WO2012100868A1 - Puce semiconductrice optoélectronique et procédé de fabrication correspondant - Google Patents

Puce semiconductrice optoélectronique et procédé de fabrication correspondant Download PDF

Info

Publication number
WO2012100868A1
WO2012100868A1 PCT/EP2011/071526 EP2011071526W WO2012100868A1 WO 2012100868 A1 WO2012100868 A1 WO 2012100868A1 EP 2011071526 W EP2011071526 W EP 2011071526W WO 2012100868 A1 WO2012100868 A1 WO 2012100868A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
semiconductor chip
matrix material
semiconductor
layer stack
Prior art date
Application number
PCT/EP2011/071526
Other languages
German (de)
English (en)
Inventor
Lutz Höppel
Alexander Linkov
Jürgen Moosburger
Sebastian Taeger
Berthold Hahn
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Publication of WO2012100868A1 publication Critical patent/WO2012100868A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the invention relates to an optoelectronic
  • Semiconductor chip comprising a semiconductor layer stack and a conversion layer and a method for the same
  • Semiconductor layer stack comprises.
  • the conventionally known conversion layer is composed of a matrix material, for example silicone or resin, and converter particles arranged therein.
  • Conversion layer is applied, for example, as a separate layer on the semiconductor chip or arranged as Volumenverguss to the semiconductor chip.
  • Specify a semiconductor chip in which a return reflection of the radiation in the direction of the chip is avoided without negatively influencing the thermal connection of the conversion layer or the homogeneity of the color locus over the emission angle.
  • the chip is characterized by an efficient light extraction independent of a hard to control chip roughening. It is a further object of the present application to specify a production method for such a semiconductor chip.
  • the semiconductor chip has a semiconductor layer stack which has a semiconductor layer stack
  • the semiconductor chip on a conversion layer which is arranged on the radiation exit side of the semiconductor layer stack, wherein the conversion layer a Matrix material and converter particles, which are suitable for converting at least a portion of the radiation emitted by the active layer radiation in radiation of a different wavelength.
  • the matrix material of the conversion layer has a refractive index which is adapted to the refractive index of the semiconductor layer stack.
  • An optoelectronic semiconductor chip is, in particular, a semiconductor chip which enables the conversion of electronically generated data or energies into light emission or
  • Semiconductor chip a radiation-emitting semiconductor chip.
  • the refractive index of the conversion layer is adapted to the refractive index of the layers of the semiconductor layer stack.
  • the refractive index of the conversion layer is adapted to the layer of the semiconductor layer stack which terminates the semiconductor chip on the radiation exit side.
  • adapted means that the refractive index of the conversion layer corresponds to the refractive index of the
  • the deviation between the refractive index of the conversion layer and the refractive index of the semiconductor layer stack is as small as possible.
  • the deviation of the refractive indices is less than 10%. In the present semiconductor chip is therefore a
  • the converter particles are very well thermally attached to the semiconductor chip due to the embedding in the matrix material.
  • the converter particles can be tightly packed in the matrix material, so that the height of the
  • Conversion layer can be made small.
  • the height of the conversion layer is determined inter alia by the choice of the color locus emitted by the semiconductor chip
  • Such a semiconductor chip further advantageously has an improved color homogeneity over the emission angle, which is made possible due to the resulting strong scattering within the thin conversion layer. Furthermore, such a semiconductor chip is characterized in that the efficiency of the semiconductor chip is independent of a surface roughness of the semiconductor layer stack, which is usually difficult to control. This means that such a surface roughness of the semiconductor layer stack can be dispensed with without disadvantage.
  • the semiconductor layer stack in particular the active
  • III / V semiconductor material such as a material from the material systems In x GayAl ] __ x _yP, In x GayAl ] __ x _yN or In x GayAl ] __ x _yAs, each with 0 ⁇ x, y ⁇ 1 and x + y ⁇ 1.
  • III / V semiconductor materials are for
  • the active layer of the semiconductor layer stack preferably contains a pn junction, a double heterostructure, a single quantum well structure (SQW, single quantum well) or a multiple quantum well structure (MQW, multi quantum well) for generating radiation.
  • SQL single quantum well structure
  • MQW multiple quantum well structure
  • quantum wells In terms of the dimensionality of the quantization. It includes, among other things, quantum wells, quantum wires and
  • Quantum dots and any combination of these structures.
  • the semiconductor chip has a radiation exit side for the radiation generated in the semiconductor chip.
  • Radiation exit side is preferably a large proportion of the radiation generated by the active layer of the
  • the semiconductor chip preferably has a mounting side, with which the semiconductor chip, for example, on a
  • Carrier substrate is arranged.
  • the conversion layer is preferably arranged directly downstream of the radiation exit side of the semiconductor chip, so that the radiation emitted by the active layer exits the semiconductor chip through the conversion layer on leaving the semiconductor chip or is converted into radiation of a different wavelength in the conversion layer.
  • the conversion layer is preferably in direct, physical contact with the
  • Conversion layer in particular the converter particles, can touch a material of the semiconductor layer stack.
  • the converter particles are preferably introduced uniformly on the radiation exit side and / or in the matrix material of the conversion layer, so that a uniform radiation decoupling over the emission angle and a uniform radiation conversion is made possible.
  • Semiconductor chip emits in particular mixed radiation
  • the conversion layer preferably, no full conversion of the radiation emitted by the active layer takes place, with which the conversion layer is transparent at least for a part of the radiation emitted by the active radiation, so that this fraction of the radiation can pass unconverted through the conversion layer.
  • the radiation exit side is smooth within the manufacturing tolerances. In other words, then the radiation exit side is not provided with a roughening.
  • An average roughness of the radiation exit side is preferably at most 75 nm or at most 10 nm.
  • the matrix material for the radiation emitted by the active layer is at least partially transparent to radiation or transparent.
  • the matrix material is 80%, preferably 90%, most preferably 95%, of the active
  • Matrix material in a range between 2 and 3 inclusive
  • the matrix material is based on a metal oxide or a metal nitride or consists of one or more metal oxides and / or metal nitrides.
  • the matrix material may be electrically conductive or electrically insulating. It is possible that the matrix material is doped.
  • the semiconductor layer stack is based on AlInGaN, wherein the matrix material contains T1O2.
  • GaN and T1O2 advantageously have nearly the same refractive index, whereby a semiconductor chip occurring in the semiconductor chip
  • the converter particles have a particle size in a range between 0.5 ⁇ inclusive and 5 ⁇ or, preferably, between 1 ⁇ and 2 ⁇ on. Such fine converter particles in one
  • Matrix material have sufficient volume scattering so that the radiation emitted by the active layer can be coupled out without additional scattering at the surface of the conversion layer. In this case, roughening of the surface of the conversion layer or roughening of the radiation exit side of the semiconductor layer stack is advantageously not necessary.
  • Converter particles a particle size in a range
  • Surface scattering can be caused by a rough surface of the
  • Conversion layer can be made possible, which is advantageously generated by the conformal embedding of the converter particles in the matrix material.
  • Conversion layer in a range between 1 ⁇ inclusive and 5 ⁇ .
  • the converter particles have a size of 5 .mu.m
  • a thickness of the conversion layer of 5 .mu.m corresponds exactly to one monolayer of the
  • Converter particles With such converter particles, the entire bandwidth of warm to cool white radiation emitted by the semiconductor chip can be made possible.
  • the conversion layer With a thickness of the conversion layer of only 1 ⁇ , so for example a monolayer of converter particles with a size of 1 ⁇ , the conversion allows for cold white radiation.
  • the conversion layer has exactly one, exactly two or exactly three monolayers of
  • Converter particles on In other words, it may then be that no converter particles are stacked on top of each other. A degree of coverage of the radiation exit side with the
  • Converter particles can, seen in plan view, be in the same monopole of between 40% and 70%, or between 50% and 60% inclusive.
  • the degree of coverage is preferably between 60% and 90% inclusive, or between 70% and 90% inclusive.
  • Matrix material smaller than a mean diameter of the converter particles may be that the average thickness of the matrix material is so small that an average thickness of the entire conversion layer is smaller than the average diameter of the converter particles. As a result, a particularly rough conversion layer can be realized.
  • the Conversion layer between 0.25 ⁇ and 3 ⁇ or between 0.4 ⁇ and 1.5 ⁇ . Alternatively or additionally, it is possible that the average roughness of this side of the conversion layer is between 0.2 times and 0.8 times the mean diameter of the converter particles.
  • the converter particles are YAG particles. YAG particles are known to the person skilled in the art, for example, as fine YAG particles or as standard size YAG particles. Fine YAG particles have a particle size of about 1 ⁇ to 2 ⁇ and YAG particles of the standard size have a particle size of about 8 ⁇ to 10 ⁇ on.
  • the active layer of the semiconductor layer stack emits blue radiation, wherein the
  • Converter particles are suitable, blue radiation in yellow
  • Converter particles YAG the semiconductor chip therefore emits mixed radiation of blue and yellow radiation which has a color location in the white radiation range.
  • the semiconductor chip is a light-emitting diode (LED).
  • the semiconductor chip is preferably a thin-film chip, for example a thin-film LED.
  • a semiconductor chip is considered within the scope of the application, during its production the growth substrate on which the semiconductor layer stack epitaxially
  • the thin-film chip may have a carrier substrate for the mechanical stabilization of the semiconductor layers of the semiconductor layer stack.
  • Growth substrate comprising an active layer and a
  • Conversion layer has a refractive index, which is adapted to the refractive index of the layers of the semiconductor layer stack, and
  • Radiation exit side which are adapted to convert at least a portion of the radiation emitted by the active layer radiation in radiation of a different wavelength.
  • the converter particles are advantageously added to the
  • Embedded matrix material having a refractive index almost equal to the refractive index of the semiconductor layer stack means that the matrix material is already arranged on the semiconductor layer stack.
  • the converter particles are first applied to the radiation exit side and subsequently the matrix material.
  • the matrix material is then applied to the
  • the matrix material can be any suitable material.
  • the converter particles and / or the matrix material are processed using an ALD method (atomic layer deposition, atomic layer deposition) or a CVD method (chemical vapor deposition,
  • Roughened matrix material results in a rough surface of the conversion layer, which is especially for converter particles with sizes of 8 ⁇ to 10 ⁇ for a homogeneous coupling over the beam angle of advantage.
  • Figure 1 is a schematic cross section of a
  • FIG. 2 shows a schematic flowchart in connection with a production method according to the invention
  • Figures 3A to 3D are each a diagram concerning the
  • Components such as layers, structures, components and areas, for better representability and / or for better understanding to be shown exaggerated thick or large dimensions.
  • FIG. 1 shows a semiconductor chip 10 which comprises a semiconductor layer stack 1 and a conversion layer 2.
  • the semiconductor chip 10 is, for example, an LED, preferably a thin-film LED.
  • the semiconductor layer stack has an active layer 1 a, which is suitable for electromagnetic radiation in the
  • Semiconductor layer stacks 1 are preferably based on an I I I / V compound semiconductor material.
  • the semiconductor layer stack 1 has a
  • Radiation exit side lb preferably of which largely emitted by the active layer la
  • Semiconductor layer stack 1 is a surface emitting chip.
  • Conversion layer 2 is arranged.
  • the conversion layer 2 is arranged.
  • Conversion layer 2 directly on the radiation exit side lb applied.
  • the conversion layer 2 comprises a matrix material and converter particles, wherein the
  • Converter particles are adapted to convert at least a portion of the radiation emitted by the active layer la radiation in radiation of a different wavelength.
  • the semiconductor chip 10 thus emits mixed radiation which comprises radiation emitted by the active layer 1 a and radiation converted in the conversion layer 2.
  • the conversion layer 2 Preferably, the
  • the active layer 1a preferably emits blue radiation, which is at least partially converted by the converter particles in the conversion layer 2 into yellow radiation, so that the semiconductor chip emits mixed radiation of blue and yellow radiation.
  • the matrix material of the conversion layer is preferably for the radiation emitted by the active layer
  • Unhindered in particular means without scattering or absorption. In particular, scattering or absorption takes place only on the converter particles in the conversion layer 2.
  • the matrix material of the conversion layer 2 has a
  • Refractive index which corresponds to the refractive index of the
  • the semiconductor layer stack 1 is adjusted.
  • the semiconductor layer stack 1 is based on GaN.
  • the matrix material preferably contains T1O2.
  • the refractive index of the semiconductor layer stack 1 and the refractive index of the matrix material are in a range between 2 and 3 inclusive.
  • the refractive index of the semiconductor layer stack is included for example, about 2.52 and the refractive index of the
  • Matrix material at about 2.4.
  • the height of the conversion layer 2 is preferably in a range between 1 ⁇ inclusive and 5 ⁇ .
  • the converter particles in the conversion layer 2 have, for example, a particle size in a range between 1 ⁇ inclusive and 2 ⁇ on. As converter particles find for example YAG particles
  • YAG particles with particle sizes of 1 ⁇ to 2 ⁇ in the Ti02 matrix advantageously have enough
  • Radiation in the semiconductor chip can be avoided. Such reabsorption can occur, for example, due to
  • the converter particles may be densely packed in the conversion layer in one or more monolayers. by virtue of the resulting scattering within the conversion layer is achieved a very good color homogeneity over the emission angle.
  • the emission efficiency is independent of a surface roughness of the semiconductor layer stack or the conversion layer, so that a roughening of these
  • Components can be dispensed without disadvantages.
  • the converter particles may have a particle size in a range between 8 ⁇ inclusive and 10 ⁇ .
  • the surface of the conversion layer facing away from the semiconductor layer stack has a roughening. A correspondingly rough surface of the conversion layer results
  • a thickness of the conversion layer 2 of approximately 5 ⁇ and using converter particles having a size of approximately 5 ⁇ can advantageously a semiconductor chip with a total bandwidth of warm to cold white
  • the thickness of the conversion layer corresponds to a monolayer of fine YAG converter particles embedded in the matrix material.
  • FIG. 2 shows a flowchart for producing a
  • Process step VI becomes a growth substrate
  • a matrix material is applied to a radiation exit side of the semiconductor layer stack, wherein the matrix material has a refractive index which corresponds to the refractive index of the layers of the semiconductor material
  • interference-free embedding can be done for example by means of ALD (atomic layer deposition) or CVD (chemical vapor deposition).
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • the converter particles are therefore subsequently in the transparent matrix material of the conversion layer
  • Converter particles are embedded in the matrix material.
  • step V2 the converter particles directly on the Radiation exit side applied. Subsequently, in step V3, the matrix material on and / or between the
  • FIGS. 3A to 3D show diagrams in which the coupling-out efficiency in the form of the radiant power against the color locus, in particular the X coordinate of FIGS. 3A to 3D
  • Figure 3A shows traces of chips with YAG particles with sizes of 1 ⁇ and 2 ⁇ , in a silicone matrix
  • a TiC> 2 _ matrix are embedded.
  • the X coordinate of the color locus is plotted, which extends from the cold white color locus to the warm white color locus.
  • the radiant power is in
  • the measurement curves S1 and S2 show converter particles in a silicone matrix.
  • the measured curves Tl to T4 show converter particles embedded in a TiC> 2 _ matrix.
  • the measurement curves S1, S2 from the cold-white color locus to the warm-white color locus clearly decrease in the coupling-out efficiency or radiant output.
  • the measured curves T1 to T4 likewise decrease in their radiation power from the cold-white color locus to the warm-white color locus. However, at least in the area of the warm white color location lie the
  • the increase can be explained, in particular, by the reduced back reflection due to the adjusted refractive indices, which advantageously reduces absorptive losses, thus increasing the coupling-out efficiency.
  • converter particles which have a particle size in a range between 8 ⁇ and 10 ⁇ are used in FIG. 3B. It is clearly shown that at least the measurement curves T3, T4 have a higher coupling-out efficiency than the measurement curves S1, S2.
  • the measurement curves of the measurements T 1 to T 4 are distinguished by the height of the conversion layer and the design of the surface of the surface
  • Traces Tl, T2 have no roughening.
  • the measurement curves Tl, T3 and S2 have a height of the conversion layer of 5 ⁇ , while the layers to the curves T2, T4 and Sl have a height of 1 ⁇ .
  • Measuring curves G1 to G3 have converter particle sizes in a range between 8 ⁇ and 10 ⁇ , wherein the
  • Converter layer height from G1 to G3 increases from 0.001 mm over 0.005 mm to 0.025 mm.
  • the measured curves G4 and G5 show
  • the invention is not limited by the description based on the embodiments of these, but includes each new feature and any combination of features, which in particular any combination of features in the

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

L'invention concerne une puce semiconductrice (10) optoélectronique comportant un empilement de couches semiconductrices (1) comprenant une couche active (1a) destinée à la génération d'un rayonnement et un côté sortie de rayonnement (1b), ainsi qu'une couche de conversion (2) disposée sur le côté sortie de rayonnement (1b) de l'empilement de couches semiconductrices (1). La couche de conversion (2) comprend une matière matricielle et des particules de conversion qui sont aptes à convertir au moins une partie du rayonnement émis par la couche active (1a) en un rayonnement d'une autre longueur d'onde. La matière matricielle de la couche de conversion (2) présente un indice de réfraction adapté à l'indice de réfraction de l'empilement de couches semiconductrices (1). L'invention porte également sur un procédé de fabrication d'une puce semiconductrice (10) de ce type.
PCT/EP2011/071526 2011-01-25 2011-12-01 Puce semiconductrice optoélectronique et procédé de fabrication correspondant WO2012100868A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201110009369 DE102011009369A1 (de) 2011-01-25 2011-01-25 Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung
DE102011009369.9 2011-01-25

Publications (1)

Publication Number Publication Date
WO2012100868A1 true WO2012100868A1 (fr) 2012-08-02

Family

ID=45346441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/071526 WO2012100868A1 (fr) 2011-01-25 2011-12-01 Puce semiconductrice optoélectronique et procédé de fabrication correspondant

Country Status (2)

Country Link
DE (1) DE102011009369A1 (fr)
WO (1) WO2012100868A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011009369A1 (de) 2011-01-25 2012-07-26 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung
DE102012108104A1 (de) * 2012-08-31 2014-03-06 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050093008A1 (en) * 2003-10-31 2005-05-05 Toyoda Gosei Co., Ltd. Light emitting element and light emitting device
WO2007005013A1 (fr) * 2005-07-01 2007-01-11 Lamina Lighting, Inc. Dispositifs d'éclairage comprenant des diodes et des réseaux à diodes électroluminescentes blanches, ainsi que procédé et appareil permettant de fabriquer ces dispositifs
EP1755174A2 (fr) * 2005-08-16 2007-02-21 Kabushiki Kaisha Toshiba Dispositif luminescent
EP1770794A2 (fr) * 2005-09-28 2007-04-04 Osram Opto Semiconductors GmbH Puce optoélectronique semiconductrice, procédé de fabrication et dispositif optoélectronique
US20080128732A1 (en) * 2006-10-26 2008-06-05 Toyoda Gosei Co., Ltd. Light emitting device
DE102011009369A1 (de) 2011-01-25 2012-07-26 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19638667C2 (de) * 1996-09-20 2001-05-17 Osram Opto Semiconductors Gmbh Mischfarbiges Licht abstrahlendes Halbleiterbauelement mit Lumineszenzkonversionselement
DE10257664A1 (de) * 2002-12-10 2004-07-08 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen einer Leuchtdioden-Lichtquelle mit Lumineszenz-Konversionselement
DE102005023134A1 (de) * 2005-05-19 2006-11-23 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Lumineszenzkonversions-LED
DE102005031523B4 (de) * 2005-06-30 2015-11-05 Schott Ag Halbleiterlichtquelle mit Lichtkonversionsmedium aus Glaskeramik
KR100665219B1 (ko) * 2005-07-14 2007-01-09 삼성전기주식회사 파장변환형 발광다이오드 패키지
DE102008021436A1 (de) * 2008-04-29 2010-05-20 Schott Ag Optik-Konverter-System für (W)LEDs
DE102008030253B4 (de) * 2008-06-25 2020-02-20 Osram Opto Semiconductors Gmbh Konversionselement und Leuchtmittel
TWI608760B (zh) * 2008-11-13 2017-12-11 行家光電有限公司 形成螢光粉轉換發光元件之方法
DE102009059887A1 (de) * 2009-12-21 2011-06-22 OSRAM Opto Semiconductors GmbH, 93055 Optoelektronischer Halbleiterchip

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050093008A1 (en) * 2003-10-31 2005-05-05 Toyoda Gosei Co., Ltd. Light emitting element and light emitting device
WO2007005013A1 (fr) * 2005-07-01 2007-01-11 Lamina Lighting, Inc. Dispositifs d'éclairage comprenant des diodes et des réseaux à diodes électroluminescentes blanches, ainsi que procédé et appareil permettant de fabriquer ces dispositifs
EP1755174A2 (fr) * 2005-08-16 2007-02-21 Kabushiki Kaisha Toshiba Dispositif luminescent
EP1770794A2 (fr) * 2005-09-28 2007-04-04 Osram Opto Semiconductors GmbH Puce optoélectronique semiconductrice, procédé de fabrication et dispositif optoélectronique
US20080128732A1 (en) * 2006-10-26 2008-06-05 Toyoda Gosei Co., Ltd. Light emitting device
DE102011009369A1 (de) 2011-01-25 2012-07-26 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung

Also Published As

Publication number Publication date
DE102011009369A1 (de) 2012-07-26

Similar Documents

Publication Publication Date Title
EP2638575B1 (fr) Puce semi-conductrice optoélectronique et son procédé de fabrication
DE112014005954B4 (de) Optoelektronisches Halbleiterbauteil und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils
DE112015004324B4 (de) Verfahren bei dem ein strukturierter Dünnfilm-Wellenlängenkonverter hergestellt wird
DE102011050450A1 (de) Optoelektronischer Halbleiterchip, optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements
EP2193550B1 (fr) Corps semi-conducteur émettant un rayonnement
DE102005062514A1 (de) Optoelektronisches Bauelement
WO2008145096A1 (fr) Puce de diode électroluminescente avec élément d'angle filtrant
DE102011113962B4 (de) Verfahren zur Herstellung eines keramischen Konversionselements
EP1417720B1 (fr) Puce emettant un rayonnement et composant emettant un rayonnement
EP2652806A1 (fr) Procédé de production d'une couche de matériau de conversion de luminescence, composition associée et élément comprenant une telle couche de matériau de conversion de luminescence
EP2412021B1 (fr) Diode luminescente
DE102016104616B4 (de) Halbleiterlichtquelle
DE102007046519A1 (de) Dünnfilm-LED mit einer Spiegelschicht und Verfahren zu deren Herstellung
DE102008034708A1 (de) Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips
WO2013017339A1 (fr) Corps de conversion de longueur d'onde et procédé de fabrication de celui-ci
WO2014019988A1 (fr) Composant à semi-conducteur optoélectronique et procédé pour le fabriquer
DE102011015726A1 (de) Halbleiterchip, Display mit einer Mehrzahl von Halbleiterchips und Verfahren zu deren Herstellung
WO2012100868A1 (fr) Puce semiconductrice optoélectronique et procédé de fabrication correspondant
WO2017081181A1 (fr) Puce semi-conductrice émettrice de rayonnement, composant opto-électronique comprenant une puce semi-conductrice émettrice de rayonnement et procédé de revêtement d'une puce semi-conductrice émettrice de rayonnement
WO2020038722A1 (fr) Composant semi-conducteur optoélectronique et procédé de fabrication d'un composant semi-conducteur optoélectronique
DE102011113963A1 (de) Optoelektronisches Halbleiterbauelement
WO2015181164A1 (fr) Élément convertisseur pour la conversion d'une longueur d'onde, composant opto-électronique présentant un élément convertisseur, et procédé de production d'un élément convertisseur
DE102010052835A1 (de) Optoelektronisches Bauelement und Verfahren zu dessen Herstellung
WO2013113571A1 (fr) Composant semi-conducteur optoélectronique doté d'un élément convertisseur
DE112020000701T5 (de) Dielektrische filmbeschichtung für keramische vollkonversionsplättchen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11794682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11794682

Country of ref document: EP

Kind code of ref document: A1