KR101823940B1 - Method for manufacturing electrode using in electric discharge machining - Google Patents

Method for manufacturing electrode using in electric discharge machining Download PDF

Info

Publication number
KR101823940B1
KR101823940B1 KR1020160107097A KR20160107097A KR101823940B1 KR 101823940 B1 KR101823940 B1 KR 101823940B1 KR 1020160107097 A KR1020160107097 A KR 1020160107097A KR 20160107097 A KR20160107097 A KR 20160107097A KR 101823940 B1 KR101823940 B1 KR 101823940B1
Authority
KR
South Korea
Prior art keywords
graphite
carbonization
electrode
electric discharge
discharge machining
Prior art date
Application number
KR1020160107097A
Other languages
Korean (ko)
Inventor
이상원
김민수
김병주
Original Assignee
재단법인 한국탄소융합기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 한국탄소융합기술원 filed Critical 재단법인 한국탄소융합기술원
Priority to KR1020160107097A priority Critical patent/KR101823940B1/en
Application granted granted Critical
Publication of KR101823940B1 publication Critical patent/KR101823940B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/04Electrodes specially adapted therefor or their manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/04Electrodes specially adapted therefor or their manufacture
    • B23H1/06Electrode material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/22Electrodes specially adapted therefor or their manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/22Electrodes specially adapted therefor or their manufacture
    • B23H7/24Electrode material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Ceramic Products (AREA)

Abstract

The present invention relates to a method to manufacture an electrode for electric discharge machining, capable of manufacturing an electronic device for electric discharge machining equivalent to a graphite electrode at low costs. According to the present invention, the method comprises: a first step of finding a carbonization condition capable of growing a graphite crystal of the electrode for electric discharge machining to a set size in a carbonization process by changing an increase rate of carbonization temperature, and the amount of coal tar pitch or graphite mixed with a phenol resin; a second step of mixing the phenol resin with the coal tar pitch or graphite as much as an amount required for the carbonization condition, and waste carbon fiber to make a mixture; a third step of heating and pressing the mixture to make a formed body; a fourth step of carbonizing the formed body at the increase temperature required to make a carbonized body; and a fifth step of processing the carbonized body in the shape of an electrode for electric discharge machining.

Description

방전가공용 전극을 제조하는 방법{METHOD FOR MANUFACTURING ELECTRODE USING IN ELECTRIC DISCHARGE MACHINING}[0001] METHOD FOR MANUFACTURING ELECTRODE USING IN ELECTRIC DISCHARGE MACHINING [0002]

본 발명은 방전가공용 전극을 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing an electrode for electric discharge machining.

방전가공(Electric Discharge Machining)은 전기의 양극과 음극이 접촉할 때 발생되는 스파크의 열을 이용하여, 재료를 녹이거나 기화시켜 재료를 가공한다.Electric discharge machining utilizes the heat of the spark generated when the anode and the cathode of the electricity come into contact with each other, and melts or vaporizes the material to process the material.

방전가공에 사용되는 방전가공용 전극은, 황동, 흑연, 은-텅스텐, 구리-텅스텐, 동-텅스텐, 철, 구리, 아연, 인청동, 알루미늄으로 만들어진다.Electrodes for electric discharge machining used in electric discharge machining are made of brass, graphite, silver-tungsten, copper-tungsten, copper-tungsten, iron, copper, zinc, phosphor bronze and aluminum.

이 중에서, 흑연으로 만들어진 방전가공용 전극(이하, “흑연전극”이라 칭한다)은, 전극소모가 적고, 방전 안정성이 우수하고, 황삭에서 부터 정삭 및 초정밀가공까지 용도에 따라 선택하여 사용할 수 있고, 경량으로 다른 금속전극에 비해 작업이 용이하다.Among them, electrodes for electric discharge machining (hereinafter referred to as " graphite electrodes ") made of graphite have low electrode consumption and excellent discharge stability, and can be selected and used depending on applications ranging from roughing to finishing and ultra- Which is easier to work than other metal electrodes.

이러한 우수한 성질로 인해, 최근 방전가공용 전극으로 흑연전극의 사용이 급증하고 있다.Due to such excellent properties, the use of graphite electrodes as electrodes for electric discharge machining has been rapidly increasing.

그러나, 흑연전극은 그 제조과정이 복잡하고, 제조 설비 구축에 많은 비용이 소요되는 관계로, 전량 수입되고 있는 실정이다.However, since graphite electrodes are complicated in their manufacturing process and require a great deal of cost for constructing a manufacturing facility, they are all imported.

한국등록특허(10-1439177)Korea registered patent (10-1439177)

본 발명의 목적은, 제조공정이 복잡하고 제조 설비 구축에 많은 비용이 소요되는 흑연전극을 대신하면서, 그 성능은 흑연전극과 대등한 방전가공용 전극을 저렴하게 제조하는 방법을 제공하는 데 있다.An object of the present invention is to provide a method for manufacturing an electrode for electric discharge machining that is comparable to a graphite electrode at a low cost, while replacing a graphite electrode which is complicated in manufacturing process and requires a large cost for constructing a manufacturing facility.

상기 목적을 달성하기 위한 방전가공용 전극을 제조하는 방법은,A method of manufacturing an electrode for electric discharge machining for achieving the above object,

탄화공정에서 방전가공용 전극의 흑연결정이 설정된 크기로 성장될 수 있는 탄화조건을, 탄화온도상승률과, 페놀수지에 혼합되는 콜타르피치의 양 또는 페놀수지에 혼합되는 그라파이트의 양을 바꾸어가며 찾는 제1단계;The carbonization condition in which the graphite crystal of the electrode for electric discharge machining can be grown to a predetermined size in the carbonization process is changed by changing the carbonation temperature rise rate and the amount of the coal tar pitch mixed with the phenol resin or the amount of the graphite to be mixed with the phenol resin, step;

페놀수지에, 상기 탄화조건에서 요구되는 양 만큼의 콜타르피치 또는 그라파이트와, 폐 탄소섬유를 혼합하여, 혼합물을 만드는 제2단계;A second step of mixing a phenolic resin with a coal tar pitch or graphite in an amount required in the carbonization condition and a waste carbon fiber to prepare a mixture;

상기 혼합물을 가열 및 가압하여 성형체로 만드는 제3단계;A third step of heating and pressurizing the mixture to form a molded body;

상기 탄화조건에서 요구되는 탄화온도상승률로, 상기 성형체를 탄화시켜 탄화체로 만드는 제4단계; 및A fourth step of carbonizing the formed body to a carbonized body at a carbonation temperature rise rate required in the carbonization condition; And

상기 탄화체를 가공하여 방전가공용 전극의 형상으로 만드는 제5단계;를 포함하는 것을 특징으로 한다.And a fifth step of machining the carbonized body to make it into the shape of an electrode for electric discharge machining.

본 발명은, 탄화공정에서 방전가공용 전극의 흑연결정이 설정된 크기로 성장될 수 있는 최적 탄화조건을, 탄화온도상승률과, 페놀수지에 혼합되는 콜타르피치의 양 또는 페놀수지에 혼합되는 그라파이트의 양을 바꾸어가며, 방전가공용 전극을 본격적으로 제조하기 전 미리 찾아낸다. 이렇게 찾아낸 탄화조건은, 방전가공용 전극의 성능을 결정짓는 임계적 의미를 가진 중요한 조건이 되며, 이러한 탄화조건이 적용되어 제조된 방전가공용 전극은, 종래 흑연전극과 대등한 성능을 가질 수 있다.The present invention is characterized in that the optimum carbonization condition in which the graphite crystal of the electrode for electric discharge machining can be grown to a predetermined size in the carbonization step is defined as the carbonation temperature rise rate, the amount of the coal tar pitch mixed with the phenol resin, In exchange, the electrode for electric discharge machining is found out before it is manufactured in earnest. The carbonization condition thus found is an important condition having a critical meaning that determines the performance of the electrode for electric discharge machining. The electrode for electric discharge machining manufactured by applying such carbonization condition can have a performance equivalent to that of the conventional graphite electrode.

본 발명은, 탄소섬유 방사시 버려지는 탄소섬유 또는 CFRP 제조 시 컷팅되어 버려지는 탄소섬유를, 페놀수지와 콜타르피치 또는, 페놀수지와 그라파이트와 혼합한 후, 가압 및 가열, 탄화, 가공하여, 방전가공용 전극으로 만든다. 이렇게 탄소섬유 방사시 버려지는 탄소섬유 또는 CFRP 제조 시 컷팅되어 버려지는 탄소섬유는, 새 탄소섬유와 질적으로 차이가 없어 이러한 탄소섬유로 방전가공용 전극을 제조하면, 종래 흑연전극과 대등한 성능을 가진 방전가공용 전극을 만들어낼 수 있다. 또한, 탄소섬유 방사시 버려지는 탄소섬유 또는 CFRP 제조 시 컷팅되어 버려지는 탄소섬유를 방전가공용 전극을 만드는데 재활용할 수 있어, 방전가공용 전극의 제조원가를 낮출 수 있다.The present invention relates to a method for producing a carbon fiber, which comprises mixing carbon fiber discarded during carbon fiber spinning or carbon fiber cut off during the production of CFRP into phenol resin, coal tar pitch or phenol resin and graphite, It is made into a working electrode. The carbon fiber which is discarded in the carbon fiber spinning or the carbon fiber which is cut off in the production of the CFRP is not different in quality from the new carbon fiber and when the electrode for electric discharge machining is manufactured with such carbon fiber, An electrode for electric discharge machining can be produced. In addition, the carbon fiber discarded in the carbon fiber spinning process or the carbon fiber discarded in the CFRP process can be recycled to produce the electrode for electric discharge machining, thereby reducing the manufacturing cost of the electrode for electric discharge machining.

따라서, 본 발명을 사용하면, 제조공정이 복잡하고 제조 설비 구축에 많은 비용이 소요되는 흑연전극을 대신하면서, 그 성능은 흑연전극과 대등한 방전가공용 전극을 저렴하게 만들어낼 수 있다.Therefore, by using the present invention, it is possible to produce an electrode for electric discharge machining that is comparable to a graphite electrode at low cost, while replacing the graphite electrode, which is complicated in manufacturing process and requires a lot of cost for constructing a manufacturing facility.

도 1은 본 발명의 일 실시예에 따른 방전가공용 전극을 제조하는 방법을 나타낸 순서도이다.
도 2는 페놀수지에 혼합되는 콜타르피치의 양을 5wt%로 고정시켜 놓고, 탄화온도상승률을 2℃/min, 5℃/min, 10℃/min 로 변화시켜가며 수행한 TGA 결과를 나타낸 그래프이다.
도 3은 페놀수지에 혼합되는 콜타르피치의 양을 10wt%로 고정시켜 놓고, 탄화온도상승률을 2℃/min, 5℃/min, 10℃/min 로 변화시켜가며 수행한 TGA 결과를 나타낸 그래프이다.
도 4는 페놀수지에 혼합되는 그라파이트의 양을 5wt%로 고정시켜 놓고, 탄화온도상승률을 2℃/min, 5℃/min, 10℃/min 로 변화시켜가며 수행한 TGA 결과를 나타낸 그래프이다.
도 5는 페놀수지에 혼합되는 그라파이트의 양을 10wt%로 고정시켜 놓고, 탄화온도상승률을 2℃/min, 5℃/min, 10℃/min 로 변화시켜가며 수행한 TGA 결과를 나타낸 그래프이다.
1 is a flowchart showing a method of manufacturing an electrode for electric discharge machining according to an embodiment of the present invention.
FIG. 2 is a graph showing the TGA results obtained by changing the carbonation temperature rise rate at 2 ° C./min, 5 ° C./min, and 10 ° C./min while the amount of coal tar pitch mixed in the phenolic resin was fixed at 5 wt% .
3 is a graph showing TGA results obtained by changing the carbonation temperature rise rate at 2 ° C / min, 5 ° C / min, and 10 ° C / min while keeping the amount of coal tar pitch mixed with phenol resin fixed at 10 wt% .
4 is a graph showing TGA results obtained by changing the carbonization temperature rise rates at 2 ° C / min, 5 ° C / min, and 10 ° C / min while the amount of graphite mixed in the phenolic resin was fixed at 5 wt%.
5 is a graph showing TGA results obtained by changing the carbonation temperature rise rate at 2 ° C / min, 5 ° C / min, and 10 ° C / min while the amount of graphite mixed in the phenolic resin was fixed at 10 wt%.

이하, 본 발명의 일 실시예에 따른 방전가공용 전극을 제조하는 방법을 설명한다.Hereinafter, a method for manufacturing an electrode for electric discharge machining according to an embodiment of the present invention will be described.

도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 방전가공용 전극을 제조하는 방법은,As shown in FIG. 1, a method of manufacturing an electrode for electric discharge machining according to an embodiment of the present invention,

탄화공정에서 방전가공용 전극의 흑연결정이 설정된 크기로 성장될 수 있는 탄화조건을, 탄화온도상승률과, 페놀수지에 혼합되는 콜타르피치의 양 또는 페놀수지에 혼합되는 그라파이트의 양을 바꾸어가며 찾는 제1단계(S11);The carbonization condition in which the graphite crystal of the electrode for electric discharge machining can be grown to a predetermined size in the carbonization process is changed by changing the carbonation temperature rise rate and the amount of the coal tar pitch mixed with the phenol resin or the amount of the graphite to be mixed with the phenol resin, Step S11;

페놀수지에, 상기 탄화조건에서 요구되는 양 만큼의 콜타르피치 또는 그라파이트와, 폐 탄소섬유를 혼합하여, 혼합물을 만드는 제2단계(S12);A second step (S12) of mixing a phenolic resin with a coal tar pitch or graphite in an amount required in the carbonization condition and waste carbon fiber to prepare a mixture;

상기 혼합물을 가열 및 가압하여 성형체로 만드는 제3단계(S13);A third step (S13) of heating and pressing the mixture to form a molded body;

상기 탄화조건에서 요구되는 탄화온도상승률로, 상기 성형체를 탄화시켜 탄화체로 만드는 제4단계(S14); 및A fourth step (S14) of carbonizing the molded body to a carbonized body at a carbonation temperature rise rate required in the carbonization condition; And

상기 탄화체를 가공하여 방전가공용 전극의 형상으로 만드는 제5단계(S15);로 구성된다.And a fifth step (S15) of machining the carbonized body to form an electrode for electric discharge machining.

이하, 제1단계(S11)를 설명한다.The first step S11 will be described below.

탄화공정에서 방전가공용 전극의 흑연결정이 설정된 크기로 성장될 수 있는 최적의 탄화조건을 찾는다.In the carbonization process, the optimal carbonization condition is determined so that the graphite crystal of the discharge electrode can be grown to a predetermined size.

탄화공정은 제4단계(S11)를 말한다.The carbonization process refers to the fourth step (S11).

설정된 크기란 종래 흑연전극의 성능과 대등한 성능을 가질 수 있는 흑연결정의 크기다. 흑연결정의 크기는 흑연전극의 용도(황삭, 정삭, 초정밀가공)에 따라 흑연전극마다 다르다. 흑연결정의 크기는 실제로 측정하여 정하면 된다.The set size is the size of the graphite crystal which can have the performance equivalent to the performance of the conventional graphite electrode. The size of the graphite crystal differs depending on the graphite electrode depending on the application (roughing, finishing, super-precision machining) of the graphite electrode. The size of the graphite crystal can be determined by actually measuring it.

흑연전극의 성능이란 전극소모가 적고, 방전 안정성이 우수하고, 황삭에서 부터 정삭 및 초정밀가공까지 용도에 따라 선택하여 사용할 수 있고, 경량으로 다른 금속전극에 비해 용이한 작업성을 말한다.The performance of the graphite electrode means that it has less electrode consumption, excellent discharge stability, and can be selected depending on the application, from roughing to finishing and ultra-precision processing, and is light in workability compared with other metal electrodes.

탄화수율이 클수록 흑연결정을 더 크게 성장시켜, 흑연결정을 설정된 크기로 쉽게 만들 수 있다.The larger the carbonization yield is, the larger the graphite crystal grows, and the graphite crystal can be easily made to the set size.

탄화온도상승률과, 페놀수지에 혼합되는 콜타르피치의 양 또는 페놀수지에 혼합되는 그라파이트의 양을 바꾸어가며, 탄화수율이 가장 큰 최적의 탄화조건을 찾는다.The optimum carbonization condition with the highest carbonization yield is found by changing the rate of carbonization temperature rise, the amount of coal tar pitch mixed with phenol resin, or the amount of graphite mixed with phenol resin.

이하, 최적 탄화조건을 찾은 실험결과를 설명한다.Hereinafter, the experimental results of finding the optimum carbonization condition will be described.

[실험 1][Experiment 1]

탄화공정에서 방전가공용 전극의 흑연결정이 설정된 크기로 성장될 수 있는 최적의 탄화조건을 찾기 위해, 도 2에 도시된 바와 같이, 페놀수지에 혼합되는 콜타르피치(coal-tar pitch)의 양의 양을 5wt%로 고정시켜 놓고, 탄화온도상승률을 2℃/min, 5℃/min, 10℃/min로 변화시켜가며, TGA 분석(열중량 분석)한다.In order to find the optimal carbonization condition in which the graphite crystal of the electrode for electric discharge machining can be grown to a set size in the carbonization process, as shown in Fig. 2, the amount of the coal tar pitch mixed with the phenol resin And the TGA analysis (thermogravimetric analysis) is carried out while varying the rate of carbonization temperature rise at 2 캜 / min, 5 캜 / min, and 10 캜 / min.

TGA 분석결과, 탄화온도상승률 2℃/min에서 탄화수율이 56.7% 나왔다. 탄화온도상승률 5℃/min에서 탄화수율이 53.7% 나왔다. 탄화온도상승률 10℃/min에서 탄화수율이 52.5%가 나왔다.As a result of TGA analysis, the carbonization yield was 56.7% at a carbonization temperature rise rate of 2 ° C / min. The carbonization yield was 53.7% at a carbonization temperature rise rate of 5 캜 / min. The carbonization yield was 52.5% at a carbonization temperature rise rate of 10 ° C / min.

[실험 2][Experiment 2]

탄화공정에서 방전가공용 전극의 흑연결정이 설정된 크기로 성장될 수 있는 최적의 탄화조건을 찾기 위해, 도 3에 도시된 바와 같이, 페놀수지에 혼합되는 콜타르피치의 양을 10wt%로 고정시켜 놓고, 탄화온도상승률을 2℃/min, 5℃/min, 10℃/min 로 변화시켜가며, TGA 분석한다.In order to find the optimal carbonization condition in which the graphite crystal of the electrode for electric discharge machining can be grown to a set size in the carbonization process, as shown in Fig. 3, the amount of coal tar pitch mixed in the phenol resin is fixed at 10 wt% TGA analysis is carried out by varying the rate of carbonization temperature increase at 2 캜 / min, 5 캜 / min, and 10 캜 / min.

TGA 분석결과, 탄화온도상승률 2℃/min에서 탄화수율이 57.7% 나왔다. 탄화온도상승률 5℃/min에서 탄화수율이 54.9% 나왔다. 탄화온도상승률 10℃/min에서 탄화수율이 53.1% 나왔다.As a result of TGA analysis, the carbonization yield was 57.7% at a carbonization temperature rise rate of 2 ° C / min. The carbonization yield was 54.9% at a carbonization temperature rise rate of 5 ° C / min. The carbonization yield was 53.1% at a carbonization temperature rise rate of 10 ° C / min.

[실험 3][Experiment 3]

탄화공정에서 방전가공용 전극의 흑연결정이 설정된 크기로 성장될 수 있는 최적의 탄화조건을 찾기 위해, 도 4에 도시된 바와 같이, 페놀수지에 혼합되는 그라파이트(graphite)의 양을 5wt%로 고정시켜 놓고, 탄화온도상승률을 2℃/min, 5℃/min, 10℃/min로 변화시켜가며, TGA 분석(열중량 분석)한다.In order to find the optimal carbonization condition in which the graphite crystal of the electrode for electric discharge machining can be grown to a predetermined size in the carbonization process, as shown in Fig. 4, the amount of graphite mixed in the phenol resin is fixed at 5 wt% And the TGA analysis (thermogravimetric analysis) is carried out while varying the rate of carbonization temperature rise at 2 캜 / min, 5 캜 / min, and 10 캜 / min.

TGA 분석결과, 탄화온도상승률 2℃/min에서 탄화수율이 58.2% 나왔다. 탄화온도상승률 5℃/min에서 탄화수율이 54.1% 나왔다. 탄화온도상승률 10℃/min에서 탄화수율이 52.2%가 나왔다.As a result of TGA analysis, the carbonization yield was 58.2% at a carbonization temperature rise rate of 2 ° C / min. The carbonization yield was 54.1% at a carbonization temperature rise rate of 5 캜 / min. The carbonization yield was 52.2% at a carbonization temperature rise rate of 10 ° C / min.

[실험 4][Experiment 4]

탄화공정에서 방전가공용 전극의 흑연결정이 설정된 크기로 성장될 수 있는 최적의 탄화조건을 찾기 위해, 도 5에 도시된 바와 같이, 페놀수지에 혼합되는 그라파이트의 양을 10wt%로 고정시켜 놓고, 탄화온도상승률을 2℃/min, 5℃/min, 10℃/min 로 변화시켜가며, TGA 분석한다.In order to find the optimal carbonization condition in which the graphite crystal of the electrode for electric discharge machining can be grown in the predetermined size in the carbonization process, as shown in Fig. 5, the amount of graphite mixed in the phenol resin was fixed at 10 wt% TGA analysis is carried out by changing the rate of temperature rise at 2 캜 / min, 5 캜 / min, and 10 캜 / min.

TGA 분석결과, 탄화온도상승률 2℃/min에서 탄화수율이 58.5% 나왔다. 탄화온도상승률 5℃/min에서 탄화수율이 55.2% 나왔다. 탄화온도상승률 10℃/min에서 탄화수율이 53.6% 나왔다.As a result of TGA analysis, the carbonization yield was 58.5% at a carbonization temperature rise rate of 2 ° C / min. The carbonization yield was 55.2% at a carbonization temperature rise rate of 5 ° C / min. The carbonization yield was 53.6% at a carbonization temperature rise rate of 10 ° C / min.

[실험 1] 내지 [실험 4] 결과, 최적의 탄화조건은, 탄화수율이 58.5%로 가장 큰, 탄화온도상승률 2℃/min와, 페놀수지에 혼합되는 그라파이트의 양 10wt% 임을 알 수 있다. 따라서, 최적 탄화조건을 탄화온도상승률 2℃/min와, 페놀수지에 혼합되는 그라파이트의 양 10wt% 로 정한다.[Experiments 1] to [Experiment 4] As a result, it can be seen that the optimum carbonization conditions are carbonization temperature rise rate 2 ° C / min, which is the greatest with a carbonization yield of 58.5%, and amount of graphite to be mixed with phenol resin 10wt%. Therefore, the optimum carbonization condition is set at a carbonization temperature rise rate of 2 占 폚 / min and the amount of graphite to be mixed with phenol resin is 10 wt%.

이렇게 정해진 최적 탄화조건은, 본 발명인 방전가공용 전극의 성능을 결정짓는 임계적 의미를 가진 중요한 조건이 된다.The optimum carbonization condition thus determined is an important condition having a critical meaning that determines the performance of the electrode for electric discharge machining according to the present invention.

또한, 이렇게 탄화온도상승률과, 페놀수지에 혼합되는 콜타르피치의 양 또는 페놀수지에 혼합되는 그라파이트의 양을 바꾸어가며, 방전가공용 전극을 본격적으로 제조하기 전, 미리 최적 탄화조건을 정해 놓는 것은, 본 발명만이 가지는 중요한 특징이 된다.In order to set the optimal carbonization conditions beforehand in advance of the preparation of the electrodes for electrical discharge machining in such a manner that the carbonation temperature rise rate, the amount of the coal tar pitch mixed with the phenol resin, or the amount of the graphite to be mixed with the phenol resin is changed, It is an important feature that only the invention has.

또한, 본 발명은, 탄화수율을 조금이라도 더 높이기 위해, 페놀수지에 콜타르피치 또는 그라파이트를 첨가하여 최적 탄화조건을 찾는다. 이러한 점도 본 발명만이 가지는 중요한 특징이 된다. 참고로, 실험결과, 페놀수지만으로는 탄화수율이 최대 56.1%를 넘지 못하는 것으로 나타났다.Further, in order to further increase the hydrocarbon yield, the present invention finds optimum carbonization conditions by adding a coal tar pitch or graphite to the phenol resin. This is an important feature of the present invention. As a result, the test results show that the phenol resin alone does not exceed the maximum carbonization yield of 56.1%.

이하, 제2단계(S12)를 설명한다.The second step S12 will be described below.

페놀수지에 선정된 탄화조건에서 요구되는 양 만큼(10wt%)의 그라파이트와, 폐 탄소섬유를 혼합하여, 혼합물을 만든다.(10 wt%) of graphite and waste carbon fiber are mixed with phenol resin in an amount required in the carbonization condition selected to make a mixture.

폐 탄소섬유는, 탄소섬유 방사시 또는 CFRP 제작 시 컷팅되어 버려지는 탄소섬유이다. 이러한 탄소섬유는 종래 오랫동안 사용된 후 버려지는 CFRP(Carbon Fiber Reinforced Plastic)를 열분해하여 얻는 탄소섬유와 질적으로 큰 차이가 있다.Waste carbon fibers are carbon fibers which are cut off when carbon fiber is spun or CFRP is produced. These carbon fibers have a qualitative difference with respect to carbon fiber obtained by pyrolysis of CFRP (Carbon Fiber Reinforced Plastic) which has been used for a long time.

즉, 탄소섬유 방사시 버려지는 또는 CFRP 제작 시 컷팅되어 버려지는 탄소섬유는 새 탄소섬유와 질적으로 차이가 없어, 이러한 탄소섬유로 방전가공용 전극을 만들면 방전가공용 전극의 성능이 우수해진다. 이는 본 발명만의 중요한 특징이 된다.That is, the carbon fiber which is discarded when the carbon fiber is spun or is cut off when the CFRP is manufactured is not different from the new carbon fiber in quality, and the performance of the discharge electrode is improved by forming the electrode for electric discharge machining with such carbon fiber. This is an important feature of the present invention only.

특히, CFRP 제작 시 컷팅되어 버려지는 탄소섬유는, 직경이 대부분 7μm 이고, 길이 6mm 이하인 PAN계 탄소섬유이므로, 이러한 PAN계 탄소섬유를 일방향으로 배향하여 방전가공용 전극을 만들면, 현재 흑연전극의 최상품으로 분류되는 평균입도 5μm급의 흑연전극과 대등한 성능의 방전가공용 전극을 만들어낼 수 있다.Particularly, since the carbon fibers that are cut and discarded during the production of CFRP are PAN-based carbon fibers having a diameter of 7 μm and a length of 6 mm or less, if the electrodes for electric discharge machining are formed by orienting the PAN-based carbon fibers in one direction, It is possible to produce an electrode for electric discharge machining having a performance equivalent to that of the graphite electrode of the class 5 μm in average particle size.

이하, 제3단계(S13)를 설명한다.The third step S13 will be described below.

방전가공용 전극의 형상을 가진 몰드에 혼합물을 넣고, 프레스로 가압하고, 히터로 가열하여 성형체를 만든다. 프레스로 가압하는 압력은 3~5Mpa이고, 가열온도는 120~180℃이다.The mixture is put into a mold having the shape of an electrode for electric discharge machining, pressed by a press, and heated by a heater to form a molded body. The pressure to be pressed by the press is 3 to 5 MPa, and the heating temperature is 120 to 180 ° C.

이하, 제4단계(S14)를 설명한다.The fourth step S14 will be described below.

선정된 탄화조건에서 요구하는 탄화온도상승률이 10℃/min에서, 성형체를 탄화시켜 탄화체를 만든다.At a carbonization temperature rise rate of 10 ° C / min required under the selected carbonization condition, the formed body is carbonized to form a carbonized body.

이하, 제5단계(S15)를 설명한다.The fifth step S15 will be described below.

탄화체를 다이아몬드 연마기로 연마하여, 방전가공용 전극의 형상으로 정밀 가공한다.The carbonized body is polished with a diamond grinder to perform precision machining in the form of an electrode for electric discharge machining.

제1단계(S11) 내지 제5단계(S15)를 거쳐, 흑연전극과 대등한 성능을 가진 방전가공용 전극이 제조된다.Through the first step (S11) to the fifth step (S15), an electrode for electric discharge machining having a performance equivalent to that of a graphite electrode is manufactured.

Claims (5)

삭제delete 삭제delete 탄화공정에서 방전가공용 전극의 흑연결정이 설정된 크기로 성장될 수 있는 탄화조건을, 탄화온도상승률과, 페놀수지에 혼합되는 콜타르피치 또는 페놀수지에 혼합되는 그라파이트의 양을 바꾸어가며 찾는 제1단계;
페놀수지에, 상기 탄화조건에서 요구되는 양 만큼의 콜타르피치 또는 그라파이트와, 폐 탄소섬유를 혼합하여, 혼합물을 만드는 제2단계;
상기 혼합물을 가열 및 가압하여 성형체로 만드는 제3단계;
상기 탄화조건에서 요구되는 탄화온도상승률로, 상기 성형체를 탄화시켜 탄화체로 만드는 제4단계; 및
상기 탄화체를 가공하여 방전가공용 전극의 형상으로 만드는 제5단계;를 포함하며,
상기 제1단계에서, 2℃/min, 5℃/min 탄화온도상승률 각각과, 페놀수지에 혼합되는 콜타르피치의 양 또는 페놀수지에 혼합되는 그라파이트의 양을 0wt%, 5wt%, 10wt% 각각을 조합한 후, TGA 분석하여, 상기 탄화조건을 찾아내며,
상기 탄화조건 중 최적의 탄화조건은, 탄화온도상승률 2℃/min와, 페놀수지에 혼합되는 그라파이트의 양 10wt% 인 것을 특징으로 하는 방전가공용 전극을 제조하는 방법.
A first step of changing the carbonization condition in which the graphite crystal of the electrode for electric discharge machining can be grown to a predetermined size in the carbonization process by changing the carbonation temperature rise rate and the amount of graphite mixed with phenol resin or graphite mixed with phenol resin;
A second step of mixing a phenolic resin with a coal tar pitch or graphite in an amount required in the carbonization condition and a waste carbon fiber to prepare a mixture;
A third step of heating and pressurizing the mixture to form a molded body;
A fourth step of carbonizing the formed body to a carbonized body at a carbonation temperature rise rate required in the carbonization condition; And
And a fifth step of processing the carbonized material to form an electrode for electric discharge machining,
In the first step, the carbonation temperature rise rates at 2 占 폚 / min and 5 占 폚 / min, the amounts of graphite pitch mixed in the phenol resin, and the amounts of graphite to be mixed with the phenol resin are set at 0 wt%, 5 wt% and 10 wt% After combining, TGA analysis was performed to find the carbonization condition,
Wherein the optimum carbonization condition among the carbonization conditions is a carbonization temperature rise rate of 2 占 폚 / min and an amount of graphite to be mixed with the phenol resin is 10wt%.
삭제delete 탄화공정에서 방전가공용 전극의 흑연결정이 설정된 크기로 성장될 수 있는 탄화조건을, 탄화온도상승률과, 페놀수지에 혼합되는 콜타르피치 또는 페놀수지에 혼합되는 그라파이트의 양을 바꾸어가며 찾는 제1단계;
페놀수지에, 상기 탄화조건에서 요구되는 양 만큼의 콜타르피치 또는 그라파이트와, 폐 탄소섬유를 혼합하여, 혼합물을 만드는 제2단계;
상기 혼합물을 가열 및 가압하여 성형체로 만드는 제3단계;
상기 탄화조건에서 요구되는 탄화온도상승률로, 상기 성형체를 탄화시켜 탄화체로 만드는 제4단계; 및
상기 탄화체를 가공하여 방전가공용 전극의 형상으로 만드는 제5단계;를 포함하며,
상기 제2단계에서,
상기 폐 탄소섬유는, 탄소섬유 방사시 버려지는 탄소섬유 또는, CFRP 제작 시 컷팅되어 버려지는 탄소섬유이며,
상기 CFRP 제작 시 컷팅되어 버려지는 탄소섬유는, 직경 7μm 이하, 길이 6mm 이하의 PAN계 섬유인 것을 특징으로 하는 방전가공용 전극을 제조하는 방법.
A first step of changing the carbonization condition in which the graphite crystal of the electrode for electric discharge machining can be grown to a predetermined size in the carbonization process by changing the carbonation temperature rise rate and the amount of graphite to be mixed with phenol resin or graphite mixed with phenol resin;
A second step of mixing a phenolic resin with a coal tar pitch or graphite in an amount required in the carbonization condition and a waste carbon fiber to prepare a mixture;
A third step of heating and pressurizing the mixture to form a molded body;
A fourth step of carbonizing the formed body to a carbonized body at a carbonation temperature rise rate required in the carbonization condition; And
And a fifth step of processing the carbonized material to form an electrode for electric discharge machining,
In the second step,
The waste carbon fiber is carbon fiber discarded when carbon fiber is spun, or carbon fiber cut off when CFRP is manufactured,
Wherein the carbon fibers cut and discarded when the CFRP is manufactured are PAN fibers having a diameter of 7 占 퐉 or less and a length of 6 mm or less.
KR1020160107097A 2016-08-23 2016-08-23 Method for manufacturing electrode using in electric discharge machining KR101823940B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160107097A KR101823940B1 (en) 2016-08-23 2016-08-23 Method for manufacturing electrode using in electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160107097A KR101823940B1 (en) 2016-08-23 2016-08-23 Method for manufacturing electrode using in electric discharge machining

Publications (1)

Publication Number Publication Date
KR101823940B1 true KR101823940B1 (en) 2018-01-31

Family

ID=61082887

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160107097A KR101823940B1 (en) 2016-08-23 2016-08-23 Method for manufacturing electrode using in electric discharge machining

Country Status (1)

Country Link
KR (1) KR101823940B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088263A (en) * 2021-03-25 2021-07-09 渤瑞环保股份有限公司 Method for preparing heat-conducting preform by blending heavy oil and waste plastic and application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101439177B1 (en) 2014-05-19 2014-09-17 금오공과대학교 산학협력단 Preparing method of isotropic bulk graphite using graphite scrap and the isotropic bulk graphite thereby

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101439177B1 (en) 2014-05-19 2014-09-17 금오공과대학교 산학협력단 Preparing method of isotropic bulk graphite using graphite scrap and the isotropic bulk graphite thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088263A (en) * 2021-03-25 2021-07-09 渤瑞环保股份有限公司 Method for preparing heat-conducting preform by blending heavy oil and waste plastic and application

Similar Documents

Publication Publication Date Title
US10964620B2 (en) Thermally conductive sheet
JP6805076B2 (en) Manufacturing method of molded products from carbon materials using recycled carbon fiber
Kim et al. Pitch-based carbon fibers from coal tar or petroleum residue under the same processing condition
CN107694552A (en) A kind of technique that coal-based needle coke is produced as raw material using middle coalite tar pitch
CN1678546A (en) Process of making carbon electrodes
KR101823940B1 (en) Method for manufacturing electrode using in electric discharge machining
CN106967438A (en) A kind of preparation method of lightning protection resistance-reducing grounding module material
KR101865617B1 (en) Carbon fiber electrode using Carbon fiber and manufacturing method thereof
CN102596851B (en) Carbon material and manufacture method thereof
CN105271207A (en) Preparation process of isostatic pressing isotropic graphite
CN101724864B (en) Preparation method of non-graphitized conductive carbon anode material
US10237928B2 (en) Long length electrodes
CN103849413A (en) Asphalt additive, modified asphalt, preparation method of modified asphalt, application of asphalt additive and preparation method of asphalt carbide
CN115196628A (en) Method for manufacturing fiber-reinforced negative electrode carrier through one-step molding
US20100078356A1 (en) Process for the distillation of decanted oils for the production of petroleum pitches
KR101814153B1 (en) Method Of Carbon fiber-binder complex powder, electrical discharge machining electrode and the preparing method thereof
CN108690259A (en) A kind of fibre reinforced PP composite material and preparation method thereof
CN109183046B (en) Processing technology of graver
KR101832395B1 (en) Method Of Carbon fiber powder material, Carbon fiber electrode including the Carbon fiber powder material and manufacturing method thereof
JP2021130601A (en) Method for producing molding of graphite material
JP2006278083A (en) Composite for fuel cell separator, manufacturing method of fuel cell separator, and fuel cell separator
TWI610887B (en) Isotropic graphite material, method of producing the same and application thereof
JP2015077634A (en) Roll roller
KR101862551B1 (en) Method of isotropic carbon fiber electrode
CN105087033A (en) Method for preparing isotropic coke

Legal Events

Date Code Title Description
GRNT Written decision to grant