WO2015178143A1 - Method for producing cyclic olefin copolymer - Google Patents

Method for producing cyclic olefin copolymer Download PDF

Info

Publication number
WO2015178143A1
WO2015178143A1 PCT/JP2015/061986 JP2015061986W WO2015178143A1 WO 2015178143 A1 WO2015178143 A1 WO 2015178143A1 JP 2015061986 W JP2015061986 W JP 2015061986W WO 2015178143 A1 WO2015178143 A1 WO 2015178143A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
copolymer
catalyst
cyclic olefin
dimethyl
Prior art date
Application number
PCT/JP2015/061986
Other languages
French (fr)
Japanese (ja)
Inventor
敬之 八重樫
恵市 小佐野
善道 岡野
直人 奥山
Original Assignee
ポリプラスチックス株式会社
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社, 株式会社ダイセル filed Critical ポリプラスチックス株式会社
Priority to JP2016521003A priority Critical patent/JP6685223B2/en
Priority to KR1020167031265A priority patent/KR102331299B1/en
Priority to CN201580021148.6A priority patent/CN106232641B/en
Publication of WO2015178143A1 publication Critical patent/WO2015178143A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • C08F4/6428Component covered by group C08F4/64 with an organo-aluminium compound with an aluminoxane, i.e. a compound containing an Al-O-Al- group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond

Definitions

  • the present invention relates to a method for producing a cyclic olefin copolymer.
  • Cyclic olefin polymers and cyclic olefin copolymers have low hygroscopicity and high transparency, and are used for optical materials such as optical disk substrates, optical films, and optical fibers. It is used for various purposes including fields.
  • a typical COC is a copolymer of a cyclic olefin and ethylene, but the glass transition temperature of the copolymer can be changed by the copolymer composition of the cyclic olefin and ethylene.
  • a Tg exceeding 200 ° C. which is difficult with COP, can be realized, but it has a hard and brittle property, has low mechanical strength, and is easy to handle. And there was a problem that workability was bad.
  • Copolymerization of cyclic olefin and specific ⁇ -olefin is very different from copolymerization of cyclic olefin and ethylene.
  • a chain transfer reaction caused by the specific ⁇ -olefin occurs in the copolymerization of the cyclic olefin and the specific ⁇ -olefin. It was difficult to obtain. Therefore, it has been said that a copolymer of a cyclic olefin and a specific ⁇ -olefin is not suitable for a molding material (for example, see Non-Patent Document 1).
  • Patent Document 1 a high molecular weight product composed of a cyclic olefin and a specific ⁇ -olefin is obtained with a specific Ti-based catalyst, Tg is 245 to 262 ° C., low moisture absorption, and a linear expansion coefficient is less than 80 ppm. It is described that a film having excellent physical properties was obtained. However, since the polymerization method disclosed in Patent Document 1 uses a large amount of catalyst and promoter, it is difficult to save resources and the cost for obtaining a copolymer is high. Remained to impair the transparency of the film. Patent Document 1 describes that 92 to 164 g of copolymer can be obtained per 1 g of catalyst.
  • Patent Document 2 discloses a film having excellent punching characteristics, but Tg is less than 170 ° C. Moreover, in patent document 2, since a catalyst and a co-catalyst are used in large quantities, it is difficult to save resources, the cost for obtaining the copolymer is expensive, and the transparency and thermal stability of the film are impaired. There was a problem. Patent Document 2 describes that 127 to 275 g of a copolymer can be obtained per 1 g of the catalyst.
  • JP 2009-298999 A Japanese Patent No. 5017222
  • the present invention has been made in view of the above situation, and is a copolymer that can obtain a larger amount of a cyclic olefin copolymer having a smaller catalyst amount, excellent mechanical properties, and suitable for ordinary molding processing. It aims at providing the manufacturing method of a polymer.
  • the present inventors have found that by using a smaller amount of titanocene catalyst, it is possible to obtain more cyclic olefin copolymers having excellent mechanical properties and suitable for ordinary molding processing, and completed the present invention. It came to do. More specifically, the present invention provides the following.
  • the amount of the copolymer obtained in the polymerization step is 1000 g or more per 1 g of the titanocene catalyst, and the number average molecular weight of the copolymer is 20,000 or more and 200,000 or less.
  • the present invention it is possible to provide a method for producing a copolymer capable of obtaining a larger amount of a cyclic olefin copolymer having a lower catalyst amount, excellent mechanical properties, and suitable for ordinary molding processing. it can.
  • the effect of the present invention can be further improved by controlling the amount of the chain transfer agent.
  • the amount of catalyst used is small, the amount of cocatalyst can be reduced accordingly. Therefore, the amount of cyclic olefin copolymer per batch can be increased while maintaining the molecular weight range at a low cost with a smaller amount of catalyst and cocatalyst, and resource saving can also be realized.
  • a molded product such as a film obtained from this copolymer is likely to be improved in transparency and mechanical properties.
  • the method for producing a copolymer according to the present invention comprises at least a cyclic olefin monomer (A) derived from norbornene and an ⁇ -olefin monomer (B) derived from a C4 to C12 ⁇ -olefin in the presence of a titanocene catalyst.
  • the amount of the copolymer obtained in the polymerization step is 1000 g or more per 1 g of the titanocene catalyst, and the number average molecular weight of the copolymer. Is from 20,000 to 200,000.
  • the polymerization step comprises a co-catalyst comprising an alkylaluminoxane together with a titanocene catalyst. It is preferably carried out in the presence of a chain transfer agent.
  • the copolymer obtained by the method for producing a copolymer according to the present invention comprises a structural unit derived from a cyclic olefin monomer (A) derived from norbornene and an ⁇ -olefin monomer derived from a C4 to C12 ⁇ -olefin. (B) derived structural units.
  • the amount of the copolymer obtained in the polymerization step included in the production method is 1000 g or more, preferably 2000 g or more, per 1 g of titanocene catalyst used in the polymerization step.
  • the number average molecular weight of the copolymer in the present invention is preferably 20,000 or more and 200,000 or less, more preferably 30,000 or more and 150,000 or less.
  • Tg glass transition temperature
  • a number average molecular weight means the number average molecular weight of polystyrene conversion measured by gel permeation chromatography.
  • the glass transition temperature (Tg) of the copolymer in the present invention is 170 ° C. or higher, preferably 200 ° C. or higher, more preferably 230 ° C. or higher, and particularly preferably 260 ° C. or higher.
  • Tg glass transition temperature
  • the transparent film obtained from the copolymer has sufficient heat resistance, and can be suitably used, for example, as a substrate for ITO deposition.
  • the glass transition temperature is 260 ° C.
  • the transparent film obtained from the copolymer has further sufficient heat resistance, so that, for example, deformation, cracking, contact with molten lead-free solder, Since melting or the like hardly occurs, it can be suitably used as a lead-free solder member.
  • the upper limit of the glass transition temperature of the copolymer is not particularly limited, but mechanical strength due to ⁇ -olefin copolymerization is reduced because the structural unit derived from ⁇ -olefin in the copolymer decreases as the glass transition temperature increases.
  • the glass transition temperature is preferably 350 ° C. or less, and more preferably 330 ° C. or less, because the improvement effect tends to be small.
  • the glass transition temperature employ adopts the value measured on the conditions of the temperature increase rate of 20 degree-C / min by DSC method (method of JISK7121).
  • titanocene catalyst It does not specifically limit as a titanocene catalyst, A well-known thing can be used.
  • a titanocene catalyst can be used individually by 1 type or in combination of 2 or more types.
  • As a titanocene catalyst what is represented by following formula (1) is mentioned, for example.
  • R 1 to R 3 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms. Specific examples thereof include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, alkyl group such as pentyl group, hexyl group, cyclopentyl group, cyclohexyl group; phenyl group, biphenyl group And aryl groups such as a phenyl group or biphenyl group having the alkyl group as a substituent, a naphthyl group, and a naphthyl group having the alkyl group as a substituent.
  • R 4 and R 5 are each independently an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or a halogen atom, and specifically includes a fluorine atom, a chlorine atom, a bromine atom, iodine Halogen atoms such as atoms; methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, cyclopentyl group, cyclohexyl group, the above halogen atom
  • aryl groups having a phenyl group, a biphenyl group, a naphthyl group, the above halogen atom or an alkyl group as a substituent.
  • R 6 to R 13 each independently have a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or a monovalent hydrocarbon group having 1 to 12 carbon atoms as a substituent. It may be a silyl group. Specific examples of the alkyl group having 1 to 12 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, hexyl, heptyl, octyl, and cyclopentyl. Group, cyclohexyl group and the like.
  • aryl group having 6 to 12 carbon atoms include a phenyl group, a biphenyl group, a naphthyl group, and these aryl groups having the above alkyl group as a substituent.
  • silyl group having a monovalent hydrocarbon group having 1 to 12 carbon atoms as a substituent include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl
  • a silyl group having an alkyl group having 1 to 12 carbon atoms such as a hexyl group, a heptyl group, an octyl group, a cyclopentyl group, and a cyclohexyl group as a substituent.
  • titanocene catalyst represented by the general formula (1) examples include (isopropylamide) dimethyl-9-fluorenylsilane titanium dimethyl, (isobutylamide) dimethyl-9-fluorenylsilane titanium dimethyl, (t-butylamide).
  • T-Butylamido dimethyl-9-fluorenylsilane titanium dimethyl ((t-BuNSiMe 2 Flu) TiMe 2 ) is preferred.
  • (T-BuNSiMe 2 Flu) TiMe 2 is a titanium complex represented by the following formula (2). For example, it can be easily synthesized based on the description of “Macromolecules, Vol. 31, 3184, 1998”. Can do.
  • Me represents a methyl group
  • t-Bu represents a tert-butyl group
  • the cocatalyst used in the present invention comprises an alkylaluminoxane.
  • the above promoters can be used alone or in combination of two or more.
  • the alkylaluminoxane is not particularly limited, and examples thereof include compounds represented by the following formula (3) or (4).
  • the alkylaluminoxane represented by the following formula (3) or (4) is a product obtained by the reaction of trialkylaluminum and water.
  • R represents an alkyl group having 1 to 4 carbon atoms
  • n represents an integer of 0 to 40, preferably 2 to 30.
  • alkylaluminoxane examples include methylaluminoxane and modified methylaluminoxane in which a part of the methyl group of methylaluminoxane is substituted with another alkyl group.
  • modified methylaluminoxane for example, a modified methylaluminoxane having an alkyl group having 2 to 4 carbon atoms such as an ethyl group, a propyl group, an isopropyl group, a butyl group, and an isobutyl group as an alkyl group after substitution is preferable.
  • a modified methylaluminoxane in which a part of the group is substituted with an isobutyl group is more preferable.
  • alkylaluminoxane examples include methylaluminoxane, ethylaluminoxane, propylaluminoxane, butylaluminoxane, isobutylaluminoxane, methylethylaluminoxane, methylbutylaluminoxane, methylisobutylaluminoxane and the like. Among them, methylaluminoxane and methylisobutylaluminoxane are preferable.
  • Alkylaluminoxane can be prepared by a known method. Moreover, as an alkylaluminoxane, you may use a commercial item. Examples of commercially available products of alkylaluminoxane include MMAO-3A, TMAO-200 series, TMAO-340 series (all manufactured by Tosoh Finechem Co., Ltd.) and methylaluminoxane solution (manufactured by Albemarle).
  • the chain transfer agent used in the present invention is a compound having chain transfer ability.
  • a chain transfer agent can be used individually by 1 type or in combination of 2 or more types.
  • the chain transfer agent is not particularly limited, and a known compound having chain transfer ability can be used, and examples thereof include alkylaluminum.
  • alkylaluminum include a compound represented by the following general formula (5). (R 10 ) z AlX 3-z (5) (Wherein R 10 is an alkyl group having 1 to 15 carbon atoms, preferably 1 to 8 carbon atoms, X is a halogen atom or a hydrogen atom, and z is an integer of 1 to 3.)
  • alkyl group having 1 to 15 carbon atoms examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and an n-octyl group.
  • alkylaluminum examples include trialkylaluminum such as trimethylaluminum, triethylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, trisec-butylaluminum, trin-octylaluminum; dimethylaluminum chloride, diisobutyl Dialkylaluminum halides such as aluminum chloride; dialkylaluminum hydrides such as diisobutylaluminum hydride; and dialkylaluminum alkoxides such as dimethylaluminum methoxide.
  • Chain Shutting agents known for polymerization with metallocene catalysts can also be used.
  • chain shuffling agent examples include the above-described alkyl aluminum and alkyl zinc.
  • alkyl zinc the compound shown by following General formula (6) is mentioned, for example. (R 11 ) z ZnX 2-y (6) (Wherein R 11 is an alkyl group having 1 to 15 carbon atoms, preferably 1 to 8 carbon atoms, X is a halogen atom or a hydrogen atom, and y is an integer of 0 to 2.)
  • alkyl group having 1 to 15 carbon atoms examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and an n-octyl group.
  • alkyl zinc examples include dialkyl zinc such as dimethyl zinc, diethyl zinc, diisopropyl zinc, di n-butyl zinc, diisobutyl zinc, disec-butyl zinc aluminum, di n-octyl zinc; methyl zinc chloride, isobutyl zinc chloride Alkyl zinc halides such as isobutyl zinc hydride; alkyl zinc alkoxides such as methyl zinc methoxide; zinc halides such as zinc chloride.
  • Alkyl aluminum or alkyl zinc may be charged directly into the polymerization system or may be charged in the state of being contained in the alkyl aluminoxane. Moreover, the alkylaluminum of the raw material used when manufacturing an alkylaluminoxane and remaining after manufacture may be sufficient. Alkyl aluminum and alkyl zinc may be used in combination.
  • Cyclic olefin monomer (A) Examples of the cyclic olefin monomer (A) derived from norbornene include norbornene and substituted norbornene, and norbornene is preferable.
  • the said cyclic olefin monomer (A) can be used individually by 1 type or in combination of 2 or more types.
  • the substituted norbornene is not particularly limited, and examples of the substituent that the substituted norbornene has include a halogen atom, a monovalent or divalent hydrocarbon group.
  • Specific examples of the substituted norbornene include those represented by the following general formula (I).
  • R 1 to R 12 may be the same or different and are each selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group; R 9 and R 10 , R 11 and R 12 may be integrated to form a divalent hydrocarbon group, R 9 or R 10 and R 11 or R 12 may form a ring with each other.
  • R 1 to R 12 in the general formula (I) may be the same or different and are selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group.
  • R 1 to R 8 include, for example, a hydrogen atom; a halogen atom such as fluorine, chlorine and bromine; an alkyl group having 1 to 20 carbon atoms, and these may be different from each other. , May be partially different or all may be the same.
  • R 9 to R 12 include, for example, a hydrogen atom; a halogen atom such as fluorine, chlorine and bromine; an alkyl group having 1 to 20 carbon atoms; a cycloalkyl group such as a cyclohexyl group; a phenyl group and tolyl Group, ethylphenyl group, isopropylphenyl group, naphthyl group, anthryl group and the like substituted or unsubstituted aromatic hydrocarbon group; benzyl group, phenethyl group, and other aralkyl groups in which an alkyl group is substituted with an aryl group These may be different from each other, may be partially different, or all may be the same.
  • R 9 and R 10 or R 11 and R 12 are integrated to form a divalent hydrocarbon group
  • alkylidene groups such as an ethylidene group, a propylidene group, and an isopropylidene group. Can be mentioned.
  • the formed ring may be monocyclic or polycyclic, or may be a polycyclic ring having a bridge.
  • a ring having a double bond, or a ring composed of a combination of these rings may be used.
  • these rings may have a substituent such as a methyl group.
  • substituted norbornene represented by the general formula (I) include 5-methyl-bicyclo [2.2.1] hept-2-ene, 5,5-dimethyl-bicyclo [2.2.1] hepta- 2-ene, 5-ethyl-bicyclo [2.2.1] hept-2-ene, 5-butyl-bicyclo [2.2.1] hept-2-ene, 5-ethylidene-bicyclo [2.2.
  • Tricyclo [4.3.0.1 2,5 ] deca-3,7-diene (common name: dicyclopentadiene), tricyclo [4.3.0.1 2,5 ] dec-3-ene; tricyclo [ 4.4.0.1 2,5 ] undeca-3,7-diene or tricyclo [4.4.0.1 2,5 ] undeca-3,8-diene or a partially hydrogenated product thereof (or cyclopentadiene) Tricyclo [4.4.0.1 2,5 ] undec-3-ene; 5-cyclopentyl-bicyclo [2.2.1] hept-2-ene, 5-cyclohexyl-bicyclo [2.2.1] hept-2-ene, 5-cyclohexenylbicyclo [2.2.1] hept-2-ene, 5-phenyl-bicyclo [2.2.1] hept-2-ene A cyclic olefin of the ring;
  • Tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene also simply referred to as tetracyclododecene
  • 8-methyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene 8-ethyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene
  • 8-methylidenetetracyclo 4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene
  • alkyl-substituted norbornene eg, bicyclo [2.2.1] hept-2-ene substituted with one or more alkyl groups
  • alkylidene-substituted norbornene eg, bicyclo substituted with one or more alkylidene groups
  • [2.2.1] hept-2-ene) preferably 5-ethylidene-bicyclo
  • hept-2-ene common name: 5-ethylidene-2-norbornene, or simply ethylidene norbornene Is particularly preferred.
  • ⁇ -olefin monomer (B) examples include C4 to C12 ⁇ -olefin and a C4 to C12 ⁇ -olefin having at least one substituent such as a halogen atom. Examples thereof include olefins, and C4 to C12 ⁇ -olefins are preferable, and C6 to C10 ⁇ -olefins are more preferable.
  • the C4 to C12 ⁇ -olefin is not particularly limited.
  • Examples include ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene and the like. Of these, 1-hexene, 1-octene and 1-decene are preferable.
  • the conditions for the polymerization step are not particularly limited as long as the desired copolymer is obtained, and known conditions can be used, and the polymerization temperature, polymerization pressure, polymerization time and the like are appropriately adjusted. Moreover, the usage-amount of each component is illustrated as follows.
  • the addition amount of the ⁇ -olefin monomer (B) is preferably 1 part by mass or more and 500 parts by mass or less, and preferably 10 parts by mass or more and 300 parts by mass or less with respect to 100 parts by mass of the cyclic olefin monomer (A). More preferred.
  • the amount of titanocene catalyst used is preferably 0.00001 parts by mass or more and 0.1 parts by mass or less, and 0.0001 parts by mass or more and 0.05 parts by mass or less with respect to 100 parts by mass of the cyclic olefin monomer (A). More preferably.
  • the amount of the alkylaluminoxane used is preferably 0.0001 parts by mass or more and 5 parts by mass or less, and 0.01 parts by mass or more and 3 parts by mass or less based on Al with respect to 100 parts by mass of the cyclic olefin monomer (A). It is more preferable.
  • the amount of the chain transfer agent used is preferably 0.0001 parts by mass to 10 parts by mass and more preferably 0.01 parts by mass to 5 parts by mass with respect to 100 parts by mass of the cyclic olefin monomer (A). More preferred.
  • part representing an amount means “part by mass”.
  • the obtained polymerization reaction solution was poured into a large amount of hydrochloric acid methanol to completely precipitate the polymer, filtered and washed, and then dried under reduced pressure at 60 ° C. for 1 day or more to obtain a copolymer. .
  • the mass of the obtained copolymer was measured (“Yield” in Table 3).
  • the ratio of the obtained copolymer to the amount of catalyst used was calculated (“g (copolymer) / g (catalyst)” in Table 3).
  • t-Bu represents a tert-butyl group
  • Flu represents a fluorenyl group.
  • Cocatalyst B 9.0% by mass (a
  • the values of “parts” in Tables 1, 2, and 3 are values for 100 parts of 2-norbornene. Moreover, about the promoter A and the promoter B in Table 2, the value of "part” is a value as a toluene solution.
  • the proportion of the copolymer obtained is high with respect to the amount of catalyst used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 Provided is a method for producing a copolymer that makes it possible to obtain, using a smaller amount of catalyst, more of a cyclic olefin copolymer having excellent mechanical properties and a molecular weight suitable for ordinary molding. A method for producing a copolymer, including a polymerization step for obtaining a copolymer by polymerizing at least a cyclic olefin monomer derived from norbornene (A) and an α-olefin monomer derived from a C4-C12 α-olefin (B) in the presence of a titanocene catalyst, the amount of copolymer obtained in this polymerization step being 1000 g or higher per gram of titanocene catalyst, and the number-average molecular weight of the copolymer being from 20,000 to 200,000.

Description

環状オレフィン共重合体の製造方法Method for producing cyclic olefin copolymer
 本発明は、環状オレフィン共重合体の製造方法に関する。 The present invention relates to a method for producing a cyclic olefin copolymer.
 環状オレフィン重合体及び環状オレフィン共重合体(それぞれ「COP」及び「COC」等とも呼ばれる。)は、低吸湿性及び高透明性を有し、光ディスク基板、光学フィルム、光学ファイバー等の光学材料の分野をはじめ、様々な用途に使用されている。代表的なCOCとして環状オレフィンとエチレンとの共重合体があるが、共重合体のガラス転移温度が環状オレフィンとエチレンとの共重合組成で変えることが可能なため、COPよりガラス転移温度(Tg)の高い共重合体として製造することができ、COPでは困難な200℃超のTgを実現することも可能であるが、硬くて脆い性質を有しており、機械的強度が低く、ハンドリング性及び加工性が悪いという問題点があった。 Cyclic olefin polymers and cyclic olefin copolymers (also referred to as “COP” and “COC”, respectively) have low hygroscopicity and high transparency, and are used for optical materials such as optical disk substrates, optical films, and optical fibers. It is used for various purposes including fields. A typical COC is a copolymer of a cyclic olefin and ethylene, but the glass transition temperature of the copolymer can be changed by the copolymer composition of the cyclic olefin and ethylene. ) And a Tg exceeding 200 ° C., which is difficult with COP, can be realized, but it has a hard and brittle property, has low mechanical strength, and is easy to handle. And there was a problem that workability was bad.
 また、高Tg重合体は種々存在するが、これらは、極性基を持っているため、吸湿性及び誘電特性に限界がある。そのため、極性基を有さず、オレフィン系骨格からなり、光学特性、誘電特性、及び機械的強度に優れた高Tg重合体が求められている。 Also, there are various high Tg polymers, but these have polar groups and thus have limitations in hygroscopicity and dielectric properties. Therefore, there is a demand for a high Tg polymer that does not have a polar group, has an olefinic skeleton, and is excellent in optical properties, dielectric properties, and mechanical strength.
 高TgCOCの機械的強度を改善する方法の1つとして、環状オレフィンとエチレン以外のα-オレフィン(以下、「特定α-オレフィン」という)とを共重合させる方法がある。環状オレフィンと特定α-オレフィンとの共重合については、種々の研究がなされている。 As one method for improving the mechanical strength of high TgCOC, there is a method of copolymerizing a cyclic olefin and an α-olefin other than ethylene (hereinafter referred to as “specific α-olefin”). Various studies have been made on the copolymerization of a cyclic olefin and a specific α-olefin.
 環状オレフィンと特定α-オレフィンとの共重合は、環状オレフィンとエチレンとの共重合とは大きく異なる。環状オレフィンとエチレンとの共重合で高分子量体が得られる条件では、環状オレフィンと特定α-オレフィンとの共重合において、特定α-オレフィンに起因する連鎖移動反応が生じるため、これまで高分子量体が得られにくかった。よって、環状オレフィンと特定α-オレフィンとの共重合体は、成形材料には適さないとされていた(例えば、非特許文献1を参照)。 Copolymerization of cyclic olefin and specific α-olefin is very different from copolymerization of cyclic olefin and ethylene. Under conditions where a high molecular weight product can be obtained by copolymerization of a cyclic olefin and ethylene, a chain transfer reaction caused by the specific α-olefin occurs in the copolymerization of the cyclic olefin and the specific α-olefin. It was difficult to obtain. Therefore, it has been said that a copolymer of a cyclic olefin and a specific α-olefin is not suitable for a molding material (for example, see Non-Patent Document 1).
 特許文献1には、特定のTi系触媒により環状オレフィンと特定α-オレフィンからなる高分子量体が得られ、Tgが245から262℃であり、低吸湿であり、線膨張係数が80ppm未満である優れた物性のフィルムが得られたことが記載されている。しかし、特許文献1で開示されている重合法では触媒及び助触媒を多量に使用するため、省資源化を図りにくく、共重合体を得るのにかかる費用が高価であるとともに、触媒及び助触媒が残存してフィルムの透明性を損なう問題があった。なお、特許文献1では、触媒1g当たり92-164gの共重合体が得られることが記載されている。 In Patent Document 1, a high molecular weight product composed of a cyclic olefin and a specific α-olefin is obtained with a specific Ti-based catalyst, Tg is 245 to 262 ° C., low moisture absorption, and a linear expansion coefficient is less than 80 ppm. It is described that a film having excellent physical properties was obtained. However, since the polymerization method disclosed in Patent Document 1 uses a large amount of catalyst and promoter, it is difficult to save resources and the cost for obtaining a copolymer is high. Remained to impair the transparency of the film. Patent Document 1 describes that 92 to 164 g of copolymer can be obtained per 1 g of catalyst.
 特許文献2には、打抜き特性に優れたフィルムが開示されているが、Tgは170℃未満である。また、特許文献2では、触媒及び助触媒を多量に使用するため、省資源化を図りにくく、共重合体を得るのにかかる費用が高価であるとともに、フィルムの透明性や熱安定性が損なわれる問題があった。なお、特許文献2では、触媒1g当たり127-275gの共重合体が得られることが記載されている。 Patent Document 2 discloses a film having excellent punching characteristics, but Tg is less than 170 ° C. Moreover, in patent document 2, since a catalyst and a co-catalyst are used in large quantities, it is difficult to save resources, the cost for obtaining the copolymer is expensive, and the transparency and thermal stability of the film are impaired. There was a problem. Patent Document 2 describes that 127 to 275 g of a copolymer can be obtained per 1 g of the catalyst.
特開2009-298999号公報JP 2009-298999 A 特許第5017222号公報Japanese Patent No. 5017222
 本発明は、上記の状況に鑑みてなされたものであり、より少ない触媒量で、力学特性に優れ、かつ通常の成形加工に適した分子量の環状オレフィン共重合体をより多く得ることができる共重合体の製造方法を提供することを目的とする。 The present invention has been made in view of the above situation, and is a copolymer that can obtain a larger amount of a cyclic olefin copolymer having a smaller catalyst amount, excellent mechanical properties, and suitable for ordinary molding processing. It aims at providing the manufacturing method of a polymer.
 本発明者らは、より少ない量のチタノセン触媒を用いて、力学特性に優れ、かつ通常の成形加工に適した分子量の環状オレフィン共重合体をより多く得ることができることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。 The present inventors have found that by using a smaller amount of titanocene catalyst, it is possible to obtain more cyclic olefin copolymers having excellent mechanical properties and suitable for ordinary molding processing, and completed the present invention. It came to do. More specifically, the present invention provides the following.
 (1) チタノセン触媒の存在下で、少なくとも、ノルボルネンから誘導される環状オレフィンモノマー(A)とC4~C12のα-オレフィンから誘導されるα-オレフィンモノマー(B)とを重合させて共重合体を得る重合工程を含み、前記重合工程において得られる前記共重合体の量は、前記チタノセン触媒1g当たり1000g以上であり、かつ、前記共重合体の数平均分子量は20,000以上200,000以下である、共重合体の製造方法。 (1) A copolymer obtained by polymerizing at least a cyclic olefin monomer (A) derived from norbornene and an α-olefin monomer (B) derived from C4 to C12 α-olefin in the presence of a titanocene catalyst. The amount of the copolymer obtained in the polymerization step is 1000 g or more per 1 g of the titanocene catalyst, and the number average molecular weight of the copolymer is 20,000 or more and 200,000 or less. A method for producing a copolymer.
 (2) 前記重合工程は、前記チタノセン触媒とともに、アルキルアルミノキサンからなる助触媒と連鎖移動剤との存在下で行われる、(1)に記載の製造方法。 (2) The production method according to (1), wherein the polymerization step is performed in the presence of a co-catalyst composed of an alkylaluminoxane and a chain transfer agent together with the titanocene catalyst.
 (3) 前記連鎖移動剤は、アルキルアルミニウムである(2)に記載の製造方法。 (3) The production method according to (2), wherein the chain transfer agent is alkylaluminum.
 (4) 前記アルキルアルミニウムは、トリメチルアルミニウムである(3)に記載の製造方法。 (4) The production method according to (3), wherein the alkylaluminum is trimethylaluminum.
 (5) 前記共重合体のガラス転移温度(Tg)は、170℃以上である(1)から(4)のいずれか1項に記載の製造方法。 (5) The manufacturing method according to any one of (1) to (4), wherein the glass transition temperature (Tg) of the copolymer is 170 ° C. or higher.
 本発明によれば、より少ない触媒量で、力学特性に優れ、かつ通常の成形加工に適した分子量の環状オレフィン共重合体をより多く得ることができる共重合体の製造方法を提供することができる。特に、連鎖移動剤の量を制御することで、本発明の効果を更に向上させることができる。本発明では、使用する触媒の量が少ないため、それに応じて助触媒の量も低減することができる。よって、より少量の触媒及び助触媒で安価に、分子量の範囲を保ちながら、1バッチ当たりの環状オレフィン共重合体量を増やすことができ、省資源化を実現することもできる。また、得られる共重合体に残存する触媒及び助触媒が少ないため、この共重合体から得られるフィルム等の成形体は、透明性及び機械物性が向上しやすい。 According to the present invention, it is possible to provide a method for producing a copolymer capable of obtaining a larger amount of a cyclic olefin copolymer having a lower catalyst amount, excellent mechanical properties, and suitable for ordinary molding processing. it can. In particular, the effect of the present invention can be further improved by controlling the amount of the chain transfer agent. In the present invention, since the amount of catalyst used is small, the amount of cocatalyst can be reduced accordingly. Therefore, the amount of cyclic olefin copolymer per batch can be increased while maintaining the molecular weight range at a low cost with a smaller amount of catalyst and cocatalyst, and resource saving can also be realized. Moreover, since there are few catalysts and cocatalysts remaining in the obtained copolymer, a molded product such as a film obtained from this copolymer is likely to be improved in transparency and mechanical properties.
 以下、本発明の実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described in detail. In addition, this invention is not limited to the following embodiment.
 本発明に係る共重合体の製造方法は、チタノセン触媒の存在下で、少なくとも、ノルボルネンから誘導される環状オレフィンモノマー(A)とC4~C12のα-オレフィンから誘導されるα-オレフィンモノマー(B)とを重合させて共重合体を得る重合工程を含み、上記重合工程において得られる上記共重合体の量は、上記チタノセン触媒1g当たり1000g以上であり、かつ、上記共重合体の数平均分子量は20,000以上200,000以下である。本発明に係る共重合体の製造方法によれば、より少ない触媒量でも、分子量の範囲を保ちながら、1バッチで高分子量の環状オレフィン共重合体をより多く得ることができる。特に、用いる触媒量、並びに、得られる共重合体の量及び数平均分子量の観点から、本発明に係る共重合体の製造方法において、重合工程は、チタノセン触媒とともに、アルキルアルミノキサンからなる助触媒と連鎖移動剤との存在下で行われることが好ましい。 The method for producing a copolymer according to the present invention comprises at least a cyclic olefin monomer (A) derived from norbornene and an α-olefin monomer (B) derived from a C4 to C12 α-olefin in the presence of a titanocene catalyst. The amount of the copolymer obtained in the polymerization step is 1000 g or more per 1 g of the titanocene catalyst, and the number average molecular weight of the copolymer. Is from 20,000 to 200,000. According to the method for producing a copolymer according to the present invention, a higher amount of a high-molecular-weight cyclic olefin copolymer can be obtained in one batch while keeping the molecular weight range even with a smaller amount of catalyst. In particular, from the viewpoint of the amount of catalyst used, and the amount of copolymer obtained and the number average molecular weight, in the method for producing a copolymer according to the present invention, the polymerization step comprises a co-catalyst comprising an alkylaluminoxane together with a titanocene catalyst. It is preferably carried out in the presence of a chain transfer agent.
[共重合体]
 本発明に係る共重合体の製造方法により得られる共重合体は、ノルボルネンから誘導される環状オレフィンモノマー(A)由来の構造単位と、C4~C12のα-オレフィンから誘導されるα-オレフィンモノマー(B)由来の構造単位と、を含む。
 上記製造方法に含まれる重合工程において得られる上記共重合体の量は、上記重合工程で用いられるチタノセン触媒1g当たり1000g以上であり、好ましくは2000g以上である。
[Copolymer]
The copolymer obtained by the method for producing a copolymer according to the present invention comprises a structural unit derived from a cyclic olefin monomer (A) derived from norbornene and an α-olefin monomer derived from a C4 to C12 α-olefin. (B) derived structural units.
The amount of the copolymer obtained in the polymerization step included in the production method is 1000 g or more, preferably 2000 g or more, per 1 g of titanocene catalyst used in the polymerization step.
 本発明における共重合体の数平均分子量は、好ましくは20,000以上200,000以下であり、より好ましくは30,000以上、150,000以下である。上記数平均分子量が20,000以上であると、得られる共重合体は、ガラス転移温度(Tg)が過度に低くなりにくい。上記数平均分子量が200,000以下であると、得られる共重合体の溶液は、粘度が過度に高くなりにくい。なお、本明細書において、数平均分子量は、ゲルパーミエーションクロマトグラフィにより測定されたポリスチレン換算の数平均分子量をいう。 The number average molecular weight of the copolymer in the present invention is preferably 20,000 or more and 200,000 or less, more preferably 30,000 or more and 150,000 or less. When the number average molecular weight is 20,000 or more, the resulting copolymer is unlikely to have an excessively low glass transition temperature (Tg). When the number average molecular weight is 200,000 or less, the resulting copolymer solution is unlikely to have an excessively high viscosity. In addition, in this specification, a number average molecular weight means the number average molecular weight of polystyrene conversion measured by gel permeation chromatography.
 本発明における共重合体のガラス転移温度(Tg)は、170℃以上であり、好ましくは200℃以上、より好ましくは230℃以上、特に好ましくは260℃以上である。上記ガラス転移温度が170℃以上であると、上記共重合体から得られる透明フィルムは、十分な耐熱性を有し、よって、例えば、ITO蒸着用の基板として好適に用いることができる。特に、上記ガラス転移温度が260℃以上であると、上記共重合体から得られる透明フィルムは、更に十分な耐熱性を有するため、例えば、溶融した鉛フリー半田に接しても、変形、亀裂、融解等が生じにくいため、鉛フリー半田用部材として好適に用いることができる。また、上記共重合体のガラス転移温度の上限は特に限定されないが、ガラス転移温度が高くなると共重合体中のα-オレフィン由来の構造単位が少なくなるため、α-オレフィン共重合による機械的強度の改善効果が小さくなる傾向にあることから、上記ガラス転移温度は、350℃以下であることが好ましく、330℃以下であることがより好ましい。なお、本明細書において、ガラス転移温度は、DSC法(JIS K 7121記載の方法)によって昇温速度20℃/分の条件で測定した値を採用する。 The glass transition temperature (Tg) of the copolymer in the present invention is 170 ° C. or higher, preferably 200 ° C. or higher, more preferably 230 ° C. or higher, and particularly preferably 260 ° C. or higher. When the glass transition temperature is 170 ° C. or higher, the transparent film obtained from the copolymer has sufficient heat resistance, and can be suitably used, for example, as a substrate for ITO deposition. In particular, when the glass transition temperature is 260 ° C. or higher, the transparent film obtained from the copolymer has further sufficient heat resistance, so that, for example, deformation, cracking, contact with molten lead-free solder, Since melting or the like hardly occurs, it can be suitably used as a lead-free solder member. The upper limit of the glass transition temperature of the copolymer is not particularly limited, but mechanical strength due to α-olefin copolymerization is reduced because the structural unit derived from α-olefin in the copolymer decreases as the glass transition temperature increases. The glass transition temperature is preferably 350 ° C. or less, and more preferably 330 ° C. or less, because the improvement effect tends to be small. In addition, in this specification, the glass transition temperature employ | adopts the value measured on the conditions of the temperature increase rate of 20 degree-C / min by DSC method (method of JISK7121).
[チタノセン触媒]
 チタノセン触媒としては、特に限定されず、公知のものを使用することができる。チタノセン触媒は、1種単独で又は2種以上組み合わせて使用することができる。
 チタノセン触媒としては、例えば、下記式(1)で表されるものが挙げられる。
[Titanocene catalyst]
It does not specifically limit as a titanocene catalyst, A well-known thing can be used. A titanocene catalyst can be used individually by 1 type or in combination of 2 or more types.
As a titanocene catalyst, what is represented by following formula (1) is mentioned, for example.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 R~Rは、それぞれ独立に、炭素数1~6のアルキル基又は炭素数6~12のアリール基である。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基等のアルキル基;フェニル基、ビフェニル基、上記アルキル基を置換基として有するフェニル基又はビフェニル基、ナフチル基、上記アルキル基を置換基として有するナフチル基等のアリール基を挙げることができる。 R 1 to R 3 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms. Specific examples thereof include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, alkyl group such as pentyl group, hexyl group, cyclopentyl group, cyclohexyl group; phenyl group, biphenyl group And aryl groups such as a phenyl group or biphenyl group having the alkyl group as a substituent, a naphthyl group, and a naphthyl group having the alkyl group as a substituent.
 R及びRは、それぞれ独立に、炭素数1~12のアルキル基、炭素数6~12のアリール基、又はハロゲン原子であり、具体的には、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、上記ハロゲン原子を置換基として有するこれらのアルキル基;フェニル基、ビフェニル基、ナフチル基、上記ハロゲン原子又はアルキル基を置換基として有するこれらのアリール基を挙げることができる。 R 4 and R 5 are each independently an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or a halogen atom, and specifically includes a fluorine atom, a chlorine atom, a bromine atom, iodine Halogen atoms such as atoms; methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, cyclopentyl group, cyclohexyl group, the above halogen atom And these aryl groups having a phenyl group, a biphenyl group, a naphthyl group, the above halogen atom or an alkyl group as a substituent.
 R~R13は、それぞれ独立に、水素原子、炭素数1~12のアルキル基、炭素数6~12のアリール基、又は炭素数1~12の1価炭化水素基を置換基として有していてもよいシリル基である。炭素数1~12のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基等を挙げることができる。また、炭素数6~12のアリール基の具体例としては、フェニル基、ビフェニル基、ナフチル基、上記アルキル基を置換基として有するこれらのアリール基等を挙げることができる。更に、炭素数1~12の1価炭化水素基を置換基として有するシリル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基等の炭素数1~12のアルキル基を置換基として有するシリル基を挙げることができる。 R 6 to R 13 each independently have a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or a monovalent hydrocarbon group having 1 to 12 carbon atoms as a substituent. It may be a silyl group. Specific examples of the alkyl group having 1 to 12 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, hexyl, heptyl, octyl, and cyclopentyl. Group, cyclohexyl group and the like. Specific examples of the aryl group having 6 to 12 carbon atoms include a phenyl group, a biphenyl group, a naphthyl group, and these aryl groups having the above alkyl group as a substituent. Furthermore, specific examples of the silyl group having a monovalent hydrocarbon group having 1 to 12 carbon atoms as a substituent include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl And a silyl group having an alkyl group having 1 to 12 carbon atoms such as a hexyl group, a heptyl group, an octyl group, a cyclopentyl group, and a cyclohexyl group as a substituent.
 一般式(1)で示されるチタノセン触媒の具体例としては、(イソプロピルアミド)ジメチル-9-フルオレニルシランチタンジメチル、(イソブチルアミド)ジメチル-9-フルオレニルシランチタンジメチル、(t-ブチルアミド)ジメチル-9-フルオレニルシランチタンジメチル、(イソプロピルアミド)ジメチル-9-フルオレニルシランチタンジクロリド、(イソブチルアミド)ジメチル-9-(3,6-ジメチルフルオレニル)シランチタンジクロリド、(t-ブチルアミド)ジメチル-9-フルオレニルシランチタンジクロリド、(イソプロピルアミド)ジメチル-9-(3,6-ジメチルフルオレニル)シランチタンジクロリド、(イソブチルアミド)ジメチル-9-(3,6-ジメチルフルオレニル)シランチタンジクロリド、(t-ブチルアミド)ジメチル-9-(3,6-ジメチルフルオレニル)シランチタンジメチル、(イソプロピルアミド)ジメチル-9-[3,6-ジ(i-プロピル)フルオレニル]シランチタンジクロリド、(イソブチルアミド)ジメチル-9-[3,6-ジ(i-プロピル)フルオレニル]シランチタンジクロリド、(t-ブチルアミド)ジメチル-9-[3,6-ジ(i-プロピル)フルオレニル]シランチタンジメチル、(イソプロピルアミド)ジメチル-9-[3,6-ジ(t-ブチル)フルオレニル]シランチタンジクロリド、(イソブチルアミド)ジメチル-9-[3,6-ジ(t-ブチル)フルオレニル]シランチタンジクロリド、(t-ブチルアミド)ジメチル-9-[3,6-ジ(t-ブチル)フルオレニル]シランチタンジメチル、(イソプロピルアミド)ジメチル-9-[2,7-ジ(t-ブチル)フルオレニル]シランチタンジクロリド、(イソブチルアミド)ジメチル-9-[2,7-ジ(t-ブチル)フルオレニル]シランチタンジクロリド、(t-ブチルアミド)ジメチル-9-[2,7-ジ(t-ブチル)フルオレニル]シランチタンジメチル、(イソプロピルアミド)ジメチル-9-(2,3,6,7-テトラメチルフルオレニル)シランチタンジクロリド、(イソブチルアミド)ジメチル-9-(2,3,6,7-テトラメチルフルオレニル)シランチタンジクロリド、(t-ブチルアミド)ジメチル-9-(2,3,6,7-テトラメチルフルオレニル)シランチタンジメチル等を挙げることができる。好ましくは(t-ブチルアミド)ジメチル-9-フルオレニルシランチタンジメチル((t-BuNSiMeFlu)TiMe)である。(t-BuNSiMeFlu)TiMeは、下記式(2)で表されるチタニウム錯体であり、例えば、「Macromolecules、第31巻、3184頁、1998年」の記載に基づき、容易に合成することができる。 Specific examples of the titanocene catalyst represented by the general formula (1) include (isopropylamide) dimethyl-9-fluorenylsilane titanium dimethyl, (isobutylamide) dimethyl-9-fluorenylsilane titanium dimethyl, (t-butylamide). ) Dimethyl-9-fluorenylsilane titanium dimethyl, (isopropylamido) dimethyl-9-fluorenylsilane titanium dichloride, (isobutylamido) dimethyl-9- (3,6-dimethylfluorenyl) silane titanium dichloride, ( t-butylamido) dimethyl-9-fluorenylsilane titanium dichloride, (isopropylamido) dimethyl-9- (3,6-dimethylfluorenyl) silane titanium dichloride, (isobutylamido) dimethyl-9- (3,6- Dimethylfluorenyl) silane titanium Lido, (t-butylamido) dimethyl-9- (3,6-dimethylfluorenyl) silane titanium dimethyl, (isopropylamido) dimethyl-9- [3,6-di (i-propyl) fluorenyl] silane titanium dichloride, (Isobutylamido) dimethyl-9- [3,6-di (i-propyl) fluorenyl] silanetitanium dichloride, (t-butylamido) dimethyl-9- [3,6-di (i-propyl) fluorenyl] silanetitanium dimethyl , (Isopropylamido) dimethyl-9- [3,6-di (t-butyl) fluorenyl] silane titanium dichloride, (Isobutylamido) dimethyl-9- [3,6-di (t-butyl) fluorenyl] silane titanium dichloride , (T-Butylamido) dimethyl-9- [3,6-di (t-butyl) fluorenyl Silane titanium dimethyl, (isopropylamido) dimethyl-9- [2,7-di (t-butyl) fluorenyl] silane titanium dichloride, (isobutylamido) dimethyl-9- [2,7-di (t-butyl) fluorenyl] Silane titanium dichloride, (t-butylamido) dimethyl-9- [2,7-di (t-butyl) fluorenyl] silane titanium dimethyl, (isopropylamido) dimethyl-9- (2,3,6,7-tetramethylfur Olenyl) silane titanium dichloride, (isobutylamido) dimethyl-9- (2,3,6,7-tetramethylfluorenyl) silane titanium dichloride, (t-butylamido) dimethyl-9- (2,3,6, 7-tetramethylfluorenyl) silane titanium dimethyl and the like. (T-Butylamido) dimethyl-9-fluorenylsilane titanium dimethyl ((t-BuNSiMe 2 Flu) TiMe 2 ) is preferred. (T-BuNSiMe 2 Flu) TiMe 2 is a titanium complex represented by the following formula (2). For example, it can be easily synthesized based on the description of “Macromolecules, Vol. 31, 3184, 1998”. Can do.
Figure JPOXMLDOC01-appb-C000002
(式中、Meはメチル基を、t-Buはtert-ブチル基を示す。)
Figure JPOXMLDOC01-appb-C000002
(In the formula, Me represents a methyl group, and t-Bu represents a tert-butyl group.)
[アルキルアルミノキサンからなる助触媒]
 本発明において用いられる助触媒は、アルキルアルミノキサンからなる。上記助触媒は、1種単独で又は2種以上組み合わせて使用することができる。
 アルキルアルミノキサンとしては、特に限定されず、例えば、下記式(3)又は(4)で表される化合物が挙げられる。下記式(3)又は(4)で表されるアルキルアルミノキサンは、トリアルキルアルミニウムと水との反応により得られる生成物である。
[Promoter made of alkylaluminoxane]
The cocatalyst used in the present invention comprises an alkylaluminoxane. The above promoters can be used alone or in combination of two or more.
The alkylaluminoxane is not particularly limited, and examples thereof include compounds represented by the following formula (3) or (4). The alkylaluminoxane represented by the following formula (3) or (4) is a product obtained by the reaction of trialkylaluminum and water.
Figure JPOXMLDOC01-appb-C000003
(式中、Rは炭素数1~4のアルキル基、nは0~40、好ましくは2~30の整数を示す。)
Figure JPOXMLDOC01-appb-C000003
(In the formula, R represents an alkyl group having 1 to 4 carbon atoms, and n represents an integer of 0 to 40, preferably 2 to 30.)
 アルキルアルミノキサンとしては、メチルアルミノキサン及びメチルアルミノキサンのメチル基の一部を他のアルキル基で置換した修飾メチルアルミノキサンが挙げられる。修飾メチルアルミノキサンとしては、例えば、置換後のアルキル基として、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基等の炭素数2~4のアルキル基を有する修飾メチルアルミノキサンが好ましく、特に、メチル基の一部をイソブチル基で置換した修飾メチルアルミノキサンがより好ましい。アルキルアルミノキサンの具体例としては、メチルアルミノキサン、エチルアルミノキサン、プロピルアルミノキサン、ブチルアルミノキサン、イソブチルアルミノキサン、メチルエチルアルミノキサン、メチルブチルアルミノキサン、メチルイソブチルアルミノキサン等が挙げられ、中でも、メチルアルミノキサン及びメチルイソブチルアルミノキサンが好ましい。 Examples of the alkylaluminoxane include methylaluminoxane and modified methylaluminoxane in which a part of the methyl group of methylaluminoxane is substituted with another alkyl group. As the modified methylaluminoxane, for example, a modified methylaluminoxane having an alkyl group having 2 to 4 carbon atoms such as an ethyl group, a propyl group, an isopropyl group, a butyl group, and an isobutyl group as an alkyl group after substitution is preferable. A modified methylaluminoxane in which a part of the group is substituted with an isobutyl group is more preferable. Specific examples of the alkylaluminoxane include methylaluminoxane, ethylaluminoxane, propylaluminoxane, butylaluminoxane, isobutylaluminoxane, methylethylaluminoxane, methylbutylaluminoxane, methylisobutylaluminoxane and the like. Among them, methylaluminoxane and methylisobutylaluminoxane are preferable.
 アルキルアルミノキサンは、公知の方法で調製することができる。また、アルキルアルミノキサンとしては、市販品を用いてもよい。アルキルアルミノキサンの市販品としては、例えば、MMAO-3A、TMAO-200シリーズ、TMAO-340シリーズ(いずれも東ソー・ファインケム(株)製)やメチルアルミノキサン溶液(アルベマール社製)等が挙げられる。 Alkylaluminoxane can be prepared by a known method. Moreover, as an alkylaluminoxane, you may use a commercial item. Examples of commercially available products of alkylaluminoxane include MMAO-3A, TMAO-200 series, TMAO-340 series (all manufactured by Tosoh Finechem Co., Ltd.) and methylaluminoxane solution (manufactured by Albemarle).
[連鎖移動剤]
 本発明において用いられる連鎖移動剤は、連鎖移動能を有する化合物である。連鎖移動剤は、1種単独で又は2種以上組み合わせて使用することができる。
[Chain transfer agent]
The chain transfer agent used in the present invention is a compound having chain transfer ability. A chain transfer agent can be used individually by 1 type or in combination of 2 or more types.
 連鎖移動剤としては、特に限定されず、連鎖移動能を有する公知の化合物を用いることができ、例えば、アルキルアルミニウムが挙げられる。アルキルアルミニウムとしては、例えば、下記一般式(5)で示される化合物が挙げられる。
 (R10AlX3-z (5)
(式中、R10は炭素数が1~15、好ましくは1~8のアルキル基であり、Xはハロゲン原子又は水素原子であり、zは1~3の整数である。)
The chain transfer agent is not particularly limited, and a known compound having chain transfer ability can be used, and examples thereof include alkylaluminum. Examples of the alkylaluminum include a compound represented by the following general formula (5).
(R 10 ) z AlX 3-z (5)
(Wherein R 10 is an alkyl group having 1 to 15 carbon atoms, preferably 1 to 8 carbon atoms, X is a halogen atom or a hydrogen atom, and z is an integer of 1 to 3.)
 炭素数が1~15のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-オクチル基等が挙げられる。 Examples of the alkyl group having 1 to 15 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and an n-octyl group.
 アルキルアルミニウムの具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリn-ブチルアルミニウム、トリイソブチルアルミニウム、トリsec-ブチルアルミニウム、トリn-オクチルアルミニウム等のトリアルキルアルミニウム;ジメチルアルミニウムクロリド、ジイソブチルアルミニウムクロリド等のジアルキルアルミニウムハライド;ジイソブチルアルミニウムハイドライド等のジアルキルアルミニウムハイドライド;ジメチルアルミニウムメトキシド等のジアルキルアルミニウムアルコキシドが挙げられる。 Specific examples of alkylaluminum include trialkylaluminum such as trimethylaluminum, triethylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, trisec-butylaluminum, trin-octylaluminum; dimethylaluminum chloride, diisobutyl Dialkylaluminum halides such as aluminum chloride; dialkylaluminum hydrides such as diisobutylaluminum hydride; and dialkylaluminum alkoxides such as dimethylaluminum methoxide.
 その他の連鎖移動剤として、メタロセン触媒での重合で知られているChain Shuttling剤も用いることができる。Chain Shuttling剤の例として、上述したアルキルアルミニウムやアルキル亜鉛が挙げられる。アルキル亜鉛としては、例えば、下記一般式(6)で示される化合物が挙げられる。
 (R11ZnX2-y (6)
(式中、R11は炭素数が1~15、好ましくは1~8のアルキル基であり、Xはハロゲン原子又は水素原子であり、yは0~2の整数である。)
As other chain transfer agents, Chain Shutting agents known for polymerization with metallocene catalysts can also be used. Examples of the chain shuffling agent include the above-described alkyl aluminum and alkyl zinc. As alkyl zinc, the compound shown by following General formula (6) is mentioned, for example.
(R 11 ) z ZnX 2-y (6)
(Wherein R 11 is an alkyl group having 1 to 15 carbon atoms, preferably 1 to 8 carbon atoms, X is a halogen atom or a hydrogen atom, and y is an integer of 0 to 2.)
 炭素数が1~15のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-オクチル基等が挙げられる。 Examples of the alkyl group having 1 to 15 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and an n-octyl group.
 アルキル亜鉛の具体例としては、ジメチル亜鉛、ジエチル亜鉛、ジイソプロピル亜鉛、ジn-ブチル亜鉛、ジイソブチル亜鉛、ジsec-ブチル亜鉛アルミニウム、ジn-オクチル亜鉛等のジアルキル亜鉛;メチル亜鉛クロリド、イソブチル亜鉛クロリド等のアルキル亜鉛ハライド;イソブチル亜鉛ハイドライド等のアルキル亜鉛ハイドライド;メチル亜鉛メトキシド等のアルキル亜鉛アルコキシド;塩化亜鉛等のハロゲン化亜鉛等が挙げられる。 Specific examples of alkyl zinc include dialkyl zinc such as dimethyl zinc, diethyl zinc, diisopropyl zinc, di n-butyl zinc, diisobutyl zinc, disec-butyl zinc aluminum, di n-octyl zinc; methyl zinc chloride, isobutyl zinc chloride Alkyl zinc halides such as isobutyl zinc hydride; alkyl zinc alkoxides such as methyl zinc methoxide; zinc halides such as zinc chloride.
 アルキルアルミニウム又はアルキル亜鉛は、重合系内に直接投入しても、またアルキルアルミノキサン中に含有させた状態で投入してもよい。また、アルキルアルミノキサンを製造する際に用いられ、製造後に残存する原料のアルキルアルミニウムでもよい。また、アルキルアルミニウムとアルキル亜鉛は組み合わせて使用してもよい。 Alkyl aluminum or alkyl zinc may be charged directly into the polymerization system or may be charged in the state of being contained in the alkyl aluminoxane. Moreover, the alkylaluminum of the raw material used when manufacturing an alkylaluminoxane and remaining after manufacture may be sufficient. Alkyl aluminum and alkyl zinc may be used in combination.
[環状オレフィンモノマー(A)]
 ノルボルネンから誘導される環状オレフィンモノマー(A)としては、例えば、ノルボルネン及び置換ノルボルネンが挙げられ、ノルボルネンが好ましい。上記環状オレフィンモノマー(A)は、1種単独で又は2種以上組み合わせて使用することができる。
[Cyclic olefin monomer (A)]
Examples of the cyclic olefin monomer (A) derived from norbornene include norbornene and substituted norbornene, and norbornene is preferable. The said cyclic olefin monomer (A) can be used individually by 1 type or in combination of 2 or more types.
 上記置換ノルボルネンは特に限定されず、この置換ノルボルネンが有する置換基としては、例えば、ハロゲン原子、1価又は2価の炭化水素基が挙げられる。置換ノルボルネンの具体例としては、下記一般式(I)で示されるものが挙げられる。 The substituted norbornene is not particularly limited, and examples of the substituent that the substituted norbornene has include a halogen atom, a monovalent or divalent hydrocarbon group. Specific examples of the substituted norbornene include those represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000004
(式中、R~R12は、それぞれ同一でも異なっていてもよく、水素原子、ハロゲン原子、及び、炭化水素基からなる群より選ばれるものであり、
 RとR10、R11とR12は、一体化して2価の炭化水素基を形成してもよく、
 R又はR10と、R11又はR12とは、互いに環を形成していてもよい。
 また、nは、0又は正の整数を示し、
 nが2以上の場合には、R~Rは、それぞれの繰り返し単位の中で、それぞれ同一でも異なっていてもよい。
 ただし、n=0の場合、R~R及びR~R12の少なくとも1個は、水素原子ではない。)
Figure JPOXMLDOC01-appb-C000004
(Wherein R 1 to R 12 may be the same or different and are each selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group;
R 9 and R 10 , R 11 and R 12 may be integrated to form a divalent hydrocarbon group,
R 9 or R 10 and R 11 or R 12 may form a ring with each other.
N represents 0 or a positive integer;
When n is 2 or more, R 5 to R 8 may be the same or different in each repeating unit.
However, when n = 0, at least one of R 1 to R 4 and R 9 to R 12 is not a hydrogen atom. )
 一般式(I)で示される置換ノルボルネンについて説明する。一般式(I)におけるR~R12は、それぞれ同一でも異なっていてもよく、水素原子、ハロゲン原子、及び、炭化水素基からなる群より選ばれるものである。 The substituted norbornene represented by the general formula (I) will be described. R 1 to R 12 in the general formula (I) may be the same or different and are selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group.
 R~Rの具体例としては、例えば、水素原子;フッ素、塩素、臭素等のハロゲン原子;炭素数1以上20以下のアルキル基等を挙げることができ、これらはそれぞれ異なっていてもよく、部分的に異なっていてもよく、また、全部が同一であってもよい。 Specific examples of R 1 to R 8 include, for example, a hydrogen atom; a halogen atom such as fluorine, chlorine and bromine; an alkyl group having 1 to 20 carbon atoms, and these may be different from each other. , May be partially different or all may be the same.
 また、R~R12の具体例としては、例えば、水素原子;フッ素、塩素、臭素等のハロゲン原子;炭素数1以上20以下のアルキル基;シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、エチルフェニル基、イソプロピルフェニル基、ナフチル基、アントリル基等の置換又は無置換の芳香族炭化水素基;ベンジル基、フェネチル基、その他アルキル基にアリール基が置換したアラルキル基等を挙げることができ、これらはそれぞれ異なっていてもよく、部分的に異なっていてもよく、また、全部が同一であってもよい。 Specific examples of R 9 to R 12 include, for example, a hydrogen atom; a halogen atom such as fluorine, chlorine and bromine; an alkyl group having 1 to 20 carbon atoms; a cycloalkyl group such as a cyclohexyl group; a phenyl group and tolyl Group, ethylphenyl group, isopropylphenyl group, naphthyl group, anthryl group and the like substituted or unsubstituted aromatic hydrocarbon group; benzyl group, phenethyl group, and other aralkyl groups in which an alkyl group is substituted with an aryl group These may be different from each other, may be partially different, or all may be the same.
 RとR10、又はR11とR12とが一体化して2価の炭化水素基を形成する場合の具体例としては、例えば、エチリデン基、プロピリデン基、イソプロピリデン基等のアルキリデン基等を挙げることができる。 Specific examples of the case where R 9 and R 10 or R 11 and R 12 are integrated to form a divalent hydrocarbon group include, for example, alkylidene groups such as an ethylidene group, a propylidene group, and an isopropylidene group. Can be mentioned.
 R又はR10と、R11又はR12とが、互いに環を形成する場合には、形成される環は単環でも多環であってもよく、架橋を有する多環であってもよく、二重結合を有する環であってもよく、またこれらの環の組み合わせからなる環であってもよい。また、これらの環はメチル基等の置換基を有していてもよい。 When R 9 or R 10 and R 11 or R 12 form a ring with each other, the formed ring may be monocyclic or polycyclic, or may be a polycyclic ring having a bridge. , A ring having a double bond, or a ring composed of a combination of these rings may be used. Moreover, these rings may have a substituent such as a methyl group.
 一般式(I)で示される置換ノルボルネンの具体例としては、5-メチル-ビシクロ[2.2.1]ヘプタ-2-エン、5,5-ジメチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-エチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-ブチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-エチリデン-ビシクロ[2.2.1]ヘプタ-2-エン、5-ヘキシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-オクチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-オクタデシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-メチリデン-ビシクロ[2.2.1]ヘプタ-2-エン、5-ビニル-ビシクロ[2.2.1]ヘプタ-2-エン、5-プロペニル-ビシクロ[2.2.1]ヘプタ-2-エン等の2環の環状オレフィン; Specific examples of the substituted norbornene represented by the general formula (I) include 5-methyl-bicyclo [2.2.1] hept-2-ene, 5,5-dimethyl-bicyclo [2.2.1] hepta- 2-ene, 5-ethyl-bicyclo [2.2.1] hept-2-ene, 5-butyl-bicyclo [2.2.1] hept-2-ene, 5-ethylidene-bicyclo [2.2. 1] Hept-2-ene, 5-hexyl-bicyclo [2.2.1] hept-2-ene, 5-octyl-bicyclo [2.2.1] hept-2-ene, 5-octadecyl-bicyclo [ 2.2.1] hept-2-ene, 5-methylidene-bicyclo [2.2.1] hept-2-ene, 5-vinyl-bicyclo [2.2.1] hept-2-ene, 5- Bicyclic such as propenyl-bicyclo [2.2.1] hept-2-ene Jo olefin;
トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、トリシクロ[4.3.0.12,5]デカ-3-エン;トリシクロ[4.4.0.12,5]ウンデカ-3,7-ジエン若しくはトリシクロ[4.4.0.12,5]ウンデカ-3,8-ジエン又はこれらの部分水素添加物(又はシクロペンタジエンとシクロヘキセンの付加物)であるトリシクロ[4.4.0.12,5]ウンデカ-3-エン;5-シクロペンチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-シクロヘキシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-シクロヘキセニルビシクロ[2.2.1]ヘプタ-2-エン、5-フェニル-ビシクロ[2.2.1]ヘプタ-2-エンといった3環の環状オレフィン; Tricyclo [4.3.0.1 2,5 ] deca-3,7-diene (common name: dicyclopentadiene), tricyclo [4.3.0.1 2,5 ] dec-3-ene; tricyclo [ 4.4.0.1 2,5 ] undeca-3,7-diene or tricyclo [4.4.0.1 2,5 ] undeca-3,8-diene or a partially hydrogenated product thereof (or cyclopentadiene) Tricyclo [4.4.0.1 2,5 ] undec-3-ene; 5-cyclopentyl-bicyclo [2.2.1] hept-2-ene, 5-cyclohexyl-bicyclo [2.2.1] hept-2-ene, 5-cyclohexenylbicyclo [2.2.1] hept-2-ene, 5-phenyl-bicyclo [2.2.1] hept-2-ene A cyclic olefin of the ring;
テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(単にテトラシクロドデセンともいう)、8-メチルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-エチルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-メチリデンテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-エチリデンテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-ビニルテトラシクロ[4,4.0.12,5.17,10]ドデカ-3-エン、8-プロペニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エンといった4環の環状オレフィン; Tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene (also simply referred to as tetracyclododecene), 8-methyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-ethyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-methylidenetetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-ethylidenetetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-vinyltetracyclo [4,4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-propenyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] tetracyclic olefins such as dodec-3-ene;
8-シクロペンチル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-シクロヘキシル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-シクロヘキセニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-フェニル-シクロペンチル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン;テトラシクロ[7.4.13,6.01,9.02,7]テトラデカ-4,9,11,13-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレンともいう)、テトラシクロ[8.4.14,7.01,10.03,8]ペンタデカ-5,10,12,14-テトラエン(1,4-メタノ-1,4,4a,5,10,10a-へキサヒドロアントラセンともいう);ペンタシクロ[6.6.1.13,6.02,7.09,14]-4-ヘキサデセン、ペンタシクロ[6.5.1.13,6.02,7.09,13]-4-ペンタデセン、ペンタシクロ[7.4.0.02,7.13,6.110,13]-4-ペンタデセン;ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]-5-エイコセン、ヘプタシクロ[8.7.0.12,9.03,8.14,7.012,17.113,l6]-14-エイコセン;シクロペンタジエンの4量体等の多環の環状オレフィンを挙げることができる。 8-cyclopentyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-cyclohexyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-cyclohexenyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-phenyl-cyclopentyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene; tetracyclo [7.4.1 3,6 . 0 1,9 . 0 2,7 ] tetradeca-4,9,11,13-tetraene (also referred to as 1,4-methano-1,4,4a, 9a-tetrahydrofluorene), tetracyclo [8.4.1 4,7 . 0 1,10 . 0 3,8 ] pentadeca-5,10,12,14-tetraene (also referred to as 1,4-methano-1,4,4a, 5,10,10a-hexahydroanthracene); pentacyclo [6.6.1] .1,3,6 . 0 2,7 . 0 9,14 ] -4-hexadecene, pentacyclo [6.5.1.1 3,6 . 0 2,7 . 0 9,13] -4-pentadecene, pentacyclo [7.4.0.0 2,7. 1 3,6 . 1 10,13] -4-pentadecene; heptacyclo [8.7.0.1 2,9. 1 4,7 . 1 11, 17 . 0 3,8 . 0 12,16 ] -5-eicosene, heptacyclo [8.7.0.1 2,9 . 0 3,8 . 1 4,7 . 0 12,17 . 1 13,16 ] -14-eicosene ; and polycyclic cyclic olefins such as cyclopentadiene tetramer.
 中でも、アルキル置換ノルボルネン(例えば、1個以上のアルキル基で置換されたビシクロ[2.2.1]ヘプタ-2-エン)、アルキリデン置換ノルボルネン(例えば、1個以上のアルキリデン基で置換されたビシクロ[2.2.1]ヘプタ-2-エン)が好ましく、5-エチリデン-ビシクロ[2.2.1]ヘプタ-2-エン(慣用名:5-エチリデン-2-ノルボルネン、又は、単にエチリデンノルボルネン)が特に好ましい。 Among these, alkyl-substituted norbornene (eg, bicyclo [2.2.1] hept-2-ene substituted with one or more alkyl groups), alkylidene-substituted norbornene (eg, bicyclo substituted with one or more alkylidene groups). [2.2.1] hept-2-ene), preferably 5-ethylidene-bicyclo [2.2.1] hept-2-ene (common name: 5-ethylidene-2-norbornene, or simply ethylidene norbornene Is particularly preferred.
[α-オレフィンモノマー(B)]
 C4~C12のα-オレフィンから誘導されるα-オレフィンモノマー(B)としては、例えば、C4~C12のα-オレフィンや、ハロゲン原子等の少なくとも1種の置換基を有するC4~C12のα-オレフィンが挙げられ、C4~C12のα-オレフィンが好ましく、C6~C10のα-オレフィンがより好ましい。
[Α-olefin monomer (B)]
Examples of the α-olefin monomer (B) derived from a C4 to C12 α-olefin include C4 to C12 α-olefin and a C4 to C12 α-olefin having at least one substituent such as a halogen atom. Examples thereof include olefins, and C4 to C12 α-olefins are preferable, and C6 to C10 α-olefins are more preferable.
 C4~C12のα-オレフィンは特に限定されないが、例えば、1-ブテン、1-ペンテン、1-へキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-へキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-へキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン等が挙げられる。中でも、1-ヘキセン、1-オクテン、1-デセンが好ましい。 The C4 to C12 α-olefin is not particularly limited. For example, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1- Pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3- Examples include ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene and the like. Of these, 1-hexene, 1-octene and 1-decene are preferable.
[重合工程の条件]
 重合工程の条件は、所望の共重合体が得られる限り、特に限定されず、公知の条件を用いることができ、重合温度、重合圧力、重合時間等は適宜調整される。また、各成分の使用量は、以下のとおりに例示される。
 α-オレフィンモノマー(B)の添加量は、環状オレフィンモノマー(A)100質量部に対し、1質量部以上500質量部以下であることが好ましく、10質量部以上300質量部以下であることがより好ましい。
 チタノセン触媒の使用量は、環状オレフィンモノマー(A)100質量部に対し、0.00001質量部以上0.1質量部以下であることが好ましく、0.0001質量部以上0.05質量部以下であることがより好ましい。
 アルキルアルミノキサンの使用量は、環状オレフィンモノマー(A)100質量部に対し、Al基準で0.0001質量部以上5質量部以下であることが好ましく、0.01質量部以上3質量部以下であることがより好ましい。
 連鎖移動剤の使用量は、環状オレフィンモノマー(A)100質量部に対し、0.0001質量部以上10質量部以下であることが好ましく、0.01質量部以上5質量部以下であることがより好ましい。
[Conditions for polymerization process]
The conditions for the polymerization step are not particularly limited as long as the desired copolymer is obtained, and known conditions can be used, and the polymerization temperature, polymerization pressure, polymerization time and the like are appropriately adjusted. Moreover, the usage-amount of each component is illustrated as follows.
The addition amount of the α-olefin monomer (B) is preferably 1 part by mass or more and 500 parts by mass or less, and preferably 10 parts by mass or more and 300 parts by mass or less with respect to 100 parts by mass of the cyclic olefin monomer (A). More preferred.
The amount of titanocene catalyst used is preferably 0.00001 parts by mass or more and 0.1 parts by mass or less, and 0.0001 parts by mass or more and 0.05 parts by mass or less with respect to 100 parts by mass of the cyclic olefin monomer (A). More preferably.
The amount of the alkylaluminoxane used is preferably 0.0001 parts by mass or more and 5 parts by mass or less, and 0.01 parts by mass or more and 3 parts by mass or less based on Al with respect to 100 parts by mass of the cyclic olefin monomer (A). It is more preferable.
The amount of the chain transfer agent used is preferably 0.0001 parts by mass to 10 parts by mass and more preferably 0.01 parts by mass to 5 parts by mass with respect to 100 parts by mass of the cyclic olefin monomer (A). More preferred.
 以下、実施例を示し、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。特に断らない限り、量を表す「部」は「質量部」を意味する。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples. Unless otherwise specified, “part” representing an amount means “part by mass”.
[共重合体の作製]
 乾燥し、窒素雰囲気下に保ったガラス反応器に、表1に記載された各モノマー、及び表2に記載された助触媒を加え、重合温度に保ったのち、表2に記載された触媒を加えた。なお、触媒及び助触媒は、それぞれトルエンに溶解させた状態で反応器に加えた。表3に示す重合温度及び重合時間で、反応器内を撹拌して重合を継続した後、2-プロパノール1質量部を添加して反応を終了させた。次いで、得られた重合反応液を多量の塩酸酸性メタノールに注いで重合体を完全に析出させ、濾別及び洗浄を行った後、60℃で1日間以上減圧乾燥して共重合体を得た。得られた共重合体の質量を測定した(表3中の「収量」)。使用した触媒量に対する得られた共重合体の割合を算出した(表3中の「g(共重合体)/g(触媒)」)。
[Production of copolymer]
Each monomer listed in Table 1 and the promoter described in Table 2 were added to a glass reactor that had been dried and kept under a nitrogen atmosphere, and after maintaining the polymerization temperature, the catalysts listed in Table 2 were used. added. The catalyst and the cocatalyst were each added to the reactor in a state dissolved in toluene. At the polymerization temperature and polymerization time shown in Table 3, the inside of the reactor was stirred and polymerization was continued, and then 1 part by mass of 2-propanol was added to complete the reaction. Next, the obtained polymerization reaction solution was poured into a large amount of hydrochloric acid methanol to completely precipitate the polymer, filtered and washed, and then dried under reduced pressure at 60 ° C. for 1 day or more to obtain a copolymer. . The mass of the obtained copolymer was measured (“Yield” in Table 3). The ratio of the obtained copolymer to the amount of catalyst used was calculated (“g (copolymer) / g (catalyst)” in Table 3).
 なお、使用した触媒及び助触媒の種類は下記のとおりである。ここで、t-Buはtert-ブチル基を、Fluはフルオレニル基を示す。
 触媒A:(t-BuNSiMeFlu)TiMe
 助触媒A:6.5質量%(Al原子の含有量として)MMAO-3Aトルエン溶液([(CH0.7(iso-C0.3AlO]で表されるメチルイソブチルアルミノキサンの溶液、東ソー・ファインケム(株)製、なお全Alに対して6mol%のトリメチルアルミニウムを含有する)
 助触媒B:9.0質量%(Al原子の含有量として)TMAO-211トルエン溶液(メチルアルミノキサンの溶液、東ソー・ファインケム(株)製、なお全Alに対して26mol%のトリメチルアルミニウムを含有する)
 助触媒C:トリイソブチルアルミニウム
 助触媒D:ジメチルアニリウムテトラキス(ペンタフルオロフェニル)ボレート
The types of catalyst and cocatalyst used are as follows. Here, t-Bu represents a tert-butyl group, and Flu represents a fluorenyl group.
Catalyst A: (t-BuNSiMe 2 Flu) TiMe 2
Cocatalyst A: 6.5% by mass (as Al atom content) MMAO-3A toluene solution ([(CH 3 ) 0.7 (iso-C 4 H 9 ) 0.3 AlO] n represented by n (A solution of isobutylaluminoxane, manufactured by Tosoh Finechem Co., Ltd., containing 6 mol% of trimethylaluminum based on the total Al)
Cocatalyst B: 9.0% by mass (as Al atom content) TMAO-211 toluene solution (methylaluminoxane solution, manufactured by Tosoh Finechem Co., Ltd., containing 26 mol% of trimethylaluminum with respect to the total Al )
Cocatalyst C: Triisobutylaluminum Cocatalyst D: Dimethylanilium tetrakis (pentafluorophenyl) borate
 各共重合体の数平均分子量、Tgを表3に示した。 The number average molecular weight and Tg of each copolymer are shown in Table 3.
 表1、表2、及び表3中の「部」の値は、2-ノルボルネン100部に対する値である。また、表2中の助触媒A及び助触媒Bについて、「部」の値はトルエン溶液としての値である。 The values of “parts” in Tables 1, 2, and 3 are values for 100 parts of 2-norbornene. Moreover, about the promoter A and the promoter B in Table 2, the value of "part" is a value as a toluene solution.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表3に示されるとおり、本発明によれば、使用した触媒量に対して得られる共重合体の割合が高い。 As shown in Table 3, according to the present invention, the proportion of the copolymer obtained is high with respect to the amount of catalyst used.

Claims (5)

  1.  チタノセン触媒の存在下で、少なくとも、ノルボルネンから誘導される環状オレフィンモノマー(A)とC4~C12のα-オレフィンから誘導されるα-オレフィンモノマー(B)とを重合させて共重合体を得る重合工程を含み、
     前記重合工程において得られる前記共重合体の量は、前記チタノセン触媒1g当たり1000g以上であり、かつ、前記共重合体の数平均分子量は20,000以上200,000以下である、共重合体の製造方法。
    Polymerization in which at least a cyclic olefin monomer (A) derived from norbornene and an α-olefin monomer (B) derived from a C4 to C12 α-olefin are polymerized to obtain a copolymer in the presence of a titanocene catalyst. Including steps,
    The amount of the copolymer obtained in the polymerization step is 1000 g or more per 1 g of the titanocene catalyst, and the number average molecular weight of the copolymer is 20,000 or more and 200,000 or less. Production method.
  2.  前記重合工程は、前記チタノセン触媒とともに、アルキルアルミノキサンからなる助触媒と連鎖移動剤との存在下で行われる、請求項1に記載の製造方法。 The production method according to claim 1, wherein the polymerization step is performed in the presence of a co-catalyst composed of an alkylaluminoxane and a chain transfer agent together with the titanocene catalyst.
  3.  前記連鎖移動剤は、アルキルアルミニウムである請求項2に記載の製造方法。 The method according to claim 2, wherein the chain transfer agent is an alkylaluminum.
  4.  前記アルキルアルミニウムは、トリメチルアルミニウムである請求項3に記載の製造方法。 The method according to claim 3, wherein the alkylaluminum is trimethylaluminum.
  5.  前記共重合体のガラス転移温度(Tg)は、170℃以上である請求項1から4のいずれか1項に記載の製造方法。 The glass transition temperature (Tg) of the copolymer is 170 ° C or higher, The production method according to any one of claims 1 to 4.
PCT/JP2015/061986 2014-05-23 2015-04-20 Method for producing cyclic olefin copolymer WO2015178143A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016521003A JP6685223B2 (en) 2014-05-23 2015-04-20 Method for producing cyclic olefin copolymer
KR1020167031265A KR102331299B1 (en) 2014-05-23 2015-04-20 Method for producing cyclic olefin copolymer
CN201580021148.6A CN106232641B (en) 2014-05-23 2015-04-20 Process for producing cyclic olefin copolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-107144 2014-05-23
JP2014107144 2014-05-23

Publications (1)

Publication Number Publication Date
WO2015178143A1 true WO2015178143A1 (en) 2015-11-26

Family

ID=54553819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061986 WO2015178143A1 (en) 2014-05-23 2015-04-20 Method for producing cyclic olefin copolymer

Country Status (5)

Country Link
JP (1) JP6685223B2 (en)
KR (1) KR102331299B1 (en)
CN (1) CN106232641B (en)
TW (1) TWI667263B (en)
WO (1) WO2015178143A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104676A (en) * 2016-12-26 2018-07-05 ポリプラスチックス株式会社 Method for producing catalyst composition for polymerization of cycloolefin and method for producing cycloolefin resin composition
WO2019026839A1 (en) * 2017-08-01 2019-02-07 ポリプラスチックス株式会社 Copolymer and production method for copolymer
JP2020007413A (en) * 2018-07-04 2020-01-16 ポリプラスチックス株式会社 Method for testing catalytic activity of metallocene catalyst, method for producing catalyst composition for olefin monomer polymerization, and method for producing polymer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114685715B (en) * 2020-12-31 2024-05-03 江苏博睿光电股份有限公司 Crosslinkable thermoplastic cycloolefin copolymer and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132523A (en) * 1991-11-11 1993-05-28 Idemitsu Kosan Co Ltd Production of cycloolefin polymer
JPH08268927A (en) * 1995-03-28 1996-10-15 Tokuyama Corp Purification of cyclic olefin and polymerization
JP2000119328A (en) * 1998-10-16 2000-04-25 Teijin Ltd Cyclic olefinic polymer with low content of catalyst residue, its use and production thereof
JP2000204120A (en) * 1999-01-18 2000-07-25 Mitsui Chemicals Inc Production of norbornene-based polymer
JP2007119660A (en) * 2005-10-31 2007-05-17 Nippon Zeon Co Ltd Cycloolefin addition copolymer, process for producing the same and molding material
JP2009298999A (en) * 2008-05-14 2009-12-24 Kaneka Corp Cyclic olefin addition copolymer, optical film and transparent conductive film for liquid crystal or el display element
WO2014014195A1 (en) * 2012-07-19 2014-01-23 (주)제이브이엠 Medicine management system and medicine management method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5017222B2 (en) 2007-09-25 2012-09-05 富士フイルム株式会社 Cyclic olefin copolymer, film, polarizing plate and liquid crystal display device using the same
KR101588368B1 (en) * 2013-03-11 2016-01-25 포리프라스틱 가부시키가이샤 Norbornene-type polymer solution

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132523A (en) * 1991-11-11 1993-05-28 Idemitsu Kosan Co Ltd Production of cycloolefin polymer
JPH08268927A (en) * 1995-03-28 1996-10-15 Tokuyama Corp Purification of cyclic olefin and polymerization
JP2000119328A (en) * 1998-10-16 2000-04-25 Teijin Ltd Cyclic olefinic polymer with low content of catalyst residue, its use and production thereof
JP2000204120A (en) * 1999-01-18 2000-07-25 Mitsui Chemicals Inc Production of norbornene-based polymer
JP2007119660A (en) * 2005-10-31 2007-05-17 Nippon Zeon Co Ltd Cycloolefin addition copolymer, process for producing the same and molding material
JP2009298999A (en) * 2008-05-14 2009-12-24 Kaneka Corp Cyclic olefin addition copolymer, optical film and transparent conductive film for liquid crystal or el display element
WO2014014195A1 (en) * 2012-07-19 2014-01-23 (주)제이브이엠 Medicine management system and medicine management method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104676A (en) * 2016-12-26 2018-07-05 ポリプラスチックス株式会社 Method for producing catalyst composition for polymerization of cycloolefin and method for producing cycloolefin resin composition
JP7150428B2 (en) 2016-12-26 2022-10-11 ポリプラスチックス株式会社 Method for producing catalyst composition for cyclic olefin polymerization and method for producing cyclic olefin resin composition
WO2019026839A1 (en) * 2017-08-01 2019-02-07 ポリプラスチックス株式会社 Copolymer and production method for copolymer
JP6491804B1 (en) * 2017-08-01 2019-03-27 ポリプラスチックス株式会社 Copolymer and process for producing copolymer
JP2020007413A (en) * 2018-07-04 2020-01-16 ポリプラスチックス株式会社 Method for testing catalytic activity of metallocene catalyst, method for producing catalyst composition for olefin monomer polymerization, and method for producing polymer
JP7101063B2 (en) 2018-07-04 2022-07-14 ポリプラスチックス株式会社 A method for verifying the catalytic activity of a metallocene catalyst, a method for producing a catalyst composition for olefin monomer polymerization, and a method for producing a polymer.

Also Published As

Publication number Publication date
KR102331299B1 (en) 2021-11-25
JPWO2015178143A1 (en) 2017-04-20
CN106232641A (en) 2016-12-14
KR20170012223A (en) 2017-02-02
JP6685223B2 (en) 2020-04-22
CN106232641B (en) 2020-12-01
TW201609842A (en) 2016-03-16
TWI667263B (en) 2019-08-01

Similar Documents

Publication Publication Date Title
EP0719803B1 (en) Process for the production of cycloolefin random copolymer
JP6491804B1 (en) Copolymer and process for producing copolymer
JP6685223B2 (en) Method for producing cyclic olefin copolymer
JP2018145425A (en) Cyclic olefin resin composition, method for producing the same, and molding
JP6358852B2 (en) Method for producing cyclic olefin copolymer
KR101588368B1 (en) Norbornene-type polymer solution
WO2020204187A1 (en) Cyclic olefin copolymer production method
KR101876950B1 (en) Molded article
JP7125569B2 (en) Method for producing cyclic olefin copolymer and catalyst composition for copolymerization of norbornene monomer and ethylene
CA2170703A1 (en) Process for the production of cycloolefin random copolymer
JP7426543B2 (en) Cyclic olefin copolymers, resin compositions, and film-like or sheet-like molded products
JP7383852B1 (en) Cyclic olefin copolymer and method for producing cyclic olefin copolymer
JP2023042441A (en) Method for producing norbornane skeleton-containing polymer, and norbornane skeleton-containing polymer
JP2022030194A (en) Cyclic olefin copolymer and method for producing cyclic olefin copolymer
JP2023112594A (en) Solution composition and film
WO2023149506A1 (en) Cyclic olefin copolymer and production method of cyclic olefin copolymer
JP2022060007A (en) Cyclic olefin copolymer, molding, and manufacturing method of cyclic olefin copolymer
JPH04189806A (en) Ethylene-cycloolefin random copolymer and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016521003

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167031265

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796693

Country of ref document: EP

Kind code of ref document: A1