WO2021241785A1 - Method for manufacturing carbon material using spent coffee grounds - Google Patents

Method for manufacturing carbon material using spent coffee grounds Download PDF

Info

Publication number
WO2021241785A1
WO2021241785A1 PCT/KR2020/006961 KR2020006961W WO2021241785A1 WO 2021241785 A1 WO2021241785 A1 WO 2021241785A1 KR 2020006961 W KR2020006961 W KR 2020006961W WO 2021241785 A1 WO2021241785 A1 WO 2021241785A1
Authority
WO
WIPO (PCT)
Prior art keywords
coffee grounds
carbon material
temperature
carbon
present
Prior art date
Application number
PCT/KR2020/006961
Other languages
French (fr)
Korean (ko)
Inventor
김태규
김웅수
Original Assignee
김태규
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김태규 filed Critical 김태규
Priority to PCT/KR2020/006961 priority Critical patent/WO2021241785A1/en
Publication of WO2021241785A1 publication Critical patent/WO2021241785A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation

Definitions

  • the present invention relates to a method for producing a carbon material using coffee grounds (Spent Coffee Ground), and more particularly, to a carbon material containing amorphous graphitizable carbon body by heat-treating coffee grounds in a specific process. It relates to a method for manufacturing a carbon material using coffee grounds.
  • Spent Coffee Ground is a solid residue generated in the coffee industry, which is mainly generated from coffee beans in the manufacturing process of espresso or water-soluble coffee. As the consumption of coffee increases, the amount of coffee grounds is also increasing. According to the International Coffee Organization (ICO), about 550 to 670 kg of coffee grounds are generated from 1 ton (ton) of coffee beans, and it has been reported that more than 5.8 million tons of coffee grounds are generated annually.
  • ICO International Coffee Organization
  • Coffee grounds have been treated by landfill or incineration like general industrial waste, but recently, as interest in coffee grounds increases, recyclability as an industrial resource has been proposed.
  • the recycling of coffee grounds has technical significance in terms of environmental, industrial and economic aspects in that it reduces waste emission and utilizes it as a useful resource.
  • Korean Patent Registration No. 10-1247146 and Korean Patent Publication No. 10-2013-0019820, etc. Korean Patent Publication Nos. 10-1621268 and Korean Patent Registrations Publication No. 10-1876555 and the like propose a solid fuel using coffee grounds.
  • Korean Patent Application Laid-Open No. 10-2017-0094591 and the like propose a mushroom cultivation system using coffee grounds
  • Korean Patent Publication No. 10-1257214, etc. proposes functional pulp using coffee grounds.
  • the recycling of coffee grounds according to the prior art as described above is, in most cases, recycling as a bulking agent. Recycling as a bulking agent is limited in the use of coffee grounds. Specifically, in the conventional recycling of coffee grounds, the collected coffee grounds are simply dried and pulverized and used without a separate chemical treatment or extraction separation. Accordingly, the recycling of coffee grounds according to the prior art is a deodorant or solid fuel, and the application use is limited to some products, and most of the coffee grounds are disposed of.
  • carbon bodies such as graphene or graphite are used in various industrial fields.
  • Graphene has a plate-like two-dimensional structure in which carbon atoms are connected in a hexagonal shape
  • graphite is a structure in which two-dimensional graphene is stacked, which may include ten or more layers of graphene.
  • the carbon body has electrical, thermal and optical properties, and thus has a wide range of applications.
  • graphene is structurally and chemically stable as well as has metallic properties.
  • graphene is very useful as an electric device such as an electrode for a display device or an electrode for a solar cell because it has excellent transparency and conductivity.
  • hydrocarbon-based gases such as acetylene (C 2 H 2 ) or ethylene (C 2 H 4 ) are used as raw materials for chemical vapor deposition (CVD). It is manufactured by the method of growing through deposition).
  • CVD chemical vapor deposition
  • JP2017-095327 and JP2017-171570 disclose techniques related to the above.
  • JP2017-171570 disclose techniques related to the above.
  • the cost of raw materials such as acetylene (C 2 H 2 ) or ethylene (C 2 H 4 ) is high, and the process is complicated, and at least economical efficiency is lowered.
  • the present invention improves the recyclability of coffee grounds by producing an industrially useful carbon material from coffee grounds through a specific treatment, and converts it into a high value-added material to solve the environmental problem caused by the disposal treatment of coffee grounds, coffee
  • An object of the present invention is to provide a method for manufacturing a carbon material using the residue.
  • It provides a method for producing a carbon material using coffee grounds, including a second step of carbonizing the coffee grounds prepared in the first step to produce a carbon material.
  • the second process is the second process
  • the second step is
  • the carbon material produced through the second process is put into a mold and then pressed at a pressure of 450 kg/cm 2 or more for 30 seconds or more to form a carbon material compressed product It may further include a third process.
  • the coffee grounds are not limited to the use, and it has the effect of being widely recyclable as a resource useful for various uses and fields.
  • FIG. 1 shows the results of elemental analysis (nitrogen content) of a carbon material prepared according to an embodiment of the present invention.
  • Figure 2 shows the elemental analysis result (oxygen content) of the carbon material prepared according to the embodiment of the present invention.
  • FIG 3 shows the Raman analysis results of coffee grounds used in an embodiment of the present invention.
  • FIG 5 shows the results of Raman analysis of the carbon material (hydrothermal carbonization) manufactured according to an embodiment of the present invention.
  • the present invention provides a method for manufacturing a carbon material using coffee grounds (Spent Coffee Ground). According to a second aspect, the present invention provides the use of the carbon material. In addition, according to a third aspect, the present invention provides a composite including the carbon material.
  • the "carbon material” is derived from coffee grounds (Spent Coffee Ground), which is not particularly limited as long as it contains at least a carbon (C) atom.
  • the carbon material is produced from coffee grounds through a second process (carbonization process), and may include an amorphous graphitizable carbon body and/or a crystalline carbon body.
  • the carbon material for example, graphene, carbon nanotube (CNT; carbon nanotube, CNT), carbon nanofiber (CNF; carbon nanofiber), allotropes thereof and / or derivatives thereof, such as can be selected from carbon materials.
  • the carbon material produced from coffee grounds according to the present invention is graphene, graphene allotrope, graphene derivative, carbon nanotube (CNT), carbon nanotube (CNT) derivative, carbon nanofiber (CNF) and carbon nanofiber. It may be a carbon body including one or two or more selected from fiber (CNF) derivatives and the like.
  • the carbon body is as well known.
  • the graphene has a plate-like two-dimensional structure in which carbon atoms are connected in a hexagonal shape, and may include a single layer or 10 or less graphene layers.
  • the graphene allotrope include graphene, graphite, and fullerene.
  • the graphite is a structure in which graphene having a two-dimensional structure is stacked, which may include 10 or more layers of graphene.
  • the fullerene may include carbon rings in which carbon atoms are arranged and connected in a pentagonal or hexagonal shape, etc., but these carbon rings are combined to have a hollow hollow shape (eg, soccer ball shape).
  • the graphene derivative include oxidized graphene, reduced graphene, graphene nanoribbons, fluorographene, and graphdiyne. .
  • a method for manufacturing a carbon material using coffee grounds according to the present invention includes a first step of preparing coffee grounds; and a second process of carbonizing the coffee grounds prepared in the first process to produce a carbon material.
  • the present invention includes a carbonization process (second process) of using coffee grounds as a raw material, but producing a carbon material from the coffee grounds.
  • the carbon material produced through the carbonization process (second process) includes a high content of amorphous carbon bodies as described above, for example, carbon bodies such as graphene and/or graphite.
  • the carbon material manufacturing method according to the present invention is performed after the carbonization process (second process), and the carbon material produced through the carbonization process (second process) is press-molded to form a predetermined shape. It may further include a molding process (third process) of molding the carbon material compressed product.
  • a molding process third process of molding the carbon material compressed product.
  • coffee grounds are not particularly limited, and this is the same as usual.
  • Coffee grounds contain solid residues from the coffee industry.
  • Coffee grounds may be used by collecting the remaining grounds (solid residues) after extraction of soluble solids from coffee beans through, for example, water, hot water and/or steam.
  • the collected coffee grounds can be used after drying or grinding to an appropriate size.
  • the first process may include cleaning the collected coffee grounds using an acid solution and/or an alkali solution. It is possible to remove impurities or ash components contained in the coffee grounds by such a cleaning process. And after washing, it can be used by drying and/or pulverizing.
  • Carbon material is produced by carbonizing the prepared coffee grounds.
  • This carbonization process for this purpose, according to one embodiment, (1) the step of heating the coffee grounds to 800 °C ⁇ 1000 °C in an inert gas atmosphere in an inert gas atmosphere; (2) heat-treating the coffee grounds at a temperature of 800° C. to 1000° C. for 30 minutes to 60 minutes; and (3) naturally cooling the coffee grounds to room temperature after heat treatment.
  • the coffee grounds prepared first are put in a ceramic container, and then put into a high-temperature furnace to raise the temperature to a final temperature of 800°C to 1000°C.
  • the heating furnace may be maintained in an inert gas atmosphere, for example, argon (Ar), nitrogen (N 2 ) and/or hydrogen (H 2 ) gas atmosphere.
  • heat treatment when argon (Ar) and hydrogen (H 2 ) are flowed into the furnace at a flow rate of 50 to 500 sccm and 50 to 500 sccm, respectively, when coffee grounds reach a final temperature of 800°C to 1000°C It can be heated up to And when it reaches a final temperature of 800°C to 1000°C, heat treatment (high-temperature carbonization) is performed by maintaining at this final temperature for 30 to 60 minutes.
  • CVD equipment used in chemical vapor deposition (CVD) may be used for the heat treatment (high-temperature carbonization).
  • CVD chamber for high-temperature heating may be used as the heating furnace.
  • the temperature of the furnace is cooled to room temperature through natural cooling.
  • the room temperature may be, for example, a temperature between 15 °C ⁇ 30 °C, for example, may be 20 °C ⁇ 25 °C.
  • the carbonization may be selected from hydrothermal carbonization conducted under wet conditions according to another embodiment of the present invention.
  • the carbonization process (second process) comprises the steps of: (a) obtaining a dispersion in which the coffee grounds are dispersed in a solvent; (b) putting the dispersion into a container and sealing, then performing a first heat treatment at a temperature of 200°C to 300°C for 3 to 4 hours; and (c) subjecting the first heat-treated product to a second heat treatment at a temperature of 80° C. or higher.
  • a dispersion in which the prepared coffee grounds are sufficiently dispersed in a solvent is obtained.
  • the solvent is at least one selected from deionized water (DI water) and distilled water (Distilled water) is used.
  • the dispersion (coffee grounds + solvent) is placed in a sealable container and sealed, and then subjected to a first heat treatment (hydrothermal carbonization) for 3 to 4 hours at a temperature of 200° C. to 300° C. and sealed pressure conditions.
  • the coffee grounds are carbonized by the first heat treatment (hydrothermal carbonization) to produce a carbon material.
  • the first heat treatment (hydrothermal carbonization) of the treated product is subjected to a second heat treatment at a temperature of 80° C. or higher, for example, at a temperature of 80° C. to 120° C. for about 1 to 3 hours.
  • the production rate of the carbon material is increased by this secondary heat treatment, and the solvent (moisture) present in the carbon material is also removed. That is, in hydrothermal carbonization, when the first and second heat treatment processes are completed, coffee grounds are synthesized (converted) into a carbon material having little moisture content.
  • a carbon material having a high carbon content is produced from coffee grounds by the above carbonization process, that is, high-temperature carbonization at 800°C to 1000°C, or hydrothermal carbonization at 200°C to 300°C.
  • the carbon material thus produced is mostly composed of an amorphous carbon material, which may also have biodegradability.
  • the present molding process is an optional process, which may be performed if necessary.
  • This molding process is a process of putting the carbon material produced through the carbonization process (second process) into a mold, and then pressurizing (compressing) at a pressure of 450 kg/cm 2 or more for 30 seconds or more. .
  • This molding step third step, a carbon material compressed product in which the carbon material is compressed at a high density is formed.
  • the molding process puts the carbon material produced through carbonization into a molding mold of a predetermined shape, and then maintains the pressing force for 30 seconds to 10 minutes at a pressure of 450 kg/cm 2 to 1,200 kg/cm 2 It may proceed by a molding method.
  • the molding mold may have a cavity (cavity) of 5mm ⁇ 30mm diameter.
  • the product produced through this molding process (the third process) that is, the carbon material compressed product, may vary depending on the shape and diameter of the cavity, but this may be, for example, a disc-shaped or cylindrical product with a diameter of 5 to 30 mm. may have a shape.
  • the carbon material compressed through the molding process (third process) may have a sheet resistance of 240 k ⁇ /sq or less.
  • the carbon material compression product may have a sheet resistance of 90 to 240 k ⁇ /sq, for example.
  • a binder in the forming step (third step), may be further added.
  • a binder may be further added to and mixed with the carbon material, and then press-molded by putting it in a molding mold.
  • the binder is not particularly limited as long as it has a predetermined adhesive property, and for example, a biodegradable resin may be used.
  • the binder may be selected from biodegradable resins such as poly lactic acid (PLA) and/or poly caprolactone (PCL).
  • the composite according to the present invention includes at least a carbon material produced through the carbonization process (second process).
  • the composite according to the present invention specifically includes a first material and a second material, wherein the first material includes a carbon material produced from coffee grounds according to the present invention.
  • the second material is not particularly limited, but may be selected from plastics, ceramic materials and/or metal materials.
  • the composite according to the present invention is a mixture comprising a carbon material (a first material) and a plastic (a second material), which may be liquid or solid.
  • the solid includes, for example, a powder type, a granular type, a pellet type, and/or a three-dimensional type
  • the three-dimensional type may include a disk type, a cylindrical type, and a polygonal cylindrical shape (box type).
  • the plastic is a material capable of being heated and/or pressed, and includes a resin.
  • the resin includes natural resins and synthetic resins.
  • the plastic may be selected according to the purpose and use of the composite, for example, may be selected from bioplastics and/or engineering plastics.
  • the bioplastic is biodegradable, and may be selected from, for example, poly lactic acid (PLA) and/or poly caprolactone (PCL).
  • the carbon material and the composite including the same according to the present invention may be used for various purposes in various industrial fields, and the application field and use are not particularly limited.
  • the carbon material and the composite including the same according to the present invention can be widely used in the energy field, the electronic field, the precision machine field, the high temperature machine field, the medical field, the food field, the cosmetic field, the environmental field, and the wastewater treatment field.
  • the carbon material and the composite including the same according to the present invention are, for example, an electrode material of an energy storage device, a 3D printer material, an electronic device material, a semiconductor material, a sensor material, a filter material, a material for a medical tool for surgery, and food storage. It can be used as a container material for, for example, a deodorizing material, an elastic material, a shielding material, an antibacterial material and a sensor material, etc., but is not limited thereto.
  • a certain amount of coffee grounds was placed in an alumina boat.
  • An alumina boat containing coffee grounds was placed in a furnace of a chemical vapor deposition (CVD) chamber and purged with nitrogen gas. Then, while flowing an inert gas, the temperature of the furnace (furnace) was raised to 800 ⁇ 1000 °C. At this time, Ar and H 2 were used as the inert gas, and they were flowed at flow rates of 50 to 500 sccm and 50 to 500 sccm, respectively.
  • CVD chemical vapor deposition
  • a dispersion was obtained by mixing and dispersing coffee grounds in deionized water (DI water).
  • DI water deionized water
  • the dispersion in which coffee grounds are dispersed was put in an autoclave, sealed, put into an electric furnace, and then heat-treated at a temperature of 200 to 300° C. for 3 to 4 hours. (hydrothermal carbonization), followed by a temperature of about 80° C. Additional heat treatment was performed for about 1 hour. It was confirmed through visual observation that the brown coffee grounds were changed to black due to hydrothermal carbonization.
  • FIG. 1 shows the analysis result of carbon (C) content
  • FIG. 2 shows the analysis result of oxygen (O) content.
  • FIG. 3 shows the results of Raman analysis of coffee grounds
  • FIG. 4 shows the carbon material produced by CVD high-temperature carbonization
  • FIG. 5 shows the carbon material produced by hydrothermal carbonization.
  • the carbon material produced by the CVD high-temperature carbonization (Example 1) was dispersed in an organic solvent. Thereafter, the dispersion in which the carbon material was dispersed was prepared as a film through vacuum filtration, and then the sheet resistance of the film specimen was measured. As a result of sheet resistance measurement, it was confirmed to have about 148.4 ⁇ 59.6 k ⁇ /sq sheet resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a method for manufacturing a carbon material using spent coffee grounds. The present invention comprises: a first process for preparing spent coffee grounds; and a second process for carbonizing the spent coffee grounds prepared in the first process to produce a carbon material. According to one embodiment, the second process may be selected from a high-temperature carbonization carried out at a high temperature of 800-1,000°C under an inert gas atmosphere, and a hydrothermal carbonization carried out at a temperature of 200-300°C in a wet condition. According to the present invention, an industrially useful carbon material can be easily manufactured from spent coffee grounds through a specific treatment, thus improving the recyclability of the spent coffee grounds, and the spent coffee grounds can be converted into a high value-added material, thus creating a new source of profit. In addition, according to the present invention, without being limited to any specific purpose, the spent coffee grounds can be widely recycled as a useful resource for various purposes in various fields.

Description

커피찌꺼기를 이용한 카본 소재의 제조방법 Manufacturing method of carbon material using coffee grounds
본 발명은 커피찌꺼기(Spent Coffee Ground)를 이용한 카본 소재의 제조방법에 관한 것으로, 보다 상세하게는 커피찌꺼기를 특정의 공정으로 열처리하여 비결정질의 흑연화성 탄소체를 포함하는 카본 소재를 제조할 수 있는 커피찌꺼기를 이용한 카본 소재의 제조방법에 관한 것이다. The present invention relates to a method for producing a carbon material using coffee grounds (Spent Coffee Ground), and more particularly, to a carbon material containing amorphous graphitizable carbon body by heat-treating coffee grounds in a specific process. It relates to a method for manufacturing a carbon material using coffee grounds.
커피찌꺼기(Spent Coffee Ground)는 커피 산업에서 발생되는 고체 잔류물로서, 이는 주로 커피콩으로부터 에스프레소(espresso)나 수용성 커피 등의 제조과정에서 발생된다. 커피의 소비량이 증가함에 따라 커피찌꺼기의 발생량도 많아지고 있다. 국제커피협회(ICO ; International Coffee Organization)에 따르면, 1톤(ton)의 커피콩으로부터 약 550 ~ 670kg의 커피찌꺼기가 발생하고, 매년 약 5.8백만톤 이상의 커피찌꺼기가 발생한다고 보고한 바 있다. Spent Coffee Ground is a solid residue generated in the coffee industry, which is mainly generated from coffee beans in the manufacturing process of espresso or water-soluble coffee. As the consumption of coffee increases, the amount of coffee grounds is also increasing. According to the International Coffee Organization (ICO), about 550 to 670 kg of coffee grounds are generated from 1 ton (ton) of coffee beans, and it has been reported that more than 5.8 million tons of coffee grounds are generated annually.
커피찌꺼기는 일반 산업 폐기물과 같이 매립이나 소각에 의해 처리되어 왔으나, 최근에는 커피찌꺼기에 대한 관심이 높아지면서 산업 자원으로서의 재활용성이 제안되고 있다. 커피찌꺼기의 재활용은 쓰레기 방출을 줄이고 유용한 자원으로 활용한다는 점에서 환경적, 산업적 및 경제적 측면에서 기술적 의의가 있으며, 이러한 커피찌꺼기의 재활용 기술은 특허문헌이나 논문에도 제안되어 있다. Coffee grounds have been treated by landfill or incineration like general industrial waste, but recently, as interest in coffee grounds increases, recyclability as an industrial resource has been proposed. The recycling of coffee grounds has technical significance in terms of environmental, industrial and economic aspects in that it reduces waste emission and utilizes it as a useful resource.
예를 들어, 한국 등록특허공보 제10-1247146호 및 한국 공개특허공보 제10-2013-0019820호 등에는 커피찌꺼기를 이용한 탈취제가 제시되어 있으며, 한국 등록특허공보 제10-1621268호 및 한국 등록특허공보 제10-1876555호 등에는 커피찌꺼기를 이용한 고형 연료가 제시되어 있다. 또한, 한국 공개특허공보 제10-2017-0094591호 등에는 커피찌꺼기를 이용한 버섯재배 시스템이 제시되어 있으며, 한국 등록특허공보 제10-1257214호 등에는 커피찌꺼기를 이용한 기능성 펄프가 제시되어 있다. For example, deodorants using coffee grounds are suggested in Korean Patent Registration No. 10-1247146 and Korean Patent Publication No. 10-2013-0019820, etc., and Korean Patent Publication Nos. 10-1621268 and Korean Patent Registrations Publication No. 10-1876555 and the like propose a solid fuel using coffee grounds. In addition, Korean Patent Application Laid-Open No. 10-2017-0094591 and the like propose a mushroom cultivation system using coffee grounds, and Korean Patent Publication No. 10-1257214, etc. proposes functional pulp using coffee grounds.
그러나 위와 같은 종래 기술에 따른 커피찌꺼기의 재활용은 대부분 경우 벌킹제(bulking agent)로의 재활용이다. 벌킹제로의 재활용은 커피찌꺼기의 용도에 있어 제한적이다. 구체적으로, 종래 커피찌꺼기를 재활용함에 있어서는 별도의 화학적 처리나 추출 분리 등을 진행하지 않고, 수거된 커피찌꺼기를 단순히 건조 및 분쇄하여 사용하고 있다. 이에 따라, 종래 기술에 따른 커피찌꺼기의 재활용은 탈취제나 고형 연료 등으로서, 그 적용 용도가 일부 제품으로 제한되고, 대부분의 커피찌꺼기는 폐기 처리되고 있다. However, the recycling of coffee grounds according to the prior art as described above is, in most cases, recycling as a bulking agent. Recycling as a bulking agent is limited in the use of coffee grounds. Specifically, in the conventional recycling of coffee grounds, the collected coffee grounds are simply dried and pulverized and used without a separate chemical treatment or extraction separation. Accordingly, the recycling of coffee grounds according to the prior art is a deodorant or solid fuel, and the application use is limited to some products, and most of the coffee grounds are disposed of.
한편, 그래핀(graphene)이나 그래파이트(graphite) 등의 탄소체는 여러 산업분야에서 사용되고 있다. 그래핀은 탄소 원자가 6각형 모양으로 연결된 판상의 2차원 구조를 가지며, 그래파이트는 2차원 구조의 그래핀이 적층되어 있는 구조로서, 이는 10층 이상의 그래핀을 포함할 수 있다. 이러한 탄소체는 전기적, 열적 및 광학적 특성 등을 가져 그 응용범위가 넓다. 예를 들어, 그래핀은 구조적 및 화학적으로 안정할 뿐만 아니라 금속성(metallic property)를 가지고 있다. 또한, 그래핀은 투명도 및 전도성 등이 우수하여 디스플레이 소자용 전극이나 태양전지용 전극 등과 같은 전기소자 등으로 매우 유용하다. On the other hand, carbon bodies such as graphene or graphite are used in various industrial fields. Graphene has a plate-like two-dimensional structure in which carbon atoms are connected in a hexagonal shape, and graphite is a structure in which two-dimensional graphene is stacked, which may include ten or more layers of graphene. The carbon body has electrical, thermal and optical properties, and thus has a wide range of applications. For example, graphene is structurally and chemically stable as well as has metallic properties. In addition, graphene is very useful as an electric device such as an electrode for a display device or an electrode for a solar cell because it has excellent transparency and conductivity.
종래, 위와 같은 그래핀 등의 탄소체를 제조함에 있어서는 대부분의 경우 아세틸렌(C 2H 2)이나 에틸렌(C 2H 4) 등의 탄화수소계 가스를 원료로 사용하여 화학기상 증착(CVD ; Chemical Vapor Deposition)을 통해 성장시키는 방법으로 제조하고 있다. 예를 들어, 일본 공개특허번호 JP2017-095327호 및 일본 공개특허번호 JP2017-171570호 등에는 위와 관련한 기술이 제시되어 있다. 그러나 이러한 종래의 제조방법은 아세틸렌(C 2H 2)이나 에틸렌(C 2H 4) 등과 같은 원료의 가격이 높고, 이와 함께 공정 등이 복잡하여, 적어도 경제성이 떨어진다. Conventionally, in the production of carbon materials such as graphene, as described above, in most cases , hydrocarbon-based gases such as acetylene (C 2 H 2 ) or ethylene (C 2 H 4 ) are used as raw materials for chemical vapor deposition (CVD). It is manufactured by the method of growing through deposition). For example, Japanese Patent Application Laid-Open No. JP2017-095327 and Japanese Patent Application Laid-Open No. JP2017-171570 disclose techniques related to the above. However, in this conventional manufacturing method, the cost of raw materials such as acetylene (C 2 H 2 ) or ethylene (C 2 H 4 ) is high, and the process is complicated, and at least economical efficiency is lowered.
이에, 본 발명은 특정의 처리를 통해 커피찌꺼기로부터 산업적으로 유용한 카본 소재를 제조함으로써 커피찌꺼기의 재활용성을 향상시키고 고부가가치 물질로 전환시켜 커피찌꺼기의 폐기 처리에 따른 환경문제를 해결할 수 있는, 커피찌꺼기를 이용한 카본 소재의 제조방법을 제공하는 데에 그 목적이 있다. Accordingly, the present invention improves the recyclability of coffee grounds by producing an industrially useful carbon material from coffee grounds through a specific treatment, and converts it into a high value-added material to solve the environmental problem caused by the disposal treatment of coffee grounds, coffee An object of the present invention is to provide a method for manufacturing a carbon material using the residue.
상기 목적을 달성하기 위하여 본 발명은, In order to achieve the above object, the present invention
커피찌꺼기를 준비하는 제1공정; 및 A first step of preparing coffee grounds; and
상기 제1공정에서 준비된 커피찌꺼기를 탄화시켜 카본 소재를 생성하는 제2공정을 포함하는, 커피찌꺼기를 이용한 카본 소재의 제조방법을 제공한다. It provides a method for producing a carbon material using coffee grounds, including a second step of carbonizing the coffee grounds prepared in the first step to produce a carbon material.
하나의 실시형태에 따라서, 상기 제2공정은, According to one embodiment, the second process,
(1) 상기 커피찌꺼기를 불활성 가스 분위기 하에서 800℃ ~ 1000℃까지 승온하는 단계; (1) heating the coffee grounds to 800° C. to 1000° C. in an inert gas atmosphere;
(2) 상기 커피찌꺼기를 800℃ ~ 1000℃의 온도에서 30분 ~ 60분안 열처리하는 단계; 및 (2) heat-treating the coffee grounds at a temperature of 800° C. to 1000° C. for 30 minutes to 60 minutes; and
(3) 상기 커피찌꺼기를 열처리한 후 상온까지 자연 냉각하는 단계를 포함한다. (3) naturally cooling the coffee grounds to room temperature after heat treatment.
본 발명의 다른 실시형태에 따라서, 상기 제2공정은, According to another embodiment of the present invention, the second step is
(a) 탈이온수 및 증류수로부터 선택된 하나 이상의 용매에 상기 커피찌꺼기를 분산시킨 분산물을 얻는 단계; (a) obtaining a dispersion in which the coffee grounds are dispersed in one or more solvents selected from deionized water and distilled water;
(b) 상기 분산물을 용기에 넣고 밀폐시킨 다음, 200℃ ~ 300℃의 온도에서 3 ~ 4시간 동안 제1차 열처리하는 단계; 및 (b) putting the dispersion into a container and sealing, then performing a first heat treatment at a temperature of 200°C to 300°C for 3 to 4 hours; and
(c) 상기 제1차 열처리한 처리물을 80℃ 이상의 온도에서 제2차 열처리하는 단계를 포함한다. (c) subjecting the first heat-treated product to a second heat treatment at a temperature of 80° C. or higher.
또한, 본 발명에 따른 커피찌꺼기를 이용한 카본 소재의 제조방법은, 상기 제2공정을 통해 생성된 카본 소재를 몰드에 넣은 다음, 450kg/㎠ 이상의 압력에서 30초 이상 가압하여 카본 소재 압착물을 성형하는 제3공정을 더 포함할 수 있다. In addition, in the method for manufacturing a carbon material using coffee grounds according to the present invention, the carbon material produced through the second process is put into a mold and then pressed at a pressure of 450 kg/cm 2 or more for 30 seconds or more to form a carbon material compressed product It may further include a third process.
본 발명에 따르면, 특정의 처리를 통해 커피찌꺼기로부터 산업적으로 유용한 카본 소재를 용이하게 제조할 수 있어 커피찌꺼기의 재활용성이 향상되고 고부가가치 물질로 전환되어 새로운 수익 창출이 가능한 효과를 갖는다. According to the present invention, it is possible to easily manufacture an industrially useful carbon material from coffee grounds through a specific treatment, thereby improving the recyclability of the coffee grounds and converting it into a high value-added material, thereby creating a new profit.
또한, 본 발명에 따르면, 커피찌꺼기를 용도에 제한하지 않고, 다양한 용도 및 분야에 유용한 자원으로 폭넓게 재활용할 수 있는 효과를 갖는다. In addition, according to the present invention, the coffee grounds are not limited to the use, and it has the effect of being widely recyclable as a resource useful for various uses and fields.
도 1은 본 발명의 실시예에 따라 제조된 카본 소재의 원소 분석 결과(질소 함량)를 보인 것이다. 1 shows the results of elemental analysis (nitrogen content) of a carbon material prepared according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따라 제조된 카본 소재의 원소 분석 결과(산소 함량)를 보인 것이다. Figure 2 shows the elemental analysis result (oxygen content) of the carbon material prepared according to the embodiment of the present invention.
도 3은 본 발명의 실시예에서 사용된 커피찌꺼기의 Raman 분석 결과를 보인 것이다. 3 shows the Raman analysis results of coffee grounds used in an embodiment of the present invention.
도 4는 본 발명의 실시예에 따라 제조된 카본 소재(CVD 고온 탄화)의 Raman 분석 결과를 보인 것이다. 4 shows the Raman analysis results of the carbon material (CVD high-temperature carbonization) manufactured according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따라 제조된 카본 소재(수열 탄화)의 Raman 분석 결과를 보인 것이다. 5 shows the results of Raman analysis of the carbon material (hydrothermal carbonization) manufactured according to an embodiment of the present invention.
본 발명에서 사용되는 용어 "및/또는"은 전후에 나열한 구성요소들 중에서 적어도 하나 이상을 포함하는 의미로 사용된다. 본 발명에서 사용되는 용어 "하나 이상"은 하나 또는 둘 이상의 복수를 의미한다. The term "and/or" used in the present invention is used to mean including at least one or more of the components listed before and after. As used herein, the term “one or more” refers to one or a plurality of two or more.
본 발명은 제1형태에 따라서, 커피찌꺼기(Spent Coffee Ground)를 이용한 카본 소재의 제조방법을 제공한다. 본 발명은 제2형태에 따라서, 상기 카본 소재의 용도를 제공한다. 또한, 본 발명은 제3형태에 따라서, 상기 카본 소재를 포함하는 복합체를 제공한다. According to a first aspect, the present invention provides a method for manufacturing a carbon material using coffee grounds (Spent Coffee Ground). According to a second aspect, the present invention provides the use of the carbon material. In addition, according to a third aspect, the present invention provides a composite including the carbon material.
본 발명에서, 「카본 소재」는 커피찌꺼기(Spent Coffee Ground)로부터 유래된 것으로서, 이는 적어도 탄소(C) 원자를 함유하는 것이면 특별히 제한되지 않는다. 상기 카본 소재는 제2공정(탄화 공정)을 통해 커피찌꺼기로부터 생성된 것으로서, 이는 비결정질의 흑연화성 탄소체, 및/또는 결정질의 탄소체를 포함할 수 있다. In the present invention, the "carbon material" is derived from coffee grounds (Spent Coffee Ground), which is not particularly limited as long as it contains at least a carbon (C) atom. The carbon material is produced from coffee grounds through a second process (carbonization process), and may include an amorphous graphitizable carbon body and/or a crystalline carbon body.
상기 카본 소재는, 예를 들어 그래핀(graphene), 탄소나노튜브(CNT ; carbon nanotube, CNT), 탄소나노섬유(CNF ; carbon nanofiber), 이들의 동소체 및/또는 이들의 유도체(derivatives) 등의 탄소 물질로부터 선택될 수 있다. 구체적으로, 본 발명에 따라 커피찌꺼기로부터 생성된 카본 소재는 그래핀, 그래핀 동소체, 그래핀 유도체, 탄소나노튜브(CNT), 탄소나노튜브(CNT) 유도체, 탄소나노섬유(CNF) 및 탄소나노섬유(CNF) 유도체 등으로부터 선택된 하나 또는 2 이상을 포함하는 탄소체가 될 수 있다. The carbon material, for example, graphene, carbon nanotube (CNT; carbon nanotube, CNT), carbon nanofiber (CNF; carbon nanofiber), allotropes thereof and / or derivatives thereof, such as can be selected from carbon materials. Specifically, the carbon material produced from coffee grounds according to the present invention is graphene, graphene allotrope, graphene derivative, carbon nanotube (CNT), carbon nanotube (CNT) derivative, carbon nanofiber (CNF) and carbon nanofiber. It may be a carbon body including one or two or more selected from fiber (CNF) derivatives and the like.
상기 탄소체는 주지된 바와 같다. 예를 들어, 상기 그래핀은 탄소 원자가 6각형 모양으로 연결된 판상의 2차원 구조를 가지는 것으로서, 이는 단일층 또는 10층 이하의 그래핀을 포함할 수 있다. 상기 그래핀 동소체는 그래핀(graphyne), 그래파이트(graphite) 및 플러렌(fullerene) 등을 예로 들 수 있다. 이때, 상기 그래파이트는 2차원 구조의 그래핀이 적층되어 있는 구조로서, 이는 10층 이상의 그래핀을 포함할 수 있다. 상기 플러렌은 탄소 원자가 5각형이나 6각형 등으로 배열, 연결된 탄소 고리를 포함하되, 이러한 탄소 고리들이 결합되어 속이 빈 중공(中空)의 형태(예, 축구공 모양)를 가질 수 있다. 상기 그래핀 유도체는 산화 그래핀(oxidized graphene), 환원 그래핀(reduced graphene), 그래핀 나노리본(graphene nanoribbons), 플루오로그래핀(fluorographene), 및 그래프딘(graphdiyne) 등을 예로 들 수 있다. The carbon body is as well known. For example, the graphene has a plate-like two-dimensional structure in which carbon atoms are connected in a hexagonal shape, and may include a single layer or 10 or less graphene layers. Examples of the graphene allotrope include graphene, graphite, and fullerene. In this case, the graphite is a structure in which graphene having a two-dimensional structure is stacked, which may include 10 or more layers of graphene. The fullerene may include carbon rings in which carbon atoms are arranged and connected in a pentagonal or hexagonal shape, etc., but these carbon rings are combined to have a hollow hollow shape (eg, soccer ball shape). Examples of the graphene derivative include oxidized graphene, reduced graphene, graphene nanoribbons, fluorographene, and graphdiyne. .
본 발명에 따른 커피찌꺼기를 이용한 카본 소재의 제조방법은, 커피찌꺼기를 준비하는 제1공정; 및 상기 제1공정에서 준비된 커피찌꺼기를 탄화시켜 카본 소재를 생성하는 제2공정을 포함한다. 본 발명은 커피찌꺼기를 원료로 하되, 상기 커피찌꺼기로부터 카본 소재를 생성시키는 탄화 공정(제2공정)을 포함한다. 이러한 탄화 공정(제2공정)을 통해 생성된 카본 소재는 전술한 바와 같은 비결정질의 탄소체, 예를 들어 그래핀 및/또는 그래파이트 등의 탄소체를 고함량으로 포함한다. A method for manufacturing a carbon material using coffee grounds according to the present invention includes a first step of preparing coffee grounds; and a second process of carbonizing the coffee grounds prepared in the first process to produce a carbon material. The present invention includes a carbonization process (second process) of using coffee grounds as a raw material, but producing a carbon material from the coffee grounds. The carbon material produced through the carbonization process (second process) includes a high content of amorphous carbon bodies as described above, for example, carbon bodies such as graphene and/or graphite.
또한, 본 발명에 따른 카본 소재의 제조방법은 상기 탄화 공정(제2공정) 이후에 진행되는 것으로서, 상기 탄화 공정(제2공정)을 통해 생성된 카본 소재를 가압(압착) 성형하여 소정 형상의 카본 소재 압착물을 성형하는 성형 공정(제3공정)을 더 포함할 수 있다. 각 공정별 예시적인 실시형태를 설명하면 다음과 같다. In addition, the carbon material manufacturing method according to the present invention is performed after the carbonization process (second process), and the carbon material produced through the carbonization process (second process) is press-molded to form a predetermined shape. It may further include a molding process (third process) of molding the carbon material compressed product. An exemplary embodiment for each process will be described as follows.
[1] 커피찌꺼기의 준비(제1공정) [1] Preparation of coffee grounds (Step 1)
본 발명에서, 커피찌꺼기는 특별히 제한되지 않으며, 이는 통상과 같다. 커피찌꺼기는 커피 산업에서 발생되는 고체 잔류물를 포함한다. 커피찌꺼기는, 예를 들어 물, 뜨거운 물 및/또는 수증기 등을 통해 커피콩으로부터 가용성 고형분을 추출한 후의 남은 찌꺼기(고체 잔류물)를 수거하여 사용할 수 있다. 또한, 수거된 커피찌꺼기는 건조시키거나 적정한 크기로 분쇄한 후에 사용할 수 있다. In the present invention, coffee grounds are not particularly limited, and this is the same as usual. Coffee grounds contain solid residues from the coffee industry. Coffee grounds may be used by collecting the remaining grounds (solid residues) after extraction of soluble solids from coffee beans through, for example, water, hot water and/or steam. In addition, the collected coffee grounds can be used after drying or grinding to an appropriate size.
하나의 실시형태에 따라서, 본 제1공정은 수거된 커피찌꺼기를 산 용액 및/또는 알칼리 용액을 이용한 세정 공정을 포함할 수 있다. 이러한 세정공정에 의해 커피찌꺼기에 포함된 불순물이나 회(ash) 성분 등을 제거할 수 있다. 그리고 세정 후에는 건조 및/또는 분쇄하여 사용할 수 있다. According to one embodiment, the first process may include cleaning the collected coffee grounds using an acid solution and/or an alkali solution. It is possible to remove impurities or ash components contained in the coffee grounds by such a cleaning process. And after washing, it can be used by drying and/or pulverizing.
[2] 탄화 공정(제2공정) [2] Carbonization process (second process)
상기 준비된 커피찌꺼기를 탄화시켜 카본 소재를 생성한다. 이를 위한 본 탄화 공정(제2공정)은, 하나의 실시형태에 따라서, (1) 상기 커피찌꺼기를 불활성 가스 분위기 하에서 800℃ ~ 1000℃까지 승온하는 단계; (2) 상기 커피찌꺼기를 800℃ ~ 1000℃의 온도에서 30분 ~ 60분안 열처리하는 단계; 및 (3) 상기 커피찌꺼기를 열처리한 후에 상온까지 자연 냉각하는 단계를 포함한다. Carbon material is produced by carbonizing the prepared coffee grounds. This carbonization process (second process) for this purpose, according to one embodiment, (1) the step of heating the coffee grounds to 800 ℃ ~ 1000 ℃ in an inert gas atmosphere in an inert gas atmosphere; (2) heat-treating the coffee grounds at a temperature of 800° C. to 1000° C. for 30 minutes to 60 minutes; and (3) naturally cooling the coffee grounds to room temperature after heat treatment.
구체적으로, 먼저 준비된 커피찌꺼기를 세라믹 용기에 넣은 다음, 이를 고온 가열로에 투입하여 800℃ ~ 1000℃의 최종 온도까지 승온한다. 이때, 상기 가열로는 불활성 가스 분위기로서, 예를 들어 아르곤(Ar), 질소(N 2) 및/또는 수소(H 2) 가스 분위기로 유지될 수 있다. 보다 구체적인 예를 들어, 가열로에 아르곤(Ar) 및 수소(H 2)를 각각 50 ~ 500 sccm 및 50 ~ 500 sccm의 유량으로 흘려주면서 커피찌꺼기를 800℃ ~ 1000℃의 최종 온도에 도달할 때까지 승온할 수 있다. 그리고 800℃ ~ 1000℃의 최종 온도에 도달하면, 이 최종 온도에서 30 ~ 60분 동안 유지하여 열처리(고온 탄화)한다. 이때, 상기 열처리(고온 탄화)는, 예를 들어 화학기상증착(CVD ; Chemical Vapor Deposition)에서 사용되는 CVD 장비가 이용될 수 있다. 구체적으로, 상기 가열로는 고온 가열을 위한 CVD 챔버가 사용될 수 있다. 이러한 열처리(고온 탄화)를 완료하게 되면, 커피찌꺼기는 탄화되어 카본 소재로 합성(전환)된다. Specifically, the coffee grounds prepared first are put in a ceramic container, and then put into a high-temperature furnace to raise the temperature to a final temperature of 800°C to 1000°C. In this case, the heating furnace may be maintained in an inert gas atmosphere, for example, argon (Ar), nitrogen (N 2 ) and/or hydrogen (H 2 ) gas atmosphere. For a more specific example, when argon (Ar) and hydrogen (H 2 ) are flowed into the furnace at a flow rate of 50 to 500 sccm and 50 to 500 sccm, respectively, when coffee grounds reach a final temperature of 800°C to 1000°C It can be heated up to And when it reaches a final temperature of 800°C to 1000°C, heat treatment (high-temperature carbonization) is performed by maintaining at this final temperature for 30 to 60 minutes. In this case, for the heat treatment (high-temperature carbonization), for example, CVD equipment used in chemical vapor deposition (CVD) may be used. Specifically, a CVD chamber for high-temperature heating may be used as the heating furnace. When this heat treatment (high-temperature carbonization) is completed, the coffee grounds are carbonized and synthesized (converted) into a carbon material.
위와 같은 열처리(고온 탄화)를 진행한 후에는 자연 냉각을 통하여 가열로의 온도를 상온(Room Temperature)까지 냉각한다. 본 발명에서, 상기 상온은, 예를 들어 15℃ ~ 30℃ 사이의 온도가 될 수 있으며, 구체적인 예를 들어 20℃ ~ 25℃일 수 있다. After the above heat treatment (high-temperature carbonization) is performed, the temperature of the furnace is cooled to room temperature through natural cooling. In the present invention, the room temperature may be, for example, a temperature between 15 ℃ ~ 30 ℃, for example, may be 20 ℃ ~ 25 ℃.
상기 탄화는, 본 발명의 다른 실시형태에 따라서 습윤 조건 하에서 진행하는 수열 탄화(Hydrothermal Carbonization)로부터 선택될 수 있다. 이를 위해, 상기 탄화 공정(제2공정)은, (a) 상기 커피찌꺼기를 용매에 분산시킨 분산물을 얻는 단계; (b) 상기 분산물을 용기에 넣고 밀폐시킨 다음, 200℃ ~ 300℃의 온도에서 3 ~ 4시간 동안 제1차 열처리하는 단계; 및 (c) 상기 제1차 열처리한 처리물을 80℃ 이상의 온도에서 제2차 열처리하는 단계를 포함할 수 있다. The carbonization may be selected from hydrothermal carbonization conducted under wet conditions according to another embodiment of the present invention. To this end, the carbonization process (second process) comprises the steps of: (a) obtaining a dispersion in which the coffee grounds are dispersed in a solvent; (b) putting the dispersion into a container and sealing, then performing a first heat treatment at a temperature of 200°C to 300°C for 3 to 4 hours; and (c) subjecting the first heat-treated product to a second heat treatment at a temperature of 80° C. or higher.
구체적으로, 먼저 상기 준비된 커피찌꺼기를 용매에 충분히 분산시킨 분산물을 얻는다. 이때, 상기 용매는 탈이온수(DI water) 및 증류수(Distilled water)로부터 선택된 하나 이상을 사용한다. 이후, 상기 분산물(커피찌꺼기 + 용매)을 밀폐 가능한 용기에 넣고 밀폐시킨 다음, 200℃ ~ 300℃의 온도와 밀폐 압력 조건에서 3 ~ 4시간 동안 제1차 열처리(수열 탄화)한다. 이러한 제1차 열처리(수열 탄화)에 의해 커피찌꺼기가 탄화되어 카본 소재가 생성된다. Specifically, first, a dispersion in which the prepared coffee grounds are sufficiently dispersed in a solvent is obtained. In this case, the solvent is at least one selected from deionized water (DI water) and distilled water (Distilled water) is used. Thereafter, the dispersion (coffee grounds + solvent) is placed in a sealable container and sealed, and then subjected to a first heat treatment (hydrothermal carbonization) for 3 to 4 hours at a temperature of 200° C. to 300° C. and sealed pressure conditions. The coffee grounds are carbonized by the first heat treatment (hydrothermal carbonization) to produce a carbon material.
다음으로, 제1차 열처리(수열 탄화)한 처리물을 80℃ 이상의 온도, 구체적인 예를 들어 80℃ ~ 120℃의 온도에서 약 1 ~ 3시간 동안 제2차 열처리한다. 이러한 제2차 열처리에 의해 카본 소재의 생성율이 증가되며, 이와 함께 카본 소재 내에 존재하는 용매(수분)가 제거된다. 즉, 수열 탄화에서, 상기 제1차 및 제2차 열처리 과정을 완료하게 되면, 커피찌꺼기는 수분 함량이 거의 없는 카본 소재로 합성(전환)된다.Next, the first heat treatment (hydrothermal carbonization) of the treated product is subjected to a second heat treatment at a temperature of 80° C. or higher, for example, at a temperature of 80° C. to 120° C. for about 1 to 3 hours. The production rate of the carbon material is increased by this secondary heat treatment, and the solvent (moisture) present in the carbon material is also removed. That is, in hydrothermal carbonization, when the first and second heat treatment processes are completed, coffee grounds are synthesized (converted) into a carbon material having little moisture content.
위와 같은 탄화 공정에 의해, 즉 800℃ ~ 1000℃의 고온 탄화, 또는 200℃ ~ 300℃의 수열 탄화에 의해, 커피찌꺼기로부터 탄소 함량이 높은 카본 소재가 생성된다. 이에 따라 생성된 카본 소재는 대부분 비결정질의 탄소체로 구성되며, 이는 또한 생분해성을 가질 수 있다. A carbon material having a high carbon content is produced from coffee grounds by the above carbonization process, that is, high-temperature carbonization at 800°C to 1000°C, or hydrothermal carbonization at 200°C to 300°C. The carbon material thus produced is mostly composed of an amorphous carbon material, which may also have biodegradability.
[3] 성형 공정(제3공정) [3] Forming process (third process)
본 성형 공정(제3공정)은 선택적인 공정으로서, 이는 필요에 따라 진행될 수 있다. 본 성형 공정(제3공정)은 상기 탄화 공정(제2공정)을 통해 생성된 카본 소재를 몰드(mold)에 넣은 다음, 450kg/㎠ 이상의 압력에서 30초 이상 가압(압착)하는 과정으로 진행된다. 이러한 성형 공정(제3공정)에 의해, 카본 소재가 고밀도로 압착된 카본 소재 압착물이 성형된다. The present molding process (the third process) is an optional process, which may be performed if necessary. This molding process (third process) is a process of putting the carbon material produced through the carbonization process (second process) into a mold, and then pressurizing (compressing) at a pressure of 450 kg/cm 2 or more for 30 seconds or more. . By this molding step (third step), a carbon material compressed product in which the carbon material is compressed at a high density is formed.
구체적으로, 상기 성형 공정(제3공정)은 탄화를 통해 생성된 카본 소재를 소정 형상의 성형 몰드에 넣은 다음, 450kg/㎠ ~ 1,200kg/㎠의 압력으로 30초 ~ 10분 동안 가압력을 유지하는 성형 방법으로 진행될 수 있다. 이때, 상기 성형 몰드는 5mm ~ 30mm 직경의 캐비티(cavity)를 가질 수 있다. 이러한 성형 공정(제3공정)을 통해 생성된 제품, 즉 상기 카본 소재 압착물은 캐비티(cavity)의 형상 및 직경에 따라 다를 수 있지만, 이는 예를 들어 직경 5 ~ 30mm의 원반형이나 원통형 등의 제품 형상을 가질 수 있다. 또한, 상기 성형 공정(제3공정)을 통해 성형된 카본 소재 압착물은 240 kΩ/sq 이하의 면저항을 가질 수 있다. 상기 카본 소재 압착물은, 구체적인 예를 들어 90 ~ 240 kΩ/sq의 면저항을 가질 수 있다. Specifically, the molding process (third process) puts the carbon material produced through carbonization into a molding mold of a predetermined shape, and then maintains the pressing force for 30 seconds to 10 minutes at a pressure of 450 kg/cm 2 to 1,200 kg/cm 2 It may proceed by a molding method. At this time, the molding mold may have a cavity (cavity) of 5mm ~ 30mm diameter. The product produced through this molding process (the third process), that is, the carbon material compressed product, may vary depending on the shape and diameter of the cavity, but this may be, for example, a disc-shaped or cylindrical product with a diameter of 5 to 30 mm. may have a shape. In addition, the carbon material compressed through the molding process (third process) may have a sheet resistance of 240 kΩ/sq or less. The carbon material compression product may have a sheet resistance of 90 to 240 kΩ/sq, for example.
본 발명의 다른 실시형태에 따라서, 상기 성형 공정(제3공정)에서는 바인더(binder)를 더 첨가할 수 있다. 구체적으로, 카본 소재에 바인더를 더 첨가 혼합한 다음, 이를 성형 몰드에 넣어 가압 성형할 수 있다. 상기 바인더는 소정의 접착성을 가지는 것이면 특별히 제한되지 않으며, 이는 예를 들어 생분해성 수지를 사용할 수 있다. 구체적인 예를 들어, 상기 바인더는 폴리락틱산(PLA ; poly lactic acid) 및/또는 폴리카프로락톤(PCL : poly caprolactone) 등의 생분해성 수지로부터 선택될 수 있다. According to another embodiment of the present invention, in the forming step (third step), a binder may be further added. Specifically, a binder may be further added to and mixed with the carbon material, and then press-molded by putting it in a molding mold. The binder is not particularly limited as long as it has a predetermined adhesive property, and for example, a biodegradable resin may be used. As a specific example, the binder may be selected from biodegradable resins such as poly lactic acid (PLA) and/or poly caprolactone (PCL).
한편, 본 발명에 따른 복합체는, 상기 탄화 공정(제2공정)을 통해 생성된 카본 소재를 적어도 포함한다. 본 발명에 따른 복합체는, 구체적으로 제1재료와 제2재료를 포함하되, 상기 제1재료는 본 발명에 따라 커피찌꺼기로부터 생성된 카본 소재를 포함한다. 상기 제2재료는 특별히 제한되지 않으나, 이는 플라스틱, 세라믹재 및/또는 금속재 등으로부터 선택될 수 있다. 하나의 실시형태에 따라서, 본 발명에 따른 복합체는 카본 소재(제1재료)와 플라스틱(제2재료)을 포함하는 혼합물로서, 이는 액상이나 고형일 수 있다. 이때, 고형은, 예를 들어 분말형, 과립형, 펠렛형 및/또는 입체형 등을 포함하며, 상기 입체형은 원반형, 원통형 및 다각통형(박스형) 등을 예로 들 수 있다. On the other hand, the composite according to the present invention includes at least a carbon material produced through the carbonization process (second process). The composite according to the present invention specifically includes a first material and a second material, wherein the first material includes a carbon material produced from coffee grounds according to the present invention. The second material is not particularly limited, but may be selected from plastics, ceramic materials and/or metal materials. According to one embodiment, the composite according to the present invention is a mixture comprising a carbon material (a first material) and a plastic (a second material), which may be liquid or solid. In this case, the solid includes, for example, a powder type, a granular type, a pellet type, and/or a three-dimensional type, and the three-dimensional type may include a disk type, a cylindrical type, and a polygonal cylindrical shape (box type).
상기 플라스틱(제2재료)은 가열 및/또는 가압이 가능한 재료로서, 이는 수지를 포함한다. 상기 수지는 천연 수지 및 합성 수지를 포함한다. 상기 플라스틱은 복합체의 사용 목적 및 용도에 따라 선택될 수 있으며, 예를 들어 바이오 플라스틱 및/또는 엔지니어링 플라스틱 등으로부터 선택될 수 있다. 상기 바이오 플라스틱은 생분해성으로서, 예를 들어 폴리락틱산(PLA ; poly lactic acid) 및/또는 폴리카프로락톤(PCL : poly caprolactone) 등으로부터 선택될 수 있다. The plastic (second material) is a material capable of being heated and/or pressed, and includes a resin. The resin includes natural resins and synthetic resins. The plastic may be selected according to the purpose and use of the composite, for example, may be selected from bioplastics and/or engineering plastics. The bioplastic is biodegradable, and may be selected from, for example, poly lactic acid (PLA) and/or poly caprolactone (PCL).
본 발명에 따른 상기 카본 소재 및 이를 포함하는 복합체는 여러 산업분야에서 다양한 용도로 사용될 수 있으며, 그 적용 분야 및 용도는 특별히 제한되지 않는다. 본 발명에 따른 상기 카본 소재 및 이를 포함하는 복합체는 에너지 분야, 전자 분야, 정밀 기계 분야, 고열 기계 분야, 의학 분야, 식품 분야, 화장품 분야, 환경 분야 및 폐수처리 분야 등에 폭넓게 사용될 수 있다. The carbon material and the composite including the same according to the present invention may be used for various purposes in various industrial fields, and the application field and use are not particularly limited. The carbon material and the composite including the same according to the present invention can be widely used in the energy field, the electronic field, the precision machine field, the high temperature machine field, the medical field, the food field, the cosmetic field, the environmental field, and the wastewater treatment field.
본 발명에 따른 상기 카본 소재 및 이를 포함하는 복합체는, 예를 들어 에너지 저장장치의 전극 소재, 3D 프린터 소재, 전자기기 소재, 반도체 소재, 센서 소재, 필터 소재, 수술용 의료도구 소재 및 식품 저장을 위한 용기 소재 등으로 사용될 수 있으며, 구체적인 예를 들어 탈취재료, 탄성재료, 차폐재료, 항균재료 및 센서재료 등으로 사용될 수 있으나, 이들에 의해 한정되는 것은 아니다. The carbon material and the composite including the same according to the present invention are, for example, an electrode material of an energy storage device, a 3D printer material, an electronic device material, a semiconductor material, a sensor material, a filter material, a material for a medical tool for surgery, and food storage. It can be used as a container material for, for example, a deodorizing material, an elastic material, a shielding material, an antibacterial material and a sensor material, etc., but is not limited thereto.
이하, 본 발명의 실시예를 예시한다. 하기의 실시예는 본 발명의 이해를 돕도록 하기 위해 예시적으로 제공되는 것일 뿐, 이에 의해 본 발명의 기술적 범위가 한정되는 것은 아니다. Hereinafter, examples of the present invention will be exemplified. The following examples are provided for illustrative purposes only to help the understanding of the present invention, and the technical scope of the present invention is not limited thereby.
[실시예 1] [Example 1]
잘 건조된 커피찌꺼기를 준비한 다음, 알루미나 보트(Alumina boat)에 커피찌꺼기를 일정량 담았다. 커피찌꺼기가 담긴 알루미나 보트를 화학기상증착(CVD) 챔버의 로(furnace)에 넣고 질소 가스로 퍼징하였다. 이후, 불활성 가스를 흘려주면서 로(furnace)의 온도를 800 ~ 1000℃까지 승온하였다. 이때, 불활성 가스는 Ar와 H 2를 사용하되, 이들을 각각 50 ~ 500 sccm 및 50 ~ 500 sccm의 유량으로 흘려주었다. After preparing well-dried coffee grounds, a certain amount of coffee grounds was placed in an alumina boat. An alumina boat containing coffee grounds was placed in a furnace of a chemical vapor deposition (CVD) chamber and purged with nitrogen gas. Then, while flowing an inert gas, the temperature of the furnace (furnace) was raised to 800 ~ 1000 ℃. At this time, Ar and H 2 were used as the inert gas, and they were flowed at flow rates of 50 to 500 sccm and 50 to 500 sccm, respectively.
로(furnace)의 온도가 최종 온도 800 ~ 1000℃에 도달한 것을 확인하고, 이 온도에서 30 ~ 60분 동안 유지하여 고온 열처리하였다.(CVD 고온 탄화) 열처리한 후, 자연 냉각을 통해 상온까지 로(furnace)의 온도를 낮추었다. 갈색의 커피찌꺼기가 CVD 고온 탄화에 의해 검은색으로 변화된 것을 육안 관찰을 통해 확인하여 탄화가 이루어졌음을 알 수 있었다. After confirming that the temperature of the furnace reached the final temperature of 800 ~ 1000℃, and maintaining it at this temperature for 30 ~ 60 minutes, high temperature heat treatment was performed. (CVD high temperature carbonization) After heat treatment, the furnace was cooled to room temperature through natural cooling. (furnace) temperature was lowered. It was confirmed through visual observation that the brown coffee grounds were changed to black due to CVD high-temperature carbonization.
[실시예 2] [Example 2]
잘 건조된 커피찌꺼기를 준비한 다음, 탈이온수(DI water)에 커피찌꺼기를 혼합, 분산한 분산물을 얻었다. 커피찌꺼기가 분산된 분산물을 오토클레이브(autoclave)에 넣고 밀폐시킨 다음, 전기로에 투입한 후, 200 ~ 300℃의 온도에서 3 ~ 4시간 열처리하였다.(수열 탄화) 이후, 약 80℃의 온도에서 약 1시간 동안 추가적인 열처리를 진행하였다. 갈색의 커피찌꺼기가 수열 탄화에 의해 검은색으로 변화된 것을 육안 관찰을 통해 확인하여 탄화가 이루어졌음을 알 수 있었다. After preparing well-dried coffee grounds, a dispersion was obtained by mixing and dispersing coffee grounds in deionized water (DI water). The dispersion in which coffee grounds are dispersed was put in an autoclave, sealed, put into an electric furnace, and then heat-treated at a temperature of 200 to 300° C. for 3 to 4 hours. (hydrothermal carbonization), followed by a temperature of about 80° C. Additional heat treatment was performed for about 1 hour. It was confirmed through visual observation that the brown coffee grounds were changed to black due to hydrothermal carbonization.
< 시험예 1 > 원소 분석 <Test Example 1> Elemental Analysis
탄화 전의 커피찌꺼기와 탄화 후의 카본 소재에 대하여, XPS 분석을 통해 원소 함량을 분석하였다. 하기 [표 1]은 탄소(C) 함량의 분석 결과를 나타낸 것이다. 첨부된 도 1은 질소(N) 함량의 분석 결과를 보인 것이고, 첨부된 도 2는 산소(O) 함량의 분석 결과를 보인 것이다. For the coffee grounds before carbonization and the carbon material after carbonization, element content was analyzed through XPS analysis. The following [Table 1] shows the analysis results of carbon (C) content. Attached FIG. 1 shows the analysis result of nitrogen (N) content, and attached FIG. 2 shows the analysis result of oxygen (O) content.
< 탄소(C) 함량 분석 결과 > < Result of analysis of carbon (C) content >
항 목 item 커피찌꺼기(탄화 전)Coffee grounds (before carbonization) 실시예 1(CVD 고온 탄화 후)Example 1 (after CVD high temperature carbonization) 실시예 2 (수열 탄화 후) Example 2 (after hydrothermal carbonization)
탄소(C) 함량Carbon (C) content 58.3 중량%58.3 wt% 79.5 중량%79.5% by weight 72.4 중량%72.4 wt%
상기 [표 1]에 보인 바와 같이, CVD 고온 탄화 및 수열 탄화가 진행된 후, 탄화 전보다 탄소(C) 함량이 증가됨을 알 수 있었다. 또한, 첨부된 도 1 및 도 2에 보인 바와 같이, CVD 고온 탄화 및 수열 탄화가 진행된 후, 탄소(C) 이외의 성분, 즉 질소(N)와 산소(O)의 함량이 감소함을 알 수 있었다. 그리고 수열 탄화에 비해 CVD 고온 탄화가 탄소(C) 함량의 증가에 유리함을 알 수 있었다. As shown in [Table 1], after the CVD high-temperature carbonization and hydrothermal carbonization were performed, it was found that the carbon (C) content was increased compared to before carbonization. In addition, as shown in the accompanying Figures 1 and 2, after the CVD high-temperature carbonization and hydrothermal carbonization proceed, it can be seen that the content of components other than carbon (C), that is, nitrogen (N) and oxygen (O) decreases. there was. And compared to hydrothermal carbonization, it was found that CVD high-temperature carbonization is advantageous in increasing the carbon (C) content.
< 시험예 2 > 라만(Raman) 분석 <Test Example 2> Raman analysis
탄화 전의 커피찌꺼기와 탄화 후의 카본 소재에 대하여, Raman 분석을 진행하였다. 첨부된 도 3은 커피찌꺼기, 첨부된 도 4는 CVD 고온 탄화에 의해 생성된 카본 소재, 그리고 첨부된 도 5는 수열 탄화에 의해 생성된 카본 소재에 대한 Raman 분석 결과를 보인 것이다. Raman analysis was performed on the coffee grounds before carbonization and the carbon material after carbonization. 3 shows the results of Raman analysis of coffee grounds, FIG. 4 shows the carbon material produced by CVD high-temperature carbonization, and FIG. 5 shows the carbon material produced by hydrothermal carbonization.
첨부된 도 3 내지 도 5에 보인 바와 같이, Raman 분석 결과 커피찌꺼기에서는 관찰되지 않던 sp 2 결합에 의한 G peak(1580 cm -1)이 확인되었다. 이를 통해 CVD 고온 탄화 및 수열 탄화가 진행된 경우, 흑연화 구조(graphitic structure)가 형성됨을 확인할 수 있었다. 3 to 5, as a result of Raman analysis, a G peak (1580 cm -1 ) by sp 2 binding, which was not observed in coffee grounds, was confirmed. Through this, it was confirmed that a graphitic structure was formed when CVD high-temperature carbonization and hydrothermal carbonization were performed.
< 시험예 3 > 전기전도도 <Test Example 3> Electrical conductivity
전기적 특성 분석을 위해, 상기 CVD 고온 탄화(실시예 1)에 의해 생성된 카본 소재를 유기 용매에 분산시켰다. 이후, 카본 소재가 분산된 분산액을 진공 여과(vaccum filtration)을 통해 필름(film)으로 제작한 후, 상기 필름 시편에 대하여 면저항을 측정하였다. 면저항 측정 결과, 약 148.4±59.6 kΩ/sq 면저항을 가지는 것으로 확인되었다. For the electrical characteristic analysis, the carbon material produced by the CVD high-temperature carbonization (Example 1) was dispersed in an organic solvent. Thereafter, the dispersion in which the carbon material was dispersed was prepared as a film through vacuum filtration, and then the sheet resistance of the film specimen was measured. As a result of sheet resistance measurement, it was confirmed to have about 148.4±59.6 kΩ/sq sheet resistance.
이상의 실험예를 통해 확인되는 바와 같이, 간단한 탄화 공정(CVD 고온 탄화 및 수열 탄화)을 통해 커피찌꺼기로부터 산업적으로 유용한 카본 소재가 생성(합성)됨을 알 수 있었다. 또한, 생성된 카본 소재는 흑연화 구조를 가지면서 탄소 함량이 높고 양호한 전기적 특성(낮은 면저항)을 가짐을 알 수 있었다. As confirmed through the above experimental examples, it was found that industrially useful carbon materials were produced (synthesized) from coffee grounds through a simple carbonization process (CVD high-temperature carbonization and hydrothermal carbonization). In addition, it was found that the produced carbon material had a graphitized structure, high carbon content, and good electrical properties (low sheet resistance).

Claims (5)

  1. 커피찌꺼기를 준비하는 제1공정; 및 A first step of preparing coffee grounds; and
    상기 제1공정에서 준비된 커피찌꺼기를 탄화시켜 카본 소재를 생성하는 제2공정을 포함하는 것을 특징으로 하는 커피찌꺼기를 이용한 카본 소재의 제조방법. A method for producing a carbon material using coffee grounds, comprising a second step of carbonizing the coffee grounds prepared in the first step to produce a carbon material.
  2. 제1항에 있어서, According to claim 1,
    상기 제2공정은, The second process is
    (1) 상기 커피찌꺼기를 불활성 가스 분위기 하에서 800℃ ~ 1000℃까지 승온하는 단계; (1) heating the coffee grounds to 800° C. to 1000° C. in an inert gas atmosphere;
    (2) 상기 커피찌꺼기를 800℃ ~ 1000℃의 온도에서 30분 ~ 60분안 열처리하는 단계; 및 (2) heat-treating the coffee grounds at a temperature of 800° C. to 1000° C. for 30 minutes to 60 minutes; and
    (3) 상기 커피찌꺼기를 열처리한 후 상온까지 자연 냉각하는 단계를 포함하는 것을 특징으로 하는 커피찌꺼기를 이용한 카본 소재의 제조방법. (3) Method for producing a carbon material using coffee grounds, characterized in that it comprises the step of naturally cooling to room temperature after heat-treating the coffee grounds.
  3. 제1항에 있어서, According to claim 1,
    상기 제2공정은, The second process is
    (a) 탈이온수 및 증류수로부터 선택된 하나 이상의 용매에 상기 커피찌꺼기를 분산시킨 분산물을 얻는 단계; (a) obtaining a dispersion in which the coffee grounds are dispersed in one or more solvents selected from deionized water and distilled water;
    (b) 상기 분산물을 용기에 넣고 밀폐시킨 다음, 200℃ ~ 300℃의 온도에서 3 ~ 4시간 동안 제1차 열처리하는 단계; 및 (b) putting the dispersion into a container and sealing, then performing a first heat treatment at a temperature of 200°C to 300°C for 3 to 4 hours; and
    (c) 상기 제1차 열처리한 처리물을 80℃ 이상의 온도에서 제2차 열처리하는 단계를 포함하는 것을 특징으로 하는 커피찌꺼기를 이용한 카본 소재의 제조방법. (c) a method for producing a carbon material using coffee grounds, characterized in that it comprises the step of performing a second heat treatment at a temperature of 80 ℃ or more of the first heat-treated product.
  4. 제1항 내지 제3항 중 어느 하나의 항에 있어서, 4. The method according to any one of claims 1 to 3,
    상기 제2공정을 통해 생성된 카본 소재를 몰드에 넣은 다음, 450kg/㎠ 이상의 압력에서 30초 이상 가압하여 카본 소재 압착물을 성형하는 제3공정을 더 포함하는 것을 특징으로 하는 커피찌꺼기를 이용한 카본 소재의 제조방법. Carbon using coffee grounds, characterized in that it further comprises a third process of putting the carbon material produced through the second process into a mold, and then pressurizing the carbon material for at least 30 seconds at a pressure of 450 kg/cm 2 or more Method of manufacturing the material.
  5. 제4항에 있어서, 5. The method of claim 4,
    상기 제3공정을 통해 성형된 카본 소재 압착물은 240 kΩ/sq 이하의 면저항을 가지는 것을 특징으로 하는 커피찌꺼기를 이용한 카본 소재의 제조방법. The carbon material compression product formed through the third process is a method of manufacturing a carbon material using coffee grounds, characterized in that it has a sheet resistance of 240 kΩ / sq or less.
PCT/KR2020/006961 2020-05-29 2020-05-29 Method for manufacturing carbon material using spent coffee grounds WO2021241785A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/006961 WO2021241785A1 (en) 2020-05-29 2020-05-29 Method for manufacturing carbon material using spent coffee grounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/006961 WO2021241785A1 (en) 2020-05-29 2020-05-29 Method for manufacturing carbon material using spent coffee grounds

Publications (1)

Publication Number Publication Date
WO2021241785A1 true WO2021241785A1 (en) 2021-12-02

Family

ID=78723325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006961 WO2021241785A1 (en) 2020-05-29 2020-05-29 Method for manufacturing carbon material using spent coffee grounds

Country Status (1)

Country Link
WO (1) WO2021241785A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105567227A (en) * 2016-01-16 2016-05-11 上海大学 Method for extracting graphene quantum dots from coffee-ground solid waste
JP2016150894A (en) * 2015-02-19 2016-08-22 株式会社クラレ Carbide derived from vegetable raw material, and production method thereof
KR20160101811A (en) * 2015-02-17 2016-08-26 인하대학교 산학협력단 Energy-storing Porous Carbon-based Nanosheet Obtained from the Coffee Grounds
KR20180086332A (en) * 2017-01-20 2018-07-31 한국기술교육대학교 산학협력단 Preparing method of multi-functional carbon nanostructures using biomass and carbon nanostructures using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160101811A (en) * 2015-02-17 2016-08-26 인하대학교 산학협력단 Energy-storing Porous Carbon-based Nanosheet Obtained from the Coffee Grounds
JP2016150894A (en) * 2015-02-19 2016-08-22 株式会社クラレ Carbide derived from vegetable raw material, and production method thereof
CN105567227A (en) * 2016-01-16 2016-05-11 上海大学 Method for extracting graphene quantum dots from coffee-ground solid waste
KR20180086332A (en) * 2017-01-20 2018-07-31 한국기술교육대학교 산학협력단 Preparing method of multi-functional carbon nanostructures using biomass and carbon nanostructures using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PRAVIN JAGDALE , DANIELE ZIEGLER , MASSIMO ROVERE , JEAN MARC TULLIANI , ALBERTO TAGLIAFERRO: "Waste Coffee Ground Biochar: A Material for Humidity Sensors", SENSORS, vol. 19, no. 4, 801, 15 February 2019 (2019-02-15), pages 1 - 14, XP055871594, DOI: 10.3390/s19040801 *

Similar Documents

Publication Publication Date Title
Karthik et al. Carbon-allotropes: synthesis methods, applications and future perspectives
Baek et al. Covalent modification of vapour-grown carbon nanofibers via direct Friedel–Crafts acylation in polyphosphoric acid
KR100722812B1 (en) Electroconductive curable resin composition, cured product thereof and process for producing the same
WO2012088697A1 (en) Graphene ramification-carbon nanotube composite material and preparation method thereof
WO2015178572A1 (en) Method for preparing isotropic bulk graphite using graphite waste scraps and isotropic bulk graphite prepared thereby
CN104310383A (en) Graphene nanosheet and preparation method thereof
US4293533A (en) Method for producing solid carbon material having high flexural strength
WO2013109105A1 (en) Silicon carbide powder and method for manufacturing the same
KR101079665B1 (en) Producing method of low-dimensional carbon-contained composits and Carbon block
KR102011690B1 (en) Manufacturing method of fullerene
JP2006236942A (en) Carbon electrode and its manufacturing method
WO2021241785A1 (en) Method for manufacturing carbon material using spent coffee grounds
JP2021024774A (en) Novel sp2-sp3 hybrid crystalline carbon and its preparation process
WO2012165841A2 (en) Method of manufacturing silicon carbide-containing heat storage material from waste silicon sludge
WO2020180079A1 (en) Carbon-containing material gained from spent coffee grounds, production method therefor and use thereof
KR20210147481A (en) Method for manufacturing carbon materials using spent coffee ground
US20200068663A1 (en) Electric cable, conductor, heating element, method for producing conductor and heating element, and heating device using heating element
CN114590797B (en) Biomass-based graphene material and preparation method thereof
Marx et al. Structural improvement of a bio-inspired 3D globular carbon foam by a continuously thermal treatment: a comprehensive study
KR20090102176A (en) Carbonized cellulose fiber with the graphite-like surface nano-layer and synthesis method thereof
Nan Development of polyvinyl alcohol/wood-derived carbon thin films: influence of processing parameters on mechanical, thermal, and electrical properties
KR20210128177A (en) Method for Preparing Graphene
KR20120012345A (en) Silicon carbide and method for manufacturing the same
KR20190064549A (en) A production method of binderless carbon block using reformation of mesocarbon microbeads
US20040057893A1 (en) Carbon material for producing metal-including fullerene in high yield

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938059

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.01.23)

122 Ep: pct application non-entry in european phase

Ref document number: 20938059

Country of ref document: EP

Kind code of ref document: A1