WO2015182152A1 - 乗用車用空気入りラジアルタイヤ - Google Patents

乗用車用空気入りラジアルタイヤ Download PDF

Info

Publication number
WO2015182152A1
WO2015182152A1 PCT/JP2015/002710 JP2015002710W WO2015182152A1 WO 2015182152 A1 WO2015182152 A1 WO 2015182152A1 JP 2015002710 W JP2015002710 W JP 2015002710W WO 2015182152 A1 WO2015182152 A1 WO 2015182152A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
rubber
tread
width
width direction
Prior art date
Application number
PCT/JP2015/002710
Other languages
English (en)
French (fr)
Inventor
慎太郎 畠中
勲 桑山
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2016523163A priority Critical patent/JP6581574B2/ja
Priority to US15/314,728 priority patent/US20170197465A1/en
Priority to CN201580028912.2A priority patent/CN106457915B/zh
Priority to EP15798673.8A priority patent/EP3130479B1/en
Publication of WO2015182152A1 publication Critical patent/WO2015182152A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C3/00Tyres characterised by the transverse section
    • B60C3/04Tyres characterised by the transverse section characterised by the relative dimensions of the section, e.g. low profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0041Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • B60C17/0009Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor comprising sidewall rubber inserts, e.g. crescent shaped inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • B60C2011/0025Modulus or tan delta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/01Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered
    • B60C2011/016Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered different rubber for tread wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • B60C17/0009Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor comprising sidewall rubber inserts, e.g. crescent shaped inserts
    • B60C2017/0054Physical properties or dimensions of the inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/04Tyres specially adapted for particular applications for road vehicles, e.g. passenger cars
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a pneumatic radial tire for passenger cars.
  • Patent Document 1 Conventional vehicles up to about 1960 used a bias tire with a light weight and a low cruising speed required for the vehicle, so the burden on the tire was light and the cross-sectional width of the tire was narrow. With increasing weight and speed of vehicles, radial and wide tires are being promoted (for example, Patent Document 1).
  • the applicant of the present invention has a specific relationship between the tire internal pressure, the cross-sectional width (SW), and the tire outer diameter (OD).
  • a technology related to a pneumatic radial tire for passenger cars having a large tire outer diameter) is proposed (for example, Patent Document 2).
  • wet performance is an index relating to braking performance on a wet road surface.
  • an object of the present invention is to provide a pneumatic radial tire for a passenger car that has improved wet performance and rolling resistance performance in a radial tire having a narrow width and a large diameter.
  • a pneumatic radial tire for a passenger car includes a carcass made of a carcass ply of a radial arrangement cord straddling a toroidal shape between a pair of bead parts, and a tread rubber provided on the outer side in the tire radial direction of the carcass to form a tread tread surface
  • a pneumatic radial tire for a passenger car that is located on the outer side in the tire width direction of the tread rubber and forms a buttress portion, when the tire is incorporated in a rim and the internal pressure is 250 kPa or more
  • the cross-sectional width SW of the tire is less than 165 (mm)
  • the ratio SW / OD of the cross-sectional width SW of the tire to the outer diameter OD (mm) is 0.26 or less
  • the cross-section of the tire When the width SW is 165 (mm) or more, the cross-sectional width SW and the outer diameter OD (mm) of the tire are represented by the relational expression: 2.135 ⁇ SW +
  • the loss tangent tan ⁇ of the tread rubber at 60 ° C. is 0.05 to 0. .15
  • the dynamic storage elastic modulus E ′ at 30 ° C. of the buttress rubber is 1 ⁇ 2 or less of the dynamic storage elastic modulus E ′ of the tread rubber
  • the buttress rubber has a 60 ° C.
  • the loss tangent tan ⁇ at is 0.1 or less.
  • the sectional width SW and the outer diameter OD of the tire are the same as the sectional width and outer diameter specified in JIS D 4202-1994, respectively, when the tire is mounted on a rim and the inner pressure is 250 kPa or more.
  • rim is an industrial standard effective for the area where tires are produced and used.
  • JATMA Japanese Automobile Tire Association
  • JATMA YEAR BOOK and in Europe, ETRTO (The European Tire and RIM Technical Organization's STANDARDDS MANUAL, TRA (The Tile and Rim Association, Inc.) YEAR BOOK, etc.
  • rims in applicable sizes include the sizes described as “FUTURE DEVELOPMENTS” in the 2013 edition of ETRTO.) are described in the industrial standards. In the case of a size having no, it means a rim having a width corresponding to the tire bead width.
  • dynamic storage elastic modulus E ′ MPa and loss tangent tan ⁇ (ratio of dynamic loss elastic modulus (E ′′) and dynamic storage elastic modulus (E ′) (E ′′ / E ′)) ) Is a value obtained by applying an initial load of 160 g to a test piece having a thickness of 2 mm, a width of 5 mm, and a length of 20 mm, and an initial strain of 1% and a frequency of 50 Hz.
  • the dynamic storage elastic modulus E ′ is a value measured at a temperature of 30 ° C. unless otherwise specified (hereinafter, the dynamic storage elastic modulus E ′ at 30 ° C. may be simply referred to as “E ′”).
  • the loss tangent tan ⁇ is a value measured at a temperature of 60 ° C. unless otherwise specified (hereinafter, the loss tangent tan ⁇ at 60 ° C. may be simply referred to as “tan ⁇ ”).
  • the buttress portion is a virtual line extending in the tire radial direction through the tread contact end in the tire width direction cross-sectional view, and a peripheral length from the tread contact end to the tire surface position corresponding to the tire cross-sectional width SW. It refers to a tire portion that is sandwiched between imaginary lines that extend in the tire width direction through the tire surface position that is half the length.
  • the tread ground contact edge is the outermost position of the tread surface in the tread width direction.
  • tread surface is a tire that is incorporated in the rim and applied with an internal pressure of 250 kPa or more and has a maximum load capacity of 75.
  • tread rubber and buttress rubber mean rubber that does not include members such as a belt and a carcass optionally included in the tread portion and buttress portion.
  • the buttress rubber has the desired dynamic storage elastic modulus E ′ at 30 ° C. and the desired loss tangent tan ⁇ at 60 ° C. in the cross-sectional view in the tire width direction.
  • the rubber sandwiched between the tire radial inner end and the imaginary line extending in the tire radial direction through the tire surface position moved by 10 mm from the tread contact edge to the outer side in the tire width direction is at least a desired E ′ and It means tan ⁇ .
  • the dynamic storage elastic modulus E ′ of the tread rubber at 30 ° C. is 7.9 to 11.0 MPa, and the dynamic storage of the buttress rubber at 30 ° C.
  • the elastic modulus E ′ is preferably 3 MPa or less. According to this configuration, wet performance and rolling resistance performance can be further improved.
  • FIG. 1 is a tire width direction sectional view showing a pneumatic radial tire for a passenger car according to a first embodiment of the present invention.
  • A It is a figure for demonstrating the wet performance of a wide radial tire
  • b It is a figure for demonstrating the wet performance of a radial radial tire.
  • It is a schematic development view showing a first example of a tread pattern.
  • It is a schematic expanded view which shows the 2nd example of a tread pattern.
  • It is a schematic expanded view which shows the 3rd example of a tread pattern.
  • tire 1 a pneumatic radial tire for passenger cars (hereinafter, also simply referred to as “tire”) 1 according to a first embodiment of the present invention will be described in detail with reference to the drawings.
  • tire also simply referred to as “tire”
  • the following description and drawing are examples for demonstrating the tire 1 which concerns on this invention, and this invention is not limited to the form shown and illustrated at all.
  • the tire 1 according to the first embodiment of the present invention includes, for example, a carcass 3 composed of a carcass ply of a radial arrangement cord straddling a toroidal shape between a pair of bead portions 2 as shown in a cross-sectional view in the tire width direction of FIG. And a tread rubber 41 provided on the outer side in the tire radial direction of the carcass 3, and a buttress rubber 51 which is located on the outer side in the tire width direction of the tread rubber 41 and forms the buttress portion 5.
  • the tire 1 includes a tread portion 4, a pair of buttress portions 5 extending continuously to the side portions of the tread portion 4, and a pair of sides extending radially inward from the buttress portions 5.
  • a wall portion 6 and a bead portion 2 continuous to the inner end in the tire radial direction of each sidewall portion 6 are provided.
  • the tire 1 includes a carcass 3 composed of one or more (one in the illustrated example) carcass plies that extend in a toroidal shape from one bead portion 2 to the other bead portion 2, and a tread portion.
  • a belt 7 composed of one or more layers (three layers in the illustrated example) that reinforce the belt 4.
  • the tread tread surface T can be provided with a circumferential main groove 8 continuously extending in the tire circumferential direction.
  • the two circumferential main grooves 8 are provided.
  • Three rib-shaped land portions are formed on the tread surface T.
  • the circumferential main groove 8 is not an essential configuration.
  • the buttress portion 5 is located on the outer surface side of the tire from the carcass 3, more specifically, on the outer surface side of the tire from the carcass 3 and the belt 7, adjacent to the outer side in the tire width direction of the tread rubber 41.
  • a rubber 51 is provided.
  • the buttress portion 5 specifically includes a virtual line Le that extends in the tire radial direction through the tread ground end E and a cross section width SW of the tire 1 from the tread ground end E in the tire width direction cross-sectional view. This is a tire portion that is sandwiched between a virtual line Lh that extends in the tire width direction through the tire surface position that is half the length of the peripheral length to the position.
  • the cross-sectional width SW of the tire 1 when the tire 1 is incorporated in the rim and the internal pressure is 250 kPa or more and the cross-sectional width SW of the tire 1 is less than 165 (mm), the cross-sectional width SW of the tire 1 and the outer diameter
  • the ratio SW / OD with respect to OD (mm) is 0.26 or less and the sectional width SW of the tire 1 is 165 (mm) or more
  • the sectional width SW and the outer diameter OD (mm) of the tire 1 are Relational expression, 2.135 ⁇ SW + 282.3 ⁇ OD (Hereinafter also referred to as satisfying relational expression (1)).
  • the tire 1 Since the tire 1 has the above-described relationship, the tire 1 has a narrow shape and a large diameter, can improve the rolling resistance performance of the tire 1 (reduce the rolling resistance value), and can reduce the weight of the tire 1. .
  • the internal pressure of the tire 1 is preferably 250 kPa or more, and more preferably 250 to 350 kPa.
  • the contact length tends to increase, but by increasing the contact length to 250 kPa or more, the increase in the contact length is suppressed, the deformation amount of the tread rubber is reduced, and the rolling resistance is further reduced. Because it can.
  • the cross-sectional width SW and the outer diameter OD of the tire 1 are ⁇ 0.0187. It is preferable that ⁇ SW 2 + 9.15 ⁇ SW ⁇ 380 ⁇ OD (hereinafter, this equation is also referred to as a relational expression (2)).
  • the belt 7 can be constituted by an arbitrary number of belt layers of one or more layers.
  • the belt cords are sequentially arranged in the tire radial direction with respect to the tire circumferential direction on the outer side in the tire radial direction of the carcass 3.
  • the belt is composed of two layers of inclined belt layers 71 and 72 that are inclined in the opposite direction and intersect with each other, and one belt reinforcing layer 73 in which the belt cord extends along the tire circumferential direction.
  • the two inclined belt layers 71 and 72 are inclined at an angle of 35 ° or more with respect to the tire circumferential direction, respectively, and the inclined belt layer 71 on the inner side in the tire radial direction is the outer inclined belt layer 72. Wider than.
  • the single belt reinforcing layer 73 has a width that covers the inclined belt layers 71 and 72.
  • the inclined belt layers 71 and 72 are inclined by 35 ° or more with respect to the tire circumferential direction, the rolling resistance performance and the cornering power during cornering in the tire 1 in which the cross-sectional width SW and the outer diameter OD of the tire 1 are in the above-described ranges. Can be improved.
  • the dynamic storage elastic modulus E ′ of the tread rubber 41 at 30 ° C. is 6.0 to 12.0 MPa.
  • the friction coefficient ⁇ in the wet state can be improved, so that the wet performance is improved. be able to.
  • the dynamic storage elastic modulus E ′ it is possible to improve cornering power during cornering and improve steering stability.
  • the dynamic storage elastic modulus E ′ is preferably 7.9 to 12.0 MPa, and more preferably 8.0 to 11.0 MPa.
  • the loss tangent tan ⁇ at 60 ° C. of the tread rubber 41 is 0.05 to 0.15. Thereby, rolling resistance performance can be improved.
  • the tire 1 since the tire 1 includes the tread rubber 41 as described above, the wet performance and the rolling resistance performance can be improved, but further improvement of the wet performance and the rolling resistance performance has been demanded. Therefore, in the tire 1, the dynamic storage elastic modulus E ′ at 30 ° C. of the buttress rubber 51 is set to 1 ⁇ 2 or less of the dynamic storage elastic modulus E ′ of the tread rubber 41, and the 60 The loss tangent tan ⁇ at 0 ° C. is set to 0.1 or less.
  • the rolling resistance performance of the tire 1 can be improved. Specifically, when the tire 1 rolls, the buttress rubber 51 adjacent to the ground contact surface of the tire 1 is bent and distorted, so that the rolling resistance value obtained by the product of the rubber distortion and the rubber rigidity is obtained. Had an influence. In particular, since the tire 1 has a narrow and large-diameter shape, strain energy loss due to wiping when the tire 1 is in contact tends to be large.
  • the E ′ and tan ⁇ of the buttress rubber 51 are outside the above ranges, for example, the buttress rubber 51 Compared to the case where the rubber has the same physical properties as the tread rubber 41, the rigidity of the buttress rubber 51 is reduced, so that the rolling resistance value can be reduced (that is, the rolling resistance performance can be improved).
  • the wiping is a road surface when the tire 1 is grounded due to a difference between the tire width direction length of the tread tread surface T and the tire width direction length of the belt 7 of the tread portion 4 in a cross-sectional view in the tire width direction. This is because the tread rubber 41 that is in contact with the ground is pulled by the belt together with the buttress rubber 51 to cause shear strain in the tire width direction inside.
  • the dynamic storage elastic modulus E ′ of the buttress rubber 51 is more than half of the dynamic storage elastic modulus E ′ of the tread rubber 41, and the loss tangent tan ⁇ of the buttress rubber 51 is 0.1 or less. In some cases, the hysteresis loss due to the viscoelasticity of the rubber is small, but the strain energy (strain ⁇ stress) of the buttress rubber 51 is large and the strain energy loss is large, so that the rolling resistance value cannot be reduced. Further, the dynamic storage elastic modulus E ′ of the buttress rubber 51 is less than or equal to 1 ⁇ 2 of the dynamic storage elastic modulus E ′ of the tread rubber 41, and the loss tangent tan ⁇ of the buttress rubber 51 is more than 0.1.
  • the strain energy (strain ⁇ stress) of the buttress rubber 51 is small, but the hysteresis loss due to the viscoelasticity of the rubber is large and the strain energy loss is large, so that the rolling resistance value cannot be reduced.
  • the dynamic storage elastic modulus E ′ of the buttress rubber 51 is defined with respect to the dynamic storage elastic modulus E ′ of the tread rubber 41. The higher the dynamic storage elastic modulus E ′ of the tread rubber 41, the greater the strain energy. This is because, although (strain ⁇ stress) is small, but the buttress rubber 51 has higher strain energy (strain ⁇ stress) as the dynamic storage elastic modulus E ′ increases.
  • the dynamic storage elastic modulus E ′ at 30 ° C. of the tread rubber 41 is 7.9 to 11.0 MPa
  • the dynamic storage elastic modulus E ′ at 30 ° C. of the buttress rubber 51 is 3 MPa or less. Is preferred.
  • wet performance and rolling resistance performance can be further improved.
  • the dynamic storage elastic modulus E ′ of the tread rubber 41 is set within the above range.
  • the friction coefficient ⁇ at the time of wet is improved to improve the wet performance
  • the cornering power is improved to improve the steering stability.
  • the dynamic storage elastic modulus E ′ of the buttress rubber 51 is set to 3 MPa or less. The strain energy loss of the buttress rubber 51 can be reduced.
  • the buttress rubber 51 forming the buttress portion 5 as a whole has the dynamic storage elastic modulus E ′ and the loss tangent tan ⁇ within the predetermined ranges described above.
  • the imaginary line Le extending in the tire radial direction through the tread grounding end E and the tire moved from the tread grounding end E to the outer side in the tire width direction by 10 mm in peripheral length The rubber sandwiched between the virtual line Le ′ extending in the tire radial direction through the surface position may be out of the range of E ′ and tan ⁇ .
  • the rubber sandwiched between the inner end in the tire radial direction (imaginary line Lh) of the buttress portion 5 and the imaginary line Le ′ is at least E ′ and tan ⁇ within the predetermined range. I just need it.
  • the rubber sandwiched between the virtual line Le and the virtual line Le ′ can have, for example, a dynamic storage elastic modulus E ′ and a loss tangent tan ⁇ similar to those of the tread rubber 41. . In such a case, the rolling resistance performance can be further improved.
  • the buttress rubber 51 can be configured by a rubber member that is separate from the side wall rubber that forms the side wall portion 6, or can be configured integrally by the same rubber member.
  • the two inclined belt layers 71 and 72 are inclined at an angle of 35 ° or more with respect to the tire circumferential direction.
  • the buttress portion 5 is likely to be distorted as compared to the inclination of less than 35 °. Therefore, the buttress rubber 51 of the tire 1 having the belt layer inclined to 35 ° or more is described above. It is particularly effective to set the dynamic storage elastic modulus E ′ and the loss tangent tan ⁇ in the range of
  • the tread rubber 41 and the buttress rubber 51 are optionally made of conventionally known fillers, anti-aging agents, vulcanizing agents, vulcanization accelerators, process oils, scorch preventing agents, zinc, in addition to conventionally known rubber components. It can be formed by kneading and vulcanizing a rubber composition containing flower, stearic acid and the like according to a conventional method.
  • the kneading conditions are not particularly limited, and using a Banbury mixer, roll, internal mixer, etc., depending on the compounding formulation, the input volume to the kneading apparatus, etc., the rotational speed of the rotor, ram pressure, kneading temperature, as appropriate.
  • the kneading time may be adjusted.
  • the vulcanization temperature can be set to 100 to 190 ° C., for example.
  • the vulcanization time can be, for example, 5 to 80 minutes.
  • Examples of the rubber components of the tread rubber 41 and the buttress rubber 51 include modified or unmodified styrene-butadiene copolymer rubber (SBR), butadiene rubber (BR), polyisoprene rubber (IR), and isobutylene isoprene rubber (IIR). ), Halogenated butyl rubber, styrene-isoprene copolymer rubber (SIR), synthetic rubber such as chloroprene rubber (CR), and natural rubber (NR).
  • SBR styrene-butadiene copolymer rubber
  • BR butadiene rubber
  • IR polyisoprene rubber
  • IIR isobutylene isoprene rubber
  • SBR styrene-butadiene copolymer rubber
  • BR
  • conjugated diene polymer A method in which a modifier is reacted with the active terminal and a condensation reaction involving the modifier in the presence of a titanium-based condensation accelerator can be used.
  • a preferred example of the conjugated diene polymer is a copolymer of 1,3-butadiene and styrene.
  • the modifier include N, N-bis (trimethylsilyl) aminopropylmethyldimethoxysilane, N, N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane, 1-trimethylsilyl-2-ethoxy-2-methyl-1- Aza-2-silacyclopentane is preferred.
  • titanium condensation accelerators examples include tetrakis (2-ethyl-1,3-hexanediolato) titanium, tetrakis (2-ethylhexoxy) titanium, titanium di-n-butoxide (bis-2,4-pentanedionate).
  • titanium condensation accelerators include tetrakis (2-ethyl-1,3-hexanediolato) titanium, tetrakis (2-ethylhexoxy) titanium, titanium di-n-butoxide (bis-2,4-pentanedionate).
  • filler examples include conventionally known carbon black, silica, calcium carbonate, talc, and clay. You may use said filler individually by 1 type or in combination of 2 or more types.
  • the rubber composition forming the tread rubber 41 includes at least a rubber component and a filler.
  • the filler includes 50 to 100 parts by mass with respect to 100 parts by mass of the rubber component. It is preferable that Thereby, there exists an advantage that it is excellent in abrasion resistance and workability.
  • the filler is more preferably contained in an amount of 55 to 85 parts by mass, further preferably 75 to 85 parts by mass with respect to 100 parts by mass of the rubber component. More preferably, the filler is contained in an amount of 50 to 90 parts by mass with respect to 100 parts by mass of the diene polymer (diene rubber).
  • the filler of the tread rubber 41 preferably contains silica, and the silica is preferably contained in an amount of 25 to 100 parts by mass with respect to 100 parts by mass of the rubber component.
  • the silica is more preferably contained in an amount of 50 to 75 parts by mass, and more preferably 60 to 75 parts by mass with respect to 100 parts by mass of the rubber component.
  • the silica may be treated with a silane coupling agent.
  • the modified S-SBR is 20 to 70 phr.
  • the silica may be appropriately changed within the range of 30 to 80 phr in the range of 50 to 80 phr of the filler.
  • the blend is 100 phr of diene polymer
  • the NR is in the range of 0 to 20 phr
  • the modified S-SBR The silica may be appropriately changed within the range of 20 to 70 phr and the silica within the range of 30 to 80 phr among the fillers of 50 to 80 phr.
  • “Phr” refers to the amount (parts by mass) of various components based on 100 parts by mass of the rubber component.
  • the tire size of the pneumatic radial tire for passenger cars of the present invention is specifically 105 / 50R16, 115 / 50R17, 125 / 55R20, 125 / 60R18, 125 / 65R19, 135 / 45R21, 135 / 55R20, 135 / 60R17, 135 / 60R18, 135 / 60R19, 135 / 65R19, 145 / 45R21, 145 / 55R20, 145 / 60R16, 145 / 60R17, 145 / 60R18, 145 / 60R19, 145 / 65R19, 155 / 45R18, 155 / 45R21, 155 / 55R18, 155 / 55R19, 155 / 55R21, 155 / 60R17, 155 / 65R13, 155 / 65R18, 155 / 70R17, 155 / 70R19, 165 / 45R22, 165
  • the groove volume ratio (groove volume V2 / tread rubber volume V1) is preferably 20% or less, and the negative ratio (ratio of groove area to tread tread area) is 20% or less. It is preferable. These values are lower than the standard values for conventional size pneumatic radial tires for passenger cars. In order to improve the wet performance, it is a general idea to increase the groove amount. However, a pneumatic radial for a passenger car having a narrow and large diameter that satisfies the above relational expression (1) and / or (2).
  • the groove volume ratio is, for example, the tire diameter at the center in the tire width direction at the inner side in the tire width direction from the both ends in the width direction of the maximum width belt layer having the maximum width in the tire width direction of the belt layer.
  • the ratio is defined as V2 / V1. Is done.
  • the pattern is mainly a rib-like land portion that is partitioned by the end E in the tire width direction.
  • the rib-shaped land portion refers to a land portion extending in the tire circumferential direction without having a width-direction groove traversing in the tire width direction, and the rib-shaped land portion is a width-direction groove terminating in the sipe or the rib-shaped land portion. May have.
  • various performances can be improved by providing the sipe 100 on the tread surface.
  • a one-sided open sipe 100 in which one end of both ends of the sipe is opened in the groove and the other end is terminated in the land portion.
  • the circumferential shear rigidity can be increased in comparison with the case of the both-end opening sipe, so that the effect of improving the wet performance by improving the circumferential shear rigidity is obtained. Because it can.
  • the one-side opening sipe 100 in combination with a pattern mainly composed of rib-like land portions.
  • the circumferential sipe 110 and / or the small holes 111 are provided. It is preferable to provide it.
  • the circumferential shear rigidity is increased and drainage is promoted.
  • the actual contact area between the tire and the road surface is reduced, which may be a factor for depressing the wet performance. Therefore, by using the circumferential sipe 110 and / or the small holes 111 that reduce the compression rigidity of the rubber, it is possible to reduce the compression rigidity of the rubber and increase the actual contact area.
  • the circumferential direction sipe 110 and / or the small holes 111 have a sufficiently small effect of reducing the circumferential shear rigidity, the effect of improving the wet performance due to the improvement of the circumferential shear rigidity can be maintained.
  • a negative rate is obtained between the tire width direction half of the vehicle mounting inner side and the vehicle mounting outer side with the tire equator plane CL as a boundary. A difference may be provided.
  • a pattern having a width direction groove 120 extending in the tire width direction from the vicinity of the tire equatorial plane CL to the tread ground contact end E may be used. May not be included. According to such a pattern mainly composed of the width direction groove 120, it is possible to effectively exhibit the performance on snow.
  • the shoulder rib-shaped land portions that are separated by the outermost circumferential main groove in the tire width direction and the tread contact end E.
  • the width in the tire width direction of the shoulder rib-shaped land portion on the vehicle mounting outside and inside can be changed.
  • the width in the tire width direction of the shoulder rib-shaped land portion outside the vehicle mounting is larger than the width in the tire width direction of the shoulder rib-shaped land portion inside the vehicle mounting.
  • the buckling is suppressed and the cornering power is improved.
  • the tire is mounted on the vehicle, it is preferable to provide an end opening groove extending from the circumferential main groove to the vehicle mounting inner side.
  • the tread surface with the tire equatorial plane CL as a boundary is adjacent to the tread ground contact E and in the tread width direction with the tread ground contact E.
  • a tread ground end side land portion having a tread end side main groove 130 extending in the tread circumferential direction and having a distance of 25% or more of the tread width TW and defined by the tread end side main groove 130 and the tread ground end E.
  • At least one end opening groove 132 extending in the tread width direction from the tread ground end side main groove 130 and staying in the adjacent land portion 131 is provided in one of the land portions 131 adjacent to the land portion 131.
  • 6 is a shallow groove having a groove depth smaller than that of the main groove.
  • a pneumatic radial tire for a passenger car having a narrow width and large diameter that satisfies the above relational expression (1) and / or (2), it receives a compressive stress on the outside of the vehicle and receives a tensile stress on the inside of the vehicle.
  • the tread rubber is deformed by these stresses, the belt is deformed, and the ground contact surface is lifted.
  • the one end opening groove 132 since there is one end opening groove 132 extending in the tread width direction from the tread grounding end side main groove 130 and staying in the land portion 131, the one end opening groove 132 is closed by the compressive stress on the vehicle mounting outside in the land portion. Therefore, as compared with the case where the one-end opening groove 132 is not provided or the one-end opening groove 132 does not extend to the outside of the vehicle, deformation of the tread and the belt due to compressive stress is suppressed. Furthermore, since the one end opening groove 132 stays in the land portion, the rigidity against the tensile stress inside the vehicle mounting becomes higher compared to the case where the one end opening groove 132 extends to the vehicle mounting inner side. Belt deformation is suppressed.
  • the tire radial direction of the straight line m1 and the straight line m2 is a straight line passing through the point P on the tread surface on the equator plane CL and parallel to the tire width direction as m1, and a straight line passing through the ground contact E 'and parallel to the tire width direction as m2.
  • the “grounding end E ′” refers to each vehicle on which a tire is mounted on a rim, filled with a maximum air pressure specified for each vehicle on which the tire is mounted, and placed vertically on a flat plate. It refers to both end points in the tire width direction on the contact surface with the flat plate when a weight corresponding to the specified maximum load is applied.
  • the tread rubber may be formed by laminating a plurality of different rubber layers in the tire radial direction.
  • the plurality of rubber layers those having different tangent loss, modulus, hardness, glass transition temperature, material and the like can be used.
  • the ratio of the thickness in the tire radial direction of the plurality of rubber layers may be changed in the tire width direction, or only the circumferential main groove bottom or the like may be a rubber layer different from the periphery thereof.
  • the tread rubber may be formed of a plurality of rubber layers different in the tire width direction.
  • the plurality of rubber layers those having different tangent loss, modulus, hardness, glass transition temperature, material and the like can be used.
  • the dynamic storage elastic modulus E ′ of the tread rubber at 30 ° C.” and “the loss tangent tan ⁇ of the tread rubber at 60 ° C.” The value obtained by adding the dynamic storage elastic modulus E ′ and loss tangent tan ⁇ of each rubber layer to the tire width direction length of the rubber layer and dividing the sum by the tire width direction length of the entire rubber layer.
  • the tire of the present invention preferably has an inclined belt layer composed of a rubberized layer of cords extending incline with respect to the tire circumferential direction.
  • the inclined belt layer may be only one layer.
  • the shape of the ground contact surface during turning tends to be distorted.
  • an inclined belt layer extending in a direction in which the cords cross each other between two or more layers.
  • a belt structure in which two belt layers form an inclined belt layer is most preferable.
  • the width in the tire width direction of the maximum width inclined belt layer having the largest width in the tire width direction is preferably 90% to 115% of the tread width TW, and is 100% to 105% of the tread width TW. It is particularly preferred.
  • a metal cord particularly a steel cord is most commonly used as the belt cord of the inclined belt layer, but an organic fiber cord can also be used.
  • the steel cord is mainly composed of steel and can contain various trace contents such as carbon, manganese, silicon, phosphorus, sulfur, copper, and chromium.
  • a monofilament cord or a cord obtained by twisting a plurality of filaments can be used as the belt cord of the inclined belt layer.
  • Various designs can be adopted for the twist structure, and various cross-sectional structures, twist pitches, twist directions, and distances between adjacent filaments can be used.
  • the cord which twisted the filament of a different material can also be used, and it does not specifically limit as a cross-sectional structure, Various twisted structures, such as a single twist, a layer twist, a double twist, can be taken.
  • the inclination angle of the belt cord of the inclined belt layer is preferably 10 ° or more with respect to the tire circumferential direction.
  • the inclination angle of the belt cord of the inclined belt layer is preferably set to a high angle, specifically 35 ° or more with respect to the tire circumferential direction, and particularly within a range of 55 ° to 85 ° with respect to the tire circumferential direction. .
  • This is because by setting the inclination angle to 35 ° or more, the rigidity in the tire width direction can be increased, and in particular, the steering stability performance during cornering can be improved.
  • the rolling resistance performance can be improved by reducing the shear deformation of the interlayer rubber.
  • the tire of the present invention can have a circumferential belt composed of one or more circumferential belt layers outside the inclined belt layer in the tire radial direction.
  • the circumferential belt has a tire circumferential rigidity per unit width of the central region C including the tire equatorial plane CL, and other regions. It is preferably higher than the tire circumferential rigidity per unit width.
  • FIG. 8 schematically shows an example of a belt structure, in which circumferential belt layers 143 and 144 are laminated on the outer side in the tire radial direction of the inclined belt layers 141 and 142, and in the central region C, the circumferential belt layers 143 and 144 overlap each other in the tire radial direction.
  • the tire circumferential rigidity per unit width of the central region C is determined as a unit of other regions. It can be higher than the tire circumferential rigidity per width.
  • the tread in a tire having increased rigidity in the tire circumferential direction in the central region including the tire equatorial plane CL, the tread has a land portion continuous in the tire circumferential direction in the region including at least the tire equatorial plane CL of the tread surface. It is preferable to have. If the circumferential main groove is disposed on or near the tire equator plane CL, the rigidity of the tread in the region may be reduced, and the contact length in the land portion defining the circumferential main groove may be extremely short. Therefore, it is preferable to dispose land portions (rib-shaped land portions) continuous in the tire circumferential direction over a certain region including the tire equatorial plane CL from the viewpoint of improving noise performance without reducing cornering power.
  • FIG. 9 schematically shows another example of the belt structure, in which one circumferential belt layer 153 is laminated on the outer side in the tire radial direction of the two inclined belt layers 151 and 152.
  • the inclined belt layer is inclined in two layers having different widths in the tire width direction.
  • the inclination angle ⁇ 1 with respect to the tire circumferential direction of the cord that includes at least the belt layer and forms the widest inclined belt layer, and the inclination angle ⁇ 2 with respect to the tire circumferential direction of the cord that forms the narrowest inclined belt layer are 35 ° ⁇ ⁇ 1 It is preferable that ⁇ 85 °, 10 ° ⁇ ⁇ 2 ⁇ 30 °, and ⁇ 1> ⁇ 2 are satisfied.
  • Many tires having an inclined belt layer having a belt cord inclined at an angle of 35 ° or more with respect to the tire circumferential direction have first, second and third vibration modes in the cross-sectional direction in a high frequency range of 400 Hz to 2 kHz.
  • the tread surface Since the tread surface has a shape that vibrates greatly uniformly, a large radiated sound is generated. Therefore, if the tire circumferential direction rigidity of the tread tire width direction central region is locally increased, the tread tire width direction central region becomes difficult to spread in the tire circumferential direction, and the spread of the tread surface in the tire circumferential direction is suppressed. As a result, radiated sound can be reduced.
  • FIG. 10 schematically shows another example of the belt structure, in which one circumferential belt layer 163 is laminated on the outer side in the tire radial direction of the two inclined belt layers 161 and 162.
  • the circumferential belt layer is preferably highly rigid, and more specifically, the tire circumference.
  • the contact surface tends to have a substantially triangular shape, that is, a shape in which the contact length in the circumferential direction varies greatly depending on the position in the tire width direction.
  • a highly rigid circumferential belt layer by using a highly rigid circumferential belt layer, the ring rigidity of the tire is improved, and deformation in the tire circumferential direction is suppressed. Deformation is also suppressed, and the ground contact shape is less likely to change.
  • the eccentric rigidity is promoted by improving the ring rigidity, and the rolling resistance is simultaneously improved. The effect of improving the rolling resistance is particularly large in a pneumatic radial tire for a passenger car having a narrow width and a large diameter that satisfies the above relational expressions (1) and / or (2).
  • the inclination angle of the inclined belt layer with respect to the tire circumferential direction of the belt cord is a high angle, specifically 35 ° or more.
  • the contact length may be reduced depending on the tire due to the increased rigidity in the tire circumferential direction. Therefore, by using a high-angle inclined belt layer, it is possible to reduce the out-of-plane bending rigidity in the tire circumferential direction, increase the elongation in the tire circumferential direction of the rubber when the tread surface is deformed, and suppress the decrease in the contact length. it can.
  • a wavy cord may be used for the circumferential belt layer in order to increase the breaking strength.
  • a high elongation cord (for example, elongation at break is 4.5 to 5.5%) may be used.
  • various materials can be used for the circumferential belt layer.
  • Typical examples include rayon, nylon, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), aramid, and glass fiber.
  • Carbon fiber, steel, etc. can be used. From the viewpoint of weight reduction, an organic fiber cord is particularly preferable.
  • the cord of the circumferential belt layer may be a monofilament cord, a cord in which a plurality of filaments are combined, or a hybrid cord in which filaments of different materials are combined.
  • the number of circumferential belt layers to be driven can be in the range of 20 to 60/50 mm, but is not limited to this range.
  • the distribution of rigidity, material, number of layers, driving density, etc. can be given in the tire width direction.
  • the number of circumferential belt layers can be increased only at the end in the tire width direction.
  • the number of circumferential belt layers can be increased only in the center portion.
  • the circumferential belt layer can be designed to be wider or narrower than the inclined belt layer.
  • the width in the tire width direction can be 90% to 110% of the maximum width inclined belt layer having the largest width in the tire width direction among the inclined belt layers.
  • the circumferential belt layer is configured as a spiral layer.
  • the carcass maximum width position can be brought closer to the bead portion side or closer to the tread side.
  • the carcass maximum width position can be provided in the range of 50% to 90% relative to the tire cross-section height on the outer side in the tire radial direction from the bead base portion.
  • the carcass can adopt various structures.
  • the number of carcass shots can be in the range of 20 to 60 pieces / 50 mm, but is not limited thereto.
  • the folded end of the carcass can be positioned on the inner side in the tire radial direction of the end of the bead filler in the tire radial direction, and the folded end of the carcass is positioned in the tire radial direction from the outer end of the bead filler in the tire radial direction or the maximum tire width position. It can be located on the outer side, and in some cases, it can extend to the inner side in the tire width direction from the end in the tire width direction of the inclined belt layer. Furthermore, when the carcass is constituted by a plurality of carcass plies, the position of the carcass folded end in the tire radial direction can be varied. In addition, a structure in which a plurality of bead core members are sandwiched or wound around a bead core without using a carcass folded portion can be employed.
  • the tire side portion In a pneumatic radial tire for a passenger car having a narrow and large diameter that satisfies the above relational expression (1) and / or (2), it is preferable to make the tire side portion thin.
  • “To thin the tire side portion” means, for example, that the cross-sectional area S1 of the bead filler in the tire width direction is 1 to 4 times the cross-sectional area S2 of the bead core in the tire width direction.
  • the ratio Ts / Tb between the gauge Ts of the sidewall portion at the tire maximum width portion and the bead width Tb at the tire radial direction center position of the bead core can be 15% or more and 40% or less.
  • the ratio Ts / Tc between the gauge Ts of the sidewall portion in the tire maximum width portion and the diameter Tc of the carcass cord can be set to 5 or more and 10 or less.
  • the gauge Ts is the sum of the thicknesses of all members such as rubber, a reinforcing member, and an inner liner. In the case where the bead core is divided into a plurality of small bead cores by the carcass, the distance between the innermost end in the width direction and the outermost end of all the small bead cores is Tb.
  • the tire maximum width position can be provided in the range of 50% to 90% in comparison with the tire cross-section height, on the outer side in the tire radial direction from the bead base portion.
  • the tire of the present invention may have a structure having a rim guard.
  • the tire according to the present invention may have a structure without a bead filler.
  • the bead core can adopt various structures such as a circular cross section and a polygonal cross section.
  • a structure in which the carcass is wound around the bead core a structure in which the carcass is sandwiched between a plurality of bead core members may be employed.
  • the bead portion may be further provided with a rubber layer, a cord layer, or the like for the purpose of reinforcement or the like.
  • additional members can be provided at various positions with respect to the carcass and the bead filler.
  • the thickness of the inner liner from the viewpoint of reducing in-vehicle noise of 80-100 Hz. Specifically, it is preferably about 1.5 mm to 2.8 mm thicker than usual (about 1.0 mm). It has been found that pneumatic radial tires for passenger cars with narrow and large diameters satisfying the above relational expression (1) and / or (2) tend to deteriorate the in-vehicle noise of 80-100 Hz especially when high internal pressure is used. Yes. By increasing the thickness of the inner liner, it is possible to improve vibration damping and reduce in-vehicle noise of 80-100 Hz. In addition, since the loss which contributes to rolling resistance is small compared with other members, such as a tread, an inner liner can improve noise performance, suppressing deterioration of rolling resistance to the minimum.
  • the inner liner can be formed of a film layer mainly composed of a resin in addition to a rubber layer mainly composed of butyl rubber.
  • a porous member in order to reduce cavity resonance noise, can be disposed on the tire inner surface, or electrostatic flocking can be performed.
  • the tire of the present invention can also be provided with a sealant member for preventing air leakage during puncture on the tire inner surface.
  • the pneumatic radial tire for passenger cars of the present invention can also be a side-reinforced run-flat tire having a crescent-shaped reinforcing rubber in the tire side portion.
  • a side-reinforced run-flat tire when a side-reinforced run-flat tire is used, it is possible to achieve both run-flat durability and fuel efficiency by adopting a simplified side part. it can.
  • the side portion and the tread portion are This is based on the knowledge that the deformation is relatively small, while the deformation is relatively large from the shoulder portion to the buttress portion. This deformation is in contrast to the relatively large deformation at the side portion in the conventional size.
  • FIG. 11 is a tire width direction cross-sectional view of a tire according to a third embodiment of the present invention when the tire of the present invention is a run-flat tire.
  • the turn-up end A of the carcass turn-up portion is located on the inner side in the tire radial direction from the tire maximum width position P.
  • FIG. 12 is a tire width direction cross-sectional view of a tire according to a fourth embodiment of the present invention when the tire of the present invention is a run-flat tire.
  • the tire has a maximum width in the tire width direction among one or more belt layers in a cross section of the tire width direction in a reference state in which the tire is incorporated into the rim, filled with a predetermined internal pressure, and is unloaded.
  • the half width of the belt layer in the tire width direction is WB, and the outermost circumferential main groove 181 of the outermost tire width direction of one or more circumferential main grooves from the tire width direction end of the belt layer having the largest width in the tire width direction.
  • the distance in the tire width direction to the center position in the tire width direction is WG, it is preferable that the relational expression 0.5 ⁇ WG / WB ⁇ 0.8 is satisfied.
  • the tire of Example 1 is a tire having a tire size of 165 / 60R19 as shown in FIG. 1 and has the specifications shown in Table 1.
  • the tire of Example 1 includes a two-layer inclined belt layer and a belt-reinforcing layer in which belt cords incline in an opposite direction with respect to the tire circumferential direction, and a tread belt. Three circumferential main grooves (groove width: 7.5 mm) are disposed on the tread surface. In the tire of Example 1, the width of the tread surface in the tire width direction is 125 mm.
  • the tires of Examples 2 to 4 are the same as the tire of Example 1 except that the specifications are changed as shown in Table 1.
  • the tires of Comparative Examples 1 to 3 and 6 are tires having a tire size of 195 / 65R15, and have the specifications shown in Table 1.
  • the tire of Comparative Example 1 includes a two-layer inclined belt layer and a belt reinforcing layer in which belt cords incline with each other in an opposite direction with respect to the tire circumferential direction, and a tread. Three circumferential main grooves (groove width: 8.5 mm) are disposed on the tread surface. In the tire of Comparative Example 1, the width of the tread surface in the tire width direction is 145 mm.
  • the tires of Comparative Examples 4, 5, and 7 are the same as the tire of Example 1 except that the specifications are changed as shown in Table 1.
  • the evaluation results are indicated by an index with the tire described in Comparative Example 1 as 100, with the value for each test tire being the reciprocal. A larger index value means better wet performance.
  • Examples 1 to 4, Comparative Examples 4, 5, and 7 Rim size 5.5 J19, internal pressure 300 kPa Comparative Examples 1 to 3, 6: rim size 6.5 J15, internal pressure 220 kPa [Rolling resistance performance]
  • Each of the above test tires is mounted on the rim under the same conditions as the wet performance measurement conditions, filled with the internal pressure, loaded with the maximum load specified for each tire, and adjusted to a drum rotation speed of 100 km / h. The rolling resistance value was measured.
  • the evaluation results are indicated by an index with the tire described in Comparative Example 1 as 100, with the value for each test tire being the reciprocal. It means that rolling resistance performance is so good that this index value is large.
  • the dynamic storage elastic modulus E ′ and loss tangent tan ⁇ were obtained by applying an initial load of 160 g to a test piece having a thickness of 2 mm, a width of 5 mm, and a length of 20 mm using a spectrometer manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • the initial storage strain was measured at 1% and the frequency was 50 Hz.
  • the dynamic storage elastic modulus E ′ was measured at 30 ° C.
  • the loss tangent tan ⁇ was measured at 0 ° C. and 60 ° C.
  • Table 1 shows that Examples 1 to 4 have improved wet performance and rolling resistance performance as compared with the tires of Comparative Examples 1 to 7.

Abstract

 本発明は、狭幅、大径のラジアルタイヤにおいて、ウェット性能および転がり抵抗性能を向上させた乗用車用空気入りラジアルタイヤを提供することを目的とする。 本発明の乗用車用空気入りラジアルタイヤは、タイヤをリムに組み込み、内圧を250kPa以上とした際に、タイヤの断面幅SWが165(mm)未満である場合は、タイヤの断面幅SWと外径OD(mm)との比SW/ODが0.26以下であり、タイヤの断面幅SWが165(mm)以上である場合は、タイヤの断面幅SWおよび外径OD(mm)が、関係式、 2.135?SW+282.3≦OD を満たし、トレッドゴムの、30℃における動的貯蔵弾性率E'が、6.0~12.0MPaであり、且つ、トレッドゴムの、60℃における損失正接tanδが、0.05~0.15であり、また、バットレスゴムの、30℃における動的貯蔵弾性率E'が、トレッドゴムの動的貯蔵弾性率E'の1/2以下であり、且つ、バットレスゴムの、60℃における損失正接tanδが、0.1以下であることを特徴とする。

Description

乗用車用空気入りラジアルタイヤ
 本発明は、乗用車用空気入りラジアルタイヤに関する。
 従来の1960年頃までの車両は、車両の重量が軽く、車両に要求される巡航速度も遅かったため、タイヤへの負担が軽く、タイヤの断面幅が狭いバイアスタイヤが用いられていたが、現在、車両の重量化、高速化に伴いタイヤのラジアル化、幅広化が進められている(例えば、特許文献1)。
 しかし、タイヤの幅広化は、車両スペースを圧迫し車内の居住性を低下させる。また、空気抵抗が増大するため、燃費が悪くなるという問題がある。
 近年、環境問題への関心の高まりにより、低燃費性への要求が厳しくなってきている。かかる低燃費性は、転がり抵抗(RR)によって評価することができ、低転がり抵抗であるほど、低燃費となることが知られている。
 ここで、低燃費性を向上させるためにタイヤの転がり抵抗値(RRC)を低減するには、タイヤを大径化、幅広化することが有効であることが知られているが、タイヤを大径化、幅広化すると、タイヤ重量および空気抵抗が増大するため、車両抵抗が増大し、また、タイヤの負荷能力も過剰となってしまうという問題がある。
 この問題に対して、本出願人は、タイヤの内圧と断面幅(SW)とタイヤの外径(OD)とが、特定の関係を満たす、いわば、狭幅(狭いタイヤ幅)、大径(大きなタイヤ外径)の乗用車用空気入りラジアルタイヤに係る技術を提案している(例えば、特許文献2)。
特開平7-40706号公報 国際公開第2012/176476号
 ところで、このような狭幅、大径のラジアルタイヤでは、湿潤路面での制動性能に関する指標であるウェット性能に検討の余地があったことから、本出願人は、当該ラジアルタイヤのトレッドゴムの30℃における動的貯蔵弾性率E’を調整することによってウェット性能を向上させる検討を行ってきており、動的貯蔵弾性率E’を所定の範囲に調整することで、ウェット性能を向上させることができることを見出している。しかし、かかる場合であっても、ウェット性能および転がり抵抗性能のさらなる改善が求められていた。
 そこで、本発明は、狭幅、大径のラジアルタイヤにおいて、ウェット性能および転がり抵抗性能を向上させた乗用車用空気入りラジアルタイヤを提供することを目的とする。
 本発明の乗用車用空気入りラジアルタイヤは、一対のビード部間でトロイダル状に跨るラジアル配列コードのカーカスプライからなるカーカスと、当該カーカスのタイヤ半径方向外側に設けられ、トレッド踏面を形成するトレッドゴムと、当該トレッドゴムのタイヤ幅方向外側に位置し、バットレス部を形成するバットレスゴムと、を備えた乗用車用空気入りラジアルタイヤであって、前記タイヤをリムに組み込み、内圧を250kPa以上とした際に、前記タイヤの断面幅SWが165(mm)未満である場合は、前記タイヤの断面幅SWと外径OD(mm)との比SW/ODが0.26以下であり、前記タイヤの断面幅SWが165(mm)以上である場合は、前記タイヤの断面幅SWおよび外径OD(mm)が、関係式、
2.135×SW+282.3≦OD
を満たし、前記トレッドゴムの、30℃における動的貯蔵弾性率E’が、6.0~12.0MPaであり、且つ、当該トレッドゴムの、60℃における損失正接tanδが、0.05~0.15であり、前記バットレスゴムの、30℃における動的貯蔵弾性率E’が、前記トレッドゴムの動的貯蔵弾性率E’の1/2以下であり、且つ、当該バットレスゴムの、60℃における損失正接tanδが、0.1以下であることを特徴とする。
 本発明によれば、狭幅、大径のラジアルタイヤにおいて、ウェット性能および転がり抵抗性能を向上させることができる。
 本発明において、タイヤの断面幅SWおよび外径ODは、それぞれ、タイヤをリムに装着し、内圧を250kPa以上とした無負荷状態での、JIS D 4202-1994に規定の断面幅、外径をいう。
 なお、上記の「リム」とは、タイヤが生産され、使用される地域に有効な産業規格であって、日本ではJATMA(日本自動車タイヤ協会)のJATMA YEAR BOOK、欧州ではETRTO(The European Tyre and Rim Technical Organization)のSTANDARDS MANUAL、米国ではTRA(The Tire and Rim Association,Inc.)のYEAR BOOK等に記載されているまたは将来的に記載される、適用サイズにおける標準リム(ETRTOのSTANDARDS MANUALではMeasuring Rim、TRAのYEAR BOOKではDesign Rim)を指す(即ち、上記の「リム」には、現行サイズに加えて将来的に上記産業規格に含まれ得るサイズも含む。「将来的に記載されるサイズ」の例としては、ETRTO 2013年度版において「FUTURE DEVELOPMENTS」として記載されているサイズを挙げることができる。)が、上記産業規格に記載のないサイズの場合は、タイヤのビード幅に対応した幅のリムをいう。
 本発明において、動的貯蔵弾性率E’(MPa)および損失正接tanδ(動的損失弾性率(E’’)と動的貯蔵弾性率(E’)との比(E’’/E’))とは、加硫ゴムに関し、厚さ:2mm、幅:5mm、長さ:20mmの試験片に初期荷重:160gを与え、初期歪み:1%、振動数:50Hzの条件で測定した値をいい、動的貯蔵弾性率E’は、別段の記載がない限り、温度30℃で測定した値であり(以下、30℃における動的貯蔵弾性率E’を単に「E’」ということがある)、損失正接tanδは、別段の記載がない限り、温度60℃で測定した値である(以下、60℃における損失正接tanδを単に「tanδ」ということがある)。
 本発明において、バットレス部とは、タイヤ幅方向断面視において、トレッド接地端を通りタイヤ半径方向に延びる仮想線と、トレッド接地端からタイヤの断面幅SWとなるタイヤ表面位置までのペリフェリ長さの半分の長さとなるタイヤ表面位置を通りタイヤ幅方向に延びる仮想線と、で挟まれるタイヤ部分を指す。
 本発明において、トレッド接地端とは、トレッド踏面の、トレッド幅方向の最外位置をいい、トレッド踏面とは、上記のリムに組み込むとともに250kPa以上の内圧を適用したタイヤを、最大負荷能力の75%の負荷を加えた状態でタイヤを転動させた際に、路面に接触することになる、タイヤの全周にわたる外周面を指す。
 本発明において、トレッドゴムおよびバットレスゴムとは、トレッド部およびバットレス部に任意に含まれるベルトおよびカーカス等の部材を含まないゴムを意味する。
 本発明において、バットレスゴムが、所望の30℃における動的貯蔵弾性率E’、および、所望の60℃における損失正接tanδであるとは、タイヤ幅方向断面視において、バットレスゴムのうち、バットレス部のタイヤ半径方向内端と、トレッド接地端からペリフェリ長さで10mmだけタイヤ幅方向外側に移動したタイヤ表面位置を通りタイヤ半径方向に延びる仮想線と、に挟まれるゴムが少なくとも所望のE’およびtanδであることを意味する。
 ここで、本発明の乗用車用空気入りラジアルタイヤでは、前記トレッドゴムの30℃における動的貯蔵弾性率E’が、7.9~11.0MPaであり、前記バットレスゴムの30℃における動的貯蔵弾性率E’が、3MPa以下であることが好ましい。
 この構成によれば、ウェット性能および転がり抵抗性能をより向上させることができる。
 本発明によれば、狭幅、大径のラジアルタイヤにおいて、ウェット性能および転がり抵抗性能を向上させた乗用車用空気入りラジアルタイヤを提供することができる。
本発明の第1の実施形態に係る乗用車用空気入りラジアルタイヤを示す、タイヤ幅方向断面図である。 (a)広幅のラジアルタイヤのウェット性能について説明するための図であり、(b)狭幅のラジアルタイヤのウェット性能について説明するための図である。 トレッドパターンの第1の例を示す概略的な展開図である。 トレッドパターンの第2の例を示す概略的な展開図である。 トレッドパターンの第3の例を示す概略的な展開図である。 トレッドパターンの第4の例を示す概略的な展開図である。 本発明の第2の実施形態に係る乗用車用空気入りタイヤのタイヤ幅方向半部のタイヤ幅方向概略断面図である。 ベルト構造の第1の例を示す概略的な平面図である。 ベルト構造の第2の例を示す概略的な平面図である。 ベルト構造の第3の例を示す概略的な平面図である。 本発明の第3の実施形態に係る乗用車用空気入りタイヤのタイヤ幅方向半部のタイヤ幅方向概略断面図である。 本発明の第4の実施形態に係る乗用車用空気入りタイヤのタイヤ幅方向半部のタイヤ幅方向概略一部断面図である。
 以下に、図面を参照しながら本発明の第1の実施形態に係る乗用車用空気入りラジアルタイヤ(以下、単に「タイヤ」とも称す)1について、詳細に例示説明する。なお、以下の記載および図面は、本発明に係るタイヤ1を説明するための一例であり、本発明は記載および図示された形態に何ら限定されない。
 本発明の第1の実施形態に係るタイヤ1は、例えば、図1のタイヤ幅方向断面図に示すように、一対のビード部2間でトロイダル状に跨るラジアル配列コードのカーカスプライからなるカーカス3と、カーカス3のタイヤ半径方向外側に設けられるトレッドゴム41と、トレッドゴム41のタイヤ幅方向外側に位置し、バットレス部5を形成するバットレスゴム51と、を少なくとも備えている。
 さらに具体的には、タイヤ1は、トレッド部4と、トレッド部4の側部に連続して延びる一対のバットレス部5と、各バットレス部5に連続してタイヤ半径方向内側に延びる一対のサイドウォール部6と、各サイドウォール部6のタイヤ半径方向の内端に連続するビード部2とを備えている。また、タイヤ1は、一方のビード部2から他方のビード部2までトロイダル状に延びて上記各部を補強する1枚以上(図示の例では1枚)のカーカスプライからなるカーカス3と、トレッド部4を補強する1層以上(図示の例では、3層)のベルト層からなるベルト7とを備えている。
 トレッド部4には、カーカス3のタイヤ半径方向外側に、より具体的には、カーカス3およびベルト7のタイヤ半径方向外側であって、トレッド接地端Eを通りタイヤ半径方向に延びる仮想線Leのそれぞれに挟まれる部分に、トレッドゴム41が配設されている。
 また、図1に例示するこの実施形態では、トレッド踏面Tに、タイヤ周方向に連続して延びる周方向主溝8を設けることができ、図示の例では、2本の周方向主溝8によって、トレッド踏面Tに3本のリブ状の陸部が形成されている。なお、本発明では、周方向主溝8は必須の構成ではない。
 また、バットレス部5には、カーカス3よりタイヤ外表面側に、より具体的には、カーカス3およびベルト7よりタイヤ外表面側に、トレッドゴム41のタイヤ幅方向外側に隣接して位置するバットレスゴム51が配設されている。
 なお、バットレス部5は、具体的には、タイヤ幅方向断面視において、トレッド接地端Eを通りタイヤ半径方向に延びる仮想線Leと、トレッド接地端Eからタイヤ1の断面幅SWとなるタイヤ表面位置までのペリフェリ長さの半分の長さとなるタイヤ表面位置を通りタイヤ幅方向に延びる仮想線Lhと、で挟まれるタイヤ部分である。
 またこのタイヤ1では、タイヤ1をリムに組み込み、内圧を250kPa以上とした無負荷状態において、タイヤ1の断面幅SWが165(mm)未満である場合は、タイヤ1の断面幅SWと外径OD(mm)との比SW/ODが0.26以下であり、タイヤ1の断面幅SWが165(mm)以上である場合は、タイヤ1の断面幅SWおよび外径OD(mm)が、関係式、
2.135×SW+282.3≦OD
を満たす(以下、関係式(1)を満たすとも称す)。タイヤ1が、上記の関係であることにより、狭幅、大径の形状となり、タイヤ1の転がり抵抗性能を向上させ(転がり抵抗値を低減させ)、かつ、タイヤ1を軽量化することができる。
 また、タイヤ1の内圧は、250kPa以上であることが好ましく、250~350kPaであることがより好ましい。上記関係式(1)を満たすようなタイヤでは、接地長が増大しやすいが、250kPa以上とすることにより接地長の増大を抑えて、トレッドゴムの変形量を低減し、転がり抵抗をさらに低減することができるからである。
 また、タイヤ1の転がり抵抗値を低減し、かつ、タイヤ1を軽量化する観点から、タイヤ1の内圧が250kPa以上の場合に、タイヤ1の断面幅SWと外径ODは、-0.0187×SW2+9.15×SW-380≦ODであることが好ましい(以下この式を関係式(2)とも称す)。
 ベルト7は、1層以上の任意の層数のベルト層で構成することができるところ、図示の例では、カーカス3のタイヤ半径方向外側に、順に、ベルトコードが相互にタイヤ周方向に対して逆向きに傾斜して交錯する2層の傾斜ベルト層71、72と、ベルトコードがタイヤ周方向に沿って延びる1層のベルト補強層73とで構成される。
 この例では、2層の傾斜ベルト層71、72は、それぞれタイヤ周方向に対して35°以上の角度で傾斜しており、タイヤ半径方向内側の傾斜ベルト層71が、外側の傾斜ベルト層72よりも広幅である。また、1層のベルト補強層73は、傾斜ベルト層71、72を覆うような幅を有している。傾斜ベルト層71、72がタイヤ周方向に対して35°以上傾斜することにより、タイヤ1の断面幅SWおよび外径ODが上記の範囲であるタイヤ1において、転がり抵抗性能およびコーナリング時のコーナリングパワーを向上させることができる。
 ここで、このタイヤ1では、トレッドゴム41の30℃における動的貯蔵弾性率E’が、6.0~12.0MPaである。狭幅、大径のラジアルタイヤ1において、トレッドゴム41の動的貯蔵弾性率E’を上記特定範囲にすることにより、ウェット時の摩擦係数μを向上させることができるので、ウェット性能を向上させることができる。また、上記の動的貯蔵弾性率E’とすることで、コーナリング時のコーナリングパワーを向上させ操縦安定性を改良することもできる。なお、同様の観点から、動的貯蔵弾性率E’は、7.9~12.0MPaであることが好ましく、8.0~11.0MPaであることがより好ましい。
 また、トレッドゴム41の60℃における損失正接tanδが、0.05~0.15である。これにより、転がり抵抗性能を向上させることができる。
 ここで、このタイヤ1は、上記のようなトレッドゴム41を備えるので、ウェット性能および転がり抵抗性能を向上できるものの、特にウェット性能および転がり抵抗性能のさらなる改善が求められていた。
 そこで、このタイヤ1では、バットレスゴム51の、30℃における動的貯蔵弾性率E’を、トレッドゴム41の動的貯蔵弾性率E’の1/2以下とし、且つ、バットレスゴム51の、60℃における損失正接tanδを、0.1以下としている。
 この構成によれば、タイヤ1の転がり抵抗性能を向上させることができる。具体的には、タイヤ1は、転動する際、タイヤ1の接地面に隣接するバットレスゴム51が屈曲して歪みが生じるので、ゴムの歪みとゴムの剛性との積によって求まる転がり抵抗値に影響を与えていた。特に、タイヤ1は狭幅大径の形状であるので、タイヤ1の接地時のワイピングによる歪エネルギーロスが大きい傾向があった。そこで、このタイヤ1では、バットレスゴム51の動的貯蔵弾性率E’および損失正接tanδを上記の範囲とすることにより、バットレスゴム51のE’およびtanδが上記の範囲外、例えばバットレスゴム51をトレッドゴム41と同様な物性を有するゴムとした場合と比較して、バットレスゴム51の剛性が低下するので、転がり抵抗値を低下させることができる(即ち、転がり抵抗性能を向上させることができる)。なお、ワイピングとは、タイヤ幅方向断面視で、トレッド踏面Tのタイヤ幅方向長さと、トレッド部4のベルト7のタイヤ幅方向長さとの差に起因して、タイヤ1が接地した際に路面に接地するトレッドゴム41がバットレスゴム51とともにベルトに引っ張られてタイヤ幅方向内側の剪断歪みが生じることである。
 なお、バットレスゴム51の動的貯蔵弾性率E’が、トレッドゴム41の動的貯蔵弾性率E’の1/2超であり、且つ、バットレスゴム51の損失正接tanδが、0.1以下である場合には、ゴムの粘弾性に起因するヒステリシスロスは小さいが、バットレスゴム51の歪エネルギー(歪×応力)が大きく、歪エネルギーロスが大きくなるので転がり抵抗値を低減させることができない。
 また、バットレスゴム51の動的貯蔵弾性率E’が、トレッドゴム41の動的貯蔵弾性率E’の1/2以下であり、且つ、バットレスゴム51の損失正接tanδが、0.1超である場合には、バットレスゴム51の歪エネルギー(歪×応力)は小さいが、ゴムの粘弾性に起因するヒステリシスロスが大きく、歪エネルギーロスが大きくなるので転がり抵抗値を低減させることができない。
 またなお、バットレスゴム51の動的貯蔵弾性率E’を、トレッドゴム41の動的貯蔵弾性率E’に対して規定するのは、トレッドゴム41は高い動的貯蔵弾性率E’ほど歪エネルギー(歪×応力)は小さいが、バットレスゴム51は逆に高い動的貯蔵弾性率E’ほど歪エネルギー(歪×応力)が大きいためである。
 ここで、トレッドゴム41の30℃における動的貯蔵弾性率E’が、7.9~11.0MPaであり、バットレスゴム51の30℃における動的貯蔵弾性率E’が、3MPa以下であることが好ましい。これによれば、ウェット性能および転がり抵抗性能をより向上させることができる。具体的には、トレッドゴム41の動的貯蔵弾性率E’を上記範囲にすることにより、ウェット時の摩擦係数μを向上させてウェット性能を向上させつつ、コーナリングパワーを向上させて操縦安定性を改良することができ、バットレスゴム51の動的貯蔵弾性率E’を3MPa以下とすることにより、高い動的貯蔵弾性率E’(>6.0MPa)のトレッドゴム41使用の場合に、よりバットレスゴム51の歪エネルギーロスを低減させることができる。
 なお、バットレス部5を形成するバットレスゴム51は、その全体が、上記の所定の範囲の動的貯蔵弾性率E’および損失正接tanδであることが好ましい。しかし、タイヤ幅方向断面視において、バットレスゴム51のうち、トレッド接地端Eを通りタイヤ半径方向に延びる仮想線Leと、トレッド接地端Eからペリフェリ長さで10mmだけタイヤ幅方向外側に移動したタイヤ表面位置を通りタイヤ半径方向に延びる仮想線Le’と、に挟まれるゴムが、上記のE’およびtanδの範囲外となるものとすることもできる。換言すれば、バットレスゴム51のうち、バットレス部5のタイヤ半径方向内端(仮想線Lh)と、上記仮想線Le’と、に挟まれるゴムが少なくとも上記の所定の範囲のE’およびtanδであればよい。なお、バットレスゴム51のうち、上記の仮想線Leと、仮想線Le’とに挟まれるゴムは、例えば、トレッドゴム41と同様な動的貯蔵弾性率E’および損失正接tanδとすることができる。そして、かかる場合でも、転がり抵抗性能をより向上させることができる。
 また、バットレスゴム51は、サイドウォール部6を形成するサイドウォールゴムと別々のゴム部材で構成することもでき、または、同じゴム部材で一体的に構成することもできる。
 そして、上述のように、図示の例のタイヤ1では、2層の傾斜ベルト層71、72は、それぞれタイヤ周方向に対して35°以上の角度で傾斜しているが、傾斜ベルト層71、72が35°以上に傾斜すると、35°未満の傾斜の場合と比較して、バットレス部5に歪みが生じやすいので、35°以上に傾斜するベルト層を有するタイヤ1のバットレスゴム51について、上記のような範囲の動的貯蔵弾性率E’および損失正接tanδとすることが、特に効果的である。
 ここで、トレッドゴム41およびバットレスゴム51は、従来公知のゴム成分に加えて、任意に従来公知の充填剤、老化防止剤、加硫剤、加硫促進剤、プロセス油、スコーチ防止剤、亜鉛華、ステアリン酸等を含むゴム組成物を、常法に従い混練、加硫することによって形成することができる。
 混練の条件としては、特に制限はなく、バンバリーミキサー、ロール、インターナルミキサー等を用いて、配合処方、混練装置への投入体積等に応じて、適宜、ローターの回転速度、ラム圧、混練温度、混練時間を調節すればよい。
 また、ゴム組成物を加硫する際の条件としては、加硫温度は、例えば、100~190℃とすることができる。加硫時間は、例えば、5~80分とすることができる。
 トレッドゴム41およびバットレスゴム51のゴム成分としては、例えば、変性または未変性の、スチレン-ブタジエン共重合体ゴム(SBR)、ブタジエンゴム(BR)、ポリイソプレンゴム(IR)、イソブチレンイソプレンゴム(IIR)、ハロゲン化ブチルゴム、スチレン-イソプレン共重合体ゴム(SIR)、クロロプレンゴム(CR)等の合成ゴム、および天然ゴム(NR)等が挙げられる。
 SBR、BRなどの共役ジエン重合体を変性する方法は、特に限定されず、従来公知の方法を用いることができ、例えば、国際公開第2008/050845号に記載の方法(共役ジエン系重合体の活性末端に、変性剤を反応させ、チタン系縮合促進剤の存在下、当該変性剤が関与する縮合反応を行う方法)等を用いることができる。
 前記共役ジエン系重合体としては、例えば、1,3-ブタジエンとスチレンとの共重合体が好適に挙げられる。
 変性剤としては、例えば、N,N-ビス(トリメチルシリル)アミノプロピルメチルジメトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン、1-トリメチルシリル-2-エトキシ-2-メチル-1-アザ-2-シラシクロペンタンが好適に挙げられる。
 チタン系縮合促進剤としては、例えば、テトラキス(2-エチル-1,3-ヘキサンジオラト)チタン、テトラキス(2-エチルヘキソキシ)チタン、チタンジ-n-ブトキサイド(ビス-2,4-ペンタンジオネート)が好適に挙げられる。
 上述したゴム成分を1種単独で、または2種以上を組み合わせて用いてもよい。
 前記充填剤としては、例えば、従来公知のカーボンブラック、シリカ、炭酸カルシウム、タルク、クレイ等が挙げられる。上記の充填剤を1種単独で、または2種以上を組み合わせて用いてもよい。
 このタイヤ1では、トレッドゴム41を形成するゴム組成物が、少なくともゴム成分と充填剤とを含み、ゴム組成物において、ゴム成分100質量部に対して、充填剤が、50~100質量部含まれていることが好ましい。これにより、耐摩耗性と加工性に優れるという利点がある。同様の観点から、ゴム成分100質量部に対して、充填剤が、55~85質量部含まれていることがより好ましく、75~85質量部含まれていることがさらに好ましい。また、ジエン系ポリマー(ジエン系ゴム)100質量部に対して、充填剤が、50~90質量部含まれていることがより好ましい。
 このタイヤ1では、トレッドゴム41の前記充填剤がシリカを含み、当該シリカが、ゴム成分100質量部に対して、25~100質量部含まれていることが好ましい。これにより、ウェット性能に優れるという利点がある。また、同様の観点から、シリカが、ゴム成分100質量部に対して、50~75質量部含まれていることがより好ましく、60~75質量部含まれていることがさらに好ましい。
 充填剤としてシリカを用いる場合は、シリカをシランカップリング剤で処理してもよい。
 ところで、上記のようにトレッドゴム41の動的貯蔵弾性率E’を6.0~12.0MPaとするためには、例えば、配合をジエン系ポリマー100phrのうち、変性S-SBRを20~70phrの範囲、且つ、充填剤50~80phrのうち、シリカを30~80phrの範囲で適宜変更すればよい。
 また、上記のようにトレッドゴム41の損失正接tanδを0.05~0.15とするためには、例えば、配合をジエン系ポリマー100phrのうち、NRを0~20phrの範囲、変性S-SBRを20~70phrの範囲、且つ、充填剤50~80phrのうち、シリカを30~80phrの範囲で適宜変更すればよい。
 なお、「phr」は、ゴム成分100質量部に対する各種成分の配合量(質量部)をいう。
 本発明の乗用車用空気入りラジアルタイヤのタイヤサイズとしては、具体的には、105/50R16、115/50R17、125/55R20、125/60R18、125/65R19、135/45R21、135/55R20、135/60R17、135/60R18、135/60R19、135/65R19、145/45R21、145/55R20、145/60R16、145/60R17、145/60R18、145/60R19、145/65R19、155/45R18、155/45R21、155/55R18、155/55R19、155/55R21、155/60R17、155/65R13、155/65R18、155/70R17、155/70R19、165/45R22、165/55R16、165/55R18、165/55R19、165/55R20、165/55R21、165/60R19、165/65R19、165/70R18、175/45R23、175/55R18、175/55R19、175/55R20、175/55R22、175/60R18、175/65R15、185/45R22、185/50R16、185/50R20、185/55R19、185/55R20、185/60R17、185/60R19、185/60R20、195/50R20、195/55R20、195/60R19、195/65R17、205/50R21、205/55R16、205/55R20、205/60R16、205/60R18、215/50R21、215/60R17、225/65R17が例として挙げられる。
 ここで、本発明では、トレッドを占める溝量を少なくすることがウェット性能とその他の性能との両立の観点から好ましい。具体的には、溝体積率(溝体積V2/トレッドゴム体積V1)を20%以下とすることが好ましく、また、ネガティブ率(トレッド踏面の面積に対する、溝面積の割合)を20%以下とすることが好ましい。これらの値は、従来サイズの乗用車用空気入りラジアルタイヤにおける標準的な値よりも低い値である。
 ウェット性能を向上させるには、溝量を増やすのが一般的な考え方であるが、上記関係式(1)及び/又は(2)を満たすような、狭幅大径サイズの乗用車用空気入りラジアルタイヤの場合には、接地面の幅Wが狭くなるため、図2(b)に、図2(a)との対比で示すように、水がタイヤ幅方向に排出されやすくなる。このため、溝量を減らしてもウェット性能は維持され、かつ陸部剛性の向上によりコーナリングパワーなど他性能も向上させることができるのである。
 なお、溝体積率は、例えば、ベルト層のうちタイヤ幅方向に最大幅を有する、最大幅ベルト層の幅方向両端部よりタイヤ幅方向内側にあり、且つ、タイヤ幅方向中央位置における、タイヤ径方向最外側の補強部材(ベルト層及びベルト補強層)よりタイヤ径方向外側にあるトレッドゴムの体積をV1とし、トレッド踏面に形成した溝の合計体積をV2とするとき、比V2/V1と定義される。
 上記の関係式(1)及び/又は(2)を満たすような、狭幅大径サイズの乗用車用空気入りラジアルタイヤの場合には、2本の周方向主溝もしくは周方向主溝とトレッド接地端Eとによりタイヤ幅方向を区画された、リブ状陸部を主体とするパターンであることが好ましい。ここでリブ状陸部とはタイヤ幅方向に横断する幅方向溝を有さずにタイヤ周方向に延びる陸部をいうが、リブ状陸部はサイプやリブ状陸部内で終端する幅方向溝は有していてもよい。このことは、従来サイズの標準的な乗用車用空気入りラジアルタイヤにおいては、ウェット性能を向上させるために幅方向溝を有するパターンが多くみられるのに対し対照的である。
 これは、上記の関係式(1)及び/又は(2)を満たすような狭幅大径サイズの乗用車用空気入りラジアルタイヤでは、接地幅が狭く、また、特に高内圧(例えば250kPa以上)使用下において高接地圧となるため、周方向せん断剛性を増加させることによりウェット路面上での接地性が向上するためと考えられる。
 リブ状陸部を主体とするパターンの例としては、例えば図3に示す実施形態のように、タイヤ赤道面CLを中心とするトレッド幅TWの80%のタイヤ幅方向領域(図3において、2本の境界線mに挟まれる領域)においてリブ状陸部のみからなる(すなわち、幅方向溝を有しない)トレッドパターンとすることができる。このタイヤ幅方向領域における排水性能が特にウェット性能への寄与が大きいためである。
 また、図3に示すように、トレッド踏面にサイプ100を設けることにより、様々な性能を向上させることができる。
 特にウェット性能を向上させる観点からは、サイプの両端部のうち一方の端が溝に開口し他方の端が陸部内で終端する片側開口サイプ100とすることがましい。片側開口サイプ100によって接地面内の水膜を除去しつつ、両端開口サイプの場合との対比で周方向せん断剛性を増大させることができるため、周方向せん断剛性向上によるウェット性能向上の効果を得ることができるためである。同様の理由により、図3に示すように、片側開口サイプ100をリブ状陸部主体のパターンと組み合わせて用いることが好ましい。
 本発明の乗用車用空気入りラジアルタイヤにおいて、さらにウェット性能を向上させる観点からは、高剛性ゴムをトレッドゴムに用いた場合に、図4に示すように、周方向サイプ110及び/又は小穴111を設けることが好ましい。高剛性ゴムを用いた場合は、周方向せん断剛性が増大して排水が促進されるが、一方で、タイヤと路面との実接地面積が減少してウェット性能を押し下げる要因となりうる。そこで、ゴムの圧縮剛性を低下させる周方向サイプ110及び/又は小穴111を用いることにより、ゴムの圧縮剛性を低減して実接地面積を増大させることができる。ここで、周方向サイプ110及び/又は小穴111は、周方向せん断剛性を低減させる効果が十分に小さいため、周方向せん断剛性の向上によるウェット性能の向上効果は維持することができる。
 ここで、本発明にあっては、タイヤの車両装着方向が指定される場合には、タイヤ赤道面CLを境界とした車両装着内側と車両装着外側とのタイヤ幅方向半部間でネガティブ率に差を設けてもよい。
 本発明にあっては、図5に示すように、タイヤ赤道面CLの近傍からトレッド接地端Eまでタイヤ幅方向に延びる幅方向溝120を有するパターンとしてもよく、この場合は、周方向主溝を含まなくてもよい。このような幅方向溝120が主体のパターンによれば、特に雪上性能を効果的に発揮することができる。
 本発明では、リブ状陸部のうち、タイヤ幅方向最外側の周方向主溝とトレッド接地端Eにより区分されるショルダーリブ状陸部に関しては、様々な構成を採用することができる。例えば、車両装着方向が指定されるタイヤおいて、車両装着外側と内側におけるショルダーリブ状陸部のタイヤ幅方向の幅を変えることもできる。なお、操縦安定性を考慮した場合には車両装着外側のショルダーリブ状陸部のタイヤ幅方向の幅を車両装着内側のショルダーリブ状陸部のタイヤ幅方向の幅よりも大きくすることが好ましい。
 上記関係式(1)及び/又は(2)を満たす、本発明の狭幅大径サイズの乗用車用空気入りラジアルタイヤの場合には、バックリングを抑制してコーナリングパワーを向上させる観点からは、タイヤを車両に装着した際に周方向主溝から車両装着内側に延びる一端開口溝を設けることが好ましい。
 具体的には、図6に示すように、トレッド踏面における、タイヤ赤道面CLを境界とする少なくとも一方の半部において、トレッド接地端Eに隣接し、且つトレッド接地端Eとのトレッド幅方向の距離が、トレッド幅TWの25%以上離間した、トレッド周方向に延びるトレッド端側主溝130を有し、トレッド端側主溝130とトレッド接地端Eとによって区画されるトレッド接地端側陸部に隣接する陸部131の1つに、トレッド接地端側主溝130からトレッド幅方向に延びて隣接陸部131内に留まる、少なくとも1本の一端開口溝132を有することが好ましい。なお、図6における、溝133は、主溝より溝深さの小さい浅溝である。
 上記関係式(1)及び/又は(2)を満たす、狭幅大径サイズの乗用車用空気入りラジアルタイヤの場合には、車両装着外側では圧縮応力を受け、車両装着内側では引張応力を受けることとなり、これらの応力により、トレッドゴムが変形し、ベルトが変形して、接地面が浮き上がってしまう。
 ここで、トレッド接地端側主溝130からトレッド幅方向に延びて陸部131内に留まる一端開口溝132を有するため、陸部内の車両装着外側においては、圧縮応力により一端開口溝132が閉じる構造となるため、一端開口溝132を設けない場合や、一端開口溝132が車両装着外側まで延びていない場合と比べて、圧縮応力によるトレッドやベルトの変形が抑制される。
 さらに、一端開口溝132が陸部内に留まるため、車両装着内側まで一端開口溝132が延在している場合と比較して、車両装着内側での引張応力に対する剛性が高くなり、これによりトレッドやベルトの変形が抑制される。
 上記関係式(1)及び/又は(2)を満たす、本発明の狭幅大径サイズの乗用車用空気入りラジアルタイヤの場合には、図7に示すように、タイヤ幅方向断面にて、タイヤ赤道面CLにおけるトレッド表面上の点Pを通りタイヤ幅方向に平行な直線をm1とし、接地端E’を通りタイヤ幅方向に平行な直線をm2として、直線m1と直線m2とのタイヤ径方向の距離を落ち高LCRとし、タイヤのトレッド幅をTW’とするとき、比LCR/TW’を0.045以下とすることが好ましい。比LCR/TW’を上記の範囲とすることにより、タイヤのクラウン部がフラット化(平坦化)し、接地面積が増大して、路面からの入力(圧力)を緩和して、タイヤ径方向の撓み率を低減し、タイヤの耐久性及び耐摩耗性を向上させることができる。
 ここで、上記「接地端E’」とは、タイヤをリムに装着し、タイヤを装着する車両毎に規定される最高空気圧を充填して平板上に垂直に置き、タイヤを装着する車両毎に規定される最大負荷に相当する重量を負荷した際の、平板との接触面における、タイヤ幅方向両端点をいう。
 本発明では、トレッドゴムは、異なる複数のゴム層がタイヤ径方向に積層されて形成されていてもよい。上記の複数のゴム層としては正接損失、モジュラス、硬度、ガラス転移温度、材質等が異なっているものを用いることができる。また、複数のゴム層のタイヤ径方向の厚さの比率は、タイヤ幅方向に変化していてもよく、また周方向主溝底のみ等をその周辺と異なるゴム層とすることもできる。
 本発明では、トレッドゴムはタイヤ幅方向に異なる複数のゴム層で形成されていてもよい。上記の複数のゴム層としては正接損失、モジュラス、硬度、ガラス転移温度、材質等が異なっているものを使用することができる。なお、トレッドゴムをタイヤ幅方向で異なるゴム層で形成する場合には、「トレッドゴムの、30℃における動的貯蔵弾性率E’」および「トレッドゴムの、60℃における損失正接tanδ」は、各ゴム層の動的貯蔵弾性率E’および損失正接tanδに当該ゴム層のタイヤ幅方向長さを乗じた値をそれぞれ足し合わせて、ゴム層全体のタイヤ幅方向長さで除した値を指すものとする。
 本発明のタイヤは、タイヤ周方向に対して傾斜して延びるコードのゴム引き層からなる傾斜ベルト層を有することが好ましく、この場合、傾斜ベルト層は1層のみとすることもできる。但し、上記関係式(1)及び/又は(2)を満たすような、狭幅大径サイズの乗用車用ラジアルタイヤにおいては、傾斜ベルト層が1層のみでは旋回時の接地面形状が歪みやすいため、2層以上の層間でコードが互いに交差する方向に延びる傾斜ベルト層とすることが好ましい。本発明の乗用車用空気入りラジアルタイヤでは、2層のベルト層が傾斜ベルト層を形成するベルト構造が最も好ましい。
 本発明では、最もタイヤ幅方向の幅の大きい最大幅傾斜ベルト層のタイヤ幅方向の幅が、トレッド幅TWの90%~115%であることが好ましく、トレッド幅TWの100%~105%であることが特に好ましい。
 本発明において、傾斜ベルト層のベルトコードとしては、金属コード、特にスチールコードを用いるのが最も一般的であるが、有機繊維コードを用いることも可能である。スチールコードはスチールを主成分とし、炭素、マンガン、ケイ素、リン、硫黄、銅、クロムなど種々の微量含有物を含むことができる。
 本発明において、傾斜ベルト層のベルトコードはモノフィラメントコードや、複数のフィラメントを撚り合せたコードを用いることができる。撚り構造も種々の設計が採用可能であり、断面構造、撚りピッチ、撚り方向、隣接するフィラメント同士の距離も様々なものを用いることができる。さらには異なる材質のフィラメントを撚り合せたコードを用いることもでき、断面構造としても特に限定されず、単撚り、層撚り、複撚りなど様々な撚り構造を取ることができる。
 本発明では、傾斜ベルト層のベルトコードの傾斜角度は、タイヤ周方向に対して10°以上とすることが好ましい。
 本発明では、傾斜ベルト層のベルトコードの傾斜角度を高角度、具体的にはタイヤ周方向に対して35°以上、特にタイヤ周方向に対して55°~85°の範囲とすることが好ましい。
 傾斜角度を35°以上とすることにより、タイヤ幅方向に対する剛性を高め、特にコーナリング時の操縦安定性能を向上させることができるからである。また、層間ゴムのせん断変形を減少させて、転がり抵抗性能を向上させることができるからである。
 本発明のタイヤは、傾斜ベルト層のタイヤ径方向外側に1層以上の周方向ベルト層からなる周方向ベルトを有することができる。
 傾斜ベルト層のベルトコードの傾斜角度θ1、θ2が35°以上の場合には、周方向ベルトは、タイヤ赤道面CLを含む中央領域Cの単位幅あたりのタイヤ周方向剛性が、その他の領域の単位幅あたりのタイヤ周方向剛性より高いことが好ましい。
 図8は、ベルト構造の一例を概略的に示しており、傾斜ベルト層141、142のタイヤ径方向外側に周方向ベルト層143、144が積層されており、中央領域Cにおいて、周方向ベルト層143、144が互いにタイヤ径方向に重なっている。
 例えば、図8に示すように、当該中央領域Cにおける周方向ベルト層の層数をその他の領域より多くすることにより、中央領域Cの単位幅あたりのタイヤ周方向剛性を、その他の領域の単位幅あたりのタイヤ周方向剛性より高くすることができる。
 傾斜ベルト層のベルトコードがタイヤ周方向に対して35°以上で傾斜するタイヤの多くは、400Hz~2kHzの高周波域において、断面方向の1次、2次および3次等の振動モードにて、トレッド踏面が一律に大きく振動する形状となるため、大きな放射音が生じる。そこで、トレッドのタイヤ幅方向中央領域のタイヤ周方向剛性を局所的に増加させると、トレッドのタイヤ幅方向中央領域がタイヤ周方向に広がり難くなり、トレッド踏面のタイヤ周方向への広がりが抑制される結果、放射音を減少させることができる。
 さらに、上述のごとく、タイヤ赤道面CLを含む中央領域のタイヤ周方向の剛性を高めたタイヤでは、トレッドはトレッド踏面の少なくともタイヤ赤道面CLを含む領域に、タイヤ周方向に連続する陸部を有することが好ましい。タイヤ赤道面CL上又はその付近に周方向主溝を配置すると、当該領域におけるトレッドの剛性が低下して、該周方向主溝を区画する陸部における接地長が極端に短くなる場合がある。そこで、タイヤ赤道面CLを含む一定領域にわたって、タイヤ周方向に連続する陸部(リブ状陸部)を配置することが、コーナリングパワーを低減させることなく騒音性能を改善する観点から好ましい。
 図9は、ベルト構造の他の例を概略的に示しており、2層の傾斜ベルト層151、152のタイヤ径方向外側に、1層の周方向ベルト層153が積層されている。
 本発明にあっては、図9に示す例のように、傾斜ベルト層のベルトコードの傾斜角度が35°以上の場合には、傾斜ベルト層は、タイヤ幅方向の幅の異なる2層の傾斜ベルト層を少なくとも含み、最広幅の傾斜ベルト層をなすコードのタイヤ周方向に対する傾斜角度θ1と、最狭幅の傾斜ベルト層をなすコードのタイヤ周方向に対する傾斜角度θ2とが、35°≦θ1≦85°、10°≦θ2≦30°、及び、θ1>θ2を満たすことが好ましい。
 タイヤ周方向に対して35°以上で傾斜するベルトコードを有する傾斜ベルト層を備えたタイヤの多くは、400Hz~2kHzの高周波域において、断面方向の1次、2次および3次等の振動モードにて、トレッド踏面が一律に大きく振動する形状となるため、大きな放射音が生じる。そこで、トレッドのタイヤ幅方向中央領域のタイヤ周方向剛性を局所的に増加させると、トレッドのタイヤ幅方向中央領域がタイヤ周方向に広がり難くなり、トレッド面のタイヤ周方向への広がりが抑制される結果、放射音を減少させることができる。
 図10は、ベルト構造の別の例を概略的に示しており、2層の傾斜ベルト層161、162のタイヤ径方向外側に、1層の周方向ベルト層163が積層されている。
 上記関係式(1)及び/又は(2)を満たすような、狭幅大径サイズの乗用車用ラジアルタイヤにおいては、周方向ベルト層は高剛性であることが好ましく、より具体的にはタイヤ周方向に延びるコードのゴム引き層からなり、コードのヤング率をY(GPa)、打ち込み数をn(本/50mm)とし、周方向ベルト層をm層として、X=Y×n×mと定義するとき、1500≧X≧750であることが好ましい。上記関係式(1)及び/又は(2)を満たすような、狭幅大径サイズの乗用車用ラジアルタイヤにおいては、路面からの旋回時における入力に対しタイヤ周方向において局所的な変形を起こし、接地面は略三角形状、すなわち、タイヤ幅方向の位置によって周方向の接地長が大きく変化する形状となりやすい。これに対し、高剛性の周方向ベルト層とすることにより、タイヤのリング剛性が向上して、タイヤ周方向の変形が抑制されることとなるため、ゴムの非圧縮性により、タイヤ幅方向の変形も抑制され、接地形状が変化しにくくなる。さらには、リング剛性が向上することにより偏心変形が促進され、転がり抵抗も同時に向上する。この転がり抵抗の向上効果は、上記関係式(1)及び/又は(2)を満たすような、狭幅大径サイズの乗用車用空気入りラジアルタイヤにおいて、特に向上効果の幅が大きくなる。
 さらに、上記のように高剛性の周方向ベルト層を用いた場合には、傾斜ベルト層のベルトコードのタイヤ周方向に対する傾斜角度を高角度、具体的には35°以上とすることが好ましい。高剛性の周方向ベルト層を用いた場合には、タイヤ周方向の剛性が高くなるこいとにより、タイヤによっては、接地長が減少してしまうことがある。そこで、高角度の傾斜ベルト層を用いることにより、タイヤ周方向の面外曲げ剛性を低下させて、踏面変形時のゴムのタイヤ周方向の伸びを増大させ、接地長の減少を抑制することができる。
 また、本発明では、周方向ベルト層には、破断強度を高めるために波状のコードを用いてもよい。同様に破断強度を高めるために、ハイエロンゲーションコード(例えば破断時の伸びが4.5~5.5%)を用いてもよい。
 さらに、本発明では、周方向ベルト層には、種々の材質が採用可能であり、代表的な例としては、レーヨン、ナイロン、ポリエチレンナフタレート(PEN),ポリエチレンテレフタレート(PET)、アラミド、ガラス繊維、カーボン繊維、スチール等が採用できる。軽量化の点から、有機繊維コードが特に好ましい。
 ここで、本発明では、周方向ベルト層のコードはモノフィラメントコードや、複数のフィラメントを縒り合せたコード、さらには異なる材質のフィラメントを縒り合せたハイブリットコードを採用することもできる。
 また、本発明では、周方向ベルト層の打ち込み数は、20~60本/50mmの範囲とすることができるが、この範囲に限定されるのもではない。
 さらに、本発明では、タイヤ幅方向に剛性・材質・層数・打ち込み密度等の分布を持たせることもでき、例えばタイヤ幅方向端部のみにおいて、周方向ベルト層の層数を増やすこともでき、一方でセンター部のみにおいて、周方向ベルト層の層数を増やすこともできる。
 また、本発明では、周方向ベルト層は、傾斜ベルト層よりも広幅または狭幅に設計することができる。例えば、傾斜ベルト層のうちタイヤ幅方向の幅の最も大きい最大幅傾斜ベルト層の90%~110%のタイヤ幅方向の幅とすることができる。
 ここで、周方向ベルト層は、スパイラル層として構成することが製造の観点から特に有利である。
 なお、本発明では、周方向ベルト層を設けないことも可能である。
 本発明では、カーカスラインには様々な構造を採用することができる。例えば、タイヤ径方向において、カーカス最大幅位置をビード部側に近づけることも、トレッド側に近づけることもできる。例えば、カーカス最大幅位置は、ビードベース部からタイヤ径方向外側に、タイヤ断面高さ対比で50%~90%の範囲に設けることができる。
 また、本発明では、カーカスも様々な構造を採用することができる。例えば、カーカスの打ち込み数としては、20~60本/50mmの範囲とすることができるが、これに限定されるものではない。
 さらに、例えば、カーカスの折り返し端をビードフィラのタイヤ径方向端よりもタイヤ径方向内側に位置させることができ、またカーカス折り返し端をビードフィラのタイヤ径方向外側端やタイヤ最大幅位置よりもタイヤ径方向外側に位置させ、場合によっては傾斜ベルト層のタイヤ幅方向端よりもタイヤ幅方向内側まで延在させることもできる。さらに、カーカスが複数枚のカーカスプライで構成される場合には、カーカス折り返し端のタイヤ径方向位置を異ならせることもできる。また、そもそもカーカス折り返し部を存在させずに、複数のビードコア部材で挟みこんだり、ビードコアに巻きつけた構造を採用したりすることもできる。
 上記関係式(1)及び/又は(2)を満たすような、狭幅大径サイズの乗用車用空気入りラジアルタイヤにおいて、タイヤサイド部を薄くすることが好ましい。「タイヤサイド部を薄くする」とは、例えば、ビードフィラのタイヤ幅方向断面積S1を、ビードコアのタイヤ幅方向断面積S2の1倍以上4倍以下とすることができる。また、タイヤ最大幅部におけるサイドウォール部のゲージTsと、ビードコアのタイヤ径方向中心位置におけるビード幅Tbとの比Ts/Tbを、15%以上40%以下とすることができる。また、タイヤ最大幅部におけるサイドウォール部のゲージTsと、カーカスコードの径Tcとの比Ts/Tcを5以上10以下とすることができる。
 なお、ゲージTsはゴム、補強部材、インナーライナーなどすべての部材の厚みの合計となる。また、ビードコアがカーカスによって複数の小ビードコアに分割されている構造の場合には、全小ビードコアのうち幅方向最内側端部と最外側端部の距離をTbとする。
 本発明では、タイヤ最大幅位置は、ビードベース部からタイヤ径方向外側に、タイヤ断面高さ対比で50%~90%の範囲に設けることができる。
 本発明のタイヤは、リムガードを有する構造とすることもできる。
 本発明のタイヤは、ビードフィラを設けない構造とすることもできる。
 本発明では、ビードコアは断面円形や断面多角形状など、様々な構造を採用することができる。また、カーカスをビードコアに巻きつける構造のほか、カーカスを複数のビードコア部材で挟みこむ構造とすることもできる。
 本発明では、ビード部には補強等を目的としてゴム層・コード層等をさらに設けることもできる。このような追加部材はカーカスやビードフィラに対して様々な位置に設けることができる。
 本発明では、インナーライナーを厚くすることが、80-100Hzの車内騒音を低減する観点から好ましい。具体的には通常(1.0mm程度)よりも厚い1.5mm~2.8mm程度とすることが好ましい。
 上記関係式(1)及び/又は(2)を満たす、狭幅大径サイズの乗用車用空気入りラジアルタイヤは特に高内圧使用化において80-100Hzの車内騒音が悪化しやすいという知見が得られている。インナーライナーを厚くすることで振動減衰性を高め、80-100Hzの車内騒音を低減することができる。なお、インナーライナーは転がり抵抗に寄与するロスが、トレッド等の他の部材と比較すると小さいため、転がり抵抗の悪化を最小限にとどめつつ、騒音性能を改善することができる。
 本発明では、インナーライナーは、ブチルゴムを主体としたゴム層のほか、樹脂を主成分とするフィルム層によって形成することもできる。
 本発明では、空洞共鳴音を低減するために、タイヤ内面に、多孔質部材を配置したり、静電植毛加工を行ったりすることもできる。
 本発明のタイヤは、タイヤ内面に、パンク時の空気の漏れを防ぐためのシーラント部材を備えることもできる。
 本発明の乗用車用空気入りラジアルタイヤは、タイヤサイド部に断面三日月型の補強ゴムを有した、サイド補強型ランフラットタイヤとすることもできる。
 狭幅大径サイズの乗用車用空気入りラジアルタイヤにおいて、サイド補強型ランフラットタイヤとする場合には、サイド部を簡素化させた構造により、ランフラット耐久性と燃費性能の両立を実現することができる。これは、上記関係式(1)及び/又は(2)を満たすような、狭幅大径サイズの乗用車用空気入りラジアルランフラットタイヤの場合には、ランフラット走行時に、サイド部及びトレッド部の変形が相対的に小さく、一方でショルダー部からバットレス部にかけて相対的に変形が大きくなるという知見に基づくものである。この変形は、従来サイズではサイド部に変形が相対的に大きくなるのと対照的である。
 このような、上記関係式(1)及び/又は(2)を満たすような、狭幅大径サイズに特徴的な変形のために、簡素化構造によってもランフラット耐久性を十分に確保し、かつ燃費性能をさらに向上させることができる。
 具体的な簡素化手法としては少なくとも以下の(i)~(iii)のいずれか一つの条件を満たすことにより可能となる。
 図11は、本発明のタイヤがランフラットタイヤである場合における、本発明の第3の実施形態にかかるタイヤのタイヤ幅方向断面図である。
 (i)図11に示すように、カーカス折り返し部の折り返し端Aが、タイヤ最大幅位置Pよりタイヤ径方向内側に位置する、(ii)タイヤをリムに組み込み、所定の内圧を充填し、無負荷とした、基準状態の際のタイヤ幅方向断面における、サイド補強ゴム171のタイヤ径方向最大長さをH1とし、ビードフィラのタイヤ径方向最外側点とビードコアのタイヤ径方向最外側点とを結んだ線分の長さをH2とするとき、1.8≦H1/H2≦3.5、を満たす、(iii)タイヤをリムに組み込み、所定の内圧を充填し、無負荷とした、基準状態の際のタイヤ幅方向断面における、サイド補強ゴム171のタイヤ径方向最大長さをH1(mm)とするとき、関係式、10(mm)≦(SW/OD)×H1≦20(mm)を満たす。
 上記関係式(1)及び/又は(2)を満たすような、狭幅大径サイズの乗用車用空気入りラジアルタイヤにおいて、サイド補強型ランフラットタイヤとする場合には、タイヤ幅方向最外側の周方向主溝を、タイヤ幅方向のタイヤ赤道面CLよりに配置することにより、ランフラット耐久性の更なる向上を実現することができる。これは、上記関係式(1)及び/又は(2)を満たすような、狭幅大径サイズの乗用車用空気入りラジアルランフラットタイヤの場合には、ランフラット走行時に、サイド部及びトレッド部の変形が相対的に小さく、一方でショルダー部からバットレス部にかけて相対的に変形が大きくなるという知見に基づくものである。この変形は、従来サイズではサイド部に変形が相対的に大きくなるのと対照的である。このような、上記関係式(1)及び/又は(2)を満たすような、狭幅大径サイズに特徴的な変形のために、タイヤ幅方向最外側の周方向主溝をタイヤ赤道面CLよりに配置することで、ランフラット走行時のショルダー陸部からバットレス部にかけての接地性を高めることができ接地圧が緩和される。この結果として、ランフラット耐久性をさらに向上させることができる。
 図12は、本発明のタイヤがランフラットタイヤである場合における、本発明の第4の実施形態にかかるタイヤのタイヤ幅方向断面図である。
 具体的には、タイヤをリムに組み込み、所定の内圧を充填し、無負荷とした、基準状態の際のタイヤ幅方向断面における、1層以上のベルト層のうちタイヤ幅方向の幅が最大のベルト層のタイヤ幅方向の半幅をWBとし、タイヤ幅方向の幅が最大のベルト層のタイヤ幅方向端部から1本以上の周方向主溝のうちタイヤ幅方向最外側の周方向主溝181のタイヤ幅方向中心位置までのタイヤ幅方向距離をWGとするとき、関係式、0.5≦WG/WB≦0.8を満たすことが好ましい。
 以上、図面を参照して本発明の実施形態を説明したが、本発明の乗用車用空気入りラジアルタイヤは、上記の例に限定されることは無く、適宜変更を加えることができる。
 以下、実施例により本発明を更に詳細に説明するが、本発明は下記の実施例になんら限定されるものではない。
 本発明の効果を確かめるため、以下の実施例1~4および比較例1~7のタイヤをそれぞれ試作した。
 実施例1のタイヤは、図1に示すような、タイヤサイズ165/60R19であるタイヤであって、表1に示す諸元の構成を有している。また、実施例1のタイヤは、ベルトコードが相互にタイヤ周方向に対して逆向きに傾斜して交錯する2層の傾斜ベルト層と1層のベルト補強層とを備えており、また、トレッド踏面に、3本の周方向主溝(溝幅:7.5mm)が配設されている。なお、実施例1のタイヤは、トレッド踏面のタイヤ幅方向の幅は125mmである。
 実施例2~4のタイヤは、各諸元を表1に示すように変化させた以外、実施例1のタイヤと同様である。
 比較例1~3、6のタイヤは、タイヤサイズ195/65R15であるタイヤであって、表1に示す諸元の構成を有している。また、比較例1のタイヤは、ベルトコードが相互にタイヤ周方向に対して逆向きに傾斜して交錯する2層の傾斜ベルト層と1層のベルト補強層とを備えており、また、トレッド踏面に、3本の周方向主溝(溝幅:8.5mm)が配設されている。なお、比較例1のタイヤは、トレッド踏面のタイヤ幅方向の幅は145mmである。
 比較例4、5、7のタイヤは、各諸元を表1に示すように変化させた以外、実施例1のタイヤと同様である。
 上記の各供試タイヤを以下に示す方法で評価した。
[ウェット性能]
 上記の各供試タイヤを、下記の条件でリムに装着し内圧を充填して、車両に装着した後、ウェット路面を時速80km/hで走行させた。そして、上記状態で走行後、フルブレーキを行った際の、停止距離(m)を計測し、このときの平均減速度(m/s2)=V2/25.92Lを算出した(平均減速度a、初速v、質量m、停止距離Lとすると、mv2/2=maLより、a=v2/2Lと計算できる。ウェット時の摩擦係数(wet μ))。評価結果は、各供試タイヤについての値を逆数にして、比較例1に記載のタイヤを100とする指数にて示した。この指数値が大きいほどウェット性能がよいことを意味する。
実施例1~4、比較例4、5、7:リムサイズ5.5J19、内圧300kPa
比較例1~3、6:リムサイズ6.5J15、内圧220kPa
[転がり抵抗性能]
 上記の各供試タイヤを、ウェット性能の測定条件と同じ条件で、リムに装着し内圧を充填して、各タイヤに規定される最大荷重を負荷して、ドラム回転速度100km/hの条件にて転がり抵抗値を測定した。
 評価結果は、各供試タイヤについての値を逆数にして、比較例1に記載のタイヤを100とする指数にて示した。この指数値が大きいほど転がり抵抗性能がよいことを意味する。
 なお、動的貯蔵弾性率E’および損失正接tanδは、株式会社東洋精機製作所製のスペクトロメータを用いて、厚さ:2mm、幅:5mm、長さ:20mmの試験片に初期荷重:160gを与え、初期歪み:1%、振動数:50Hzの条件で測定し、ここで、動的貯蔵弾性率E’は、30℃で測定し、損失正接tanδは、0℃および60℃で測定した。
Figure JPOXMLDOC01-appb-T000001
 表1より実施例1~4は、比較例1~7のタイヤと比較して、ウェット性能、転がり抵抗性能が向上していることがわかる。
 本発明によれば、狭幅、大径のラジアルタイヤにおいて、ウェット性能および転がり抵抗性能を向上させた乗用車用空気入りラジアルタイヤを提供することができる。
1:乗用車用空気入りラジアルタイヤ
2:ビード部
3:カーカス
4:トレッド部
41:トレッドゴム
5:バットレス部
51:バットレスゴム
6:サイドウォール部
7:ベルト
71、72:傾斜ベルト層
73:ベルト補強層
8:周方向主溝
100:サイプ
110:周方向サイプ
111:小穴
120:幅方向溝
130:トレッド端側主溝
131:隣接陸部
132:一端開口溝
133:浅溝
141、142:傾斜ベルト層
143、144:周方向ベルト層
151、152:傾斜ベルト層
153:周方向ベルト層
161、162:傾斜ベルト層
163:周方向ベルト層
171:サイド補強ゴム
181:周方向主溝
CL:タイヤ赤道面
E:トレッド接地端
Le、Lh、Le’:仮想線
T:トレッド踏面

Claims (2)

  1.  一対のビード部間でトロイダル状に跨るラジアル配列コードのカーカスプライからなるカーカスと、当該カーカスのタイヤ半径方向外側に設けられ、トレッド踏面を形成するトレッドゴムと、当該トレッドゴムのタイヤ幅方向外側に位置し、バットレス部を形成するバットレスゴムと、を備えた乗用車用空気入りラジアルタイヤであって、
     前記タイヤをリムに組み込み、内圧を250kPa以上とした際に、
     前記タイヤの断面幅SWが165(mm)未満である場合は、前記タイヤの断面幅SWと外径OD(mm)との比SW/ODが0.26以下であり、
     前記タイヤの断面幅SWが165(mm)以上である場合は、前記タイヤの断面幅SWおよび外径OD(mm)が、関係式、
    2.135×SW+282.3≦OD
    を満たし、
     前記トレッドゴムの、30℃における動的貯蔵弾性率E’が、6.0~12.0MPaであり、且つ、当該トレッドゴムの、60℃における損失正接tanδが、0.05~0.15であり、
     前記バットレスゴムの、30℃における動的貯蔵弾性率E’が、前記トレッドゴムの動的貯蔵弾性率E’の1/2以下であり、且つ、当該バットレスゴムの、60℃における損失正接tanδが、0.1以下であることを特徴とする、乗用車用空気入りラジアルタイヤ。
  2.  前記トレッドゴムの30℃における動的貯蔵弾性率E’が、7.9~11.0MPaであり、
     前記バットレスゴムの30℃における動的貯蔵弾性率E’が、3MPa以下である、請求項1に記載の乗用車用空気入りラジアルタイヤ。
PCT/JP2015/002710 2014-05-30 2015-05-28 乗用車用空気入りラジアルタイヤ WO2015182152A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016523163A JP6581574B2 (ja) 2014-05-30 2015-05-28 乗用車用空気入りラジアルタイヤ
US15/314,728 US20170197465A1 (en) 2014-05-30 2015-05-28 Passenger-vehicle pneumatic radial tire
CN201580028912.2A CN106457915B (zh) 2014-05-30 2015-05-28 乘用车用充气子午线轮胎
EP15798673.8A EP3130479B1 (en) 2014-05-30 2015-05-28 Pneumatic radial tire for use on passenger vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014113481 2014-05-30
JP2014-113481 2014-05-30

Publications (1)

Publication Number Publication Date
WO2015182152A1 true WO2015182152A1 (ja) 2015-12-03

Family

ID=54698497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002710 WO2015182152A1 (ja) 2014-05-30 2015-05-28 乗用車用空気入りラジアルタイヤ

Country Status (5)

Country Link
US (1) US20170197465A1 (ja)
EP (1) EP3130479B1 (ja)
JP (1) JP6581574B2 (ja)
CN (1) CN106457915B (ja)
WO (1) WO2015182152A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3466720A4 (en) * 2016-05-26 2019-05-15 Bridgestone Corporation TIRE
EP3466722A4 (en) * 2016-05-26 2019-05-15 Bridgestone Corporation TIRE
WO2024034260A1 (ja) * 2022-08-08 2024-02-15 株式会社ブリヂストン 乗用車用空気入りラジアルタイヤ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5810204B1 (ja) 2014-10-08 2015-11-11 株式会社ブリヂストン 乗用車用空気入りラジアルタイヤ
CN109863044B (zh) * 2017-07-13 2020-04-17 住友橡胶工业株式会社 充气轮胎以及轮胎用橡胶组合物
WO2019102148A1 (fr) * 2017-11-24 2019-05-31 Compagnie Generale Des Etablissements Michelin Pneumatique pour vehicule de tourisme
JP7397272B2 (ja) * 2017-12-08 2023-12-13 横浜ゴム株式会社 空気入りタイヤ
JP2020093677A (ja) * 2018-12-13 2020-06-18 株式会社ブリヂストン 乗用車用空気入りラジアルタイヤ
WO2020141012A1 (en) * 2018-12-31 2020-07-09 Goldhofer Ag Heavy-load vehicle
CN111159874A (zh) * 2019-12-25 2020-05-15 江苏大学 一种降低轮胎风阻的轮胎外轮廓结构的设计方法
JP2021130442A (ja) * 2020-02-21 2021-09-09 住友ゴム工業株式会社 タイヤ
JP6769573B1 (ja) * 2020-02-28 2020-10-14 住友ゴム工業株式会社 タイヤ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07164821A (ja) * 1993-12-10 1995-06-27 Bridgestone Corp 空気入りタイヤ
JP2005336347A (ja) * 2004-05-27 2005-12-08 Bridgestone Corp 空気入りタイヤ
JP2008143485A (ja) * 2006-12-13 2008-06-26 Bridgestone Corp 空気入りタイヤ
WO2013065319A1 (ja) * 2011-11-02 2013-05-10 株式会社ブリヂストン 乗用車用空気入りラジアルタイヤ及びその使用方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770707A (en) * 1980-10-16 1982-05-01 Bridgestone Corp Pneumatic radial tire
JPH07242105A (ja) * 1994-03-04 1995-09-19 Bridgestone Corp 重荷重用空気入りタイヤ
JPH08164718A (ja) * 1994-12-13 1996-06-25 Ohtsu Tire & Rubber Co Ltd :The 空気入りラジアルタイヤ
ES2165567T3 (es) * 1996-06-11 2002-03-16 Bridgestone Corp Cubiertas neumaticas radiales.
DE602004026042D1 (de) * 2003-04-04 2010-04-29 Yokohama Rubber Co Ltd Luftreifen
JP4312613B2 (ja) * 2004-01-19 2009-08-12 東洋ゴム工業株式会社 空気入りタイヤ
US7543619B2 (en) * 2005-12-29 2009-06-09 Sumitomo Rubber Industries, Ltd. Heavy duty tire
JP2008168800A (ja) * 2007-01-12 2008-07-24 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
WO2011030431A1 (ja) * 2009-09-10 2011-03-17 株式会社ブリヂストン ランフラットタイヤ
NL2004734C2 (nl) * 2010-05-18 2011-11-21 Vmi Holland Bv Werkwijze en samenstel voor het vervaardigen van een groene band.
BR112014002005A2 (pt) * 2011-07-28 2017-02-21 Bridgestone Corp pneumático radial para um veículo de passageiros e método para utilizar o pneu

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07164821A (ja) * 1993-12-10 1995-06-27 Bridgestone Corp 空気入りタイヤ
JP2005336347A (ja) * 2004-05-27 2005-12-08 Bridgestone Corp 空気入りタイヤ
JP2008143485A (ja) * 2006-12-13 2008-06-26 Bridgestone Corp 空気入りタイヤ
WO2013065319A1 (ja) * 2011-11-02 2013-05-10 株式会社ブリヂストン 乗用車用空気入りラジアルタイヤ及びその使用方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3466720A4 (en) * 2016-05-26 2019-05-15 Bridgestone Corporation TIRE
EP3466722A4 (en) * 2016-05-26 2019-05-15 Bridgestone Corporation TIRE
WO2024034260A1 (ja) * 2022-08-08 2024-02-15 株式会社ブリヂストン 乗用車用空気入りラジアルタイヤ

Also Published As

Publication number Publication date
JP6581574B2 (ja) 2019-09-25
EP3130479A1 (en) 2017-02-15
CN106457915A (zh) 2017-02-22
JPWO2015182152A1 (ja) 2017-04-20
US20170197465A1 (en) 2017-07-13
CN106457915B (zh) 2018-07-20
EP3130479A4 (en) 2017-05-31
EP3130479B1 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
JP6581574B2 (ja) 乗用車用空気入りラジアルタイヤ
JP6605460B2 (ja) 乗用車用空気入りラジアルタイヤ
US10773554B2 (en) Pneumatic tire
JP6537496B2 (ja) 空気入りタイヤ
JP6516726B2 (ja) 空気入りタイヤ
WO2016056168A1 (ja) 乗用車用空気入りラジアルタイヤ
WO2015182150A1 (ja) 空気入りタイヤ
US10639936B2 (en) Pneumatic tire
WO2015182151A1 (ja) 空気入りタイヤ
WO2015170478A1 (ja) 乗用車用空気入りラジアルタイヤ
JP6393658B2 (ja) 空気入りタイヤ
WO2018230265A1 (ja) タイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15798673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523163

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015798673

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015798673

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15314728

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE