WO2015181164A1 - Élément convertisseur pour la conversion d'une longueur d'onde, composant opto-électronique présentant un élément convertisseur, et procédé de production d'un élément convertisseur - Google Patents

Élément convertisseur pour la conversion d'une longueur d'onde, composant opto-électronique présentant un élément convertisseur, et procédé de production d'un élément convertisseur Download PDF

Info

Publication number
WO2015181164A1
WO2015181164A1 PCT/EP2015/061583 EP2015061583W WO2015181164A1 WO 2015181164 A1 WO2015181164 A1 WO 2015181164A1 EP 2015061583 W EP2015061583 W EP 2015061583W WO 2015181164 A1 WO2015181164 A1 WO 2015181164A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter element
phosphor
matrix material
filler
embedded
Prior art date
Application number
PCT/EP2015/061583
Other languages
German (de)
English (en)
Inventor
Ion Stoll
Kathy SCHMIDTKE
Markus Burger
Stefan Lange
Vera Stoeppelkamp
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Publication of WO2015181164A1 publication Critical patent/WO2015181164A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package

Definitions

  • Converter element for converting a wavelength, opto ⁇ electronic component with converter element and method for producing a converter element
  • the present invention relates to a converter element for converting a wavelength of electromagnetic radiation according to claim 1, an optoelectronic component according to claim 10 and a method for producing a converter element according to claim 11.
  • Optoelectronic components with converter elements for converting a wavelength of electromagnetic radiation are known from the prior art.
  • LED devices light emitting diode devices
  • a converter element is vorgese ⁇ hen to convert a wavelength of a light emitting diode chip (LED chip) generated electromagnetic radiation and so, for example, narrow-band blue light in white To change light.
  • Such converter elements typically comprise a matrix material ⁇ , in the wavelength-converting particles have a ⁇ embedded.
  • a common method for producing such converter elements is screen or stencil printing.
  • a paste of the matrix material with theRocbet ⁇ ended particles is printed on a carrier film.
  • the production of smooth surfaces and precise contours are desirable.
  • An object of the present invention is to provide a converter element for converting a wavelength of electromagnetic radiation ⁇ .
  • This task will solved by a converter element with the features of claim 1.
  • Another object of the present invention be ⁇ is to provide an optoelectronic component having an optoelectronic semiconductor chip and a converter element. This object is achieved by an optoelectronic component with the features of claim 10.
  • Another object of the invention is to provide a method of manufacturing a converter element. This object is achieved by a method having the features of claim 11. In the dependent claims various developments are given.
  • a converter element for converting a wavelength of electromagnetic radiation comprises a matrix material into which a first phosphor and a first filler are turned embeds ⁇ .
  • the first phosphor includes a crystalline first host material that is doped with a first Aktivatormate ⁇ rial.
  • the first filler comprises the first host ⁇ material without the first activator.
  • the matrix material of this converter element can have a low content of the first phosphor, without this being accompanied by disadvantageous properties of the matrix material and / or of the converter element.
  • the low content of the first phosphor in the matrix material is advantageously compensated in the matrix material of this converter element by the first filler embedded in the matrix material.
  • the matrix material of this converter element have properties that allow Ausbil ⁇ extension of the converter element with a sufficiently smooth Oberflä ⁇ Chen and sufficiently high contour accuracy.
  • the embedded in the matrix material of the converter element first filler causes advantageously no or only ei ⁇ ne slight deterioration of the optical properties of the converter element.
  • Another advantage of the converter element is that a material with good aging stability can be selected for the matrix material.
  • the first phosphor in the form of phosphor particles is embedded in the matrix material.
  • this allows a simple production of the converter element from the matrix material.
  • the first filler is embedded in the matrix material in the form of filler particles.
  • the embedded into the matrix material first filler effected by a similarity ⁇ che influence the properties of the matrix material as the embedded into the matrix material first phosphor. This makes it possible to form the converter element with a low content of the first phosphor.
  • the filler particles have an average particle size which differs from an average particle size of the phosphor particles by less than 20%, preferably by less than 15%, particularly preferably by less than 10%.
  • Advantageously ⁇ example cause the filler particles thereby a similar effect on the properties of the matrix material, such as embedded in the matrix material phosphor particles. Due to the similar size of the filler particles and the
  • Fluorescent particles can be advantageously further improved process stability in typical proces ⁇ processing processes of the matrix material of the converter element rich he ⁇ .
  • the first phosphor and the first filler can be embedded in the matrix material, for example, by sedimentation processes, and due to the similar size and density of the filler particles and the phosphor particles, no or only very little separation of the first phosphor and the first Fill ⁇ substance comes.
  • the filler particles have an average particle size between 5 ⁇ m and 30 ⁇ m, preferably an average particle size between 10 ym and 30 ym, more preferably an average particle size ⁇ between 15 and 30 ym ym, most preferably a mean particle size between 15 .mu.m and 18 .mu.m.
  • the matrix material of the converter element for the production of the converter element be ⁇ Sonders favorable properties when the mitt ⁇ sized particle size of the filler particles move in the said size range.
  • the converter element in this case can have sufficiently smooth surfaces and a sufficiently high contour accuracy.
  • the converter element the ers ⁇ te host material (Y, Lu, Gd, Tb) 3 (Ali_ x Ga x) 5O12, (Ba, Sr, Ca) Si 2 0 2 N 2, (Ba, Sr, Ca) 2 Si0 4 , (Ba, Sr, Ca) 2 Si 5 N 8 , (Sr, Ca) AlSiN 3 * Si 2 N 2 O,
  • these host materials are suitable for doping with the first activator material.
  • the matrix material comprises silicone.
  • this allows a cost-effective production of the matrix material and a simple processing of the matrix material.
  • the converter element made of the matrix material can have favorable mechanical properties and high aging stability.
  • the converter element, the mass fraction of the first phosphor in the Matrixma ⁇ TERIAL and the mass proportion of the first filler in the Mat- rixmaterial differ by less than 50%, preferably by less than 20%.
  • the first filler in this case a compensation of a low content of the f ⁇ phosphor, in the matrix material.
  • the converter element is in the
  • Matrix material, a second phosphor and a second filling ⁇ material embedded The second phosphor has a crystal ⁇ line second host material, which with a second acti father material is doped.
  • the second filler has the second crystalline host material without the second Aktivatorma ⁇ TERIAL.
  • two different phosphors can be embedded in the matrix material of the converter element in this case.
  • the two phosphors can be provided, for example, to electromagnetic
  • Both phosphors can make up a small proportion in the matrix material.
  • the low proportion of the phosphors in the matrix material is compensated by the first filler embedded in the matrix material and the second filler embedded in the matrix material, taking advantage of the fact that the first filler and the second filler influence the properties of the matrix material in a similar or similar manner the first phosphor and the second phosphor.
  • the second phosphor may, for example, be embedded in the matrix material in the form of second phosphor particles. Accordingly, the second filler in the form of second filler particles can also be embedded in the matrix material.
  • An optoelectronic component comprises an optoelectronic ⁇ African semiconductor chip and a converter element of the aforementioned type.
  • the converter element of this optoelectronic device may have a low content of the first phosphor. Because of the embedded into the Matrixma ⁇ TERIAL of the converter element first filler the converter element of this optoelectronic Bauele ⁇ ments advantageously still sufficiently smooth surfaces can Chen and have a sufficiently high contour accuracy.
  • a method of fabricating a converter element comprises steps of providing a matrix material having a first phosphor embedded in the matrix material and a first filler embedded in the matrix material, the first phosphor having a crystalline first host material doped with a first activator material and wherein the first one Filler the first host material without comprises the first activator material, and for producing egg ⁇ nes converter element of the matrix material by means of a printing process.
  • the matrix material can be formed in this method with a low content of the first phosphor.
  • the first filler likewise embedded in the matrix material compensates for the low content of the first phosphor in the matrix material. Characterized the converter element in the manufacture of the converter element of the matrix material by means of the pressure ⁇ method can be advantageously made with sufficiently smooth upper surfaces and sufficient ⁇ contour fidelity.
  • the printing method is a screen or stencil printing method.
  • the embedded in the matrix material first filler advantageously prevents even at a low content of the first phosphor in the matrix material that a lattice ⁇ net structure used in the printing process
  • the converter element is so printed on a first carrier sheet that has a first surface of the converter element is facing the first Trä ⁇ gerfolie.
  • this method enables a subsequent detachment of the converter element from the first carrier film in order to arrange the converter element in ⁇ example, on an optoelectronic semiconductor chip.
  • the converter element is so converted adhered to a second carrier foil that one of the first surface facing opposite second Oberflä ⁇ surface of the converter element of the second carrier film. Since the second surface of the converter element ⁇ advantageous way by the legally contained in the matrix material ERS th filler may be formed sufficiently smooth haf ⁇ tet the second surface of the converter element thereby before ⁇ geous legally well to the second carrier film.
  • the wrap it of the converter element of the first carrier sheet on the second carrier film can allow subsequent assembly of the Kon ⁇ verterelements on an upper surface of an optoelectronic semiconductor chip.
  • the converter element is thermally cured between the printing of the converter element and the gluing of the converter element. Before ⁇ geous enough, this increases the mechanical robust ⁇ unit of the converter element.
  • Figure 1 is a sectional side view of a Konverterele ⁇ management
  • FIG. 2 shows a perspective view of an optoelectronic component with an optoelectronic semiconductor chip and the converter element.
  • FIG. 1 shows a schematic sectional side view of a converter element 100.
  • the converter element 100 can also be referred to as a converter plate.
  • the converter element 100 is provided for converting a wavelength of electromagnetic radiation ⁇ .
  • the converter element can be used in an optoelectronic component for converting a wavelength of electromagnetic radiation emitted by an optoelectronic semiconductor chip of the optoelectronic component.
  • the converter element 100 can be in a light emitting device (LED) device used to convert a wave length of ⁇ by a light emitting diode chip (LED chip) of the light-emitting device emitted light.
  • LED light emitting device
  • the converter element 100 can serve, for example, to convert light emitted by the light-emitting diode chip with a wavelength from the ultraviolet or blue spectral range into white light.
  • the converter element 100 has a matrix material 110 into which a phosphor 121 in the form of phosphor particles 120 is embedded.
  • the matrix material 110 may comprise, for example, a silicone.
  • the phosphor 121 of the phosphor particles 120 effects the wavelength conversion of electromagnetic radiation.
  • the phosphor 121 of the phosphor particles 120 is designed to absorb electromagnetic radiation having a first wavelength and then to emit electromagnetic radiation having a second, typically larger, wavelength.
  • the phosphor 121 of the phosphor particles 120 has a host material doped with an activator material.
  • the host material may also be referred to as a host lattice.
  • the host material of the phosphor 121 of the phosphor particles 120 may be, for example, (Y, Lu, Gd, b) 3 (Ali x Ga x ) 5 Oi 2, (Ba, Sr, Ca) Si 2 O 2 N 2 , (Ba, Sr, Ca) 2 Si0 4, (Ba, Sr, Ca) 2 Si 5 N 8, (Sr, Ca) AlSiN 3 * Si 2 N 2 0, (Sr, Ca) AlSiN3, or Ca 8 Mg (Si0 4) 4 C1 2 on ⁇ wise.
  • the activator material with which the host material of the phosphor 121 of the phosphor particles 120 is doped can be, for example, Ce or Eu.
  • the phosphor 121 of the phosphor particles 120 preferably has a crystalline form.
  • a filler 131 is embedded in the matrix material 110 of the converter element 100.
  • the filler 131 is embedded in the form of filler particles 130 in the matrix material 110, which preferably have a kris ⁇ talline shape.
  • the filler 131 has the same "
  • the host material of the filler is 131 not doped with the Aktivatormate ⁇ rial.
  • the filler 131 is not to electromagnetic waves ⁇ length Conversion radiation trained det.
  • the embedded in the matrix material 110 filler particles 130 scatter to electromagnetic radiation impinging without changing the wavelength of the electromagnetic radiation ⁇ rule.
  • the mass proportion of corresponds to the matrix material 110 of the convergence ⁇ terelements 100 embedded phosphor 121 be ⁇ vorzugt substantially to the mass fraction of the embedded into the Matrixma ⁇ TERIAL 110 filler 131.
  • Preferred among ⁇ the mass fraction of the embedded into the matrix material 110 phosphor part 121 and the mass fraction of the filler 131 embedded in the matrix material 110 is less than 50%, particularly preferably less than 20%.
  • the embedded in the matrix material 110 phosphor 121 may have for example a mass fraction of 30% or less on ⁇ .
  • the filler particles 130 Since the phosphor 121 of the fluorescent particles 120 and the filler 131, the filler particles 130 have the same host mate rial ⁇ , 130 have the filler particles in the materiality borrowed the same mass and the same optical density
  • a ⁇ bedded phosphor particles 120 have an average phosphor particle size 122nd
  • the filler particles 130 embedded in the matrix material 110 of the converter element 100 have an average filler particle size 132.
  • the mean particle size phosphor 122 of the fluorescent particles 120 corresponds approximately to the mitt ⁇ sized filler particle size differ 132.
  • the average phosphor particle size 122, and the mitt ⁇ sized filler particle size 132 by less than 20%, special ⁇ DERS preferably by less than 15%, most preferably by less than 10%.
  • the average phosphor particle size 122 of the phosphor particles 120 and the average filler particle size 132 of the filler particles 130 differ by less than 2 ⁇ m. If the average phosphor particle size 122 of the light emitting ⁇ material particles 120 corresponds approximately to the average filler particle size of 132 of the filler particles 130 and the light emitting ⁇ material particles 120 have approximately the same mass density as the filler particles 130, it can be advantageously achieve a particularly high process stability during the proces ⁇ processing of the matrix material 110 with the embedded light ⁇ material particles 120 and filler particles 130th This leads, for example, only in a very low Entmi ⁇ research of the phosphor particles 120 and the filler particles 130 in the matrix material 110th
  • a ⁇ bedded filler particles 130 may alternatively or additionally have an average filler particle size 132 between 5 .mu.m and 30 .mu.m, preferably an average filler particle size of 132 between 10 .mu.m and 30 .mu.m, particularly before ⁇ an average filler particle size 132 between 15 ym and 30 ym, most preferably an average filler particle size 132 between 15 ym and 18 ym.
  • the medium-re filler particle size 132 greater than 10 ym, preferably greater than 15 ym is, it is advantageously mainly sprinkled onto the filler particles 130 light striking in preference ⁇ direction, thereby forming a through into the matrix material 110 of the converter element 100 embedded filler particles 130 caused light loss can be kept low.
  • the 120 ⁇ is embedded in the form of the phosphor particles 121
  • another phosphor may be embedded in the form of further phosphor particles in the matrix material 110th
  • the additional phosphor is also provided for converting a wavelength electromagnetic ⁇ shear-radiation, but can thereby erzeu ⁇ gene, for example, electromagnetic radiation of a wavelength other than the phosphor 121.
  • the embedded in the form of other fluorescent particles in the matrix material 110 more fluorescent has a further host material which in ⁇ example (Y, Lu, Gd, Tb) 3 (Al! _ x Ga x ) 5O12, (Ba, Sr, Ca) Si 2 0 2 N 2 , (Ba, Sr, Ca ) 2 Si0 4 , (Ba, Sr, Ca) 2 Si 5 N 8 , (Sr, Ca) AlSiN 3 * Si 2 N 2 O,
  • (Sr, Ca) AlSiN3, or CasMg 4 C1 2 may have (S1O 4).
  • the wider ⁇ re host material of the other phosphor may differ from the host material of the phosphor 121.
  • the further host material of the further phosphor is doped with a further activator material which may correspond to or differ from the activator material of the phosphor 121.
  • a further phosphor in the form of further phosphor particles is embedded in the matrix material 110 of the converter element 100
  • another filler in the form of further filler particles is preferably also embedded in the matrix material 110 of the converter element 100.
  • the further filler has the same further host material as the further phosphor, although the further host material is not doped in the further filler.
  • the ratio of the further filler embedded in the matrix material 110 in the form of the further filler particles to the further phosphor embedded in the matrix material 110 in the form of the further phosphor particles is the same as for the ratio of the filler particles 130 embedded in the matrix material 110 filler 131 131 to the in the form of the phosphor particles
  • the converter element 100 has a substantially cuboidal basic shape with an upper side
  • a recess 140 may be formed on an edge of the cuboidal basic shape of the converter element 100 that extends between the upper side 101 and the lower side 102.
  • the converter element 100 can be produced by a printing process.
  • the printing method may be, for example, a screen printing method or a stencil printing method.
  • the matrix material 110 with the embedded phosphor particles 120 and filler particles 130 in a viscous paste form is printed on a carrier sheet 200 using a printing screen or a stencil sheet.
  • the underside 102 of the converter element 100 is formed on the surface of the carrier film 200.
  • the converter element 100 can be printed together with a plurality of further converter elements 100 at the same time onto the carrier foil 200.
  • the matrix material 110 may have a favorable consistency for carrying out the printing process, even if the mass fraction of the phosphor particles 120 in the matrix material 110 is low and for example, less than 30%.
  • the top side 101 of the converter element 100 can be formed with a low degree of roughness or unevenness, wherein a grid network structure of a printing screen used in the printing method or a printing template used in the printing method images only to a slight extent on the top side 101 of the converter element 100 ,
  • the converter element 100 can be formed with a good contour accuracy, for example in the region of the outer edges and the recess 140.
  • the converter element 100 can be cured, for example by a thermal treatment.
  • the converter element 100 can be glued onto a second carrier foil and detached from the carrier foil 200.
  • the re-adhering of the converter element 100 takes place in such a way that the upper side 101 of the converter element 100 adheres to the second film.
  • We ⁇ gen of low roughness and unevenness of the top 101 of the converter element 100 can thereby be ensured advantageously good adhesion.
  • another tool for handling the converter element 100 pick & place tool
  • pick & place tool can also be used.
  • the Konverterele ⁇ element 100 may be disposed on an optoelectronic semiconductor chip of an optoelectronic device.
  • FIG. 2 shows a schematic perspective view of an optoelectronic component 400.
  • the optoelectronic component 400 may be, for example, a light-emitting diode component (LED component).
  • the optoelectronic component 400 comprises an optoelectronic semiconductor chip 300 and the converter element 100.
  • the optoelectronic semiconductor chip 300 may, for example, be a light-emitting diode chip (LED chip).
  • the optoelectronic semiconductor chip 300 has an upper side 301 and an upper side 302 opposite the upper side 301.
  • the upper ⁇ page 301 of the optoelectronic semiconductor chip 300 forms a radiation emission area of the optoelectronic semiconductor chip 300.
  • electromagnetic radiation is emitted on the upper side 301 of the optoelectronic semiconductor chip.
  • the optoelectronic semiconductor chip 300 may be, for example be adapted to emit electromagnetic radiation having a wavelength from the ultraviolet or blue spectral range.
  • the converter element 100 is arranged on the upper side 301 of the opto ⁇ electronic semiconductor chip 300 in the optical path of the electromagnetic radiation emitted by the optoelectronic semiconductor chip 300.
  • the lower side 102 of the converter element 100 faces the upper side 301 of the optoelectronic semiconductor chip 300.
  • the converter element 100 is provided to convert part of the electromagnetic radiation emitted by the optoelectronic semiconductor chip 300 into electromagnetic radiation of another wavelength, for example light having a wavelength from the green or red spectral range.
  • the reservation made through the converter element 100 Wellenauernkon ⁇ set conversion is performed by the embedded into the matrix material 110 of the converter element 100 in the form of the phosphor particles 120 phosphor 121st
  • the optoelectronic semiconductor chip 300 of the optoelectronic component 400 has an electrical contact surface 310 on its upper side 301.
  • a further electrical contact surface of the optoelectronic semiconductor chip 300 may be formed, for example, on the underside 302 of the optoelectronic semiconductor chip 300.
  • the converter element 100 is arranged on the upper side 301 of the optoelectronic semiconductor chip 300 such that the recess 140 of the converter element 100 is arranged in the region of the contact surface 310 of the optoelectronic semiconductor chip 300 and the contact surface 310 is thus not covered by the converter element 100. This makes it possible to electrically contact the contact surface 310 on the upper side 301 of the optoelectronic semiconductor chip 300 with ⁇ means of a bonding wire 320.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Abstract

L'invention concerne un élément convertisseur (100) pour la conversion d'une longueur d'onde d'un rayonnement électromagnétique, comprenant un matériau de matrice (110), dans lequel sont encastrées une première substance luminescente (121) et une première matière de charge (131). La première substance luminescente (121) présente un premier matériau hôte cristallin, qui est dopé par un premier matériau activateur. La première matière de charge (131) présente le premier matériau hôte, sans le premier matériau activateur.
PCT/EP2015/061583 2014-05-27 2015-05-26 Élément convertisseur pour la conversion d'une longueur d'onde, composant opto-électronique présentant un élément convertisseur, et procédé de production d'un élément convertisseur WO2015181164A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014107473.4 2014-05-27
DE102014107473.4A DE102014107473A1 (de) 2014-05-27 2014-05-27 Konverterelement zur Konvertierung einer Wellenlänge, optoelektronisches Bauelement mit Konverterelement und Verfahren zum Herstellen eines Konverterelements

Publications (1)

Publication Number Publication Date
WO2015181164A1 true WO2015181164A1 (fr) 2015-12-03

Family

ID=53365992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/061583 WO2015181164A1 (fr) 2014-05-27 2015-05-26 Élément convertisseur pour la conversion d'une longueur d'onde, composant opto-électronique présentant un élément convertisseur, et procédé de production d'un élément convertisseur

Country Status (2)

Country Link
DE (1) DE102014107473A1 (fr)
WO (1) WO2015181164A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021117858A1 (de) 2021-07-09 2023-01-12 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronische leuchtvorrichtung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3188260B1 (fr) * 2015-12-31 2020-02-12 Dow Global Technologies Llc Structures et procédés de matériau à nanostructure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006005042A1 (de) * 2006-02-03 2007-08-09 Tridonic Optoelectronics Gmbh Licht emittierende Vorrichtung mit nicht-aktiviertem Leuchtstoff
WO2007148253A1 (fr) * 2006-06-21 2007-12-27 Philips Intellectual Property & Standards Gmbh Dispositif électroluminescent avec au moins un matériau convertisseur de couleur sphérique en céramique
WO2011005733A1 (fr) * 2009-07-10 2011-01-13 Cree, Inc. Structures d'éclairage comprenant des particules de diffusion comprenant des matières hôtes de luminophore
DE102009040148A1 (de) * 2009-09-04 2011-03-10 Osram Opto Semiconductors Gmbh Konversionsmittelkörper, optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips
WO2012131532A1 (fr) * 2011-03-25 2012-10-04 Koninklijke Philips Electronics N.V. Couche de matériau fluorescent au silicone sensible aux ultraviolets à motifs sur des diodes électroluminescentes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006051756A1 (de) * 2006-11-02 2008-05-08 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Lichtquelle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006005042A1 (de) * 2006-02-03 2007-08-09 Tridonic Optoelectronics Gmbh Licht emittierende Vorrichtung mit nicht-aktiviertem Leuchtstoff
WO2007148253A1 (fr) * 2006-06-21 2007-12-27 Philips Intellectual Property & Standards Gmbh Dispositif électroluminescent avec au moins un matériau convertisseur de couleur sphérique en céramique
WO2011005733A1 (fr) * 2009-07-10 2011-01-13 Cree, Inc. Structures d'éclairage comprenant des particules de diffusion comprenant des matières hôtes de luminophore
DE102009040148A1 (de) * 2009-09-04 2011-03-10 Osram Opto Semiconductors Gmbh Konversionsmittelkörper, optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips
WO2012131532A1 (fr) * 2011-03-25 2012-10-04 Koninklijke Philips Electronics N.V. Couche de matériau fluorescent au silicone sensible aux ultraviolets à motifs sur des diodes électroluminescentes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021117858A1 (de) 2021-07-09 2023-01-12 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronische leuchtvorrichtung

Also Published As

Publication number Publication date
DE102014107473A1 (de) 2015-12-03

Similar Documents

Publication Publication Date Title
EP2382673B1 (fr) Composant semi-conducteur optoélectronique et procédé de sa fabrication
EP3251156A1 (fr) Composant optoélectronique à semi-conducteur et son procédé de fabrication
DE112018000656T5 (de) LED-Baugruppe und Verfahren zur Herstellung derselben
DE102011113962B4 (de) Verfahren zur Herstellung eines keramischen Konversionselements
WO2019145422A1 (fr) Puce semi-conductrice optoélectronique, composant optoélectronique et son procédé de fabrication
WO2013004737A1 (fr) Procédé de production d'un élément de conversion, et élément de conversion
EP2652806A1 (fr) Procédé de production d'une couche de matériau de conversion de luminescence, composition associée et élément comprenant une telle couche de matériau de conversion de luminescence
DE102013102482A1 (de) Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements
DE102011009803B4 (de) Lichtemittierendes Element
WO2018158091A1 (fr) Procédé pour la fabrication de diodes électroluminescentes et diode électroluminescente
WO2015181164A1 (fr) Élément convertisseur pour la conversion d'une longueur d'onde, composant opto-électronique présentant un élément convertisseur, et procédé de production d'un élément convertisseur
WO2020038722A1 (fr) Composant semi-conducteur optoélectronique et procédé de fabrication d'un composant semi-conducteur optoélectronique
DE102009048856A1 (de) Halbleiter-Leuchtvorrichtung und Verfahren zur Herstellung einer solchen
DE102022132657A1 (de) Lichtemittierende vorrichtung
WO2015185296A1 (fr) Dispositif de conversion de rayonnement lumineux et son procédé de production
DE102010061848A1 (de) LED-Modul mit vorgefertigtem Element
DE102010049312B4 (de) Verfahren zur Herstellung eines Konversionsplättchens und Konversionsplättchen
WO2015107211A1 (fr) Procédé de fabrication d'une couche de phosphore structurée latéralement et composant semi-conducteur optoélectronique comportant une telle couche de phosphore
DE112017000624T5 (de) Licht emittierende Vorrichtung und Verfahren zu deren Herstellung
EP3123531B1 (fr) Module led comprenant un dispositif optique secondaire intégré
WO2015185614A1 (fr) Procédé de fabrication d'un composant optoélectronique et composition optoélectronique
WO2012100868A1 (fr) Puce semiconductrice optoélectronique et procédé de fabrication correspondant
AT14515U1 (de) LED-Modul mit hohem Farbwiedergabeindex
WO2014016214A1 (fr) Procédé pour garnir une surface de substance luminescente
WO2018024824A1 (fr) Élément structural doté d'un composant électroluminescent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15727597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15727597

Country of ref document: EP

Kind code of ref document: A1