WO2015178572A1 - Method for preparing isotropic bulk graphite using graphite waste scraps and isotropic bulk graphite prepared thereby - Google Patents

Method for preparing isotropic bulk graphite using graphite waste scraps and isotropic bulk graphite prepared thereby Download PDF

Info

Publication number
WO2015178572A1
WO2015178572A1 PCT/KR2015/001680 KR2015001680W WO2015178572A1 WO 2015178572 A1 WO2015178572 A1 WO 2015178572A1 KR 2015001680 W KR2015001680 W KR 2015001680W WO 2015178572 A1 WO2015178572 A1 WO 2015178572A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
isotropic
bulk graphite
binder
bulk
Prior art date
Application number
PCT/KR2015/001680
Other languages
French (fr)
Korean (ko)
Inventor
노재승
강동수
이상민
정지훈
백운경
오성문
Original Assignee
금오공과대학교 산학협력단
주식회사 카보랩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금오공과대학교 산학협력단, 주식회사 카보랩 filed Critical 금오공과대학교 산학협력단
Publication of WO2015178572A1 publication Critical patent/WO2015178572A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/215Purification; Recovery or purification of graphite formed in iron making, e.g. kish graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation

Definitions

  • the present invention relates to a method for producing isotropic bulk graphite using graphite waste scrap and to isotropic bulk graphite produced through the same.
  • Carbon is a chemically stable element that plays an important role in the mechanical and chemical industries, having both physically metallic and ceramic properties and having van der Waals bonds in the c-axis direction, perpendicular to a, On the b side, it is covalently bonded and has a characteristic of showing large anisotropy.
  • it is considered to be a material excellent in lubricity, heat resistance, thermal shock resistance, thermal conductivity, corrosion resistance, and the like, which are not found in metals and ceramics.
  • the carbon material In order for the carbon material to be used as a mechanical seal, it is required to have high density and maintain airtightness and to have excellent friction stability.
  • Patent Document 1 relates to a method of manufacturing a carbon material seal, and provides a method of manufacturing a carbon material seal by heat-treating the raw material coal tar pitch, followed by injection molding and oxidation stabilization. According to this, it is possible to produce a carbon-based seal having a thin plate shape of a complex structure using a coal tar pitch, but having high mechanical properties, excellent corrosion resistance, and a low and stable friction pattern.
  • Patent Document 2 relates to a high-strength carbon composite material using graphene, a method for manufacturing the same, and a fuel cell separator using the same, wherein the graphene carbon composite material having high coke and electrical conductivity and excellent contact resistance is mixed and molded to form high-strength carbon.
  • a fuel cell separator manufactured by manufacturing a composite material and using the same The fuel cell separator manufactured from the high strength carbon composite material may exhibit improved characteristics such as high conductivity, high strength, light weight, chemical resistance, high cleanliness, and dimensional accuracy.
  • Graphite which is one of the materials that can be used as such a carbon material, exhibits anisotropy in its crystal structure and is superior in heat resistance, corrosion resistance, electrical conductivity, high temperature strength, and lubricity to other materials. Therefore, carbon is used in various fields such as high temperature structural materials such as electrodes, carbon brushes, mechanical seals, and special mechanical parts.
  • the graphite of the anisotropic structure When the graphite of the anisotropic structure is molded, the graphite particles are randomly arranged to show isotropy, the structure is dense, and the density and strength are increased. In addition, the molded body is not oriented and its physical and electrical properties are isotropic in all directions.
  • the general manufacturing process of the isotropic synthetic graphite block is to carbonize the petroleum- or coal-based coke powder uniformly mixed with a binder such as pitch, resin (resin) and molded.
  • Coke is manufactured by heat-treating pitch in an inert atmosphere. It has an orientation and is developed as a graphite crystal through carbonization and graphitization process. It is used as a raw material for carbon materials. To induce the coke to bond. Pitch removes significant amount of volatiles through heat treatment and simultaneously polycondensation reaction. This process is an important step to determine the structure of carbon material.
  • pores are generated in the molded body due to volatilization of the binder by carbonization, and impregnates pitch or resin to fill the pores. This process may be repeated several times to fill the pores and then graphitized by heat treatment at 2500 ° C. or higher.
  • the isotropic artificial graphite block manufactured by the above process is processed according to the purpose of use, and a large amount of waste scrap is generated.
  • Graphite scrap generated during processing is added to increase the carbon content in the molten iron mill, or used to produce graphite-added refractory materials.
  • graphite scrap is added about 15 to 25%, but the amount of graphite scrap used in this way is not high and is mostly discarded. .
  • the present invention is to provide a method for producing isotropic bulk graphite using graphite waste scrap.
  • Method for producing an isotropic bulk graphite of the present invention for solving the above problems is a step 1 of mixing the isotropic graphite waste scrap with a binder and press molding to form a green body (green body); Carbonizing the raw material at 600 ° C. to 1,000 ° C. to produce bulk graphite; And three steps of impregnating the bulk graphite in the binder for 30 minutes to 2 hours and then recarbonizing at 600 ° C to 1,000 ° C.
  • the isotropic graphite waste scrap of step 1 is a step 1-1 of mixing the coke raw material powder with a binder after molding; Step 1-2 carbonizing the mixture formed in the step; 1-3, impregnating and recarbonizing the carbonized mixture in the binder; And 1-4 steps of graphitizing the molded body impregnated and recarbonized in the above step.
  • the waste scrap generated from the isotropic artificial graphite block manufactured by the method may include.
  • the isotropic graphite waste scrap of step 1 may be characterized in that the average particle size of 10 ⁇ m ⁇ 200 ⁇ m.
  • the binder of the first step may be characterized in that at least one selected from phenol resin or pitch.
  • the isotropic graphite waste scrap and the binder in the first step may be characterized in that the mixing ratio of 8: 1 to 3.
  • the pressurization of the first step may be performed by uniaxial pressure molding at 200 to 400 MPa.
  • the density of the bulk graphite which is performed in the second step may be characterized in that 1.29 ⁇ 1.39 g / cm 3 .
  • the porosity of the bulk graphite may be characterized in that less than 31%.
  • the three steps may be characterized as being repeated one or more times.
  • Another aspect of the invention may comprise isotropic bulk graphite prepared by the above method.
  • the anisotropic ratio of the isotropic bulk graphite may be characterized in that less than 1.2.
  • the isotropic bulk graphite may have a density of 1.40 to 1.60 g / cm 3 .
  • the porosity of the isotropic bulk graphite may be characterized in that less than 26%.
  • Another aspect of the invention may comprise a carbon electrode comprising said isotropic bulk graphite.
  • Another aspect of the invention may include a mechanical seal comprising the above isotropic bulk graphite.
  • isotropic graphite waste scraps generated during isotropic graphite production are being discarded, but according to the present invention, by recovering and reprocessing the graphite waste scraps, high density isotropic bulk graphite can be produced. It can be used in various fields such as high temperature structural materials such as electrodes, carbon brushes, mechanical seals and special mechanical parts.
  • Example 4 is a graph showing the results of XRD analysis of the bulk graphite particles prepared in Example 1.
  • isotropic graphite waste scrap is meant to include debris that occurs after the isotropic graphite blocks are processed and used according to their use.
  • the present invention comprises the steps of mixing the isotropic graphite waste scrap with the binder and pressing to form a green body; Carbonizing the raw material at 600 ° C. to 1,000 ° C. to produce bulk graphite; And three steps of impregnating the bulk graphite in the binder for 30 minutes to 2 hours and then recarbonizing at 600 ° C. to 1,000 ° C., wherein the graphite graphite is scraped.
  • the method for producing isotropic bulk graphite according to the present invention is a method for recovering isotropic graphite waste scrap, which is a debris generated after processing isotropic graphite blocks for use, and converting them into high density isotropic bulk graphite for reuse.
  • isotropic graphite waste scrap can be added to increase the carbon content in steel mill molten iron or used to produce graphite-added refractory, and is also partially added when producing carbon-magnesite brick, but most isotropic graphite waste Scrap is being discarded.
  • the method for producing the isotropic bulk graphite of the present invention there is an advantage that the economical efficiency on the environment and process energy can be improved by recovering and using the graphite waste scrap.
  • the first step is a step for pretreatment of the isotropic graphite waste scrap, by mixing the isotropic graphite waste scrap with a binder and press molding to arrange the arrangement of the graphite particles more disorderly. It can produce green dough with increased isotropy.
  • the green body refers to an intermediate product before drying or after firing of the molded article.
  • the isotropic graphite waste scrap of step 1 may be any waste scrap generated from isotropic artificial graphite blocks produced by a general method for producing isotropic graphite.
  • the step 1-1 of mixing the coke raw material powder with a binder and molding; Step 1-2 carbonizing the mixture formed in the step; And 1-3, impregnating and recarbonizing the carbonized mixture in the binder; And 1-4 step of graphitizing the impregnated and re-carbonized molded body in the above step; can be used waste scrap produced when manufacturing the isotropic artificial graphite block produced by the method comprising a.
  • step 1-1 is a step of mixing the coke raw material powder and the binder to be molded in the intended form.
  • the coke raw material powder is a raw material developed into graphite crystals during the carbonization and graphitization process, but since the binding strength is weak, the binder can be added to give moldability, so that the coke raw material powder is mixed with a binder to induce bonding between the cokes. It can be molded into the intended shape.
  • step 1-2 is a step of carbonizing the mixture formed in step 1-1, when coke and binder are mixed and heat-treated in an inert atmosphere, coke having an orientation is a graphite crystal while undergoing a carbonization process
  • the binder is heat-treated to remove a significant amount of volatiles, and at the same time, a polycondensation reaction occurs.
  • the properties of the final product produced from the bulk graphite can be controlled by the carbonization process.
  • the carbonization of the step 1-2 may be any one of the conditions for converting the raw material containing coke to graphite, preferably at 600 °C to 2,000 °C, more preferably 600 °C to 1,500 °C It is good to be done in. If the carbonization is carried out at a temperature of less than 600 °C coke is not high enough to carbonize the coke is a problem that the coke is not sufficiently converted to graphite, when the temperature is more than 2,000 °C if the temperature required for carbonization In addition, there is a problem that the economic efficiency on the process energy is lowered. Moreover, it is preferable that carbonization is made in inert atmosphere, such as nitrogen and argon.
  • the binder of step 1-1 can be used as long as it can be graphitized by combining with coke, but preferably at least one selected from pitch or tar.
  • the binder serves as a binder between the raw material powder containing coke, and when the pitch or tar is used, the binder may exhibit a bonding effect after carbonization.
  • the step 1-3 is a step of impregnating and recarbonizing the carbonized mixture in the step 1-2, a significant amount of pores are generated in the tissue due to the volatilization of the coke and the binder itself during the carbonization process Since airtightness can be difficult to maintain, the pores can be filled with carbides by impregnating and recarbonizing the raw material subjected to carbonization, so that the porosity can be lowered and the density can be improved.
  • the recarbonization of the 1-3 steps is preferably performed at 600 °C ⁇ 2,000 °C, more preferably at 600 °C ⁇ 1,500 °C. If the carbonization is carried out at a temperature of less than 600 °C coke is not high enough to carbonize the coke has a problem that the coke is not sufficiently converted to graphite, when the temperature is more than 2,000 °C if the temperature required for carbonization In addition, there is a problem that the economic efficiency on the process energy is lowered. Moreover, it is preferable that carbonization is made in inert atmosphere, such as nitrogen and argon.
  • steps 1-3 may be repeated one or more times. By repeating steps 1-3, an isotropic graphite block having a lower porosity can be produced, and thus high density isotropic graphite waste scrap can be obtained.
  • the graphitization of the 1-4 step is preferably performed at 2,000 °C ⁇ 3,000 °C, preferably at 2,200 °C ⁇ 2,800 °C, more preferably at 2,400 °C ⁇ 2,600 °C. If the carbonization is carried out at a temperature of less than 2000 °C coke is not high enough to carbonize the coke has a problem that the coke is not sufficiently converted to graphite, if the temperature is more than 3000 °C if the temperature required for carbonization In addition, there is a problem that the economic efficiency on the process energy is lowered. At this time, the graphitization is preferably performed in an inert atmosphere such as nitrogen, argon.
  • the isotropic graphite waste scrap of step 1 preferably has an average particle size of 10 ⁇ m to 200 ⁇ m, and more preferably 10 ⁇ m to 50 ⁇ m.
  • the average particle size of the isotropic graphite waste scrap is less than 10 ⁇ m, there is a problem that it is difficult to form a powder, and when it exceeds 200 ⁇ m, there are problems that many internal pores are formed during molding. It is desirable to have.
  • the binder of the first step may be used as long as the binder is mixed with the waste scrap so as to improve the formability so as to process the raw material into a desired form.
  • the binder is 1 or more types chosen from a phenol resin or a pitch.
  • the isotropic graphite waste scrap and binder are preferably mixed in a mixing ratio of 8: 1 to 3.
  • the isotropic graphite waste scrap and the binder are mixed at a ratio of less than 8: 1, there is a problem in that the binder is insufficient and the bonding strength with the raw material is lowered, and when the binder is mixed at a ratio exceeding 8: 3, the graphite waste is mixed.
  • the airtightness is lowered because pores are generated in the process of carbonization in a later step due to the volatility of the binder is excessively supplied compared to the scrap.
  • the mixture of the isotropic graphite waste scrap and the binder is preferably press-molded by uniaxial pressure molding at 200 to 400 MPa, preferably at 250 to 350 MPa. Do.
  • the uniaxial pressure molding method is a forging method of forming a shape at room temperature while improving the properties of a material using a mold, and is economical as a processing method that can produce a product in a desired shape with little need for cutting.
  • graphite particles are randomly arranged to show isotropy, and the structure is dense and has high density and strength. At this time, if the pressure is less than 200 MPa, there is a problem of low density after carbonization, there is a problem that the anisotropy increases if the pressure is exceeded 400 MPa.
  • the second step is a step of carbonizing the raw material formed in step 1 at 600 to 1,000 ° C., preferably at 600 to 800 ° C., wherein the second step is performed.
  • the raw material made by pressing in a desired shape can be graphitized by heat treatment in an inert atmosphere. More specifically, the raw material formed by mixing the graphite waste scrap and the binder may undergo a carbonization process to remove a large amount of volatiles from the binder and simultaneously perform a polycondensation reaction, thereby forming bulk graphite containing some pores therein. have.
  • the density of the bulk graphite obtained by performing the two steps may be 1.29 to 1.39 g / cm 3 , preferably 1.29 to 1.35 g / cm 3 . have.
  • the density is a result of including both the open and closed pores as a bulk density
  • the bulk graphite produced by the first carbonization proceeds to include some pores therein, so the density is about 1.29 g / cm 3 or more, but The density can be further improved by performing impregnation and recarbonization at the stage of.
  • the porosity of the bulk graphite obtained by performing the two steps is less than 31%, preferably 27% to 31%, more preferably 27% to 30.5% It can be characterized by.
  • the porosity is a result of measuring the volume of the open pores through which the fluid can penetrate, and the open pores are connected to the penetrating pores and ink-bottle pores through which the fluid can penetrate. It is based on what is measured. Since the bulk graphite prepared by carbonization is primarily included, the porosity is less than about 31% because some pores are included therein, but the porosity can be further lowered by performing impregnation and recarbonization in a later step.
  • the third step is after impregnating the binder with the bulk graphite prepared in step 2 for 30 minutes to 2 hours at 600 °C to 1,000 °C, more preferably 600 °C
  • the bulk graphite including some pores therein may be impregnated into the binder and then recarbonized.
  • the binder does not sufficiently penetrate into the pores, so there is a problem that the density change after the carbonization may be insignificant.
  • the recarbonization is carried out at a temperature of less than 600 ° C there is a problem that the carbonization is not performed sufficiently, and when performed at a temperature exceeding 1000 ° C there is a problem that the economic efficiency on the process energy is lowered.
  • the three steps may be repeated one or more times.
  • step 3 the bulk graphite carbonized in step 2 is impregnated into the binder, and the carbon is recarbonized to fill pores generated by the volatilization of the binder in the carbonization process of step 2, thereby producing isotropic bulk graphite having a higher density. Since the step 3 is repeated one or more times, it is possible to produce isotropic bulk graphite having a higher density.
  • Another aspect of the invention relates to an isotropic bulk graphite prepared by the above method.
  • the isotropic bulk graphite according to the present invention can improve the economics of the environment and the process energy by producing from the graphite waste scrap, it is possible to produce bulk graphite having a high density and low porosity by repeating the impregnation and carbonization process.
  • the anisotropic ratio of the isotropic bulk graphite may be less than 1.2, preferably 1.05 to 1.15, and more preferably 1.08 to 1.15.
  • the anisotropic ratio of the isotropic bulk graphite represents the ratio of the maximum and minimum values for each direction of the specific physical property according to the anisotropy, the closer to 1 the value is more excellent isotropy.
  • the isotropic bulk graphite according to the present invention has an anisotropy ratio of less than 1.2, preferably 1.05 to 1.15, more preferably 1.08 to 1.15, according to the present invention can produce a bulk graphite having excellent isotropy It can be seen.
  • the isotropic bulk graphite of the present invention may have a density of 1.40 to 1.60 g / cm 3 , preferably 1.43 to 1.60 g / cm 3 . Impregnating the bulk graphite carbonized in the binder in step 2 of the present invention, and re-carbonized to fill the pores generated by the volatilization of the binder in the carbonization process of step 2. Therefore, the density is improved compared to the bulk graphite performed only up to step 2, and may have a density of 1.40 to 1.60 g / cm 3 , preferably 1.43 to 1.60 g / cm 3 .
  • the porosity of the isotropic bulk graphite may be less than 26%. Impregnating the bulk graphite carbonized in the binder in step 2 of the present invention, and re-carbonized to fill the pores generated by the volatilization of the binder in the carbonization process of step 2. Therefore, the porosity is lower than that of the bulk graphite performed only to step 2, and may have a porosity of less than 26%.
  • Isotropic bulk graphite is a high density isotropic bulk graphite, the structure is dense and has excellent strength, high density, and physical and electrical properties in all directions isotropic, so that the electrode or electrochemical for electrolysis or battery It can manufacture and use the carbon electrode containing the graphite electrode, glassy carbon electrode, pyrolytic graphite electrode, carbon paste electrode, carbon cloth electrode, etc. for analysis and electrolytic synthesis.
  • Isotropic bulk graphite according to the present invention is a high density isotropic bulk graphite, because the structure is dense, and has the advantage of high strength and high density, while lightly press-fitting the metal surface, which is precisely trimmed in two parts, one of which is fixed The other side can be manufactured and used as a mechanical seal that serves to prevent leakage of fluid by rotating in sliding contact with the shaft.
  • the particle size of the isotropic graphite waste scraps of Preparation Example 1 was measured using a particle size analyzer (Malvern Ins. GB / MASTERSIZER 2000), and the results are shown in FIG.
  • x-ray diffraction analysis was performed using an X-ray diffractometer (XRD; SWXD, X-MAX / 2000-PC, Rigaku), and the results are shown in FIG.
  • the isotropic graphite waste scrap which is the raw material powder, has an average particle size of about 50 ⁇ m.
  • Step 1 Formation of Green Body from Isotropic Graphite Scrap
  • Isotropic synthetic graphite scrap (ISGS, isotropic synthesis graphite scrap) of Preparation Example 1 was used as a raw material, and the graphite waste scrap was mixed with a phenol resin (Phenolic Resin, Gangnam Hwaseong Co., Ltd.) at a weight ratio of 8: 2. Subsequently, a green body having a diameter of 10 mm was manufactured by molding at a pressure of 300 MPa using a uniaxial pressure molding machine (manufacturer).
  • the raw material was carbonized at 700 ° C. for 1 hour in a nitrogen atmosphere.
  • step 3 recarbonization of the bulk graphite
  • Isotropic bulk graphite was prepared in the same manner as in Example 1.
  • Isotropic bulk graphite was prepared in the same manner as in Example 1.
  • the density and porosity of the isotropic bulk graphite prepared in Examples 1 to 6 and Comparative Examples 1 to 6 were measured by Archimedes method (ISO 18754: 2003), and the results are shown in Table 1 below.
  • the following density is a result of including both open and closed pores as the bulk density
  • the following porosity is the result of measuring the volume of the open pores through which the fluid can penetrate.
  • the open pores include penetrating pores through which fluid can penetrate and ink-bottle pores.
  • the density of the isotropic bulk graphite before impregnation of Comparative Examples 1 to 3 is about 1.29 g / cm 3 on average
  • the average density of about 1.44 g / cm 3 was 11.1% higher than before impregnation.
  • the porosity before the impregnation of Comparative Examples 1 to 3 was about 29.8% on average, and the porosity after the impregnation of Examples 1 to 3 was reduced by about 4.6% to about 25.2% on average.
  • Figure 3 (a) is an image of the microstructure in the side-face of Comparative Example 1. (b) is an image of the microstructure in the side-face of Example 1. That is, according to Figure 3, the orientation of the particles could not be observed in the side-face, it was confirmed that the pore distribution in the microstructure before and after impregnation.
  • XRD analysis was performed using an X-ray diffractometer (XRD; SWXD, X-MAX / 2000-PC, Rigaku). 4 is shown.
  • the wavelength of the used X-ray target (Cu-K ⁇ 1 ) is 1.5406A
  • XRD spectra were observed in a 2 ⁇ continuous scanning method of the scanning speed 1 ° / min in the scanning range of 10 ° ⁇ 60 °.
  • the XRD was measured on the surface perpendicular to the molding compression direction (hereinafter referred to as the top-face) and on the surface parallel to the molding compression direction (hereinafter referred to as the side-face), and the degree of alignment was obtained to compare the results.
  • Equation 1 the degree of alignment (Da) was calculated as in Equation 1 using the relative intensity values divided by the height of the (100) peak and the (002) peak, respectively, and the anisotropy ratio was represented by the following Equation 2 As shown in Table 2 by calculating the ratio of the orientation of the top-face and side-face as shown.
  • I 002 and I 100 are the heights of the (002) peak and the (100) peak, respectively.
  • Da Top is an orientation of the top face perpendicular to the molding compression direction.
  • Da Side is a degree of orientation of the side face parallel to the molding compression direction.
  • FIG. 4 is a graph showing the degree of orientation and anisotropy ratio of the bulk graphite of Example 1. According to FIG. It can be seen that the (100) peak and the (101) peak are distinguished. Through this, it can be seen that there is no particular difference in the crystal structure of the top-face and side-face.
  • the anisotropy ratio calculated by the orientation of the top-face and side-face is 1.13, it can be confirmed that the bulk graphite showing excellent isotropy was prepared.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)

Abstract

The present invention relates to a method for preparing isotropic bulk graphite, and isotropic bulk graphite prepared thereby and, more particularly, to a method for preparing isotropic bulk graphite by collecting and reprocessing isotropic graphite waste scraps which are generated at the time of preparing the isotropic graphite and are discarded, to thereby prepare isotropic bulk graphite having high density and high strength. The isotropic bulk graphite prepared thereby can be used by being applied in various kinds of areas, such as high-temperature structural materials like electrodes, carbon brush, mechanical seal, etc., and specific mechanical parts, etc.

Description

흑연 폐스크랩을 이용한 등방성 벌크 흑연의 제조방법 및 이를 통해 제조된 등방성 벌크 흑연Method for producing isotropic bulk graphite using graphite waste scrap and isotropic bulk graphite produced through the same
본 발명은 흑연 폐스크랩을 이용한 등방성 벌크 흑연의 제조방법 및 이를 통해 제조된 등방성 벌크 흑연에 관한 것이다. The present invention relates to a method for producing isotropic bulk graphite using graphite waste scrap and to isotropic bulk graphite produced through the same.
탄소는 기계 및 화학공업 분야에서 중요한 역할을 하는 화학적으로 안정한 원소로서, 물리적으로는 금속적 성질과 세라믹적인 성질을 모두 지니고 있고, c축 방향으로 반 데르 발스 결합을 하고 있으며, 그에 수직인 a, b면 상에는 공유결합을 하고 있어 큰 이방성을 나타내는 특성을 지닌다. 특히, 금속이나 세라믹에서 볼 수 없는 윤활성, 내열성, 내열 충격성, 열전도성, 내식성 등이 우수한 재료로 여겨지고 있다. 탄소재가 기계용 씰로 이용되기 위하여는 밀도가 높아 기밀성을 유지할 수 있어야 하며, 우수한 마찰안정성을 가질 것이 요구된다. Carbon is a chemically stable element that plays an important role in the mechanical and chemical industries, having both physically metallic and ceramic properties and having van der Waals bonds in the c-axis direction, perpendicular to a, On the b side, it is covalently bonded and has a characteristic of showing large anisotropy. In particular, it is considered to be a material excellent in lubricity, heat resistance, thermal shock resistance, thermal conductivity, corrosion resistance, and the like, which are not found in metals and ceramics. In order for the carbon material to be used as a mechanical seal, it is required to have high density and maintain airtightness and to have excellent friction stability.
예를 들어, 특허문헌 1은 탄소재 시일을 제조하는 방법에 관한 것으로서, 원료 콜타르 피치를 열처리한 후 사출성형하고 산화 안정화하여 탄소재 시일을 제조하는 방법을 제공하고 있다. 이에 따르면, 콜타르 피치를 이용하여 복잡한 구조의 박판형상을 가지면서도 높은 기계적 물성, 우수한 내식성, 낮고 안정된 마찰양상을 갖는 탄소재 시일을 제조할 수 있다.For example, Patent Document 1 relates to a method of manufacturing a carbon material seal, and provides a method of manufacturing a carbon material seal by heat-treating the raw material coal tar pitch, followed by injection molding and oxidation stabilization. According to this, it is possible to produce a carbon-based seal having a thin plate shape of a complex structure using a coal tar pitch, but having high mechanical properties, excellent corrosion resistance, and a low and stable friction pattern.
또한, 특허문헌 2는 그라핀을 이용한 고강도 탄소복합재, 그 제조방법 및 이를 이용한 연료전지 분리판에 관한 것으로서, 코크스와 전기전도도가 높고, 접촉저항이 우수한 그라핀 탄소복합재를 혼합 및 성형하여 고강도 탄소복합재를 제조하고, 이를 이용하여 제조한 연료전지 분리판에 대해 개시하고 있다. 상기 고강도 탄소복합재로부터 제조된 연료전지 분리판은 고전기전도도, 고강도, 경량성, 내화학성, 고청정성, 치수 정밀도 등의 향상된 특성을 발휘할 수 있다.In addition, Patent Document 2 relates to a high-strength carbon composite material using graphene, a method for manufacturing the same, and a fuel cell separator using the same, wherein the graphene carbon composite material having high coke and electrical conductivity and excellent contact resistance is mixed and molded to form high-strength carbon. Disclosed is a fuel cell separator manufactured by manufacturing a composite material and using the same. The fuel cell separator manufactured from the high strength carbon composite material may exhibit improved characteristics such as high conductivity, high strength, light weight, chemical resistance, high cleanliness, and dimensional accuracy.
이와 같은 탄소재로서 사용될 수 있는 물질 중 하나인 흑연은 그 결정구조가 이방성을 나타내고, 다른 재료보다 내열성, 내식성, 전기전도성, 고온강도 및 윤활성이 우수한 특징이 있다. 따라서 탄소는 전극, 탄소 브러쉬(carbon brush), 기계적 씰(mechanical seal)등의 고온구조 재료나 특수 기계부품 등 여러 분야에 이용되고 있다. Graphite, which is one of the materials that can be used as such a carbon material, exhibits anisotropy in its crystal structure and is superior in heat resistance, corrosion resistance, electrical conductivity, high temperature strength, and lubricity to other materials. Therefore, carbon is used in various fields such as high temperature structural materials such as electrodes, carbon brushes, mechanical seals, and special mechanical parts.
이러한 이방성 구조의 흑연을 성형하면 흑연입자들이 무질서하게 배열되여 등방성을 나타내게 되며, 조직이 치밀하며 밀도와 강도가 높아지게 된다. 또한 성형체에 방향성이 없고 모든 방향에서 물리, 전기적 특성이 등방성을 띠게 된다 .When the graphite of the anisotropic structure is molded, the graphite particles are randomly arranged to show isotropy, the structure is dense, and the density and strength are increased. In addition, the molded body is not oriented and its physical and electrical properties are isotropic in all directions.
등방성 인조 흑연 블록(Isotropic synthetic graphite block)의 일반적인 제조공정은 석유계 또는 석탄계 코크스 분말을 피치(pitch)나 수지(resin) 등의 바인더에 균일하게 혼합하여 성형한 후 탄화하는 것이다. 코크스는 피치를 불활성 분위기에서 열처리하여 제조되는 것으로 배향성을 가지고 있어 탄화 및 흑연화 공정을 거치면서 흑연결정으로 발달하므로 탄소재 원료로 이용되며, 코크스 간의 결합력이 약하기 때문에 피치 바인더를 첨가형 성형성을 부여하고 코크스 간의 결합을 유도하는 것이다. 피치는 열처리를 통하여 상당량의 휘발분이 제거되면서 동시에 중축합반응이 일어나는데 이러한 과정은 탄소재의 조직을 결정하는 중요한 단계이다. 이때, 탄화에 의한 바인더의 휘발로 인해 성형체 내부에 기공이 생성되며 기공을 메우기 위해 피치 또는 수지 등을 함침하게 된다. 이러한 공정을 수차례 반복하여 기공을 메운 후 2500℃ 이상에서 열처리하여 흑연화시킬 수 있다.The general manufacturing process of the isotropic synthetic graphite block (Isotropic synthetic graphite block) is to carbonize the petroleum- or coal-based coke powder uniformly mixed with a binder such as pitch, resin (resin) and molded. Coke is manufactured by heat-treating pitch in an inert atmosphere. It has an orientation and is developed as a graphite crystal through carbonization and graphitization process. It is used as a raw material for carbon materials. To induce the coke to bond. Pitch removes significant amount of volatiles through heat treatment and simultaneously polycondensation reaction. This process is an important step to determine the structure of carbon material. At this time, pores are generated in the molded body due to volatilization of the binder by carbonization, and impregnates pitch or resin to fill the pores. This process may be repeated several times to fill the pores and then graphitized by heat treatment at 2500 ° C. or higher.
상기와 같은 공정으로 제조된 등방성 인조 흑연 블록은 사용목적에 맞게 가공되며, 이때 많은 양의 폐스크랩(scrap)이 발생된다. 가공 중에 발생된 흑연 폐스크랩(graphite scrap)은 제철소 용선중의 탄소함량을 높이기 위하여 첨가하거나, 흑연이 첨가된 내화물을 제조하는데 사용한다. 특히, 카본-마그네사이트 벽돌(carbon-magnesite brick)을 제조할 때 흑연 폐스크랩(graphite scrap)이 약 15 ~ 25 % 정도 첨가되기도 하지만, 이와 같이 사용되는 흑연 스크랩의 양은 많지 않으며 대부분 폐기하고 있는 실정이다. The isotropic artificial graphite block manufactured by the above process is processed according to the purpose of use, and a large amount of waste scrap is generated. Graphite scrap generated during processing is added to increase the carbon content in the molten iron mill, or used to produce graphite-added refractory materials. Particularly, in the case of manufacturing carbon-magnesite bricks, graphite scrap is added about 15 to 25%, but the amount of graphite scrap used in this way is not high and is mostly discarded. .
이에 본 발명의 발명자들은 이와 같은 문제점들을 해결하기 위하여 등방성 인조 흑연 폐스크랩(isotropic synthetic graphite scrap, ISGS)으로부터 등방성 벌크 흑연을 제조할 수 있는 가능성에 대하여 검토하던 중 이를 이용하여 등방성 벌크 흑연(isotropic bulk graphite)을 제조할 수 있음을 알게 되어, 흑연 폐스크랩을 이용한 등방성 벌크흑연의 제조방법을 제공하고자 한다.Accordingly, the inventors of the present invention are investigating the possibility of producing isotropic bulk graphite from isotropic synthetic graphite scrap (ISGS) in order to solve these problems. The present invention is to provide a method for producing isotropic bulk graphite using graphite waste scrap.
상기 과제를 해결하기 위한 본 발명의 등방성 벌크 흑연의 제조방법은 등방성 흑연 폐스크랩을 바인더와 혼합하고 가압성형하여 생소지(green body)를 형성하는 1단계; 상기 생소지를 600℃ ~ 1,000℃에서 탄화시켜 벌크 흑연을 제조하는 2단계; 및 상기 벌크 흑연을 바인더에 30 분 ~ 2시간 동안 함침한 후 600℃ ~ 1,000℃에서 재탄화하는 3단계;를 포함하는 것을 특징으로 할 수 있다.Method for producing an isotropic bulk graphite of the present invention for solving the above problems is a step 1 of mixing the isotropic graphite waste scrap with a binder and press molding to form a green body (green body); Carbonizing the raw material at 600 ° C. to 1,000 ° C. to produce bulk graphite; And three steps of impregnating the bulk graphite in the binder for 30 minutes to 2 hours and then recarbonizing at 600 ° C to 1,000 ° C.
본 발명의 바람직한 일실시예로서, 상기 단계 1의 등방성 흑연 폐스크랩은 코크스 원료 분말을 바인더와 혼합한 후 성형하는 1-1 단계; 상기 단계에서 성형된 혼합물을 탄화하는 1-2 단계; 상기 단계에서 탄화된 혼합물을 바인더에 함침하고 재탄화하는 1-3 단계; 및 상기 단계에서 함침 및 재탄화한 성형체를 흑연화하는 1-4단계;를 포함하는 방법으로 제조된 등방성 인조 흑연 블록으로부터 발생한 폐스크랩인 것을 특징으로 할 수 있다.In one preferred embodiment of the present invention, the isotropic graphite waste scrap of step 1 is a step 1-1 of mixing the coke raw material powder with a binder after molding; Step 1-2 carbonizing the mixture formed in the step; 1-3, impregnating and recarbonizing the carbonized mixture in the binder; And 1-4 steps of graphitizing the molded body impregnated and recarbonized in the above step. The waste scrap generated from the isotropic artificial graphite block manufactured by the method may include.
본 발명의 바람직한 일실시예로서, 상기 단계 1의 등방성 흑연 폐스크랩은 평균입도가 10 ㎛ ~ 200 ㎛인 것을 특징으로 할 수 있다.As a preferred embodiment of the present invention, the isotropic graphite waste scrap of step 1 may be characterized in that the average particle size of 10 ㎛ ~ 200 ㎛.
본 발명의 바람직한 일실시예로서, 상기 1 단계의 바인더는 페놀 수지 또는 피치로부터 선택되는 1종 이상인 것을 특징으로 할 수 있다.As a preferred embodiment of the present invention, the binder of the first step may be characterized in that at least one selected from phenol resin or pitch.
본 발명의 바람직한 일실시예로서, 상기 1단계에서 상기 등방성 흑연 폐스크랩 및 바인더는 8: 1 ~ 3의 혼합비율로 혼합되는 것을 특징으로 할 수 있다. As a preferred embodiment of the present invention, the isotropic graphite waste scrap and the binder in the first step may be characterized in that the mixing ratio of 8: 1 to 3.
본 발명의 바람직한 일실시예로서, 상기 1단계의 가압성형은 200 ~ 400 MPa에서 일축가압성형법으로 수행하는 것을 특징으로 할 수 있다.As a preferred embodiment of the present invention, the pressurization of the first step may be performed by uniaxial pressure molding at 200 to 400 MPa.
본 발명의 바람직한 일실시예로서, 상기 2단계를 수행한 벌크 흑연의 밀도는 1.29 ~ 1.39 g/cm3 인 것을 특징으로 할 수 있다.As a preferred embodiment of the present invention, the density of the bulk graphite which is performed in the second step may be characterized in that 1.29 ~ 1.39 g / cm 3 .
본 발명의 바람직한 일실시예로서, 상기 2단계를 수행한 벌크 흑연의 기공도는 31 % 미만인 것을 특징으로 할 수 있다.As a preferred embodiment of the present invention, the porosity of the bulk graphite may be characterized in that less than 31%.
본 발명의 바람직한 일실시예로서, 상기 3단계는 1회 이상 반복될 수 있는 것을 특징으로 할 수 있다. As a preferred embodiment of the present invention, the three steps may be characterized as being repeated one or more times.
본 발명의 또 다른 태양은 상기의 방법으로 제조된 등방성 벌크 흑연을 포함할 수 있다. Another aspect of the invention may comprise isotropic bulk graphite prepared by the above method.
본 발명의 바람직한 일실시예로서, 상기 등방성 벌크 흑연의 이방성비(anisotropic)는 1.2 미만인 것을 특징으로 할 수 있다.As a preferred embodiment of the present invention, the anisotropic ratio of the isotropic bulk graphite (anisotropic) may be characterized in that less than 1.2.
본 발명의 바람직한 일실시예로서, 상기 등방성 벌크 흑연의 밀도는 1.40 ~ 1.60 g/cm3인 것을 특징으로 할 수 있다.As a preferred embodiment of the present invention, the isotropic bulk graphite may have a density of 1.40 to 1.60 g / cm 3 .
본 발명의 바람직한 일실시예로서, 상기 등방성 벌크 흑연의 기공도는 26 % 미만인 것을 특징으로 할 수 있다.As a preferred embodiment of the present invention, the porosity of the isotropic bulk graphite may be characterized in that less than 26%.
본 발명의 또 다른 태양은 상기의 등방성 벌크 흑연을 포함하는 탄소전극을 포함할 수 있다. Another aspect of the invention may comprise a carbon electrode comprising said isotropic bulk graphite.
본 발명의 또 다른 태양은 상기의 등방성 벌크 흑연을 포함하는 기계적 씰을 포함할 수 있다. Another aspect of the invention may include a mechanical seal comprising the above isotropic bulk graphite.
등방성 흑연 제조시 발생되는 대부분의 등방성 흑연 폐스크랩은 폐기되고 있는 실정이나, 본 발명에 따르면 이러한 흑연 폐스크랩을 회수하여 재가공하여 사용함으로써 고밀도의 등방성 벌크 흑연을 제조할 수 있고, 이는 고밀도 및 고강도를 가지므로 전극, 카본 브러시, 기계적 씰 등과 같은 고온 구조재료 및 특수기계부품 등의 여러 분야에 적용하여 사용될 수 있다.Most of the isotropic graphite waste scraps generated during isotropic graphite production are being discarded, but according to the present invention, by recovering and reprocessing the graphite waste scraps, high density isotropic bulk graphite can be produced. It can be used in various fields such as high temperature structural materials such as electrodes, carbon brushes, mechanical seals and special mechanical parts.
도 1(a)는 제조예 1에서 제조된 등방성 흑연 폐스크랩의 입도분석 그래프이고, (b)는 제조예 1에서 제조된 등방성 흑연 폐스크랩의 x-선 회절 분석 그래프이다.1 (a) is a particle size analysis graph of the isotropic graphite waste scrap prepared in Preparation Example 1, (b) is an x-ray diffraction analysis graph of the isotropic graphite waste scrap prepared in Preparation Example 1.
도 2(a)는 비교예 1의 Top-face에서의 미세구조의 이미지이고, (b)는 실시예 1의 Top-face에서의 미세구조의 이미지이다.2 (a) is an image of the microstructure in the top-face of Comparative Example 1, (b) is an image of the microstructure in the Top-face of Example 1.
도 3(a)는 비교예 1의 Side-face에서의 미세구조의 이미지이고, (b)는 실시예 1의 Side-face에서의 미세구조의 이미지이다.3 (a) is an image of the microstructure in the side-face of Comparative Example 1, (b) is an image of the microstructure in the side-face of Example 1.
도 4는 실시예 1에서 제조된 벌크 흑연 입자의 XRD 분석 결과를 나타낸 그래프이다.4 is a graph showing the results of XRD analysis of the bulk graphite particles prepared in Example 1.
본 발명의 명세서에서 사용되는 "등방성 흑연 폐스크랩"은 등방성 흑연 블록을 용도에 맞게 가공하여 사용한 후에 발생하는 부스러기 물질을 포함하는 의미이다.As used herein, the term "isotropic graphite waste scrap" is meant to include debris that occurs after the isotropic graphite blocks are processed and used according to their use.
이하, 본 발명의 흑연 폐스크랩을 이용한 등방성 벌크 흑연의 제조방법 및 이를 통해 제조된 등방성 벌크 흑연에 대하여 더욱 상세하게 설명을 한다.Hereinafter, a method for producing isotropic bulk graphite using the graphite waste scrap of the present invention and an isotropic bulk graphite produced through the same will be described in more detail.
본 발명은 등방성 흑연 폐스크랩을 바인더와 혼합하고 가압성형하여 생소지(green body)를 형성하는 1단계; 상기 생소지를 600℃ ~ 1,000℃에서 탄화시켜 벌크 흑연을 제조하는 2단계; 및 상기 벌크 흑연을 바인더에 30 분 ~ 2 시간 동안 함침한 후 600℃ ~ 1,000 ℃에서 재탄화하는 3단계;를 포함하는 것을 특징으로 하는 흑연 폐스크랩을 이용한 등방성 벌크 흑연의 제조방법에 관한 것이다.The present invention comprises the steps of mixing the isotropic graphite waste scrap with the binder and pressing to form a green body; Carbonizing the raw material at 600 ° C. to 1,000 ° C. to produce bulk graphite; And three steps of impregnating the bulk graphite in the binder for 30 minutes to 2 hours and then recarbonizing at 600 ° C. to 1,000 ° C., wherein the graphite graphite is scraped.
본 발명에 따른 등방성 벌크 흑연의 제조방법은 등방성 흑연 블록을 용도에 맞게 가공하여 사용한 후에 발생하는 부스러기 물질인 등방성 흑연 폐스크랩을 회수하여 고밀도의 등방성 벌크 흑연으로 전환하여 재사용하기 위한 방법이다. The method for producing isotropic bulk graphite according to the present invention is a method for recovering isotropic graphite waste scrap, which is a debris generated after processing isotropic graphite blocks for use, and converting them into high density isotropic bulk graphite for reuse.
일반적으로, 등방성 흑연 폐스크랩은 제철소 용선 중의 탄소 함량을 높이기 위해 첨가하거나, 흑연이 첨가된 내화물을 제조하는데 사용할 수 있고, 또한 카본-마그네사이트 벽돌을 제조할 때 일부 첨가되기도 하지만, 대부분의 등방성 흑연 폐스크랩은 폐기되고 있는 실정이다. 그러나, 본 발명의 등방성 벌크 흑연의 제조방법에 따르면, 흑연 폐스크랩을 회수하여 재가공하여 사용함으로써, 환경 및 공정에너지 상의 경제성을 고양할 수 있다는 장점이 있다. In general, isotropic graphite waste scrap can be added to increase the carbon content in steel mill molten iron or used to produce graphite-added refractory, and is also partially added when producing carbon-magnesite brick, but most isotropic graphite waste Scrap is being discarded. However, according to the method for producing the isotropic bulk graphite of the present invention, there is an advantage that the economical efficiency on the environment and process energy can be improved by recovering and using the graphite waste scrap.
이하, 본 발명을 단계별로 더욱 상세하게 설명을 한다. Hereinafter, the present invention will be described in more detail step by step.
본 발명에 따른 등방성 벌크 흑연의 제조방법에 있어서, 상기 1단계는 등방성 흑연 폐스크랩을 전처리하기 위한 단계로서, 등방성 흑연 폐스크랩을 바인더와 혼합하고 가압 성형함으로써 흑연 입자들의 배열을 더욱 무질서하게 배열할 수 있어 등방성이 심화된 생소지를 만들어 낼 수 있다. 이때, 생소지(green body)는 성형품의 건조 전 혹은 건조를 끝낸 소성 전의 중간 제품을 의미한다.In the method for producing isotropic bulk graphite according to the present invention, the first step is a step for pretreatment of the isotropic graphite waste scrap, by mixing the isotropic graphite waste scrap with a binder and press molding to arrange the arrangement of the graphite particles more disorderly. It can produce green dough with increased isotropy. In this case, the green body refers to an intermediate product before drying or after firing of the molded article.
본 발명에 따른 등방성 벌크 흑연의 제조방법에 있어서, 상기 단계 1의 등방성 흑연 폐스크랩은 등방성 흑연을 제조하기 위한 일반적인 방법으로 제조된 등방성 인조 흑연 블록으로부터 발생한 폐스크랩이라면 어느 것이든지 사용가능하고, 바람직하게는 코크스 원료 분말을 바인더와 혼합한 후 성형하는 1-1 단계; 상기 단계에서 성형된 혼합물을 탄화하는 1-2 단계; 및 상기 단계에서 탄화된 혼합물을 바인더에 함침하여 재탄화하는 1-3 단계; 및 상기 단계에서 함침 및 재탄화된 성형체를 흑연화하는 1-4 단계;를 포함하는 방법으로 제조된 등방성 인조 흑연 블록을 제조할 때 발생한 폐스크랩을 사용할 수 있다.In the method for producing isotropic bulk graphite according to the present invention, the isotropic graphite waste scrap of step 1 may be any waste scrap generated from isotropic artificial graphite blocks produced by a general method for producing isotropic graphite. Preferably, the step 1-1 of mixing the coke raw material powder with a binder and molding; Step 1-2 carbonizing the mixture formed in the step; And 1-3, impregnating and recarbonizing the carbonized mixture in the binder; And 1-4 step of graphitizing the impregnated and re-carbonized molded body in the above step; can be used waste scrap produced when manufacturing the isotropic artificial graphite block produced by the method comprising a.
본 발명에 있어서, 상기 1-1 단계는 코크스 원료 분말과 바인더를 혼합하여 의도하는 형태로 성형하는 단계이다. 코크스 원료 분말은 탄화 및 흑연화 공정을 거치면서 흑연결정으로 발달한 원료이나, 결합력이 약하기 때문에 바인더를 첨가하여 성형성을 부여할 수 있으므로 상기 코크스 원료 분말에 바인더를 혼합함으로써 코크스 간의 결합을 유도하여 의도한 형태로 성형할 수 있다. In the present invention, step 1-1 is a step of mixing the coke raw material powder and the binder to be molded in the intended form. The coke raw material powder is a raw material developed into graphite crystals during the carbonization and graphitization process, but since the binding strength is weak, the binder can be added to give moldability, so that the coke raw material powder is mixed with a binder to induce bonding between the cokes. It can be molded into the intended shape.
본 발명에 있어서, 1-2 단계는 상기 1-1단계에서 성형된 혼합물을 탄화하는 단계로서, 코크스와 바인더가 혼합된 후 불활성 분위기에서 열처리하면, 배향성을 가지는 코크스는 탄화 과정을 거치면서 흑연결정으로 발달하고 바인더는 열처리를 통하여 상당량의 휘발분이 제거되면서 동시에 중축합반응이 일어난다. 이때, 상기 탄화 과정을 통해 벌크 흑연의 결정이 형성되므로, 탄화 과정으로 인하여 벌크 흑연으로부터 제조되는 최종 생성물의 특성이 제어될 수 있다. In the present invention, step 1-2 is a step of carbonizing the mixture formed in step 1-1, when coke and binder are mixed and heat-treated in an inert atmosphere, coke having an orientation is a graphite crystal while undergoing a carbonization process As a result, the binder is heat-treated to remove a significant amount of volatiles, and at the same time, a polycondensation reaction occurs. At this time, since the crystallization of the bulk graphite is formed through the carbonization process, the properties of the final product produced from the bulk graphite can be controlled by the carbonization process.
이때, 상기 1-2 단계의 탄화는 코크스를 포함하는 원료물질을 흑연으로 전환하기 위한 조건이라면 어느 것이든지 적용가능하나, 바람직하기는 600℃ ~ 2,000℃에서, 더욱 바람직하게는 600℃ ~ 1,500℃에서 수행되는 것이 좋다. 상기 탄화가 600 ℃ 미만의 온도에서 수행되는 경우 코크스가 탄화하기에 온도가 충분히 높지 않아 코크스가 흑연으로 충분히 변환되지 못하는 문제점이 있고, 2,000℃를 초과하는 온도에서 수행되는 경우에는 탄화에 필요한 온도를 초과하여 공정 에너지상 경제성이 저하되는 문제점이 있다. 또한, 탄화는 질소, 아르곤 등의 불활성 분위기 하에서 이루어지는 것이 바람직하다 At this time, the carbonization of the step 1-2 may be any one of the conditions for converting the raw material containing coke to graphite, preferably at 600 ℃ to 2,000 ℃, more preferably 600 ℃ to 1,500 ℃ It is good to be done in. If the carbonization is carried out at a temperature of less than 600 ℃ coke is not high enough to carbonize the coke is a problem that the coke is not sufficiently converted to graphite, when the temperature is more than 2,000 ℃ if the temperature required for carbonization In addition, there is a problem that the economic efficiency on the process energy is lowered. Moreover, it is preferable that carbonization is made in inert atmosphere, such as nitrogen and argon.
본 발명에 있어서, 상기 1-1 단계의 바인더는 코크스와 결합하여 흑연화할 수 있는 것이라면 사용가능하나, 바람직하게는 피치 또는 타르로부터 선택되는 1종 이상인 것이 좋다. 상기 바인더는 코크스를 포함하는 원료분말들 사이의 결합재 역할을 하는 것으로, 상기 피치 또는 타르를 사용하면 탄화 후 결합효과가 나타날 수 있다.In the present invention, the binder of step 1-1 can be used as long as it can be graphitized by combining with coke, but preferably at least one selected from pitch or tar. The binder serves as a binder between the raw material powder containing coke, and when the pitch or tar is used, the binder may exhibit a bonding effect after carbonization.
본 발명에 있어서, 상기 1-3 단계는 상기 1-2 단계에서 탄화된 혼합물을 바인더에 함침하고 재탄화하는 단계로서, 탄화과정에서 코크스와 바인더 자체의 휘발분으로 인하여 상당량의 기공이 조직 내에 발생하여 기밀성 유지가 어렵게 될 수 있으므로, 탄화를 수행한 생소지를 바인더에 함침하고 재탄화함으로써 기공을 탄화물로 메울 수 있으므로 기공성은 낮추고 밀도는 향상시킬 수 있다.In the present invention, the step 1-3 is a step of impregnating and recarbonizing the carbonized mixture in the step 1-2, a significant amount of pores are generated in the tissue due to the volatilization of the coke and the binder itself during the carbonization process Since airtightness can be difficult to maintain, the pores can be filled with carbides by impregnating and recarbonizing the raw material subjected to carbonization, so that the porosity can be lowered and the density can be improved.
이때, 상기 1-3 단계의 재탄화는 600℃ ~ 2,000℃에서, 더욱 바람직하게는 600℃ ~ 1,500℃에서 수행되는 것이 좋다. 상기 탄화가 600℃ 미만의 온도에서 수행되는 경우 코크스가 탄화하기에 온도가 충분히 높지 않아 코크스가 흑연으로 충분히 변환되지 못하는 문제점이 있고, 2,000℃를 초과하는 온도에서 수행되는 경우에는 탄화에 필요한 온도를 초과하여 공정 에너지상 경제성이 저하되는 문제점이 있다. 또한, 탄화는 질소, 아르곤 등의 불활성 분위기 하에서 이루어지는 것이 바람직하다 At this time, the recarbonization of the 1-3 steps is preferably performed at 600 ℃ ~ 2,000 ℃, more preferably at 600 ℃ ~ 1,500 ℃. If the carbonization is carried out at a temperature of less than 600 ℃ coke is not high enough to carbonize the coke has a problem that the coke is not sufficiently converted to graphite, when the temperature is more than 2,000 ℃ if the temperature required for carbonization In addition, there is a problem that the economic efficiency on the process energy is lowered. Moreover, it is preferable that carbonization is made in inert atmosphere, such as nitrogen and argon.
본 발명에 있어서, 상기 1-3단계는 1회 이상 반복되는 것을 특징으로 할 수 있다. 상기 1-3 단계를 반복수행하여 기공도가 더욱 낮은, 등방성 흑연 블록을 제조할 수 있고, 따라서 고밀도의 등방성 흑연 폐스크랩을 얻을 수 있다.In the present invention, steps 1-3 may be repeated one or more times. By repeating steps 1-3, an isotropic graphite block having a lower porosity can be produced, and thus high density isotropic graphite waste scrap can be obtained.
본 발명에 있어서, 상기 1-4단계의 흑연화는 2,000℃ ~ 3,000℃에서, 바람직하게는 2,200℃ ~ 2,800℃에서, 더욱 바람직하게는 2,400℃ ~ 2,600℃에서 수행되는 것이 좋다. 상기 탄화가 2000 ℃ 미만의 온도에서 수행되는 경우 코크스가 탄화하기에 온도가 충분히 높지 않아 코크스가 흑연으로 충분히 변환되지 못하는 문제점이 있고, 3000 ℃를 초과하는 온도에서 수행되는 경우에는 탄화에 필요한 온도를 초과하여 공정 에너지상 경제성이 저하되는 문제점이 있다. 이때, 상기 흑연화는 질소, 아르곤 등의 불활성 분위기 하에서 이루어지는 것이 바람직하다.In the present invention, the graphitization of the 1-4 step is preferably performed at 2,000 ℃ ~ 3,000 ℃, preferably at 2,200 ℃ ~ 2,800 ℃, more preferably at 2,400 ℃ ~ 2,600 ℃. If the carbonization is carried out at a temperature of less than 2000 ℃ coke is not high enough to carbonize the coke has a problem that the coke is not sufficiently converted to graphite, if the temperature is more than 3000 ℃ if the temperature required for carbonization In addition, there is a problem that the economic efficiency on the process energy is lowered. At this time, the graphitization is preferably performed in an inert atmosphere such as nitrogen, argon.
본 발명에 따른 등방성 벌크 흑연의 제조방법에 있어서, 상기 단계 1의 등방성 흑연 폐스크랩은 평균입도가 10㎛ ~ 200㎛ 인 것이 바람직하고, 더욱 바람직하게는 10㎛ ~ 50㎛ 인 것이 좋다. 상기 등방성 흑연 폐스크랩의 평균입도가 10㎛ 미만인 경우에는 분말로 형성되기 어려운 문제점이 있고, 200㎛를 초과하는 경우에는 성형시 내부 기공이 많이 형성되는 문제점이 있어, 상기와 같은 범위의 평균입도를 가지는 것이 바람직하다.In the method for producing isotropic bulk graphite according to the present invention, the isotropic graphite waste scrap of step 1 preferably has an average particle size of 10 μm to 200 μm, and more preferably 10 μm to 50 μm. When the average particle size of the isotropic graphite waste scrap is less than 10 μm, there is a problem that it is difficult to form a powder, and when it exceeds 200 μm, there are problems that many internal pores are formed during molding. It is desirable to have.
본 발명에 따른 등방성 벌크 흑연의 제조방법에 있어서, 상기 1 단계의 바인더는 폐스크랩과 혼합되어 성형성을 향상시켜 원료물질을 원하는 형태로 가공할 수 있도록 하는 바인더라면 어느 것이든 사용가능하나, 바람직하게는 페놀 수지 또는 피치로부터 선택되는 1종 이상인 것이 좋다. In the method for producing isotropic bulk graphite according to the present invention, the binder of the first step may be used as long as the binder is mixed with the waste scrap so as to improve the formability so as to process the raw material into a desired form. Preferably it is 1 or more types chosen from a phenol resin or a pitch.
본 발명에 따른 등방성 벌크 흑연의 제조방법에 있어서, 상기 1단계에서 상기 등방성 흑연 폐스크랩 및 바인더는 8 : 1 ~ 3의 혼합비율로 혼합되는 것이 바람직하다. 상기 등방성 흑연 폐스크랩 및 바인더가 8 : 1 미만의 비율로 혼합되는 경우, 바인더가 충분하지 못하여 원료와의 결합력이 낮아지는 문제점이 있고, 8 : 3을 초과하는 비율로 혼합되는 경우 바인더가 흑연 폐스크랩에 비해 과도하게 공급되어 바인더가 가지는 휘발성으로 인하여 이후의 단계에서 탄화되는 과정에서 기공이 발생하므로 기밀성이 낮아지는 문제점이 있다.In the method for producing isotropic bulk graphite according to the present invention, in the first step, the isotropic graphite waste scrap and binder are preferably mixed in a mixing ratio of 8: 1 to 3. When the isotropic graphite waste scrap and the binder are mixed at a ratio of less than 8: 1, there is a problem in that the binder is insufficient and the bonding strength with the raw material is lowered, and when the binder is mixed at a ratio exceeding 8: 3, the graphite waste is mixed. There is a problem in that the airtightness is lowered because pores are generated in the process of carbonization in a later step due to the volatility of the binder is excessively supplied compared to the scrap.
본 발명에 따른 등방성 벌크 흑연의 제조방법에 있어서, 상기 1단계에서 상기 등방성 흑연 폐스크랩 및 바인더의 혼합물은 200 ~ 400 MPa에서, 바람직하게는 250 ~ 350 MPa에서 일축가압성형법으로 가압성형하는 것이 바람직하다. In the method for producing isotropic bulk graphite according to the present invention, in the first step, the mixture of the isotropic graphite waste scrap and the binder is preferably press-molded by uniaxial pressure molding at 200 to 400 MPa, preferably at 250 to 350 MPa. Do.
상기 일축가압성형법은 금형을 사용하여 소재의 성질을 개선하면서 상온에서 형태를 만드는 단조법으로서, 거의 절삭할 필요가 없이 원하는 형태로 제품화할 수 있는 가공법으로 경제적이다. 상기 일축가압성형법으로 성형하게 되면 흑연입자들이 무질서하게 배열하여 등방성을 나타내게 되며, 조직이 치밀하며 밀도와 강도가 높다는 장점이 있다. 이때, 200 MPa 미만의 압력으로 가압하면 탄화 후 밀도가 낮은 문제점이 있고, 400 MPa를 초과하는 압력으로 가압하면 이방성이 증가하는 문제점이 있다. The uniaxial pressure molding method is a forging method of forming a shape at room temperature while improving the properties of a material using a mold, and is economical as a processing method that can produce a product in a desired shape with little need for cutting. When molded by the uniaxial pressure molding method, graphite particles are randomly arranged to show isotropy, and the structure is dense and has high density and strength. At this time, if the pressure is less than 200 MPa, there is a problem of low density after carbonization, there is a problem that the anisotropy increases if the pressure is exceeded 400 MPa.
본 발명에 따른 등방성 벌크 흑연의 제조방법에 있어서, 상기 2단계는 1단계에서 형성된 생소지를 600 ~ 1,000℃에서, 바람직하게는 600 ~ 800℃에서 탄화시켜 벌크 흑연을 제조하는 단계로서, 상기 2단계에서는 1단계에서 가압성형되어 원하는 형태로 만들어진 생소지를 불활성 분위기에서 열처리하여 흑연화할 수 있다. 보다 상세하게는, 흑연 폐스크랩과 바인더가 혼합되어 성형된 생소지는 탄화공정을 거치면서 바인더의 상당량의 휘발분이 제거되면서 동시에 중축합반응이 일어남으로써 내부에 일부 기공을 포함하는 벌크 흑연이 형성될 수 있다. 이때, 상기 탄화가 600℃ 미만의 온도에서 수행되는 경우 탄화가 충분히 수행되지 못하는 문제점이 있고, 1,000℃를 초과하는 온도에서 수행되는 경우 공정 에너지상 경제성이 저하되는 문제점이 있다. In the method for producing isotropic bulk graphite according to the present invention, the second step is a step of carbonizing the raw material formed in step 1 at 600 to 1,000 ° C., preferably at 600 to 800 ° C., wherein the second step is performed. In step 1, the raw material made by pressing in a desired shape can be graphitized by heat treatment in an inert atmosphere. More specifically, the raw material formed by mixing the graphite waste scrap and the binder may undergo a carbonization process to remove a large amount of volatiles from the binder and simultaneously perform a polycondensation reaction, thereby forming bulk graphite containing some pores therein. have. At this time, when the carbonization is carried out at a temperature of less than 600 ℃ there is a problem that the carbonization is not performed sufficiently, and when performed at a temperature exceeding 1,000 ℃ there is a problem that the economic efficiency on the process energy is lowered.
본 발명에 따른 등방성 벌크 흑연의 제조방법에 있어서, 상기 2단계를 수행한 벌크 흑연의 밀도는 1.29 ~ 1.39g/cm3 인 것을, 바람직하게는 1.29 ~ 1.35 g/cm3인 것을 특징으로 할 수 있다. 이때, 상기 밀도는 부피밀도로서 열린기공과 닫힌기공을 모두 포함한 결과로서, 일차적으로 탄화가 진행되어 제조된 벌크 흑연은 내부에 일부 기공을 포함하므로 밀도가 약 1.29 g/cm3 이상인 정도이지만, 이후의 단계에서 함침 및 재탄화를 수행함으로써 밀도가 더욱 향상될 수 있다.In the method for producing isotropic bulk graphite according to the present invention, the density of the bulk graphite obtained by performing the two steps may be 1.29 to 1.39 g / cm 3 , preferably 1.29 to 1.35 g / cm 3 . have. In this case, the density is a result of including both the open and closed pores as a bulk density, the bulk graphite produced by the first carbonization proceeds to include some pores therein, so the density is about 1.29 g / cm 3 or more, but The density can be further improved by performing impregnation and recarbonization at the stage of.
본 발명에 따른 등방성 벌크 흑연의 제조방법에 있어서, 상기 2단계를 수행한 벌크 흑연의 기공도는 31% 미만인 것을, 바람직하게는 27% ~ 31 %인 것을, 더욱 바람직하게는 27% ~ 30.5%인 것을 특징으로 할 수 있다. 이때, 상기 기공도는 유체가 침투할 수 있는 열린기공의 부피를 측정한 결과이고, 상기 열린 기공은 유체가 침투할 수 있는 연결기공(penetrating pore) 및 잉크병 형상 기공(ink-bottle pore)을 포함하여 측정된 것을 기준으로 한다. 일차적으로 탄화가 진행되어 제조된 벌크 흑연은 내부에 일부 기공을 포함하므로 기공도가 약 31% 미만인 정도이지만, 이후의 단계에서 함침 및 재탄화를 수행함으로써 기공도를 더욱 낮출 수 있다.In the method for producing isotropic bulk graphite according to the present invention, the porosity of the bulk graphite obtained by performing the two steps is less than 31%, preferably 27% to 31%, more preferably 27% to 30.5% It can be characterized by. In this case, the porosity is a result of measuring the volume of the open pores through which the fluid can penetrate, and the open pores are connected to the penetrating pores and ink-bottle pores through which the fluid can penetrate. It is based on what is measured. Since the bulk graphite prepared by carbonization is primarily included, the porosity is less than about 31% because some pores are included therein, but the porosity can be further lowered by performing impregnation and recarbonization in a later step.
본 발명에 따른 등방성 벌크 흑연의 제조방법에 있어서, 상기 3단계는 상기 2단계에서 제조된 벌크 흑연을 바인더에 30분 ~ 2 시간 동안 함침한 후 600℃ ~ 1,000℃에서, 더욱 바람직하게는 600℃ ~ 800℃에서 재탄화하는 단계로서, 내부에 일부 기공을 포함하는 벌크 흑연을 바인더에 함침한 후 재탄화할 수 있다.In the method for producing isotropic bulk graphite according to the present invention, the third step is after impregnating the binder with the bulk graphite prepared in step 2 for 30 minutes to 2 hours at 600 ℃ to 1,000 ℃, more preferably 600 ℃ As a step of recarbonization at ˜800 ° C., the bulk graphite including some pores therein may be impregnated into the binder and then recarbonized.
이때, 상기 함침을 30분 미만으로 수행할 경우 바인더가 기공 내에 충분히 침투하지 못하여 탄화 후에 밀도변화가 미미할 수 있는 문제점이 있고, 2 시간을 초과하여 수행할 경우 공정 에너지상 경제성이 저하되는 문제점이 있다. 또한, 상기 재탄화가 600℃ 미만의 온도에서 수행되는 경우 탄화가 충분히 수행되지 못하는 문제점이 있고, 1000℃를 초과하는 온도에서 수행되는 경우 공정 에너지상 경제성이 저하되는 문제점이 있다. In this case, when the impregnation is performed in less than 30 minutes, the binder does not sufficiently penetrate into the pores, so there is a problem that the density change after the carbonization may be insignificant. . In addition, when the recarbonization is carried out at a temperature of less than 600 ° C there is a problem that the carbonization is not performed sufficiently, and when performed at a temperature exceeding 1000 ° C there is a problem that the economic efficiency on the process energy is lowered.
본 발명에 따른 등방성 벌크 흑연의 제조방법에 있어서, 상기 3단계는 1회 이상 반복될 수 있는 것을 특징으로 한다. 상기 3단계는 상기 단계 2에서 탄화된 벌크 흑연을 바인더에 함침하고, 이를 재탄화함으로써 상기 단계 2의 탄화과정에서 바인더가 휘발함으로 인해 발생한 기공을 메워 더욱 우수한 밀도를 가지는 등방성 벌크 흑연을 제조하기 위한 것이므로, 상기 단계 3을 1회 이상 반복하면 밀도가 더욱 높은 등방성 벌크 흑연을 제조할 수 있다. In the method for producing isotropic bulk graphite according to the present invention, the three steps may be repeated one or more times. In step 3, the bulk graphite carbonized in step 2 is impregnated into the binder, and the carbon is recarbonized to fill pores generated by the volatilization of the binder in the carbonization process of step 2, thereby producing isotropic bulk graphite having a higher density. Since the step 3 is repeated one or more times, it is possible to produce isotropic bulk graphite having a higher density.
본 발명의 또 다른 태양은 상기의 방법으로 제조된 등방성 벌크 흑연에 관한 것이다. 본 발명에 따른 등방성 벌크 흑연은 흑연 폐스크랩으로부터 제조함으로써 환경 및 공정에너지 상의 경제성을 고양할 수 있고, 함침 및 탄화공정을 반복 수행함으로써 고밀도 및 낮은 기공도를 가지는 벌크 흑연을 제조할 수 있다. Another aspect of the invention relates to an isotropic bulk graphite prepared by the above method. The isotropic bulk graphite according to the present invention can improve the economics of the environment and the process energy by producing from the graphite waste scrap, it is possible to produce bulk graphite having a high density and low porosity by repeating the impregnation and carbonization process.
본 발명의 등방성 벌크 흑연에 있어서, 상기 등방성 벌크 흑연의 이방성비(anisotropic)는 1.2 미만인 것을, 바람직하게는 1.05 ~ 1.15인 것을, 더욱 바람직하게는 1.08 ~ 1.15인 것을 특징으로 할 수 있다. 상기 등방성 벌크 흑연의 이방성비(anisotropic)는 이방성에 따른 특정물성의 방향별 최대, 최소값의 비율을 나타내는 것으로, 상기 값이 1에 가까울수록 더욱 우수한 등방성을 나타낸다. 본 발명에 따른 등방성 벌크 흑연은 1.2 미만의, 바람직하게는 1.05 ~ 1.15, 더욱 바람직하게는 1.08 ~ 1.15에 포함되는 이방성비를 가짐으로써, 본 발명에 따르면 우수한 등방성을 가지는 벌크 흑연을 제조할 수 있음을 알 수 있다. In the isotropic bulk graphite of the present invention, the anisotropic ratio of the isotropic bulk graphite may be less than 1.2, preferably 1.05 to 1.15, and more preferably 1.08 to 1.15. The anisotropic ratio of the isotropic bulk graphite (anisotropic) represents the ratio of the maximum and minimum values for each direction of the specific physical property according to the anisotropy, the closer to 1 the value is more excellent isotropy. The isotropic bulk graphite according to the present invention has an anisotropy ratio of less than 1.2, preferably 1.05 to 1.15, more preferably 1.08 to 1.15, according to the present invention can produce a bulk graphite having excellent isotropy It can be seen.
본 발명의 등방성 벌크 흑연에 있어서, 상기 등방성 벌크 흑연의 밀도는 1.40 ~ 1.60 g/cm3인 것을, 바람직하게는 1.43 ~ 1.60 g/cm3인 것을 특징으로 할 수 있다. 본 발명의 단계 2에서 탄화된 벌크 흑연을 바인더에 함침하고, 이를 재탄화함으로써 상기 단계 2의 탄화과정에서 바인더가 휘발함으로 인해 발생한 기공을 메울 수 있다. 따라서 상기 단계 2까지만 수행한 벌크 흑연에 비해 밀도가 향상되어, 1.40 ~ 1.60 g/cm3, 바람직하게는 1.43 ~ 1.60 g/cm3의 밀도를 가질 수 있다.In the isotropic bulk graphite of the present invention, the isotropic bulk graphite may have a density of 1.40 to 1.60 g / cm 3 , preferably 1.43 to 1.60 g / cm 3 . Impregnating the bulk graphite carbonized in the binder in step 2 of the present invention, and re-carbonized to fill the pores generated by the volatilization of the binder in the carbonization process of step 2. Therefore, the density is improved compared to the bulk graphite performed only up to step 2, and may have a density of 1.40 to 1.60 g / cm 3 , preferably 1.43 to 1.60 g / cm 3 .
본 발명의 등방성 벌크 흑연에 있어서, 상기 등방성 벌크 흑연의 기공도는 26% 미만인 것을 특징으로 할 수 있다. 본 발명의 단계 2에서 탄화된 벌크 흑연을 바인더에 함침하고, 이를 재탄화함으로써 상기 단계 2의 탄화과정에서 바인더가 휘발함으로 인해 발생한 기공을 메울 수 있다. 따라서 상기 단계 2까지만 수행한 벌크 흑연에 비해 기공도가 낮아져, 26% 미만의 기공도를 가질 수 있다.In the isotropic bulk graphite of the present invention, the porosity of the isotropic bulk graphite may be less than 26%. Impregnating the bulk graphite carbonized in the binder in step 2 of the present invention, and re-carbonized to fill the pores generated by the volatilization of the binder in the carbonization process of step 2. Therefore, the porosity is lower than that of the bulk graphite performed only to step 2, and may have a porosity of less than 26%.
본 발명의 또 다른 태양은 상기의 등방성 벌크 흑연을 포함하는 탄소전극을 포함할 수 있다. 본 발명에 따른 등방성 벌크 흑연은 고밀도의 등방성 벌크 흑연으로서, 조직이 치밀하여 강도가 우수하고 밀도가 높으며 전 방향에서 물리, 전기적 특성이 등방성이라는 장점을 가지므로, 전기분해나 전지용의 전극 또는 전기화학 분석과 전해 합성용의 흑연 전극, 유리상 탄소 전극, 열분해 흑연 전극, 카본 페이스트 전극, 탄소포 전극 등을 포함하는 탄소전극으로 제조하여 사용할 수 있다. Another aspect of the invention may comprise a carbon electrode comprising said isotropic bulk graphite. Isotropic bulk graphite according to the present invention is a high density isotropic bulk graphite, the structure is dense and has excellent strength, high density, and physical and electrical properties in all directions isotropic, so that the electrode or electrochemical for electrolysis or battery It can manufacture and use the carbon electrode containing the graphite electrode, glassy carbon electrode, pyrolytic graphite electrode, carbon paste electrode, carbon cloth electrode, etc. for analysis and electrolytic synthesis.
본 발명의 또 다른 태양은 상기의 등방성 벌크 흑연을 포함하는 기계적 씰을 포함할 수 있다. 본 발명에 따른 등방성 벌크 흑연은 고밀도의 등방성 벌크 흑연으로서, 조직이 치밀하여 강도가 우수하고 밀도가 높은 장점을 가지므로, 두 부분이 정밀하게 다듬어진 금속면을 가볍게 압접시키되, 그 한쪽은 고정하고, 다른 쪽은 축과 미끄럼 접촉으로 회전시켜 유체의 누설을 막는 역할을 하는 기계적 씰로 제조하여 사용할 수 있다.Another aspect of the invention may include a mechanical seal comprising the above isotropic bulk graphite. Isotropic bulk graphite according to the present invention is a high density isotropic bulk graphite, because the structure is dense, and has the advantage of high strength and high density, while lightly press-fitting the metal surface, which is precisely trimmed in two parts, one of which is fixed The other side can be manufactured and used as a mechanical seal that serves to prevent leakage of fluid by rotating in sliding contact with the shaft.
이하에서는 본 발명을 실시예에 의거하여 더욱 자세하게 설명을 한다. 그러나, 본 발명의 권리범위가 하기 실시예에 의해 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail based on examples. However, the scope of the present invention is not limited by the following examples.
[실시예]EXAMPLE
준비예 1 : 등방성 흑연 폐스크랩의 준비 Preparation Example 1 Preparation of Isotropic Graphite Scrap
흑연 분말 EDM-2 및 EDM-3(Poco Graphite Inc.)을 가공한 후 부산물로 발생한 등방성 흑연 폐스크랩을 준비하였다. After processing the graphite powder EDM-2 and EDM-3 (Poco Graphite Inc.), isotropic graphite waste scrap generated as a by-product was prepared.
실험예 1 : 등방성 흑연 폐스크랩의 분석Experimental Example 1 Analysis of Isotropic Graphite Scrap
상기 제조예 1의 등방성 흑연 폐스크랩에 대하여 입도분석기(Malvern Ins. GB/MASTERSIZER 2000)를 이용하여 입도를 측정하였고, 그 결과를 도 1(a)에 나타내었다. 또한, X-선 회절분석기(XRD; SWXD, X-MAX/2000-PC, Rigaku)를 이용하여 x-선 회절 분석을 수행하였고, 그 결과를 도 1(b)에 나타내었다.The particle size of the isotropic graphite waste scraps of Preparation Example 1 was measured using a particle size analyzer (Malvern Ins. GB / MASTERSIZER 2000), and the results are shown in FIG. In addition, x-ray diffraction analysis was performed using an X-ray diffractometer (XRD; SWXD, X-MAX / 2000-PC, Rigaku), and the results are shown in FIG.
도 1(a)에 따르면, 원료분말인 등방성 흑연 폐스크랩은 평균입도가 약 50 ㎛인 것을 확인할 수 있다. According to Figure 1 (a), it can be seen that the isotropic graphite waste scrap, which is the raw material powder, has an average particle size of about 50 µm.
또한, 도 1(b)에 따르면, (002) 피크의 강도가 두드러지게 우수한 것을 확인할 수 있고, 2θ가 42.22인 위치에서 (100) 피크가, 44.39인 위치에서 (101) 피크가 나타나는 것을 명확하게 확인할 수 있다(JCPDS-ICDD #411487 참조). 이를 통해, 본 발명에 사용된 등방성 흑연 폐스크랩은 결정성이 우수한 것을 알 수 있다.Also, according to Fig. 1 (b), it can be seen that the intensity of the (002) peak is remarkably excellent, and it is clear that the (100) peak appears at the position of 42.22, and the (101) peak appears at the position of 44.39. (See JCPDS-ICDD # 411487). Through this, it can be seen that the isotropic graphite waste scrap used in the present invention has excellent crystallinity.
실시예 1 : 등방성 벌크 흑연의 제조 1Example 1 Preparation of Isotropic Bulk Graphite 1
(1) 1단계: 등방성 흑연 폐스크랩으로부터 생소지(green body)의 형성(1) Step 1: Formation of Green Body from Isotropic Graphite Scrap
상기 준비예 1의 등방성 인조 흑연 폐스크랩(ISGS, isotropic synthesis graphite scrap)을 원료물질로 사용하였고, 상기 흑연 폐스크랩을 페놀수지(Phenolic Resin, 강남화성사) 와 8: 2의 중량비로 혼합하였다. 이후, 일축가압성형기(제조사)를 이용하여 300 MPa의 압력으로 성형하여 직경이 10 mm인 생소지(green body)를 제조하였다.Isotropic synthetic graphite scrap (ISGS, isotropic synthesis graphite scrap) of Preparation Example 1 was used as a raw material, and the graphite waste scrap was mixed with a phenol resin (Phenolic Resin, Gangnam Hwaseong Co., Ltd.) at a weight ratio of 8: 2. Subsequently, a green body having a diameter of 10 mm was manufactured by molding at a pressure of 300 MPa using a uniaxial pressure molding machine (manufacturer).
(2) 2단계: 생소지의 탄화(2) Stage 2: Carbonization of Raw Materials
상기 생소지를 700℃, 질소 분위기에서 한 시간동안 탄화하였다.The raw material was carbonized at 700 ° C. for 1 hour in a nitrogen atmosphere.
(3) 3단계: 상기 벌크 흑연의 재탄화(3) step 3: recarbonization of the bulk graphite
상기 단계 2에서 탄화된 생소지를 페놀수지(phenolic resin)에 30분 동안 함침한 후, 이를 700℃, 질소 분위기에서 1 시간 동안 재탄화하여 등방성 벌크 흑연을 제조하였다. After the impregnated raw material carbonized in the phenolic resin (phenolic resin) for 30 minutes in step 2, it was recarbonized for 1 hour at 700 ℃, nitrogen atmosphere to produce an isotropic bulk graphite.
실시예 2 : 등방성 벌크 흑연의 제조 2Example 2 Preparation of Isotropic Bulk Graphite 2
상기 실시예 1과 동일한 방법으로 등방성 벌크 흑연을 제조하였다.Isotropic bulk graphite was prepared in the same manner as in Example 1.
실시예 3 : 등방성 벌크 흑연의 제조 3Example 3 Preparation of Isotropic Bulk Graphite 3
상기 실시예 1과 동일한 방법으로 등방성 벌크 흑연을 제조하였다.Isotropic bulk graphite was prepared in the same manner as in Example 1.
비교예 1Comparative Example 1 : 등방성 벌크 흑연의 제조 1: Preparation of Isotropic Bulk Graphite 1
상기 실시예 1의 단계 2까지만 수행하여 등방성 벌크 흑연을 제조하였다. By performing only up to step 2 of Example 1 to produce an isotropic bulk graphite.
비교예 2Comparative Example 2 : 등방성 벌크 흑연의 제조 2 : Preparation of isotropic bulk graphite 2
상기 실시예 1의 단계 2까지만 수행하여 등방성 벌크 흑연을 제조하였다. By performing only up to step 2 of Example 1 to produce an isotropic bulk graphite.
비교예 3 : 등방성 벌크 흑연의 제조 3 Comparative Example 3 Preparation of Isotropic Bulk Graphite 3
상기 실시예 1의 단계 2까지만 수행하여 등방성 벌크 흑연을 제조하였다. By performing only up to step 2 of Example 1 to produce an isotropic bulk graphite.
실험예 2 : 등방성 벌크 흑연의 특성분석 1Experimental Example 2 Characterization of Isotropic Bulk Graphite 1
상기 실시예 1 ~ 실시예 6 및 비교예 1 ~ 비교예 6에서 제조된 등방성 벌크 흑연의 밀도 및 기공도를 아르키메데스법(ISO 18754:2003)으로 측정하였고, 그 결과를 하기 표 1에 나타내었다. 하기 밀도는 부피밀도로서 열린기공과 닫힌기공을 모두 포함한 결과이고, 하기 기공도는 유체가 침투할 수 있는 열린기공의 부피를 측정한 결과이다. 이때, 열린 기공은 유체가 침투할 수 있는 연결기공(penetrating pore) 및 잉크병 형상 기공(ink-bottle pore)을 포함한다.The density and porosity of the isotropic bulk graphite prepared in Examples 1 to 6 and Comparative Examples 1 to 6 were measured by Archimedes method (ISO 18754: 2003), and the results are shown in Table 1 below. The following density is a result of including both open and closed pores as the bulk density, the following porosity is the result of measuring the volume of the open pores through which the fluid can penetrate. In this case, the open pores include penetrating pores through which fluid can penetrate and ink-bottle pores.
표 1
Figure PCTKR2015001680-appb-T000001
Table 1
Figure PCTKR2015001680-appb-T000001
상기 표 1에 따르면, 비교예 1 ~ 비교예 3의 함침 전의 등방성 벌크 흑연의 밀도는 평균 약 1.29 g/cm3 였고, 실시예 1 ~ 실시예 3의 함침 후 밀도는 평균 약 1.44 g/cm3로 함침 전에 비해 11.1% 증가한 것을 확인할 수 있다. 또한, 비교예 1 ~ 비교예 3의 함침 전의 기공율은 평균 약 29.8 %였으며, 실시예 1 ~ 실시예 3의 함침 후의 기공도는 평균 약 25.2%로 4.6% 감소한 것을 확인할 수 있다. 이를 통해, 함침제가 열린 기공에 침투한 후 함침되어 기공도가 감소한 것을 알 수 있다.According to Table 1, the density of the isotropic bulk graphite before impregnation of Comparative Examples 1 to 3 is about 1.29 g / cm 3 on average After the impregnation of Examples 1 to 3, the average density of about 1.44 g / cm 3 was 11.1% higher than before impregnation. In addition, the porosity before the impregnation of Comparative Examples 1 to 3 was about 29.8% on average, and the porosity after the impregnation of Examples 1 to 3 was reduced by about 4.6% to about 25.2% on average. Through this, it can be seen that the impregnation agent is impregnated into the open pores and then the porosity is reduced.
실험예 3 : 등방성 벌크 흑연의 특성분석 2Experimental Example 3 Characterization of Isotropic Bulk Graphite 2
상기 실시예 1 및 비교예 1에서 제조된 등방성 벌크 흑연을 샌드페이퍼(Sand paper, #1200 ~ #2400)을 이용하여 표면을 연마하였고, 최종적으로 0.25㎛에서 미세 연마하여 시료를 준비한 후, 이를 광학현미경(Nikon ECLIPSE, LV150)을 이용하여 흑연의 미세조직을 100 배로 확대하여 관찰하였고 그 결과를 하기 도 2 및 도 3에 나타내었다. 이때, 성형 압축 방향에 수직인 면(이하 Top-face)과 성형 압축 방향에 평행인 면(이하 Side-face)의 두 가지 방향에서 이를 관찰하였다.After polishing the surface of the isotropic bulk graphite prepared in Example 1 and Comparative Example 1 using sand paper (Sand paper, # 1200 ~ # 2400), and finally prepared by fine grinding at 0.25㎛, the optical microscope (Nikon ECLIPSE, LV150) was used to observe the microstructure of the graphite magnified 100 times and the results are shown in Figures 2 and 3 below. At this time, this was observed in two directions: a surface perpendicular to the molding compression direction (hereinafter referred to as a top-face) and a surface parallel to the molding compression direction (hereinafter referred to as a side-face).
하기 도 2(a)는 비교예 1의 Top-face에서의 미세구조의 이미지이고, (b)는 실시예 1의 Top-face에서의 미세구조의 이미지이다. 도 2에 따르면 함침 전후의 미세조직에서 기공분포가 감소한 것을 확인할 수 있다.2 (a) is an image of the microstructure in the top-face of Comparative Example 1, (b) is an image of the microstructure in the Top-face of Example 1. According to Figure 2 it can be seen that the pore distribution in the microstructure before and after impregnation.
하기 도 3(a)는 비교예 1의 Side-face에서의 미세구조의 이미지이고. (b)는 실시예 1의 Side-face에서의 미세구조의 이미지이다. 즉, 도 3에 따르면 Side-face에서는 입자들의 방향성을 관찰할 수 없었으나, 함침 전후의 미세조직에서 기공분포가 감소한 것은 확인할 수 있었다. Figure 3 (a) is an image of the microstructure in the side-face of Comparative Example 1. (b) is an image of the microstructure in the side-face of Example 1. That is, according to Figure 3, the orientation of the particles could not be observed in the side-face, it was confirmed that the pore distribution in the microstructure before and after impregnation.
실험예 4 : 등방성 벌크 흑연의 특성분석 3Experimental Example 4 Characterization of Isotropic Bulk Graphite 3
상기 실시예 1에서 제조된 벌크 흑연 입자의 배향도를 확인하기 위해 X-선 회절분석기(XRD; SWXD, X-MAX/2000-PC, Rigaku)를 이용하여 XRD분석을 수행하였고, 그 결과를 하기 도 4에 나타내었다. 이때, 사용된 X-선 타켓의 파장(Cu-Kα1)은 1.5406A 이고, 10°~ 60°의 주사범위에서 주사속도 1°/min의 2θ 연속주사방식으로 XRD 스펙트럼을 관찰하였다. XRD는 성형 압축 방향에 수직인 면(이하 Top-face)과 성형 압축 방향에 평행인 면(이하 Side-face)에서 각각 측정하였고, 이를 통해 배향도(degree of alignment)를 구해 그 결과를 비교하였다. In order to confirm the orientation of the bulk graphite particles prepared in Example 1, XRD analysis was performed using an X-ray diffractometer (XRD; SWXD, X-MAX / 2000-PC, Rigaku). 4 is shown. At this time, the wavelength of the used X-ray target (Cu-Kα 1 ) is 1.5406A, XRD spectra were observed in a 2θ continuous scanning method of the scanning speed 1 ° / min in the scanning range of 10 ° ~ 60 °. The XRD was measured on the surface perpendicular to the molding compression direction (hereinafter referred to as the top-face) and on the surface parallel to the molding compression direction (hereinafter referred to as the side-face), and the degree of alignment was obtained to compare the results.
이때, 배향도(Degree of alignment, Da)는 (100) 피크와 (002)피크의 높이로 각각 나누어 준 상대강도 값을 이용해 하기 식1과 같이 계산하였고, 또한 이방성비(anisotropy ratio)는 하기 식 2와 같이 Top-face 및 Side-face의 배향도의 비로 계산하여 하기 표 2에 나타내었다.At this time, the degree of alignment (Da) was calculated as in Equation 1 using the relative intensity values divided by the height of the (100) peak and the (002) peak, respectively, and the anisotropy ratio was represented by the following Equation 2 As shown in Table 2 by calculating the ratio of the orientation of the top-face and side-face as shown.
[식 1][Equation 1]
Da = I100 / (I100+I002)Da = I 100 / (I 100 + I 002 )
이때, 상기 I002 및 I100은 각각 (002) 피크와 (100) 피크의 높이이다. In this case, I 002 and I 100 are the heights of the (002) peak and the (100) peak, respectively.
[식 2][Equation 2]
이방성 비(anisotropy ratio) = DaTop / DaSide Anisotropy ratio = Da Top / Da Side
이때, 상기 DaTop 는 성형 압축 방향에 수직인 면(Top face)의 배향도이고. DaSide 는 성형 압축 방향에 평행인 면(side face)의 배향도이다.In this case, Da Top is an orientation of the top face perpendicular to the molding compression direction. Da Side is a degree of orientation of the side face parallel to the molding compression direction.
표 2
구분 배향도 이방성비
Top-face 0.071 1.13
Side-face 0.063
TABLE 2
division Orientation Anisotropy ratio
Top-face 0.071 1.13
Side-face 0.063
상기 도 4는 실시예 1의 벌크 흑연의 배향도 및 이방성비를 나타낸 그래프로서 도 4에 따르면, Top-face 및 Side-face를 관찰한 XRD 스펙트럼 각각에서 (002) 피크가 분명하게 나타나고 있는 것을 확인할 수 있고, (100) 피크 및 (101) 피크가 구분되는 것을 확인할 수 있다. 이를 통해, Top-face 및 Side-face의 결정구조에 특별한 차이가 나타나지는 않는 것을 알 수 있다.FIG. 4 is a graph showing the degree of orientation and anisotropy ratio of the bulk graphite of Example 1. According to FIG. It can be seen that the (100) peak and the (101) peak are distinguished. Through this, it can be seen that there is no particular difference in the crystal structure of the top-face and side-face.
표 2에 따르면, Top-face의 배향도는 0.071, Side-face의 배향도는 0.063으로써 방향에 따른 차이가 0.008로 미세하여, 벌크흑연의 미세입자가 특정한 방향으로 배향되지 않은 것을 확인할 수 있다. 이는 실험예 3의 미세조직 관찰 결과와도 일치하는 결과이다. According to Table 2, the degree of orientation of the top-face is 0.071, the degree of orientation of the side-face is 0.063, and the difference according to the direction is 0.008, so that the fine particles of the bulk graphite are not oriented in a specific direction. This is also in agreement with the microstructure observation results of Experimental Example 3.
또한, Top-face와 side-face의 배향도로 계산된 이방성비는 1.13으로 우수한 등방성을 나타내는 벌크 흑연이 제조되었음을 확인할 수 있다. In addition, the anisotropy ratio calculated by the orientation of the top-face and side-face is 1.13, it can be confirmed that the bulk graphite showing excellent isotropy was prepared.

Claims (15)

  1. 등방성 흑연 폐스크랩을 바인더와 혼합하고 가압성형하여 생소지(green body)를 형성하는 1단계; Mixing the isotropic graphite waste scrap with the binder and pressing to form a green body;
    상기 생소지를 600℃ ~ 1,000℃에서 탄화시켜 벌크 흑연을 제조하는 2단계; 및Carbonizing the raw material at 600 ° C. to 1,000 ° C. to produce bulk graphite; And
    상기 2단계에서 제조된 벌크 흑연을 바인더에 30 분 ~ 2시간 동안 함침한 후 600℃ ~ 1,000℃에서 재탄화하는 3단계;Three steps of impregnating the bulk graphite prepared in step 2 in the binder for 30 minutes to 2 hours and then recarbonizing at 600 ° C. to 1,000 ° C .;
    를 포함하는 것을 특징으로 하는 흑연 폐스크랩을 이용한 등방성 벌크 흑연의 제조방법.Method for producing isotropic bulk graphite using graphite waste scrap, characterized in that it comprises a.
  2. 제 1 항에 있어서, 상기 1단계의 등방성 흑연 폐스크랩은 The method of claim 1, wherein the isotropic graphite waste scrap of the first step
    코크스 원료 분말을 바인더와 혼합한 후 성형하는 1-1 단계;Step 1-1 of mixing the coke raw material powder with a binder and then molding;
    상기 1-1 단계에서 성형된 혼합물을 탄화하는 1-2 단계; 1-2 steps of carbonizing the mixture formed in step 1-1;
    상기 1-2 단계에서 탄화된 혼합물을 바인더에 함침하여 재탄화하는 1-3 단계; 및1 to 3 steps of recarbonizing the carbonized mixture in step 1-2 by impregnating the binder; And
    상기 1-3 단계에서 함침 및 재탄화한 성형체를 흑연화하는 1-4 단계;1-4 to graphitize the molded body impregnated and recarbonized in the above 1-3;
    를 포함하는 방법으로 제조된 등방성 인조 흑연 블록으로부터 발생한 폐스크랩인 것을 특징으로 하는 흑연 폐스크랩을 이용한 등방성 벌크 흑연의 제조방법.Method for producing isotropic bulk graphite using the graphite waste scrap, characterized in that the waste scrap generated from the isotropic artificial graphite block produced by the method comprising a.
  3. 제 1 항에 있어서, 상기 1단계의 등방성 흑연 폐스크랩은 평균입도가 10 ㎛ ~ 200 ㎛인 것을 특징으로 하는 흑연 폐스크랩을 이용한 등방성 벌크 흑연의 제조방법. The method of claim 1, wherein the isotropic graphite waste scrap in the first step has an average particle size of 10 ㎛ ~ 200 ㎛.
  4. 제 1 항에 있어서, 상기 1 단계의 바인더는 페놀 수지 또는 피치로부터 선택되는 1종 이상인 것을 특징으로 하는 흑연 폐스크랩을 이용한 등방성 벌크 흑연의 제조방법.The method of claim 1, wherein the binder of the first step is at least one selected from a phenol resin or a pitch.
  5. 제 1 항에 있어서, 상기 1단계에서 상기 등방성 흑연 폐스크랩 및 바인더는 8: 1 ~ 3의 중량비로 혼합되는 것을 특징으로 하는 흑연 폐스크랩을 이용한 등방성 벌크 흑연의 제조방법.The method of claim 1, wherein the isotropic graphite waste scrap and the binder are mixed in a weight ratio of 8: 1 to 3 in the first step.
  6. 제 1 항에 있어서, 상기 1단계의 가압성형은 200 MPa ~ 400 MPa에서 일축가압성형법으로 수행하는 것을 특징으로 하는 흑연 폐스크랩을 이용한 등방성 벌크 흑연의 제조방법.The method of claim 1, wherein the pressing in the first step is performed by uniaxial pressure molding at 200 MPa to 400 MPa.
  7. 제 1 항에 있어서, 상기 2단계의 벌크 흑연의 밀도는 1.29 ~ 1.39 g/cm3 인 것을 특징으로 하는 흑연 폐스크랩을 이용한 등방성 벌크 흑연의 제조방법.The method of claim 1, wherein the density of the bulk graphite in the second step is 1.29 to 1.39 g / cm 3 .
  8. 제 1 항에 있어서, 상기 2단계를 수행한 벌크 흑연의 기공도는 31 % 미만인 것을 특징으로 하는 흑연 폐스크랩을 이용한 등방성 벌크 흑연의 제조방법.The method of claim 1, wherein the porosity of the bulk graphite that is performed in the second step is less than 31%.
  9. 제 1 항에 있어서, 상기 3단계는 1회 이상 반복하는 것을 특징으로 하는 흑연 폐스크랩을 이용한 등방성 벌크 흑연의 제조방법.The method of claim 1, wherein the three steps are repeated one or more times.
  10. 제 1 항 내지 제 9 항 중 어느 한 항의 방법으로 제조된 등방성 벌크 흑연. Isotropic bulk graphite prepared by the method of claim 1.
  11. 제 10 항에 있어서, 상기 등방성 벌크 흑연의 이방성비(anisotropic)는 1.2 미만인 것을 특징으로 하는 등방성 벌크 흑연. The isotropic bulk graphite of claim 10, wherein the anisotropic ratio of the isotropic bulk graphite is less than 1.2.
  12. 제 10 항에 있어서, 상기 등방성 벌크 흑연의 밀도는 1.40 ~ 1.60 g/cm3 인 것을 특징으로 하는 등방성 벌크 흑연.The isotropic bulk graphite of claim 10, wherein the density of the isotropic bulk graphite is 1.40 to 1.60 g / cm 3 .
  13. 제 10 항에 있어서, 상기 등방성 벌크 흑연의 기공도는 26 % 미만인 것을 특징으로 하는 등방성 벌크 흑연. The isotropic bulk graphite of claim 10, wherein the porosity of the isotropic bulk graphite is less than 26%.
  14. 제 10 항의 등방성 벌크 흑연을 포함하는 탄소전극. A carbon electrode comprising the isotropic bulk graphite of claim 10.
  15. 제 10 항의 등방성 벌크 흑연을 포함하는 기계적 씰(mechanical seal).A mechanical seal comprising the isotropic bulk graphite of claim 10.
PCT/KR2015/001680 2014-05-19 2015-02-23 Method for preparing isotropic bulk graphite using graphite waste scraps and isotropic bulk graphite prepared thereby WO2015178572A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0059994 2014-05-19
KR1020140059994A KR101439177B1 (en) 2014-05-19 2014-05-19 Preparing method of isotropic bulk graphite using graphite scrap and the isotropic bulk graphite thereby

Publications (1)

Publication Number Publication Date
WO2015178572A1 true WO2015178572A1 (en) 2015-11-26

Family

ID=51759778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/001680 WO2015178572A1 (en) 2014-05-19 2015-02-23 Method for preparing isotropic bulk graphite using graphite waste scraps and isotropic bulk graphite prepared thereby

Country Status (2)

Country Link
KR (1) KR101439177B1 (en)
WO (1) WO2015178572A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101832395B1 (en) * 2015-09-25 2018-02-26 주식회사 카보랩 Method Of Carbon fiber powder material, Carbon fiber electrode including the Carbon fiber powder material and manufacturing method thereof
WO2017051963A1 (en) * 2015-09-25 2017-03-30 금오공과대학교 산학협력단 Carbon fiber electrode using carbon fiber and manufacturing method therefor
KR101862551B1 (en) * 2015-09-30 2018-05-30 금오공과대학교 산학협력단 Method of isotropic carbon fiber electrode
KR101823940B1 (en) 2016-08-23 2018-01-31 재단법인 한국탄소융합기술원 Method for manufacturing electrode using in electric discharge machining
KR101963812B1 (en) * 2016-11-11 2019-03-29 주식회사 카보랩 Reproducing Method of Waste carbon powder and carbon block manufacturing thereof
KR101796503B1 (en) 2016-11-11 2017-11-10 주식회사 카보랩 Method of Anisotropy Plate having Carbon Long fiber and Anisotropy Plate having Carbon Long fiber including the same
KR102014367B1 (en) * 2017-11-23 2019-08-26 금오공과대학교 산학협력단 Bulk graphite composite and manufacturing method thereof
KR102035908B1 (en) * 2017-12-19 2019-10-24 주식회사 티씨케이 Method of recycling wasted graphite materials, wasted graphite materials, and articles having the same
KR102508857B1 (en) * 2020-11-26 2023-03-09 재단법인 포항산업과학연구원 Manufacturing method of carbonized blocks used for manufacturing isotropic graphite
KR102653132B1 (en) * 2021-11-11 2024-04-02 금성테크 주식회사 Recycled Graphite extrusion-molded bodies and manufacturing method therefor
KR102598461B1 (en) 2021-11-25 2023-11-06 주식회사 모간 High-density carbon block using polymer pigment and its impregnation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040076427A (en) * 2003-02-25 2004-09-01 박정현 Process for manufacturing an article of graphite and an article of graphite manufactured by the same
JP2005297082A (en) * 2004-04-07 2005-10-27 Tokai Carbon Co Ltd Graphite electrode for electric discharge machining and its manufacturing method
KR20080049669A (en) * 2006-11-30 2008-06-04 요업기술원 Isotropic carbon material and manufacturing method thereof
KR20120131705A (en) * 2011-05-26 2012-12-05 금오공과대학교 산학협력단 Manufacturing method of graphite block

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040076427A (en) * 2003-02-25 2004-09-01 박정현 Process for manufacturing an article of graphite and an article of graphite manufactured by the same
JP2005297082A (en) * 2004-04-07 2005-10-27 Tokai Carbon Co Ltd Graphite electrode for electric discharge machining and its manufacturing method
KR20080049669A (en) * 2006-11-30 2008-06-04 요업기술원 Isotropic carbon material and manufacturing method thereof
KR20120131705A (en) * 2011-05-26 2012-12-05 금오공과대학교 산학협력단 Manufacturing method of graphite block

Also Published As

Publication number Publication date
KR101439177B1 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
WO2015178572A1 (en) Method for preparing isotropic bulk graphite using graphite waste scraps and isotropic bulk graphite prepared thereby
Lee et al. Bulk graphite: materials and manufacturing process
CA2661927C (en) Low cte highly isotropic graphite
CN108610049B (en) Isotropic graphite material, method for the production thereof and use thereof
US20070267604A1 (en) Carbon composite near-net-shape molded part and method of making
RU2006144871A (en) DESTRUCTIVE ELECTRODES FOR CARBOTHERMAL REDUCTION FURNACE
CN1247451C (en) High density and intensity abrasive resistant graphite materials and producing process thereof
KR101079665B1 (en) Producing method of low-dimensional carbon-contained composits and Carbon block
Queipo et al. Preparation of pitch-based carbon–copper composites for electrical applications
US6709999B2 (en) Molded part of ceramic material derived from polymers, process for producing ceramic molded parts and sliding element having a molded part
CN108439990B (en) Titanium diboride-based ceramic composite material and preparation method thereof
JP5972362B2 (en) Refractory material for the internal lining of a blast furnace, obtained by semi-graphitization of a mixture containing carbon and silicon
Bhatia et al. Effect of sintering temperature on the characteristics of carbons based on mesocarbon microbeads
JP2000007436A (en) Graphite material and its production
KR102192302B1 (en) Carbon-Carbon Composites and Method for Producing the Same
JPH06102530B2 (en) Method for manufacturing graphite molded body
Deepak Kumar et al. Evaluation of physico-chemical, thermal and mechanical properties of sintered graphite and mesophase formulations
TWI610887B (en) Isotropic graphite material, method of producing the same and application thereof
RU2682732C1 (en) Method for production of a cathode pack for an aluminum electrolytic cell
KR20190064549A (en) A production method of binderless carbon block using reformation of mesocarbon microbeads
JP3966911B2 (en) In-furnace members and jigs
WO2021241785A1 (en) Method for manufacturing carbon material using spent coffee grounds
KR101883862B1 (en) Manufacturing method for isotropic graphte article and high density isotropic graphte article manufactured by the method
US9546113B2 (en) High porosity/low permeability graphite bodies and process for the production thereof
KR102413138B1 (en) Method of Manufacturing Graphite Granules for Mold Molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796129

Country of ref document: EP

Kind code of ref document: A1