TW201544791A - Method and system of pattern dimension measurement using charged particle beam - Google Patents

Method and system of pattern dimension measurement using charged particle beam Download PDF

Info

Publication number
TW201544791A
TW201544791A TW104114801A TW104114801A TW201544791A TW 201544791 A TW201544791 A TW 201544791A TW 104114801 A TW104114801 A TW 104114801A TW 104114801 A TW104114801 A TW 104114801A TW 201544791 A TW201544791 A TW 201544791A
Authority
TW
Taiwan
Prior art keywords
pattern
image
charged particle
particle beam
contrast
Prior art date
Application number
TW104114801A
Other languages
Chinese (zh)
Inventor
Shinya Murakami
Chie Shishido
Maki Tanaka
Fumihiro Sasajima
Hitoshi Namai
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Publication of TW201544791A publication Critical patent/TW201544791A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons

Abstract

In semiconductor device production process management using a Critical Dimension-Scanning Electron Microscope (CD-SEM), when a measurement position is at the bottom of a hole pattern or groove pattern, the signal level from the bottom of the pattern is relatively diminished as a result of pattern refinement and structural complexity, the pattern edge contrast of an obtained image is insufficient, and visual confirmation and measurement of the measurement position are difficult. In the present invention, the dimensions of a pattern including a hole or groove is measured through the setting of an area of the pattern including the hole or groove in an acquired charged particle beam image that is to have the dimensions thereof measured, the correction of the contrast of the charged particle beam image of the set area of the pattern including the hole or groove that is to have the dimensions thereof measured, and the processing of the image that has had the contrast thereof corrected. Accordingly, the dimension of the pattern including the hole or groove is measured.

Description

利用荷電粒子束之圖案尺寸測量方法及其系統 Pattern size measurement method using charged particle beam and system thereof

本發明係關於一種對形成於半導體晶圓上之圖案照射荷電粒子束而獲取圖像、並測量尺寸之利用荷電粒子束之圖案尺寸測量方法及其系統。 The present invention relates to a method for measuring a pattern size using a charged particle beam by irradiating a pattern of a charged particle beam on a pattern formed on a semiconductor wafer, and measuring the size, and a system thereof.

於半導體製造製程中,進行有使用尺寸測量用之掃描型電子顯微鏡(Scanning Electron Microscope:SEM)即測長SEM測量形成於半導體晶圓上之圖案之尺寸的製程管理,但因近年來之器件之微細化、複雜化而導致尺寸測量之難易度增加。尤其是雙金屬鑲嵌製程(Dual damascene process)中之形成於溝槽內之微小直徑之深孔(以下,記作Via)也可謂其代表。Via之尺寸(直徑)較小且形成得較深,縱橫比較高,故而於利用測長SEM觀察此種Via之孔之內部之情形時,來自Via之底之信號量減少。因此,產生有如下問題:SEM圖像中之Via底之對比度不足,而於SEM圖像上Via之測量部位之目視確認、測量條件之設定、及測量本身變得困難。 In the semiconductor manufacturing process, a scanning electron microscope (SEM) using a dimensional measurement, that is, a length measurement SEM, is used to measure the size of a pattern formed on a semiconductor wafer, but the device has been used in recent years. The miniaturization and complication result in an increase in the difficulty of dimension measurement. In particular, a deep hole (hereinafter referred to as Via) formed in a small diameter in a groove in a dual damascene process is also representative. The size (diameter) of Via is small and formed deep, and the aspect ratio is relatively high. Therefore, when the inside of the Via hole is observed by the length measuring SEM, the amount of signals from the bottom of Via is reduced. Therefore, there is a problem that the contrast of the Via bottom in the SEM image is insufficient, and visual confirmation of the measurement portion of Via on the SEM image, setting of measurement conditions, and measurement itself become difficult.

針對在利用SEM獲得之圖像內之局部區域中對比度不充分之圖案圖像,於專利文獻1中,揭示有如下處理:將BSE(Back Scattered Electron,反向散射電子)像用於區域分割,提高分割後之區域內之對比度,藉此,提高檢查對象圖案圖像之局部對比度。又,於專利文獻2中,揭示有如下圖案拍攝方法:於圖案圖像上設定ROI(Region of Interest,注意區域),藉此設定使ROI內之對比度增大之類的作為拍 攝條件之增益值。 Patent Document 1 discloses a pattern image in which a contrast is insufficient in a partial region in an image obtained by SEM, and a BSE (Back Scattered Electron) image is used for region division. The contrast in the divided region is increased, thereby improving the local contrast of the inspection target pattern image. Further, Patent Document 2 discloses a pattern photographing method in which an ROI (Region of Interest) is set on a pattern image, thereby setting a contrast such that the contrast in the ROI is increased. The gain value of the shooting condition.

[先前技術文獻] [Previous Technical Literature] [專利文獻] [Patent Literature]

[專利文獻1]日本專利第5313939號公報 [Patent Document 1] Japanese Patent No. 5313939

[專利文獻2]日本專利特開2002-319366號公報 [Patent Document 2] Japanese Patent Laid-Open Publication No. 2002-319366

本發明所假定者係於形成於半導體晶圓上之有高低差之電路圖案中產生之難以進行邊緣之目視確認或測量之低對比度的測量對象。 The present invention assumes a low-contrast measurement object which is generated in a circuit pattern having a height difference formed on a semiconductor wafer and which is difficult to visually confirm or measure the edge.

專利文獻1係意圖藉由進行如下對比度修正而使二次電子像之局部區域之對比度提高之發明,該對比度修正基於使用反射電子像之區域劃分結果。但是,為了增強測量對象之底部邊緣之對比度,必須抽取圖案內部之局部區域,若僅藉由利用反射電子像之區域劃分,則不充分。 Patent Document 1 intends to improve the contrast of a partial region of a secondary electron image by performing contrast correction based on a region division result using a reflected electron image. However, in order to enhance the contrast of the bottom edge of the measurement object, it is necessary to extract a partial region inside the pattern, which is insufficient if it is only divided by the region of the reflected electron image.

專利文獻2係基於局部區域內之亮度資訊進行拍攝時之增益調整或伽瑪轉換者,但未記載詳細之圖案內部之局部區域抽取方法及藉由圖像處理之對比度修正方法,對於增強測量對象之底部邊緣之對比度而言並不充分。 Patent Document 2 is a gain adjustment or a gamma conversion when photographing based on luminance information in a partial region, but does not describe a local region extraction method in a detailed pattern and a contrast correction method by image processing, for enhancing an measurement target The contrast at the bottom edge is not sufficient.

為了解決上述問題,於本發明中,使利用荷電粒子束測量形成於試樣上之包含孔或者槽之圖案之尺寸的系統構成為包括:荷電粒子束圖像獲取單元,其對形成於試樣上之包含孔或者槽之圖案照射荷電粒子並進行掃描而獲取包含孔或者槽之圖案之荷電粒子束之圖像;信號處理單元,其對由荷電粒子束圖像獲取單元獲取之荷電粒子束之圖像進行處理而測量包含孔或者槽之圖案之尺寸;及顯示單元,其具有顯示由該信號處理單元進行處理所得之結果之畫面;且信號處理單元 具有:測量區域設定部,其於由荷電粒子束圖像獲取單元獲取之荷電粒子束之圖像中設定測量尺寸之包含孔或者槽之圖案之區域;及對比度修正部,其對由測量區域設定部所設定之測量尺寸之包含孔或者槽之圖案之區域之荷電粒子束之圖像的對比度進行修正;且信號處理單元對由信號處理單元修正對比度後之圖像進行處理而測量包含孔或者槽之圖案之尺寸。 In order to solve the above problems, in the present invention, a system for measuring a size of a pattern including a hole or a groove formed on a sample by using a charged particle beam is configured to include: a charged particle beam image acquiring unit, the pair being formed on the sample The image comprising the hole or the groove illuminates the charged particle and scans to obtain an image of the charged particle beam including the pattern of the hole or the groove; and the signal processing unit for the charged particle beam obtained by the charged particle beam image acquiring unit The image is processed to measure a size of a pattern including holes or slots; and a display unit having a screen displaying results obtained by the signal processing unit; and a signal processing unit And a measurement area setting unit that sets an area of the measurement size including the pattern of the hole or the groove in the image of the charged particle beam acquired by the charged particle beam image acquisition unit; and a contrast correction unit that is set by the measurement area Correction of the contrast of the image of the charged particle beam in the region of the measurement pattern including the hole or the groove pattern set by the portion; and the signal processing unit processes the image corrected by the signal processing unit to measure the image including the hole or the groove The size of the pattern.

又,為了解決上述問題,於本發明中,使利用荷電粒子束測量形成於試樣上之包含孔或者槽之圖案之尺寸的方法包含如下步驟:對形成於試樣上之包含孔或者槽之圖案照射荷電粒子並進行掃描而獲取包含孔或者槽之圖案之荷電粒子束之圖像,對獲取之荷電粒子束之圖像進行處理而測量包含孔或者槽之圖案之尺寸,並將處理所得之結果顯示於畫面上;且關於測量包含孔或者槽之圖案之尺寸之步驟,藉由如下方法測量包含孔或者槽之圖案之尺寸,即:於獲取之荷電粒子束之圖像中設定測量尺寸之包含孔或者槽之圖案之區域,對所設定之測量尺寸之包含孔或者槽之圖案之區域之荷電粒子束之圖像的對比度進行修正,且對修正對比度後之圖像進行處理。 Further, in order to solve the above problems, in the present invention, a method of measuring a size of a pattern including a hole or a groove formed on a sample by using a charged particle beam includes the steps of: including a hole or a groove formed in the sample; The pattern illuminates the charged particles and scans to obtain an image of the charged particle beam comprising the pattern of holes or grooves, and processes the image of the charged particle beam to measure the size of the pattern containing the holes or grooves, and processes the resulting The result is displayed on the screen; and regarding the step of measuring the size of the pattern including the hole or the groove, the size of the pattern including the hole or the groove is measured by the method of setting the measurement size in the image of the charged particle beam obtained The area containing the pattern of the holes or grooves is corrected for the contrast of the image of the charged particle beam in the region of the set measurement size including the pattern of the holes or grooves, and the image after the contrast correction is processed.

進而,為了解決上述問題,於本發明中,使利用荷電粒子束測量形成於試樣上之包含孔或者槽之圖案之尺寸的方法包含如下步驟:對形成於試樣上之包含孔或者槽之圖案照射荷電粒子並進行掃描而獲取包含孔或者槽之圖案之荷電粒子束之圖像,對獲取之荷電粒子束之圖像進行處理而測量包含孔或者槽之圖案之尺寸,並將處理所得之結果顯示於畫面上;且關於測量包含孔或者槽之圖案之尺寸之步驟,藉由如下方法測量包含孔或者槽之圖案之尺寸,即:將獲取之荷電粒子束之圖像與修正該圖像之對比度後之圖像顯示於畫面上,於所顯示之畫面上對圖像之對比度之修正條件進行修改,並對在修改後之修正條件下修正對比度後之圖像進行處理。 Further, in order to solve the above problems, in the present invention, a method of measuring a size of a pattern including a hole or a groove formed on a sample by using a charged particle beam includes the steps of: including a hole or a groove formed in the sample; The pattern illuminates the charged particles and scans to obtain an image of the charged particle beam comprising the pattern of holes or grooves, and processes the image of the charged particle beam to measure the size of the pattern containing the holes or grooves, and processes the resulting The result is displayed on the screen; and regarding the step of measuring the size of the pattern including the hole or the groove, the size of the pattern including the hole or the groove is measured by: obtaining the image of the charged particle beam and correcting the image The image after the contrast is displayed on the screen, and the correction condition of the contrast of the image is modified on the displayed screen, and the image after the contrast is corrected under the modified condition is processed.

根據本發明,可改善於有高低差之電路圖案、尤其是孔底或深槽圖案中產生之邊緣之目視確認困難之低對比度之測量對象之圖像之對比度,從而實現再現性良好、可靠性較高之測量條件之設定及測量。 According to the present invention, it is possible to improve the contrast of an image of a low-contrast measurement object which is difficult to visually recognize a circuit pattern having a difference in height, particularly in a hole bottom or a deep groove pattern, thereby achieving good reproducibility and reliability. Setting and measurement of higher measurement conditions.

100‧‧‧測長SEM 100‧‧‧Measurement length SEM

101‧‧‧電子束 101‧‧‧Electron beam

102‧‧‧電子槍 102‧‧‧Electronic gun

103‧‧‧聚光透鏡 103‧‧‧Concentrating lens

104‧‧‧偏向器 104‧‧‧ deflector

105‧‧‧物鏡 105‧‧‧ objective lens

106‧‧‧矽晶圓 106‧‧‧矽 wafer

107‧‧‧XY載置台 107‧‧‧XY mounting table

108‧‧‧檢測器 108‧‧‧Detector

109‧‧‧A/D轉換器 109‧‧‧A/D converter

110‧‧‧運算部 110‧‧‧ Computing Department

111‧‧‧控制終端 111‧‧‧Control terminal

112‧‧‧記憶裝置 112‧‧‧ memory device

113‧‧‧CPU 113‧‧‧CPU

114‧‧‧LSI 114‧‧‧ LSI

115‧‧‧圖像記憶體 115‧‧‧Image memory

116‧‧‧顯示畫面 116‧‧‧Display screen

120‧‧‧SEM本體 120‧‧‧SEM ontology

130‧‧‧信號處理系統 130‧‧‧Signal Processing System

140‧‧‧照射光學系統 140‧‧‧Optical optical system

201‧‧‧圖案圖像 201‧‧‧ pattern image

202‧‧‧剖面構造 202‧‧‧section structure

203‧‧‧亮度分佈 203‧‧‧Brightness distribution

204‧‧‧遮罩區域 204‧‧‧Mask area

205‧‧‧溝槽 205‧‧‧ trench

206‧‧‧Via 206‧‧‧Via

207‧‧‧直線 207‧‧‧ Straight line

208‧‧‧遮罩 208‧‧‧ mask

209‧‧‧溝槽底 209‧‧‧Slot bottom

210‧‧‧Via底 210‧‧‧Via bottom

211‧‧‧側壁 211‧‧‧ side wall

212‧‧‧間隔 212‧‧‧ interval

213‧‧‧間隔 213‧‧‧ interval

214‧‧‧範圍 214‧‧‧Scope

215‧‧‧頂部邊緣 215‧‧‧ top edge

401‧‧‧GUI畫面 401‧‧‧GUI screen

402‧‧‧拍攝圖像 402‧‧‧Photographing

403‧‧‧滑鼠游標 403‧‧‧Mouse cursor

404‧‧‧點 404‧‧‧ points

405‧‧‧點 405‧‧‧ points

406‧‧‧矩形區域 406‧‧‧Rectangular area

407‧‧‧執行按鈕 407‧‧‧Execution button

408‧‧‧重設按鈕 408‧‧‧Reset button

501‧‧‧圖像 501‧‧‧ images

502‧‧‧內部區域 502‧‧‧Internal area

504‧‧‧溝槽 504‧‧‧ trench

505‧‧‧頂部邊緣 505‧‧‧ top edge

506‧‧‧測量游標 506‧‧‧Measure cursor

506p‧‧‧點 506p‧‧ points

507‧‧‧測量游標 507‧‧‧Measure cursor

507p‧‧‧點 507p‧‧ points

508‧‧‧測量游標 508‧‧‧Measure cursor

508p‧‧‧點 508p‧‧ points

509‧‧‧測量游標 509‧‧‧Measure cursor

509p‧‧‧點 509p‧‧ points

510‧‧‧曲線圖 510‧‧‧Graph

601‧‧‧色調曲線 601‧‧‧tone curve

602‧‧‧分佈 602‧‧ distribution

603‧‧‧分佈 603‧‧‧ distribution

606‧‧‧線段 606‧‧‧ line segment

607‧‧‧線段 607‧‧‧ line segment

608‧‧‧線段 608‧‧‧ line segment

609‧‧‧亮度值 609‧‧‧Brightness value

610‧‧‧亮度值 610‧‧‧ brightness value

611‧‧‧亮度值 611‧‧‧Brightness value

612‧‧‧亮度值 612‧‧‧ brightness value

613‧‧‧輸入亮度範圍 613‧‧‧Input brightness range

614‧‧‧輸出亮度範圍 614‧‧‧Output brightness range

701‧‧‧GUI畫面 701‧‧‧GUI screen

702‧‧‧拍攝原圖像 702‧‧‧Photographing the original image

703‧‧‧對比度修正圖像 703‧‧‧Contrast correction image

704‧‧‧測量區域資訊圖像 704‧‧‧Measurement area information image

705‧‧‧內部區域資訊圖像 705‧‧‧Internal area information image

711‧‧‧修改按鈕 711‧‧‧Modify button

712‧‧‧OK按鈕 712‧‧‧OK button

801‧‧‧GUI 801‧‧‧GUI

802‧‧‧對比度增強等級滑塊 802‧‧‧Contrast Enhancement Level Slider

803‧‧‧偏移滑塊 803‧‧‧Offset slider

804‧‧‧設定按鈕 804‧‧‧Set button

901‧‧‧圖案圖像 901‧‧‧ pattern image

902‧‧‧分佈 902‧‧ distribution

903‧‧‧測量游標 903‧‧‧Measure cursor

904‧‧‧線段 904‧‧ ‧ line segment

905‧‧‧點 905‧‧ points

905p‧‧‧底部邊緣點 905p‧‧‧ bottom edge point

906‧‧‧點 906‧‧ points

906p‧‧‧底部邊緣點 906p‧‧‧ bottom edge point

907‧‧‧圖像 907‧‧‧ images

908‧‧‧圖像 908‧‧‧ images

1001‧‧‧亮度分佈 1001‧‧‧Brightness distribution

1002‧‧‧亮度分佈 1002‧‧‧Brightness distribution

1003‧‧‧最大波峰 1003‧‧‧Max peak

1004‧‧‧最小波峰 1004‧‧‧Minimum crest

1005‧‧‧閾值 1005‧‧‧ threshold

1006‧‧‧點 1006‧‧ points

1007‧‧‧直線 1007‧‧‧ Straight line

1008‧‧‧直線 1008‧‧‧ Straight line

1009‧‧‧交點 1009‧‧‧ intersection

1101‧‧‧GUI畫面 1101‧‧‧GUI screen

1102‧‧‧對比度修正圖像 1102‧‧‧Contrast correction image

1103‧‧‧測量點 1103‧‧‧Measurement points

1104‧‧‧核取方塊 1104‧‧‧Checkbox

1105‧‧‧核取方塊 1105‧‧‧Checkbox

1301‧‧‧拍攝圖像 1301‧‧‧Photographing

1302‧‧‧測量游標區域 1302‧‧‧Measurement cursor area

1303‧‧‧測量游標區域 1303‧‧‧Measurement cursor area

1501‧‧‧圖案圖像 1501‧‧‧ pattern image

1502‧‧‧底部邊緣點 1502‧‧‧ bottom edge point

1503‧‧‧圓區域 1503‧‧‧round area

1601‧‧‧圖案圖像 1601‧‧‧ pattern image

1602‧‧‧頂部邊緣圖像 1602‧‧‧ top edge image

1603‧‧‧頂部邊緣 1603‧‧‧ top edge

1604‧‧‧封閉區域 1604‧‧‧closed area

1605‧‧‧概略區域 1605‧‧‧General area

1700‧‧‧內部區域設定方法選擇GUI 1700‧‧‧Internal area setting method selection GUI

1901‧‧‧圖案剖面 1901‧‧‧pattern profile

1902‧‧‧亮度分佈 1902‧‧‧Brightness distribution

1903‧‧‧深度 1903‧‧ depth

1904‧‧‧溝槽底1905與Via底1906之間距 1904‧‧ Between the groove bottom 1905 and the Via bottom 1906

1905‧‧‧溝槽底 1905‧‧‧Slot bottom

1906‧‧‧Via底 1906‧‧‧Via bottom

1907‧‧‧明亮度 1907‧‧‧Brightness

1908‧‧‧明亮度 1908‧‧‧Brightness

2001‧‧‧槽圖案像 2001‧‧‧Slot pattern image

2002‧‧‧圖像 2002‧‧‧ Images

2003‧‧‧亮度分佈 2003‧‧‧Brightness distribution

2004‧‧‧亮度分佈 2004‧‧‧Brightness distribution

2005‧‧‧底部邊緣之間距 2005‧‧‧Between the bottom edge

2006‧‧‧側壁之分佈 2006‧‧‧ Distribution of sidewalls

2007‧‧‧側壁之分佈 2007‧‧‧ Distribution of sidewalls

2008‧‧‧底部邊緣之間距 2008‧‧‧The distance between the bottom edges

2100‧‧‧測長SEM 2100‧‧‧Measurement length SEM

2101‧‧‧反射板 2101‧‧‧reflector

2102‧‧‧反射板 2102‧‧‧reflector

2103‧‧‧斜向檢測器 2103‧‧‧ Oblique detector

2104‧‧‧上方檢測器 2104‧‧‧Top detector

2105‧‧‧A/D轉換器 2105‧‧‧A/D converter

2106‧‧‧A/D轉換器 2106‧‧‧A/D converter

2110‧‧‧運算部 2110‧‧‧ Computing Department

2111‧‧‧控制終端 2111‧‧‧Control terminal

2112‧‧‧記憶裝置 2112‧‧‧ memory device

2113‧‧‧CPU 2113‧‧‧CPU

2114‧‧‧LSI 2114‧‧‧ LSI

2115‧‧‧圖像記憶體 2115‧‧‧Image memory

2116‧‧‧畫面 2116‧‧‧ screen

2120‧‧‧SEM本體 2120‧‧‧SEM ontology

2130‧‧‧信號處理系統 2130‧‧‧Signal Processing System

2140‧‧‧照射光學系統 2140‧‧‧Optical optical system

2301‧‧‧圖案 2301‧‧‧pattern

2302‧‧‧上方檢測像之頻率曲線 2302‧‧‧The frequency curve of the upper detection image

2303‧‧‧斜向檢測像之頻率曲線 2303‧‧‧The frequency curve of the oblique detection image

2305‧‧‧電子 2305‧‧‧Electronics

2306‧‧‧電子 2306‧‧‧Electronics

2307‧‧‧電子 2307‧‧‧Electronics

2308‧‧‧電子 2308‧‧‧Electronics

2309‧‧‧電子 2309‧‧‧Electronics

2310t‧‧‧Via區域之分佈 Distribution of the 2310t‧‧‧Via area

2310u‧‧‧Via區域之分佈 Distribution of the 2310u‧‧‧Via area

2311‧‧‧孔底 2311‧‧‧ hole bottom

2311t‧‧‧溝槽區域之分佈 2311t‧‧‧Distribution of trench areas

2311u‧‧‧溝槽區域之分佈 2311u‧‧‧Distribution of trench areas

2312‧‧‧側壁 2312‧‧‧ side wall

2312t‧‧‧遮罩區域之分佈 2312t‧‧‧Distribution of mask areas

2312u‧‧‧遮罩區域之分佈 2312u‧‧‧Distribution of mask areas

2400‧‧‧測長SEM 2400‧‧‧Measurement length SEM

2401‧‧‧ExB偏向器 2401‧‧‧ExB deflector

2402‧‧‧反射電子檢測器 2402‧‧‧reflective electron detector

2403‧‧‧反射電子檢測器 2403‧‧‧Reflective electron detector

2404‧‧‧二次電子檢測器 2404‧‧‧Secondary electronic detector

2405‧‧‧A/D轉換機 2405‧‧‧A/D converter

2406‧‧‧A/D轉換機 2406‧‧‧A/D converter

2407‧‧‧A/D轉換機 2407‧‧‧A/D converter

2410‧‧‧運算部 2410‧‧‧ Computing Department

2411‧‧‧控制終端 2411‧‧‧Control terminal

2412‧‧‧記憶裝置 2412‧‧‧ memory device

2413‧‧‧CPU 2413‧‧‧CPU

2414‧‧‧LSI 2414‧‧‧ LSI

2415‧‧‧圖像記憶體 2415‧‧‧ image memory

2420‧‧‧SEM本體 2420‧‧‧SEM body

2430‧‧‧信號處理系統 2430‧‧‧Signal Processing System

2440‧‧‧照射光學系統 2440‧‧‧Optical optical system

2501‧‧‧GUI畫面 2501‧‧‧GUI screen

2502‧‧‧原圖像 2502‧‧‧ original image

2503‧‧‧對比度修正圖像 2503‧‧‧Contrast correction image

2504‧‧‧對比度修正圖像 2504‧‧‧Contrast correction image

2505‧‧‧對比度修正圖像 2505‧‧‧Contrast correction image

2506‧‧‧對比度修正圖像 2506‧‧‧Contrast correction image

2507‧‧‧對比度修正圖像 2507‧‧‧Contrast correction image

2508‧‧‧對比度修正圖像 2508‧‧‧Contrast correction image

2509‧‧‧圖像 2509‧‧‧ Images

2510‧‧‧選擇按鈕 2510‧‧‧Select button

7031‧‧‧遮罩區域 7031‧‧‧mask area

7032‧‧‧溝槽 7032‧‧‧ trench

7033‧‧‧Via 7033‧‧‧Via

9071‧‧‧直線 9071‧‧‧ Straight line

9072‧‧‧直線 9072‧‧‧ Straight line

9073‧‧‧直線 9073‧‧‧ Straight line

9074‧‧‧直線 9074‧‧‧ Straight line

9075‧‧‧直線 9075‧‧‧ Straight line

9081‧‧‧直線 9081‧‧‧ Straight line

9082‧‧‧直線 9082‧‧‧ Straight line

9083‧‧‧直線 9083‧‧‧ Straight line

9084‧‧‧直線 9084‧‧‧ Straight line

b‧‧‧偏移滑塊值 b‧‧‧Offset slider value

S301‧‧‧步驟 S301‧‧‧Steps

S302‧‧‧步驟 S302‧‧‧Steps

S303‧‧‧步驟 S303‧‧‧Steps

S304‧‧‧步驟 S304‧‧‧Steps

S305‧‧‧步驟 S305‧‧‧Steps

S306‧‧‧步驟 S306‧‧‧Steps

S307‧‧‧步驟 S307‧‧‧Steps

S308‧‧‧步驟 S308‧‧‧Steps

S309‧‧‧步驟 S309‧‧‧Steps

S310‧‧‧步驟 S310‧‧‧Steps

S1201‧‧‧步驟 S1201‧‧‧Steps

S1202‧‧‧步驟 S1202‧‧‧Steps

S1203‧‧‧步驟 S1203‧‧‧Steps

S1204‧‧‧步驟 S1204‧‧‧Steps

S1401‧‧‧步驟 S1401‧‧‧Steps

S1402‧‧‧步驟 S1402‧‧‧Steps

S1403‧‧‧步驟 S1403‧‧‧Steps

S1404‧‧‧步驟 S1404‧‧‧Steps

S1801‧‧‧步驟 S1801‧‧‧Steps

S1802‧‧‧步驟 S1802‧‧‧Steps

S1803‧‧‧步驟 S1803‧‧‧Steps

S1804‧‧‧步驟 S1804‧‧‧Steps

S1805‧‧‧步驟 S1805‧‧‧Steps

S1806‧‧‧步驟 S1806‧‧‧Steps

S1807‧‧‧步驟 S1807‧‧‧Steps

S2201‧‧‧步驟 S2201‧‧‧Steps

S2202‧‧‧步驟 S2202‧‧‧Steps

S2203‧‧‧步驟 S2203‧‧‧Steps

S2204‧‧‧步驟 S2204‧‧‧Steps

S2205‧‧‧步驟 S2205‧‧‧ steps

S2206‧‧‧步驟 S2206‧‧‧Steps

S2207‧‧‧步驟 S2207‧‧‧Steps

S2208‧‧‧步驟 S2208‧‧‧Steps

S2209‧‧‧步驟 S2209‧‧‧Steps

S2210‧‧‧步驟 S2210‧‧‧Steps

r‧‧‧對比度增強等級滑塊值 r‧‧‧Contrast Enhancement Level Slider Value

xmax‧‧‧最大亮度值 x max ‧‧‧maximum brightness value

xmin‧‧‧最小亮度值 x min ‧‧‧minimum brightness value

ymax‧‧‧輸出亮度值 y max ‧‧‧output brightness value

ymin‧‧‧輸出亮度值 y min ‧‧‧output brightness value

圖1係表示本發明之實施例1之圖案尺寸測量系統之概略構成的方塊圖。 Fig. 1 is a block diagram showing a schematic configuration of a pattern size measuring system according to a first embodiment of the present invention.

圖2A係表示本發明之實施例1之測量對象之圖案之SEM圖像的圖。 Fig. 2A is a view showing an SEM image of a pattern of a measurement object according to Embodiment 1 of the present invention.

圖2B係本發明之實施例1之測量對象之圖案之剖視圖(上側)、及表示該剖面中之SEM圖像之亮度信號之曲線圖(下側)。 Fig. 2B is a cross-sectional view (upper side) of a pattern of a measurement object according to the first embodiment of the present invention, and a graph (lower side) showing a luminance signal of the SEM image in the cross section.

圖3係表示本發明之實施例1之進行測量圖案內部之對比度修正之處理流程的流程圖。 Fig. 3 is a flow chart showing the flow of processing for performing contrast correction inside the measurement pattern in the first embodiment of the present invention.

圖4係本發明之實施例1之用以進行測量游標設定之GUI(Graphical User Interface,圖形使用者介面)畫面的圖。 4 is a diagram showing a GUI (Graphical User Interface) screen for measuring a cursor setting according to Embodiment 1 of the present invention.

圖5A係表示本發明之實施例1之測量圖案之內部區域之算出方法的SEM圖像之放大圖。 Fig. 5A is an enlarged view showing an SEM image of a method of calculating an internal region of a measurement pattern according to Embodiment 1 of the present invention.

圖5B係表示本發明之實施例1之測量圖案之每個內部區域之平均亮度之變化的曲線圖。 Fig. 5B is a graph showing changes in the average luminance of each inner region of the measurement pattern of the embodiment 1 of the present invention.

圖6A係表示用於本發明之實施例1之對比度修正之色調曲線的曲線圖。 Fig. 6A is a graph showing a tone curve used for contrast correction in the first embodiment of the present invention.

圖6B係表示本發明之實施例1之對比度修正中之色調曲線之斜率之差異所導致之SEM圖像之亮度值之分佈變化的曲線圖。 Fig. 6B is a graph showing a change in the distribution of the luminance values of the SEM image due to the difference in the slope of the tone curve in the contrast correction according to the first embodiment of the present invention.

圖7係顯示本發明之實施例1之對比度修正結果之GUI畫面的圖。 Fig. 7 is a view showing a GUI screen of the contrast correction result in the first embodiment of the present invention.

圖8係本發明之實施例1之具有對比度修正用之參數調整功能之 GUI畫面的圖。 Figure 8 is a diagram showing the parameter adjustment function for contrast correction according to the first embodiment of the present invention. A diagram of the GUI screen.

圖9A係說明本發明之實施例1之測量處理之圖,且係於SEM圖像上顯示有測量游標與尺寸測量點之圖。 Fig. 9A is a view for explaining the measurement process of the embodiment 1 of the present invention, and shows a measurement cursor and a size measurement point on the SEM image.

圖9B係說明本發明之實施例1之測量處理之圖,且係表示圖9A之A-B剖面中之SEM圖像信號之分佈的曲線圖。 Fig. 9B is a view showing the measurement process of the embodiment 1 of the present invention, and is a graph showing the distribution of the SEM image signals in the A-B section of Fig. 9A.

圖9C係說明本發明之實施例1之測量處理之圖,且係表示利用複數條水平直線設定Via之底部邊緣點之狀態之SEM圖像的圖。 Fig. 9C is a view for explaining measurement processing of the first embodiment of the present invention, and is a view showing an SEM image of a state in which a bottom edge point of Via is set by a plurality of horizontal straight lines.

圖9D係說明本發明之實施例1之測量處理之圖,且係表示利用穿過圖案中心之複數條直線設定Via之底部邊緣點之狀態之SEM圖像的圖。 Fig. 9D is a view for explaining the measurement process of the first embodiment of the present invention, and is a view showing an SEM image in which the state of the bottom edge point of Via is set by a plurality of straight lines passing through the center of the pattern.

圖10A係表示說明本發明之實施例1之利用閾值法算出底部邊緣之方法之SEM圖像信號之分佈的曲線圖。 Fig. 10A is a graph showing the distribution of SEM image signals of the method for calculating the bottom edge by the threshold method according to the first embodiment of the present invention.

圖10B係表示說明本發明之實施例1之利用線性法算出底部邊緣之方法之SEM圖像信號之分佈的曲線圖。 Fig. 10B is a graph showing the distribution of SEM image signals of the method for calculating the bottom edge by the linear method according to the first embodiment of the present invention.

圖11係本發明之實施例1之用以確認對比度修正圖像與測量結果之GUI畫面的圖。 Fig. 11 is a view showing a GUI screen for confirming a contrast correction image and a measurement result in the first embodiment of the present invention.

圖12係表示進行本發明之實施例1之變化例1之使用設計資料之測量圖案內部之對比度修正之處理流程的流程圖。 Fig. 12 is a flow chart showing the flow of processing for performing contrast correction inside the measurement pattern using the design data in the first modification of the first embodiment of the present invention.

圖13A係說明本發明之實施例1之變化例1之利用設計資料進行之概略區域設定的圖,且係表示利用SEM拍攝所得之圖像之圖。 Fig. 13A is a view for explaining a schematic region setting by design data according to a first modification of the first embodiment of the present invention, and is a view showing an image taken by SEM.

圖13B係說明本發明之實施例1之變化例1之利用設計資料進行之概略區域設定的圖,且係表示於設計資料上設定有測量游標之狀態之圖。 Fig. 13B is a view for explaining a schematic region setting by design data according to a first modification of the first embodiment of the present invention, and showing a state in which a measurement cursor is set on the design data.

圖13C係說明本發明之實施例1之變化例1之利用設計資料進行之概略區域設定的圖,且係表示使設定於設計資料上之測量游標之位置與拍攝圖像一致之狀態的圖。 13C is a view for explaining a schematic region setting by design data according to a first modification of the first embodiment of the present invention, and showing a state in which the position of the measurement cursor set on the design data coincides with the captured image.

圖14係表示進行本發明之實施例1之變化例2之使用點資料之測量圖案內部之對比度修正之處理流程的流程圖。 Fig. 14 is a flow chart showing the flow of processing for performing contrast correction in the measurement pattern of the use point data in the second modification of the first embodiment of the present invention.

圖15係說明本發明之實施例1之變化例3之利用底部邊緣之測量圖案內部區域之算出方法之SEM圖像的放大圖。 Fig. 15 is an enlarged view showing an SEM image of a method of calculating the inner region of the measurement pattern using the bottom edge according to the third modification of the first embodiment of the present invention.

圖16A係說明本發明之實施例1之變化例4之利用頂部邊緣之測量圖案內部區域之算出方法的圖,且係圖案之SEM圖像。 Fig. 16A is a view for explaining a method of calculating the inner region of the measurement pattern using the top edge according to the fourth modification of the first embodiment of the present invention, and is an SEM image of the pattern.

圖16B係說明本發明之實施例1之變化例4之利用頂部邊緣之測量圖案內部區域之算出方法的圖,且係實施邊緣抽取處理而自圖案之SEM圖像抽取之頂部邊緣圖像。 Fig. 16B is a view for explaining a method of calculating the inner region of the measurement pattern using the top edge according to the fourth modification of the first embodiment of the present invention, and is a top edge image extracted from the SEM image of the pattern by performing edge extraction processing.

圖17係提供用以切換本發明之實施例1之變化例5之內部區域算出方法之功能的GUI畫面之圖。 Fig. 17 is a view showing a GUI screen for switching the function of the internal region calculating method according to the fifth modification of the first embodiment of the present invention.

圖18係表示本發明之實施例1之變化例6之測量方案設置之處理流程的流程圖。 Fig. 18 is a flow chart showing the flow of processing of the measurement scheme setting of the sixth modification of the first embodiment of the present invention.

圖19係本發明之實施例1之變化例7之溝槽圖案的SEM圖像(上側)與表示該剖面中之SEM圖像信號之分佈的曲線圖(下側)。 Fig. 19 is a SEM image (upper side) of a groove pattern of a variation 7 of the first embodiment of the present invention and a graph (lower side) showing a distribution of SEM image signals in the cross section.

圖20A係本發明之實施例1之變化例8之槽圖案的SEM圖像(上側)與表示該槽圖案中之SEM圖像信號之分佈的曲線圖(下側)。 Fig. 20A is a SEM image (upper side) of a groove pattern of a variation 8 of the first embodiment of the present invention and a graph (lower side) showing a distribution of SEM image signals in the groove pattern.

圖20B係本發明之實施例1之變化例8之對槽圖案之SEM圖像進行亮度對比度修正後之狀態之SEM(上側)與表示該槽圖案中之SEM圖像信號之分佈的曲線圖(下側)。 20B is a SEM (upper side) showing a state in which the SEM image of the groove pattern is corrected in brightness contrast, and a graph showing the distribution of the SEM image signal in the groove pattern in the eighth modification of the first embodiment of the present invention. Lower side).

圖21係表示本發明之實施例2之圖案尺寸測量系統之概略構成的方塊圖。 Fig. 21 is a block diagram showing a schematic configuration of a pattern size measuring system according to a second embodiment of the present invention.

圖22係表示本發明之實施例2之進行測量圖案內部之對比度修正之處理流程的流程圖。 Fig. 22 is a flow chart showing the flow of processing for performing contrast correction inside the measurement pattern in the second embodiment of the present invention.

圖23A係本發明之實施例2之形成有表示於Via-in Trench圖案(深孔圖案)之底產生之電子之釋出方向之孔圖案的試樣之剖視圖。 Fig. 23A is a cross-sectional view showing a sample in which a hole pattern indicating an electron emission direction generated at the bottom of a Via-in Trench pattern (deep hole pattern) is formed in Example 2 of the present invention.

圖23B係表示本發明之實施例2之在Via-in Trench圖案(深孔圖案)之底產生之電子之上方檢測像之亮度值之分佈的頻率曲線。 Fig. 23B is a graph showing the frequency distribution of the luminance value of the detected image above the electron generated at the bottom of the Via-in Trench pattern (deep hole pattern) in the second embodiment of the present invention.

圖23C係表示本發明之實施例2之在Via-in Trench圖案(深孔圖案)之底產生之電子之斜向檢測像之亮度值之分佈的頻率曲線。 Fig. 23C is a graph showing the frequency distribution of the luminance values of the oblique detection images of electrons generated at the bottom of the Via-in Trench pattern (deep hole pattern) according to the second embodiment of the present invention.

圖24係表示本發明之實施例2之圖案尺寸測量系統之另一例之概略構成的方塊圖。 Fig. 24 is a block diagram showing a schematic configuration of another example of the pattern size measuring system according to the second embodiment of the present invention.

圖25係本發明之實施例2之變化例之用以進行藉由預設之對比度修正參數設定之GUI畫面的圖。 Fig. 25 is a view showing a GUI screen for setting a contrast correction parameter by a preset according to a variation of the second embodiment of the present invention.

本發明係於利用掃描電子顯微鏡(SEM)獲取之荷電粒子束像中抽取孔或者槽圖案之內部區域,基於該抽取之內部區域之亮度資訊以可視認孔或者槽圖案之邊緣之方式對荷電粒子束像之對比度進行修正而顯示,且可使用該對比度經修正後之圖像精度良好地測量孔或者槽圖案之尺寸。 The invention relates to an inner region of an extraction hole or a groove pattern in a charged particle beam image obtained by a scanning electron microscope (SEM), and the charged particles are visible on the edge of the hole or the groove pattern based on the brightness information of the extracted inner region. The contrast of the beam image is corrected and displayed, and the corrected image can be used to accurately measure the size of the hole or groove pattern.

以下,使用圖對本發明之實施例進行說明。 Hereinafter, embodiments of the invention will be described using the drawings.

[實施例1] [Example 1]

本實施例係關於如下一種系統,即:於利用SEM對形成於半導體晶圓上之有高低差之電路圖案、尤其是溝槽(深槽)或Via(深孔)、或於溝槽內存在Via之被稱為Via-in-Trench(槽中孔)之圖案進行拍攝而獲得之圖像中,使圖案內部之視認性提高。 This embodiment relates to a system for forming a circuit pattern having a height difference formed on a semiconductor wafer by using an SEM, particularly a trench (deep trench) or Via (deep hole), or existing in the trench In the image obtained by photographing Via, which is called Via-in-Trench (the hole in the groove), the visibility inside the pattern is improved.

以下,使用圖式對應用於使用SEM之圖案尺寸測量裝置(測長SEM)之情形之實施例進行說明。 Hereinafter, an explanation will be given using an embodiment in which the pattern corresponds to the case of using the SEM pattern size measuring device (length measuring SEM).

於圖1中表示與本實施例相關之實現圖案尺寸測量系統之裝置整體之構成圖。本實施例之測長SEM100係包括SEM本體120與信號處理系統130而構成。 Fig. 1 is a view showing the entire configuration of an apparatus for realizing a pattern size measuring system relating to the present embodiment. The length measuring SEM 100 of the present embodiment includes an SEM body 120 and a signal processing system 130.

SEM本體120包括:XY載置台107,其供設置作為測量對象之形 成有電路圖案之矽晶圓(試樣)106;照射光學系統140,其控制自電子槍102釋出之電子束101;及檢測器108,其檢測自試樣上釋出之電子。照射光學系統140係包括電子槍102、及位於電子束101之路徑上之聚光透鏡103、偏向器104、物鏡105而構成。 The SEM body 120 includes an XY stage 107 for setting as a measurement object A wafer (sample) 106 having a circuit pattern; an illumination optical system 140 that controls the electron beam 101 released from the electron gun 102; and a detector 108 that detects electrons released from the sample. The illuminating optical system 140 includes an electron gun 102, a condensing lens 103 located on the path of the electron beam 101, a deflector 104, and an objective lens 105.

檢測信號之信號處理系統130包括:A/D(Analog to Digital,類比-數位)轉換器109,其將自檢測器108輸出之類比信號轉換為數位信號,該檢測器108檢測自被照射有電子束101之試樣106產生之二次電子;運算部110,其輸入由A/D轉換器109轉換後之信號並進行處理且包括CPU(Central Processing Unit,中央處理單元)113、LSI(Large Scale Integration,大型積體電路)114、及圖像記憶體115;控制終端111,其控制運算部110並且經由運算部110控制SEM本體120;及記憶終端112,其記憶資料。 The signal processing system 130 for detecting signals includes an A/D (Analog to Digital) converter 109 that converts an analog signal output from the detector 108 into a digital signal, the detector 108 detecting the electrons being irradiated The secondary electron generated by the sample 106 of the beam 101; the calculation unit 110 inputs the signal converted by the A/D converter 109 and processes it, and includes a CPU (Central Processing Unit) 113, LSI (Large Scale) Integration, large integrated circuit 114, and image memory 115; control terminal 111, which controls computing unit 110 and controls SEM body 120 via computing unit 110; and memory terminal 112, which stores data.

自電子槍102發射之電子束101係由照射光學系統140之聚光透鏡103、偏向器104、物鏡105控制而照射至矽晶圓106上。自矽晶圓106上之被照射有電子束101之區域釋出二次電子,其一部分入射至檢測器108而被檢測。自檢測出二次電子之檢測器108輸出之類比信號係由A/D轉換機109轉換為數位信號後輸入至運算部110。 The electron beam 101 emitted from the electron gun 102 is irradiated onto the crucible wafer 106 by the condenser lens 103 of the illumination optical system 140, the deflector 104, and the objective lens 105. The secondary electrons are emitted from the region of the wafer 106 that is irradiated with the electron beam 101, and a portion thereof is incident on the detector 108 and detected. The analog signal output from the detector 108 for detecting the secondary electrons is converted into a digital signal by the A/D converter 109, and is input to the arithmetic unit 110.

運算部110接收由A/D轉換機109轉換為數位信號之來自檢測器108之信號資料,並將該信號資料儲存於圖像記憶體115。此外,運算部110亦具有基於由檢測器108檢測出之結果而產生檢測電子像之作為觀察像獲取部之功能。 The arithmetic unit 110 receives the signal data from the detector 108 converted into a digital signal by the A/D converter 109, and stores the signal data in the image memory 115. Further, the calculation unit 110 also has a function of generating an electronic image as an observation image acquisition unit based on the result detected by the detector 108.

CPU(Central Processing Unit)113、儲存有圖像處理軟體之LSI114等執行對應於尺寸測量之目的之圖像處理,測量圖案之尺寸。儲存於圖像記憶體115之資料亦可重新儲存於外部之記憶裝置112。 The CPU (Central Processing Unit) 113, the LSI 114 storing the image processing software, and the like perform image processing for the purpose of size measurement, and measure the size of the pattern. The data stored in the image memory 115 can also be stored in the external memory device 112.

控制終端111經由運算部110進行XY載置台107之座標之控制或測量序列之控制。 The control terminal 111 controls the coordinates of the XY stage 107 or the measurement sequence via the calculation unit 110.

於控制終端111中,具有對使用者將觀察圖像或尺寸測量結果等顯示於畫面116之GUI(Graphical User Interface),使用者可製作尺寸測量所必需之矽晶圓上之圖案之座標、用於圖案之定位之圖案匹配用模板、包含拍攝條件等之拍攝方案資料。 The control terminal 111 has a GUI (Graphical User Interface) for displaying an observation image, a dimensional measurement result, or the like on the screen 116, and the user can create a coordinate of the pattern on the wafer necessary for dimension measurement. A pattern matching template for positioning of a pattern, and a photographing plan data including shooting conditions and the like.

圖2A係表示作為測量對象之一例之於測量對象之矽晶圓106上在溝槽圖案之底面形成有深孔圖案即Via圖案、所謂之Via-in-Trench構造之例的圖案圖像201。204表示矽晶圓106上之遮罩區域,205表示將遮罩區域204之一部分去除而形成之溝槽,206表示於溝槽205之內部加工之孔部(Via)。 2A shows a pattern image 201 in which a Via pattern, which is a deep-hole pattern, and a Via pattern, a Via-in-Trench structure, is formed on the bottom surface of the groove pattern on the wafer 106 to be measured. 204 denotes a mask region on the wafer 106, 205 denotes a trench formed by partially removing the mask region 204, and 206 denotes a hole portion (Via) processed inside the trench 205.

圖2B表示與圖2A中之圖案圖像201中之點A至點B間之直線207對應之剖面構造202、及自直線207上之區域之圖案圖像201獲取之亮度分佈203。於剖面構造202中,自上而下依序為遮罩208、溝槽底209、Via底210,且側壁211形成為錐形。作為測量對象,可列舉頂部邊緣之間隔212或底部邊緣之間隔213。 2B shows a cross-sectional structure 202 corresponding to a straight line 207 between points A to B in the pattern image 201 in FIG. 2A, and a luminance distribution 203 obtained from the pattern image 201 of the region on the straight line 207. In the cross-sectional structure 202, the mask 208, the groove bottom 209, and the Via bottom 210 are sequentially arranged from top to bottom, and the side wall 211 is formed in a tapered shape. As the measurement object, the interval 212 of the top edge or the interval 213 of the bottom edge may be cited.

於亮度分佈203中,橫軸表示試樣上之位置,縱軸表示檢測信號之亮度。由於可根據該亮度分佈203充分地獲得頂部邊緣215之亮度,故而形成於溝槽205之底面209之Via206之頂部邊緣之間隔212之測量可相對容易地進行。但是,關於Via206之底面210之底部邊緣之間隔213之測量,產生如下問題:由於與側壁211對應之亮度範圍214非常小且暗,故而使用者無法根據測量結果判斷測量是否恰當地進行。 In the luminance distribution 203, the horizontal axis represents the position on the sample, and the vertical axis represents the brightness of the detection signal. Since the brightness of the top edge 215 can be sufficiently obtained from the brightness distribution 203, the measurement of the spacing 212 formed at the top edge of the Via 206 of the bottom surface 209 of the trench 205 can be performed relatively easily. However, the measurement of the interval 213 between the bottom edges of the bottom surface 210 of the Via 206 causes a problem that since the luminance range 214 corresponding to the side wall 211 is very small and dark, the user cannot judge whether the measurement is properly performed based on the measurement result.

圖3係本發明之實施形態1之圖案尺寸測量系統之動作流程。以下,針對圖3之步驟說明具體之處理方法。 Fig. 3 is a flowchart showing the operation of the pattern size measuring system according to the first embodiment of the present invention. Hereinafter, specific processing methods will be described with respect to the steps of FIG.

首先,於步驟S301中,藉由圖1之測長SEM100拍攝矽晶圓上之圖案之圖像。將此時拍攝而獲得之圖像設為圖2之201。 First, in step S301, an image of the pattern on the wafer is taken by the length measuring SEM 100 of FIG. The image obtained by the shooting at this time is set to 201 of Fig. 2 .

於步驟S302中,運算部110將圖2A之拍攝圖像201顯示於控制終端111之GUI上。 In step S302, the computing unit 110 displays the captured image 201 of FIG. 2A on the GUI of the control terminal 111.

於步驟S303中,使用者於顯示在控制終端111中之顯示畫面116之GUI之圖2A之圖像201上,藉由滑鼠操作對測量對象之圖案設定測量游標,並將其設為圖案之概略區域(關於本步驟之詳細內容將於圖4中進行說明)。 In step S303, the user sets a measurement cursor on the image of the measurement object by a mouse operation on the image 201 of FIG. 2A displayed on the GUI of the display screen 116 in the control terminal 111, and sets it as a pattern. Outline area (The details of this step will be explained in Figure 4).

於步驟S304中,運算部110將於GUI上設定之作為概略區域之游標縮小,算出圖案之內部區域(關於本步驟之詳細內容將於圖5中進行說明)。 In step S304, the calculation unit 110 reduces the cursor which is set as the outline area set on the GUI, and calculates the internal area of the pattern (the details of this step will be described with reference to FIG. 5).

於步驟S305中,運算部110算出縮小後之游標區域內之亮度範圍。 In step S305, the calculation unit 110 calculates the luminance range in the reduced cursor region.

於步驟S306中,運算部110藉由如增大在步驟S305中求出之亮度範圍之對比度修正處理進行對比度修正(關於本步驟之詳細內容將於圖6中進行說明)。 In step S306, the arithmetic unit 110 performs contrast correction by increasing the contrast correction processing of the luminance range obtained in step S305 (the details of this step will be described with reference to Fig. 6).

於步驟S307中,運算部110將對比度修正前後之圖像或中間處理圖像顯示於控制終端111中之GUI(關於本步驟中之GUI之詳細內容將於圖7中進行說明)。 In step S307, the arithmetic unit 110 displays the image before and after the contrast correction or the intermediate processed image on the GUI in the control terminal 111 (the details of the GUI in this step will be described in FIG. 7).

於步驟S308中,於使用者欲修改修正結果之情形時,進入步驟S309之對比度修正參數調整,進行對比度修正參數之調整。若無問題,則進入步驟S310。 In step S308, when the user wants to modify the correction result, the process proceeds to the contrast correction parameter adjustment in step S309, and the contrast correction parameter is adjusted. If there is no problem, the process proceeds to step S310.

於步驟S309中,使用者於GUI上調整對比度修正參數。於參數調整後,返回至步驟S306(關於參數調整之詳細內容將於圖20中進行說明)。 In step S309, the user adjusts the contrast correction parameter on the GUI. After the parameter adjustment, the process returns to step S306 (the details of the parameter adjustment will be explained in FIG. 20).

於之後之步驟S310中,使用對比度修正後之圖像與於步驟S303中輸入之測量游標進行測量。 In the subsequent step S310, the image after the contrast correction is used and the measurement cursor input in step S303 is used for measurement.

圖4係表示進行圖3之步驟S303之測量游標設定之GUI的圖。於GUI畫面401顯示拍攝圖像402。使用者可藉由操作滑鼠游標403、例如自點404拖曳至點405而將包含溝槽205內部之作為測量對象之 Via206之矩形區域406設定為測量游標,並藉由使滑鼠游標403移動至執行按鈕407上並點擊而登錄該測量游標。亦可藉由使滑鼠游標403移動至重設按鈕408並點擊而修改已登錄之測量游標。 Fig. 4 is a view showing a GUI for performing measurement cursor setting in step S303 of Fig. 3. The captured image 402 is displayed on the GUI screen 401. The user can measure the interior of the trench 205 as a measurement object by operating the mouse cursor 403, for example, dragging from the point 404 to the point 405. The rectangular area 406 of Via 206 is set to measure the cursor and is registered by moving the mouse cursor 403 onto the execution button 407 and clicking. The registered measurement cursor can also be modified by moving the mouse cursor 403 to the reset button 408 and clicking.

圖5A係對圖3之步驟S304之圖案之內部區域算出方法進行表示之圖。圖像501係圖2A所示之圖案圖像201中之將於步驟S303中設定之測量游標506(相當於圖4中所說明之測量游標406)之附近放大所得者。測量游標507、508、509係以相同之比率依序將測量游標506所包圍之區域縮小後之區域。 Fig. 5A is a view showing a method of calculating an internal region of the pattern of step S304 of Fig. 3; The image 501 is enlarged in the vicinity of the measurement cursor 506 (corresponding to the measurement cursor 406 illustrated in FIG. 4) set in step S303 in the pattern image 201 shown in FIG. 2A. The measurement cursors 507, 508, and 509 sequentially reduce the area surrounded by the measurement cursor 506 by the same ratio.

圖5B之曲線圖510係以測量游標506~509之各區域內之平均亮度為縱軸,以游標之縮小次數為橫軸並設為點506p~509p繪製而成者。於該平均亮度之變化縮小時,將變化縮小之近前之游標設為Via206之內部區域502。測量游標506~508係隨著縮小包圍之區域,包含於測量游標內之遮罩503、溝槽504及Via206之頂部邊緣505之明亮區域減少,而作為Via206之內部區域502之較暗區域所占之比率增加,故而如繪製點506p~508p所示般平均亮度大幅減少。 The graph 510 of FIG. 5B is obtained by plotting the average brightness in each region of the measurement cursors 506 to 509 as the vertical axis and the number of reductions of the cursor as the horizontal axis and setting the points 506p to 509p. When the change in the average brightness is reduced, the near-precision cursor whose change is reduced is set to the inner area 502 of Via 206. The measurement cursors 506-508 are reduced in area surrounded by the mask 503, the grooves 504 and the top edge 505 of the Via 206 in the measurement cursor, and the dark areas of the inner region 502 of the Via 206 are occupied. The ratio increases, so the average brightness is greatly reduced as shown by drawing points 506p to 508p.

測量游標508與游標509之任一者均為測量游標整體包含於Via206之內部區域502。由於Via206之內部區域502之對比度較低,故而測量游標內之平均亮度之變化如繪製點508p與509p所示般變小。藉此,將測量游標508應用為Via206之內部區域502。 Any one of the measurement cursor 508 and the cursor 509 is included in the inner region 502 of the Via 206 as a measurement cursor. Since the contrast of the inner region 502 of the Via 206 is low, the change in the average brightness within the measurement cursor becomes smaller as indicated by the plotted points 508p and 509p. Thereby, the measurement cursor 508 is applied as the inner region 502 of the Via 206.

圖6A及圖6B係對圖3之步驟S306之對比度修正方法進行表示之圖。對比度修正係使用圖6A所示之色調曲線601進行處理。色調曲線601之x軸為輸入亮度值,y軸為轉換後之輸出亮度值,且表示均以256灰階表示之情形。色調曲線601係藉由利用在步驟S305中使用測量游標508而獲取之Via206之內部區域502之最小亮度值xmin、最大亮度值xmax及於下述步驟S309中輸入之對比度增強等級滑塊值r、偏移滑塊值b求出對比度修正後之xmin與xmax之輸出值ymin、ymax而構成。 6A and 6B are views showing a contrast correction method in step S306 of Fig. 3. The contrast correction is processed using the tone curve 601 shown in Fig. 6A. The x-axis of the tone curve 601 is the input luminance value, and the y-axis is the converted output luminance value, and the cases are represented by 256 gray scales. The tone curve 601 is the minimum brightness value x min , the maximum brightness value x max of the inner region 502 of the Via 206 obtained by using the measurement cursor 508 in step S305, and the contrast enhancement level slider value input in the following step S309. r. The offset slider value b is obtained by obtaining the output values y min and y max of the x min and x max after the contrast correction.

輸出亮度值ymin與ymax可利用以下(數1)、(數2)而算出。 The output luminance values y min and y max can be calculated by the following (number 1) and (number 2).

又,r係由以下(數3)表示。 Further, r is represented by the following (number 3).

r成為調整輸入亮度範圍之大小(xmax-xmin)與輸出亮度範圍之大小(ymax-ymin)之比(圖6A之線段606、607、608之斜率)的參數。b係調整內部區域502之輸出亮度之偏移(圖6A之線段607、608之y截距)之參數。於圖像之動態範圍之上限與下限附近之明亮度中,有時人對明暗差之視覺之感度變小,即便於圖像上有充分之亮度差,亦存在難以視認之情況。因此,藉由調整偏移之參數,可將圖案內部之像素值輸出為人易於視認之亮度值。 r is a parameter that adjusts the ratio of the magnitude (x max -x min ) of the input luminance range to the magnitude of the output luminance range (y max -y min ) (the slope of the line segments 606, 607, 608 of Fig. 6A). b is a parameter that adjusts the offset of the output luminance of the inner region 502 (y intercept of the line segments 607, 608 of Fig. 6A). In the brightness near the upper and lower limits of the dynamic range of the image, the sensitivity of the person to the visual difference of the light and dark is small, and even if there is a sufficient difference in brightness on the image, it is difficult to visually recognize it. Therefore, by adjusting the parameters of the offset, the pixel value inside the pattern can be output as a brightness value that is easily recognized by a person.

由連接根據以上而求出之點(xmin,ymin)、點(xmax,ymax)之線段606、607、608構成色調曲線601。又,色調曲線除了可由線段構成以外,亦可由貝齊爾(bezeer)曲線等平緩之曲線構成。 A line curve 601 is formed by line segments 606, 607, and 608 connecting the points (x min , y min ) and points (x max , y max ) obtained from the above. Further, the tone curve may be composed of a smooth curve such as a bezeer curve, in addition to the line segment.

圖6B表示作為原圖像之圖像201中之Via206之區域周邊之分佈 602。橫軸表示位置,縱軸表示亮度值。609係來自溝槽之二次電子檢測信號之亮度值,610係來自Via206之頂部邊緣之二次電子檢測信號之亮度值,611係來自Via206之側壁之二次電子檢測信號之亮度值,612係來自相當於Via206之底面之部分之二次電子檢測信號之亮度值。輸入亮度範圍613成為包含Via206之底面與Via206之側壁之範圍。 Fig. 6B shows the distribution around the area of Via 206 in the image 201 as the original image. 602. The horizontal axis represents the position and the vertical axis represents the brightness value. 609 is the brightness value of the secondary electron detection signal from the trench, 610 is the brightness value of the secondary electron detection signal from the top edge of Via 206, and 611 is the brightness value of the secondary electron detection signal from the side wall of Via 206, 612 system The brightness value of the secondary electron detection signal from the portion corresponding to the bottom surface of Via 206. The input luminance range 613 is a range including the bottom surface of the Via 206 and the side wall of the Via 206.

利用圖6A之色調曲線601對分佈602進行修正,藉此獲得如圖6B之下側所示之分佈603。藉此,輸入亮度範圍613擴大為輸出亮度範圍614,從而可增強Via206之底面210與側壁211之圖像之對比度。 The distribution 602 is modified using the tone curve 601 of FIG. 6A, thereby obtaining a distribution 603 as shown on the lower side of FIG. 6B. Thereby, the input luminance range 613 is expanded to the output luminance range 614, so that the contrast of the image of the bottom surface 210 and the side wall 211 of the Via 206 can be enhanced.

圖7係表示進行圖3之步驟S307之對比度修正後之圖像之顯示的GUI之圖。於GUI畫面701顯示包含溝槽205與Via206之圖像之拍攝原圖像702(相當於圖2A之圖案圖像201)、對比度經修正後之包含遮罩區域7031、溝槽7032及Via7033之圖像之對比度修正圖像703。 Fig. 7 is a view showing a GUI for displaying the image after the contrast correction in step S307 of Fig. 3; The original image 702 (corresponding to the pattern image 201 of FIG. 2A) including the image of the groove 205 and the Via 206 is displayed on the GUI screen 701, and the contrast-corrected image including the mask area 7031, the groove 7032, and the Via7033 is displayed. A contrast correction image 703 like this.

又,作為中間結果,顯示表示於步驟S303中所設定之測量游標406之設定區域之測量區域資訊圖像704、及表示於步驟S304中算出之圖案內部區域測量游標508之設定區域之內部區域資訊圖像705。 Further, as an intermediate result, the measurement area information image 704 indicating the setting area of the measurement cursor 406 set in step S303 and the internal area information indicating the setting area of the pattern internal area measurement cursor 508 calculated in step S304 are displayed. Image 705.

使用者確認對比度修正圖像703,於假如需要修改對比度修正參數之情形時,點擊修改按鈕711而進入步驟S309。於無需修改對比度修正參數之情形時,點擊OK按鈕712而進入步驟S310。 When the user confirms the contrast correction image 703, if the contrast correction parameter needs to be modified, the modification button 711 is clicked to proceed to step S309. When it is not necessary to modify the contrast correction parameter, the OK button 712 is clicked to proceed to step S310.

圖8係表示進行圖3之步驟S309之對比度修正參數調整之GUI的圖。於GUI801中,使用者可藉由在GUI801上操作對比度增強等級滑塊802與偏移滑塊803,並按下設定按鈕804而進行參數之輸入,該對比度增強等級滑塊802調整對比度修正之強度之程度,該偏移滑塊803調整增強對比度後之區域之亮度之偏移。所輸入之參數係作為對比度增強等級滑塊值r與偏移滑塊值b而於步驟S306中使用。但是,於第一次之步驟S306中,對比度增強等級滑塊值r與偏移滑塊值b係使用預先 設定之初始值。 Fig. 8 is a view showing a GUI for performing contrast correction parameter adjustment in step S309 of Fig. 3. In the GUI 801, the user can input a parameter by operating the contrast enhancement level slider 802 and the offset slider 803 on the GUI 801 and pressing the setting button 804, and the contrast enhancement level slider 802 adjusts the intensity of the contrast correction. To the extent that the offset slider 803 adjusts the offset of the brightness of the area after the contrast enhancement. The input parameter is used as the contrast enhancement level slider value r and the offset slider value b in step S306. However, in the first step S306, the contrast enhancement level slider value r and the offset slider value b are used in advance. Set the initial value.

表示了分別顯示圖7之進行對比度修正後之圖像之顯示之畫面與圖8之進行對比度修正參數調整之畫面之例,但該等畫面亦可同時顯示於同一畫面上。藉由將該等畫面同時顯示於同一畫面上,可更有效率地執行對比度之調整。 An example in which the screen for displaying the contrast-corrected image of FIG. 7 and the screen for adjusting the contrast correction parameter of FIG. 8 are respectively displayed are shown, but the screens may be simultaneously displayed on the same screen. By simultaneously displaying the pictures on the same screen, the adjustment of the contrast can be performed more efficiently.

圖9A係對圖3之步驟S310之測量處理中之測量方法進行表示之圖。圖案圖像901係將由顯示於圖7之測量區域資訊顯示部704之測量游標406所包圍之區域所對應之顯示於對比度修正後圖像703之區域放大所得之圖像。 Fig. 9A is a view showing a measurement method in the measurement process of step S310 of Fig. 3. The pattern image 901 is an image obtained by enlarging an area displayed on the contrast-corrected image 703 corresponding to the area surrounded by the measurement cursor 406 displayed in the measurement area information display unit 704 of FIG.

對針對圖案圖像901進行作為測量對象之底部邊緣之檢測之情形進行說明。於在步驟S303中所設定之測量游標903(相當於圖4之測量游標406及圖5之測量游標506)內設定線段904,如圖9B所示,獲取線段904上之圖像信號之分佈902。 A case where the pattern image 901 is detected as the bottom edge of the measurement object will be described. The line segment 904 is set in the measurement cursor 903 (corresponding to the measurement cursor 406 of FIG. 4 and the measurement cursor 506 of FIG. 5) set in step S303, and as shown in FIG. 9B, the distribution of image signals on the line segment 904 is obtained 902. .

由於藉由對比度修正處理而使分佈902之相當於側壁之部分之圖像之對比度充分地增強,故而可藉由圖10A中說明之閾值法或圖10B中說明之線性法等容易地算出與圖9A之點905及點906對應之底部邊緣點905p、906p。 Since the contrast of the image corresponding to the side wall of the distribution 902 is sufficiently enhanced by the contrast correction processing, the map can be easily calculated by the threshold method described in FIG. 10A or the linear method described in FIG. 10B. Point 905 of point 9A and point 906 correspond to bottom edge points 905p, 906p.

根據如於圖9C之圖像907中以虛線表示之複數條水平之直線9071~9075或者如於圖9D之圖像908中以虛線表示之穿過圖案之中心之各方向之直線9081~9084之分佈求出複數個該底部邊緣點,將位於各直線上之邊緣點間之距離(例如,圖9B之點905p與906p之距離)之平均值設為測量值。 According to a plurality of horizontal straight lines 9071 to 9075 indicated by a broken line in the image 907 as shown in FIG. 9C or a straight line 9081 to 9084 indicating the respective directions passing through the center of the pattern as indicated by a broken line in the image 908 of FIG. 9D The distribution finds a plurality of the bottom edge points, and the average value of the distance between the edge points on each straight line (for example, the distance between points 905p and 906p in Fig. 9B) is set as a measured value.

使用者可藉由在對比度修正後之圖案圖像901上對算出之複數個底部邊緣點進行確認,而確認測量是否準確地進行。 The user can confirm whether the measurement is accurately performed by confirming the calculated plurality of bottom edge points on the contrast-corrected pattern image 901.

圖10A係表示根據亮度分佈算出邊緣之位置之閾值法之圖,圖10B係表示根據亮度分佈算出邊緣之位置之線性法之圖。 Fig. 10A is a view showing a threshold value method for calculating the position of the edge based on the luminance distribution, and Fig. 10B is a view showing a linear method for calculating the position of the edge based on the luminance distribution.

利用圖10A之閾值法進行之邊緣算出方法係於對於亮度分佈1001將分佈之最大波峰1003設為100%且將最小波峰1004設為0%時,將由利用百分比之閾值1005定義之分佈上之點1006之位置設為邊緣。 The edge calculation method using the threshold method of FIG. 10A is to set the point on the distribution defined by the threshold value of the utilization percentage 1005 when the maximum peak 1003 of the distribution is set to 100% for the luminance distribution 1001 and the minimum peak 1004 is set to 0%. The position of 1006 is set to the edge.

另一方面,利用圖10B之線性法進行之邊緣算出方法係將於分佈之斜率最大之點處與亮度分佈1002相切之直線1007和與分佈之最小波峰相切之直線1008之交點1009之位置設為邊緣。 On the other hand, the edge calculation method by the linear method of Fig. 10B is the position of the intersection 1009 of the line 1007 which is tangent to the luminance distribution 1002 and the line 1008 which is tangent to the minimum peak of the distribution at the point where the slope of the distribution is the largest. Set to the edge.

圖11係對在步驟S310中進行測量參數之設定時所使用之顯示測量結果與畫質改善結果之GUI進行表示之圖 FIG. 11 is a diagram showing a GUI for displaying measurement results and image quality improvement results used when setting measurement parameters in step S310.

於GUI畫面1101中,於對比度修正圖像1102上重疊顯示作為測量結果之測量點1103。藉此,使用者可將畫質改善結果與測量結果進行比較,且可容易地確認測量是否準確地進行。又,藉由核取方塊1104、1105,可將對比度修正前之圖像測量所得之結果與於對比度修正處理後之圖像中測量所得之結果進行切換。 In the GUI screen 1101, a measurement point 1103 as a measurement result is superimposed on the contrast correction image 1102. Thereby, the user can compare the image quality improvement result with the measurement result, and can easily confirm whether the measurement is accurately performed. Further, by checking the blocks 1104 and 1105, the result of the image measurement before the contrast correction can be switched with the result of the measurement in the image after the contrast correction process.

根據本實施例,於Via-in-Trench之圖案之SEM圖像中,可將作為深孔之Via之內部之對比度改善為可容易地進行目視確認之程度,因此可容易地且精度良好地執行測量是否準確地進行之確認及測量條件之設定,從而可更準確地進行測量。 According to the present embodiment, in the SEM image of the pattern of Via-in-Trench, the contrast inside the Via which is a deep hole can be improved to such an extent that it can be easily visually confirmed, and therefore can be easily and accurately performed. The measurement is performed accurately and the measurement conditions are set so that the measurement can be performed more accurately.

[變化例1] [Variation 1]

作為實施例1之變化例1,對如下方法進行說明,即:關於在實施例1中所說明之圖3之處理流程圖之S303中之測量游標設定,藉由利用半導體圖案之設計資料而進行圖案內部之區域抽取。 As a modification 1 of the first embodiment, a method of setting the measurement cursor in S303 of the processing flowchart of FIG. 3 described in the first embodiment by using the design data of the semiconductor pattern is described. The area inside the pattern is extracted.

圖12係本變化例1之圖案尺寸測量系統之動作流程。以下,針對圖12之步驟說明具體之處理方法。 Fig. 12 is a flowchart showing the operation of the pattern size measuring system of the first modification. Hereinafter, a specific processing method will be described with reference to the steps of FIG.

首先,於步驟S1201中,藉由測長SEM100拍攝矽晶圓上之圖案之圖像。 First, in step S1201, an image of the pattern on the wafer is taken by the length measuring SEM 100.

於步驟S1202中,運算部110將拍攝圖像顯示於控制終端111之 GUI上。 In step S1202, the computing unit 110 displays the captured image on the control terminal 111. On the GUI.

於步驟S1203中,運算部110自記憶裝置112讀入與拍攝圖像為相同座標之設計資料。 In step S1203, the computing unit 110 reads the design data having the same coordinates as the captured image from the memory device 112.

於步驟S1204中,運算部110進行拍攝圖像與設計資料之對位,並根據對位後之設計資料算出測量對象圖案之概略區域(測量游標設定區域)。(關於本步驟之詳細內容將於圖14中進行說明) In step S1204, the calculation unit 110 performs alignment of the captured image and the design data, and calculates a rough region (measurement cursor setting region) of the measurement target pattern based on the design data after the alignment. (The details of this step will be explained in Figure 14.)

之後,對圖3之步驟S304以後之步驟進行處理。 Thereafter, the steps subsequent to step S304 of FIG. 3 are processed.

圖13A至圖13C係對圖12之步驟S1204之設計資料之對位進行表示之圖。圖13A係利用SEM120對形成於作為試樣之半導體晶圓106之Via-in-Trench進行拍攝而獲得之拍攝圖像1301。 13A to 13C are diagrams showing the alignment of the design data of step S1204 of Fig. 12. FIG. 13A is a captured image 1301 obtained by photographing a Via-in-Trench formed on a semiconductor wafer 106 as a sample by SEM 120.

圖13B係根據記憶於記憶裝置112之Via圖案層中之設計資料而設定之測量游標區域1302。由於在拍攝圖像1301與設計資料1302中會產生位置偏移,故而設定藉由圖案匹配而對位置偏移進行修改後之圖13C所示般之設計資料上之測量游標區域1303。將對位置偏移進行修改後之設計資料上之測量游標區域1303用作Via之概略區域。 FIG. 13B is a measurement cursor area 1302 that is set based on design data stored in the Via pattern layer of the memory device 112. Since the positional shift occurs in the captured image 1301 and the design data 1302, the measurement cursor area 1303 on the design data as shown in FIG. 13C after the positional offset is modified by pattern matching is set. The measurement cursor area 1303 on the design data whose position offset is modified is used as a schematic area of Via.

根據本實施例,由於可藉由使用設計資料而自動地進行圖案之概略區域設定,故而可較實施例1之情形減輕使用者之設定操作之負擔。 According to the present embodiment, since the outline area setting of the pattern can be automatically performed by using the design data, the burden of the setting operation of the user can be reduced as compared with the case of the first embodiment.

[變化例2] [Variation 2]

於本變化例中,對如下情形進行說明,即:關於在實施例1中所說明之圖3之處理流程圖之S303中之測量游標設定,並非使用矩形游標,而利用使用者輸入圖案之中心點所得之點資料進行圖案內部之區域抽取。 In the present modification, the case where the measurement cursor is set in S303 of the processing flowchart of FIG. 3 described in the first embodiment is not the rectangular cursor but the center of the user input pattern is used. Point the obtained point data to extract the area inside the pattern.

圖14係本變化例2之圖案尺寸測量系統之動作流程。以下,針對圖14之步驟說明具體之處理方法。 Fig. 14 is a flowchart showing the operation of the pattern size measuring system of the second modification. Hereinafter, a specific processing method will be described with reference to the steps of FIG.

首先,於步驟S1401中,藉由測長SEM100拍攝矽晶圓上之圖案 之圖像。 First, in step S1401, the pattern on the germanium wafer is taken by the length measuring SEM 100. The image.

於步驟S1402中,運算部110將拍攝圖像顯示於控制終端111之GUI上。 In step S1402, the arithmetic unit 110 displays the captured image on the GUI of the control terminal 111.

於步驟S1403中,使用者於顯示在控制終端111中之GUI之拍攝圖像中,藉由滑鼠操作將測量圖案之中心位置設定為點資料。 In step S1403, the user sets the center position of the measurement pattern as the point data by the mouse operation in the captured image of the GUI displayed in the control terminal 111.

於步驟S1404中,運算部110配置以點資料為中心之橢圓形之概略區域,以與圖5相同之原理一面將橢圓區域放大一面求出內部之平均亮度,並算出平均亮度之變化減小時之橢圓區域作為內部區域。 In step S1404, the arithmetic unit 110 arranges an elliptical outline region centered on the point data, and obtains the average brightness of the interior while amplifying the elliptical region on the same principle as in FIG. 5, and calculates a change in the average luminance. The elliptical area acts as an inner area.

之後,對圖3之步驟S305之後之步驟進行處理。 Thereafter, the steps subsequent to step S305 of FIG. 3 are processed.

於步驟S1404之圖案內部區域算出中,關於長徑、短徑係使用事先設定之固定參數,算出以點資料之座標為中心之橢圓之內部作為圖案之內部區域。 In the calculation of the inner region of the pattern in step S1404, the long-diameter and the short-diameter are used as the inner region of the pattern, using the fixed parameter set in advance, and the inside of the ellipse centered on the coordinate of the point data.

根據本實施例,由於藉由使用點資料而減少GUI上之輸入操作,故而可較實施例1減輕使用者之設定操作之負擔。 According to the present embodiment, since the input operation on the GUI is reduced by using the point material, the burden of the setting operation of the user can be reduced compared with the first embodiment.

[變化例3] [Variation 3]

作為實施例1之步驟S304之圖案內部區域算出之另一種方法,於本變化例中,使用圖15所示之底部邊緣附近區域。對圖案圖像1501,進行與在實施例1中所說明之圖9之圖像908所示之方法相同之底部邊緣檢測,算出概略區域內之底部邊緣點1502。求出以該底部邊緣點為中心之圓區域1503,將該區域設為圖案之內部區域。 As another method of calculating the inner region of the pattern of step S304 of the first embodiment, in the present modification, the region near the bottom edge shown in Fig. 15 is used. The bottom edge detection of the pattern image 1501 is the same as that shown in the image 908 of Fig. 9 described in the first embodiment, and the bottom edge point 1502 in the outline region is calculated. A circular region 1503 centering on the bottom edge point is obtained, and this region is defined as an inner region of the pattern.

根據本實施例,由於可獲得成為測量對象之底部邊緣附近區域之亮度範圍,故而可有效地進行底部邊緣附近之對比度修正。 According to the present embodiment, since the luminance range of the region near the bottom edge of the measurement target can be obtained, the contrast correction near the bottom edge can be effectively performed.

[變化例4] [Variation 4]

於本變化例中,關於實施例1之步驟S304之圖案內部區域算出及變化例2中之步驟S1404之圖案內部區域算出,係利用因於圖2之215所示之圖案剖面較陡之部位二次電子大量釋出而變得明亮之頂部邊緣進 行算出。 In the present modification, the pattern internal region calculation in the step S304 of the first embodiment and the calculation of the inner region of the pattern in the step S1404 in the second modification are performed by using the portion of the pattern shown by 215 in FIG. Sub-electrons are released in large quantities and become brighter at the top edge The line is calculated.

圖16係對使用頂部邊緣之圖案內部區域算出之方法進行表示之圖。對圖案圖像1601,使用邊緣檢測處理算出概略區域1605內之頂部邊緣圖像1602。將於頂部邊緣1603中被包圍之封閉區域1604設為圖案之內部區域。 Fig. 16 is a view showing a method of calculating the inner region of the pattern using the top edge. For the pattern image 1601, the top edge image 1602 in the outline area 1605 is calculated using the edge detection processing. The enclosed area 1604 enclosed in the top edge 1603 is set as the inner area of the pattern.

根據本實施例,可抽取沿著圖案形狀之內部區域,故而於測量對象之圖案較小之情形時,於算出用以獲得亮度資訊之足夠大之內部區域之方面有效。 According to the present embodiment, the inner region along the pattern shape can be extracted, so that when the pattern of the measurement object is small, it is effective in calculating a sufficiently large internal region for obtaining luminance information.

[變化例5] [Variation 5]

於本變化例中,將實施例1以及變化例1及2中之圖案之概略區域設定方法與實施例1以及變化例3及4中之圖案內部區域算出方法任意組合而使用。又,於本變化例中,圖1之運算部110將實施例1以及變化例3及4中之內部區域算出方法全部作為功能而保持,且使用者可藉由圖17所示之內部區域設定方法選擇GUI1700選擇內部區域算出方法。 In the present modification, the method of setting the outline of the pattern in the first embodiment and the first and second embodiments and the method of calculating the inner region of the pattern in the first embodiment and the third and fourth embodiments are used arbitrarily. Further, in the present modification, the calculation unit 110 of FIG. 1 holds all of the internal region calculation methods in the first embodiment and the modifications 3 and 4 as functions, and the user can set the internal region shown in FIG. The method selects the GUI 1700 to select the internal region calculation method.

根據本變化例,使用者可根據測量圖案選擇有效之內部區域設定方式。 According to the present variation, the user can select an effective internal area setting mode based on the measurement pattern.

[變化例6] [Variation 6]

於本變化例中,進行包含對比度之修正處理之測量方案之設定,且使用保存之方案資料進行自動測量。 In the present variation, the setting of the measurement scheme including the correction processing of the contrast is performed, and the automatic measurement is performed using the saved scheme data.

圖18係表示進行自動測量時所使用之測量方案之設定流程之圖。以下,對圖18之步驟之處理方法進行說明。 Fig. 18 is a view showing a setting flow of a measurement scheme used when performing automatic measurement. Hereinafter, the processing method of the step of Fig. 18 will be described.

於步驟S1801中,將測量對象之晶圓載入至裝置。 In step S1801, the wafer of the measurement object is loaded to the device.

於步驟S1802中,輸入晶片尺寸或晶片之排列等測量對象晶圓資訊。 In step S1802, measurement target wafer information such as wafer size or wafer arrangement is input.

於步驟S1803中,登錄用以修正XY載置台移動時之偏移之匹配所 使用之晶圓對準點。 In step S1803, a matching match for correcting the offset of the XY stage is registered. The wafer alignment point used.

於步驟S1804中,進行測定點之登錄、FOV(Field of View,視場)之設定、用以修正因射束偏移而導致之位置偏移之匹配所使用之定址點之登錄。 In step S1804, the registration of the measurement point, the setting of the FOV (Field of View), and the registration of the address point used to correct the matching of the positional offset due to the beam offset are performed.

於步驟S1805中,藉由進行圖3之步驟S302~S310之處理而獲取測定點處之對比度修正後之測定點之圖像。 In step S1805, an image of the measurement point after the contrast correction at the measurement point is acquired by performing the processing of steps S302 to S310 of FIG.

於步驟S1806中,使用對比度修正後之圖像進行測量方式或測量參數之設定。 In step S1806, the measurement mode or the measurement parameter is set using the contrast corrected image.

於步驟S1807中,將於步驟S1802、S1803、S1804、S1806中所設定之參數、及於圖3之流程中所設定之對比度修正之參數作為方案資料而保存。 In step S1807, the parameters set in steps S1802, S1803, S1804, and S1806, and the parameters of the contrast correction set in the flow of FIG. 3 are stored as the plan data.

使用所保存之方案,對相同晶圓上之不同晶片或相同設計之帶圖案之晶圓進行自動測量。 Automated measurements of different wafers on the same wafer or patterned wafers of the same design using the saved scheme.

根據本實施例,藉由在方案資料中亦包含對比度修正參數,可於自動測量時亦進行對比度修正而進行測量。 According to the present embodiment, by including the contrast correction parameter in the scheme data, the contrast correction can be performed during the automatic measurement to perform the measurement.

[變化例7] [Variation 7]

本變化例應用於溝槽部分之圖像之明亮度與Via底之部分之圖像之明亮度的差較小之情形。於實施例1之Via-in-Trench之構造中,將溝槽與Via之以相同之明亮度獲取之圖案之例示於圖19。 This modification is applied to the case where the difference between the brightness of the image of the groove portion and the brightness of the image of the portion of the Via portion is small. In the configuration of the Via-in-Trench of the first embodiment, an example of a pattern obtained by obtaining the same brightness as that of Via is shown in FIG.

於上側之圖之圖案剖面1901中,於溝槽之深度1903充分大於溝槽底1905與Via底1906之間距1904時,如下側之曲線圖之亮度分佈1902所示,溝槽部分之明亮度1907與Via底之部分之明亮度1908之差相對於整體明亮度之範圍變得非常小。 In the pattern section 1901 of the upper diagram, when the depth 1903 of the groove is sufficiently larger than the distance 1904 between the groove bottom 1905 and the Via bottom 1906, the brightness distribution 1902 of the graph on the following side shows the brightness of the groove portion 1907. The difference from the brightness 1908 of the portion of the Via bottom is very small relative to the range of overall brightness.

於此種圖案中,只要以提高溝槽與Via之兩者之區域之對比度之方式對溝槽與Via之兩者之圖案內部進行區域抽取並進行局部對比度修正即可。 In such a pattern, the inside of the pattern of both the groove and the Via may be extracted and the local contrast correction may be performed by increasing the contrast between the groove and the region of Via.

藉此,可獲得提高了Via內部與溝槽內部兩者之對比度之輸出圖像。 Thereby, an output image in which the contrast between both the interior of the Via and the inside of the trench is improved can be obtained.

[變化例8] [Variation 8]

本變化例係亦可應用於槽圖案之底部邊緣為測量對象之情形時之例。圖20A係表示槽圖案之底部邊緣為測量對象之例的圖。於槽圖案像2001之亮度分佈2003中,由於側壁之分佈2006之對比度非常低,故而難以視認底部邊緣之間距2005。 This variation can also be applied to the case where the bottom edge of the groove pattern is a measurement object. Fig. 20A is a view showing an example in which the bottom edge of the groove pattern is a measuring object. In the luminance distribution 2003 of the groove pattern image 2001, since the contrast of the sidewall distribution 2006 is very low, it is difficult to visually recognize the distance between the bottom edges of 2005.

另一方面,圖20B所示之圖像2002係本變化例之圖像,且係藉由圖3之流程抽取槽之內部區域並進行局部對比度修正後之圖像。 On the other hand, the image 2002 shown in Fig. 20B is an image of the present modification, and is an image obtained by extracting the inner region of the groove by the flow of Fig. 3 and performing local contrast correction.

於對比度修正後之圖像2002之亮度分佈2004中,側壁之分佈2007之亮度範圍變廣,因此可容易地視認底部邊緣之間距2008。 In the luminance distribution 2004 of the contrast-corrected image 2002, the luminance range of the sidewall distribution 2007 becomes wider, so that the distance between the bottom edges can be easily recognized.

[實施例2] [Embodiment 2]

於實施例1中,對使用以測長SEM100獲取之試樣之圖像進行圖案內部之區域抽取之方法進行了說明,於本實施例2中,對使用與測量對象之圖案圖像不同之利用檢測器拍攝所得之圖案圖像進行圖案內部之區域抽取之情形進行說明。 In the first embodiment, a method of extracting an area inside the pattern using the image of the sample obtained by the length measuring SEM 100 has been described. In the second embodiment, the use of the pattern image different from the measurement object is used. The case where the pattern image obtained by the detector is taken to extract the area inside the pattern will be described.

於圖21中表示與本實施例2相關之實現圖案尺寸測量系統之裝置整體之構成圖。本實施例之測長SEM2100係包括SEM本體2120與信號處理系統2130而構成。再者,對與實施例1中於圖1所說明之測長SEM100相同之構成標註相同編號。 Fig. 21 is a view showing the entire configuration of an apparatus for realizing a pattern size measuring system in accordance with the second embodiment. The length measuring SEM 2100 of the present embodiment includes an SEM body 2120 and a signal processing system 2130. The same components as those of the length measuring SEM 100 described in FIG. 1 in the first embodiment are denoted by the same reference numerals.

SEM本體2120包括:XY載置台107,其供設置作為測量對象之形成有電路圖案之矽晶圓(試樣)106;照射光學系統2140,其控制自電子槍102釋出之電子束101;反射板2102,其接收相對於試樣沿傾斜方向釋出之電子;斜向檢測器2103,其檢測自反射板2102釋出之二次電子;反射板2101,其接收相對於試樣沿大致垂直方向釋出之電子;及上方檢測器2104,其檢測自反射板2101釋出之二次電子。照射光學系 統2140係包括電子槍102及位於電子束101之路徑上之聚光透鏡103、偏向器104、物鏡105而構成。 The SEM body 2120 includes an XY stage 107 for arranging a silicon wafer (sample) 106 on which a circuit pattern is formed as a measurement object, an illumination optical system 2140 that controls the electron beam 101 released from the electron gun 102, and a reflection plate. 2102, which receives electrons released in an oblique direction with respect to the sample; a diagonal detector 2103 that detects secondary electrons released from the reflecting plate 2102; and a reflecting plate 2101 that receives the substantially perpendicular direction with respect to the sample And an upper detector 2104 that detects secondary electrons released from the reflecting plate 2101. Irradiation optics The system 2140 includes an electron gun 102, a collecting lens 103 located on the path of the electron beam 101, a deflector 104, and an objective lens 105.

檢測信號之信號處理系統2130包括:A/D轉換器2105,其將自斜向檢測器2103輸出之類比信號轉換為數位信號;A/D轉換器2106,其將自上方檢測器2104輸出之類比信號轉換為數位信號;運算部2110,其分別輸入由A/D轉換器2105與2106轉換後之信號並進行處理且包括CPU2113、USI2114、及圖像記憶體2115;控制終端2111,其控制運算部2110並且經由運算部2110控制SEM2120;及記憶終端2112,其記憶資料。 The signal processing system 2130 for detecting signals includes an A/D converter 2105 that converts an analog signal output from the oblique detector 2103 into a digital signal, and an analogy of the A/D converter 2106 that outputs the output from the upper detector 2104. The signal is converted into a digital signal; the computing unit 2110 inputs and converts the signals converted by the A/D converters 2105 and 2106, respectively, and includes a CPU 2113, USI 2114, and an image memory 2115; and a control terminal 2111 that controls the computing unit 2110 and controls the SEM 2120 via the computing unit 2110; and the memory terminal 2112, which memorizes the data.

於此種構成中,自電子槍102發射之電子束101係由照明光學系統2140之聚光透鏡103、偏向器104、物鏡105控制而照射至矽晶圓106上。自矽晶圓106上之被照射有電子束101之區域釋出電子。此時,相對於矽晶圓106沿傾斜方向釋出之電子碰撞至反射板2102,釋出二次電子並藉由斜向檢測器2103檢測。 In such a configuration, the electron beam 101 emitted from the electron gun 102 is controlled by the condensing lens 103, the deflector 104, and the objective lens 105 of the illumination optical system 2140 to be irradiated onto the erbium wafer 106. Electrons are emitted from the region of the wafer 106 that is irradiated with the electron beam 101. At this time, electrons emitted in the oblique direction with respect to the tantalum wafer 106 collide with the reflecting plate 2102, and secondary electrons are released and detected by the oblique detector 2103.

又,相對於矽晶圓106沿大致垂直方向釋出之電子碰撞至反射板2101,釋出二次電子並藉由上方檢測器2104檢測。由斜向檢測器2103檢測出之電子由A/D轉換機2105轉換為數位信號,由上方檢測器2104檢測出之電子由A/D轉換機2106轉換為數位信號,並分別被輸入至運算部2110。 Further, electrons emitted in a substantially vertical direction with respect to the tantalum wafer 106 collide with the reflecting plate 2101, and secondary electrons are released and detected by the upper detector 2104. The electrons detected by the oblique detector 2103 are converted into digital signals by the A/D converter 2105, and the electrons detected by the upper detector 2104 are converted into digital signals by the A/D converter 2106, and are respectively input to the arithmetic unit. 2110.

運算部2110接收被轉換為數位信號之檢測器2103與2104之檢測結果,並將該檢測結果儲存於圖像記憶體2115。此外,運算部2110亦具有基於檢測器2103與2104之檢測結果產生檢測電子像之作為觀察像獲取部之功能。 The calculation unit 2110 receives the detection results of the detectors 2103 and 2104 converted into digital signals, and stores the detection result in the image memory 2115. Further, the calculation unit 2110 also has a function of generating an electronic image as an observation image acquisition unit based on the detection results of the detectors 2103 and 2104.

CPU(Central Processing Unit)2113、儲存有圖像處理軟體之USI2114等執行對應於尺寸測量之目的之圖像處理,測量圖案之尺寸。儲存於圖像記憶體2115之資料亦可重新儲存於外部之記憶裝置 2112。 The CPU (Central Processing Unit) 2113, the USI 2114 storing the image processing software, and the like perform image processing for the purpose of size measurement, and measure the size of the pattern. The data stored in the image memory 2115 can also be re-stored in an external memory device. 2112.

控制終端2111經由運算部2110進行XY載置台107之座標之控制或測量序列之控制。 The control terminal 2111 controls the coordinates of the XY stage 107 or the measurement sequence via the calculation unit 2110.

於控制終端2111中,具有對使用者將觀察圖像或尺寸測量結果等顯示於畫面2116之GUI(Graphical User Interface),使用者可製作尺寸測量所需之矽晶圓上之圖案之座標、用於圖案之定位之圖案匹配用模板、包含拍攝條件等之拍攝方案資料。 The control terminal 2111 has a GUI (Graphical User Interface) for displaying an observation image, a dimensional measurement result, and the like on the screen 2116, and the user can create a coordinate of the pattern on the wafer required for the dimension measurement. A pattern matching template for positioning of a pattern, and a photographing plan data including shooting conditions and the like.

又,於控制終端2111中,製作尺寸測量所需之矽晶圓106上之圖案之座標、用於圖案之定位之圖案匹配用模板、包含拍攝條件等之拍攝方案資料。 Further, in the control terminal 2111, a coordinate of a pattern on the wafer 106 required for dimensional measurement, a pattern matching template for pattern positioning, and imaging scheme data including imaging conditions are prepared.

圖22係本實施例2之圖案尺寸測量系統之動作流程。以下,針對圖22之步驟說明具體之處理方法。 Figure 22 is a flow chart showing the operation of the pattern size measuring system of the second embodiment. Hereinafter, a specific processing method will be described with reference to the steps of FIG.

首先,於步驟S2201中,藉由測長SEM2100獲取利用矽晶圓上之上方檢測器之上方檢測像、及利用斜向檢測器之斜向檢測像。 First, in step S2201, the upper detection image of the upper detector on the germanium wafer and the oblique detection image by the oblique detector are acquired by the length measuring SEM 2100.

於步驟S2202中,運算部2110將上方檢測像與斜向檢測像顯示於控制終端2111之GUI上。 In step S2202, the computing unit 2110 displays the upper detection image and the oblique detection image on the GUI of the control terminal 2111.

於步驟S2203中,運算部2110自斜向檢測像抽取暗部區域,並將其設為圖案之概略區域。(關於本步驟之詳細內容將於圖23中進行說明) In step S2203, the calculation unit 2110 extracts the dark portion from the oblique detection image and sets it as a schematic region of the pattern. (The details of this step will be explained in Figure 23)

於步驟S2204中,運算部2110一面使上方檢測像之概略區域之大小變化一面進行內部區域之算出(本步驟之詳細內容與在實施例1中所說明之圖3之流程圖之步驟S304中之處理、即使用圖5所說明之處理相同)。 In step S2204, the calculation unit 2110 calculates the internal region while changing the size of the outline region of the upper detection image (the details of this step and the step S304 of the flowchart of FIG. 3 described in the first embodiment). The processing is the same as that described in FIG. 5).

於步驟S2205中,運算部2110算出上方檢測像之內部區域中之亮度範圍。 In step S2205, the calculation unit 2110 calculates the luminance range in the inner region of the upper detection image.

於步驟S2206中,運算部2110藉由如增大在步驟S2205中求出之 亮度範圍之對比度修正處理而進行上方檢測像之對比度修正。(本步驟與圖6相同) In step S2206, the computing unit 2110 obtains the result obtained in step S2205 by increasing The contrast correction processing of the luminance range is performed to perform contrast correction of the upper detection image. (This step is the same as Figure 6)

於步驟S2207中,運算部2110將對比度修正後之上方檢測圖像顯示於控制終端2111中之GUI。 In step S2207, the arithmetic unit 2110 displays the contrast-corrected upper detection image on the GUI in the control terminal 2111.

於步驟S2208中,使用者確認顯示於控制終端2111之GUI之對比度修正圖像,於欲修改修正結果之情形時進入步驟S2209之對比度修正參數設定。若無問題,則進入步驟S2210。 In step S2208, the user confirms the contrast correction image displayed on the GUI of the control terminal 2111, and proceeds to the contrast correction parameter setting of step S2209 when the correction result is to be modified. If there is no problem, the process proceeds to step S2210.

於步驟S2209中,使用者可利用如在實施例1中使用圖8所說明之方法輸入對比度修正之參數,即,於GUI801中,使用者可藉由在GUI801上操作對比度增強等級滑塊802與偏移滑塊803,並按下設定按鈕804而進行參數之輸入,該對比度增強等級滑塊802調整對比度修正之強度之程度,該偏移滑塊803調整對比度被增強後之區域之亮度之偏移。 In step S2209, the user can input the parameter of the contrast correction using the method as described in FIG. 8 in Embodiment 1, that is, in the GUI 801, the user can operate the contrast enhancement level slider 802 on the GUI 801. The slider 803 is offset, and the input of the parameter is performed by pressing the setting button 804, the degree of contrast correction slider 802 is adjusted, and the offset slider 803 adjusts the brightness of the region after the contrast is enhanced. shift.

所輸入之參數係作為對比度增強等級滑塊值r與偏移滑塊值b而於步驟S2206中使用。但是,於第一次之步驟S2206中,對比度增強等級滑塊值r與偏移滑塊值b係使用預先設定之初始值。 The input parameter is used as the contrast enhancement level slider value r and the offset slider value b in step S2206. However, in the first step S2206, the contrast enhancement level slider value r and the offset slider value b use a preset initial value.

於參數設定後,返回至步驟S2206,並再次執行至S2208。 After the parameter setting, the process returns to step S2206, and proceeds to S2208 again.

於步驟S2210中,測量對比度修正後之圖像。 In step S2210, the contrast corrected image is measured.

圖23A至圖23C係對圖22之步驟S2203之利用斜向檢測像進行之暗部區域之抽取進行表示之圖。對於形成於矽晶圓106上之圖案2301,於對孔底2311照射自電子槍102發射之電子束101時,自孔底2311釋出來之電子2305~2309中之電子2305與2309碰撞至圖案2301之側壁2312而不會被檢測。 23A to 23C are diagrams showing the extraction of the dark portion region by the oblique detection image in step S2203 of Fig. 22. For the pattern 2301 formed on the germanium wafer 106, when the electron beam 101 emitted from the electron gun 102 is irradiated to the bottom 2311, the electrons 2305 and 2309 in the electrons 2305 to 2309 released from the bottom 2311 collide with the pattern 2301. Sidewall 2312 is not detected.

電子2306與2308係自孔傾斜地釋出,並碰撞至圖21之反射板2102,藉由該碰撞,而自反射板2102產生之二次電子中之入射至斜向檢測器2103之二次電子被檢測。電子2307係自孔大致垂直地釋出,並 碰撞至圖21之反射板2101。藉由該碰撞,而自反射板2101產生之二次電子中之入射至上方檢測器2104之二次電子由上方檢測器2104檢測。 The electrons 2306 and 2308 are obliquely released from the hole and collide with the reflection plate 2102 of FIG. 21, and by the collision, the secondary electrons incident on the oblique detector 2103 from the secondary electrons generated from the reflection plate 2102 are Detection. Electron 2307 is released from the hole substantially vertically, and Collisions to the reflector 2101 of FIG. By this collision, the secondary electrons incident on the upper detector 2104 from the secondary electrons generated from the reflecting plate 2101 are detected by the upper detector 2104.

自傾斜方向釋出之電子之數量與孔形狀之縱橫比(孔之深度與孔之大小之比)有較高之相關性,故而斜向檢測像成為對應於每個圖案之區域可明顯區分明暗之圖像。相對於此,由於垂直地釋出之電子較少,故而上方檢測像之雜訊增多,但由於信號亦自較深之孔底返回,故而於欲測量及檢查孔底之圖案時使用。 The number of electrons released from the oblique direction has a high correlation with the aspect ratio of the hole shape (the ratio of the depth of the hole to the size of the hole), so that the oblique detection image becomes a region corresponding to each pattern to clearly distinguish between light and dark. The image. On the other hand, since the electrons emitted vertically are less, the noise of the upper detection image is increased, but since the signal is returned from the bottom of the deeper hole, it is used when the pattern of the bottom of the hole is to be measured and inspected.

表示根據Via-in-Trench之圖案而獲得之上方檢測像之頻率曲線2302與斜向檢測像之頻率曲線2303。於各頻率曲線中,2310u與2310t係Via區域之分佈,2311u與2311t係溝槽區域之分佈,2312u與2312t係遮罩區域之分佈。上方檢測像之頻率曲線2302由於雜訊較多,故而各區域之分佈重疊,難以進行區域分割。相對於此,斜向檢測像之頻率曲線2303由於S/N(signal-to-noise,信號雜訊比)較高,故而各區域之頻率曲線之分佈可藉由對斜向檢測像進行閾值處理而容易地進行區域分割。 A frequency curve 2302 of the upper detected image obtained from the pattern of the Via-in-Trench and a frequency curve 2303 of the oblique detected image are shown. In each frequency curve, the distribution of 2310u and 2310t Via regions, the distribution of 2311u and 2311t trench regions, and the distribution of 2312u and 2312t mask regions. Since the frequency curve 2302 of the upper detection image is large in noise, the distribution of each region overlaps, and it is difficult to perform region division. In contrast, since the frequency curve 2303 of the oblique detection image is higher due to S/N (signal-to-noise ratio), the distribution of the frequency curve of each region can be thresholded by the oblique detection image. It is easy to divide the area.

根據本實施例,可藉由使用斜向檢測圖像而自動地進行圖案之概略區域設定,故而可較實施例1減輕使用者之設定操作之負擔。 According to the present embodiment, the outline area setting of the pattern can be automatically performed by detecting the image obliquely, so that the burden of the setting operation of the user can be reduced as compared with the first embodiment.

又,亦可使用圖24所示之SEM2400代替圖21之測長SEM2100。與圖21所示之測長SEM2100之較大不同點在於:於照射光學系統2440中,包括二次電子檢測器2404與兩個反射電子檢測器2402、2403作為檢測器。 Alternatively, the SEM 2400 shown in FIG. 24 may be used instead of the length measuring SEM 2100 of FIG. The difference from the length measuring SEM 2100 shown in FIG. 21 is that in the illumination optical system 2440, a secondary electron detector 2404 and two reflected electron detectors 2402, 2403 are included as detectors.

自被照射有電子束101之矽晶圓106釋出之二次電子係藉由ExB偏向器2401而彎曲,並由二次電子檢測器2404檢測。又,同時釋出之反射電子係由2個反射電子檢測器2402、2403檢測。所檢測出之信號分別被信號處理系統2430之A/D轉換機2405、2406、2407轉換為數位信號,並於運算部2410中構成為3張圖像。 The secondary electrons released from the wafer 106 irradiated with the electron beam 101 are bent by the ExB deflector 2401 and detected by the secondary electron detector 2404. Further, the reflected electrons simultaneously emitted are detected by two reflected electron detectors 2402 and 2403. The detected signals are converted into digital signals by the A/D converters 2405, 2406, and 2407 of the signal processing system 2430, and are configured as three images in the arithmetic unit 2410.

檢測信號之信號處理系統2430包括:A/D轉換器2405、2406、2407,其等將自二次電子檢測器2404及2個反射電子檢測器2402、2403輸出之類比信號轉換為數位信號;運算部2410,其輸入由該等A/D轉換器2405、2406、2407轉換後之信號並進行處理且包括CPU2413、LSI2414、及圖像記憶體2415;控制終端2411,其控制運算部2410並且經由運算部2410控制SEM2420;及記憶終端2412,其記憶資料。 The signal processing system 2430 for detecting signals includes: an A/D converter 2405, 2406, 2407 that converts an analog signal output from the secondary electron detector 2404 and the two reflected electron detectors 2402, 2403 into a digital signal; The unit 2410 inputs and processes the signals converted by the A/D converters 2405, 2406, and 2407, and includes a CPU 2413, an LSI 2414, and an image memory 2415. The control terminal 2411 controls the arithmetic unit 2410 and performs an operation. The portion 2410 controls the SEM 2420; and the memory terminal 2412, which memorizes the data.

反射電子像(BSE像)於多層之配線圖案中,各層之配線區域之明暗被明確區分,故而於對每層之配線進行區域分割時有效。藉由本實施例之裝置構成,可容易地進行多層配線圖案之對比度修正。 In the multilayer wiring pattern, the reflected electron image (BSE image) is clearly distinguished from the wiring area of each layer, and is therefore effective for dividing the wiring of each layer. With the configuration of the apparatus of this embodiment, the contrast correction of the multilayer wiring pattern can be easily performed.

再者,於實施例1中所說明之變化例1至8亦可應用於本實施例。 Furthermore, the variations 1 to 8 described in the embodiment 1 can also be applied to the present embodiment.

根據本實施例,於Via-in-Trench之圖案之SEM圖像中,可將作為深孔之Via之內部之對比度改善為能夠容易地目視確認之程度,因此可容易地且精度良好地執行測量是否準確地進行之確認、及測量條件之設定,從而可更準確地進行測量。 According to the present embodiment, in the SEM image of the pattern of the Via-in-Trench, the contrast inside the Via as the deep hole can be improved to such an extent that it can be easily visually confirmed, so that the measurement can be easily and accurately performed. Whether or not the confirmation is accurately performed and the measurement conditions are set, so that the measurement can be performed more accurately.

[變化例] [variation]

對實施例2之變化例進行說明。於本變化例中,使用預先準備並設置之作為參數設置之預設而設定實施例2之圖22之步驟S2209之參數調整。 A variation of the second embodiment will be described. In the present modification, the parameter adjustment of step S2209 of Fig. 22 of the second embodiment is set using the preset prepared and set as the parameter setting.

於圖25中,對進行使用預設之對比度修正參數之設定之GUI進行說明。於GUI畫面2501中,顯示原圖像2502,該原圖像2502係基於在圖22所示之步驟S2203中算出之概略區域自上方檢測像切出測量對象圖案部位而得。圖像2503~2508係藉由對比度修正參數之複數個預設而依序對原圖像2502進行對比度修正處理後之圖像。 In Fig. 25, a GUI for setting a preset contrast correction parameter is described. In the GUI screen 2501, the original image 2502 is displayed, and the original image 2502 is obtained by cutting out the measurement target pattern portion from the upper detection image in the outline region calculated in step S2203 shown in FIG. The images 2503 to 2508 are images obtained by performing contrast correction processing on the original image 2502 in sequence by a plurality of presets of contrast correction parameters.

將對比度修正圖像2503~2508並列顯示於GUI2501上,使用者可藉由選擇適當之修正結果之圖像並點擊選擇按鈕2510,而將用於所選 擇之圖像2509之預設設定為對比度修正之參數。使用者可藉由利用預設進行之對比度修正之參數調整而容易地進行參數調整。 The contrast correction images 2503~2508 are displayed side by side on the GUI 2501, and the user can select the image by selecting an appropriate correction result and clicking the selection button 2510. The preset of the selected image 2509 is set as the parameter of the contrast correction. The user can easily perform parameter adjustment by adjusting the parameter of the contrast correction performed by the preset.

S301‧‧‧步驟 S301‧‧‧Steps

S302‧‧‧步驟 S302‧‧‧Steps

S303‧‧‧步驟 S303‧‧‧Steps

S304‧‧‧步驟 S304‧‧‧Steps

S305‧‧‧步驟 S305‧‧‧Steps

S306‧‧‧步驟 S306‧‧‧Steps

S307‧‧‧步驟 S307‧‧‧Steps

S308‧‧‧步驟 S308‧‧‧Steps

S309‧‧‧步驟 S309‧‧‧Steps

S310‧‧‧步驟 S310‧‧‧Steps

Claims (15)

一種利用荷電粒子束之圖案尺寸測量系統,其特徵在於:其係利用荷電粒子束測量形成於試樣上之包含孔或者槽之圖案之尺寸的系統,且包括:荷電粒子束圖像獲取單元,其對形成於試樣上之包含孔或者槽之圖案照射荷電粒子並進行掃描而獲取上述包含孔或者槽之圖案之荷電粒子束之圖像;信號處理單元,其對由該荷電粒子束圖像獲取單元獲取之荷電粒子束之圖像進行處理而測量上述包含孔或者槽之圖案之尺寸;及顯示單元,其具有顯示由該信號處理單元進行處理所得之結果之畫面;且上述信號處理單元具有:測量區域設定部,其於由上述荷電粒子束圖像獲取單元獲取之荷電粒子束之圖像中設定測量尺寸之上述包含孔或者槽之圖案之區域;及對比度修正部,其對由該測量區域設定部所設定之上述測量尺寸之包含孔或者槽之圖案之區域的荷電粒子束之圖像之對比度進行修正;且上述信號處理單元係對由上述信號處理單元修正對比度後之圖像進行處理而測量上述包含孔或者槽之圖案之尺寸。 A pattern size measuring system using a charged particle beam, characterized in that it uses a charged particle beam to measure a size of a pattern including a pattern of holes or grooves formed on a sample, and includes: a charged particle beam image acquiring unit, And irradiating the charged particles with a pattern of holes or grooves formed on the sample and scanning to obtain an image of the charged particle beam including the pattern of holes or grooves; and a signal processing unit for the image of the charged particle beam Acquiring an image of the charged particle beam obtained by the unit to process the size of the pattern including the hole or the groove; and displaying a screen having a result of displaying the result processed by the signal processing unit; and the signal processing unit has a measurement area setting unit that sets a region of the measurement size including the pattern of the hole or the groove in the image of the charged particle beam acquired by the charged particle beam image acquisition unit; and a contrast correction unit whose pair is subjected to the measurement The charged particle beam of the region including the pattern of the hole or the groove of the above-mentioned measured size set by the area setting unit The contrast of the image is corrected; a signal processing unit and said system comprising the above dimensions measured slot or hole pattern of the image after the contrast correction processing by the signal processing unit. 如請求項1之利用荷電粒子束之圖案尺寸測量系統,其中上述對比度修正部係以如下方式對由上述測量區域設定部所設定之上述測量尺寸之包含孔或者槽之圖案之區域的荷電粒子束之圖像之對比度進行修正:抽取由上述測量區域設定部所設定之上述測量尺寸之包含孔或者槽之圖案之區域之荷電粒子束之圖像中 之上述孔或者槽圖案之內部區域,根據該抽取之孔或者槽圖案之內部區域算出區域內之亮度資訊,且可基於該算出之亮度資訊於上述顯示單元上視認上述荷電粒子束之圖像中之上述抽取之孔或者槽圖案之像之邊緣。 The pattern size measuring system using the charged particle beam of claim 1, wherein the contrast correction unit charges the charged particle beam of the region including the pattern of the hole or the groove of the measurement size set by the measurement region setting unit as follows. Correction of the contrast of the image: extracting an image of the charged particle beam of the region including the pattern of the hole or the groove of the measurement size set by the measurement area setting unit The inner region of the hole or the groove pattern is used to calculate the brightness information in the region according to the extracted inner region of the hole or the groove pattern, and the image of the charged particle beam can be visually recognized on the display unit based on the calculated brightness information. The edge of the image of the extracted hole or groove pattern. 如請求項1之利用荷電粒子束之圖案尺寸測量系統,其中上述測量區域設定部將於顯示在上述顯示單元之畫面之由上述荷電粒子束圖像獲取單元獲取之荷電粒子束之圖像上所指定之區域設定為測量尺寸之上述包含孔或者槽之圖案之區域。 The pattern size measuring system using the charged particle beam of claim 1, wherein the measurement area setting unit is to be displayed on an image of the charged particle beam acquired by the charged particle beam image acquiring unit on a screen of the display unit. The designated area is set to the area of the above-mentioned pattern including the hole or the groove of the measurement size. 如請求項1之利用荷電粒子束之圖案尺寸測量系統,其中上述測量區域設定部係使用上述形成於試樣上之包含孔或者槽之圖案之設計資訊設定上述測量尺寸之包含孔或者槽之圖案之區域。 The pattern size measuring system using the charged particle beam of claim 1, wherein the measurement area setting unit sets the pattern of the hole or the groove including the measurement size by using the design information of the pattern including the hole or the groove formed on the sample. The area. 如請求項1之利用荷電粒子束之圖案尺寸測量系統,其中上述對比度修正部係將調整對比度後之上述荷電粒子束之圖像顯示於上述顯示單元之畫面上,並基於在顯示有該荷電粒子束之圖像之畫面上所設定之對比度之調整量重新調整上述荷電粒子束之圖像之對比度。 The pattern size measuring system using the charged particle beam of claim 1, wherein the contrast correction unit displays an image of the charged particle beam after adjusting the contrast on a screen of the display unit, and based on displaying the charged particle The contrast of the contrast set on the screen of the beam image re-adjusts the contrast of the image of the charged particle beam. 如請求項1之利用荷電粒子束之圖案尺寸測量系統,其中上述信號處理單元係於由對比度修正部預先設定之複數個條件下對上述荷電粒子束之圖像之對比度進行修正,將於該複數個條件下修正對比度後之上述荷電粒子束之圖像顯示於上述顯示單元之畫面,並將與於該畫面上所選擇之上述荷電粒子束之圖像對應之對比度修正條件設定為下次及其以後之對比度修正條件。 The pattern size measuring system using the charged particle beam of claim 1, wherein the signal processing unit corrects the contrast of the image of the charged particle beam under a plurality of conditions preset by the contrast correcting unit, and the plural is The image of the charged particle beam after correcting the contrast is displayed on the screen of the display unit, and the contrast correction condition corresponding to the image of the charged particle beam selected on the screen is set to be next time and Contrast correction conditions in the future. 一種利用荷電粒子束之圖案尺寸測量方法,其特徵在於:其係利用荷電粒子束測量形成於試樣上之包含孔或者槽之圖案之尺寸的方法,且包含如下步驟:對形成於試樣上之包含孔或者槽之圖案照射荷電粒子並進行 掃描而獲取上述包含孔或者槽之圖案之荷電粒子束之圖像,對該獲取之荷電粒子束之圖像進行處理而測量上述包含孔或者槽之圖案之尺寸,將該處理所得之結果顯示於畫面上;且測量上述包含孔或者槽之圖案之尺寸之步驟,係藉由如下方法測量上述包含孔或者槽之圖案之尺寸:於上述獲取之荷電粒子束之圖像中設定測量尺寸之上述包含孔或者槽之圖案之區域,對該設定之上述測量尺寸之包含孔或者槽之圖案之區域之荷電粒子束之圖像的對比度進行修正,且對該修正對比度後之圖像進行處理。 A method for measuring a pattern size using a charged particle beam, characterized in that it is a method for measuring a size of a pattern of a hole or a groove formed on a sample by using a charged particle beam, and comprising the steps of: forming on the sample a pattern comprising holes or grooves that illuminate the charged particles and perform Scanning to obtain an image of the charged particle beam including the pattern of holes or grooves, and processing the image of the charged particle beam to measure the size of the pattern including the hole or the groove, and displaying the result of the process on And measuring the size of the pattern including the hole or the groove by measuring the size of the pattern including the hole or the groove by setting the above-mentioned measurement size in the image of the charged particle beam obtained as described above The area of the pattern of holes or grooves is corrected for the contrast of the image of the charged particle beam in the region of the set measurement size including the pattern of holes or grooves, and the corrected image is processed. 如請求項7之利用荷電粒子束之圖案尺寸測量方法,其中對上述設定之圖案之區域之荷電粒子束之圖像的對比度進行修正之步驟,係以如下方式修正對比度:抽取上述所設定之上述測量尺寸之包含孔或者槽之圖案之區域之荷電粒子束之圖像中之上述孔或者槽圖案之內部區域,根據該抽取之孔或者槽圖案之內部區域算出區域內之亮度資訊,且可基於該算出之亮度資訊於上述顯示單元上視認上述荷電粒子束之圖像中之上述所抽取之孔或者槽圖案之像之邊緣。 The method for measuring a pattern size of a charged particle beam according to claim 7, wherein the step of correcting the contrast of the image of the charged particle beam in the region of the pattern set is modified in the following manner: extracting the above-mentioned settings Measuring the inner region of the hole or groove pattern in the image of the charged particle beam in the region including the pattern of the hole or the groove, and calculating the brightness information in the region according to the inner region of the extracted hole or groove pattern, and based on The calculated brightness information visualizes an edge of the image of the extracted hole or groove pattern in the image of the charged particle beam on the display unit. 如請求項7之利用荷電粒子束之圖案尺寸測量方法,其中於顯示在上述畫面之上述荷電粒子束之圖像上設定上述圖案之區域。 A method of measuring a pattern size of a charged particle beam according to claim 7, wherein the region of the pattern is set on an image of the charged particle beam displayed on the screen. 如請求項7之利用荷電粒子束之圖案尺寸測量方法,其中使用形成於上述試樣上之包含孔或者槽之圖案之設計資訊設定上述圖案之區域。 A method of measuring a pattern size of a charged particle beam according to claim 7, wherein the region of the pattern is set using design information of a pattern including a hole or a groove formed on the sample. 如請求項7之利用荷電粒子束之圖案尺寸測量方法,其中上述修正對比度之步驟包含如下步驟:將上述調整對比度後之上述荷 電粒子束之圖像顯示於上述畫面上,且於顯示有該荷電粒子束之圖像之畫面上設定對比度之調整量,基於該所設定之對比度之調整量重新調整上述荷電粒子束之圖像之對比度。 The method for measuring a pattern size of a charged particle beam according to claim 7, wherein the step of correcting the contrast comprises the step of: adjusting the contrast after the adjusting An image of the electric particle beam is displayed on the screen, and an adjustment amount of the contrast is set on a screen on which the image of the charged particle beam is displayed, and the image of the charged particle beam is readjusted based on the adjusted amount of contrast set. Contrast. 如請求項7之利用荷電粒子束之圖案尺寸測量方法,其中對上述設定之測量尺寸之包含孔或者槽之圖案之區域之荷電粒子束之圖像的對比度進行修正之步驟,係於預先設定之複數個條件下對上述荷電粒子束之圖像之對比度進行修正,將於該複數個條件下修正對比度後之上述荷電粒子束之複數個圖像顯示於上述顯示單元之畫面,並將與選自顯示於該畫面之複數個圖像中之圖像對應之對比度修正條件設定為下次及其以後之對比度修正條件。 The method for measuring a pattern size of a charged particle beam according to claim 7, wherein the step of correcting the contrast of the image of the charged particle beam including the area of the pattern of the hole or the groove of the set measurement size is set in advance. Correcting the contrast of the image of the charged particle beam under a plurality of conditions, and displaying a plurality of images of the charged particle beam after the contrast is corrected under the plurality of conditions on the screen of the display unit, and selecting and selecting The contrast correction condition corresponding to the image displayed in the plurality of images on the screen is set as the contrast correction condition for the next time and thereafter. 一種利用荷電粒子束之圖案尺寸測量方法,其特徵在於:其係利用荷電粒子束測量形成於試樣上之包含孔或者槽之圖案之尺寸的方法,且包含如下步驟:對形成於試樣上之包含孔或者槽之圖案照射荷電粒子並進行掃描而獲取上述包含孔或者槽之圖案之荷電粒子束之圖像,對該獲取之荷電粒子束之圖像進行處理而測量上述包含孔或者槽之圖案之尺寸,且將該處理所得之結果顯示於畫面上;且測量上述包含孔或者槽之圖案之尺寸之步驟係藉由如下方法測量上述包含孔或者槽之圖案之尺寸:將上述獲取之荷電粒子束之圖像與修正該圖像之對比度後之圖像顯示於畫面上,於該所顯示之畫面上對上述圖像之對比度之修正條件進行修改,且對在該修改後之修正條件下修正對比度後之圖像進行處理。 A method for measuring a pattern size using a charged particle beam, characterized in that it is a method for measuring a size of a pattern of a hole or a groove formed on a sample by using a charged particle beam, and comprising the steps of: forming on the sample The image comprising the hole or the groove illuminates the charged particle and scans to obtain an image of the charged particle beam including the pattern of the hole or the groove, and processes the image of the charged particle beam to measure the hole or the groove. The size of the pattern, and the result of the processing is displayed on the screen; and the step of measuring the size of the pattern including the hole or the groove is measured by measuring the size of the pattern including the hole or the groove by charging the above-mentioned obtained pattern The image of the particle beam and the image corrected by the contrast of the image are displayed on the screen, and the correction condition of the contrast of the image is modified on the displayed image, and under the modified condition Correct the image after contrast processing. 如請求項13之利用荷電粒子束之圖案尺寸測量方法,其中顯示於上述畫面上之上述所獲取之荷電粒子束之圖像與修正該圖像之對比度後之圖像係上述所獲取之包含孔或者槽之圖案之荷電粒子束之圖像中所指定之區域之圖像。 The method for measuring a pattern size of a charged particle beam according to claim 13, wherein the image of the charged particle beam obtained on the screen and the image obtained by correcting the contrast of the image are the holes included in the above-mentioned acquisition. Or an image of the area specified in the image of the charged particle beam of the pattern of grooves. 如請求項13之利用荷電粒子束之圖案尺寸測量方法,其中在上述所顯示之畫面上對上述圖像之對比度之修正條件進行修改之步驟,係以上述包含孔或者槽之圖案之圖像中之上述孔或者槽圖案之邊緣與該上述孔或者槽圖案之周圍之對比度變高之方式修改對比度之修正條件。 The method for measuring a pattern size of a charged particle beam according to claim 13, wherein the step of modifying the contrast condition of the contrast of the image on the displayed image is in the image including the pattern of the hole or the groove The contrast correction condition is modified in such a manner that the edge of the hole or groove pattern and the contrast around the hole or groove pattern become higher.
TW104114801A 2014-05-27 2015-05-08 Method and system of pattern dimension measurement using charged particle beam TW201544791A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014109302 2014-05-27

Publications (1)

Publication Number Publication Date
TW201544791A true TW201544791A (en) 2015-12-01

Family

ID=54698566

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104114801A TW201544791A (en) 2014-05-27 2015-05-08 Method and system of pattern dimension measurement using charged particle beam

Country Status (2)

Country Link
TW (1) TW201544791A (en)
WO (1) WO2015182224A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI744644B (en) * 2018-06-06 2021-11-01 日商日立全球先端科技股份有限公司 Pattern measuring method, pattern measuring tool, and computer readable medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10984980B2 (en) 2016-01-29 2021-04-20 Hitachi High-Tech Corporation Charged particle beam device for imaging vias inside trenches

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2824328B2 (en) * 1990-10-09 1998-11-11 日本電子株式会社 Scanning electron microscope
JPH0696711A (en) * 1992-09-14 1994-04-08 Jeol Ltd Display method for image of scanning electron microscope
JP5202071B2 (en) * 2008-03-31 2013-06-05 株式会社日立ハイテクノロジーズ Charged particle microscope apparatus and image processing method using the same
JP5380230B2 (en) * 2009-09-30 2014-01-08 株式会社日立ハイテクノロジーズ Charged particle microscope apparatus and sample inspection method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI744644B (en) * 2018-06-06 2021-11-01 日商日立全球先端科技股份有限公司 Pattern measuring method, pattern measuring tool, and computer readable medium

Also Published As

Publication number Publication date
WO2015182224A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
US10976536B2 (en) Image-forming device, and dimension measurement device
US7626163B2 (en) Defect review method and device for semiconductor device
US7932493B2 (en) Method and system for observing a specimen using a scanning electron microscope
US10229812B2 (en) Sample observation method and sample observation device
JP5313939B2 (en) Pattern inspection method, pattern inspection program, electronic device inspection system
TWI494537B (en) A pattern measuring method, a device condition setting method of a charged particle beam device, and a charged particle beam device
JP5529965B2 (en) Pattern matching template creation method and image processing apparatus
KR101987726B1 (en) Electron-beam pattern inspection system
US20110233400A1 (en) Pattern measurement apparatus and pattern measurement method
JP2009037939A (en) Scanning electron microscope
US8263935B2 (en) Charged particle beam apparatus
JP2006023178A (en) 3-dimensional measuring method and device
JP2011174858A (en) Defect detection method and semiconductor device manufacturing method
TW201544791A (en) Method and system of pattern dimension measurement using charged particle beam
JP5439106B2 (en) Pattern shape evaluation apparatus and method using scanning charged particle microscope
JP5379571B2 (en) Pattern inspection apparatus and pattern inspection method
US9831062B2 (en) Method for pattern measurement, method for setting device parameters of charged particle radiation device, and charged particle radiation device
KR20180095019A (en) Charged particle beam device
TW201939565A (en) Charged-particle beam device and cross-sectional shape estimation program
US20110249108A1 (en) Mask inspection apparatus and mask inspection method