WO2015180568A1 - 一种磁电阻z轴梯度传感器芯片 - Google Patents

一种磁电阻z轴梯度传感器芯片 Download PDF

Info

Publication number
WO2015180568A1
WO2015180568A1 PCT/CN2015/078926 CN2015078926W WO2015180568A1 WO 2015180568 A1 WO2015180568 A1 WO 2015180568A1 CN 2015078926 W CN2015078926 W CN 2015078926W WO 2015180568 A1 WO2015180568 A1 WO 2015180568A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetoresistive
axis
flux
sensor chip
gradient sensor
Prior art date
Application number
PCT/CN2015/078926
Other languages
English (en)
French (fr)
Inventor
迪克·詹姆斯·G
周志敏
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to EP15799752.9A priority Critical patent/EP3151024B1/en
Priority to JP2017514766A priority patent/JP6699951B2/ja
Priority to US15/315,329 priority patent/US11536779B2/en
Publication of WO2015180568A1 publication Critical patent/WO2015180568A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/022Measuring gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0011Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0094Sensor arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors

Definitions

  • the present invention relates to the field of magnetic sensors, and in particular to a magnetoresistive Z-axis gradient sensor chip.
  • Magnetoresistive gradient sensors are widely used in gear speed sensors and magnetic image sensors, such as POS heads, money detector heads, etc.
  • magnetoresistive sensors such as GMR and TMR sensors have plane-sensitive units whose magnetic field sensitivity is parallel to the sensor. The chip plane is located, and the Hall sensor has a Z-axis sensitive direction perpendicular to the plane.
  • the Hall sensor when used for a magnetic image sensor, there is mainly a Hall effect head of Murata's InSb thin film material, which is measured based on the Z-axis magnetic field component.
  • a Hall sensor based on the Z-axis magnetic field component or a GMR or TMR sensor based on the in-plane magnetic field component, there are certain problems:
  • InSb is not a standard material, it uses a non-standard semiconductor manufacturing process. Therefore, the manufacturing process is more complicated than the standard semiconductor manufacturing process of sensors such as TMR and GMR.
  • Hall effect sensors have low magnetic field sensitivity, poor stability (sensitivity, offset and resistance), and poor repeatability (difficult to control offset and sensitivity change)
  • the present invention proposes a magnetoresistive Z-axis gradiometer chip, which combines the advantages of the standard manufacturing process of GMR and TMR sensors and the back magnetism of the Z-axis sensor, successfully solves the above problems and realizes the utilization of the plane.
  • the sensitive magnetoresistive sensor measures the Z-axis magnetic field gradient with small size, low power consumption, and higher magnetic field sensitivity than the Hall sensor.
  • the present invention provides a magnetoresistive Z-axis gradient sensor chip for detecting a gradient of a magnetic field component in a Z-axis direction generated by a magnetic medium in an XY plane, the magnetoresistive Z-axis gradient sensor chip comprising a Si substrate, located at Electrically interconnected on the Si substrate into a magnetoresistive sensing unit of a full bridge gradiometer or a half bridge gradiometer, two or two sets of flux directors on the Si substrate; the magnetoresistive sensing a cell is located above or below the flux director and has a sensitive direction parallel to a surface of the Si substrate, the flux director for converting a Z-axis direction magnetic field component generated by the magnetic medium into an edge a sensitive direction of the magnetoresistive sensing unit;
  • Each set of flux guides includes at least two flux directors, a spacing between the two or two flux guides is Lg, and a relative bridge arm of the full bridge gradiometer or half bridge gradiometer The spacing between them is Lg.
  • the magnetoresistive sensing unit is a GMR and/or TMR sensing unit.
  • the flux guide is a soft magnetic alloy composed of one or more elements selected from the group consisting of Co, Fe, and Ni.
  • the flux guide is in the shape of a strip having a long axis along the Y direction and a short axis along the X direction. Its length Ly is greater than the width Lx and also greater than the thickness Lz.
  • the magnetic field operation of the magnetoresistive sensing unit can be increased. range.
  • the magnetic field sensitivity of the magnetoresistive sensing unit is higher.
  • the magnetoresistive Z-axis gradient sensor chip comprises two flux guides arranged in two rows and one column array, the row direction is the Y-axis direction, the column direction is the X-axis direction, and the row spacing Lg corresponds to a gradient. Feature distance.
  • two of the half bridge gradiometers respectively correspond to the two flux guides, the two bridge arms being located at the same position on the same side of the Y-axis center line of the flux guide
  • the magnetoresistive sensing units on the two bridge arms have the same sensitive direction.
  • the two half bridges in the full bridge gradiometer respectively correspond to the two flux guides, and the two bridge arms of each of the half bridges are symmetrically distributed on the Y axis of the corresponding flux guide On both sides of the center line, two bridge arms connected to the same power supply electrode are located at the same position on the same side of the Y-axis center line of the flux guide, and the magnetoresistive sensing units of the full bridge gradiometer have the same Sensitive direction.
  • the two bridge arms of any one of the two half bridges of the full bridge gradiometer are respectively located at the same position on the same side of the Y-axis center line of the two flux guides, and two connected to the same power electrode.
  • the bridge arms correspond to the same flux director and are symmetrically distributed on both sides of the Y-axis centerline of the flux guide, and the magnetoresistive sensing units of the full bridge gradiometer have the same sensitive direction.
  • each set of flux guides is 2*N (N>1), and the two sets of flux guides are arranged in two rows and one column, and the row direction is along the Y-axis direction, and the column direction is the X-axis direction;
  • Each set of flux guides is an array of N rows and one column, the row direction is along the Y axis direction, and the column direction is the X axis direction; the row spacing Ls between each set of flux guides is much smaller than Lg.
  • the magnetoresistive sensing units on the two bridge arms of the half bridge gradiometer respectively correspond to the N flux directors of the two sets of flux directors, and the magnetoresistance transmission of the two bridge arms
  • the sensing units are located at the same position on the same side of the Y-axis centerline of the corresponding flux director, the magnetoresistive sensing units having the same sensitive direction.
  • the magnetoresistive sensing units of the two half bridges in the full bridge gradiometer respectively correspond to N flux directors of the two sets of flux directors, and two bridges of each of the half bridges
  • the magnetoresistive sensing units of the arms are symmetrically distributed on both sides of the Y-axis center line of the corresponding flux director, and the magnetoresistive sensing units of the two bridge arms connected to the same power electrode respectively correspond to the two sets of flux directors
  • the N flux directors are located at the same position on the same side of the Y-axis centerline of the corresponding flux director, the magnetoresistive sensing units of the full bridge gradiometer having the same sensitive direction.
  • the magnetoresistive sensing units of the two bridge arms of the two half bridges of the full bridge gradiometer respectively correspond to N flux directors of the two sets of flux directors and are located Corresponding to the same position on the same side of the Y-axis center line of the flux guide, the magnetoresistive sensing units of the two bridge arms connected to the same power supply electrode correspond to the N flux guides of the same set of flux guides and are symmetrically distributed.
  • the magnetoresistive sensing units of the full bridge gradiometer have the same sensitive direction on both sides of the Y-axis centerline of the corresponding flux director.
  • the number of the magnetoresistive sensing units of each of the bridge arms is the same, and the magnetoresistive sensing units are connected in series, parallel or mixed in series and in parallel to form a two-port structure, and the bridge arms have the same electrical mutual Even structure.
  • the magnetoresistive Z-axis gradient sensor chip is electrically connected to the PCB by wire bonding.
  • the magnetoresistive Z-axis gradient sensor chip passes through through silicon vias (Through Silicon Vias, TSV) ) Electrically connected to the PCB.
  • TSV Through Silicon Vias
  • the magnetoresistive Z-axis gradient sensor chip is mounted on a PCB for detecting a Z-axis direction magnetic field component generated by a permanent magnet magnetic medium, and the magnetoresistive Z-axis gradient sensor chip is designed to have high magnetic field sensitivity. And a saturation magnetic field higher than a magnetic field of the Z-axis direction generated by the permanent magnetic medium.
  • the magnetoresistive Z-axis gradient sensor chip is mounted on a PCB, and a permanent magnet block is disposed on the back of the PCB to generate a magnetic field perpendicular to the magnetoresistive Z-axis gradient sensor chip, the magnetoresistance Z-axis
  • the gradient sensor chip is designed to have a saturation magnetic field that is larger than the magnetic field generated by the permanent magnet.
  • the magnetoresistive Z-axis gradient sensor chip is mounted on a PCB, and a back surface of the PCB is provided with a permanent magnet for generating a magnetic field perpendicular to the magnetoresistive Z-axis gradient sensor chip, and the PCB is placed in a
  • the package case includes a mounting bracket, a pin electrode on the back, the PCB and the magnetoresistive Z-axis gradient sensor chip are located in the mounting bracket, and the magnetoresistive Z-axis gradient sensor chip design It is a saturation magnetic field and a high magnetic field sensitivity that are higher than the magnetic field of the permanent magnet.
  • the sensitive direction of the magnetoresistive sensing unit is an X-axis direction.
  • Figure 1 Schematic diagram of the magnetoresistive Z-axis gradient sensor chip and its Z magnetic field measurement.
  • Figure 2 Flux guide and magnetoresistive unit position map.
  • Fig. 3 Schematic diagram of the double-flux guide half-bridge structure magnetoresistance Z-axis gradient sensor chip.
  • Fig. 4 Schematic diagram of the electrical connection of the magnetoresistance unit of the double-flux guide half-bridge structure magnetoresistance Z-axis gradient sensor chip.
  • Fig. 5 Schematic diagram of the double-flux guide full-bridge structure magnetoresistance Z-axis gradient sensor chip.
  • Fig. 6 Schematic diagram of the electrical connection of the magnetoresistance unit of the double-flux guide full-bridge structure magnetoresistance Z-axis gradient sensor chip.
  • Fig. 7 Schematic diagram of the electrical connection of the magnetoresistance unit of the double-flux guide full-bridge structure magnetoresistance Z-axis gradient sensor chip.
  • FIG. 8 is a schematic structural view of a multi-flux guide half-bridge structure magnetoresistance Z-axis gradient sensor chip.
  • Fig. 9 Schematic diagram of the electrical connection of the magnetoresistance unit of the multi-flux guide half-bridge structure magnetoresistance Z-axis gradient sensor chip.
  • Fig. 10 Schematic diagram of multi-flux guide full-bridge structure magnetoresistance Z-axis gradient sensor chip.
  • Fig. 11 Schematic diagram of the electrical connection of the multi-flux guide full-bridge structure magnetoresistance Z-axis gradient sensor chip.
  • Fig. 12 is a schematic diagram of the electrical connection of the magnetoresistance unit of the multi-flux guide full-bridge structure magnetoresistance Z-axis gradient sensor chip.
  • Fig. 13 Multi-channel guide full-bridge structure magnetoresistance Z-axis gradient sensor chip magnetoresistive unit connection diagram on the bridge arm: a series connection; b Parallel.
  • Figure 14 Schematic diagram of a magnetoresistive Z-axis gradient sensor chip applied to hard magnetic magnetic image detection.
  • Figure 15 Schematic diagram of a magnetoresistive Z-axis gradient sensor chip applied to a soft magnetic magnetic image head.
  • Figure 16 Schematic diagram of a magnetoresistive Z-axis gradient sensor chip with a mounting structure.
  • FIG. 1 is a schematic diagram of a magnetoresistive Z-axis gradiometer chip, including a Si substrate 1, a magnetoresistive Z-axis sensor 20, a magnetoresistive Z-axis sensor 20 on the Si substrate 1, and a magnetoresistive Z-axis sensor including 2 or 2 groups.
  • a plurality of magnetic flux directors 2 and a magnetoresistive unit 3 are included, and the magnetoresistive unit 3 is located above or below the flux guide 2, for the sake of simplicity, only The case where the magnetoresistive unit 3 is located below the flux guide 2 actually includes the case where the magnetoresistive unit 3 is located above the flux guide 2.
  • the magnetoresistive unit 3 is electrically connected to a half bridge or a full bridge structure gradiometer.
  • Figure 1 also shows the measurement principle of the Z-axis magnetic field.
  • the flux guide 2 is a high magnetic permeability soft magnetic alloy material, including Ni, Fe and Co. a soft magnetic alloy material composed of elements, a magnetic field unit 5 (1) with a magnetic field 5 (1) or 5 (2) near the upper or lower surface of the flux guide 2 Or the position near 3(2) is deflected, and the magnetic field components 5(3) and 5(4) parallel to the substrate appear, so that it can be detected by the magnetoresistive unit 3(1) or 3(2) having the sensitivity of the plane magnetic field.
  • the flux guide 2 is a high magnetic permeability soft magnetic alloy material, including Ni, Fe and Co. a soft magnetic alloy material composed of elements, a magnetic field unit 5 (1) with a magnetic field 5 (1) or 5 (2) near the upper or lower surface of the flux guide 2 Or the position near 3(2) is deflected, and the magnetic field components 5(3) and 5(4) parallel to the
  • the magnetoresistive unit is located at a position Y1 or Y2 between the Y-axis direction edge 7(1) or 7(2) and the Y-axis direction center line 6, and Y1 and Y2 are opposite to the Y-axis direction center line 6 Symmetrical, it can also be seen from Fig. 1 that after the Z-axis magnetic field 4 passes through the flux director 2, the X-axis direction magnetic field components 5 (4) and 5 (3) at the two positions Y1 and Y2 are opposite in direction.
  • the magnetoresistive unit 3 is a GMR and/or TMR sensing unit whose magnetic field sensitive direction is the X-axis direction, and the magnetoresistive unit 3 is electrically connected as a full bridge or a half bridge gradiometer. It should be noted that the magnetoresistance unit in the present invention is located above or below the flux director, and is located vertically above or vertically below the range in which the magnetoresistive unit is located within each edge of the flux director.
  • FIG. 3 and 4 are another type of magnetoresistive Z-axis half-bridge gradient sensor chip and an electrical connection diagram thereof, wherein the magnetoresistive units 3 (5) and 3 (6) on the two bridge arms of the half bridge respectively Located in the flux guides A1 and B1, and occupying the same position respectively, they are at the same position Y1 or Y2.
  • Figures 3 and 4 only show the same position at the Y1 position, and have the same magnetic field sensitivity.
  • the half bridge output signal can be calculated as follows:
  • the Z-axis magnetic field HZ passes through the flux guide to obtain the X-axis direction magnetic field HX, and the relationship between HZ and HX is:
  • HX1 HZ1*SXZ (1)
  • SXZ is the magnetic field conversion parameter of the flux guide, which is related to the flux guide geometry and material properties.
  • HZ1 and HZ2 are the Z-axis magnetic field components corresponding to the flux guides A1 and B1, respectively.
  • HX1 and HX2 are respectively A sensitive axial magnetic field component at the position of the magnetoresistive sensing unit after flux guides A1 and B1.
  • the final half-bridge output signal is
  • the Z-axis magnetic field gradient is proportional to the output signal of the magnetoresistance Z-axis half-bridge gradient sensor chip.
  • the above Lg refers to the distance between two or two flux guides, also called the gradient feature distance.
  • FIG. 5-7 is a schematic structural view of a full-bridge structure gradient sensor chip and an electrical connection diagram of five corresponding magnetoresistive units.
  • the respective positions Y1, Y2 of the flux guides A1 and B1 are respectively occupied by the magnetoresistive units 3(7)-3(10) corresponding to the four bridge arms of the full bridge, wherein
  • the two half bridges of the full bridge correspond to the flux guides A1 and B1, respectively, and the magnetoresistance units at the Y1 and Y2 positions of each flux director have the same magnetic field sensitive direction, and two connected to the electrodes
  • the magnetoresistive elements of the bridge arms have the same magnetic field sensitive direction.
  • the output signal of the full-bridge structure gradient sensor chip shown in Fig. 5 is as shown in equations (5)-(7), and the measured Z-axis magnetic field gradient is as shown in equation (8):
  • the two bridge arms corresponding to the two half bridges of the full bridge respectively correspond to the same position Y1 or Y2 in the two flux guides A1 and B1, and have the same magnetic field sensitive direction, and the same electrode.
  • the magnetoresistive units of the two connected arms are located at different positions within the same flux director.
  • the output signal of the full-bridge structure gradient sensor chip shown in Fig. 7 is as shown in equations (9)-(11), and the measured Z-axis magnetic field gradient is as shown in equation (12):
  • Figure 8-13 shows the Z-axis gradient sensor of multiple flux directors and their electrical connection diagram.
  • the number of multiple flux directors is 2*N (an integer of N>1) and is divided into two groups, namely Groups A and B correspond to 2(11) and 2(12), and are arranged in an array of two rows and one column, the row direction is the Y-axis direction, the column direction is the X-axis direction, and the row spacing of the two groups is Lg.
  • each of group A and group B contains N flux directors, wherein group A N flux director numbers correspond to 2(11)-1 ⁇ 2(11)-N, respectively, and group B N flux guides The device numbers correspond to 2(12)-1 ⁇ 2(12)-N, respectively. And they are arranged in an N-row and one-column structure, and the distance between the rows becomes the gradient feature group spacing Ls, wherein Ls is much smaller than Lg, and each flux director corresponds to two positions Y1 and Y2.
  • the multi-group flux guide Z-axis gradient sensor structure can also be divided into two structures, a half-bridge and a full-bridge, and a dual-flux guide Z-axis gradient sensor.
  • the chips correspond one-to-one, except that in the dual-flux guide Z-axis gradient sensor chip, each bridge arm corresponds to the Y1 or Y2 position of the flux guide A or B, and for the multi-flux guide Z
  • 8-9 are a half-bridge multi-flux guide Z-axis gradient sensor chip and an electrical connection diagram thereof, wherein the magnetoresistive units corresponding to the two bridge arms constituting the half bridge respectively correspond to the N fluxes of the group A
  • the director and the same position Y1 or Y2 of the N flux directors of the B group have the same magnetic field sensitive direction.
  • the same multi-flux guide Z-axis gradient sensor has two full-bridge configurations.
  • Figure 10-12 shows the multi-channel guide Z-axis gradient sensor with full-bridge structure and its structure.
  • the four bridge arms that make up the full bridge in Figure 10 are located in the N flux directors of group A and the N groups of group B.
  • the flux directors are each corresponding to two positions Y1 and Y2.
  • the first type of magnetoresistive unit is connected as shown in Fig. 11.
  • the two half bridges of the full bridge correspond to the Y1/Y2 positions of the N flux guides of group A, respectively, or the Y1 of the N flux guides of group B.
  • Y2 position, and the magnetoresistive unit at the Y1 or Y2 position has the same magnetic field sensitive direction, and the two bridge arms connected to the same electrode are located at the same position Y1 in the A/B or B/A different flux director group or Y2.
  • the second magnetoresistive unit connection is as shown in FIG. 12, and the bridge arms corresponding to any one of the two half bridges of the full bridge respectively correspond to the same position Y1 of the N flux guides of the two sets of flux guides or Y2, and having the same magnetic field sensitive direction, the two bridge arms connected to the same electrode are located at different positions within the same set of flux guides.
  • each bridge arm corresponds to the Y1 or Y2 position of a flux guide. Therefore, these magnetoresistance units form a two-port structure by connecting in series, parallel or mixed series and parallel in the Y1 or Y2 position to form a bridge arm.
  • the bridge arms correspond to groups A or B
  • the same X or Y position of the N flux directors therefore, in addition to the series, parallel or series-mixed connections at the X or Y position, including the series, parallel or hybrid between the N flux directors
  • the series and parallel connections form a two-port structure that forms a bridge arm.
  • each bridge arm has the same number of magnetoresistive units, and the series-parallel electrical connection structure in the flux director is also the same.
  • Figure 14 is a structural diagram of a magnetoresistive Z-axis sensor chip applied to hard magnetic image recognition, including a PCB 6 and magnetoresistive Z-axis gradient sensor chip 100, magnetoresistive Z-axis gradient sensor chip 100 is located on the PCB 6 and the hard magnetic magnetic image 7 is located on the magnetic image detecting surface parallel to the surface of the chip, and the Z-axis magnetic field component of the hard magnetic magnetic image 7 is detected by the magnetoresistive Z-axis gradient sensor chip 100, thereby identifying the magnetic image 7.
  • the magnetoresistive Z-axis gradient sensor chip is required to have high magnetic field sensitivity, and the Z-axis direction magnetic field measurement range is larger than the Z-axis direction magnetic field generated by the hard magnetic magnetic image 7.
  • Figure 15 is a structural diagram of a magnetoresistive Z-axis gradient sensor chip applied to soft magnetic image recognition or applied to a gear sensor, including a PCB 6 and the back magnet block 8, the magnetoresistive Z-axis gradient sensor chip 100 is located on the PCB 6, and the back magnet block 8 is located on the back surface of the PCB 6, and the magnetization direction of the back magnet block 8 is perpendicular to the PCB 6, that is, along the Z-axis direction, the soft magnetic magnetic image 7' is located parallel to the surface of the magnetoresistive Z-axis sensor chip 100, and the magnetoresistive Z-axis gradient sensor chip is required to have high magnetic field sensitivity and its Z-axis direction.
  • the magnetic field measurement range is larger than the Z-axis direction magnetic field generated by the back magnet block 8.
  • 16 is a schematic view showing a mounting structure of a magnetoresistive Z-axis gradient sensor chip, which is also included in a PCB when applied to a magnetic detector head; 6.
  • the back magnet block 8 and the package case 200, the magnetoresistive Z-axis gradient sensor chip 100 is mounted on the PCB 6, and the back magnet block 8 is located on the back side of the PCB 6, PCB 6 and the magnetoresistive Z-axis gradient sensor chip 100 are mounted in the package case 200.
  • the package case 200 includes a mounting bracket 9, a pin electrode 12, and the magnetoresistive Z-axis gradient sensor chip 100 is designed to have a higher Z than the back magnet block 8. The saturation magnetic field and high magnetic field sensitivity of the magnetic field in the axial direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

一种磁电阻Z轴梯度传感器芯片,用于探测磁性介质所产生的Z轴磁场(4)分量在XY平面内梯度,其包括Si衬底(1)、分隔Lg距离的两个或两组通量引导器(2)的集合,以及电互连的磁电阻传感单元(3(1),3(2))排列,磁电阻传感单元(3(1),3(2))位于Si衬底(1)上,且位于通量引导器(2)边缘的上方或下方,通量引导器(2)将Z轴磁场(4)分量转变成平行于Si衬底(1)表面并沿磁电阻传感单元(3(1),3(2))的敏感轴方向,磁电阻传感单元(3(1),3(2))电连接成半桥或者全桥梯度计排列,其中相对的桥臂分隔Lg距离,该传感器芯片可以和PCB、PCB+背磁或PCB+背磁+封装壳样式使用,实现了利用平面敏感磁阻传感器对Z轴磁场(4)梯度的测量,具有小尺寸、低功耗、比Hall传感器具有更高磁场灵敏度等优点。

Description

一种磁电阻Z轴梯度传感器芯片 技术领域
本发明涉及磁性传感器领域,特别涉及一种磁电阻Z轴梯度传感器芯片。
背景技术
磁阻梯度传感器广泛应用于齿轮速度传感器、磁性图像传感器,如POS机磁头、验钞机磁头等,通常情况下,磁阻传感器如GMR、TMR传感器具有平面敏感单元,其磁场敏感方向平行于传感器所在的芯片平面,而Hall传感器则具有垂直于平面的Z轴敏感方向,目前Hall传感器在用于磁性图像传感器时,主要有Murata的InSb薄膜材料的Hall效应磁头,基于Z轴磁场分量进行测量。然而不论是基于Z轴磁场分量进行测量的Hall传感器,还是基于平面内磁场分量进行测量的GMR、TMR传感器,都存在一定的问题:
1)由于InSb不是一个标准的材料,采用的是非标准的半导体制造工艺,因此,相对于TMR、GMR等传感器的标准半导体制造工艺来说,其制造工艺较为复杂;
2)目前所有的基于GMR、TMR的磁性图像传感器主要基于平面内磁场敏感方向的,在用于验钞机磁头时,需要使用一个表面切割深槽的背磁体,形状较为复杂,因此表面产生的磁场分布不均匀,而基于InSb的 Z轴传感器背磁可以使用一个Z轴方向磁化的背磁块,结构较为简单;
3)相对于GMR、TMR传感器而言,Hall效应传感器磁场灵敏度较低、稳定性差(灵敏度、offset以及电阻)、可重复性差(难于控制offset和灵敏度变化)
发明内容
针对以上存在的问题,本发明提出了一种磁电阻Z轴梯度计芯片,结合GMR、TMR传感器的标准制造工艺和Z轴传感器背磁的优点,成功解决了以上问题的不足,实现了利用平面敏感磁阻传感器对Z轴磁场梯度的测量,具有小尺寸、低功耗、比Hall传感器具有更高磁场灵敏度等优点。
本发明所提出的一种磁电阻Z轴梯度传感器芯片,用于探测磁性介质所产生的Z轴方向磁场分量在XY平面内的梯度,所述磁电阻Z轴梯度传感器芯片包括Si衬底、位于所述Si衬底上的电互连成全桥梯度计或半桥梯度计的磁电阻传感单元、位于所述Si衬底上的两个或两组通量引导器;所述磁电阻传感单元位于所述通量引导器的上方或下方,且具有平行于所述Si衬底表面的敏感方向,所述通量引导器用于将所述磁性介质所产生的Z轴方向磁场分量转变成沿所述磁电阻传感单元的敏感方向;
所述每组通量引导器包含至少两个通量引导器,所述两个或两组通量引导器之间的间距为Lg,所述全桥梯度计或半桥梯度计中相对桥臂之间的间距为Lg。
优选的,所述磁电阻传感单元为GMR和/或TMR传感单元。
优选的,所述通量引导器为选自Co、Fe、和Ni 中的一种或几种元素组成的软磁合金。
优选的,所述通量引导器为长条形状,其长轴沿Y方向,短轴沿X方向, 其长度Ly大于宽度Lx,也大于厚度Lz。
优选的,所述磁电阻传感单元到对应的所述通量引导器的Y轴方向中心线的垂直距离小于或等于1/3*Lx时,能增加所述磁电阻传感单元的磁场工作范围。
优选的,所述磁电阻传感单元的位置到所述Y轴方向中心线的垂直距离越大,或所述通量引导器的厚度Lz越大,或者所述通量引导器的宽度Lx越小,所述磁电阻传感单元的磁场灵敏度越高。
优选的,所述磁电阻Z轴梯度传感器芯片包含两个所述通量引导器,排列成两行一列阵列,其行方向为Y轴方向,列方向为X轴方向,且行间距Lg对应为梯度特征距离。
优选的,所述半桥梯度计中的两个桥臂分别对应于所述两个通量引导器,所述两个桥臂位于对应通量引导器的Y轴中心线的同一侧的相同位置,两个所述桥臂上的所述磁电阻传感单元具有相同的敏感方向。
优选的,所述全桥梯度计中的两个半桥分别对应于所述两个通量引导器,每个所述半桥的两个桥臂对称分布在对应的通量引导器的Y轴中心线两侧,与同一电源电极相连的两个桥臂位于对应通量引导器的Y轴中心线的同一侧的相同位置,所述全桥梯度计的所述磁电阻传感单元具有相同的敏感方向。
优选的,所述全桥梯度计的两个半桥中任一半桥的两个桥臂分别位于两个通量引导器的Y轴中心线的同一侧的相同位置,与同一电源电极相连的两个桥臂对应同一通量引导器且对称分布在该通量引导器的Y轴中心线两侧,所述全桥梯度计的所述磁电阻传感单元具有相同的敏感方向。
优选的,每组通量引导器均为2*N(N>1)个,所述两组通量引导器成两行一列的阵列,且行方向沿Y轴方向,列方向为X轴方向;每组通量引导器成N行一列的阵列,行方向沿Y轴方向,列方向为X轴方向;每组通量引导器之间的行间距Ls远小于Lg。
优选的,所述半桥梯度计的两个桥臂上的磁电阻传感单元分别对应所述两组通量引导器的N个通量引导器,且所述两个桥臂的磁电阻传感单元位于对应的通量引导器的Y轴中心线的同一侧的相同位置,所述磁电阻传感单元具有相同敏感方向。
优选的,所述全桥梯度计中的两个半桥的磁电阻传感单元分别对应于所述两组通量引导器的N个通量引导器,每个所述半桥的两个桥臂的磁电阻传感单元对称分布在对应的通量引导器的Y轴中心线两侧,与同一电源电极相连的两个桥臂的磁电阻传感单元分别对应所述两组通量引导器的N个通量引导器且位于对应的通量引导器的Y轴中心线的同一侧的相同位置,所述全桥梯度计的磁电阻传感单元具有相同敏感方向。
优选的,所述全桥梯度计的两个半桥中任一个半桥的两个桥臂的磁电阻传感单元分别对应于两组通量引导器中的的N个通量引导器且位于对应通量引导器的Y轴中心线的同一侧的相同位置,与同一电源电极相连的两个桥臂的磁电阻传感单元对应同一组通量引导器的N个通量引导器且对称分布在对应的通量引导器的Y轴中心线两侧,所述全桥梯度计的磁电阻传感单元具有相同的敏感方向。
优选的,每一所述桥臂的磁电阻传感单元的数量相同,且磁电阻传感单元串联,并联或者混合串并联电互连成两端口结构,且所述桥臂均具有相同电互连结构。
优选的,所述磁电阻Z轴梯度传感器芯片通过引线键合方式与PCB进行电连接。
优选的,所述磁电阻Z轴梯度传感器芯片通过硅片通孔(Through Silicon Vias, TSV )与PCB进行电连接。
优选的,所述磁电阻Z轴梯度传感器芯片安装于一PCB上,用于检测永磁磁性介质所产生的Z轴方向磁场分量,所述磁电阻Z轴梯度传感器芯片设计为具有高的磁场灵敏度和高于所述永磁磁性介质所产生的Z轴方向磁场的饱和磁场。
优选的,所述磁电阻Z轴梯度传感器芯片安装于一PCB上,所述PCB背面设有一个永磁块以产生垂直于所述磁电阻Z轴梯度传感器芯片的磁场,所述磁电阻Z轴梯度传感器芯片设计为具有更大于所述永磁体产生磁场的饱和磁场。
优选的,所述磁电阻Z轴梯度传感器芯片安装于一PCB上,所述PCB背面设有一用于产生垂直于所述磁电阻Z轴梯度传感器芯片的磁场的永磁体,所述PCB放置于一个封装壳中,所述封装壳包括一个安装支架、位于背部的插针电极,所述PCB和所述磁电阻Z轴梯度传感器芯片位于所述安装支架中,所述磁电阻Z轴梯度传感器芯片设计为具有高于永磁体磁场的饱和磁场和高磁场灵敏度。
优选的,所述磁电阻传感单元的敏感方向为X轴方向。
附图说明
为了更清楚地说明本发明实施例技术中的技术方案,下面将对实施例技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1 磁电阻Z轴梯度传感器芯片及其Z磁场测量原理图。
图2 通量引导器及磁电阻单元位置图。
图3 双通量引导器半桥结构磁电阻Z轴梯度传感器芯片的结构示意图。
图4 双通量引导器半桥结构磁电阻Z轴梯度传感器芯片的磁电阻单元电连接示意图。
图5 双通量引导器全桥结构磁电阻Z轴梯度传感器芯片的结构示意图。
图6 双通量引导器全桥结构磁电阻Z轴梯度传感器芯片的磁电阻单元电连接示意图一。
图7 双通量引导器全桥结构磁电阻Z轴梯度传感器芯片的磁电阻单元电连接示意图二。
图8多通量引导器半桥结构磁电阻Z轴梯度传感器芯片的结构示意图。
图9 多通量引导器半桥结构磁电阻Z轴梯度传感器芯片的磁电阻单元电连接示意图。
图10 多通量引导器全桥结构磁电阻Z轴梯度传感器芯片的结构示意图。
图11 多通量引导器全桥结构磁电阻Z轴梯度传感器芯片的磁电阻单元电连接示意图一。
图12多通量引导器全桥结构磁电阻Z轴梯度传感器芯片的磁电阻单元电连接示意图二。
图13 多通道引导器全桥结构磁电阻Z轴梯度传感器芯片中桥臂上的磁电阻单元连接图:a 串联;b 并联。
图14 磁电阻Z轴梯度传感器芯片应用于硬磁磁性图像检测示意图。
图15 磁电阻Z轴梯度传感器芯片应用于软磁磁性图像磁头示意图。
图16 带安装结构的磁电阻Z轴梯度传感器芯片示意图。
具体实施方式
下面将参考附图并结合实施例,来详细说明本发明。
实施例一
图1为磁电阻Z轴梯度计芯片示意图,包括Si衬底1,磁电阻Z轴传感器20,磁电阻Z轴传感器20位于Si衬底1之上,磁电阻Z轴传感器包括2个或2组包含多个磁通量引导器2以及磁电阻单元3(图中包括3(1)或3(2)),磁电阻单元3位于通量引导器2的上方或下方,为了简化,本图只给出了磁电阻单元3位于通量引导器2下方的情况,实际还包括磁电阻单元3位于通量引导器2上方的情况。其中磁电阻单元3电连接成半桥或者全桥结构梯度计。图1还给出了Z轴磁场的测量原理,Z轴磁场4经过通量引导器2之后,由于通量引导器2为高磁导率软磁合金材料,包括Ni,Fe和Co等几种元素组成的软磁合金材料,磁场5(1)或5(2)在靠近通量引导器2上表面或下表面的磁电阻单元3(1) 或3(2)附近位置发生偏转,出现了平行于衬底的磁场分量5(3)和5(4),从而能够被具有平面磁场灵敏度的磁电阻单元3(1)或3(2)探测到。
图2为磁电阻单元3(1)或3(2)与通量引导器2上表面或下表面的位置图,通量引导器2为长条形状,长轴沿Y轴方向,短轴沿X轴方向,磁电阻单元位于距离Y轴方向边缘7(1)或7(2)和Y轴方向中心线6之间的位置Y1或者Y2处,且Y1和Y2相对于Y轴方向中心线6对称,从图1还可以看出,Z轴磁场4经过通量引导器2之后,Y1和Y2两个位置处的X轴方向磁场分量5(4)和5(3)方向相反。
磁电阻单元3为GMR和/或TMR传感单元,其磁场敏感方向为X轴方向,且磁电阻单元3电连接成全桥或者半桥梯度计。需要说明的是,本发明中的磁电阻单元位于通量引导器的上方或下方是指位于磁电阻单元位于通量引导器的各边缘以内的范围的垂直上方或垂直下方。
实施例二
图3和图4为另一种类型的磁电阻Z轴半桥梯度传感器芯片及其电连接图,其中,半桥的两个桥臂上的磁阻单元3(5)和3(6)分别位于通量引导器A1和B1中,且其占据位置分别相同,其同处于Y1或者Y2处,为了便于说明,图3、4只给出了同处于Y1位置的情况,且具有相同的磁场敏感方向,此时,半桥输出信号可以根据如下方式进行计算:
Z轴磁场HZ经过通量引导器后得到X轴方向磁场HX,HZ与HX之间的相互关系为:
HX1=HZ1*SXZ (1)
HX2=HZ2*SXZ (2)
其中,SXZ为通量引导器的磁场转换参数,与通量引导器几何结构、材料性能相关,HZ1、HZ2分别为通量引导器A1和B1所对应的Z轴磁场分量,HX1和HX2分别为经过通量引导器A1和B1后在磁阻传感单元位置处的敏感轴向磁场分量。
最终半桥输出信号为
Vout=HX1*S-HX2*S=SXZ*HZ1*S-SXZ*HZ2*S
=SXZ*S*(HZ1-HZ2)(3)
其中,S为灵敏度。
Z轴磁阻梯度传感器芯片测量的Z轴磁场梯度为:
Gradient HZ=(HZ1-HZ2)/Lg=Vout/(Lg*SXZ*S) (4)
可见Z轴磁场梯度正比于磁电阻Z轴半桥梯度传感器芯片的输出信号。
上述Lg是指两个或两组通量引导器之间的距离,也称梯度特征距离。
实施例三
图5-7为全桥结构梯度传感器芯片的结构示意图及其所对应的五种磁电阻单元的电连接图。图5中,通量引导器A1和B1各自所对应的位置Y1,Y2都被分别被全桥的四个桥臂所对应的磁电阻单元3(7)-3(10)所占据,其中图6中,全桥的两个半桥分别对应通量引导器A1和B1,在每个通量引导器的Y1和Y2位置的磁电阻单元具有相同的磁场敏感方向,并且与电极相连的两个桥臂的磁电阻单元具有相同的磁场敏感方向。图5所示的全桥结构梯度传感器芯片的输出信号如式(5)-(7)所示,测量的Z轴磁场梯度如式(8)所示:
V-=HX1*S-(-HX1)*S=2*HX1*S (5)
V+=HX2*S-(-HX2)*S=2*HX2*S (6)
Vout=V+-V-=2*SXZ*S*(HZ1-HZ2) (7)
Gradient HZ=(HZ1-HZ2)/Lg=Vout/(2*Lg*SXZ*S) (8)
图7所示,全桥的两个半桥所对应的两个桥臂分别对应于两个通量引导器A1和B1中的同一位置Y1或Y2,且具有相同的磁场敏感方向,与同一电极相连的两个桥臂的磁电阻单元位于同一通量引导器内的不同位置。图7所示的全桥结构梯度传感器芯片的输出信号如式(9)-(11)所示,测量的Z轴磁场梯度如式(12)所示:
V-=HX1*S-HX2*S (9)
V+=-HX1*S-(-HX2)*S (10)
Vout=V+-V-=-2*SXZ*S*(HZ2-HZ1)(11)
Gradient HZ=(HZ1-HZ2)/Lg=-Vout/(2*Lg*SXZ*S) (12)
实施例四
图8-13所示为多个通量引导器的Z轴梯度传感器及其电连接图,多个通量引导器数目为2*N(N>1的整数)个,且分成两组,即A组和B组,对应于2(11)和2(12),且排列成两行一列的阵列,其行方向为Y轴方向,列方向为X轴方向,两组的行间距为Lg。此外,A组和B组各自包含N个通量引导器,其中A组N个通量引导器编号分别对应为2(11)-1~2(11)-N,B组N个通量引导器编号分别对应为2(12)-1~2(12)-N, 且都排列成N行一列结构,行之间的距离成为梯度特征组间距Ls,其中,Ls远小于Lg,同样每个通量引导器对应两个位置Y1和Y2。
类似于两通量引导器结构Z轴梯度传感器芯片,多组通量引导器Z轴梯度传感器结构也可以分为半桥和全桥两种结构,且分别与双通量引导器Z轴梯度传感器芯片一一对应,不同之处在于,在双通量引导器Z轴梯度传感器芯片中,每个桥臂对应于通量引导器A或B的Y1或Y2位置,而对于多通量引导器Z轴梯度传感器芯片,每个桥臂对应于A组或B组内的N个通量引导器A1-AN或B1-BN所对应的Y1或Y2位置。
图8-9为半桥结构多通量引导器Z轴梯度传感器芯片及其电连接图,其中,构成半桥的两个桥臂所对应的磁电阻单元分别对应于A组的N个通量引导器和B组的N个通量引导器中的相同位置Y1或者Y2,且具有相同的磁场敏感方向。
同样多通量引导器Z轴梯度传感器的全桥结构也有2种。
图10-12为全桥结构的多通道引导器Z轴梯度传感器及其结构图,图10中组成全桥的四个桥臂分别位于A组的N个通量引导器和B组的N个通量引导器各自所对应的两个位置Y1和Y2上。
第一种磁电阻单元连接如图11所示,全桥的两个半桥分别对应于A组的N个通量引导器的Y1/Y2位置,或者B组N个通量引导器的Y1/Y2位置,且位于Y1或Y2位置的磁电阻单元具有相同的磁场敏感方向,并且与同一电极相连的两个桥臂位于A/B或B/A不同通量引导器组内的同一位置Y1或Y2。
第二种磁电阻单元连接如图12所示,全桥的两个半桥中任一半桥所对应的桥臂分别对应于两组通量引导器的N个通量引导器的相同位置Y1或Y2,且具有相同的磁场敏感方向,与同一电极相连的两个桥臂位于同一组通量引导器内的不同位置。
无论双通量引导器或者是多通量引导器类型的磁电阻Z轴梯度传感器芯片,在全桥或者半桥结构中,对应同一通量引导器的位置Y1或Y2,存在多个磁电阻单元,这些磁电阻单元之间可以形成串联结构如图13(a),也可以形成并联结构如图13(b),或者形成串并联混合结构,在双通量引导器的磁电阻Z轴梯度传感器中,每个桥臂对应一个通量引导器的Y1或Y2位置,因此,这些磁电阻单元在Y1或Y2位置内通过串联,并联或者混合串并联最终形成两端口结构,形成一个桥臂。
对于多通量引导器结构的全桥或者半桥结构,桥臂对应于A组或B组中 的N个通量引导器的同一X或Y位置,因此,除了X或Y位置上的串联,并联或串并混合连接之外,还包括N个通量引导器之间的串联,并联或者混合串并联,最终形成一个两端口结构,构成一个桥臂。
此外,对于半桥结构或者全桥结构的Z轴梯度传感器芯片,每个桥臂具有相同的磁电阻单元数量,其在通量引导器中的串并联电连接结构也相同。
实施例五
图14为磁电阻Z轴传感器芯片应用于硬磁图像识别的结构图,包括PCB 6和磁电阻Z轴梯度传感器芯片100,磁电阻Z轴梯度传感器芯片100位于PCB 6上,且硬磁磁性图像7位于平行于芯片表面的磁性图像检测面上,硬磁磁性图像7的Z轴磁场分量被磁电阻Z轴梯度传感器芯片100探测到,从而对磁性图像7进行识别,此时磁电阻Z轴梯度传感器芯片要求具有高的磁场灵敏度,且其Z轴方向磁场测量范围大于硬磁磁性图像7所产生的Z轴方向磁场。
实施例六
图15为磁电阻Z轴梯度传感器芯片应用于软磁图像识别或者应用于齿轮传感器的结构图,包括PCB 6和背磁块8,磁电阻Z轴梯度传感器芯片100位于PCB 6上,且背磁块8位于PCB 6背面,且背磁块8的磁化方向垂直于PCB 6,即沿着Z轴方向,软磁磁性图像7’位于平行于磁电阻Z轴传感器芯片100的面上,此时磁电阻Z轴梯度传感器芯片要求具有高的磁场灵敏度,且其Z轴方向磁场测量范围大于背磁块8所产生的Z轴方向磁场。
实施例七
图16为磁电阻Z轴梯度传感器芯片的安装结构示意图,在应用于验钞机磁头时,还包括PCB 6、背磁块8、以及封装壳200,磁电阻Z轴梯度传感器芯片100安装在PCB 6上,背磁块8位于PCB 6背面, PCB 6和磁电阻Z轴梯度传感器芯片100安装在封装壳200中,封装壳200包括安装支架9,插针电极12,磁电阻Z轴梯度传感器芯片100设计为具有高于背磁块8所产生Z轴方向磁场的饱和磁场和高磁场灵敏度。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种磁电阻Z轴梯度传感器芯片,用于探测磁性介质所产生的Z轴方向磁场分量在XY平面内的梯度,其特征在于,所述磁电阻Z轴梯度传感器芯片包括:
    Si衬底、位于所述Si衬底上的电互连成全桥梯度计或半桥梯度计的磁电阻传感单元、位于所述Si衬底上的两个或两组通量引导器;所述磁电阻传感单元位于所述通量引导器的上方或下方,且具有平行于所述Si衬底表面的敏感方向,所述通量引导器用于将所述磁性介质所产生的Z轴方向磁场分量转变成沿所述磁电阻传感单元的敏感方向;
    所述每组通量引导器包含至少两个通量引导器,所述两个或两组通量引导器之间的间距为Lg,所述全桥梯度计或半桥梯度计中相对桥臂之间的间距为Lg。
  2. 根据权利要求1所述的一种磁电阻Z轴梯度传感器芯片,其特征在于,所述磁电阻传感单元为GMR和/或TMR传感单元。
  3. 根据权利要求1所述的一种磁电阻Z轴梯度传感器芯片,其特征在于,所述通量引导器为选自Co、Fe和Ni 中的一种或几种元素组成的软磁合金。
  4. 根据权利要求1所述的一种磁电阻Z轴梯度传感器芯片,其特征在于,所述通量引导器为长条形状,其长轴沿Y轴方向,短轴沿X轴方向, 其长度Ly大于其宽度Lx和厚度Lz。
  5. 根据权利要求4所述的一种磁电阻Z轴梯度传感器芯片,其特征在于,所述磁电阻传感单元到对应的所述通量引导器的Y轴方向中心线的垂直距离小于或等于1/3*Lx。
  6. 根据权利要求4所述的一种磁电阻Z轴梯度传感器芯片,其特征在于,所述磁电阻传感单元的位置到所述Y轴方向中心线的垂直距离越大,或所述通量引导器的厚度Lz越大,或所述通量引导器的宽度Lx越小,所述磁电阻传感单元的磁场灵敏度越高。
  7. 根据权利要求4所述的一种磁电阻Z轴梯度传感器芯片,其特征在于,包含两个所述通量引导器,排列成两行一列的阵列,其行方向为Y轴方向,列方向为X轴方向。
  8. 根据权利要求7所述的一种磁电阻Z轴梯度传感器芯片,其特征在于,所述半桥梯度计中的两个桥臂分别对应于所述两个通量引导器,所述两个桥臂位于对应的通量引导器的Y轴中心线的同一侧的相同位置,两个所述桥臂上的所述磁电阻传感单元具有相同的敏感方向。
  9. 根据权利要求7所述的一种磁电阻Z轴梯度传感器芯片,其特征在于,所述全桥梯度计中的两个半桥分别对应于所述两个通量引导器,每个所述半桥的两个桥臂对称分布在对应的通量引导器的Y轴中心线两侧,与同一电源电极相连的两个桥臂位于对应的通量引导器的Y轴中心线的同一侧的相同位置,所述全桥梯度计中的所述磁电阻传感单元具有相同的敏感方向。
  10. 根据权利要求7所述的一种磁电阻Z轴梯度传感器芯片,其特征在于,所述全桥梯度计的两个半桥中任一半桥的两个桥臂分别位于两个通量引导器的Y轴中心线的同一侧的相同位置,与同一电源电极相连的两个桥臂对应同一通量引导器且对称分布在该通量引导器的Y轴中心线两侧,所述全桥梯度计中的所述磁电阻传感单元具有相同的敏感方向。
  11. 根据权利要求4所述的一种磁电阻Z轴梯度传感器芯片,其特征在于,每组通量引导器均为2*N(N>1)个,所述两组通量引导器成两行一列的阵列,且行方向沿Y轴方向,列方向为X轴方向;每组通量引导器成N行一列的阵列,行方向沿Y轴方向,列方向为X轴方向;每组通量引导器之间的行间距Ls远小于Lg。
  12. 根据权利要求11所述的一种磁电阻Z轴梯度传感器芯片,其特征在于,所述半桥梯度计的两个桥臂上的磁电阻传感单元分别对应所述两组通量引导器的N个通量引导器,且所述两个桥臂上的磁电阻传感单元位于对应的通量引导器的Y轴中心线的同一侧的相同位置,所述磁电阻传感单元具有相同敏感方向。
  13. 根据权利要求11所述的一种磁电阻Z轴梯度传感器芯片,其特征在于,所述全桥梯度计中的两个半桥的磁电阻传感单元分别对应于所述两组通量引导器的N个通量引导器,每个所述半桥的两个桥臂的磁电阻传感单元对称分布在对应的通量引导器的Y轴中心线两侧,与同一电源电极相连的两个桥臂的磁电阻传感单元分别对应所述两组通量引导器的N个通量引导器且位于对应的通量引导器的Y轴中心线的同一侧的相同位置,所述全桥梯度计的磁电阻传感单元具有相同敏感方向。
  14. 根据权利要求11所述的一种磁电阻Z轴梯度传感器芯片,其特征在于,所述全桥梯度计的两个半桥中任一个半桥的两个桥臂的磁电阻传感单元分别对应于两组通量引导器中的的N个通量引导器且位于对应通量引导器的Y轴中心线的同一侧的相同位置,与同一电源电极相连的两个桥臂的磁电阻传感单元对应同一组通量引导器的的N个通量引导器且对称分布在对应的通量引导器的Y轴中心线两侧,所述全桥梯度计的磁电阻传感单元具有相同的敏感方向。
  15. 根据权利要求1所述的一种磁电阻Z轴梯度传感器芯片,其特征在于,每一所述桥臂的磁电阻传感单元的数量相同,且磁电阻传感单元串联、并联或者混合串并联电互连成两端口结构,且所述桥臂均具有相同电互连结构。
  16. 根据权利要求1所述的一种磁电阻Z轴梯度传感器芯片,其特征在于, 所述磁电阻Z轴梯度传感器芯片通过引线键合方式或硅片通孔(TSV)与PCB进行电连接。
  17. 根据权利要求1所述的一种磁电阻Z轴梯度传感器芯片,其特征在于,所述磁电阻Z轴梯度传感器芯片安装于一PCB上,用于检测永磁磁性介质所产生的Z轴方向磁场分量,所述磁电阻Z轴梯度传感器芯片具有高于所述永磁磁性介质所产生的Z轴方向磁场的饱和磁场。
  18. 根据权利要求1所述的一种磁电阻Z轴梯度传感器芯片,其特征在于,所述磁电阻Z轴梯度传感器芯片安装在一PCB上,所述PCB背面设有一用于产生垂直于所述磁电阻Z轴梯度传感器芯片的磁场的永磁体,所述磁电阻Z轴梯度传感器芯片具有大于所述永磁体产生的Z轴方向磁场的饱和磁场。
  19. 根据权利要求1所述的一种磁电阻Z轴梯度传感器芯片,其特征在于,所述磁电阻Z轴梯度传感器芯片安装在一PCB上,所述PCB背面设有一用于产生垂直于所述磁电阻Z轴梯度传感器芯片的磁场的永磁体,所述PCB放置于一个封装壳中,所述封装壳包括一个安装支架、位于背部的插针电极,所述PCB和所述磁电阻Z轴梯度传感器芯片位于所述安装支架中,所述磁电阻Z轴梯度传感器芯片具有高于所述永磁体产生的Z轴方向磁场的饱和磁场。
  20. 根据权利要求1至19中任一项所述的一种磁电阻Z轴梯度传感器芯片,其特征在于,所述磁电阻传感单元的敏感方向为X轴方向。
PCT/CN2015/078926 2014-05-30 2015-05-14 一种磁电阻z轴梯度传感器芯片 WO2015180568A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15799752.9A EP3151024B1 (en) 2014-05-30 2015-05-14 Magnetoresistive z-axis gradient sensor chip
JP2017514766A JP6699951B2 (ja) 2014-05-30 2015-05-14 磁気抵抗z軸勾配検出チップ
US15/315,329 US11536779B2 (en) 2014-05-30 2015-05-14 Magnetoresistive Z-axis gradient sensor chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410238418.6 2014-05-30
CN201410238418.6A CN103995240B (zh) 2014-05-30 2014-05-30 一种磁电阻z轴梯度传感器芯片

Publications (1)

Publication Number Publication Date
WO2015180568A1 true WO2015180568A1 (zh) 2015-12-03

Family

ID=51309457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078926 WO2015180568A1 (zh) 2014-05-30 2015-05-14 一种磁电阻z轴梯度传感器芯片

Country Status (5)

Country Link
US (1) US11536779B2 (zh)
EP (1) EP3151024B1 (zh)
JP (1) JP6699951B2 (zh)
CN (1) CN103995240B (zh)
WO (1) WO2015180568A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11536779B2 (en) 2014-05-30 2022-12-27 MultiDimension Technology Co., Ltd. Magnetoresistive Z-axis gradient sensor chip

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104820125B (zh) * 2015-04-27 2018-04-06 江苏多维科技有限公司 采用z轴磁电阻梯度计和引线框电流的集成电流传感器
CN105093135A (zh) * 2015-06-25 2015-11-25 无锡乐尔科技有限公司 磁头以及磁性介质的评价方法
CN107479010B (zh) * 2016-06-07 2019-06-04 江苏多维科技有限公司 一种具有补偿线圈的磁电阻传感器
CN107544040A (zh) * 2017-07-18 2018-01-05 天津大学 一种基于磁阻传感器的磁导率电磁层析成像方法
KR102450580B1 (ko) 2017-12-22 2022-10-07 삼성전자주식회사 금속 배선 하부의 절연층 구조를 갖는 반도체 장치
JP6717442B2 (ja) * 2018-01-25 2020-07-01 株式会社村田製作所 磁気センサおよび電流センサ
US10859643B2 (en) * 2018-01-30 2020-12-08 Allegro Microsystems, Llc Magnetic field sensor having sensing element placement for reducing stray field sensitivity
CN108413992A (zh) * 2018-01-30 2018-08-17 江苏多维科技有限公司 一种三轴预调制低噪声磁电阻传感器
US10809094B2 (en) * 2018-01-30 2020-10-20 Allegro Microsystems, Llc Magnetic field sensor having compensation for magnetic field sensing element placement
CN108983119A (zh) * 2018-02-12 2018-12-11 黑龙江大学 一种单片集成二维磁矢量传感器及其集成化制作工艺
CN108303660B (zh) * 2018-03-13 2023-11-24 武汉嘉晨电子技术有限公司 一种推拉式垂直灵敏磁传感器
CN109142843A (zh) * 2018-07-02 2019-01-04 芜湖英特杰智能科技有限公司 一种便携的智能测控仪表
CN110927633B (zh) * 2019-12-13 2022-03-29 西北核技术研究院 一种四极磁铁磁场梯度积分测量方法
WO2023153065A1 (ja) * 2022-02-10 2023-08-17 株式会社村田製作所 磁気センサ
CN117054936B (zh) * 2023-10-12 2024-01-12 江苏多维科技有限公司 一种梯度传感器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1348974A2 (de) * 2002-03-28 2003-10-01 Robert Bosch Gmbh Sensorelement und Gradiometeranordnung, deren Verwendung zum Messen von Magnetfeldgradienten und Verfahren hierzu
WO2009156697A1 (fr) * 2008-06-27 2009-12-30 Centre National D'etudes Spatiales Dispositif et procédé de mesure de champ magnétique.
CN203133257U (zh) * 2013-03-18 2013-08-14 江苏多维科技有限公司 用于验钞机磁头的tmr半桥磁场梯度传感器芯片
CN203480009U (zh) * 2013-09-10 2014-03-12 江苏多维科技有限公司 一种单芯片z轴线性磁电阻传感器
CN103901363A (zh) * 2013-09-10 2014-07-02 江苏多维科技有限公司 一种单芯片z轴线性磁阻传感器
CN103913709A (zh) * 2014-03-28 2014-07-09 江苏多维科技有限公司 一种单芯片三轴磁场传感器及其制备方法
CN103954920A (zh) * 2014-04-17 2014-07-30 江苏多维科技有限公司 一种单芯片三轴线性磁传感器及其制备方法
CN103995240A (zh) * 2014-05-30 2014-08-20 江苏多维科技有限公司 一种磁电阻z轴梯度传感器芯片
CN203894395U (zh) * 2014-05-30 2014-10-22 江苏多维科技有限公司 一种磁电阻z轴梯度传感器芯片

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH421288A (de) * 1963-10-26 1966-09-30 Siemens Ag Einrichtung zur Messung der räumlichen Ableitung von Magnetfeldern
JPS6428576A (en) * 1987-07-24 1989-01-31 Ube Industries Magnetic body detector
US5508611A (en) * 1994-04-25 1996-04-16 General Motors Corporation Ultrathin magnetoresistive sensor package
JP3463506B2 (ja) * 1997-04-11 2003-11-05 株式会社村田製作所 センサ素子の製造方法
DE10331580A1 (de) * 2003-07-11 2005-01-27 Robert Bosch Gmbh Vorrichtung zur Detektion der Drehzahl und/oder der Position eines rotierenden Bauteils
DE10342260B4 (de) * 2003-09-11 2014-11-20 Meas Deutschland Gmbh Magnetoresistiver Sensor in Form einer Halb- oder Vollbrückenschaltung
JP4487252B2 (ja) * 2004-09-30 2010-06-23 日立金属株式会社 磁気式位置回転検出用素子
JP4232808B2 (ja) * 2006-09-19 2009-03-04 日立金属株式会社 磁気エンコーダ装置
JP4837749B2 (ja) * 2006-12-13 2011-12-14 アルプス電気株式会社 磁気センサ及びそれを用いた磁気エンコーダ
US8390283B2 (en) * 2009-09-25 2013-03-05 Everspin Technologies, Inc. Three axis magnetic field sensor
WO2011068146A1 (ja) * 2009-12-02 2011-06-09 アルプス電気株式会社 磁気センサ
JP5297442B2 (ja) * 2010-12-15 2013-09-25 アルプス電気株式会社 磁気センサ
IT1403421B1 (it) * 2010-12-23 2013-10-17 St Microelectronics Srl Sensore magnetoresistivo integrato, in particolare sensore magnetoresistivo triassiale e suo procedimento di fabbricazione
CN202433514U (zh) * 2011-01-17 2012-09-12 江苏多维科技有限公司 独立封装的桥式磁场传感器
CN102419393B (zh) * 2011-12-30 2013-09-04 江苏多维科技有限公司 一种电流传感器
TWI452319B (zh) * 2012-01-09 2014-09-11 Voltafield Technology Corp 磁阻感測元件
JP5899012B2 (ja) * 2012-03-14 2016-04-06 アルプス電気株式会社 磁気センサ
CN102590768B (zh) * 2012-03-14 2014-04-16 江苏多维科技有限公司 一种磁电阻磁场梯度传感器
CN103267955B (zh) * 2013-05-28 2016-07-27 江苏多维科技有限公司 单芯片桥式磁场传感器
CN203337808U (zh) * 2013-05-28 2013-12-11 江苏多维科技有限公司 单芯片桥式磁场传感器
JP6506604B2 (ja) * 2015-04-22 2019-04-24 アルプスアルパイン株式会社 磁気センサ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1348974A2 (de) * 2002-03-28 2003-10-01 Robert Bosch Gmbh Sensorelement und Gradiometeranordnung, deren Verwendung zum Messen von Magnetfeldgradienten und Verfahren hierzu
WO2009156697A1 (fr) * 2008-06-27 2009-12-30 Centre National D'etudes Spatiales Dispositif et procédé de mesure de champ magnétique.
CN203133257U (zh) * 2013-03-18 2013-08-14 江苏多维科技有限公司 用于验钞机磁头的tmr半桥磁场梯度传感器芯片
CN203480009U (zh) * 2013-09-10 2014-03-12 江苏多维科技有限公司 一种单芯片z轴线性磁电阻传感器
CN103901363A (zh) * 2013-09-10 2014-07-02 江苏多维科技有限公司 一种单芯片z轴线性磁阻传感器
CN103913709A (zh) * 2014-03-28 2014-07-09 江苏多维科技有限公司 一种单芯片三轴磁场传感器及其制备方法
CN103954920A (zh) * 2014-04-17 2014-07-30 江苏多维科技有限公司 一种单芯片三轴线性磁传感器及其制备方法
CN103995240A (zh) * 2014-05-30 2014-08-20 江苏多维科技有限公司 一种磁电阻z轴梯度传感器芯片
CN203894395U (zh) * 2014-05-30 2014-10-22 江苏多维科技有限公司 一种磁电阻z轴梯度传感器芯片

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3151024A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11536779B2 (en) 2014-05-30 2022-12-27 MultiDimension Technology Co., Ltd. Magnetoresistive Z-axis gradient sensor chip

Also Published As

Publication number Publication date
EP3151024A1 (en) 2017-04-05
EP3151024A4 (en) 2017-12-06
US11536779B2 (en) 2022-12-27
JP6699951B2 (ja) 2020-05-27
CN103995240A (zh) 2014-08-20
JP2017517014A (ja) 2017-06-22
CN103995240B (zh) 2017-11-10
US20170205473A1 (en) 2017-07-20
EP3151024B1 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
WO2015180568A1 (zh) 一种磁电阻z轴梯度传感器芯片
US10107871B2 (en) Monolithic three-axis magnetic field sensor and its manufacturing method
US10228426B2 (en) Single chip Z-axis linear magnetoresistive sensor with calibration/initialization coil
US10151806B2 (en) Method and apparatus for manufacturing a magnetic sensor device, and corresponding magnetic sensor device
WO2013182036A1 (zh) 一种磁电阻齿轮传感器
US11287490B2 (en) Magnetoresistive sensor with sensing elements and permanent magnet bars oriented at non-orthogonal and non-parallel angles with respect to the sensing direction of the sensing elements
US8134361B2 (en) Magnetic sensor including magnetic field detectors and field resistors arranged on inclined surfaces
US9885764B2 (en) High-sensitivity push-pull bridge magnetic sensor
US10379176B2 (en) Single-chip high-magnetic-field X-axis linear magnetoresistive sensor with calibration and initialization coil
WO2016197841A1 (zh) 一种交叉指状y轴磁电阻传感器
JP2016525689A (ja) シングルチップ・プッシュプルブリッジ型磁界センサ
KR102343804B1 (ko) 자기 센서 및 그 제조 방법
US11009562B2 (en) Magnetic field sensing apparatus
WO2015144046A1 (zh) 一种磁电阻磁性图像识别传感器
US20230324478A1 (en) Magnetic sensor device
US20220137157A1 (en) Magnetic sensor and its manufacturing method
US20170205474A1 (en) Magnetic sensor device
TWI685667B (zh) 磁場感測裝置
US11474168B2 (en) Magnetic sensor device
US20150054498A1 (en) Magnetic sensor
WO2016024621A1 (ja) 磁気センサ
JP7097671B2 (ja) Ic化磁気センサおよびそれに使用するリードフレーム
US20230091757A1 (en) Magnetic sensor
US11867779B2 (en) Sensor
US11971461B2 (en) Sensor having protruding surface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799752

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017514766

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15315329

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015799752

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015799752

Country of ref document: EP