端末111のGUI上に表示する。
ステップS303において、ユーザは制御端末111中の表示画面116に表示されたGUIの図2Aの画像の201上において、計測対象のパターンに対してマウス操作により計測カーソルを設定する、これをパターンの概略領域とする。(本ステップの詳細については図4にて説明する)
ステップS304において、演算部110はGUI上で設定された概略領域であるカーソルを縮小し、パターンの内部領域を算出する。(本ステップの詳細は図5にて説明する)
ステップS305において、演算部110は縮小したカーソル領域内の輝度範囲を算出する。
ステップS306において、演算部110はステップS305で求めた輝度範囲を大きくするようなコントラスト補正処理によりコントラスト補正を行う。(本ステップの詳細は図6にて説明する)
 ステップS307において、演算部110は制御端末111中のGUIにコントラスト補正前後の画像や、中間処理画像を表示する。(本ステップにおけるGUIの詳細は図7にて説明する)
ステップS308において、ユーザは、補正結果を修正したい場合、ステップS309のコントラスト補正パラメータ調整に進み、コントラスト補正パラメータの調整を行う。問題がなければステップS310に進む。
ステップS309において、ユーザはコントラスト補正パラメータをGUI上にて調整する。パラメータ調整後、ステップS306に戻る(パラメータ調整の詳細については図20にて説明する)
以降のステップS310において、コントラスト補正後の画像とステップS303で入力した計測カーソルを用い計測を行う。
First, in step S301, an image of a pattern on a silicon wafer is taken by the length measuring SEM 100 in FIG. An image obtained at this time is 201 in FIG.
In step S <b> 302, the calculation unit 110 displays the captured image 201 in FIG. 2A on the GUI of the control terminal 111.
In step S303, the user sets a measurement cursor on the measurement target pattern by operating the mouse on the image 201 in FIG. 2A of the GUI displayed on the display screen 116 in the control terminal 111. This is a pattern outline. This is an area. (Details of this step will be described in FIG. 4)
In step S304, the calculation unit 110 reduces the cursor, which is a schematic area set on the GUI, and calculates an internal area of the pattern. (Details of this step are explained in FIG. 5)
In step S305, the calculation unit 110 calculates a luminance range within the reduced cursor area.
In step S306, the calculation unit 110 performs contrast correction by contrast correction processing that increases the luminance range obtained in step S305. (Details of this step are explained in FIG. 6)
In step S <b> 307, the calculation unit 110 displays the images before and after contrast correction and the intermediate processed image on the GUI in the control terminal 111. (Details of the GUI in this step will be described in FIG. 7)
In step S308, if the user wants to correct the correction result, the user proceeds to contrast correction parameter adjustment in step S309, and adjusts the contrast correction parameter. If there is no problem, the process proceeds to step S310.
In step S309, the user adjusts the contrast correction parameter on the GUI. After parameter adjustment, the process returns to step S306 (details of parameter adjustment will be described with reference to FIG. 20).
In subsequent step S310, measurement is performed using the image after contrast correction and the measurement cursor input in step S303.
 図4は、図3のステップS303の計測カーソル設定を行うGUIを示した図である。GUI画面401には撮像画像402が表示される。ユーザはマウスカーソル403を操作し、例えば点404から点405までドラッグすることでトレンチ205内部の計測対象であるVia206を含む矩形領域406を計測カーソルとして設定し、実行ボタン407上にマウスカーソル403を移動させてクリックすることでこの計測カーソルを登録する事ができる。マウスカーソル403をリセットボタン408に移動させてクリックすることにより、登録した計測カーソルを修正することもできる。 FIG. 4 is a diagram showing a GUI for performing measurement cursor setting in step S303 of FIG. A captured image 402 is displayed on the GUI screen 401. The user operates the mouse cursor 403 and drags the mouse cursor 403 from, for example, a point 404 to a point 405 to set a rectangular area 406 including the via 206 to be measured inside the trench 205 as a measurement cursor. This measurement cursor can be registered by moving and clicking. The registered measurement cursor can also be corrected by moving the mouse cursor 403 to the reset button 408 and clicking.
 図5Aは、図3のステップS304のパターンの内部領域算出方法について示した図である。画像501は、図2Aに示したパターン画像201のうち、ステップS303で設定した計測カーソル506(図4で説明した計測カーソル406に相当)の近辺を拡大したものである。計測カーソル507、508、509は計測カーソル506を同じ比率で順に囲む領域を縮小した領域である。 FIG. 5A is a diagram showing a method for calculating the internal area of the pattern in step S304 of FIG. The image 501 is an enlarged view of the vicinity of the measurement cursor 506 (corresponding to the measurement cursor 406 described in FIG. 4) set in step S303 in the pattern image 201 shown in FIG. 2A. The measurement cursors 507, 508, and 509 are areas obtained by reducing the area surrounding the measurement cursor 506 in order at the same ratio.
 図5Bのグラフ510は、計測カーソル506~509までの各領域内の平均輝度を縦軸に、カーソルの縮小回数を横軸に点506p~509pとしてプロットしたものである。この平均輝度の変化が小さくなった時、変化が小さくなる手前のカーソルをVia206の内部領域502とする。計測カーソル506~508までは囲む領域を縮小するにつれて、計測カーソル内に含まれるマスク503、トレンチ504及びVia206のトップエッジ505の明るい領域が減少し、Via206の内部領域502である暗い領域が占める割合が増えるため、プロット点506p~508pに示す通り平均輝度は大きく減少する。 5B is a graph 510 in which the average luminance in each region from the measurement cursors 506 to 509 is plotted as the vertical axis, and the number of times the cursor is reduced as the points 506p to 509p along the horizontal axis. When the change in the average brightness becomes small, the cursor in front of which the change becomes small is set as the internal area 502 of the Via 206. As the surrounding area of the measurement cursors 506 to 508 is reduced, the bright area of the mask 503, the trench 504, and the top edge 505 of the Via 206 included in the measurement cursor is decreased, and the ratio of the dark area that is the internal area 502 of the Via 206 is occupied. Therefore, the average luminance greatly decreases as indicated by plot points 506p to 508p.
 計測カーソル508とカーソル509はどちらも計測カーソル全体がVia206の内部領域502に含まれる。Via206の内部領域502のコントラストは低いため、計測カーソル内の平均輝度の変化はプロット点508pと509pに示す通り小さくなる。これにより、計測カーソル508をVia206の内部領域502として適用する。 The measurement cursor 508 and the cursor 509 both include the entire measurement cursor in the internal area 502 of the Via 206. Since the contrast of the internal region 502 of the Via 206 is low, the change in average luminance in the measurement cursor is small as indicated by plot points 508p and 509p. Thereby, the measurement cursor 508 is applied as the internal region 502 of the Via 206.
 図6A及び図6Bは、図3のステップS306のコントラスト補正方法について示した図である。コントラスト補正は、図6Aに示したトーンカーブ601を用いて処理する。トーンカーブ601のx軸は入力輝度値、y軸は変換後の出力輝度値で、共に256諧調で表した場合を示している。トーンカーブ601は、ステップS305で計測カーソル508を用いて取得したVia206の内部領域502の最小輝度値xmin、最大輝度値xmaxと後述するステップS309にて入力されるコントラスト強調レベルスライダ値r、オフセットスライダ値bにより、コントラス補正後のxminとxmaxの出力値ymin,ymaxを求めることで構成する。 6A and 6B are diagrams showing the contrast correction method in step S306 of FIG. The contrast correction is processed using the tone curve 601 shown in FIG. 6A. The x-axis of the tone curve 601 is an input luminance value, and the y-axis is an output luminance value after conversion, both of which are expressed in 256 gradations. The tone curve 601 includes a minimum brightness value x min and a maximum brightness value x max of the inner area 502 of the via 206 acquired using the measurement cursor 508 in step S305, and a contrast enhancement level slider value r input in step S309 described later. The offset slider value b is used to obtain the output values y min and y max of x min and x max after contrast correction.
 出力輝度値yminとymaxは以下の(数1)、(数2)にて算出することができる。 The output luminance values y min and y max can be calculated by the following (Equation 1) and (Equation 2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
また、rは以下の(数3)で表される。 R is expressed by the following (Equation 3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 rは、入力輝度レンジの大きさ(xmax-xmin)と出力輝度レンジの大きさ(ymax-ymin)の比(図6Aの線分606,607,608の傾き)を調整するパラメータとなる。bは、内部領域502の出力輝度のオフセット(図6Aの線分607,608のy切片)を調整するパラメータである。画像のダイナミックレンジの上限と下限近傍の明るさにおいて、明暗差に対する人間の視覚の感度が小さくなることがあり、画像上で十分な明度差があったとしても視認しづらいことがある。そこで、オフセットのパラメータを調整することで、パターン内部の画素値を人間が視認しやすいような輝度値に出力することができる。 r is a parameter for adjusting the ratio of the size of the input luminance range (x max -x min ) to the size of the output luminance range (y max -y min ) (the slopes of the line segments 606, 607, and 608 in FIG. 6A). It becomes. b is a parameter for adjusting the offset of the output luminance of the internal region 502 (y intercept of the line segments 607 and 608 in FIG. 6A). At the brightness near the upper and lower limits of the dynamic range of the image, the sensitivity of human vision to the difference in brightness may be small, and even if there is a sufficient brightness difference on the image, it may be difficult to view. Therefore, by adjusting the offset parameter, the pixel value inside the pattern can be output to a luminance value that is easy for humans to visually recognize.
 以上によって求めた、点(xmin,ymin)、点(xmax,ymax)をつなぐ線分606、607、608にてトーンカーブ601を構成する。また、トーンカーブは線分で構成する以外に、ベジェ曲線などのなめらかな曲線で構成してもよい。 Was determined by the above, the point (x min, y min), a point (x max, y max) constitutes a tone curve 601 at segment 606, 607 and 608 connecting the. Further, the tone curve may be composed of a smooth curve such as a Bezier curve in addition to the line segment.
 図6Bは、原画像である画像201におけるVia206の領域周辺のプロファイル602を示す。横軸は位置、縦軸は輝度値を示す。609はトレンチ、610はVia206のトップエッジ、611はVia206の側壁、612はVia206の底面に相当する部分からの2次電子検出信号の輝度値である。入力輝度レンジ613はVia206の底面とVia206の側壁を含んだ範囲となる。 FIG. 6B shows a profile 602 around the region of Via 206 in the image 201 which is the original image. The horizontal axis indicates the position, and the vertical axis indicates the luminance value. 609 is a trench, 610 is a top edge of the Via 206, 611 is a side wall of the Via 206, and 612 is a luminance value of a secondary electron detection signal from a portion corresponding to the bottom surface of the Via 206. The input luminance range 613 is a range including the bottom surface of the via 206 and the side wall of the via 206.
 プロファイル602に対し、図6Aのトーンカーブ601で補正することにより、図6Bの下側に示すようなプロファイル603が得られる。これにより、入力輝度レンジ613は出力輝度レンジ614に広がり、Via206の底面210と側壁211の画像のコントラストを強調することができる。 By correcting the profile 602 with the tone curve 601 in FIG. 6A, a profile 603 as shown on the lower side of FIG. 6B is obtained. As a result, the input luminance range 613 extends to the output luminance range 614, and the contrast between the bottom surface 210 of the via 206 and the image on the side wall 211 can be enhanced.
 図7は、図3のステップS307のコントラスト補正後の画像の表示を行うGUIを示した図である。GUI画面701に、トレンチ205とVia206の画像を含む撮像原画像702(図2Aのパターン画像201に相当)、コントラストが補正されたマスク領域7031、トレンチ7032とVia7033の画像を含むコントラスト補正画像703が表示される。 FIG. 7 is a diagram showing a GUI for displaying the image after the contrast correction in step S307 in FIG. On the GUI screen 701, a captured original image 702 including the images of the trench 205 and Via 206 (corresponding to the pattern image 201 in FIG. 2A), a mask region 7031 with corrected contrast, and a contrast corrected image 703 including images of the trench 7032 and Via 7033 are displayed. Is displayed.
 また、中間結果としてステップS303で設定した計測カーソル406の設定領域を示す計測領域情報画像704と、ステップS304で算出したパターン内部領域計測カーソル508の設定領域を示す内部領域情報画像705を表示する。 Also, a measurement area information image 704 indicating the setting area of the measurement cursor 406 set in step S303 and an internal area information image 705 indicating the setting area of the pattern internal area measurement cursor 508 calculated in step S304 are displayed as intermediate results.
 ユーザはコントラスト補正画像703を確認し、もしコントラスト補正パラメータの修正が必要な場合は修正ボタン711をクリックしてステップS309に進む。コントラスト補正パラメータの修正が必要でない場合には、OKボタン712をクリックして、ステップS310へ進む。 The user confirms the contrast correction image 703, and if the correction of the contrast correction parameter is necessary, the user clicks the correction button 711 and proceeds to step S309. If it is not necessary to correct the contrast correction parameter, the user clicks the OK button 712 and proceeds to step S310.
 図8は、図3のステップS309のコントラスト補正パラメータ調整を行うGUIを示した図である。GUI801において、コントラスト補正の強さの度合を調整するコントラスト強調レベルスライダ802と、コントラストを強調した領域の輝度のオフセットを調整するオフセットスライダ803をユーザはGUI801上で操作し、設定ボタン804を押すことでパラメータの入力を行うことができる。入力されたパラメータはコントラスト強調レベルスライダ値rと、オフセットスライダ値bとしてステップS306で用いられる。但し、1回目のステップS306では、コントラスト強調レベルスライダ値rと、オフセットスライダ値bは予め設定された初期値を用いる。 FIG. 8 is a diagram showing a GUI for performing the contrast correction parameter adjustment in step S309 of FIG. In the GUI 801, the user operates a contrast enhancement level slider 802 that adjusts the degree of strength of contrast correction and an offset slider 803 that adjusts the luminance offset of a region in which contrast is enhanced on the GUI 801, and presses a setting button 804. You can input parameters with. The input parameters are used in step S306 as a contrast enhancement level slider value r and an offset slider value b. However, in the first step S306, the contrast enhancement level slider value r and the offset slider value b use preset initial values.
 図7のコントラスト補正後の画像の表示を行う画面と図8のコントラスト補正パラメータ調整を行う画面とを別々に表示する例を示したが、これらの画面は同一の画面上に同時に表示するようにしてもよい。これらの画面を同一の画面上に同時に表示することにより、コントラストの調整をより効率的に実行することができる。 Although an example in which the screen for displaying the image after contrast correction in FIG. 7 and the screen for adjusting the contrast correction parameter in FIG. 8 are separately displayed has been shown, these screens should be displayed simultaneously on the same screen. May be. By displaying these screens simultaneously on the same screen, the contrast can be adjusted more efficiently.
 図9Aは、図3のステップS310の計測処理における計測方法について示した図である。パターン画像901は、図7の計測領域情報表示部704に表示された計測カーソル406で囲んだ領域に対応するコントラスト補正後画像703に表示された領域を拡大した画像である。 FIG. 9A is a diagram showing a measurement method in the measurement process of step S310 of FIG. The pattern image 901 is an image obtained by enlarging the area displayed on the contrast-corrected image 703 corresponding to the area surrounded by the measurement cursor 406 displayed on the measurement area information display unit 704 in FIG.
 パターン画像901に対し、計測対象であるボトムエッジの検出を行う場合について説明する。ステップS303で設定した計測カーソル903(図4の計測カーソル406、及び、図5の計測カーソル506に相当)内において線分904を設定し、図9Bに示すように、線分904上の画像信号のプロファイル902を取得する。 A case will be described in which a bottom edge that is a measurement target is detected for the pattern image 901. A line segment 904 is set in the measurement cursor 903 (corresponding to the measurement cursor 406 in FIG. 4 and the measurement cursor 506 in FIG. 5) set in step S303, and the image signal on the line segment 904 is displayed as shown in FIG. 9B. The profile 902 is acquired.
 コントラスト補正処理によりプロファイル902の側壁に相当する部分は十分に画像のコントラストが強調されているため、図10Aで説明するしきい値法や図10Bで説明するリニア法などにより図9Aの点905及び点906に対応するボトムエッジ点905p、906pを容易に算出することができる。 Since the contrast corresponding to the side wall of the profile 902 is sufficiently enhanced by the contrast correction processing, the point 905 in FIG. 9A and the linear method described in FIG. The bottom edge points 905p and 906p corresponding to the point 906 can be easily calculated.
 このボトムエッジ点を、図9Cの画像907に点線で示すような複数の水平な直線9071~9075、もしくは図9Dの画像908に点線で示すような、パターンの中心を通る各方向の直線9081~9084のプロファイルから複数求め、各直線上にあるエッジ点間の距離(例えば、図9Bの点905pと906pとの距離)の平均値を計測値とする。 These bottom edge points are converted into a plurality of horizontal straight lines 9071 to 9075 as indicated by dotted lines in the image 907 in FIG. 9C, or straight lines 9081 to 9081 in each direction passing through the center of the pattern as indicated by dotted lines in the image 908 in FIG. 9D. A plurality of 9084 profiles are obtained, and an average value of distances between edge points on each straight line (for example, a distance between points 905p and 906p in FIG. 9B) is used as a measurement value.
 ユーザは算出した複数のボトムエッジ点をコントラスト補正後のパターン画像901上で確認することで、正しく計測が行われているかを確認することが可能となる。 The user can confirm whether or not the measurement is correctly performed by confirming the calculated plurality of bottom edge points on the pattern image 901 after the contrast correction.
 図10Aは、輝度プロファイルからエッジの位置を算出するしきい値法を示した図、図10Bは、輝度プロファイルからエッジの位置を算出するリニア法を示した図である。 FIG. 10A is a diagram showing a threshold method for calculating the edge position from the luminance profile, and FIG. 10B is a diagram showing a linear method for calculating the edge position from the luminance profile.
 図10Aのしきい値法によるエッジ算出方法は、輝度プロファイル1001に対し、プロファイルの最大ピーク1003を100%と最小ピーク1004を0%とした時、パーセンテージによるしきい値1005によって定義されるプロファイル上の点1006位置をエッジとする。 The edge calculation method by the threshold method in FIG. 10A is based on a profile defined by a threshold 1005 by percentage when the maximum peak 1003 of the profile is 100% and the minimum peak 1004 is 0% with respect to the luminance profile 1001. The point 1006 is the edge.
 一方、図10Bのリニア法によるエッジ算出方法は、輝度プロファイル1002に対し、プロファイルの傾き最大の点で接する直線1007とプロファイルの最小ピークに接する直線1008の交点1009の位置をエッジとする。 On the other hand, in the edge calculation method by the linear method of FIG. 10B, the position of the intersection 1009 of the straight line 1007 that touches the luminance profile 1002 at the point where the profile slope is maximum and the straight line 1008 that touches the minimum peak of the profile is the edge.
 図11はステップS310で計測パラメータの設定を行う際に用いる、計測結果と画質改善結果を表示するGUIについて示した図である
 GUI画面1101において、コントラスト補正画像1102上に、計測結果である計測点1103を重ねて表示する。これにより、ユーザは画質改善結果と計測結果を比較ができ、計測が正しく行われているかを確認が容易にできる。またチェックボックス1104、1105により、コントラスト補正前の画像計測した結果とコントラスト補正処理後の画像で計測した結果を切り替えることが可能である。
FIG. 11 is a diagram showing a GUI for displaying measurement results and image quality improvement results used when setting measurement parameters in step S310. On the GUI screen 1101, measurement points that are measurement results are displayed on the contrast-corrected image 1102. 1103 is displayed in an overlapping manner. Thereby, the user can compare the image quality improvement result and the measurement result, and can easily confirm whether the measurement is performed correctly. Check boxes 1104 and 1105 can be used to switch between an image measurement result before contrast correction and an image measurement result after contrast correction processing.
 本実施例によれば、Via-in-TrenchのパターンのSEM画像において、深穴であるViaの内部のコントラストを目視確認が容易にできる程度に改善できるので、計測が正しく行われているかの確認、及び計測条件の設定を容易に、かつ精度よく実行できるようになり、計測をより正確に行うことが可能になる。 According to the present embodiment, in the SEM image of the Via-in-Trench pattern, the contrast inside the Via that is a deep hole can be improved to the extent that it can be easily visually confirmed, so that the measurement is correctly performed. And measurement conditions can be set easily and accurately, and measurement can be performed more accurately.
 [変形例1]
実施例1の変形例1として、実施例1で説明した図3の処理フロー図のS303における計測カーソル設定を、半導体パターンの設計データを利用することでパターン内部の領域抽出を行う方法について説明する。
[Modification 1]
As a first modification of the first embodiment, a method of extracting a region inside the pattern by using the design data of the semiconductor pattern for the measurement cursor setting in S303 of the processing flow diagram of FIG. 3 described in the first embodiment will be described. .
 図12は、本変形例1に係るパターン寸法計測システムの動作フローである。以下、図12のステップについて具体的な処理方法を説明する。 FIG. 12 is an operation flow of the pattern dimension measurement system according to the first modification. Hereinafter, a specific processing method for the steps in FIG. 12 will be described.
 まずステップS1201において、測長SEM100によりシリコンウェーハ上のパターンの画像を撮像する。
ステップS1202において、演算部110は撮像画像を制御端末111のGUI上に表示する。
ステップS1203において、演算部110は撮像画像と同座標の設計データを記憶装置112から読み込む。
ステップS1204において、演算部110は撮像画像と設計データの位置合わせを行い、位置合わせ後の設計データより計測対象パターンの概略領域(計測カーソル設定領域)を算出する。(本ステップの詳細は図14にて説明する)
以降、図3のステップS304以降のステップを処理する。
First, in step S1201, an image of a pattern on a silicon wafer is taken by the length measuring SEM 100.
In step S <b> 1202, the calculation unit 110 displays the captured image on the GUI of the control terminal 111.
In step S1203, the calculation unit 110 reads design data having the same coordinates as the captured image from the storage device 112.
In step S1204, the arithmetic unit 110 aligns the captured image and the design data, and calculates a schematic region (measurement cursor setting region) of the measurement target pattern from the design data after the alignment. (Details of this step will be described in FIG. 14)
Thereafter, the steps after step S304 in FIG. 3 are processed.
 図13A乃至図13Cは、図12のステップS1204の設計データの位置合わせについて示した図である。図13Aは、SEM120で試料である半導体ウェーハ106に形成されたVia-in-Trenchを撮像して得られた撮像画像1301である。 FIGS. 13A to 13C are diagrams showing the alignment of the design data in step S1204 of FIG. FIG. 13A is a captured image 1301 obtained by imaging the Via-in-Trench formed on the semiconductor wafer 106 as a sample with the SEM 120.
 図13Bは、記憶装置112に記憶されているViaパターン層における設計データから設定した計測カーソル領域1302である。撮像画像1301と設計データ1302とでは位置ずれが発生するためパターンマッチングにより位置ずれを修正した図13Cに示すような、設計データ上の計測カーソル領域1303を設定する。位置ずれを修正した設計データ上の計測カーソル領域1303をViaの概略領域として用いる。 FIG. 13B shows a measurement cursor area 1302 set from design data in the Via pattern layer stored in the storage device 112. Since a positional deviation occurs between the captured image 1301 and the design data 1302, a measurement cursor area 1303 on the design data is set as shown in FIG. 13C in which the positional deviation is corrected by pattern matching. A measurement cursor area 1303 on the design data in which the positional deviation is corrected is used as the approximate area of Via.
 本実施例により、設計データを用いることでパターンの概略領域設定を自動で行えるため、実施例1の場合よりもユーザの設定操作の負担を少なくすることができる。 According to the present embodiment, since the schematic area setting of the pattern can be automatically performed by using the design data, the burden of the user's setting operation can be reduced as compared with the case of the first embodiment.
 [変形例2]
 本変形例では、実施例1で説明した図3の処理フロー図のS303における計測カーソル設定を、矩形カーソルを用いるのではなく、パターンの中心点をユーザが入力したポイントデータを用いてパターン内部の領域抽出を行う場合について説明する。
[Modification 2]
In this modification, the measurement cursor setting in step S303 of the processing flow diagram of FIG. 3 described in the first embodiment is not performed using a rectangular cursor, but using the point data input by the user as the center point of the pattern. A case where region extraction is performed will be described.
 図14は、本変形例2に係るパターン寸法計測システムの動作フローである。以下、図14のステップについて具体的な処理方法を説明する。 FIG. 14 is an operation flow of the pattern dimension measurement system according to the second modification. Hereinafter, a specific processing method for the steps in FIG. 14 will be described.
 まずステップS1401において、測長SEM100によりシリコンウェーハ上のパターンの画像を撮像する。
ステップS1402において、演算部110は撮像画像を制御端末111のGUI上に表示する。
ステップS1403において、ユーザは制御端末111中のGUIに表示された撮像画像において、マウス操作により計測パターンの中心位置をポイントデータとして設定する。
ステップS1404において、演算部110はポイントデータを中心とした楕円形の概略領域配置し、図5と同じ原理で楕円領域を拡大しながら内部の平均輝度を求め、平均輝度の変化が小さくなった時の楕円領域を内部領域として算出する。
以降、図3のステップS305以降のステップを処理する。
First, in step S1401, an image of a pattern on a silicon wafer is taken by the length measuring SEM 100.
In step S <b> 1402, the calculation unit 110 displays the captured image on the GUI of the control terminal 111.
In step S1403, the user sets the center position of the measurement pattern as point data by operating the mouse in the captured image displayed on the GUI in the control terminal 111.
In step S1404, the calculation unit 110 arranges an elliptical approximate area centered on the point data, obtains the average average brightness while enlarging the elliptical area according to the same principle as in FIG. 5, and when the change in average brightness becomes small Is calculated as an inner region.
Thereafter, the steps after step S305 in FIG. 3 are processed.
 ステップS1404のパターン内部領域算出において、長径、短径に関して事前に設定した固定パラメータを用い、ポイントデータの座標を中心とした楕円の内部をパターンの内部領域として算出する。 In the calculation of the pattern inner area in step S1404, the inside of the ellipse centered on the coordinates of the point data is calculated as the inner area of the pattern using fixed parameters set in advance for the major axis and minor axis.
 本実施例により、ポイントデータを用いることでGUI上の入力操作が減るため、実施例1よりもユーザの設定操作の負担を少なくすることができる。 In this embodiment, the input operation on the GUI is reduced by using the point data, so that the burden of the user's setting operation can be reduced as compared with the first embodiment.
 [変形例3]
 実施例1のステップS304のパターン内部領域算出の別の方法として、本変形例においては、図15に示すボトムエッジ近傍領域を用いる。パターン画像1501に対し、実施例1において説明した図9の画像908に示す方法と同様のボトムエッジ検出を行い、概略領域内のボトムエッジ点1502を算出する。このボトムエッジ点を中心とした円領域1503を求め、この領域をパターンの内部領域とする。
[Modification 3]
As another method of calculating the pattern internal area in step S304 of the first embodiment, the bottom edge vicinity area shown in FIG. 15 is used in this modification. For the pattern image 1501, bottom edge detection similar to the method shown in the image 908 of FIG. 9 described in the first embodiment is performed, and a bottom edge point 1502 in the approximate region is calculated. A circular area 1503 centered on the bottom edge point is obtained, and this area is set as an internal area of the pattern.
 本実施例により、計測対象となるボトムエッジ近辺領域の輝度範囲を得ることができるため、ボトムエッジ近傍のコントラスト補正を効果的に行うことができる。 According to the present embodiment, since the luminance range in the region near the bottom edge to be measured can be obtained, contrast correction near the bottom edge can be effectively performed.
 [変形例4]
本変形例においては、実施例1のステップS304のパターン内部領域算出、及び変形例2における、ステップS1404のパターン内部領域算出を、図2の215に示すようなパターン断面が切り立った箇所で2次電子が多く放出するために明るくなるトップエッジを利用して算出するようにした。
[Modification 4]
In the present modification, the pattern inner area calculation in step S304 of the first embodiment and the pattern inner area calculation in step S1404 in the second modification are secondarily performed at a position where the pattern cross section as shown by 215 in FIG. The calculation is made by using the top edge that becomes bright because many electrons are emitted.
 図16はトップエッジを用いたパターン内部領域算出の方法について示した図である。パターン画像1601に対し、エッジ検出処理を用いて概略領域1605内のトップエッジ画像1602を算出する。トップエッジ1603において囲まれた閉領域1604をパターンの内部領域とする。 FIG. 16 is a diagram showing a method for calculating the pattern internal region using the top edge. A top edge image 1602 in the approximate area 1605 is calculated for the pattern image 1601 using edge detection processing. A closed region 1604 surrounded by the top edge 1603 is set as an internal region of the pattern.
 本実施例により、パターン形状に沿った内部領域を抽出することができるため、計測対象のパターンが小さい場合において、輝度情報を得るための十分に大きな内部領域を算出する上で有効である。 This embodiment can extract an internal region along the pattern shape, and is effective in calculating a sufficiently large internal region for obtaining luminance information when the pattern to be measured is small.
 [変形例5]
本変形例においては、実施例1及び変形例1及び2におけるパターンの概略領域設定方法と、実施例1及び変形例3及び4におけるパターン内部領域算出方法を任意に組み合わせて用いるようにした。また本変形例においては、図1の演算部110が実施例1及び変形例3及び4における内部領域算出方法をすべて機能として保持し、図17に示す内部領域設定方法選択GUI1700により、内部領域算出方法をユーザが選択できるようにした。
[Modification 5]
In this modification, the pattern approximate area setting method in the first embodiment and the first and second modification examples and the pattern internal area calculation method in the first and third modification examples are used in any combination. In the present modification, the calculation unit 110 in FIG. 1 holds all the internal area calculation methods in the first embodiment and the third and fourth modifications as functions, and the internal area calculation is performed by the internal area setting method selection GUI 1700 shown in FIG. The user can select the method.
 本変形例により、計測パターンに応じて有効な内部領域設定方式をユーザは選択可能になる。 This modification allows the user to select an effective internal area setting method according to the measurement pattern.
 [変形例6]
本変形例では、コントラストの補正処理を含めた計測レシピの設定を行い、保存したレシピデータを用いて自動計測を行う。
[Modification 6]
In this modification, a measurement recipe including contrast correction processing is set, and automatic measurement is performed using the saved recipe data.
 図18は、自動計測を行う際に用いる計測レシピの設定フローを示した図である。以下、図18のステップの処理方法を説明する。
ステップS1801において、計測対象のウェーハを装置へロードする。
ステップS1802において、チップサイズやチップの配列などの計測対象ウェーハ情報を入力する。
ステップS1803において、XYステージ移動時のずれ補正するためのマッチングに用いるウェーハアライメント点を登録する。
ステップS1804において、測定点の登録、FOV(Field of View)の設定、ビームシフトによる位置ずれを補正するためのマッチングに用いるアドレッシング点の登録を行う。
ステップS1805では、図3のステップS302~S310の処理を行うことで測定点におけるコントラスト補正後の測定点の画像を取得する。
FIG. 18 is a diagram illustrating a measurement recipe setting flow used when automatic measurement is performed. Hereinafter, the processing method of the step of FIG. 18 will be described.
In step S1801, the wafer to be measured is loaded into the apparatus.
In step S1802, measurement target wafer information such as chip size and chip arrangement is input.
In step S1803, a wafer alignment point used for matching for correcting a shift during movement of the XY stage is registered.
In step S1804, registration of measurement points, setting of FOV (Field of View), and registration of addressing points used for matching for correcting displacement due to beam shift are performed.
In step S1805, an image of the measurement point after the contrast correction at the measurement point is acquired by performing the processing of steps S302 to S310 in FIG.
 ステップS1806で、コントラスト補正後の画像を用い計測の方式や計測パラメータの設定を行う。
ステップS1807で、ステップS1802、S1803、S1804、S1806で設定したパラメータ、及び図3のフローで設定したコントラスト補正のパラメータをレシピデータとして保存する。
保存したレシピを用いて、同じウェーハ上の別のチップや同じ設計のパターン付ウェーハ対して自動計測を行う。
In step S1806, a measurement method and measurement parameters are set using the contrast-corrected image.
In step S1807, the parameters set in steps S1802, S1803, S1804, and S1806 and the contrast correction parameters set in the flow of FIG. 3 are stored as recipe data.
Using the stored recipe, automatic measurement is performed on another chip on the same wafer or a patterned wafer having the same design.
 本実施例により、レシピデータにコントラスト補正パラメータも含めることで、自動計測の際にもコントラスト補正を行い計測することが可能となる。 According to the present embodiment, by including the contrast correction parameter in the recipe data, it is possible to perform the measurement by performing the contrast correction even in the automatic measurement.
 [変形例7]
 本変形例は、トレンチ部分の画像の明るさとVia底の部分の画像の明るさの差が小さい場合に適用する。実施例1のVia-in-Trenchの構造において、トレンチとViaの同じ明るさで取得されるパターンの例を図2219に示す。
[Modification 7]
This modification is applied when the difference between the brightness of the image of the trench portion and the brightness of the image of the bottom portion of the Via is small. FIG. 2219 shows an example of a pattern acquired with the same brightness of the trench and the Via in the Via-in-Trench structure of the first embodiment.
 上側の図のパターン断面1901において、トレンチ底1905とVia底1906の間1904に比べトレンチの深さ1903が十分大きい時、下側のグラフの輝度プロファイル1902に示すように、トレンチ部分の明るさ1907とVia底の部分の明るさ1908の差は全体明るさのレンジに対して非常に小さくなる。 When the trench depth 1903 is sufficiently larger than the portion 1904 between the trench bottom 1905 and the Via bottom 1906 in the pattern cross section 1901 in the upper diagram, the brightness 1907 of the trench portion as shown in the luminance profile 1902 of the lower graph. And the brightness 1908 at the bottom of the Via are very small relative to the overall brightness range.
 このようなパターンにおいては、トレンチとViaの両方の領域のコントラストを向上するように、トレンチとViaの両方のパターン内部を領域抽出し局所コントラスト補正を行えばよい。 In such a pattern, in order to improve the contrast of both the trench and via regions, the region inside both the trench and via regions may be extracted to perform local contrast correction.
 これにより、Via内部とトレンチ内部両方のコントラストを向上した出力画像を得ることができる。 This makes it possible to obtain an output image with improved contrast both inside the via and inside the trench.
 [変形例8]
 本変形例は、溝パターンのボトムエッジが計測対象の場合にも適用可能にした例である。図20Aは、溝パターンのボトムエッジが計測対象の例を示した図である。溝パターン像2001の輝度プロファイル2003において、側壁のプロファイル2006のコントラストが非常に低いため、ボトムエッジの間2005を視認することが困難である。
[Modification 8]
This modification is an example that can be applied to the case where the bottom edge of the groove pattern is a measurement target. FIG. 20A is a diagram illustrating an example in which the bottom edge of the groove pattern is a measurement target. In the brightness profile 2003 of the groove pattern image 2001, the contrast of the side wall profile 2006 is very low, so that it is difficult to visually recognize 2005 between the bottom edges.
 一方、図20Bに示した画像2002は、本変形例に係る画像であって、図3のフローにより溝の内部領域を抽出し、局所コントラスト補正を行った画像である。 On the other hand, an image 2002 shown in FIG. 20B is an image according to this modification, and is an image obtained by extracting the inner region of the groove by the flow of FIG. 3 and performing local contrast correction.
 コントラスト補正後の画像2002の輝度プロファイル2004では、側壁のプロファイル2007の輝度レンジが広くなるため、ボトムエッジの間2008を容易に視認することができるようになる。 In the brightness profile 2004 of the image 2002 after contrast correction, the brightness range of the side wall profile 2007 is widened, so that the 2008 between the bottom edges can be easily visually recognized.
 実施例1においては、測長SEM100で取得した試料の画像を用いてパターン内部の領域抽出を行う方法について説明したが、本実施例2では、計測対象のパターン画像とは別の検出器で撮像したパターン画像を用いパターン内部の領域抽出を行う場合について説明する。 In the first embodiment, the method of extracting the region inside the pattern using the sample image acquired by the length measuring SEM 100 has been described. In the second embodiment, the image is picked up by a detector different from the pattern image to be measured. A case will be described in which an area inside a pattern is extracted using the pattern image thus obtained.
 図21に、本実施例2に関わる、パターン寸法計測システムを実現する装置の全体の構成図を示す。本実施例に係る測長SEM2100は、SEM本体2120と、信号処理系2130を備えて構成されている。なお、実施例1において図1で説明した測長SEM100と同じ構成のものには同じ番号を付している。 FIG. 21 shows an overall configuration diagram of an apparatus for realizing a pattern dimension measurement system according to the second embodiment. A length measurement SEM 2100 according to the present embodiment includes a SEM body 2120 and a signal processing system 2130. In addition, the same number is attached | subjected to the thing of the same structure as length measurement SEM100 demonstrated in FIG.
 SEM本体2120は、計測対象である回路パターンが形成されたシリコンウェーハ(試料)106を設置するXYステージ107、電子銃102より放出された電子線101を制御する照射光学系2140、試料に対し斜め方向に放出される電子を受ける反射板2102、反射板2102から放出した2次電子を検出する斜方検出器2103、試料に対してほぼ垂直方向に放出された電子を受ける反射板2101、反射板2101から放出した2次電子を検出する上方検出器2104を備えている。照射光学系2140は、電子銃102、および、電子線101の経路上にあるコンデンサレンズ103、偏向器104、対物レンズ105を備えて構成される。 The SEM main body 2120 includes an XY stage 107 on which a silicon wafer (sample) 106 on which a circuit pattern to be measured is formed, an irradiation optical system 2140 for controlling the electron beam 101 emitted from the electron gun 102, and an angle with respect to the sample. Reflector 2102 that receives electrons emitted in the direction, oblique detector 2103 that detects secondary electrons emitted from the reflector 2102, reflector 2101 that receives electrons emitted in a direction substantially perpendicular to the sample, reflector An upper detector 2104 for detecting secondary electrons emitted from 2101 is provided. The irradiation optical system 2140 includes an electron gun 102, a condenser lens 103, a deflector 104, and an objective lens 105 on the path of the electron beam 101.
 検出信号の信号処理系2130は、斜方検出器2103から出力されるアナログ信号をデジタル信号に変換するA/D変換器2105、上方検出器2104から出力されるアナログ信号をデジタル信号に変換するA/D変換器2106、A/D変換器2105と2106で変換された信号をそれぞれ入力して処理するCPU2113,LSI2114,画像メモリ2115を備えた演算部2110、演算部2110を制御するとともに演算部2110を介してSEM2120を制御する制御端末2111、データを記憶する記憶端末2112を備えている。 A signal processing system 2130 for detection signals converts an analog signal output from the oblique detector 2103 into a digital signal, an A / D converter 2105, and converts an analog signal output from the upper detector 2104 into a digital signal A. The CPU 2113, the LSI 2114, and the image memory 2115, each of which receives and processes the signals converted by the A / D converter 2106, A / D converters 2105 and 2106, respectively, and controls the arithmetic unit 2110 and the arithmetic unit 2110 A control terminal 2111 for controlling the SEM 2120 and a storage terminal 2112 for storing data.
 このような構成において、電子銃102から発射された電子線101は、照明光学系2140のコンデンサレンズ103、偏向器104、対物レンズ105で制御されてシリコンウェーハ106上に照射されろ。シリコンウェーハ106上の電子線101が照射された領域からは電子が放出される。この時、シリコンウェーハ106に対して斜め方向に放出された電子は、反射板2102にぶつかり、2次電子を放出し斜方検出器2103により検出される。 In such a configuration, the electron beam 101 emitted from the electron gun 102 is controlled by the condenser lens 103, the deflector 104, and the objective lens 105 of the illumination optical system 2140, and irradiated onto the silicon wafer 106. Electrons are emitted from the region irradiated with the electron beam 101 on the silicon wafer 106. At this time, electrons emitted in an oblique direction with respect to the silicon wafer 106 collide with the reflection plate 2102, emit secondary electrons, and are detected by the oblique detector 2103.
 また、シリコンウェーハ106に対してほぼ垂直方向に放出された電子は、反射板2101にぶつかり、2次電子を放出し上方検出器2104により検出される。斜方検出器2103にて検出された電子はA/D変換機2105で、上方検出器2104にて検出された電子はA/D変換機2106でそれぞれデジタル信号に変換されて、演算部2110に入力される。 Further, the electrons emitted in the substantially vertical direction with respect to the silicon wafer 106 collide with the reflection plate 2101, emit secondary electrons, and are detected by the upper detector 2104. The electrons detected by the oblique detector 2103 are converted into digital signals by the A / D converter 2105, and the electrons detected by the upper detector 2104 are converted into digital signals by the A / D converter 2106, respectively. Entered.
 演算部2110は、デジタル信号に変換された検出器2103と2104の検出結果を受け取り、画像メモリ2115にその検出結果を格納する。その他、検出器2103と2104の検出結果に基づいて、検出電子像を生成する観察像取得部としての機能も有する。 The calculation unit 2110 receives the detection results of the detectors 2103 and 2104 converted into digital signals, and stores the detection results in the image memory 2115. In addition, it also has a function as an observation image acquisition unit that generates a detection electronic image based on the detection results of the detectors 2103 and 2104.
 CPU(Central Processing Unit)2113、画像処理ソフトウェアを格納したLSI2114等は、寸法計測の目的に応じた画像処理を実行し、パターンの寸法を計測する。画像メモリ2115に格納されたデータは、外部の記憶装置2112に改めて格納してもよい。 A CPU (Central Processing Unit) 2113, an LSI 2114 storing image processing software, etc. execute image processing according to the purpose of dimension measurement, and measure the dimension of the pattern. The data stored in the image memory 2115 may be stored again in the external storage device 2112.
 制御端末2111は、演算部2110を介してXYステージ107の座標の制御や計測シーケンスの制御を行う。 The control terminal 2111 controls the coordinates of the XY stage 107 and the measurement sequence via the calculation unit 2110.
 制御端末2111では、ユーザ対して観察画像や寸法計測結果等を画面2116に表示するGUI(Graphical User Interface)を有し、ユーザは寸法計測に必要とされるシリコンウェーハ上のパターンの座標、パターンの位置決めに利用するパターンマッチング用のテンプレート、撮像条件等を含む撮像レシピデータを作成することができる。 The control terminal 2111 has a GUI (Graphical User Interface) for displaying an observation image, a dimension measurement result, and the like on the screen 2116 for the user. The user can coordinate the pattern on the silicon wafer and the pattern required for the dimension measurement. Imaging recipe data including a pattern matching template used for positioning, imaging conditions, and the like can be created.
 また制御端末2111では、寸法計測に必要とされるシリコンウェーハ106上のパターンの座標、パターンの位置決めに利用するパターンマッチング用のテンプレート、撮像条件等を含む撮像レシピデータを作成する。 Also, the control terminal 2111 creates imaging recipe data including pattern coordinates on the silicon wafer 106 required for dimension measurement, a pattern matching template used for pattern positioning, imaging conditions, and the like.
 図22は、本実施例2に係るパターン寸法計測システムの動作フローである。以下、図22のステップについて具体的な処理方法を説明する。
まずステップS2201において、測長SEM2100によりシリコンウェーハ上の上方検出器による上方検出像と、斜方検出器による斜方検出像を取得する。
ステップS2202において、演算部2110は上方検出像と斜方検出像を制御端末2111のGUI上に表示する。
ステップS2203において、演算部2110は斜方検出像より暗部領域を抽出し、これをパターンの概略領域とする。(本ステップの詳細は図1123にて説明する)
ステップS2204において、演算部2110は上方検出像の概略領域の大きさを変化させながら内部領域の算出を行う(本ステップの詳細は、実施例1で説明した図3のフロー図のステップS304における処理、すなわち図5を用いて説明した処理と同じである)。
ステップS2205において、演算部2110は上方検出像の内部領域おける輝度範囲を算出する。
ステップS2206において、演算部2110はステップS2205で求めた輝度範囲を大きくするようなコントラスト補正処理により上方検出像のコントラスト補正を行う。(本ステップは図6と同じである)
 ステップS2207において、演算部2110は制御端末2111中のGUIにコントラスト補正後の上方検出画像を表示する。
ステップS2208において、ユーザは制御端末2111のGUIに表示されたコントラスト補正画像を確認し、補正結果を修正したい場合はステップS2209のコントラスト補正パラメータ設定に進む。問題がなければステップS2210に進む。
ステップS2209において、ユーザはコントラスト補正のパラメータを、実施例1において図8を用いて説明したような方法、すなわち、GUI801において、コントラスト補正の強さの度合を調整するコントラスト強調レベルスライダ802と、コントラストを強調した領域の輝度のオフセットを調整するオフセットスライダ803をユーザはGUI801上で操作し、設定ボタン804を押すことでパラメータの入力を行うことができる。
FIG. 22 is an operation flow of the pattern dimension measurement system according to the second embodiment. Hereinafter, a specific processing method for the steps of FIG. 22 will be described.
First, in step S2201, an upper detection image by the upper detector on the silicon wafer and an oblique detection image by the oblique detector are acquired by the length measurement SEM 2100.
In step S2202, the calculation unit 2110 displays the upper detection image and the oblique detection image on the GUI of the control terminal 2111.
In step S2203, the calculation unit 2110 extracts a dark area from the oblique detection image, and sets this as a schematic area of the pattern. (Details of this step will be described with reference to FIG. 1123)
In step S2204, the calculation unit 2110 calculates the inner area while changing the size of the approximate area of the upper detection image (the details of this step are the processing in step S304 of the flowchart of FIG. 3 described in the first embodiment). That is, it is the same as the processing described with reference to FIG.
In step S2205, the calculation unit 2110 calculates a luminance range in the inner region of the upper detection image.
In step S2206, the calculation unit 2110 corrects the contrast of the upper detection image by contrast correction processing that increases the luminance range obtained in step S2205. (This step is the same as FIG. 6)
In step S <b> 2207, the calculation unit 2110 displays the upper detection image after contrast correction on the GUI in the control terminal 2111.
In step S2208, the user confirms the contrast correction image displayed on the GUI of the control terminal 2111. If the user wants to correct the correction result, the process proceeds to contrast correction parameter setting in step S2209. If there is no problem, the process proceeds to step S2210.
In step S2209, the user sets the contrast correction parameters in the method described with reference to FIG. 8 in the first embodiment, that is, in the GUI 801, the contrast enhancement level slider 802 for adjusting the degree of contrast correction strength, and the contrast. The user can input parameters by operating the offset slider 803 on the GUI 801 for adjusting the luminance offset of the region where the emphasis is emphasized and pressing the setting button 804.
 入力されたパラメータはコントラスト強調レベルスライダ値rと、オフセットスライダ値bとしてステップS2206で用いられる。但し、1回目のステップS2206では、コントラスト強調レベルスライダ値rと、オフセットスライダ値bは予め設定された初期値を用いる。
パラメータ設定後、ステップS2206に戻り、S2208までを再実行する。
ステップS2210において、コントラスト補正後の画像に対して計測を行う。
The input parameters are used in step S2206 as a contrast enhancement level slider value r and an offset slider value b. However, in the first step S2206, the contrast enhancement level slider value r and the offset slider value b use preset initial values.
After setting the parameters, the process returns to step S2206 and re-executes up to S2208.
In step S2210, measurement is performed on the image after contrast correction.
 図23A乃至図23Cは、図22のステップS2203の斜方検出像による暗部領域の抽出について示した図である。シリコンウェーハ106上に形成されたパターン2301に対して、電子銃102から発射された電子線101を穴底2311に対して照射した時、穴底2311から放出してきた電子2305~2309のうち、電子2305と2309はパターン2301の側壁2312に衝突し、検出されない。 FIG. 23A to FIG. 23C are diagrams showing the extraction of the dark area by the oblique detection image in step S2203 of FIG. Of the electrons 2305 to 2309 emitted from the hole bottom 2311 when the electron beam 101 emitted from the electron gun 102 is irradiated to the pattern 2301 formed on the silicon wafer 106, 2305 and 2309 collide with the side wall 2312 of the pattern 2301, and are not detected.
 電子2306と2308は穴から斜めに放出され、図21の反射板2102に衝突し、この衝突により反射板2102から発生した2次電子のうち斜方検出器2103に入射した2次電子が検出される。電子2307は穴からほぼ垂直に放出され、図21の反射板2101に衝突する。この衝突により反射板2101から発生した2次電子のうち上方検出器2104に入射した2次電子が上方検出器2104にて検出される。 Electrons 2306 and 2308 are obliquely emitted from the holes and collide with the reflector 2102 in FIG. 21, and secondary electrons incident on the oblique detector 2103 among the secondary electrons generated from the reflector 2102 due to the collision are detected. The The electrons 2307 are emitted almost vertically from the hole and collide with the reflector 2101 in FIG. Of the secondary electrons generated from the reflector 2101 due to this collision, the secondary electrons incident on the upper detector 2104 are detected by the upper detector 2104.
 斜めからでてくる電子の数は穴形状のアスペクト比(穴の深さと穴の大きさの比)と相関が高いため、斜方検出像はパターン毎の領域に応じて明暗がはっきりと分かれた画像になる。対して、垂直にでてくる電子は少ないため上方検出像はノイズが多くなるが、深い穴底からも信号が返ってくるため、穴底のパターンを計測及び検査したい時に使われる。 Since the number of electrons coming from an angle is highly correlated with the aspect ratio of the hole shape (ratio of hole depth to hole size), the oblique detection image clearly shows the brightness and darkness according to the area of each pattern. Become an image. On the other hand, since the number of electrons that appear vertically is small, the upper detection image is noisy, but a signal is returned from the deep hole bottom, so it is used to measure and inspect the hole bottom pattern.
 Via-in-Trenchのパターンから得られた上方検出像のヒストグラム2302と斜方検出像のヒストグラム2303を示す。各ヒストグラムにおいて2310uと2310tはVia領域の分布を、2311uと2311tはトレンチ領域の分布を、2312uと2312tはマスク領域の分布である。上方検出像のヒストグラム2302はノイズが多いため各領域の分布が重なり、領域分割は困難である。対して、斜方検出像のヒストグラム2303はS/Nが高いため各領域のヒストグラムの分布が、斜方検出像にしきい値処理を行う事で容易に領域分割を行う事ができる。 The histogram 2302 of the upper detection image and the histogram 2303 of the oblique detection image obtained from the Via-in-Trench pattern are shown. In each histogram, 2310u and 2310t are distributions of Via regions, 2311u and 2311t are distributions of trench regions, and 2312u and 2312t are distributions of mask regions. Since the histogram 2302 of the upper detection image has a lot of noise, the distributions of the respective regions are overlapped, and the region division is difficult. On the other hand, since the diagonal detection image histogram 2303 has a high S / N, the distribution of the histogram of each region can be easily divided into regions by performing threshold processing on the oblique detection image.
 本実施例により、斜方検出画像を用いることでパターンの概略領域設定を自動で行えるため、実施例1よりもユーザの設定操作の負担を少なくすることができる。 According to the present embodiment, since the outline area setting of the pattern can be automatically performed by using the oblique detection image, the burden of the user's setting operation can be reduced as compared with the first embodiment.
 また図21の測長SEM2100の代わりに、図24に示すSEM2400を用いてもよい。図21に示した測長SEM2100との大きな違いは、照射光学系2440に、検出器として2次電子検出器2404と二つの反射電子検出器2402、2403を備えていることである。 Further, instead of the length measurement SEM 2100 of FIG. 21, an SEM 2400 shown in FIG. 24 may be used. A major difference from the length measurement SEM 2100 shown in FIG. 21 is that the irradiation optical system 2440 includes a secondary electron detector 2404 and two backscattered electron detectors 2402 and 2403 as detectors.
 電子線101を照射されたシリコンウェーハ106から放出した2次電子はExB偏向器2401により曲げられ、2次電子検出器2404により検出される。また同時に放出した反射電子は、2つの反射電子検出器2402、2403により検出される。検出された信号は、信号処理系2430のA/D変換機2405、2406、2407にそれぞれデジタル信号に変換され、演算部2410にて3枚の画像に構成される。 Secondary electrons emitted from the silicon wafer 106 irradiated with the electron beam 101 are bent by the ExB deflector 2401 and detected by the secondary electron detector 2404. The backscattered electrons simultaneously emitted are detected by the two backscattered electron detectors 2402 and 2403. The detected signals are converted into digital signals by the A / D converters 2405, 2406, and 2407 of the signal processing system 2430, respectively, and are configured into three images by the arithmetic unit 2410.
 検出信号の信号処理系2430は、2次電子検出器2404及び2つの反射電子検出器2402、2403から出力されるアナログ信号をデジタル信号に変換するA/D変換器2405、2406、2407、これらのA/D変換器2405、2406、2407で変換された信号を入力して処理するCPU2413,LSI2414,画像メモリ2415を備えた演算部2410、演算部2410を制御するとともに演算部2410を介してSEM2420を制御する制御端末2411、データを記憶する記憶端末2412を備えている。 A signal processing system 2430 for detection signals includes A / D converters 2405, 2406, and 2407 for converting analog signals output from the secondary electron detector 2404 and the two backscattered electron detectors 2402 and 2403 into digital signals. The CPU 2413 for processing the signals converted by the A / D converters 2405, 2406, and 2407, the LSI 2414, and the arithmetic unit 2410 having the image memory 2415 are controlled, and the SEM 2420 is controlled via the arithmetic unit 2410. A control terminal 2411 for controlling and a storage terminal 2412 for storing data are provided.
 反射電子像(BSE像)は多層の配線パターンにおいて、各層の配線領域の明暗が明瞭に分かれるため、層毎の配線を領域分割する際に有効である。本実施例の装置構成により、多層配線パターンのコントラスト補正を容易に行うことができる。
なお、実施例1において説明した変形例1乃至8は、本実施例にも適用することが可能である。
The backscattered electron image (BSE image) is effective when the wiring of each layer is divided into regions because the wiring regions of each layer are clearly separated in a multilayer wiring pattern. With the apparatus configuration of the present embodiment, the contrast correction of the multilayer wiring pattern can be easily performed.
Note that the modifications 1 to 8 described in the first embodiment can also be applied to this embodiment.
 本実施例によれば、Via-in-TrenchのパターンのSEM画像において、深穴であるViaの内部のコントラストを目視確認が容易にできる程度に改善できるので、計測が正しく行われているかの確認、及び計測条件の設定を容易に、かつ精度よく実行できるようになり、計測をより正確に行うことが可能になる。 According to the present embodiment, in the SEM image of the Via-in-Trench pattern, the contrast inside the Via that is a deep hole can be improved to the extent that it can be easily visually confirmed, so that the measurement is correctly performed. And measurement conditions can be set easily and accurately, and measurement can be performed more accurately.
 [変形例] 
実施例2の変形例について説明する。本変形例においては、実施例2の図22のステップS2209のパラメータ調整を、予め準備して置いたパラメータセットであるプリセットを用いて設定するようにした。
[Modification]
A modification of the second embodiment will be described. In the present modification, the parameter adjustment in step S2209 in FIG. 22 of the second embodiment is set using a preset which is a parameter set prepared in advance.
 図25において、プリセットを用いたコントラスト補正パラメータの設定を行うGUIについて説明する。GUI画面2501において、図22に示したステップS2203で算出した概略領域を元に上方検出像より計測対象パターン部位を切り出した原画像2502を表示する。画像2503~2508は、コントラスト補正パラメータの複数のプリセットにより順次原画像2502に対してコントラスト補正を処理した画像である。 In FIG. 25, a GUI for setting contrast correction parameters using presets will be described. On the GUI screen 2501, an original image 2502 in which a measurement target pattern part is cut out from the upper detection image based on the approximate area calculated in step S2203 shown in FIG. 22 is displayed. Images 2503 to 2508 are images obtained by sequentially performing contrast correction on the original image 2502 with a plurality of preset contrast correction parameters.
 コントラスト補正画像2503~2508をGUI2501上に並べて表示し、ユーザは適切な補正結果の画像を選択して選択ボタン2510をクリックすることで、選択した画像2509に用いられたプリセットをコントラスト補正のパラメータとして設定することができる。プリセットによるコントラスト補正のパラメータ調整によって、ユーザは容易にパラメータ調整を行うことが可能となる。 Contrast correction images 2503 to 2508 are displayed side by side on the GUI 2501, and the user selects an appropriate correction result image and clicks the selection button 2510, whereby the preset used for the selected image 2509 is used as a parameter for contrast correction. Can be set. The user can easily adjust the parameters by adjusting the parameters for the contrast correction by the preset.
 100,2100,2400…測長SEM  110,2110、2410…演算部  111,2111,2411…制御端末  112,2112,2412…記憶装置  115、2115、2415…画像メモリ  120、2120、2420…SEM本体  130、2130,2430…信号処理系  140、2140,2440…照射光学系。 100, 2100, 2400 ... Length measuring SEM 110, 2110, 2410 ... Arithmetic unit 111, 2111, 2411 ... Control terminal 112, 2112, 2412 ... Storage device 115, 2115, 2415 ... Image memory 120, 2120, 2420 ... SEM body 130 2130, 2430 ... Signal processing system 140, 2140, 2440 ... Irradiation optical system.

Claims (15)

  1.  荷電粒子線を用いて試料上に形成された穴もしくは溝を含むパターンの寸法を計測するシステムであって、
     試料上に形成された穴もしくは溝を含むパターンに荷電粒子を照射し走査して前記穴もしくは溝を含むパターンの荷電粒子線の画像を取得する荷電粒子線画像取得ユニットと、
     該荷電粒子線画像取得ユニットで取得した荷電粒子線の画像を処理して前記穴もしくは溝を含むパターンの寸法を計測する信号処理ユニットと、
     該信号処理ユニットで処理した結果を表示する画面を有する表示ユニットと
    を備え、前記信号処理ユニットは、
     前記荷電粒子線画像取得ユニットで取得した荷電粒子線の画像において寸法を計測する前記穴もしくは溝を含むパターンの領域を設定する計測領域設定部と、
    該計測領域設定部で設定した前記寸法を計測する穴もしくは溝を含むパターンの領域の荷電粒子線の画像のコントラストを補正するコントラスト補正部とを有し、
    前記信号処理ユニットは、前記信号処理ユニットでコントラストが補正された画像を処理して前記穴もしくは溝を含むパターンの寸法を計測する
    ことを特徴とする荷電粒子線を用いたパターン寸法計測システム。
    A system for measuring a dimension of a pattern including a hole or groove formed on a sample using a charged particle beam,
    A charged particle beam image acquisition unit that irradiates and scans a pattern including a hole or groove formed on a sample and scans the particle to acquire a charged particle beam image of the pattern including the hole or groove;
    A signal processing unit that processes an image of the charged particle beam acquired by the charged particle beam image acquisition unit and measures a dimension of the pattern including the hole or groove;
    A display unit having a screen for displaying a result processed by the signal processing unit, the signal processing unit,
    A measurement region setting unit for setting a region of a pattern including the hole or groove for measuring a dimension in an image of the charged particle beam acquired by the charged particle beam image acquisition unit;
    A contrast correction unit for correcting the contrast of the image of the charged particle beam in the pattern region including the hole or groove for measuring the dimension set in the measurement region setting unit,
    The pattern processing system using a charged particle beam, wherein the signal processing unit processes an image whose contrast is corrected by the signal processing unit and measures a dimension of a pattern including the hole or groove.
  2.  請求項1記載の荷電粒子線を用いたパターン寸法計測システムであって、前記コントラスト補正部は、前記計測領域設定部で設定した前記寸法を計測する穴もしくは溝を含むパターンの領域の荷電粒子線の画像のコントラストを補正することを、前記計測領域設定部で設定した前記寸法を計測する穴もしくは溝を含むパターンの領域の荷電粒子線の画像における前記穴もしくは溝パターンの内部領域を抽出し、該抽出した穴もしくは溝パターンの内部領域から領域内の輝度情報を算出し、該算出した輝度情報に基づいて前記荷電粒子線の画像における前記抽出した穴もしくは溝パターンの像のエッジが前記表示ユニット上で視認できるようにコントラストを補正することを特徴とする荷電粒子線を用いたパターン寸法計測システム。 2. The pattern dimension measurement system using a charged particle beam according to claim 1, wherein the contrast correction unit is a charged particle beam in a pattern region including a hole or a groove for measuring the dimension set by the measurement region setting unit. Correcting the contrast of the image, extracting the internal region of the hole or groove pattern in the image of the charged particle beam of the pattern region including the hole or groove for measuring the dimension set in the measurement region setting unit, Luminance information in the region is calculated from the inner region of the extracted hole or groove pattern, and the edge of the extracted hole or groove pattern image in the image of the charged particle beam based on the calculated luminance information is the display unit. A pattern dimension measurement system using a charged particle beam, wherein the contrast is corrected so as to be visible on the top.
  3.  請求項1記載の荷電粒子線を用いたパターン寸法計測システムであって、前記計測領域設定部は、前記表示ユニットの画面に表示された前記荷電粒子線画像取得ユニットで取得した荷電粒子線の画像上で指定された領域を寸法を計測する前記穴もしくは溝を含むパターンの領域として設定することを特徴とする荷電粒子線を用いたパターン寸法計測システム。 2. The pattern dimension measurement system using a charged particle beam according to claim 1, wherein the measurement region setting unit is an image of a charged particle beam acquired by the charged particle beam image acquisition unit displayed on a screen of the display unit. A pattern dimension measuring system using a charged particle beam, characterized in that the area specified above is set as a pattern area including the hole or groove for measuring a dimension.
  4.  請求項1記載の荷電粒子線を用いたパターン寸法計測システムであって、前記計測領域設定部は、前記試料上に形成された穴もしくは溝を含むパターンの設計情報を用いて前記寸法を計測する穴もしくは溝を含むパターンの領域を設定することを特徴とする荷電粒子線を用いたパターン寸法計測システム。 The pattern dimension measurement system using a charged particle beam according to claim 1, wherein the measurement region setting unit measures the dimension using design information of a pattern including a hole or a groove formed on the sample. A pattern dimension measurement system using a charged particle beam, wherein a pattern region including a hole or a groove is set.
  5.  請求項1記載の荷電粒子線を用いたパターン寸法計測システムであって、前記コントラスト補正部は、コントラストを調整した前記荷電粒子線の画像を前記表示ユニットの画面上に表示し、該荷電粒子線の画像が表示された画面上で設定されたコントラストの調整量に基づいて前記荷電粒子線の画像のコントラストを再調整することを特徴とする荷電粒子線を用いたパターン寸法計測システム。 2. The pattern dimension measurement system using a charged particle beam according to claim 1, wherein the contrast correction unit displays an image of the charged particle beam with adjusted contrast on a screen of the display unit, and the charged particle beam. A pattern size measurement system using a charged particle beam, wherein the contrast of the image of the charged particle beam is readjusted based on a contrast adjustment amount set on a screen on which the image is displayed.
  6.  請求項1記載の荷電粒子線を用いたパターン寸法計測システムであって、前記信号処理ユニットは、コントラスト補正部で予め設定された複数の条件で前記荷電粒子線の画像のコントラストを補正し、該複数の条件でコントラストを補正した前記荷電粒子線の画像を前記表示ユニットの画面に表示し、該画面上で選択された前記荷電粒子線の画像に対応するコントラスト補正条件を次回以降のコントラスト補正条件として設定することを特徴とする荷電粒子線を用いたパターン寸法計測システム。 The pattern dimension measurement system using a charged particle beam according to claim 1, wherein the signal processing unit corrects the contrast of the image of the charged particle beam under a plurality of conditions set in advance by a contrast correction unit, An image of the charged particle beam whose contrast is corrected under a plurality of conditions is displayed on the screen of the display unit, and a contrast correction condition corresponding to the image of the charged particle beam selected on the screen is set as a contrast correction condition from the next time onward. Pattern dimension measurement system using charged particle beam, characterized by setting as
  7.  荷電粒子線を用いて試料上に形成された穴もしくは溝を含むパターンの寸法を計測する方法であって、
     試料上に形成された穴もしくは溝を含むパターンに荷電粒子を照射し走査して前記穴もしくは溝を含むパターンの荷電粒子線の画像を取得し、
     該取得した荷電粒子線の画像を処理して前記穴もしくは溝を含むパターンの寸法を計測し、
     該処理した結果を画面上に表示する
    ことを含み、前記穴もしくは溝を含むパターンの寸法を計測することを、
     前記取得した荷電粒子線の画像において寸法を計測する前記穴もしくは溝を含むパターンの領域を設定し、
    該設定した前記寸法を計測する穴もしくは溝を含むパターンの領域の荷電粒子線の画像のコントラストを補正し、
    該コントラストが補正された画像を処理することにより前記穴もしくは溝を含むパターンの寸法を計測する
    ことを特徴とする荷電粒子線を用いたパターン寸法計測方法。
    A method of measuring a dimension of a pattern including a hole or groove formed on a sample using a charged particle beam,
    A pattern containing holes or grooves formed on a sample is irradiated with charged particles and scanned to obtain a charged particle beam image of the pattern containing holes or grooves,
    Processing the acquired image of the charged particle beam to measure the dimension of the pattern including the hole or groove;
    Displaying the processed result on a screen, and measuring the dimension of the pattern including the hole or groove,
    Set a region of the pattern including the hole or groove for measuring the dimension in the acquired image of the charged particle beam,
    Correct the contrast of the image of the charged particle beam in the pattern area including the hole or groove for measuring the set dimension,
    A pattern dimension measuring method using a charged particle beam, wherein the dimension of a pattern including the hole or groove is measured by processing an image with the contrast corrected.
  8.  請求項7記載の荷電粒子線を用いたパターン寸法計測方法であって、前記設定したパターンの領域の荷電粒子線の画像のコントラストを補正することを、前記設定した前記寸法を計測する穴もしくは溝を含むパターンの領域の荷電粒子線の画像における前記穴もしくは溝パターンの内部領域を抽出し、該抽出した穴もしくは溝パターンの内部領域から領域内の輝度情報を算出し、該算出した輝度情報に基づいて前記荷電粒子線の画像における前記抽出した穴もしくは溝パターンの像のエッジが前記表示ユニット上で視認できるようにコントラストを補正することを特徴とする荷電粒子線を用いたパターン寸法計測方法。 8. A pattern dimension measuring method using a charged particle beam according to claim 7, wherein correcting the contrast of an image of the charged particle beam in the set pattern region is a hole or groove for measuring the set dimension. The inside area of the hole or groove pattern in the image of the charged particle beam in the pattern area including the pattern is extracted, luminance information in the area is calculated from the extracted inner area of the hole or groove pattern, and the calculated luminance information is included in the calculated luminance information. A pattern size measuring method using a charged particle beam, wherein the contrast is corrected so that an edge of the extracted hole or groove pattern image in the charged particle beam image can be visually recognized on the display unit.
  9.  請求項7記載の荷電粒子線を用いたパターン寸法計測方法であって、前記パターンの領域を、前記画面に表示された前記荷電粒子線の画像上で設定することを特徴とする荷電粒子線を用いたパターン寸法計測方法。 8. A pattern dimension measuring method using a charged particle beam according to claim 7, wherein a region of the pattern is set on an image of the charged particle beam displayed on the screen. The pattern dimension measurement method used.
  10.  請求項7記載の荷電粒子線を用いたパターン寸法計測方法であって、前記パターンの領域を、前記試料上に形成された穴もしくは溝を含むパターンの設計情報を用いて設定することを特徴とする荷電粒子線を用いたパターン寸法計測方法。 The pattern dimension measuring method using a charged particle beam according to claim 7, wherein the pattern area is set using design information of a pattern including a hole or a groove formed on the sample. Pattern dimension measurement method using charged particle beam.
  11.  請求項7記載の荷電粒子線を用いたパターン寸法計測方法であって、前記コントラストを補正することが、前記コントラストを調整した前記荷電粒子線の画像を前記画面上に表示し、該荷電粒子線の画像が表示された画面上でコントラストの調整量を設定し、該設定されたコントラストの調整量に基づいて前記荷電粒子線の画像のコントラストを再調整することを含むことを特徴とする荷電粒子線を用いたパターン寸法計測方法。 8. The pattern dimension measuring method using a charged particle beam according to claim 7, wherein the correction of the contrast displays an image of the charged particle beam with the contrast adjusted on the screen, and the charged particle beam A charged particle comprising: setting a contrast adjustment amount on a screen on which an image of the image is displayed; and re-adjusting the contrast of the charged particle beam image based on the set contrast adjustment amount Pattern dimension measurement method using lines.
  12.  請求項7記載の荷電粒子線を用いたパターン寸法計測方法であって、前記設定した寸法を計測する穴もしくは溝を含むパターンの領域の荷電粒子線の画像のコントラストを補正することを、予め設定された複数の条件で前記荷電粒子線の画像のコントラストを補正し、該複数の条件でコントラストを補正した前記荷電粒子線の複数の画像を前記表示ユニットの画面に表示し、該画面に表示した複数の画像の中から選択された画像に対応するコントラスト補正条件を次回以降のコントラスト補正条件として設定することを特徴とする荷電粒子線を用いたパターン寸法計測方法。 8. A pattern dimension measuring method using a charged particle beam according to claim 7, wherein a correction is made in advance for correcting a contrast of an image of the charged particle beam in a pattern region including a hole or a groove for measuring the set dimension. The contrast of the image of the charged particle beam is corrected under the plurality of conditions, and the plurality of images of the charged particle beam with the contrast corrected under the plurality of conditions are displayed on the screen of the display unit and displayed on the screen. A pattern dimension measurement method using a charged particle beam, characterized in that a contrast correction condition corresponding to an image selected from a plurality of images is set as a contrast correction condition for the next and subsequent times.
  13. 荷電粒子線を用いて試料上に形成された穴もしくは溝を含むパターンの寸法を計測する方法であって、
     試料上に形成された穴もしくは溝を含むパターンに荷電粒子を照射し走査して前記穴もしくは溝を含むパターンの荷電粒子線の画像を取得し、
     該取得した荷電粒子線の画像を処理して前記穴もしくは溝を含むパターンの寸法を計測し、
     該処理した結果を画面上に表示する
    ことを含み、前記穴もしくは溝を含むパターンの寸法を計測することを、
     前記取得した荷電粒子線の画像と該画像のコントラストを補正した画像とを画面上に表示し、
     該表示された画面上で前記画像のコントラストの補正条件を修正し、
    該修正した補正条件でコントラストが補正された画像を処理することにより前記穴もしくは溝を含むパターンの寸法を計測する
    ことを特徴とする荷電粒子線を用いたパターン寸法計測方法。
    A method of measuring a dimension of a pattern including a hole or groove formed on a sample using a charged particle beam,
    A pattern containing holes or grooves formed on a sample is irradiated with charged particles and scanned to obtain a charged particle beam image of the pattern containing holes or grooves,
    Processing the acquired image of the charged particle beam to measure the dimension of the pattern including the hole or groove;
    Displaying the processed result on a screen, and measuring the dimension of the pattern including the hole or groove,
    Displaying an image of the acquired charged particle beam and an image obtained by correcting the contrast of the image on a screen;
    Correct the contrast correction condition of the image on the displayed screen,
    A pattern dimension measurement method using a charged particle beam, wherein the dimension of a pattern including the hole or groove is measured by processing an image whose contrast is corrected under the corrected correction condition.
  14.  請求項13記載の荷電粒子線を用いたパターン寸法計測方法であって、前記画面上に表示する前記取得した荷電粒子線の画像と該画像のコントラストを補正した画像とは、前記取得した穴もしくは溝を含むパターンの荷電粒子線の画像のうち指定された領域の画像であることを特徴とする荷電粒子線を用いたパターン寸法計測方法。 The pattern dimension measurement method using a charged particle beam according to claim 13, wherein the acquired image of the charged particle beam displayed on the screen and the image in which the contrast of the image is corrected include the acquired hole or A pattern dimension measurement method using a charged particle beam, wherein the pattern is an image of a specified region of a charged particle beam image including a groove.
  15.  請求項13記載の荷電粒子線を用いたパターン寸法計測方法であって、前記表示された画面上で前記画像のコントラストの補正条件を修正することを、前記穴もしくは溝を含むパターンの画像における前記穴もしくは溝パターンのエッジと該前記穴もしくは溝パターンの周囲とのコントラストが高くなるようにコントラストの補正条件を修正することを特徴とする荷電粒子線を用いたパターン寸法計測方法。 14. The pattern dimension measurement method using a charged particle beam according to claim 13, wherein correcting a contrast correction condition of the image on the displayed screen is performed in the image of the pattern including the hole or groove. A pattern dimension measuring method using a charged particle beam, wherein a contrast correction condition is corrected so that a contrast between an edge of a hole or groove pattern and a periphery of the hole or groove pattern is increased.
PCT/JP2015/058235 2014-05-27 2015-03-19 Method and system for pattern dimension measurement using charged particle beam WO2015182224A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-109302 2014-05-27
JP2014109302 2014-05-27

Publications (1)

Publication Number Publication Date
WO2015182224A1 true WO2015182224A1 (en) 2015-12-03

Family

ID=54698566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058235 WO2015182224A1 (en) 2014-05-27 2015-03-19 Method and system for pattern dimension measurement using charged particle beam

Country Status (2)

Country Link
TW (1) TW201544791A (en)
WO (1) WO2015182224A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130364A1 (en) * 2016-01-29 2017-08-03 株式会社 日立ハイテクノロジーズ Charged particle beam device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211356A (en) * 2018-06-06 2019-12-12 株式会社日立ハイテクノロジーズ Method for measuring pattern, pattern measurement tool, and computer readable medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147549A (en) * 1990-10-09 1992-05-21 Jeol Ltd Scanning electron microscope
JPH0696711A (en) * 1992-09-14 1994-04-08 Jeol Ltd Display method for image of scanning electron microscope
JP2009245674A (en) * 2008-03-31 2009-10-22 Hitachi High-Technologies Corp Charged particle microscope and image processing method using it
JP2011076810A (en) * 2009-09-30 2011-04-14 Hitachi High-Technologies Corp Charged particle microscope device, and method for inspection of sample using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147549A (en) * 1990-10-09 1992-05-21 Jeol Ltd Scanning electron microscope
JPH0696711A (en) * 1992-09-14 1994-04-08 Jeol Ltd Display method for image of scanning electron microscope
JP2009245674A (en) * 2008-03-31 2009-10-22 Hitachi High-Technologies Corp Charged particle microscope and image processing method using it
JP2011076810A (en) * 2009-09-30 2011-04-14 Hitachi High-Technologies Corp Charged particle microscope device, and method for inspection of sample using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130364A1 (en) * 2016-01-29 2017-08-03 株式会社 日立ハイテクノロジーズ Charged particle beam device
US10984980B2 (en) 2016-01-29 2021-04-20 Hitachi High-Tech Corporation Charged particle beam device for imaging vias inside trenches

Also Published As

Publication number Publication date
TW201544791A (en) 2015-12-01

Similar Documents

Publication Publication Date Title
US10976536B2 (en) Image-forming device, and dimension measurement device
US11239052B2 (en) Charged particle beam device
US9460889B2 (en) Charged particle microscope device and image capturing method
US10229812B2 (en) Sample observation method and sample observation device
US7932493B2 (en) Method and system for observing a specimen using a scanning electron microscope
US8330104B2 (en) Pattern measurement apparatus and pattern measurement method
US7590506B2 (en) Pattern measurement apparatus and pattern measuring method
JP4586051B2 (en) Scanning electron microscope
KR101987726B1 (en) Electron-beam pattern inspection system
US9341584B2 (en) Charged-particle microscope device and method for inspecting sample using same
US8258471B2 (en) Pattern measuring apparatus and pattern measuring method
TWI494537B (en) A pattern measuring method, a device condition setting method of a charged particle beam device, and a charged particle beam device
US20090212215A1 (en) Scanning electron microscope and method of measuring pattern dimension using the same
WO2011099490A1 (en) Pattern inspection method, pattern inspection program, and electronic device inspection system
US20150012243A1 (en) Semiconductor Evaluation Device and Computer Program
US8263935B2 (en) Charged particle beam apparatus
WO2015182224A1 (en) Method and system for pattern dimension measurement using charged particle beam
JP5775948B2 (en) Charged particle microscope apparatus and image capturing method
KR20180095019A (en) Charged particle beam device
TW201541497A (en) Charged particle beam device
JP2016162513A (en) Charged particle beam device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15799150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP