WO2015177860A1 - 無線電力伝送制御方法および無線電力伝送システム - Google Patents

無線電力伝送制御方法および無線電力伝送システム Download PDF

Info

Publication number
WO2015177860A1
WO2015177860A1 PCT/JP2014/063323 JP2014063323W WO2015177860A1 WO 2015177860 A1 WO2015177860 A1 WO 2015177860A1 JP 2014063323 W JP2014063323 W JP 2014063323W WO 2015177860 A1 WO2015177860 A1 WO 2015177860A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
transmission
power transmission
receiver
receivers
Prior art date
Application number
PCT/JP2014/063323
Other languages
English (en)
French (fr)
Inventor
昭嘉 内田
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2016520839A priority Critical patent/JPWO2015177860A1/ja
Priority to EP14892722.1A priority patent/EP3151376A4/en
Priority to PCT/JP2014/063323 priority patent/WO2015177860A1/ja
Priority to CN201480078897.8A priority patent/CN106464020A/zh
Priority to KR1020167031885A priority patent/KR20160145152A/ko
Publication of WO2015177860A1 publication Critical patent/WO2015177860A1/ja
Priority to US15/351,711 priority patent/US20170063167A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • H04B5/263Multiple coils at either side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge

Definitions

  • the embodiment referred to in this application relates to a wireless power transmission control method and a wireless power transmission system.
  • the transmitter on the side that sends power and the power receiver on the side that receives the power sent from the transmitter are products of different manufacturers. However, it is preferable to perform standardization so that it can be used without any problem.
  • wireless power transmission technology using magnetic field resonance (magnetic field resonance) or electric field resonance (electric field resonance) is known as wireless power transmission using resonance of this strong coupling system.
  • Uchida Akiyoshi et al. (UCHIDA Akiyoshi, et al.), “Phase” and “Intensity” Control “of Multiple” Coil “Currents” in “Resonant” Magnetic ”Coupling,“ “IMWS-IWPT2012,” THU-C-1, “pp.53-56”, “May” 10-11, “2012” Toshio Ishizaki et al. (ISHIZAKI Toshio, et al.), "3-D Free-Access WPT System for Charging Movable Terminals," IMWS-IWPT2012, FRI-H-1, pp.219-222, May 10-11, 2012
  • a wireless power transmission control that includes a plurality of power transmitters (power transmission coils) and a plurality of power receivers, and wirelessly transmits power from the plurality of power transmission coils to each power receiver using magnetic field resonance or electric field resonance.
  • Various methods have been researched and developed as methods.
  • a plurality of power transmission coils and a plurality of power receivers are included, and power from the plurality of power transmission coils is wirelessly applied to the at least two power receivers using magnetic field resonance or electric field resonance.
  • a wireless power transmission control method for transmitting simultaneously is provided.
  • a single transmission efficiency for each of the power receivers by the plurality of power transmission coils and a single request power required by each of the power receivers are obtained, and then the single request power is divided by the single power transmission efficiency.
  • the single transmission power of each of the power receivers is calculated.
  • the first power receiver having the maximum single transmitted power that maximizes the single transmitted power is selected, and the plurality of power transmission coils are controlled so as to maximize the power transmission efficiency with respect to the first power receiver.
  • the disclosed wireless power transmission control method and wireless power transmission system have the effect of improving the power transmission efficiency of the entire system.
  • FIG. 1A is a diagram schematically illustrating an example of a wired power transmission system.
  • FIG. 1B is a diagram schematically illustrating an example of a wireless power transmission system.
  • FIG. 2A is a diagram schematically illustrating an example of a two-dimensional wireless power transmission system.
  • FIG. 2B is a diagram schematically illustrating an example of a three-dimensional wireless power transmission system.
  • FIG. 3 is a block diagram schematically illustrating an example of a wireless power transmission system.
  • FIG. 4A is a diagram (No. 1) for describing a modification of the transmission coil in the wireless power transmission system of FIG. 3.
  • FIG. 4B is a diagram (No. 2) for describing the modification of the transmission coil in the wireless power transmission system of FIG. 3.
  • FIG. 4C is a diagram (No.
  • FIG. 5A is a circuit diagram (part 1) illustrating an example of an independent resonant coil.
  • FIG. 5B is a circuit diagram (part 2) illustrating an example of an independent resonant coil.
  • FIG. 5C is a circuit diagram (part 3) illustrating an example of an independent resonant coil.
  • FIG. 5D is a circuit diagram (part 4) illustrating an example of an independent resonant coil.
  • FIG. 6A is a circuit diagram (part 1) illustrating an example of a resonance coil connected to a load or a power source.
  • FIG. 6B is a circuit diagram (part 2) illustrating an example of a resonance coil connected to a load or a power source.
  • FIG. 6A is a circuit diagram (part 1) illustrating an example of a resonance coil connected to a load or a power source.
  • FIG. 6B is a circuit diagram (part 2) illustrating an example of a resonance coil connected to a load or a power source.
  • FIG. 6C is a circuit diagram (part 3) illustrating an example of a resonance coil connected to a load or a power source.
  • FIG. 6D is a circuit diagram (part 4) illustrating an example of a resonance coil connected to a load or a power source.
  • FIG. 7A is a diagram (No. 1) for explaining an example of magnetic field control by a plurality of power transmitters.
  • FIG. 7B is a diagram (No. 2) for describing an example of magnetic field control by a plurality of power transmitters.
  • FIG. 7C is a diagram (No. 3) for explaining an example of magnetic field control by a plurality of power transmitters.
  • FIG. 8A is a diagram (No.
  • FIG. 8B is a diagram (No. 2) for describing an example of a two-dimensional wireless power transmission control method for a plurality of power receivers.
  • FIG. 8C is a diagram (No. 3) for describing an example of a two-dimensional wireless power transmission control method for a plurality of power receivers.
  • FIG. 9A is a diagram for describing an example of a three-dimensional wireless power transmission control method for a plurality of power receivers.
  • FIG. 9B is a diagram for describing another example of a three-dimensional wireless power transmission control method for a plurality of power receivers.
  • FIG. 10A is a diagram (No.
  • FIG. 10B is a diagram (No. 2) for describing a first processing example of the wireless power transmission control method according to the present embodiment.
  • FIG. 10C is a diagram (No. 3) for describing a first processing example of the wireless power transmission control method according to the present embodiment.
  • FIG. 10D is a diagram (No. 4) for describing a first processing example of the wireless power transmission control method according to the present embodiment.
  • FIG. 10E is a diagram (No. 5) for describing a first processing example of the wireless power transmission control method according to the present embodiment.
  • FIG. 11A is a diagram (No. 1) for describing a second processing example of the wireless power transmission control method according to the present embodiment.
  • FIG. 11B is a diagram (No. 2) for describing a second processing example of the wireless power transmission control method according to the present embodiment.
  • FIG. 11C is a diagram (No. 3) for describing a second processing example of the wireless power transmission control method according to the present embodiment.
  • FIG. 11D is a diagram (No. 4) for describing a second processing example of the wireless power transmission control method according to the present embodiment.
  • FIG. 11E is a diagram (No. 5) for describing a second processing example of the wireless power transmission control method according to the present embodiment.
  • FIG. 12A is a diagram (No. 1) for describing a third processing example in the wireless power transmission control method according to the present embodiment.
  • FIG. 12B is a diagram (No.
  • FIG. 12C is a diagram (No. 3) for describing a third processing example of the wireless power transmission control method according to the present embodiment.
  • FIG. 12D is a diagram (No. 4) for describing a third processing example of the wireless power transmission control method according to the present embodiment.
  • FIG. 12E is a diagram (No. 5) for describing a third processing example of the wireless power transmission control method according to the present embodiment.
  • FIG. 12F is a diagram (No. 6) for describing a third processing example of the wireless power transmission control method according to the present embodiment.
  • FIG. 12G is a diagram (No. 7) for describing a third processing example of the wireless power transmission control method according to the present embodiment.
  • FIG. 12H is a diagram (No. 8) for describing a third processing example of the wireless power transmission control method according to the present embodiment.
  • FIG. 12I is a diagram (No. 9) for describing a third processing example in the wireless power transmission control method according to the present embodiment.
  • FIG. 13 is a block diagram illustrating an example of a wireless power transmission system according to the present embodiment.
  • FIG. 14A is a flowchart (part 1) for explaining an example of processing of the wireless power transmission control method of the present embodiment.
  • FIG. 14B is a flowchart (part 2) for explaining an example of the process of the wireless power transmission control method according to the present embodiment.
  • FIG. 14C is a flowchart (No. 3) for explaining an example of the process of the wireless power transmission control method according to the present embodiment.
  • FIG. 14D is a flowchart (part 4) for explaining an example of the process of the wireless power transmission control method of the present embodiment.
  • FIG. 1A is a diagram schematically illustrating an example of a wired power transmission (wire connection power feeding) system
  • FIG. 1B is a diagram schematically illustrating an example of a wireless power transmission (wireless power feeding) system.
  • reference numerals 2A1 to 2C1 denote power receivers.
  • the power receiver 2A1 indicates, for example, a tablet computer (tablet) having a required power of 10 W
  • the power receiver 2B1 indicates, for example, a notebook computer having a required power of 50 W
  • the power receiver 2C1 has a required power of, for example, A 2.5 W smartphone is shown.
  • the requested power corresponds to, for example, power for charging the rechargeable battery (secondary battery) in each of the power receivers 2A1 to 2C1.
  • power is generally supplied from the USB terminal 3A or the power supply device 3B by wire connection using the power cables 4A to 4C (wired). Power transmission).
  • each of the power cables 4A to 4C is connected to the power receivers 2A1 to 2C1 via the connectors, so that by detecting the power receiver (connecting device) connected to the tip of the connector for each connector, The number of units can be detected, and the power supply can be fixed by the connector shape. Furthermore, by connecting the power cable according to the required power, the user recognizes the required power and at the same time appropriately supplies power to each connected device.
  • wireless power feeding wireless power transmission
  • FIG. 1B it is considered to transmit wireless power from the power transmitter 1A1 to the tablet 2A1, the notebook computer 2B1, and the smartphone 2C1.
  • FIG. 2A is a diagram schematically illustrating an example of a two-dimensional wireless power transmission (two-dimensional wireless power feeding) system.
  • wireless power transmission is performed by electromagnetic induction. Show.
  • the wireless power transmission system shown in FIG. 2A is a two-dimensional wireless power feeding system that allows free placement on the power receiving table 1A2.
  • FIG. 2B is a diagram schematically illustrating an example of a three-dimensional wireless power transmission (three-dimensional wireless power feeding) system, and illustrates, for example, how wireless power transmission is performed using magnetic field resonance or electric field resonance.
  • a plurality of power receivers existing within a predetermined range from the power transmitter 1A2 (inside the broken line in FIG. 2B) Can be supplied.
  • wireless power can be transmitted from the power transmitter 1A3 to the tablets 2A2, 2A3, notebook computers 2B2, 2B3, and the smartphone 2C2 within a predetermined range.
  • FIG. 2B only one power transmitter 1A3 is illustrated, but wireless power transmission is performed by using a plurality of power transmitters to a plurality of power receivers at various angles and positions using magnetic field resonance or electric field resonance. Is supposed to do.
  • the wireless power transmission system shown in FIG. 2B is, for example, a three-dimensional system that can obtain high power transmission efficiency even in a distant space as compared with the one using electromagnetic induction by using magnetic field resonance. It is a wireless power supply system.
  • FIG. 3 is a block diagram schematically showing an example of a wireless power transmission (three-dimensional wireless power feeding) system.
  • reference numeral 1 indicates a primary side (power transmission side: power transmitter), and 2 indicates a secondary side (power reception side: power receiver).
  • the power transmitter 1 includes a wireless power transmission unit 11, a high frequency power supply unit 12, a power transmission control unit 13, and a communication circuit unit (first communication circuit unit) 14.
  • the power receiver 2 includes a wireless power reception unit 21, a power reception circuit unit (rectification unit) 22, a power reception control unit 23, and a communication circuit unit (second communication circuit unit) 24.
  • the wireless power transmission unit 11 includes a first coil (power supply coil) 11b and a second coil (power transmission resonance coil: power transmission coil) 11a
  • the wireless power reception unit 21 includes a third coil (power reception resonance coil: power reception coil). 21a and a fourth coil (power extraction coil) 21b.
  • the power transmitter 1 and the power receiver 2 transfer energy (electric power) from the power transmitter 1 to the power receiver 2 by magnetic field resonance (electric field resonance) between the power transmission resonance coil 11a and the power reception resonance coil 21a. Perform transmission.
  • power transmission from the power transmission resonance coil 11a to the power reception resonance coil 21a can be performed not only by magnetic field resonance but also by electric field resonance.
  • magnetic field resonance will be mainly described as an example.
  • the power transmitter 1 and the power receiver 2 perform communication (short-distance communication) by the communication circuit unit 14 and the communication circuit unit 24.
  • the power transmission distance (power transmission range) by the power transmission resonance coil 11 a of the power transmitter 1 and the power reception resonance coil 21 a of the power receiver 2 is determined by the communication circuit unit 14 of the power transmitter 1 and the communication circuit unit 24 of the power receiver 2. It is set shorter than the communication distance (communication range).
  • the power transmission by the power transmission resonance coils 11a and 21a is a method (Out-band communication) independent of the communication by the communication circuit units 14 and 24.
  • the power transmission by the power transmission resonance coils 11a and 21a uses a frequency band of 6.78 MHz
  • the communication by the communication circuit units 14 and 24 uses a frequency band of 2.4 GHz, for example.
  • a DSSS wireless LAN or Bluetooth (Bluetooth (registered trademark)) conforming to IEEE 802.11b can be used.
  • the wireless power transmission system described above for example, in the near field having a distance of about the wavelength of the frequency to be used, magnetic field resonance by the power transmission resonance coil 11a of the power transmitter 1 and the power reception resonance coil 21a of the power receiver 2 is performed. Alternatively, electric power is transmitted using electric field resonance. Therefore, the power transmission range (power transmission area) changes according to the frequency used for power transmission.
  • the high frequency power supply unit 12 supplies power to the power supply coil (first coil) 11b, and the power supply coil 11b performs electromagnetic induction with respect to the power transmission resonance coil 11a disposed in the vicinity of the power supply coil 11b. Use to supply power.
  • the power transmission resonance coil 11a transmits power to the power reception resonance coil 21a (power receiver 2) at a resonance frequency that causes magnetic field resonance with the power reception resonance coil 21a.
  • the power receiving resonance coil 21a supplies power to the power extraction coil (fourth coil) 21b disposed in the vicinity of the power receiving resonance coil 21a by using electromagnetic induction.
  • a power receiving circuit unit 22 is connected to the power extraction coil 21b to extract predetermined power. Note that the power from the power receiving circuit unit 22 is used, for example, for charging a battery in the battery unit (load) 25 or as a power output for the circuit of the power receiver 2.
  • the high frequency power supply unit 12 of the power transmitter 1 is controlled by the power transmission control unit 13, and the power reception circuit unit 22 of the power receiver 2 is controlled by the power reception control unit 23.
  • the power transmission control unit 13 and the power reception control unit 23 are connected via the communication circuit units 14 and 24, and various controls are performed so that power transmission from the power transmitter 1 to the power receiver 2 can be performed in a preferable state. Is supposed to do.
  • FIGS. 4A to 4C are diagrams for explaining modifications of the transmission coil in the wireless power transmission system of FIG.
  • FIGS. 4A and 4B show an example of a three-coil configuration
  • FIG. 4C shows an example of a two-coil configuration.
  • the wireless power transmission unit 11 includes the first coil 11b and the second coil 11a
  • the wireless power reception unit 21 includes the third coil 21a and the fourth coil.
  • the wireless power receiving unit 21 is one coil (power receiving resonance coil: LC resonator) 21a
  • the wireless power transmitting unit 11 is one coil (power transmission resonance coil: LC resonator) 11a.
  • the wireless power receiving unit 21 is set to one power receiving resonance coil 21a
  • the wireless power transmission unit 11 is set to one power transmission resonance coil 11a.
  • 4A to 4C are merely examples, and it goes without saying that various modifications can be made.
  • FIGS. 5A to 5D are circuit diagrams showing examples of the independent resonance coil (power receiving resonance coil 21a), and FIGS. 6A to 6D are examples of the resonance coil (power receiving resonance coil 21a) connected to a load or a power source.
  • FIG. 5A to 5D are circuit diagrams showing examples of the independent resonance coil (power receiving resonance coil 21a)
  • FIGS. 6A to 6D are examples of the resonance coil (power receiving resonance coil 21a) connected to a load or a power source.
  • FIGS. 5A to 5D correspond to the power receiving resonance coil 21a in FIGS. 3 and 4B
  • FIGS. 6A to 6D correspond to the power receiving resonance coil 21a in FIGS. 4A and 4C.
  • the power receiving resonance coil 21a is a coil (L) 211, a capacitor (C) 212 and a switch 213 connected in series, and the switch 213 is normally turned off.
  • the power receiving resonance coil 21a is a series-connected coil (L) 211 and capacitor (C) 212, and a switch 213 connected in parallel to the capacitor 212. Keeps switch 213 on.
  • FIGS. 5C and 6C The example shown in FIGS. 5C and 6C is such that a switch 213 and a resistor (R) 214 connected in series are provided in parallel with the capacitor 212 in the power receiving resonance coil 21a of FIGS. 5B and 6B. 213 is turned on.
  • FIGS. 5D and 6D The example shown in FIGS. 5D and 6D is obtained by providing a switch 213 and another capacitor (C ′) 215 connected in series in parallel with the capacitor 212 in the power receiving resonance coil 21a of FIGS. 5B and 6B. At that time, the switch 213 is turned on.
  • the switch 213 is set to OFF or ON so that the power receiving resonance coil 21a does not operate during normal operation. This is to avoid, for example, generation of heat or the like by transmitting power to the unused power receiver 2 or a faulty power receiver 2.
  • the power transmission resonance coil 11a of the power transmitter 1 can be the same as that shown in FIGS. 5A to 5D and FIGS. 6A to 6D.
  • the power transmission resonance coil 11a of the power transmitter 1 is configured to operate during normal operation.
  • the on / off control may be performed by the output of the high frequency power supply unit 12.
  • the power transmission resonance coil 11a is obtained by short-circuiting the switch 213 in FIGS. 5A and 6A.
  • the selected power receiver when there are a plurality of power receivers 2, by selecting only the power receiving resonance coil 21 a of the predetermined power receiver 2 that transmits power from the power transmitter 1 and making it operable, the selected power receiver is selected. 2 can be transmitted (time division power transmission).
  • 7A to 7C are diagrams for explaining an example of magnetic field control by a plurality of power transmitters.
  • reference numerals 1A and 1B denote power transmitters
  • 2 denotes a power receiver.
  • the power transmission resonance coil 11aA for power transmission used for the magnetic field resonance of the power transmitter 1A and the power transmission resonance coil 11aB for power transmission used for the magnetic field resonance of the power transmitter 1B are, for example, arranged so as to be orthogonal to each other. It is installed.
  • the power receiving resonance coil 21a used for magnetic field resonance of the power receiver 2 is disposed at different angles (angles that are not parallel) at the portions surrounded by the power transmission resonance coils 11aA and 11aB.
  • the power transmission resonance coils (LC resonators) 11aA and 11aB can be provided in one power transmission device. That is, one power transmitter 1 may include a plurality of wireless power transmission units 11.
  • FIG. 7B shows a state where the power transmission resonance coils 11aA and 11aB output a magnetic field having the same phase
  • FIG. 7C shows a state where the power transmission resonance coils 11aA and 11aB output a magnetic field having an opposite phase.
  • each power receiver 2 (power reception resonance coil 21a) Transmit power according to the direction.
  • the wireless power transmission system described above includes a plurality of power transmitters and at least one power receiver, and depends on the position (X, Y, Z) and posture ( ⁇ X , ⁇ Y , ⁇ Z ) of the power receiver, Adjust the output (intensity and phase) between the transmitters.
  • the direction can be adjusted in any direction on the three-dimensional space. It will be appreciated that the orientation of the magnetic field (electric field) can be adjusted.
  • FIG. 8A to 8C are diagrams for explaining an example of a two-dimensional wireless power transmission control method for a plurality of power receivers.
  • FIG. 8A shows a state where, for example, magnetic power resonance is used to wirelessly supply power to two power receivers 2A and 2B having different desired powers by one power transmitter 1A.
  • FIG. 8B shows a state where wireless power feeding is performed from the power transmitter 1A (power transmission resonance coil 11a) to the power receiver 2A (power reception resonance coil 21aA) and the power receiver 2B (power reception resonance coil 21aB).
  • FIG. 8C is a diagram for explaining a method of controlling the power distribution ratio by shifting (detuning) the resonance point of the power receiver 2B.
  • the power receiver 2A indicates, for example, a mobile phone having a required power of 5 W
  • the power receiver 2B indicates, for example, a notebook computer having a required power of 50 W.
  • the LC resonator (wireless power receiving unit) of the mobile phone 2A and the LC resonator of the notebook computer 2B are assumed to have the same specifications.
  • reference symbol LL0 indicates the overall power transmission efficiency
  • LLA indicates the received power of the mobile phone 2A
  • LLB indicates the received power of the notebook computer 2B.
  • the power is equally distributed when the power receiving coils having the same specifications are mounted.
  • the inductance in the power receiving resonance coil of the mobile phone 2A is L A and the capacitance is C A
  • the inductance in the power receiving resonance coil of the notebook computer 2B is L B
  • the capacitance is C B.
  • the mobile phone 2A and the notebook computer 2B both receive 27.5 W of power.
  • control is performed so as to lower the power receiving efficiency ( ⁇ ip) by shifting the resonance point by the power receiving resonance coil of the mobile phone 2A. .
  • the capacitance C A of the capacitor in the power receiving resonance coil 21aA phone 2A, in order to shift from the resonance point of the power receiving resonance coil receiving efficiency is maximized, small (or, To be larger).
  • intentionally shifting the resonance condition (shifting the capacitance C A) to lower the Q value by, received power LLA phone 2A is a resonance point (P0) 27.
  • the power gradually decreases from 5 W, and can be set to, for example, 5 W of desired power.
  • the received power of the notebook computer 2B most of the power that the mobile phone 2A no longer receives is the received power of the notebook computer 2B. That is, it can be seen that the received power LLB of the notebook personal computer 2B increases as the received power LLA of the mobile phone 2A decreases, and the overall power transmission efficiency LL0 in the wireless power transmission system hardly decreases.
  • the coupling is adjusted by changing the capacitance value (capacitance C A ) of the resonance capacitor (capacitance) 212 of the power receiver 2A. It becomes possible to control the electric power to a desired distribution ratio.
  • the power transmission / reception efficiency of the entire system is substantially constant, and the power that has reached the power receiver 2A is reduced. Accordingly, the power to the power receiver 2B increases.
  • the received power can be distributed (distributed) to a desired ratio while transmitting to the whole (both the power receivers 2A and 2B) with substantially the same efficiency as compared with the case of single power feeding of only one of the power receivers 2A and 2B. I understand.
  • FIG. 9A is a diagram for explaining an example of a three-dimensional wireless power transmission control method for a plurality of power receivers, and controls the current and phase applied to the plurality of power transmission resonance coils (power transmission coils) to change the direction of the magnetic field. A method of changing and controlling the power transmitted to the power receivers 2A and 2B will be described.
  • FIG. 9B is a diagram for explaining another example of the three-dimensional wireless power transmission control method for a plurality of power receivers, and the received power of at least one power receiver while maintaining the overall power transmission efficiency. A method of controlling the power distribution ratio for the power receivers 2A and 2B by lowering the power is shown.
  • the power receiver 2A indicates, for example, a smartphone having a required power of 2.5 W
  • the power receiver 2B indicates, for example, a tablet computer (tablet) having a required power of 10 W.
  • 11aA and 11aB indicate, for example, two orthogonal power transmission resonance coils. These power transmission resonance coils 11aA and 11aB may be different power transmitters 1A and 1B, but may be provided in one power transmitter. Is as described above. In the following description, power transmission resonance coils 11aA and 11aB will be described as different power transmitters 1A and 1B.
  • the required power of the power receiver 2A is 2.5 W and the required power of the power receiver (tablet) 2B is 10 W
  • 9A and 9B can be considered.
  • control method shown in FIG. 9A controls the intensity and phase of the magnetic field output from the power transmitters 1A and 1B, so that the power receiver 2A receives 2.5 W and the power receiver 2B receives 10 W.
  • the combined magnetic field from the electric appliances 1A and 1B is controlled.
  • the intensity of the magnetic field is controlled, for example, by increasing the current of the power transmission resonance coil 11aA and decreasing the current of the power transmission resonance coil 11aB, and the direction of the combined magnetic field CMF is perpendicular to the power reception resonance coil 21aA of the power receiver 2A. Try to be close.
  • control method shown in FIG. 9A controls the intensity and phase of the magnetic field output from the power transmitters 1A and 1B, so that the power receiver 2A receives 2.5 W and the power receiver 2B receives 10 W.
  • the direction (direction) of the composite magnetic field CMF from the electric appliances 1A and 1B is controlled.
  • the intensity and phase of the magnetic field output from the power transmitters 1A and 1B are left as they are, and as described with reference to FIGS.
  • the resonance point of the power receiving resonance coil (21aA) is controlled to be shifted. That is, the power distribution ratio is controlled by detuning the power receiver 2A while keeping the combined magnetic field CMF as it is.
  • wireless power transmission wireless power feeding
  • three-dimensional wireless power feeding for example, current and phase control of a plurality of power transmitters, and control of a power distribution ratio in a plurality of power receivers can be performed by adjusting various parameters. Is required to do.
  • the parameters include, for example, the resonance condition of each power receiver that executes power distribution, the output intensity (current intensity) of each power transmitter that controls the magnetic field, and the phase thereof. As the number of electrical appliances increases, it becomes enormous.
  • the present embodiment can be applied to a wireless power transmission system that performs wireless power transmission to a plurality of power receivers using at least one power transmitter.
  • the following description mainly describes an example in which power transmission is performed wirelessly to a plurality (2 to 5) of power receivers using two power transmission resonance coils (power transmission coils) using magnetic field resonance (magnetic field resonance). However, there may be three or more power transmission resonance coils.
  • one power transmitter has one power transmission resonance coil
  • the number of power transmission resonance coils matches the number of power transmission devices, but one power transmitter may include a plurality of power transmission resonance coils.
  • the present embodiment can be similarly applied to a wireless power transmission system using electric field resonance (electric field resonance) instead of magnetic field resonance.
  • each power receiver can turn on and off the resonance system (power receiving resonance coil), thereby obtaining the single power transmission efficiency ( ⁇ i) of each power receiver. It is possible.
  • the single power transmission efficiency of each power receiver is determined based on the output (intensity ratio / phase) when only one selected power receiver is arranged and the other power receiver is not present or when the resonance condition is significantly deviated. ) Means the efficiency when optimizing. Further, at this time, the requested power requested by the power receiver can be obtained through communication with the power receiver.
  • any power transmitter may control the entire system as a master, but it may be any power receiver instead of the power transmitter, or the power transmitter itself.
  • another computer via a communication line can perform control.
  • the wireless power transmission system to which the present embodiment is applied after turning off the resonance system (power reception resonance system) of all the power receivers, only the resonance system of the specific power receiver is turned on and only to the specific power receiver. It is possible to transmit power (first power transmission). Thereby, it is possible to perform time-division power feeding that switches power in turn and transmits power sequentially to each power receiver.
  • each power receiver power receiving resonance coil
  • the received power of the specific power receiver that has shifted the resonance point is reduced (detuned) while maintaining the overall efficiency. It is also possible. As described above, even in the same combined magnetic field, the received power of a specific power receiver can be detuned to adjust the power distribution ratio to a desired ratio and simultaneously transmit power (third power transmission).
  • Select. Electric power is transmitted (fourth electric power transmission) based on the maximum single transmission power PTix.
  • each power receiver included in the wireless power transmission system is treated as having no priority. That is, in the following description, for example, when a laptop computer (power receiver) carried by a business trip employee is preferentially charged at a workplace, processing such as immediately starting power transmission to the laptop computer is not performed. The case is envisaged.
  • each power receiver is handled individually using the first power transmission, thereby simplifying the processing (control). Furthermore, using the fourth power transmission, the first power receiver having the maximum single transmission power PTix that maximizes the single transmission power PTi of the power receiver is selected (defined), thereby improving the transmission efficiency of the entire system.
  • each power transmitter power transmission resonance coil
  • the power receiving resonance Detuning is performed by intentionally shifting the resonance point of the coil.
  • the resonance system of the power receiver is turned off to stop power reception, and the next opportunity, for example, power supply to the first power receiver is completed. After the power is supplied, power is supplied.
  • power receivers close to the maximum single transmission power PTix of the first power receiver are grouped together with the first power receiver as a power receiver group and are included in the power receiver group.
  • a plurality of power transmission coils are controlled and electric power is transmitted to the power receiver at the same time.
  • the ratio can be set.
  • detune is performed on a power receiver whose received power is larger than the desired power in the plurality of power receivers included in the power receiver group. Further, for a power receiver whose received power is less than a predetermined magnitude, for example, the power receiving system is turned off by turning off the resonance system of the power receiver.
  • detune is performed for a power receiver whose received power is larger than the desired power. Further, for a power receiver whose received power is less than a predetermined magnitude, for example, the power receiving system is turned off by turning off the resonance system of the power receiver.
  • the power receiver group is divided by processing the m power transmission coils as m-dimensional vectors.
  • the m-dimensional vector may process the phase from the m power transmission coils only in two directions, in-phase and anti-phase. This can be considered that the single transmission power of each power receiver included in the power receiver group or the divided power receiver group is substantially equal (for example, 90% or more of PTix), and thus is standardized by power. This is because only the phase direction needs to be considered.
  • the current of the power transmitter can be regarded as a vector whose size is normalized.
  • the currents P1 to P4 of the four power transmission resonance coils are P1 (I11, I12, I13). , P2 (I21, I22, I23), P3 (I31, I32, I33), P4 (I41, I42, I43).
  • a vector angle is calculated from an angle formed by an arbitrary (some) vector and another vector among m-dimensional vectors. Then, when n is an integer greater than or equal to 2, when the power receiver group is divided into n, the vector angle power receivers included in the range in which the angle becomes narrower as n increases can be classified into the divided power receiver groups. it can.
  • the range of 45 ° when divided into two and the range of 30 ° when divided into three are merely examples, and can be set at various angles. Needless to say.
  • FIGS. 10A to 10E are diagrams for explaining a first processing example in the wireless power transmission control method of the present embodiment.
  • FIGS. 10A to 10E as in FIGS. 9A and 9B, two orthogonal power transmission resonance coils 11aA and 11aB (power transmitters 1A and 1B) and Two power receivers 2A and 2B are provided.
  • the power transmission resonance coils 11aA and 11aB are described as being provided in different power transmission devices 1A and 1B, two power transmission resonance coils 11aA and 11aB may be provided in one power transmission device.
  • the power receiver 2A indicates, for example, a smartphone having a required power of 2.5 W
  • the power receiver 2B indicates, for example, a tablet (tablet computer) having a required power of 10 W.
  • the power receiver (tablet) 2B of the power receiving resonance coil 21BB is ON only the power receiver 2A and off, obtaining the single transmitted power PT A of the power receiving device 2A.
  • the output ratio (intensity ratio) is 1: 2
  • the single power transmission efficiency ⁇ A of the power receiver 2A is 60%
  • the required power of the power receiver 2A is Since it is 2.5 W
  • the single transmission power PT B for only the power receiver 2B is obtained. That is, the resonance system of the power receiver 2A is turned off and only the power receiver 2B is turned on, and the single transmission power PT B of the power receiver 2B is obtained.
  • the output ratio is 2: 1
  • the single power transmission efficiency ⁇ B of the power receiver 2B is 60%
  • the required power of the power receiver 2B is 10 W.
  • the power transmitters 1A and 1B have an in-phase output, the output ratio is 2: 1, and the direction (direction) of the combined magnetic field by the power transmitters 1A and 1B is determined.
  • the power receiving efficiency of the power receiver 2A is 8%
  • the power receiving efficiency of the power receiver 2B is 50%.
  • the power transmitted by the power transmitters 1A and 1B is set to 20 W in order to obtain the power received by the power receiver 2B of 10 W
  • simultaneous power feeding is performed without performing detuning (third power transmission) of the power receiver 2B as it is (the power received by the power receiver 2A is 1.6 W).
  • the output ratio of the power transmitters 1A and 1B is 2: 1
  • the power received by the power receiver 2A is 1.6W
  • the power received by the power receiver 2B is 10W
  • the overall power transmission efficiency is 58%.
  • the resonance system the power receiving resonance coil 21aB
  • 11A to 11E are diagrams for explaining a second processing example in the wireless power transmission control method according to the present embodiment. Unlike the first processing example described above, the second processing example performs detuning. It has become. 11A to 11E, two power transmitters 1A and 1B (power transmission resonance coils 11aA and 11aB) and two power receivers 2A and 2B that are orthogonal to each other are provided.
  • the power receiver 2A indicates a smartphone with a required power of 2.5 W
  • the power receiver 2B indicates a tablet with a required power of 10 W.
  • the power receivers 2A and 2B are arranged in parallel and at different distances.
  • the output ratio is 1: 1
  • the single power transmission efficiency ⁇ A of the power receiver 2A is 10%
  • the power demand of the power receiver 2A is 2.5W.
  • the resonance system of the power receiver 2A is turned off to turn on only the power receiver 2B, and the single transmission power PT B of the power receiver 2B is obtained.
  • the output ratio is 1: 1
  • the single power transmission efficiency ⁇ B of the power receiver 2B is 80%
  • the power demand of the power receiver 2B is 10 W.
  • the power transmitters 1A and 1B have in-phase outputs, the output ratio is 1: 1, and the direction of the combined magnetic field by the power transmitters 1A and 1B is determined.
  • the power receiving efficiency of the power receiver 2A is 8%
  • the power receiving efficiency of the power receiver 2B is 60%.
  • the power transmitted by the power transmitters 1A and 1B is 31.3 W in order to obtain the power received by the power receiver 2A of 2.5 W
  • the power received by the power receiver 2B is 31.3 ⁇ 0.6 ⁇ 18.8. [W], which exceeds 10 W, which is the desired power of the power receiver 2B.
  • the received power is adjusted by intentionally shifting the resonance condition of the power receiver 2B. That is, for example, the capacitance (for example, the capacitance 212 in FIG. 5A) of the power receiving resonance coil (21aB) in the power receiver 2B is increased (or decreased) and shifted from the resonance point until the received power reaches 10 W. Do.
  • the output ratio of the power transmitters 1A and 1B is 1: 1, the power received by the power receiver 2A is 2.5 W, the power received by the power receiver 2B is 10 W, and the overall power transmission efficiency is 45%.
  • FIG. 12A to 12I are diagrams for explaining a third processing example in the wireless power transmission control method of this embodiment.
  • the third processing example two orthogonal power transmitters 1A and 1B and five power receivers 2A1 to 2A3, 2B1 and 2B2 are provided.
  • Each of the power receivers 2A1 to 2A3 indicates a smartphone having a required power of 2.5W
  • each of the power receivers 2B1 and 2B2 indicates a tablet having a required power of 10W.
  • the power receiver to 2A2,2A3 and off resonance system of the power receiver 2B1,2B2 is turned on only the power receiver 2A1 to obtain a unitary transmission power PT A1 of the power receiver 2A1.
  • the output ratio is 1: 1
  • the single power transmission efficiency ⁇ A1 of the power receiver 2A1 is 20%
  • the power demand of the power receiver 2A1 is 2.5W.
  • the power transmitter 1A is stopped and only the power transmitter 1B is operated, the output ratio is 0: 1, and the single power transmission efficiency ⁇ A2 of the power receiver 2A2 is 90%.
  • FIG. 12D it turns off the resonance system of the power receiver 2A1,2A2 and the power receiver 2B1,2B2 is turned on only the power receiver 2A3 to obtain a unitary transmission power PT A3 of the power receiver 2A3.
  • the output ratio is 1: 1
  • the single power transmission efficiency ⁇ A3 of the power receiver 2A3 is 50%
  • the resonance system of the power receivers 2A1 to 2A3 and the power receiver 2B2 is turned off to turn on only the power receiver 2B1, and the single transmission power PT B1 of the power receiver 2B1 is obtained.
  • the output ratio is 1: 1
  • the single power transmission efficiency ⁇ B1 of the power receiver 2B1 is 60%
  • the required power of the power receiver 2B1 is 10 W.
  • the resonance system of the power receivers 2A1 to 2A3 and the power receiver 2B1 is turned off to turn on only the power receiver 2B2, and the single transmission power PT B2 of the power receiver 2B2 is obtained.
  • the output ratio is 1: 1
  • the single power transmission efficiency ⁇ B2 of the power receiver 2B2 is 60%
  • the required power of the power receiver 2B2 is 10 W.
  • both the power receivers 2B1 and 2B2 are the maximum, and the maximum single transmission power PTix is approximately 16.7 W. Become.
  • the power transmitters 1A and 1B have in-phase outputs, the output ratio thereof is 1: 1, and the direction of the combined magnetic field by the power transmitters 1A and 1B is determined.
  • the two power receivers 2B1 and 2B2 are grouped as a power receiver group, and the power transmitters 1A and 1B are controlled with respect to the two power receivers 2B1 and 2B2 included in the power receiver group. Simultaneously transmit power.
  • the power received by the power receivers 2B1 and 2B2 can be 10 W by setting the power transmitted by the power transmitters 1A and 1B to 40 W.
  • the power receiving efficiency of the power receiver 2A1 when the power receiving efficiency of the power receiver 2A1 is 5%, the power receiving efficiency of the power receiver 2A2 is 30%, and the power receiving efficiency of the power receiver 2A3 is 0%, the power received by the power receiver 2A1 is 2W.
  • the received power of the power receiver 2A2 is 12W, and the received power of the power receiver 2A3 is 0W.
  • the received power of the power receiver 2A2 is 12W, which exceeds the desired power of 2.5W, and therefore is detuned and reduced to 2.5W.
  • the power transmitters 1A and 1B have in-phase outputs, the output ratio thereof is 1: 1, the power receiving efficiency of the power receivers 2B1 and 2B2 is 30%, and the power receiving efficiency of the power receiver 2A1 is 5%, the power receiving efficiency of the power receiver 2A2 is 7.5%, and the power received by the power receiver 2A3 is 0W.
  • detune may be performed on a power receiver whose received power is larger than the desired power.
  • the power receiver group is divided by processing the m power transmission coils as m-dimensional vectors. Further, the m-dimensional vector may process the phase from the m power transmission coils only in two directions of the in-phase and the anti-phase.
  • a vector angle is calculated from an angle formed by any one vector and other vectors among m-dimensional vectors. Then, when n is an integer of 2 or more and the power receiver group is divided into n, the power receivers having vector angles included in the range where the angle becomes narrower as n increases may be classified into the divided power receiver groups. it can.
  • the output of the power transmitter is controlled so as to have the same ratio as the desired power for a plurality of power receivers included in the power receiver group.
  • the power receiver group is divided into two parts and the same processing is performed. If a predetermined efficiency cannot be obtained even with all the power receivers, the power is divided into three. Such a process may be repeated until the power receiver group is divided until a predetermined efficiency is obtained.
  • FIG. 13 is a block diagram illustrating an example of a wireless power transmission system according to the present embodiment, and illustrates an example including two power transmitters 1A and 1B and two power receivers 2A and 2B.
  • the power transmitters 1A and 1B have the same configuration, and include wireless power transmission units 11A and 11B, high frequency power supply units 12A and 12B, power transmission control units 13A and 13B, and communication circuit units 14A and 14B, respectively. Including.
  • the high frequency power supply units 12A and 12B generate high frequency power, and correspond to, for example, the high frequency power supply unit 12 in FIG. 3 described above and have a specific power supply impedance.
  • a specific power supply impedance For example, a constant voltage power source whose output impedance is matched to 50 ⁇ or a high output impedance Hi-Z ⁇ power source (constant current power source).
  • the power transmission control units 13A and 13B control the power transmission units 11A and 11B, and the communication circuit units 14A and 14B enable communication between the power transmitters and the power receiver.
  • the communication circuit units 14A and 14B comply with IEEE 802.11b.
  • a DSSS wireless LAN or Bluetooth (registered trademark) can be used.
  • the high frequency power supply units 12A and 12B receive power supply from the external power supplies 10A and 10B, respectively, and signals from the detection units SA and SB are input to the power transmission control units 13A and 13B.
  • the power transmitter 1A and the power transmitter 1B may be, for example, two power transmission units (11) provided in one power transmitter 1.
  • Wireless power transmission units 11A and 11B correspond to coils in the case of magnetic field resonance, and convert high frequency power supplied from high frequency power supply units 12A and 12B into a magnetic field.
  • the detection units SA and SB detect the relative positional relationship between the power transmitters 1A and 1B and the relative positional relationship between the power receivers 2A and 2B.
  • the positional relationship between the power transmitters 1A and 1B is fixed (the power transmission resonance coils (power transmission coils) 11a1 and 11a2 are fixed in an L shape), and the power transmission control units 13A and 13B grasp the information, and the power receiver When 2A and 2B have a detection function, the detection units SA and SB can be omitted.
  • the wireless power transmission control method of the present embodiment described above may be implemented as a program executed by a power transmission control unit (control device: computer) 13A in the power transmitter 1A that controls the entire wireless power transmission system, for example. Is possible.
  • the power receivers 2A and 2B have the same configuration, and include wireless power receiving units 21A and 21B, rectifying units (power receiving circuit units) 22A and 22B, power receiving control units 23A and 23B, communication circuit units 24A and 24B, and a device body (battery). Part) 25A, 25B are included.
  • the power reception control units 23A and 23B control the power receivers 2A and 2B, and the communication circuit units 24A and 24B enable communication between the power transmitters and the power receivers.
  • Wireless LAN or Bluetooth registered trademark
  • Wireless power receiving units 21A and 21B correspond to coils in the case of magnetic field resonance, and convert the wirelessly transmitted power into a current.
  • the rectifying units 22A and 22B convert the alternating current obtained from the wireless power receiving units 21A and 21B into a direct current so that it can be used in battery charging or the device body.
  • the power transmitters 1A and 1B and the power receivers 2A and 2B communicate via the respective communication circuit units 14A, 14B, 24A, and 24B.
  • the power transmitter 1A can be a master (overall controller), and the master (power transmitter) 1A can control the other power transmitter 1B and the power receivers 2A and 2B as slaves.
  • the Q value in each of the power receivers 2A and 2B is controlled via the communication circuit unit 14A of the power transmitter 1A and the communication circuit units 24A and 24B of the power receivers 2A and 2B. It communicates to a master (for example, power transmitter 1A) by communication.
  • a master for example, power transmitter 1A
  • the power receiver that performs wireless power supply is switched via the communication circuit unit 14A of the power transmitter 1A and the communication circuit units 24A and 24B of the power receivers 2A and 2B.
  • the switch 213 in the power receiving resonance coil 21a shown in FIG. 5A described above is controlled so that only the switch 213 of the power receiver that performs wireless power feeding is sequentially turned on.
  • the switch 213 in the power receiving resonance coil 21a illustrated in FIG. 5B described above is controlled so that only the switch 213 of the power receiver that performs wireless power feeding is sequentially turned off.
  • the power transmission between the wireless power transmission units 11A and 11B and the wireless power reception unit 21A or 21B is not limited to power transmission using magnetic field resonance.
  • electric field resonance or electromagnetic induction or electric field induction is used.
  • a power transmission method can also be applied.
  • FIGS. 14A to 14D are flowcharts for explaining an example of processing of the wireless power transmission control method of the present embodiment.
  • a power feeding trigger is input on the power receiver side in step ST8, and is transmitted from the power receiver to the power transmitter via communication in step ST9. Proceed to step ST1.
  • step ST1 the power transmitter receives a power supply trigger (a signal for requesting power supply) from the power receiver, and proceeds to step ST2 to search for the power receiver. That is, on the power receiver side, each power receiver receives a power receiver search signal from the power transmitter, and responds (transmits information 1) to the power transmitter in step ST10.
  • the information 1 includes, for example, information such as requested power requested by each power receiver and the position and orientation of the power receiver.
  • step ST3 power reception On the power transmitter side, in step ST3 power reception, information 1 from the power receiver is confirmed, the process proceeds to step 4, and the single efficiency (single power transmission efficiency) ⁇ i of each power receiver Ri is calculated using information 1.
  • the single efficiency (single power transmission efficiency) ⁇ i of each power receiver Ri is calculated using information 1.
  • the power receiving resonance coil (resonance system) of the power receiver for obtaining ⁇ is turned on, and the resonance systems of other power receivers are turned off to sequentially turn on all the power receivers Ri. Do.
  • step ST7 the power receiver Ri of the single transmission power PTi that is a predetermined ratio ⁇ (for example, 90%) or more with respect to the maximum single transmission power PTix is selected, and the process proceeds to step ST11.
  • for example, 90%
  • step ST11 it is determined whether or not there is a PTi power receiver Ri satisfying PTix ⁇ ⁇ ⁇ PTi (for example, PTix ⁇ 0.9 ⁇ PTi). If it is determined in step ST11 that there is at least one power receiver Ri satisfying PTix ⁇ ⁇ ⁇ PTi (NO), the process proceeds to step ST25 (branch BB), and the process proceeds to step ST12 where it is determined that there is no one (YES).
  • PTix ⁇ ⁇ ⁇ PTi for example, PTix ⁇ 0.9 PTi
  • step ST12 an optimum magnetic field is determined for the power receiver (first power receiver) Rix having the maximum single transmission power PTix. Thereby, the intensity ratio and phase of the output in each power transmitter are determined, and only the absolute value of the output is not determined.
  • step ST14 If it is determined in step ST14 that the power receiving efficiency ⁇ ip of all the power receivers is equal to or greater than a predetermined ratio ( ⁇ ip ⁇ ⁇ ), the process proceeds to step ST18, and the power receiver (first power receiver) Rix is set under the simultaneous power feeding conditions. The power transmission output P from which the desired power can be obtained is determined, and the process proceeds to step ST19.
  • step ST19 in each power receiver, it is determined whether or not the desired power PRi of each power receiver is equal to or higher than the power (P ⁇ ⁇ ip) that is actually supplied. If it is determined in step ST19 that PRi ⁇ P ⁇ ⁇ ip, that is, all the power receivers Ri do not provide excessive power supply, the process proceeds to step ST20, and power transmission is started with the power transmission output P.
  • step ST19 if it is determined in step ST19 that all the power receivers Ri do not satisfy PRi ⁇ P ⁇ ⁇ ip, that is, power supply of at least one power receiver (Rid) is excessive, the process proceeds to step ST21.
  • step ST22 under the simultaneous power supply conditions and detune, the power receiver Rix determines the power transmission output P ′ from which the desired power can be obtained, and proceeds to step ST23 to start power transmission with the power transmission output P ′.
  • step ST24 detuning is performed based on the detune condition calculated in step ST21.
  • the detune in the power receiver Rdi corresponds to, for example, the detune process of the power receiver 2A2 described with reference to FIG. 12H.
  • step ST14 the power receiving efficiency ⁇ ip of all the power receivers is not greater than or equal to a predetermined ratio ( ⁇ ip ⁇ ⁇ ), that is, at least one power receiver has a power receiving efficiency ⁇ ip smaller than the predetermined ratio ( ⁇ ip ⁇ ). If it is determined that there is one, the process proceeds to step ST15.
  • step ST15 a power receiver Rin satisfying ⁇ ip ⁇ ⁇ is selected, an instruction to turn off the resonance of the power receiver Rin is output, and the process proceeds to step ST16.
  • step ST17 the power receiving resonance coil (resonance system) of the power receiver Rin is turned off based on the instruction in step ST15. Turning off the resonance system in the power receiver Rin corresponds to, for example, the process of turning off the resonance system of the power receiver 2A1 described with reference to FIG.
  • step ST16 the power receiving efficiency ⁇ ip of each power receiver Ri is calculated using the information 1 for the power receiver Ri excluding the power receiver Rin satisfying ⁇ ip ⁇ ⁇ , and the process proceeds to step ST18, as described above. Similar processing is performed.
  • step ST11 if it is determined (NO) that at least one power receiver Ri satisfying PTix ⁇ ⁇ ⁇ PTi exists (NO), the process proceeds to step ST25 (branch BB).
  • step ST25 a magnetic field capable of maintaining the ratio of PRi is calculated for a plurality of Rix ′ satisfying PTix ⁇ ⁇ ⁇ PTi.
  • the power receiver (power receiver group) Rix ′ satisfying PTix ⁇ ⁇ ⁇ PTi includes the power receiver (first power receiver) Rix having the maximum single transmission power PTix, the number of Rix ′ is plural ( At least two).
  • step ST26 it is determined whether or not the single power transmission efficiency (efficiency) ⁇ ix ′ of all the power receivers is equal to or greater than a predetermined value ( ⁇ ), and all power receivers have ⁇ ix ′ ⁇ If it determines with it being (gamma), it will progress to step ST27.
  • efficiency single power transmission efficiency
  • step ST27 as in step ST12 described above, the output intensity ratio and phase in each power transmitter are determined, and only the absolute value of the output is not determined.
  • the process proceeds to step ST13 (joining CC) and described above. Perform the same process as.
  • step ST26 determines whether at least one power receiver is ⁇ ix ′ ⁇ . If it is determined in step ST26 that at least one power receiver is ⁇ ix ′ ⁇ , the process proceeds to step ST28, the power receiver group Rix ′ is divided, and the process proceeds to step ST29, where power receivers to be simultaneously fed are supplied. Ri is newly set as Rix ', and the process proceeds to step ST27.
  • the number of power transmitters and power receivers has been mainly described as one or two, but there may be a larger number of each.
  • the description of each example has been made mainly on power transmission using magnetic field resonance, this embodiment can also be applied to power transmission using electric field resonance.
  • the present invention should not be construed as being limited to the above-described examples and conditions specifically described, and the configurations of the examples in the present specification regarding the superiority and inferiority of the present invention. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 複数の送電コイル、および、複数の受電器を含み、複数の前記送電コイルからの電力を、磁界共鳴または電界共鳴を利用して無線により、少なくとも2つの前記受電器に同時に伝送する無線電力伝送制御方法であって、複数の前記送電コイルによる、それぞれの前記受電器に対する単体送電効率、および、それぞれの前記受電器が要望する単体要望電力を求め、前記単体要望電力を前記単体送電効率で除算して、それぞれの前記受電器の単体送電電力を算出し、前記単体送電電力が最大となる最大単体送電電力の第1受電器を選択し、前記第1受電器に対する送電効率を最大化するように、複数の前記送電コイルを制御する。

Description

無線電力伝送制御方法および無線電力伝送システム
 この出願で言及する実施例は、無線電力伝送制御方法および無線電力伝送システムに関する。
 近年、電源供給や充電を行うために、無線で電力を伝送する技術が注目されている。例えば、携帯端末やノートパソコンを始めとした様々な電子機器や家電機器、或いは、電力インフラ機器に対して、無線で電力伝送を行う無線電力伝送システムが研究・開発されている。
 ところで、無線電力伝送(ワイヤレス電力伝送:Wireless Power Transfer)を利用する場合、電力を送る側の送電器と、送電器から送られた電力を受け取る側の受電器がそれぞれ異なるメーカの製品であっても支障なく使用するために標準化を行うのが好ましい。
 従来、無線による電力伝送技術としては、一般的に、電磁誘導を利用した技術や電波を利用した技術が知られている。
 そして、近年、送電器と受電器の距離をある程度離しつつ、複数の受電器に対する電力伝送および受電器の三次元的な様々な姿勢に対する電力伝送が可能なものとして、強結合系の共振を用いたワイヤレス送電技術が注目されている。
 この強結合系の共振を用いたワイヤレス送電としては、例えば、磁界共鳴(磁界共振)や電界共鳴(電界共振)を利用した無線電力伝送技術が知られている。
 従来、無線電力伝送技術としては、様々な提案がなされている。
特開2005-110399号公報 特開2012-034454号公報 特開2013-034367号公報 国際公開第2013/035873号パンフレット
内田 昭嘉他(UCHIDA Akiyoshi, et al.), "Phase and Intensity Control of Multiple Coil Currents in Resonant Magnetic Coupling," IMWS-IWPT2012, THU-C-1, pp.53-56, May 10-11, 2012 石崎 俊雄他(ISHIZAKI Toshio, et al.), "3-D Free-Access WPT System for Charging Movable Terminals," IMWS-IWPT2012, FRI-H-1, pp.219-222, May 10-11, 2012
 前述したように、従来、電源供給や充電を行うために無線で電力を伝送する無線電力伝送技術が注目され、様々な手法が研究開発されている。
 すなわち、複数の送電器(送電コイル)および複数の受電器を含み、複数の送電コイルからの電力を、磁界共鳴または電界共鳴を利用して無線により、それぞれの受電器に伝送する無線電力伝送制御方法として、様々な手法が研究開発されている。
 例えば、それぞれの受電器の送電効率に基づいて、特定の受電器のみに対して電力を伝送する手法、複数の送電器を制御し、磁界または電界の向きを変化させて、受電器に対して電力を伝送する手法が提案されている。
 さらに、電力を受け取る少なくとも2つの受電器において、全体的な送電効率を維持しつつ、少なくとも1つの受電器の受電電力を低下させて、少なくとも2つの受電器に対して電力を伝送する手法も提案されている。
 しかしながら、複数の送電コイルからの電力をそれぞれの受電器に伝送するには、例えば、各受電器が要望する電力の大きさ、或いは、各受電器の位置や方向といった様々な要因があるため、無線電力伝送システムの送電効率は十分なものとはいえなかった。
 一実施形態によれば、複数の送電コイル、および、複数の受電器を含み、複数の前記送電コイルからの電力を、磁界共鳴または電界共鳴を利用して無線により、少なくとも2つの前記受電器に同時に伝送する無線電力伝送制御方法が提供される。
 まず、複数の前記送電コイルによる、それぞれの前記受電器に対する単体送電効率、および、それぞれの前記受電器が要望する単体要望電力を求め、次に、前記単体要望電力を前記単体送電効率で除算して、それぞれの前記受電器の単体送電電力を算出する。そして、前記単体送電電力が最大となる最大単体送電電力の第1受電器を選択し、前記第1受電器に対する送電効率を最大化するように、複数の前記送電コイルを制御する。
 開示の無線電力伝送制御方法および無線電力伝送システムは、システム全体の送電効率を向上させることができるという効果を奏する。
図1Aは、有線電力伝送システムの一例を模式的に示す図である。 図1Bは、無線電力伝送システムの一例を模式的に示す図である。 図2Aは、二次元無線電力伝送システムの一例を模式的に示す図である。 図2Bは、三次元無線電力伝送システムの一例を模式的に示す図である。 図3は、無線電力伝送システムの一例を概略的に示すブロック図である。 図4Aは、図3の無線電力伝送システムにおける伝送コイルの変形例を説明するための図(その1)である。 図4Bは、図3の無線電力伝送システムにおける伝送コイルの変形例を説明するための図(その2)である。 図4Cは、図3の無線電力伝送システムにおける伝送コイルの変形例を説明するための図(その3)である。 図5Aは、独立共振コイルの例を示す回路図(その1)である。 図5Bは、独立共振コイルの例を示す回路図(その2)である。 図5Cは、独立共振コイルの例を示す回路図(その3)である。 図5Dは、独立共振コイルの例を示す回路図(その4)である。 図6Aは、負荷または電源に接続された共振コイルの例を示す回路図(その1)である。 図6Bは、負荷または電源に接続された共振コイルの例を示す回路図(その2)である。 図6Cは、負荷または電源に接続された共振コイルの例を示す回路図(その3)である。 図6Dは、負荷または電源に接続された共振コイルの例を示す回路図(その4)である。 図7Aは、複数の送電器による磁界の制御例を説明するための図(その1)である。 図7Bは、複数の送電器による磁界の制御例を説明するための図(その2)である。 図7Cは、複数の送電器による磁界の制御例を説明するための図(その3)である。 図8Aは、複数の受電器に対する二次元の無線電力伝送制御方法の一例を説明するための図(その1)である。 図8Bは、複数の受電器に対する二次元の無線電力伝送制御方法の一例を説明するための図(その2)である。 図8Cは、複数の受電器に対する二次元の無線電力伝送制御方法の一例を説明するための図(その3)である。 図9Aは、複数の受電器に対する三次元の無線電力伝送制御方法の一例を説明するための図である。 図9Bは、複数の受電器に対する三次元の無線電力伝送制御方法の他の例を説明するための図である。 図10Aは、本実施例の無線電力伝送制御方法における第1処理例を説明するための図(その1)である。 図10Bは、本実施例の無線電力伝送制御方法における第1処理例を説明するための図(その2)である。 図10Cは、本実施例の無線電力伝送制御方法における第1処理例を説明するための図(その3)である。 図10Dは、本実施例の無線電力伝送制御方法における第1処理例を説明するための図(その4)である。 図10Eは、本実施例の無線電力伝送制御方法における第1処理例を説明するための図(その5)である。 図11Aは、本実施例の無線電力伝送制御方法における第2処理例を説明するための図(その1)である。 図11Bは、本実施例の無線電力伝送制御方法における第2処理例を説明するための図(その2)である。 図11Cは、本実施例の無線電力伝送制御方法における第2処理例を説明するための図(その3)である。 図11Dは、本実施例の無線電力伝送制御方法における第2処理例を説明するための図(その4)である。 図11Eは、本実施例の無線電力伝送制御方法における第2処理例を説明するための図(その5)である。 図12Aは、本実施例の無線電力伝送制御方法における第3処理例を説明するための図(その1)である。 図12Bは、本実施例の無線電力伝送制御方法における第3処理例を説明するための図(その2)である。 図12Cは、本実施例の無線電力伝送制御方法における第3処理例を説明するための図(その3)である。 図12Dは、本実施例の無線電力伝送制御方法における第3処理例を説明するための図(その4)である。 図12Eは、本実施例の無線電力伝送制御方法における第3処理例を説明するための図(その5)である。 図12Fは、本実施例の無線電力伝送制御方法における第3処理例を説明するための図(その6)である。 図12Gは、本実施例の無線電力伝送制御方法における第3処理例を説明するための図(その7)である。 図12Hは、本実施例の無線電力伝送制御方法における第3処理例を説明するための図(その8)である。 図12Iは、本実施例の無線電力伝送制御方法における第3処理例を説明するための図(その9)である。 図13は、本実施例の無線電力伝送システムの一例を示すブロック図である。 図14Aは、本実施例の無線電力伝送制御方法の処理の一例を説明するためのフローチャート(その1)である。 図14Bは、本実施例の無線電力伝送制御方法の処理の一例を説明するためのフローチャート(その2)である。 図14Cは、本実施例の無線電力伝送制御方法の処理の一例を説明するためのフローチャート(その3)である。 図14Dは、本実施例の無線電力伝送制御方法の処理の一例を説明するためのフローチャート(その4)である。
 まず、無線電力伝送制御方法および無線電力伝送システムの実施例を詳述する前に、電力伝送システムの例、並びに、複数の送電器および受電器を含む関連技術の無線電力伝送システムを、図1~図9Bを参照して説明する。
 図1Aは、有線電力伝送(ワイヤー接続給電)システムの一例を模式的に示す図であり、図1Bは、無線電力伝送(ワイヤレス給電)システムの一例を模式的に示す図である。図1Aおよび図1Bにおいて、参照符号2A1~2C1は、それぞれ受電器を示す。
 ここで、受電器2A1は、例えば、要望電力が10Wのタブレットコンピュータ(タブレット)を示し、受電器2B1は、例えば、要望電力が50Wのノートパソコンを示し、受電器2C1は、例えば、要望電力が2.5Wのスマートフォンを示す。なお、要望電力は、例えば、それぞれの受電器2A1~2C1における充電池(二次電池)を充電するための電力に相当する。
 図1Aに示されるように、通常、タブレット2A1やスマートフォン2C1の二次電池を充電する場合、例えば、パソコン(Personal Computer)のUSB(Universal Serial Bus)端子(または、専用電源等)3Aに対して電源ケーブル4A,4Cを介して接続する。また、ノートパソコン2B1の二次電池を充電する場合、例えば、専用の電源装置(AC-DC Converter)3Bに対して電源ケーブル4Bを介して接続する。
 すなわち、図1Aに示されるように、携帯可能な受電器2A1~2C1であっても、一般的に、電源ケーブル4A~4Cを使用してUSB端子3Aや電源装置3Bからワイヤー接続により給電(有線電力伝送)を行っている。
 この場合、例えば、各電源ケーブル4A~4Cは、コネクタを介して受電器2A1~2C1に接続されるため、コネクタの先に接続された受電器(接続機器)をコネクタごとに検知することで、台数を検知し、コネクタ形状により給電電力を固定することができる。さらに、要望電力に応じた電源ケーブルの接続をユーザが行うことで、要望電力を認識すると同時に、それぞれの接続機器へ適切な給電を行うようになっている。
 ところで、近年、電磁誘導に代表される非接触給電技術の進歩により、例えば、シェーバーや電動歯ブラシ等でワイヤレス給電(無線電力伝送)が実用化されている。そこで、図1Bに示されるように、例えば、送電器1A1から、タブレット2A1,ノートパソコン2B1およびスマートフォン2C1に対して無線電力伝送することが考えられている。
 図2Aは、二次元無線電力伝送(二次元ワイヤレス給電)システムの一例を模式的に示す図であり、例えば、上述したシェーバーや電動歯ブラシ等と同様に、電磁誘導により無線電力伝送を行う様子を示している。
 図2Aに示されるように、電磁誘導を利用して無線電力伝送を行う場合には、非接触給電であっても送電距離が短いために、送電器1A2にほぼ接触している受電器だけが給電可能である。
 すなわち、送電器(受電台)1A2上に置かれた受電器(ノートパソコン)2B2に対しては給電することができても、受電台1A2から離れたノートパソコン2B3に対しては給電することは困難である。このように、図2Aに示す無線電力伝送システムは、受電台1A2上の自由な配置を可能とする二次元的なワイヤレス給電システムである。
 図2Bは、三次元無線電力伝送(三次元ワイヤレス給電)システムの一例を模式的に示す図であり、例えば、磁界共鳴または電界共鳴を利用して無線電力伝送を行う様子を示している。図2Bに示されるように、磁界共鳴または電界共鳴を利用して無線電力伝送を行う場合には、送電器1A2から所定範囲内(図2Bにおける破線の内側)に存在する複数の受電器に対して給電することが可能である。
 すなわち、送電器1A3から所定範囲内のタブレット2A2,2A3、ノートパソコン2B2,2B3およびスマートフォン2C2に対して無線電力伝送することが可能である。なお、図2Bでは、1つの送電器1A3のみ描かれているが、複数の送電器により、様々な角度および位置の複数の受電器に対して、磁界共鳴または電界共鳴を利用して無線電力伝送を行うようになっている。
 このように、図2Bに示す無線電力伝送システムは、例えば、磁界共鳴を利用することにより、電磁誘導を利用したものに比べて遠方の空間においても高い送電効率を得ることができる三次元的なワイヤレス給電システムである。
 図3は、無線電力伝送(三次元ワイヤレス給電)システムの一例を概略的に示すブロック図である。図3において、参照符号1は一次側(送電側:送電器)を示し、2は二次側(受電側:受電器)を示す。
 図3に示されるように、送電器1は、ワイヤレス送電部11、高周波電源部12、送電制御部13および通信回路部(第1通信回路部)14を含む。また、受電器2は、ワイヤレス受電部21、受電回路部(整流部)22、受電制御部23および通信回路部(第2通信回路部)24を含む。
 ワイヤレス送電部11は、第1コイル(電力供給コイル)11bおよび第2コイル(送電共振コイル:送電コイル)11aを含み、また、ワイヤレス受電部21は、第3コイル(受電共振コイル:受電コイル)21aおよび第4コイル(電力取出コイル)21bを含む。
 図3に示されるように、送電器1と受電器2は、送電共振コイル11aと受電共振コイル21aの間の磁界共鳴(電界共鳴)により、送電器1から受電器2へエネルギー(電力)の伝送を行う。なお、送電共振コイル11aから受電共振コイル21aへの電力伝送は、磁界共鳴だけでなく電界共鳴等も可能であるが、以下の説明では、主として磁界共鳴を例として説明する。
 送電器1と受電器2は、通信回路部14と通信回路部24により、通信(近距離通信)を行う。ここで、送電器1の送電共振コイル11aと受電器2の受電共振コイル21aによる電力の伝送距離(電力伝送範囲)は、送電器1の通信回路部14と受電器2の通信回路部24による通信距離(通信範囲)よりも短く設定される。
 また、送電共振コイル11aおよび21aによる電力伝送は、通信回路部14および24による通信とは独立した方式(Out-band通信)になっている。具体的に、送電共振コイル11aおよび21aによる電力伝送は、例えば、6.78MHzの周波数帯域を使用し、通信回路部14および24による通信は、例えば、2.4GHzの周波数帯域を使用する。
 この通信回路部14および24による通信としては、例えば、IEEE 802.11bに準拠するDSSS方式の無線LANやブルートゥース(Bluetooth(登録商標))を利用することができる。
 なお、上述した無線電力伝送システムは、例えば、使用する周波数の波長程度の距離の近傍界(near field)において、送電器1の送電共振コイル11aと、受電器2の受電共振コイル21aによる磁界共鳴または電界共鳴を利用して電力の伝送を行う。従って、電力伝送範囲(送電圏)は、電力伝送に使用する周波数に従って変化する。
 高周波電源部12は、電力供給コイル(第1コイル)11bに対して電力を供給し、電力供給コイル11bは、その電力供給コイル11bの至近に配設された送電共振コイル11aに対して電磁誘導を利用して電力を供給する。送電共振コイル11aは、受電共振コイル21aとの間に磁場共鳴を生じさせる共振周波数により、受電共振コイル21a(受電器2)に電力を伝送する。
 受電共振コイル21aは、その受電共振コイル21aの至近に配設された電力取出コイル(第4コイル)21bに対して電磁誘導を利用して電力を供給する。電力取出コイル21bには受電回路部22が接続され、所定の電力が取り出される。なお、受電回路部22からの電力は、例えば、バッテリ部(負荷)25におけるバッテリの充電、或いは、受電器2の回路に対する電源出力等として利用される。
 ここで、送電器1の高周波電源部12は、送電制御部13により制御され、また、受電器2の受電回路部22は、受電制御部23により制御される。そして、送電制御部13および受電制御部23は、通信回路部14および24を介して接続され、送電器1から受電器2への電力伝送を好ましい状態で行うことができるように、様々な制御を行うようになっている。
 図4A~図4Cは、図3の無線電力伝送システムにおける伝送コイルの変形例を説明するための図である。ここで、図4Aおよび図4Bは、3コイル構成の例を示し、図4Cは、2コイル構成の例を示す。
 すなわち、図3に示す無線電力伝送システムでは、ワイヤレス送電部11が第1コイル11bおよび第2コイル11aを含み、ワイヤレス受電部21が第3コイル21aおよび第4コイルを含んでいる。
 これに対して、図4Aの例では、ワイヤレス受電部21を1つのコイル(受電共振コイル:LC共振器)21aとし、図4Bの例では、ワイヤレス送電部11を1つのコイル(送電共振コイル:LC共振器)11aとしている。
 さらに、図4Cの例では、ワイヤレス受電部21を1つの受電共振コイル21aに設定すると共に、ワイヤレス送電部11を1つの送電共振コイル11aとしている。なお、図4A~図4Cは、単なる例であり、様々に変形することができるのはいうまでもない。
 図5A~図5Dは、独立共振コイル(受電共振コイル21a)の例を示す回路図であり、図6A~図6Dは、負荷または電源に接続された共振コイル(受電共振コイル21a)の例を示す回路図である。
 ここで、図5A~図5Dは、図3および図4Bにおける受電共振コイル21aに対応し、図6A~図6Dは、図4Aおよび図4Cにおける受電共振コイル21aに対応する。
 図5Aおよび図6Aに示す例は、受電共振コイル21aを、直列接続されたコイル(L)211,容量(C)212およびスイッチ213としたもので、通常時はスイッチ213をオフしておく。図5Bおよび図6Bに示す例は、受電共振コイル21aを、直列接続されたコイル(L)211および容量(C)212と、容量212に並列に接続されたスイッチ213としたもので、通常時はスイッチ213をオンしておく。
 図5Cおよび図6Cに示す例は、図5Bおよび図6Bの受電共振コイル21aにおいて、容量212と並列に、直列接続されたスイッチ213および抵抗(R)214を設けたもので、通常時はスイッチ213をオンしておく。
 図5Dおよび図6Dに示す例は、図5Bおよび図6Bの受電共振コイル21aにおいて、容量212と並列に、直列接続されたスイッチ213および他の容量(C')215を設けたもので、通常時はスイッチ213をオンしておく。
 上述した各受電共振コイル21aにおいて、通常時に受電共振コイル21aが動作しないように、スイッチ213をオフまたはオンに設定するようになっている。これは、例えば、不使用の受電器2や故障した受電器2に対して電力が伝送されて発熱等が生じるのを避けるためである。
 以上において、送電器1の送電共振コイル11aも図5A~図5Dおよび図6A~図6Dと同様にすることもできるが、送電器1の送電共振コイル11aとしては、通常時に動作するようにして、高周波電源部12の出力でオン/オフ制御してもよい。この場合、送電共振コイル11aは、図5Aおよび図6Aにおいて、スイッチ213を短絡したものになる。
 以上により、複数の受電器2が存在する場合、送電器1から送電を行う所定の受電器2の受電共振コイル21aのみを選択して動作可能な状態とすることにより、その選択された受電器2に対する電力の伝送(時分割電力伝送)を行うことが可能になる。
 図7A~図7Cは、複数の送電器による磁界の制御例を説明するための図である。図7A~図7Cにおいて、参照符号1Aおよび1Bは送電器を示し、2は受電器を示す。
 図7Aに示されるように、送電器1Aの磁界共鳴に使用する送電用の送電共振コイル11aAと送電器1Bの磁界共鳴に使用する送電用の送電共振コイル11aBは、例えば、直交するように配設されている。
 また、受電器2の磁界共鳴に使用する受電用の受電共振コイル21aは、送電共振コイル11aAおよび11aBにより囲まれた個所で異なる角度(平行にならない角度)に配置されている。
 ここで、送電共振コイル(LC共振器)11aAおよび11aBは、1つの送電器に設けることも可能である。すなわち、1つの送電器1が複数のワイヤレス送電部11を含んでいてもよい。
 図7Bは、送電共振コイル11aAおよび11aBが同じ位相の磁界を出力している様子を示し、図7Cは、送電共振コイル11aAおよび11aBが逆の位相の磁界を出力している様子を示す。
 例えば、2個の直交する送電共振コイル11aAおよび11aBが同相出力の場合と逆相出力の場合を比較すると、合成磁界は90°回転した関係となり、それぞれの受電器2(受電共振コイル21a)の向きに合わせた送電を行う。
 このように、複数の送電器1A,1Bにより、任意の位置および姿勢(角度)の受電器2に対して電力を伝送する場合、送電器1A,1Bの送電共振コイル11aA,11aBに発生させる磁界は様々に変化することが分かる。
 上述した無線電力伝送システムは、複数の送電器と、少なくとも1つの受電器とを含み、受電器の位置(X,Y,Z)および姿勢(θXYZ)に応じて、その複数の送電器間の出力(強度および位相)を調整する。
 なお、三次元空間に関しても、例えば、実際の三次元空間における3個以上の送電器を用いて、それぞれの出力位相差および出力強度比を調整することで、三次元空間上の任意の方向に磁界(電界)の向きを調整することが可能になることが理解されるであろう。
 図8A~図8Cは、複数の受電器に対する二次元の無線電力伝送制御方法の一例を説明するための図である。ここで、図8Aは、例えば、磁界共鳴を利用して、1つの送電器1Aにより、要望電力が異なる2つの受電器2A,2Bにワイヤレス給電する様子を示す。
 また、図8Bは、送電器1A(送電共振コイル11a)から、受電器2A(受電共振コイル21aA)および受電器2B(受電共振コイル21aB)にワイヤレス給電する様子を示す。図8Cは、受電器2Bの共振点をずらして(デチューンして)、電力配分比を制御する手法を説明するためのものである。
 なお、受電器2Aは、例えば、要望電力が5Wの携帯電話を示し、受電器2Bは、例えば、要望電力が50Wのノートパソコンを示す。また、説明を簡略化するために、携帯電話2AのLC共振器(ワイヤレス受電部)およびノートパソコン2BのLC共振器は、同じ仕様のものとする。さらに、図8Cにおいて、参照符号LL0は全体送電効率を示し、LLAは携帯電話2Aの受電電力を示し、LLBはノートパソコン2Bの受電電力を示す。
 ところで、複数の受電器への同時ワイヤレス給電を行う場合それぞれの受電器における受電電力量が異なるケースが多発すると考えられる。例えば、図8Aに示されるように、要望電力が5Wの携帯電話と要望電力が50Wのノートパソコン、或いは、同じ種類の受電器であっても、バッテリ残量によっては、要望電力が異なるケースも考えられる。
 例えば、受電器2A,2Bの位置や向き大きな差がない場合、同じ仕様の受電コイルが搭載されているとき、電力は等しく分配される。具体的に、携帯電話2Aの受電共振コイルにおけるインダクタンスをLA,キャパシタンスをCAとし、ノートパソコン2Bの受電共振コイルにおけるインダクタンスをLB,キャパシタンスをCBとする。
 このとき、図8Cにおける参照符号PP0で示されるように、そのままの状態(共振点ずらさない状態)では、L00=LAA=LBBが成立する。すなわち、図8Bにおけるそれぞれの共振周波数は、f0=fA=fBの関係が成立する。
 そのため、例えば、送電器1Aからの送電電力が68.75Wで送電効率が80%だと仮定すると、携帯電話2Aおよびノートパソコン2Bは、両方とも27.5Wの電力を受け取ることになる。
 すなわち、図8Aに示されるように、要望電力が10倍異なる受電器2Aと2Bであっても、例えば、55Wの要望電力に相当する出力を送電器1Aから出力した場合、受電器2A,2B側では、それぞれ27.5Wずつの電力を受電する結果となる。
 このとき、携帯電話2Aの要望電力は5Wで、ノートパソコン2Bの要望電力は50Wであるため、携帯電話2Aの受電共振コイルによる共振点をずらして受電効率(ηip)を低下させるように制御する。
 例えば、図8Cの矢印MAに示されるように、携帯電話2Aの受電共振コイル21aAにおける容量のキャパシタンスCAを、受電効率が最大となる受電共振コイルの共振点からずらすために、小さく(または、大きく)なるように制御する。
 すなわち、図8Cの矢印MAのように、共振条件を意図的にずらす(キャパシタンスCAをずらす)ことでQ値を低下させ、携帯電話2Aの受電電力LLAは、共振点(P0)の27.5Wから次第に減少して、例えば、要望電力の5Wに設定することができる。
 このとき、携帯電話2Aが受電しなくなった電力は、そのほとんどがノートパソコン2Bの受電電力となる。すなわち、ノートパソコン2Bの受電電力LLBは、携帯電話2Aの受電電力LLAの低下に応じて上昇し、無線電力伝送システムにおける全体送電効率LL0は、ほとんど低下しないことが分かる。
 このように、共振条件を変えることで、具体的には、受電器2Aの共振用コンデンサ(容量)212の容量値(キャパシタンスCA)を変化させることで、結合が調整され、結果として、受電電力を所望の配分比に制御することが可能となる。
 ここで、重要なこととして、共振条件を可変した受電器2Aの効率は低下していても、システム全体の送受電効率はほぼ一定を保っており、受電器2Aに到達していた電力を減らした分、受電器2Bへの電力が増加する。その結果、受電器2A,2Bの一方だけの単体給電時と比べても、ほぼ同じ効率で全体(両方の受電器2A,2B)に送電しつつ受電電力を所望の比に分配(配分)できることがわかる。
 図9Aは、複数の受電器に対する三次元の無線電力伝送制御方法の一例を説明するための図であり、複数の送電共振コイル(送電コイル)に与える電流および位相を制御して磁界の向きを変化させ、受電器2A,2Bに伝送する電力を制御する方法を示す。
 また、図9Bは、複数の受電器に対する三次元の無線電力伝送制御方法の他の例を説明するための図であり、全体的な送電効率を維持しつつ、少なくとも1つの受電器の受電電力を低下させて、受電器2A,2Bに対する電力配分比を制御する方法を示す。
 図9Aおよび図9Bにおいて、受電器2Aは、例えば、要望電力が2.5Wのスマートフォンを示し、受電器2Bは、例えば、要望電力が10Wのタブレットコンピュータ(タブレット)を示す。
 また、11aAおよび11aBは、例えば、2個の直交する送電共振コイルを示し、これら送電共振コイル11aA,11aBは、異なる送電器1A,1Bとしてもよいが、1つの送電器に設けることもできるのは、前述した通りである。なお、以下の説明では、送電共振コイル11aA,11aBを、異なる送電器1A,1Bとして説明する。
 例えば、受電器2A(スマートフォン)の要望電力が2.5Wで受電器(タブレット)2Bの要望電力が10Wの場合、その要望電力を考慮して送電器1A,1Bにより同時給電するには、例えば、図9Aおよび図9Bの制御方法が考えられる。
 すなわち、図9Aに示す制御方法は、送電器1A,1Bから出力される磁界の強度および位相を制御して、受電器2Aが2.5W受電し、受電器2Bが10W受電するように、送電器1A,1Bからの合成磁界を制御する。
 ここで、磁界の強度の制御は、例えば、送電共振コイル11aAの電流を大きくして送電共振コイル11aBの電流を小さくし、合成磁界CMFの方向が、受電器2Aの受電共振コイル21aAを直角に近い方向となるようにする。
 すなわち、図9Aに示す制御方法は、送電器1A,1Bから出力される磁界の強度および位相を制御して、受電器2Aが2.5W受電し、受電器2Bが10W受電するように、送電器1A,1Bからの合成磁界CMFの方向(向き)を制御する。
 次に、図9Bに示す制御方法は、送電器1A,1Bから出力される磁界の強度および位相はそのままとし、図8A~図8Cを参照して説明したように、要望電力が小さい受電器2Aの受電共振コイル(21aA)の共振点をずらすように制御する。すなわち、合成磁界CMFはそのままとして、受電器2Aのデチューンを行うことで、電力配分比を制御する。
 しかしながら、無線電力伝送(ワイヤレス給電)、特に、三次元ワイヤレス給電においては、例えば、複数の送電器の電流および位相制御、並びに、複数の受電器における電力配分比の制御は、様々なパラメータの調整を行うことが求められる。
 具体的に、パラメータとしては、例えば、電力配分を実行する各受電器の共振条件、磁界を制御する各送電器の出力強度(電流強度)とその位相等があり、これらは、送電器および受電器の数が増加するのに従って膨大なものとなる。
 すなわち、無限な時間があれば、全てのパラメータを変化させたシミュレーションやテスト送電を行って、最適条件を決めることはできるが、有限な時間(一定のリアルタイム性)が求められる実際の無線電力伝送では、最適条件を求めることは困難である。さらに、評価する送電効率は、上記パラメータに密接に関連しているため、実際の無線電力伝送システムにおいて、総当たりで最適化を探すのは現実的ではない。
 以下、無線電力伝送制御方法および無線電力伝送システムの実施例を、添付図面を参照して詳述する。ここで、本実施例は、少なくとも1つの送電器により複数の受電器に対する無線電力伝送を行う無線電力伝送システムに適用することができる。
 以下の説明は、主として、磁界共鳴(磁界共振)を利用して2つの送電共振コイル(送電コイル)により複数(2~5個)の受電器に対して無線で電力伝送を行う例を説明するが、送電共振コイルは3つ以上であってもよい。
 また、1つの送電器が1つの送電共振コイルを有する場合は、送電共振コイルの数は送電器の数に一致するが、1つの送電器は、複数の送電共振コイルを含んでもよい。さらに、本実施例は、磁界共鳴ではなく、電界共鳴(電界共振)を利用した無線電力伝送システムに対しても同様に適用することができる。
 まず、本実施例が適用される無線電力伝送システムの概要を説明する。本実施例が適用される無線電力伝送システムにおいて、それぞれの受電器は、共振系(受電共振コイル)のオン・オフが可能であり、これにより、各受電器の単体送電効率(ηi)を求めることが可能となっている。
 この各受電器の単体送電効率は、選択した受電器が1つだけ配置され、他の受電器は不在、或いは、共振条件が著しく外れている場合における、各送電器の出力(強度比・位相)を最適化した際の効率を意味する。また、このとき、受電器との通信により、受電器が要望する要望電力を求めることができる。
 なお、本実施例において、例えば、いずれかの送電器がマスタとしてシステム全体の制御を行ってもよいが、送電器ではなく、いずれかの受電器であってもよく、また、送電器自体ではなく、例えば、通信回線を介した別のコンピュータが制御を行うこともできる。
 ここで、各受電器の単体送電電力PTiは、その受電器に対する複数送電コイル(送電器)による単体送電効率ηi、その受電器Riの要望電力(単体要望電力)をPRiとすると、次の式(i)により算出することができる。
   PTi=PRi/ηi   (i)
 また、本実施例が適用される無線電力伝送システムでは、全て受電器の共振系(受電共振系)をオフした後、特定の受電器の共振系のみをオンし、その特定の受電器のみに電力を伝送(第1電力伝送)することが可能となっている。これにより、それぞれの受電器に対して、時分割的に切り替えて順番に電力を伝送する時分割給電を行うことができる。
 さらに、複数の送電共振コイルの電流(強度)および位相の制御を行うことにより、磁界(合成磁界)の向きを特定の方向に制御して同時に電力を伝送(第2電力伝送)することが可能となっている。これにより、多様な姿勢の受電器に対する無線電力伝送(三次元ワイヤレス給電)を行うことができる。
 また、それぞれの受電器の共振系(受電共振コイル)において、共振点をずらすことにより、全体の効率を維持しつつ、その共振点をずらした特定の受電器の受電電力を低下(デチューン)させることも可能となっている。このように、同じ合成磁界においても、特定の受電器の受電電力をデチューンして電力配分比を所望の比率に調整して同時に電力を伝送(第3電力伝送)することもできる。
 そして、本実施例の無線電力伝送システムでは、上述した式(i)により算出したそれぞれの受電器の単体送電電力PTiにおいて、最大となる最大単体送電電力PTixの受電器(第1受電器)Rixを選択する。この最大単体送電電力PTixに基づいて電力を伝送(第4電力伝送)するようになっている。これにより、複数の受電器に対する全体的な送電効率を向上させることが可能になる。
 なお、本実施例では、例えば、無線電力伝送システムに含まれるそれぞれの受電器には、優先順位がないものとして扱っている。すなわち、以下の説明では、例えば、職場において、出張する従業員が携帯するノートパソコン(受電器)を優先して充電する場合には、直ちに、そのノートパソコンに対する送電を開始するといった処理を行わない場合が想定されている。
 また、本実施例の無線電力伝送制御方法では、例えば、第1電力伝送を用いて、各受電器を個別に取り扱うことで、処理(制御)を単純化する。さらに、第4電力伝送を用いて、受電器の単体送電電力PTiが最大となる最大単体送電電力PTixの第1受電器を選別(規定)し、システム全体の送電効率を向上させる。
 そして、選別された第1受電器に基づいて、各送電器(送電共振コイル)の電流および位相制御を制御し、受電電力が要望電力よりも大きい受電器に対しては、例えば、その受電共振コイルの共振点を意図的にずらしてデチューンを行う。
 なお、受電電力が所定の大きさに満たない受電器に対しては、例えば、その受電器の共振系をオフして受電を停止し、次の機会、例えば、第1受電器に対する給電が完了した後等において、給電を行う。
 さらに、第1受電器の最大単体送電電力PTixに近い(例えば、PTixの90%以上)受電器に対しては、第1受電器と共に、受電器グループとしてグループ化し、その受電器グループに含まれる受電器に対して、複数の送電コイルを制御して同時に電力を伝送する。
 なお、第1受電器とグループ化する受電器の単体送電電力PTiを第1受電器の最大単体送電電力PTixの所定比率(90%=α)以上とするのは、単なる例であり、様々な比率に設定可能である。
 このようにして、複数の送電器による合成磁界の向きが決定した後、受電器グループに含まれる複数の受電器において、受電電力が要望電力よりも大きい受電器に対しては、デチューンを行う。また、受電電力が所定の大きさに満たない受電器に対しては、例えば、その受電器の共振系をオフして受電を停止する。
 さらに、受電器グループに含まれない受電器においても、受電電力が要望電力よりも大きい受電器に対しては、デチューンを行う。また、受電電力が所定の大きさに満たない受電器に対しては、例えば、その受電器の共振系をオフして受電を停止する。
 ここで、受電器グループに含まれる受電器に対して同時に電力を伝送すると、各受電器の受電効率ηipが所定の比率(例えば、10%=β)以上得られないときには、受電器グループを分割する。例えば、mを2以上の整数として、送電コイル(送電器)がm個のとき、m個の送電コイルをm次元のベクトルとして処理することで、受電器グループの分割を行う。
 なお、m次元のベクトルは、m個の送電コイルからの位相を、同相と逆相の2方向だけで処理してもよい。これは、受電器グループまたは分割された受電器グループに含まれるそれぞれの受電器の単体送電電力はほぼ等しい(例えば、PTixの90%以上)ため、電力で規格化されていると考えることがで、位相の向きだけを考慮すればよいからである。
 その結果、送電器(送電共振コイル)の電流は、大きさが規格化されたベクトルとみなすことができ、例えば、4つの送電共振コイルの電流P1~P4は、P1(I11,I12,I13),P2(I21,I22,I23),P3(I31,I32,I33),P4(I41,I42,I43)と表すことができる。
 また、m次元のベクトルのうち、任意の(或る)1つのベクトルと他のベクトルのなす角度でベクトル角を計算する。そして、nを2以上の整数として、受電器グループをn分割するとき、nが大きくなるに従って角度が狭くなる範囲に含まれるベクトル角の受電器を、分割された受電器グループに分類することができる。
 具体的に、n=2(2分割)のときには、90°÷2=45°の範囲に含まれるベクトル角の受電器を、分割された受電器グループに分類する。また、2分割しても、受電器グループに含まれる受電器の受電効率ηipが所定の比率(例えば、10%=β)以上得られないときには、例えば、n+1(=3:3分割)する。3分割のときには、90°÷3=30°の範囲に含まれるベクトル角の受電器を、分割された受電器グループに分類することになる。
 なお、受電器グループを分割する場合、2分割のときには45°の範囲とし、並びに、3分割のときには30°の範囲とするのは、単なる例であり、様々な角度に設定することができるのはいうまでもない。
 図10A~図10Eは、本実施例の無線電力伝送制御方法における第1処理例を説明するための図である。図10Aと図9Aおよび図9Bの比較から明らかなように、図10A~図10Eでは、図9Aおよび図9Bと同様に、直交する2つの送電共振コイル11aA,11aB(送電器1A,1B)および2つの受電器2A,2Bが設けられている。
 なお、送電共振コイル11aA,11aBは、異なる送電器1A,1Bに設けられたものとして説明するが、1つの送電器に2つの送電共振コイル11aA,11aBが設けられていてもよい。また、受電器2Aは、例えば、要望電力が2.5Wのスマートフォンを示し、受電器2Bは、例えば、要望電力が10Wのタブレット(タブレットコンピュータ)を示す。
 まず、図10Bに示されるように、受電器2A(スマートフォン)だけに対する単体送電電力PTAを求める。すなわち、受電器(タブレット)2Bの受電共振コイル21bB(受電共振系,共振系)をオフして受電器2Aだけオンとし、この受電器2Aの単体送電電力PTAを求める。
 具体的に、例えば、送電器1A,1Bを同相出力で、出力比(強度比)を1:2とし、受電器2Aの単体送電効率ηAを60%とすると、受電器2Aの要望電力が2.5Wなので、受電器2Aの単体送電電力PTAは、PTA=2.5÷0.6≒4.2[W]となる。
 次に、図10Cに示されるように、受電器2Bだけに対する単体送電電力PTBを求める。すなわち、受電器2Aの共振系をオフして受電器2Bだけオンとし、この受電器2Bの単体送電電力PTBを求める。
 具体的に、例えば、送電器1A,1Bを同相出力で、出力比を2:1とし、受電器2Bの単体送電効率ηBを60%とすると、受電器2Bの要望電力が10Wなので、受電器2Bの単体送電電力PTBは、PTB=10÷0.6≒16.7[W]となる。従って、単体送電電力が最大となる受電器は、4.2<16.7なので、受電器2Bとなり、最大単体送電電力PTixは、ほぼ16.7Wとなる。
 これにより、送電器1A,1Bは、同相出力で、その出力比は2:1となり、送電器1A,1Bによる合成磁界の方向(向き)が決められる。このとき、図10Dに示されるように、2つの受電器2A,2Bに対して送電を行うと、例えば、受電器2Aの受電効率は8%で、受電器2Bの受電効率は、50%となる。
 そこで、受電器2Bの受電電力10Wにするために、送電器1A,1Bによる送電電力を20Wにすると、受電器2Aの受電電力は、20×0.8=1.6[W]となり、受電器2Aの要望電力である2.5Wに満たない。
 このとき、本第1処理例では、例えば、受電器2Bのデチューン(第3電力伝送)を行うことなく、そのままの状態(受電器2Aの受電電力が1.6Wの状態)で同時給電を行う。すなわち、図10Eに示されるように、送電器1A,1Bの出力比は2:1、受電器2Aの受電電力は1.6W、受電器2Bの受電電力は10W、そして、全体の送電効率は58%となる。なお、例えば、受電器2Bに対する給電が完了した場合には、その受電器2Bの共振系(受電共振コイル21aB)がオフされて、上述した処理が繰り返されることになる。
 図11A~図11Eは、本実施例の無線電力伝送制御方法における第2処理例を説明するための図であり、本第2処理例は、上述した第1処理例と異なり、デチューンを行うようになっている。なお、図11A~図11Eでも、直交する2つの送電器1A,1B(送電共振コイル11aA,11aB)および2つの受電器2A,2Bが設けられている。
 また、上述した第1処理例と同様に、受電器2Aは、要望電力が2.5Wのスマートフォンを示し、受電器2Bは、要望電力が10Wのタブレットを示す。ただし、図11Aに示されるように、受電器2A,2Bは、平行で距離が異なるように配置されている。
 まず、図11Bに示されるように、受電器(タブレット)2Bの共振系をオフして受電器2A(スマートフォン)だけオンとし、この受電器2Aの単体送電電力PTAを求める。具体的に、例えば、送電器1A,1Bを同相出力で、出力比を1:1とし、受電器2Aの単体送電効率ηAを10%とすると、受電器2Aの要望電力が2.5Wなので、受電器2Aの単体送電電力PTAは、PTA=2.5÷0.1=25[W]となる。
 次に、図11Cに示されるように、受電器2Aの共振系をオフして受電器2Bだけオンとし、この受電器2Bの単体送電電力PTBを求める。具体的に、例えば、送電器1A,1Bを同相出力で、出力比を1:1とし、受電器2Bの単体送電効率ηBを80%とすると、受電器2Bの要望電力が10Wなので、受電器2Bの単体送電電力PTBは、PTB=10÷0.8=12.5[W]となる。従って、単体送電電力が最大となる受電器は、25>12.5なので、受電器2Aとなり、最大単体送電電力PTixは、25Wとなる。
 これにより、送電器1A,1Bは、同相出力で、その出力比は1:1となり、送電器1A,1Bによる合成磁界の方向が決められる。このとき、図11Dに示されるように、2つの受電器2A,2Bに対して送電を行うと、例えば、受電器2Aの受電効率は8%で、受電器2Bの受電効率は、60%となる。
 そこで、受電器2Aの受電電力2.5Wにするために、送電器1A,1Bによる送電電力を31.3Wにすると、受電器2Bの受電電力は、31.3×0.6≒18.8[W]となり、受電器2Bの要望電力である10Wを超過してしまう。
 このとき、本第2処理例では、図11Eに示されるように、受電器2Bの共振条件を意図的にずらして受電電力を調整する。すなわち、例えば、受電器2Bにおける受電共振コイル(21aB)における容量(例えば、図5Aにおける容量212)のキャパシタンスを大きく(または、小さく)して共振点からずらして受電電力が10Wになるまでデチューンを行う。これにより、例えば、送電器1A,1Bの出力比は1:1、受電器2Aの受電電力は2.5W、受電器2Bの受電電力は10W、そして、全体の送電効率は45%となる。
 図12A~図12Iは、本実施例の無線電力伝送制御方法における第3処理例を説明するための図である。図12Aに示されるように、本第3処理例では、直交する2つの送電器1A,1Bおよび5つの受電器2A1~2A3,2B1,2B2が設けられている。
 なお、受電器2A1~2A3は、それぞれ要望電力が2.5Wのスマートフォンを示し、受電器2B1,2B2は、それぞれ要望電力が10Wのタブレットを示す。まず、図12Bに示されるように、受電器2A1だけに対する単体送電電力PTA1を求める。
 すなわち、受電器2A2,2A3および受電器2B1,2B2の共振系をオフして受電器2A1だけオンとし、この受電器2A1の単体送電電力PTA1を求める。具体的に、例えば、送電器1A,1Bを同相出力で、出力比を1:1とし、受電器2A1の単体送電効率ηA1を20%とすると、受電器2A1の要望電力が2.5Wなので、受電器2A1の単体送電電力PTA1は、PTA1=2.5÷0.2=12.5[W]となる。
 次に、図12Cに示されるように、受電器2A1,2A3および受電器2B1,2B2の共振系をオフして受電器2A2だけオンとし、この受電器2A2の単体送電電力PTA2を求める。具体的に、例えば、送電器1Aを止めて送電器1Bだけを動作させ、出力比を0:1とし、受電器2A2の単体送電効率ηA2を90%とする。このとき、受電器2A2の要望電力が2.5Wなので、受電器2A2の単体送電電力PTA2は、PTA2=2.5÷0.9≒2.8[W]となる。
 さらに、図12Dに示されるように、受電器2A1,2A2および受電器2B1,2B2の共振系をオフして受電器2A3だけオンとし、この受電器2A3の単体送電電力PTA3を求める。具体的に、例えば、送電器1A,1Bを逆相出力で、出力比を1:1とし、受電器2A3の単体送電効率ηA3を50%とすると、受電器2A3の要望電力が2.5Wなので、受電器2A3の単体送電電力PTA3は、PTA3=2.5÷0.5≒5.0[W]となる。
 また、図12Eに示されるように、受電器2A1~2A3および受電器2B2の共振系をオフして受電器2B1だけオンとし、この受電器2B1の単体送電電力PTB1を求める。具体的に、例えば、送電器1A,1Bを同相出力で、出力比を1:1とし、受電器2B1の単体送電効率ηB1を60%とすると、受電器2B1の要望電力が10Wなので、受電器2B1の単体送電電力PTB1は、PTB1=10÷0.6≒16.7[W]となる。
 さらに、図12Fに示されるように、受電器2A1~2A3および受電器2B1の共振系をオフして受電器2B2だけオンとし、この受電器2B2の単体送電電力PTB2を求める。具体的に、例えば、送電器1A,1Bを同相出力で、出力比を1:1とし、受電器2B2の単体送電効率ηB2を60%とすると、受電器2B2の要望電力が10Wなので、受電器2B2の単体送電電力PTB2は、PTB2=10÷0.6≒16.7[W]となる。
 従って、単体送電電力が最大となる受電器は、16.7>12.5>5>2.8なので、受電器2B1および2B2が共に最大となり、最大単体送電電力PTixは、ほぼ16.7Wとなる。
 これにより、送電器1A,1Bは、同相出力で、その出力比は1:1となり、送電器1A,1Bによる合成磁界の方向が決められる。ここで、受電器2B1,2B2の単体送電電力PTB1,PTB2は、ほぼ16.7Wで等しく、最大単体送電電力PTixの所定比率(例えば、90%=α)以上となる。
 そこで、図12Gに示されるように、2つの受電器2B1,2B2を受電器グループとしてグループ化し、その受電器グループに含まれる2つの受電器2B1,2B2に対して、送電器1A,1Bを制御して同時に電力を伝送する。ここで、例えば、受電器2B1,2B2の受電効率が25%とすると、送電器1A,1Bの送電電力を40Wとすることにより、受電器2B1,2B2の受電電力を10Wとすることができる。
 図12Hに示されるように、例えば、受電器2A1の受電効率は5%、受電器2A2の受電効率は30%、受電器2A3の受電効率は0%とすると、受電器2A1の受電電力は2W、受電器2A2の受電電力は12W、受電器2A3の受電電力は0Wとなる。
 すなわち、受電器2A2の受電電力は、12Wとなって、要望電力2.5Wを超過するため、デチューンを行って2.5Wまで低減する。なお、受電器2A1の受電効率は5%で、所定の受電効率(例えば、10%=β)以上の効率が得られないため、給電不足として共振系をオフして給電を停止する。また、受電器2A3の受電電力は0Wなので、給電停止(無給電)となる。
 これにより、図12Iに示されるように、送電器1A,1Bは、同相出力で、その出力比は1:1となり、受電器2B1,2B2の受電効率は30%、受電器2A1の受電効率は5%、受電器2A2の受電効率は7.5%、受電器2A3の受電電力は0Wとなる。
 なお、例えば、受電器グループに含まれない受電器においても、受電電力が要望電力よりも大きい受電器に対しては、デチューンを行ってもよい。また、前述したように、受電器グループに含まれる受電器に対して同時に電力を伝送すると、所定の受電効率(例えば、10%=β)以上得られないときには、受電器グループを分割することができる。
 例えば、mを2以上の整数として、送電コイル(送電器)がm個のとき、m個の送電コイルをm次元のベクトルとして処理することで、受電器グループの分割を行う。また、m次元のベクトルは、m個の送電コイルからの位相を、同相と逆相の2方向だけで処理してもよい。
 また、m次元のベクトルのうち、任意の1つのベクトルと他のベクトルのなす角度でベクトル角を計算する。そして、nを2以上の整数として、受電器グループをn分割するとき、nが大きくなるに従って角度が狭くなる範囲に含まれるベクトル角の受電器を、分割された受電器グループに分類することもできる。
 すなわち、最大単体送電電力の受電器を含む受電器グループにおいて、その受電器グループに含まれる複数の受電器に対して、要望電力と同じ比率となるように送電器の出力を制御する。
 その際、受電器グループの全ての受電器に対して、所定の効率(β)が得られない場合は、受電器グループを2分割して同様の処理を行い、さらに、その分割されたグループの全ての受電器でも所定の効率が得られない場合には、3分割する。このような処理を繰り返して、所定の効率が得られるまで、受電器グループの分割を行ってもよい。
 図13は、本実施例の無線電力伝送システムの一例を示すブロック図であり、2つの送電器1A,1B、および、2つの受電器2A,2Bを含む例を示すものである。図13に示されるように、送電器1A,1Bは同様の構成を有し、それぞれワイヤレス送電部11A,11B、高周波電源部12A,12B、送電制御部13A,13Bおよび通信回路部14A,14Bを含む。
 高周波電源部12A,12Bは、高周波の電力を発生するもので、例えば、前述した図3における高周波電源部12に相当し、固有の電源インピーダンスを有する。例えば、出力インピーダンスが50Ωに整合された定電圧電源や、高い出力インピーダンスのHi-ZΩ電源(定電流電源)などである。
 送電制御部13A,13Bは、送電部11A,11Bを制御し、通信回路部14A,14Bは、各送電器および受電器間の通信を可能とするものであり、例えば、IEEE 802.11bに準拠するDSSS方式の無線LANやブルートゥース(Bluetooth(登録商標))を利用することができる。
 なお、高周波電源部12A,12Bは、それぞれ外部電源10A,10Bから電力の供給を受け取り、送電制御部13A,13Bには、検出部SA,SBからの信号が入力されている。なお、送電器1Aおよび送電器1Bは、例えば、1つの送電器1に設けた2つの送電部(11)としてもよいのはいうまでもない。
 ワイヤレス送電部11A,11Bは、磁界共鳴であればコイルに相当し、高周波電源部12A,12Bから供給される高周波電力を磁界に変換する。検出部SA,SBは、送電器1A,1Bの相対位置関係や受電器2A,2Bの相対位置関係を検出する。
 なお、例えば、送電器1A,1Bの位置関係が固定され(送電共振コイル(送電コイル)11a1,11a2がL字状に固定され)、その情報を送電制御部13A,13Bが把握し、受電器2A,2Bが検出機能を有する場合、検出部SA,SBは省略可能である。
 ここで、前述した本実施例の無線電力伝送制御方法は、例えば、無線電力伝送システム全体を制御する送電器1Aにおける送電制御部(制御装置:コンピュータ)13Aにより実行されるプログラムとして実施することも可能である。
 受電器2A,2Bも同様の構成を有し、それぞれワイヤレス受電部21A,21B、整流部(受電回路部)22A,22B、受電制御部23A,23B、通信回路部24A,24Bおよび機器本体(バッテリ部)25A,25Bを含む。
 受電制御部23A,23Bは、受電器2A,2Bを制御するものであり、通信回路部24A,24Bは、各送電器および受電器間の通信を可能とするもので、前述したように、例えば、無線LANやブルートゥース(Bluetooth(登録商標))を利用する。
 ワイヤレス受電部21A,21Bは、磁界共鳴であればコイルに相当し、無線で伝達された電力を電流に変換する。整流部22A,22Bは、ワイヤレス受電部21A,21Bから得られた交流電流をバッテリ充電や機器本体で使用可能なように直流電流に変換する。
 上述したように、送電器1A,1Bおよび受電器2A,2Bは、それぞれの通信回路部14A,14B,24A,24Bを介して通信を行う。このとき、例えば、送電器1Aをマスタ(全体制御器)とし、このマスタ(送電器)1Aが、他の送電器1Bおよび受電器2A,2Bをスレーブとして制御することもできる。
 ここで、送電器1A,1Bの通信回路部14A,14B、並びに、受電器2A,2Bの通信回路部24A,24Bを介した通信により、同時送電と時分割送電の切り替え、並びに、同時送電における電力配分比調整等の制御を行う。
 具体的に、例えば、送電器1Aの通信回路部14Aおよび受電器2A,2Bの通信回路部24A,24Bを介して、それぞれの受電器2A,2BにおけるQ値を、無線電力伝送の制御を行うマスタ(例えば、送電器1A)に通信で伝える。
 また、同時給電を行う場合、例えば、送電器1Aの通信回路部14Aおよび受電器2Bの通信回路部24Bを介して、受電器2Bの受電共振コイル(受電コイル)における容量のキャパシタンス(CA)を共振点からずらし、電力配分比の調整を行う。具体的に、前述した図5Aに示す受電共振コイル21aにおける容量212のキャパシタンスの値を制御して、受電器2A,2Bの電力配分比を調整する。
 さらに、時分割給電を行う場合、例えば、送電器1Aの通信回路部14Aおよび受電器2A,2Bの通信回路部24A,24Bを介して、ワイヤレス給電を行う受電器の切り替えを行う。
 具体的に、例えば、前述した図5Aに示す受電共振コイル21aにおけるスイッチ213を制御して、ワイヤレス給電を行う受電器のスイッチ213だけを順にオンするように制御する。或いは、例えば、前述した図5Bに示す受電共振コイル21aにおけるスイッチ213を制御して、ワイヤレス給電を行う受電器のスイッチ213だけを順にオフするように制御する。
 なお、ワイヤレス送電部11Aおよび11Bと、ワイヤレス受電部21Aまたは21Bの間は、磁界共鳴を利用した電力伝送に限定されるものではなく、例えば、電界共鳴、或いは、電磁誘導や電界誘導を利用した電力伝送方式を適用することもできる。
 図14A~図14Dは、本実施例の無線電力伝送制御方法の処理の一例を説明するためのフローチャートである。まず、本実施例の無線電力伝送制御方法の処理の一例が開始すると、ステップST8において、受電器側で給電トリガが入力され、ステップST9で、受電器から送電器へ通信を介して伝達され、ステップST1に進む。
 ステップST1において、送電器は、受電器からの給電トリガ(給電を要望する信号)を受け取り、ステップST2に進んで、受電器をサーチする。すなわち、受電器側では、それぞれの受電器が、送電器からの受電器サーチ信号を受けて、ステップST10において、送電器へ応答(情報1を伝達)する。この情報1には、例えば、各受電器が要望する要望電力および受電器の位置や姿勢といった情報が含まれる。
 送電器側では、ステップST3受電において、受電器からの情報1を確認し、ステップ4に進んで、情報1を用いて各受電器Riの単体効率(単体送電効率)ηiを算出する。これは、前述したように、例えば、ηを求める受電器の受電共振コイル(共振系)だけをオンし、それ以外の受電器の共振系をオフして全ての受電器Riに対して順番に行う。
 さらに、ステップ5に進んで、各受電器Riにおける単体効率ηiと要望電力(単体要望電力)PRiから、単体送電電力PTiを算出する。すなわち、前述したように、PTi=PRi/ηiから、それぞれの受電器Riの単体送電電力PTiを算出し、ステップST6に進んで、PTiが最大となる最大単体送電電力PTixの受電器(第1受電器)Rixを選択する。
 次に、ステップST7に進んで、最大単体送電電力PTixに対して、所定比率α(例えば、90%)以上となる単体送電電力PTiの受電器Riを選択し、ステップST11に進む。
 ステップST11では、PTix・α≦PTi(例えば、PTix×0.9≦PTi)となるPTiの受電器Riが存在するかどうかを判定する。ステップST11において、PTix・α≦PTiとなる少なくとも1つの受電器Riが存在すると判定(NO)すると、ステップST25(分岐BB)に進み、1つも存在しないと判定(YES)するステップST12に進む。
 ステップST12では、最大単体送電電力PTixの受電器(第1受電器)Rixに最適な磁界を決定する。これにより、各送電器における出力の強度比および位相が確定し、出力の絶対値のみ未確定となっている。
 さらに、ステップST13に進んで、情報1を用いて各受電器Riの効率(単体送電効率)ηiを算出してステップST14に進み、全ての受電器の受電効率ηipが所定の比率(例えば、10%=β)以上かどうかを判定する。
 ステップST14で、全ての受電器の受電効率ηipが所定の比率以上(ηip≧β)であると判定すると、ステップST18に進んで、同時給電条件下において、受電器(第1受電器)Rixが要望電力を得られる送電出力Pを決定して、ステップST19に進む。
 ステップST19では、各受電器において、それぞれの受電器の要望電力PRiが実際に給電される電力(P・ηip)以上であるかどうかを判定する。ステップST19において、PRi≧P・ηipである、すなわち、全ての受電器Riで、過剰な給電にはならないと判定すると、ステップST20に進んで、送電出力Pにより送電を開始する。
 一方、ステップST19において、全ての受電器RiでPRi≧P・ηipとはならない、すなわち、少なくとも1つの受電器(Rid)の給電が過剰になると判定すると、ステップST21に進む。
 ステップST21では、PRi<P・ηipとなる各受電器Rdiにおいて、PRi=P・ηip'となるデチューン条件を算出し、そのデチューン条件を各受電器Rdiに対して通信を介して伝達して、ステップST22に進む。
 ステップST22では、同時給電条件およびデチューン下において、受電器Rixが要望電力を得られる送電出力P'を決定し、ステップST23に進んで、その送電出力P'により送電を開始する。
 なお、受電器(Rdi)側では、ステップST24において、ステップST21で算出されたデチューン条件に基づいてデチューンを行う。この受電器Rdiにおけるデチューンは、例えば、図12Hを参照して説明した受電器2A2のデチューン処理に相当する。
 次に、ステップST14において、全ての受電器の受電効率ηipが所定の比率以上(ηip≧β)ではない、すなわち、受電効率ηipが所定の比率よりも小さい(ηip<β)受電器が少なくとも1つ存在すると判定した場合には、ステップST15に進む。
 ステップST15では、ηip≧βとなる受電器Rinを選択し、その受電器Rinの共振をオフする指示を出力して、ステップST16に進む。なお、受電器(Rin)側では、ステップST17において、ステップST15による指示に基づいて、受電器Rinの受電共振コイル(共振系)をオフする。この受電器Rinにおける共振系のオフは、例えば、図12Hを参照して説明した受電器2A1の共振系をオフして給電を停止する処理に相当する。
 ステップST16では、ηip≧βとなる受電器Rinを除く受電器Riに対して、情報1を用いて各受電器Riのそれぞれの受電効率ηipを算出して、ステップST18に進み、上述したのと同様の処理を行う。
 前述したように、ステップST11において、PTix・α≦PTiとなる受電器Riが少なくとも1つ存在すると判定(NO)すると、ステップST25(分岐BB)に進む。ステップST25では、PTix・α≦PTiを満たす複数のRix'に対して、PRiの比を保つことのできる磁界を算出する。
 ここで、PTix・α≦PTiとなる受電器(受電器グループ)Rix'には、最大単体送電電力PTixの受電器(第1受電器)Rixが含まれるため、Rix'の数は、複数(少なくとも2つ)となる。
 さらに、ステップST26に進んで、各受電器Rix'において、全ての受電器の単体送電効率(効率)ηix'所定の値(γ)以上かどうかを判定し、全ての受電器が、ηix'≧γであると判定すると、ステップST27に進む。
 ステップST27では、前述したステップST12と同様に、各送電器における出力の強度比および位相が確定し、出力の絶対値のみ未確定となっており、ステップST13(合流CC)に進んで、上述したのと同様の処理を行う。
 一方、ステップST26において、少なくとも1つの受電器が、ηix'<γであると判定すると、ステップST28に進んで、受電器グループRix'を分割し、ステップST29に進んで、同時給電対象の受電器Riを新たにRix'として、ステップST27に進む。
 なお、この受電器グループRix'の分割処理、並びに、図14A~図14Dのフローチャートを参照して説明した処理は、単なる例であり、様々な変形および変更が可能なのはいうまでもない。
 以上の説明において、送電器および受電器は、主として1つまたは2つとして説明したが、それぞれさらに多数であってもよい。また、各実施例の説明は、主として磁界共鳴を利用した電力伝送を例としたが、本実施形態は、電界共鳴を利用した電力伝送に対しても適用することができる。
 ここに記載されている全ての例および条件的な用語は、読者が、本発明と技術の進展のために発明者により与えられる概念とを理解する際の助けとなるように、教育的な目的を意図したものである。
 また、具体的に記載されている上記の例および条件、並びに、本発明の優位性および劣等性を示すことに関する本明細書における例の構成に限定されることなく、解釈されるべきものである。
 さらに、本発明の実施例は詳細に説明されているが、本発明の精神および範囲から外れることなく、様々な変更、置換および修正をこれに加えることが可能であると解すべきである。
 1  送電器(一次側:送電側)
 1A,1B  送電器
 2  受電器(二次側:受電側)
 2A,2B,2A1~2A3,2B1,2B2,2C1,2C2  受電器
 10A,10B  外部電源
 11,11A,11B  ワイヤレス送電部
 11a,11aA,11aB、11a1,11a2  送電共振コイル(送電コイル:第2コイル:LC共振器)
 11b  電力供給コイル(第1コイル)
 12,12A,12B  高周波電源部
 13,13B  送電制御部
 13A  送電制御部(制御装置)
 14,14A,14B  通信回路部(第1通信回路部)
 21,21A,21B  ワイヤレス受電部
 21a,21aA,21aB  受電共振コイル(受電コイル:第3コイル:LC共振器)
 21b  電力取出コイル(第4コイル)
 22,22A,22B  受電回路部(整流部)
 23,23A,23B  受電制御部
 24,24A,24B  通信回路部(第2通信回路部)
 25,25A,25B  バッテリ部(機器本体,負荷)

Claims (16)

  1.  複数の送電コイル、および、複数の受電器を含み、複数の前記送電コイルからの電力を、磁界共鳴または電界共鳴を利用して無線により、少なくとも2つの前記受電器に同時に伝送する無線電力伝送制御方法であって、
      複数の前記送電コイルによる、それぞれの前記受電器に対する単体送電効率、および、それぞれの前記受電器が要望する単体要望電力を求め、
      前記単体要望電力を前記単体送電効率で除算して、それぞれの前記受電器の単体送電電力を算出し、
      前記単体送電電力が最大となる最大単体送電電力の第1受電器を選択し、
      前記第1受電器に対する送電効率を最大化するように、複数の前記送電コイルを制御する、
     ことを特徴とする無線電力伝送制御方法。
  2.  複数の送電コイル、および、複数の受電器を含み、複数の前記送電コイルからの電力を、磁界共鳴または電界共鳴を利用して無線により、それぞれの前記受電器に伝送する無線電力伝送制御方法であって、
      それぞれの前記受電器の送電効率に基づいて、特定の受電器のみに対して電力を伝送する第1電力伝送と、
      複数の前記送電コイルを制御し、磁界または電界の向きを変化させて、前記受電器に対して電力を伝送する第2電力伝送と、
      電力を受け取る少なくとも2つの前記受電器において、全体的な送電効率を維持しつつ、少なくとも1つの受電器の受電電力を低下させて、少なくとも2つの前記受電器に対して電力を伝送する第3電力伝送と、
      複数の前記受電器において、それぞれの単体送電電力が最大となる最大単体送電電力の第1受電器に基づいて電力を伝送する第4電力伝送と、を有し、
     前記第1,第2,第3および第4電力伝送を制御して、複数の前記受電器に対する電力伝送を行う、
     ことを特徴とする無線電力伝送制御方法。
  3.  前記第1電力伝送は、それぞれの前記受電器に対して、時分割的に切り替えて順番に電力を伝送し、
     前記第2電力伝送は、複数の前記送電コイルの電流および位相を制御し、磁界または電界の向きを変化させて、少なくとも2つの前記受電器に対して同時に電力を伝送し、そして、
     前記第3電力伝送は、受電電力を低下させる前記受電器における受電共振コイルの共振点をずらして、少なくとも2つの前記受電器に対して同時に電力を伝送する、
     ことを特徴とする請求項2に記載の無線電力伝送制御方法。
  4.  前記第4電力伝送は、
      複数の前記送電コイルによる、それぞれの前記受電器に対する単体送電効率、および、それぞれの前記受電器が要望する単体要望電力を求め、
      前記単体要望電力を前記単体送電効率で除算して、それぞれの前記受電器の単体送電電力を算出し、
      前記単体送電電力が最大となる最大単体送電電力の前記第1受電器を選択し、
      前記第1受電器に対する送電効率を最大化するように、複数の前記送電コイルを制御する、
     ことを特徴とする請求項2または請求項3に記載の無線電力伝送制御方法。
  5.  前記最大単体送電電力に対して、所定比率以上の単体送電電力の受電器が少なくとも1つ存在するとき、単体送電電力が前記最大単体送電電力の所定比率以上の前記受電器と前記第1受電器を受電器グループとしてグループ化し、
     前記受電器グループに含まれる少なくとも2つの受電器に対して、複数の前記送電コイルを制御して同時に電力を伝送する、
     ことを特徴とする請求項1乃至請求項4のいずれか1項に記載の無線電力伝送制御方法。
  6.  前記受電器グループに含まれる少なくとも2つの受電器に対して同時に電力を伝送すると、所定の受電効率以上の効率が得られないとき、前記受電器グループを分割する、
     ことを特徴とする請求項5に記載の無線電力伝送制御方法。
  7.  前記受電器グループの分割は、mを2以上の整数として、前記送電コイルがm個のとき、m個の前記送電コイルをm次元のベクトルとして処理することにより行う、
     ことを特徴とする請求項6に記載の無線電力伝送制御方法。
  8.  前記m次元のベクトルは、m個の前記送電コイルからの位相を、同相および逆相のみで処理する、
     ことを特徴とする請求項7に記載の無線電力伝送制御方法。
  9.  前記m次元のベクトルのうち、或る1つのベクトルと他のベクトルのなす角度でベクトル角を計算し、
     nを2以上の整数として、前記受電器グループをn分割するとき、nが大きくなるに従って角度が狭くなる範囲に含まれる前記ベクトル角の受電器を、分割された受電器グループに分類する、
     ことを特徴とする請求項8に記載の無線電力伝送制御方法。
  10.  前記受電器グループをn分割するとき、90°をnで除算した角度の範囲に含まれる前記ベクトル角の受電器を、分割された受電器グループに分類する、
     ことを特徴とする請求項9に記載の無線電力伝送制御方法。
  11.  同時に電力を伝送する複数の前記受電器において、それぞれの受電電力が、その受電器が要望する要望電力を超える受電器では、その受電共振系のQ値を可変して受電電力を制御する、
     ことを特徴とする請求項1乃至請求項10のいずれか1項に記載の無線電力伝送制御方法。
  12.  同時に電力を伝送する複数の前記受電器において、それぞれの受電電力が所定の値に達しない受電器では、受電共振系をオフして受電を停止する、
     ことを特徴とする請求項1乃至請求項10のいずれか1項に記載の無線電力伝送制御方法。
  13.  複数の送電コイル、および、複数の受電器を含み、前記送電コイルからの電力を、磁界共鳴または電界共鳴を利用して無線により、それぞれの前記受電器に伝送する無線電力伝送システムであって、
      それぞれの前記受電器の送電効率に基づいて、特定の受電器のみに対して電力を伝送する第1電力伝送と、
      複数の前記送電コイルを制御し、磁界または電界の向きを変化させて、前記受電器に対して電力を伝送する第2電力伝送と、
      電力を受け取る少なくとも2つの前記受電器において、全体的な送電効率を維持しつつ、少なくとも1つの受電器の受電電力を低下させて、少なくとも2つの前記受電器に対して電力を伝送する第3電力伝送と、
      複数の前記受電器において、それぞれの単体送電電力が最大となる最大単体送電電力の第1受電器に基づいて電力を伝送する第4電力伝送と、を有し、
     前記第1,第2,第3および第4電力伝送を制御して、複数の前記受電器に対する電力伝送を行う、
     ことを特徴とする無線電力伝送システム。
  14.  前記第1電力伝送は、それぞれの前記受電器に対して、時分割的に切り替えて順番に電力を伝送し、
     前記第2電力伝送は、複数の前記送電コイルの電流および位相を制御し、磁界または電界の向きを変化させて、少なくとも2つの前記受電器に対して同時に電力を伝送し、そして、
     前記第3電力伝送は、受電電力を低下させる前記受電器における受電共振コイルの共振点をずらして、少なくとも2つの前記受電器に対して同時に電力を伝送する、
     ことを特徴とする請求項13に記載の無線電力伝送システム。
  15.  前記第4電力伝送は、
      複数の前記送電コイルによる、それぞれの前記受電器に対する単体送電効率、および、それぞれの前記受電器が要望する単体要望電力を求め、
      前記単体要望電力を前記単体送電効率で除算して、それぞれの前記受電器の単体送電電力を算出し、
      前記単体送電電力が最大となる最大単体送電電力の前記第1受電器を選択し、
      前記第1受電器に対する送電効率を最大化するように、複数の前記送電コイルを制御する、
     ことを特徴とする請求項13または請求項14に記載の無線電力伝送システム。
  16.  複数の送電コイルと、複数の受電器と、前記送電コイルからの電力を,磁界共鳴または電界共鳴を利用して無線によりそれぞれの前記受電器に伝送するように制御する制御装置と、を含む無線電力伝送システムの制御プログラムであって、
     前記制御装置に、
      複数の前記送電コイルによる、それぞれの前記受電器に対する単体送電効率、および、それぞれの前記受電器が要望する単体要望電力を求める工程と、
      前記単体要望電力を前記単体送電効率で除算して、それぞれの前記受電器の単体送電電力を算出する工程と、
      前記単体送電電力が最大となる最大単体送電電力の第1受電器を規定する工程と、
      前記第1受電器に対する送電効率を最大化するように、複数の前記送電コイルを制御する工程と、を実行させる、
     ことを特徴とする無線電力伝送システムの制御プログラム。
PCT/JP2014/063323 2014-05-20 2014-05-20 無線電力伝送制御方法および無線電力伝送システム WO2015177860A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016520839A JPWO2015177860A1 (ja) 2014-05-20 2014-05-20 無線電力伝送制御方法および無線電力伝送システム
EP14892722.1A EP3151376A4 (en) 2014-05-20 2014-05-20 Wireless power transmission control method and wireless power transmission system
PCT/JP2014/063323 WO2015177860A1 (ja) 2014-05-20 2014-05-20 無線電力伝送制御方法および無線電力伝送システム
CN201480078897.8A CN106464020A (zh) 2014-05-20 2014-05-20 无线电力传输控制方法以及无线电力传输系统
KR1020167031885A KR20160145152A (ko) 2014-05-20 2014-05-20 무선 전력 전송 제어 방법 및 무선 전력 전송 시스템
US15/351,711 US20170063167A1 (en) 2014-05-20 2016-11-15 Wireless power transfer control method and wireless power transfer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/063323 WO2015177860A1 (ja) 2014-05-20 2014-05-20 無線電力伝送制御方法および無線電力伝送システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/351,711 Continuation US20170063167A1 (en) 2014-05-20 2016-11-15 Wireless power transfer control method and wireless power transfer system

Publications (1)

Publication Number Publication Date
WO2015177860A1 true WO2015177860A1 (ja) 2015-11-26

Family

ID=54553558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063323 WO2015177860A1 (ja) 2014-05-20 2014-05-20 無線電力伝送制御方法および無線電力伝送システム

Country Status (6)

Country Link
US (1) US20170063167A1 (ja)
EP (1) EP3151376A4 (ja)
JP (1) JPWO2015177860A1 (ja)
KR (1) KR20160145152A (ja)
CN (1) CN106464020A (ja)
WO (1) WO2015177860A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017135831A (ja) * 2016-01-27 2017-08-03 日東電工株式会社 給電装置、及び受給電装置
WO2017208498A1 (ja) * 2016-05-30 2017-12-07 パナソニックIpマネジメント株式会社 非接触給電システム及び非接触電力伝送システム
WO2019103241A1 (ko) * 2017-11-24 2019-05-31 경희대학교산학협력단 무선전력전송 시스템에서 복수의 소형 전력 전송 코일로 구성된 무선 충전 패드 및 무선 충전 패드의 구동 장치 및 방법

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9985481B2 (en) * 2016-03-28 2018-05-29 Intel IP Corporation Dynamic power adjustment mechanism for mitigating wireless power interference
JP2018125815A (ja) * 2017-02-03 2018-08-09 株式会社東芝 無線送電装置および無線給電システム
JP6710650B2 (ja) * 2017-03-01 2020-06-17 株式会社東芝 ワイヤレス給電制御装置、送電器および受電器
KR20190064914A (ko) * 2017-12-01 2019-06-11 엘지이노텍 주식회사 무선 전력 송신 방법 및 장치
KR102540921B1 (ko) * 2018-06-29 2023-06-07 현대자동차주식회사 차량용 무선충전장치 및 그 동작방법
CN111752332B (zh) * 2020-06-29 2022-04-22 广东美的厨房电器制造有限公司 输入装置和家用电器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268311A (ja) * 2008-04-28 2009-11-12 Sony Corp 送電装置、送電方法、プログラム、および電力伝送システム
JP2011199975A (ja) * 2010-03-18 2011-10-06 Nec Corp 非接触送電装置、非接触送電システムおよび非接触送電方法
JP2012517792A (ja) * 2009-02-10 2012-08-02 クアルコム,インコーポレイテッド 多次元無線充電に関するシステムおよび方法
JP2013055879A (ja) * 2011-09-05 2013-03-21 Ls Cable Ltd 多重アンテナを使用した無線電力伝送装置及びその制御方法
WO2013146929A1 (ja) * 2012-03-28 2013-10-03 富士通株式会社 無線電力伝送システムおよび無線電力伝送方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4036813B2 (ja) 2003-09-30 2008-01-23 シャープ株式会社 非接触電力供給システム
CN102362408B (zh) * 2009-03-30 2015-01-21 富士通株式会社 无线供电系统、无线送电装置及无线受电装置
WO2011077488A1 (ja) * 2009-12-24 2011-06-30 株式会社 東芝 無線電力伝送装置
JP5593926B2 (ja) 2010-07-29 2014-09-24 ソニー株式会社 給電システム、給電装置および電子機器
KR101859191B1 (ko) * 2011-03-23 2018-05-18 삼성전자주식회사 무선 전력 전송 시스템, 무선 전력 전송 및 수신 제어 방법
US9270124B2 (en) * 2011-06-30 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. Contactless power supply device
WO2013035188A1 (ja) 2011-09-08 2013-03-14 富士通株式会社 送電装置、受電装置および非接触型充電方法
WO2013042291A1 (ja) * 2011-09-21 2013-03-28 日本電気株式会社 無線給電システム及び無線給電方法
KR20130033867A (ko) * 2011-09-27 2013-04-04 삼성전기주식회사 무선 전력 전송 시스템
KR101349551B1 (ko) * 2011-11-02 2014-01-08 엘지이노텍 주식회사 무선 전력 송신 장치 및 그 방법
JP5976385B2 (ja) * 2012-05-07 2016-08-23 ソニー株式会社 検知装置、受電装置、送電装置及び非接触給電システム
KR101848303B1 (ko) * 2012-07-10 2018-04-13 삼성전자주식회사 전력 전송을 제어하기 위한 방법 및 이를 위한 전력 송신기
CN104969442B (zh) * 2013-02-15 2017-09-05 株式会社村田制作所 无线供电装置
JP6092017B2 (ja) * 2013-06-25 2017-03-08 ルネサスエレクトロニクス株式会社 送電装置、非接触給電システム、及び制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268311A (ja) * 2008-04-28 2009-11-12 Sony Corp 送電装置、送電方法、プログラム、および電力伝送システム
JP2012517792A (ja) * 2009-02-10 2012-08-02 クアルコム,インコーポレイテッド 多次元無線充電に関するシステムおよび方法
JP2011199975A (ja) * 2010-03-18 2011-10-06 Nec Corp 非接触送電装置、非接触送電システムおよび非接触送電方法
JP2013055879A (ja) * 2011-09-05 2013-03-21 Ls Cable Ltd 多重アンテナを使用した無線電力伝送装置及びその制御方法
WO2013146929A1 (ja) * 2012-03-28 2013-10-03 富士通株式会社 無線電力伝送システムおよび無線電力伝送方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3151376A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017135831A (ja) * 2016-01-27 2017-08-03 日東電工株式会社 給電装置、及び受給電装置
WO2017208498A1 (ja) * 2016-05-30 2017-12-07 パナソニックIpマネジメント株式会社 非接触給電システム及び非接触電力伝送システム
JPWO2017208498A1 (ja) * 2016-05-30 2019-04-04 パナソニックIpマネジメント株式会社 非接触給電システム及び非接触電力伝送システム
US11128181B2 (en) 2016-05-30 2021-09-21 Panasonic Intellectual Property Management Co., Ltd. Contactless power feeding system and contactless power transfer system
WO2019103241A1 (ko) * 2017-11-24 2019-05-31 경희대학교산학협력단 무선전력전송 시스템에서 복수의 소형 전력 전송 코일로 구성된 무선 충전 패드 및 무선 충전 패드의 구동 장치 및 방법

Also Published As

Publication number Publication date
US20170063167A1 (en) 2017-03-02
EP3151376A1 (en) 2017-04-05
EP3151376A4 (en) 2017-06-28
KR20160145152A (ko) 2016-12-19
JPWO2015177860A1 (ja) 2017-04-20
CN106464020A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2015177860A1 (ja) 無線電力伝送制御方法および無線電力伝送システム
JP6319432B2 (ja) 無線電力伝送制御方法および無線電力伝送システム
JP6315088B2 (ja) 受電器、無線電力伝送システムおよびkQ値算出方法
US9793758B2 (en) Enhanced transmitter using frequency control for wireless power transmission
Ng et al. Two-and three-dimensional omnidirectional wireless power transfer
US9882412B2 (en) Non-contact type power receiver and non-contact type battery
US9130389B2 (en) Apparatus for wireless power transmission using multi antenna and method for controlling the same
US9941749B2 (en) Non-contact type charger
US10027175B2 (en) Wireless power transfer system and wireless power transfer method
AU2013376253B2 (en) Power Source, Wireless Power Transfer System and Wireless Power Transfer Method
KR101350309B1 (ko) 특정 무선 충전기기로 송신전력을 집중할 수 있는 무선 전력전송 장치 및 방법
US10381859B2 (en) Wireless power supply system, power transmitter, and power transmission method
US9929583B2 (en) Non-contact type charger, non-contact type battery, and non-contact type power transmission method
US11923692B2 (en) Wireless power transmission device and operating method therefor
Dai et al. Reconfigurable receiver with adaptive output voltage for wireless power transfer
Park et al. The Study of the Controlling Resonant Wireless Power Transfer Using Bluetooth Communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892722

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016520839

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014892722

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014892722

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167031885

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE